
DEPARTMENT OF INFORMATION ENGINEERING AND COMPUTER SCIENCE
IECS International Doctoral School

Assumption-Based Runtime Verification
of Finite- and Infinite-State Systems

Chun Tian

Advisor

Dr. Alessandro Cimatti

Fondazione Bruno Kessler, Italy

Co-Advisor

Dr. Stefano Tonetta

Fondazione Bruno Kessler, Italy

November 2022

Abstract

Runtime Verification (RV) is usually considered as a lightweight automatic verification
technique for the dynamic analysis of systems, where a monitor observes executions produced
by a system and analyzes its executions against a formal specification. If the monitor were
synthesized, in addition to the monitoring specification, also from extra assumptions on the
system behavior (typically described by a model as transition systems), then it may output
more precise verdicts or even be predictive, meanwhile it may no longer be lightweight, since
monitoring under assumptions has the same computation complexity with model checking.

When suitable assumptions come into play, the monitor may also support partial observabil-
ity, where non-observable variables in the specification can be inferred from observables, either
present or historical ones. Furthermore, the monitors are resettable, i.e. being able to evalu-
ate the specification at non-initial time of the executions while keeping memories of the input
history. This helps in breaking the monotonicity of monitors, which, after reaching conclusive
verdicts, can still change its future outputs by resetting its reference time. The combination
of the above three characteristics (assumptions, partial observability and resets) in the monitor
synthesis is called the Assumption-Based Runtime Verification, or ABRV.

In this thesis, we give the formalism of the ABRV approach and a group of monitoring
algorithms based on specifications expressed in Linear Temporal Logic with both future and past
operators, involving Boolean and possibly other types of variables. When all involved variables
have finite domain, the monitors can be synthesized as finite-state machines implemented by
Binary Decision Diagrams. With infinite-domain variables, the infinite-state monitors are based
on satisfiability modulo theories, first-order quantifier elimination and various model checking
techniques. In particular, Bounded Model Checking is modified to do its work incrementally for
efficiently obtaining inconclusive verdicts, before IC3-based model checkers get involved.

All the monitoring algorithms in this thesis are implemented in a tool called NuRV. NuRV
support online and offline monitoring, and can also generate standalone monitor code in various
programming languages. In particular, monitors can be synthesized as SMV models, whose
behavior correctness and some other properties can be further verified by model checking.

Keywords
Formal Methods, Runtime Verification, Assumption-Based, Linear Temporal Logic, Bounded
Model Checking

4

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Assumption-Based RV Approach . 3
1.3 Innovative Aspects (aka Contributions) . 5
1.4 Product (aka Result) . 6
1.5 Structure of the Thesis . 7

2 Background and Related Work 9
2.1 Background . 9
2.2 Taxonomy, Frontiers and Trends . 11
2.3 Assumption-Related Work . 12
2.4 SMT-Related RV Work . 13

3 Preliminaries 15
3.1 Finite and infinite words (or traces) . 15
3.2 Satisfiability Modulo Theory . 16
3.3 Linear Temporal Logic . 16
3.4 Boolean formulae and functions . 17
3.5 Binary Decision Diagrams . 18
3.6 Fair Kripke Structure (Fair Transition System) 18
3.7 LTL to 𝜔-automata Translation . 19
3.8 Explicit-State Automata . 21
3.9 First-Order Quantifier Elimination . 23
3.10 LTL Model Checking . 23

4 Runtime Verification 25
4.1 LTL semantics for Runtime Verification . 25
4.2 Runtime Verification Based on LTL3 . 29
4.3 Assumptions and Partial Observability . 30

i

4.4 Assumption-Based Runtime Verification . 31
4.5 Motivating Example . 33
4.6 Theoretical Results of ABRV . 34

5 Monitoring Finite-State Systems 43
5.1 Symbolic Monitoring Algorithm . 43
5.2 Explicit-State Monitor Construction . 47
5.3 From Offline to Online Monitoring . 52
5.4 Code Generation . 52

6 Monitoring Infinite-State Systems 55
6.1 Motivating Example . 56
6.2 ABRV Reduced to Model Checking . 57
6.3 ABRV Reduced to MC and QE . 60
6.4 Optimization to ABRV-MC Reduction . 62
6.5 Incremental Bounded Model Checking . 66
6.6 ABRV with Incremental BMC . 69
6.7 Unboundedness of Infinite-State Monitors . 75

7 Monitoring ptLTL (Past-Time LTL) 77
7.1 Introduction . 77
7.2 Connection with LTL3 Semantics . 78
7.3 Contructing Explicit-state ptLTL Monitors . 83
7.4 Monitoring the original semantics of ptLTL 83

8 NuRV: The Tool Implementation 85
8.1 Functionalities . 85
8.2 Architecture . 88
8.3 Use Case Scenario . 88
8.4 Online Monitoring . 90
8.5 Offline Monitoring . 91
8.6 API of Generated Code . 93
8.7 Code Generation – Backends . 94

9 Experimental Evaluation 107
9.1 Tests for Finite-State Monitors . 107
9.2 Tests for Infinite-State Monitors . 114

ii

10 HOL Formalization 117
10.1 Introduction . 117
10.2 Higher Order Logic (HOL) . 119
10.3 Linear Temporal Logic in HOL . 121
10.4 Partial Formalization of Main Theorem 5.1.2 126
10.5 LTL3 and ptLTL (Alternative Semantics) . 127

11 Conclusions 129
11.1 Future Directions . 130

Bibliography 141

A Data and Tables 157
A.1 SMV Models . 157
A.2 Dwyer’s LTL Patterns . 158
A.3 Formal proofs . 161

B CORBA-Based Client-Server Monitoring 167
B.1 About CORBA . 167
B.2 Client-Server Monitoring . 168
B.3 Additional Software Dependencies . 169
B.4 A Tutorial of CORBA-based Monitor . 170
B.5 The Simple Monitor Interface . 172
B.6 Monitor Client Programming . 173

Index 181

iii

List of Tables

4.1 Comparing LTL Semantics for Runtime Verification 29
4.2 Output table in ABRV-MC reduction . 37
4.3 Alarm conditions as LTL [24] . 41

6.1 Output Table of Fig. 6.1 and Algorithm 7 . 60

8.1 Classification of NuRV according to the taxonomy [66] 86
8.2 Distinguished features of three NuRV modes 87

9.1 Eight long formulae from Dwyer’s patterns 110
9.2 The original QTL specification used in tests. [𝑝, 𝑞) is an abbreviation of (¬𝑞) S 𝑝.112
9.3 The ptLTL versions of QTL specifications of Table 9.2. 112
9.4 Evaluations of DejaVu and NuRV. 113

A.1 Dwyer’s LTL patterns . 158
A.2 Dwyer’s LTL patterns (continued) . 159
A.3 Size of monitors built from LTL patterns . 160

v

List of Figures

1.1 Traditional RV (LTL3-based, left) vs. ABRV (right) 4

4.1 Semantics of FLTL formulae over a trace 𝑢 = 𝑎0 . . . 𝑎𝑛−1 ∈ Σ∗ 26
4.2 Semantics of LTL∓ formulae over a trace 𝑢 = 𝑎0 . . . 𝑎𝑛−1 ∈ Σ∗ 27
4.3 ABRV Illustration . 33
4.4 The Factory Model . 34
4.5 LTL3 (left) v.s. ABRV-LTL (right), the direction of arrows indicate the possible

changes of monitor outputs after more inputs (without being reset) 35
4.6 ABRV reduced to MC . 37

5.1 LTL monitors of 𝑝 U 𝑞 (level 1–3), assuming 𝑝 ≠ 𝑞 50
5.2 LTL monitors of Y𝑝 ∨ 𝑞 (level 1 & 3), assuming 𝑝 ≠ 𝑞 51

6.1 ABRV reduced to MC and QE . 60

7.1 ptLTL (alternative) semantics vs. LTL3 semantics 83
7.2 ptLTL monitors of closed ∧ Y open’ (level 3 and 4) (assuming open ≠ closed) . 84

8.1 The architecture of NuRV . 87
8.2 Batch commands for generating monitors of 𝑝U𝑞 and Y𝑝 ∨ 𝑞 89
8.3 disjoint.smv and default.ord . 89
8.4 Offline monitoring in NuRV . 89
8.5 The SMV file disjoint.smv for 𝑝 U 𝑞 (assuming 𝑝 ≠ 𝑞) 91
8.6 Explicit-state monitor of G (𝑝 → X X 𝑞) . 95

9.1 The number of observations before a conclusive verdict, with and without as-
sumptions . 109

9.2 Performance of generated Java monitors on 107 states. 111
9.3 Performance of five RV algorithms on Pattern 49 115
9.4 Performance of bmc_monitor and monitor2_optimized on all patterns . . . 116

vii

10.1 HOL’s type grammar . 120
10.2 HOL’s term grammar . 120

viii

Chapter 1

Introduction

Formal verification is the act of proving or disproving behavior correctness of systems, either
mathematical, physical or cyber-physical, with respect to certain formal specifications described
in logical or mathematical formulas. Traditional formal verification techniques mainly include
Model Checking [53], Testing [29] and Theorem Proving [21].

Model Checking (MC) belongs to static formal verification techniques. It provides the
ultimate guarantee that a system satisfies a specification, and is fully automated (thus easier
to apply) in comparison with techniques like Theorem Proving. But applying MC to large
complex systems is difficult, as it usually suffers from the so-called state-explosion problem [34],
while the success of its application highly depends on the quality of the models; Testing, on
the other hand, is effective in showing the defects of the system but is totally incapable of
proving its correctness. Theorem Proving, either interactive (e.g. HOL [81] and Coq [21]) or
semi-automatic (e.g. ACL2 [99]) ones, usually requires very expressive logics (undecidable,
thus cannot be automatic in general) and can show the correctness of complex systems, but
developing formal proofs in theorem provers is a time-consuming and highly non-trivial task
even for domain experts (see, e.g., [55, 95]).

Runtime Verification (RV) is usually considered as a lightweight automatic formal verification
technique for the dynamic analysis of systems, where a monitor observes executions produced
by a system and analyzes its executions against a formal specification.1 In other words, RV
is “the discipline of computer science that deals with the study, development, and application
of those verification techniques that allow checking whether a run of a system under scrutiny
(SUS) satisfies or violates a given correctness property” [111]. RV in the wide sense covers at
least two areas:

1. Instrumentation: how to obtain the needed inputs from the system under scrutiny, to feed
the monitor.

1Courtesy of Prof. César Sánchez for this definitional sentence occurred in his review texts of the first version of the present thesis.

1

1.1. MOTIVATION CHAPTER 1. INTRODUCTION

2. Monitor Synthesis: how to build a monitor from a given specification (and perhaps also
from other information).

3. Execution Analysis: how to actually run the monitor at runtime, analyze its outputs, and
perhaps execute actions based on the monitor outputs.

The present thesis focuses on monitor synthesis under assumptions. Unified solution is the
key contribution. For the monitoring specification language, we focus on Linear Temporal Logic
with future and past operators, with Boolean and possibly other types of variables.2

1.1 Motivation

Traditional RV techniques have some severe limitations.
One classical RV research is to synthesize Propositional Linear Temporal Logic (PLTL or

just LTL) formulas into finite-state machines by leveraging tableau translations from LTL to
𝜔-automata, widely used by model checking community [19]. To fill the gaps between standard
LTL semantics over infinite traces and the fact that runtime monitors can only have finite trace
prefixes as inputs, the automata-based monitor synthesis must be adapted to slightly different
LTL semantics over finite traces, e.g. LTL3 [6]. This automata-based RV approach is also the
starting point of the present thesis work.

But a wide range of practical monitoring properties are non-monitorable with respect to LTL3,
i.e. for these specifications the corresponding monitor cannot emit any verdict other than unknown
(or inconclusive). (Bauer et al. report that 44% of the formulas they consider in their experiments
are non-monitorable [118].)

Besides, most of existing RV work can only handle fully observed systems: all state variables
of the SUS, at least those occurred in monitoring properties, must be fully observable from
the input traces. But in practice, many systems under scrutiny are only partially observable:
some state variables occurred in the monitoring specifications are non-observable from the input
traces.

Another limitation is that, runtime monitors tend to be monotonic: once the monitor has
reached any conclusion by outputting a conclusive verdict, it tends to keep the same outputs
despite the new inputs. This behavior is correct with respect to the formal definition of monitors
based on LTL semantics, but this means that the monitor becomes useless after its first conclusive
answer. Of course, the monitoring program could be restarted, but then it will forget all existing
inputs and the current internal states of the system, violating its formal definition.

2The tool implementation, however, is intended to be used in real projects (and have been actually used in several such projects), in which
the instrumentation and execution analysis of the monitors were done by project developers, successfully.

2

CHAPTER 1. INTRODUCTION 1.2. ASSUMPTION-BASED RV APPROACH

1.2 Assumption-Based RV Approach

Many blackbox systems are not truly black boxes. In practice one almost always knows something
about the SUS. This knowledge can be derived, for example, from models produced during the
system design, or from the interaction with human operators.

If the monitor were synthesized, in addition to the monitoring specification, also from extra
assumptions on the system behavior (typically described by a model), The benefits of incorpo-
rating extra assumptions during the monitor synthesis are manifold. For certain combinations of
assumptions (models) and monitoring properties, assumption-based monitors are more precise
(arriving at a conclusion based on the assumption while traditional monitors would be incon-
clusive), or even predictive (arriving at a conclusion before the input trace actually says so); in
particular, if the monitor would never have reached a conclusive verdict, it might do so because
of the assumption. (Such assumptions always exist, see [91].)

However, under assumptions the monitor may no longer be lightweight, since monitoring
under assumptions has, in general, the same computation complexity with Model Checking, as
we will show in this thesis.

When suitable assumptions come into play, the monitor may support partial observability,
where the value of non-observable variables in the specification can be inferred from observables,
either present or historical. Essentially, a partially observable trace can be viewed as a set of
traces whose projection to the observable set of variables is the observed one. In this case,
the monitor should emit a conclusive verdict if and only if all these traces compatible with the
observations led to the same verdict. Thus, partial observability also makes a connection between
RV and another field such as Fault Detection, Identification (FDI) [25], sometimes also called
FDIR (“R” means “Recovery”), where the central task is the generation of diagnoser which,
under certain conditions, can be simulated by a sequence of monitors with partial observability.

Furthermore, in this framework the monitors are resettable monitors, i.e. being able to evaluate
the specification at arbitrary time of the executions while keeping memories of historical inputs.
Roughly speaking, for any LTL formula 𝜑, its semantics ⟦𝑢, 𝑖 |= 𝜑⟧ can be evaluated (by a
resettable monitor) for any trace 𝑢 and position 𝑖 of the trace, with the underlying assumptions
taken into account. Consider the case where the monitor is evaluating an LTL property 𝜑 from
the initial position (as in the traditional monitors), denoted by ⟦𝑢, 0 |= 𝜑⟧ (or just ⟦𝑢 |= 𝜑⟧).
Upon a sequence 𝑢 of observations, receiving a new observation 𝑎 as the next input, together
with a reset signal, the monitor will evaluate 𝜑 from the last index of 𝑢: ⟦𝑢 · 𝑎, |𝑢 | |= 𝜑⟧. Taking
one more observation 𝑏 and this time without resets, the monitor will still evaluate 𝜑 in the
previous position: ⟦𝑢 · 𝑎 · 𝑏, |𝑢 | |= 𝜑⟧.

The combination of the above three characteristics (assumptions, partial observability and
resets) in monitor synthesis is called Assumption-Based Runtime Verification, abbreviated as

3

1.2. ASSUMPTION-BASED RV APPROACH CHAPTER 1. INTRODUCTION

SUS Monitor

Monitor
Synthesis

φ(O)

u(O) {⊤,⊥, ?}

Mϕ

SUS Monitor

Monitor
Synthesis

φ(V)

K(V,O)

u(O) {⊤a,⊥a, ?,×}

MK
ϕ

Figure 1.1: Traditional RV (LTL3-based, left) vs. ABRV (right)

ABRV.
ABRV is a novel RV approach aiming at improving the quality and features of monitors

by leveraging extra information and controls over the runtime monitors. The uses of extra
assumptions, together with the support of partial observability and resets, have shown to be
valuable as a unified solution to all limitations mentioned in previous section. To see the
difference between RV and ABRV more clearly, in Fig. 1.1, the left part, there is a monitoring
property 𝜑(𝑂) built by only observable variables (from the set 𝑂), being synthesized into a
monitor automaton M𝜑. The actual monitor program uses this automaton as its core, and
takes at runtime an input trace 𝑢(𝑂) (i.e. a sequence of variable assignments of 𝑂) from the
SUS outputting a 3-valued verdict corresponding to the entire trace (or a sequence of verdicts
corresponding to each states of the trace). In Fig. 1.1, the right part, one can see the following
differences of ABRV in comparison with traditional RV approaches:

1. The monitoring property may contain variables (in 𝑉 \𝑂) which is unobservable from the
trace;

2. The monitor synthesis process may leverage more information coming from a model (or
partial model) 𝐾 of the SUS;

3. The monitoring outputs can additional indicate (by outputting ×) that the input trace 𝑢(𝑂)
does not follow 𝐾;

4. It is possible to reset the monitor on behave of a recovery strategy of the monitors. After
the reset, the monitor still sees the same input trace, just using the resetting time as the
reference time for the evaluation of monitoring specification.

In summary, ABRV proposes the following solutions to the limitations mentioned in the
previous section:

1. Unlike other researchers who try to modify LTL3 semantics to give “conclusive” verdicts to
some non-monitorable properties, ABRV uses extra assumptions in the monitor synthesis
task, so that non-monitorable properties may become monitorable.

4

CHAPTER 1. INTRODUCTION 1.3. INNOVATIVE ASPECTS (AKA CONTRIBUTIONS)

2. With assumptions, the monitoring of partially observable systems become possible and
practical.

3. By resetting the monitor, it evaluates the monitoring specification using a different reference
time from the initial one. The monotonicity of monitors is thus broken and the monitors
can still be useful after the initial conclusive answer while still follows its formal definition.

1.3 Innovative Aspects (aka Contributions)

Due to the complexity of cyber-physical systems, their implementations at runtime may behave
differently from those given by their models. Thus it is not true that the actual traces of the
systems always satisfy their models. This is why we call these models “assumptions”. With
assumptions in consideration, there are four possible verdicts in the ABRV framework, based on
LTL3 semantics: conclusive true (⊤a), conclusive false (⊥a), inconclusive (?) and out-of-model
(×). The additional verdict out-of-model indicates that the monitor inputs have violated the
assumptions under which the monitor is synthesized. We consider this possibility always exists
and has brought it into our monitoring framework. Note that, besides LTL3, other monitoring
framework based on more refined LTL semantics can also incorporate this additional out-of-
model verdict, once assumptions were introduced. Even for monitors not based on LTL, as long
as assumptions are introduced, the possibility of monitors not following assumptions always
exists. This amendment of monitoring verdicts forms the first contribution in this thesis.

The second contribution is the concept of resets of runtime monitors and an simple, elegant
way to actually reset the monitors. Before our work, all LTL-based monitors essentially can
only evaluate LTL formula 𝜑 over a finite trace at the fixed time 0, i.e. roughly speaking, the
monitor is formally defined asM𝜑 (𝑢) := ⟦𝑢, 0 |= 𝜑⟧. The monotonicity (and the uselessness of
monitors after the initial conclusive answer) essentially comes from the fact that the evaluation
time cannot be easily changed by doing automata-based LTL translations. With resets, now it is
possible to synthesize monitors doing ⟦𝑢, 𝑖 |= 𝜑⟧ where 𝑖 as the trace position (which represents
the discrete time) can be arbitrary. The only limitation is that, each time when the monitor is
reset, the new value of 𝑖 will be the discrete time when the reset happens (which is also the
length of current trace prefix, minus one), thus is always mono-increasing. (Therefore it is not
possible, for example, to first have 𝑖 = 5 and then to have 𝑖 = 3.)

We remark that this reset (also called soft reset) is different from simply restarting the monitors
(which can be called hard reset to distinguish). If the monitoring properties were evaluated under
assumptions, or if the properties contained past temporal operators, the observations received
before resets may contribute to the semantics of the monitoring property at the new position in
time. For example, consider the LTL property 𝜑 = G¬𝑝 (“𝑝 never occurs”), with an assumption
𝐾 stating that “𝑝 occurs at most once.” (see Dwyer’s patterns for the precise LTL formula.) For

5

1.4. PRODUCT (AKA RESULT) CHAPTER 1. INTRODUCTION

every input sequence 𝑢 containing 𝑝, the monitor should report a violation of the property, with
or without the assumption. After a violation, if the monitor is reset, given the assumption 𝐾 on
the occurrence of 𝑝, the monitor should predict that the property is satisfied by any continuation,
because the monitor does not forget that a violation has already occurred in the past. Should the
SUS produce a trace violating the assumption, where 𝑝 occurs twice at time 𝑖 and at 𝑗 > 𝑖, the
assumption-based monitor will output “×” (out-of-model) at time 𝑗 .

We also need to remark that, in some RV work, the LTL formula being considered has only
past operators. This fragment of LTL is usually called ptLTL, and its semantics over finite
traces, if described in standard LTL semantics, has the reference time always at the end of the
trace prefix. Existing work on ptLTL monitoring are all based on rewriting of ptLTL formulas
into evaluation of it sub-formulas until the verdicts become trivial. With resets, we get the
first automata-based approach for monitoring ptLTL. Note that this “first” is in the sense that,
LTL-to-automata translation of ptLTL can be directly used for constructing the monitor. We
think this was impossible without using the concept of resets. (See Chapter 7 for more details
and citations.)

The third contribution is the SMT-based algorithm for runtime monitoring of infinite-state
systems based on Incremental Bounded Model Checking. (Of course, the same technique can
also be used for finite-state systems with SAT solvers in place of SMT solvers.) We start by
showing that ABRV of LTL formulas can be reduced to LTL model checking. The theory domain
is actually irrelevant with the monitoring algorithm: if the LTL formulas involve infinite-state
variables, then infinite-state model checkers will do the job. With help of first-order quantifier
elimination procedures, the monitor is online and incremental. To further optimize the use
of complete model checking procedures, we can use Bounded Model Checking (BMC) first
for detecting counter-examples only. Luckily, we found that, before a monitor reaches its first
conclusive verdicts, it only needs BMC and the BMC procedure can be modified to do the job
incrementally (no need to restart BMP loop from 0).

1.4 Product (aka Result)

We present a series of symbolic monitoring algorithms for all the above mentioned features in
ABRV. The algorithm takes as input the monitoring property, the assumption and a finite partially
observed trace representing the input sequence from SUS, mixed with possible reset signals (thus
the trace contains reset signals). The monitoring output is a sequence of four-valued verdicts as
mentioned above. The algorithm is based on an existing symbolic translation from LTL to 𝜔-
automata with minor modifications. Assumptions are supported by (symbolically) composing
the 𝜔-automata with a symbolic (fair) transition system representing the assumptions. The
algorithm explores the space of belief states, i.e. the set of SUS states compatible with the current

6

CHAPTER 1. INTRODUCTION 1.5. STRUCTURE OF THE THESIS

observation from traces, and the symbolic computation of forward images naturally supports
partial observability. The support of resettable monitors exploits some deep characteristics of
the symbolic translation from LTL to 𝜔-automata.

The monitoring algorithm is represented as an offline monitor but essentially this is an online
monitoring algorithm: the input sequence can be fed into the algorithm incrementally and the
memory consumption of the algorithm is independent with the length of the input sequence. In
addition, we can pre-compute the states of the monitor for generating standalone direct monitors
as finite-state automata. Then, the automata can be transformed into runtime monitors in various
programming languages.

The software engineering part of this thesis is mostly about the implementation of our ABRV
approach into a working software called NuRV, which is extended from the nuXmv model
checker [37]. Besides online and offline monitoring directly using the software, NuRV can
generate implicit (interpreted) or explicit (direct) monitors which can work standalone and can
be deployed in online or offline modes. For the explicit monitors, NuRV generates embedded
standalone monitor code in various programming languages. In addition, the monitor can be
generated as SMV models, whose behaviors can be further verified in nuXmv.

A lot of efforts were spent on monitor code generation, in several programming languages
and the SMV model language. The correctness and other properties of a monitor generated in
SMV can be further verified by nuXmv model checker.

The proof engineering part of this thesis (Chapter 10) is a formally verified equivalence
theorem between ptLTL (alternative semantics) and LTL3 (Theorem 7.2.2). For this purposes,
we have also discussed several existing LTL formalizations in HOL4 (Higher Order Logic),
which may lead to a full formalization of RV algorithms in thesis, in the future.

We have evaluated NuRV on a number of benchmarks including Dwyer’s LTL patterns, show-
ing the feasibility, applicability and usefulness of assumptions. In addition to the correctness
proof of the monitoring algorithm, it is possible to use nuXmv to verify the correctness and the
effectiveness of each individual monitor generated in SMV language.

1.5 Structure of the Thesis

The rest of this thesis is organized as follows: In Chapter 2 we briefly introduce the research
background and some related works, before going into technical details. Chapter 3 give some
preliminaries for understanding the rest of the thesis, with all dependent concepts and theoretical
utilities recalled with fair amount of details. The definition of Runtime Verification and the
assumption-based extension are formulated in Chapter 4, which essentially gives the problems
addressed by this thesis. The solutions are subsequently given in Chapter 5 and Chapter 6
for finite- and infinite-state systems, respectively. Additionally, in Chapter 7 we discuss how

7

1.5. STRUCTURE OF THE THESIS CHAPTER 1. INTRODUCTION

Past-time LTL can be monitoring with our ABRV framework in a unified approach.
Starting from Chapter 8, this thesis switches from scientific to engineering contexts where

the NuRV tool, which implements all previous mentioned RV algorithms, is introduced. This
chapter also includes more details on monitor code generation. (Besides, a CORBA-based
client-server monitoring facility implemented by the tool can be found in Appendix B.) In
Chapter 9 we use NuRV to evaluate the performance and other aspects of the RV algorithms
given in this thesis, with a basic comparison with some other RV tools.

Chapter 10 discusses the proof engineering part of the thesis. In this chapter, we present
a partial formalization on the correctness of the finite-state ABRV monitors in Chapter 5,
together with the formal version of the equivalence between ptLTL and LTL3 semantics given
in Chapter 7. Interactive Theorem Proving based on Higher Order Logic is involved here.

Finally, in Chapter 11 we conclude the entire thesis, with some discussions on possible future
work in Section 11.1.

8

Chapter 2

Background and Related Work

The recent 20 years have seen great developments and applications of RV techniques as a
completion of traditional formal methods, especially model checking. Many RV tools [10, 12,
40, 86, 89, 114, 131] have been published. (See also [66] for a more complete list of RV tools
with a taxonomy.) In this chapter, we discuss some of the major progress in the field, together
with works related to our assumption-based RV approach.

2.1 Background

Let us briefly review the history of RV up to the state of the art of this field, following
the published papers in the past RV conferences since 2001. Although some RV papers are
published in other conferences, journals and monograph books, most of these works are just
extended versions of their initial work published in RV conferences. (Papers of other sources
are referenced whenever necessary.) See also [111] for a brief account of runtime verification
up to 2009.

According to the preface of RV conference proceedings in recent years, the RV conferences
started in 2001 as an annual workshop and turned into a dedicate conference in 2010. “The
workshops were organized as satellite events of established forums, including the Conference on
Computer-Aided Verification and ETAPS.” In fact, the first workshop on Runtime Verification
(RV 2001) was held in Paris, France on 23 July 2001, as a satellite event of Computer Aided
Verification conference (CAV 2001).

The idea of runtime monitors, however, has a slightly longer history. For instance, commercial
network management (and monitoring) software such as HP OpenView1 has the Fault/Resource
Status Monitoring functionalities. RV, however, is distinguished by generating runtime monitors
automatically from formal specifications, e.g., in Linear Temporal Logic (LTL) [115, 128].

1https://en.wikipedia.org/wiki/HP_OpenView

9

https://en.wikipedia.org/wiki/HP_OpenView

2.1. BACKGROUND CHAPTER 2. BACKGROUND AND RELATED WORK

Early RV attempts (2001-2005) mostly focus on adding runtime assertion features (which
is more powerful than the builtin assertion features) into existing programming languages like
Java [13, 78, 98, 103, 104, 125, 132]. Other programming languages ever involved in RV
field include C, Scala, Haskell, Erlang and OCaml, etc. [10, 35, 36, 69, 74, 144] For the
particular case of Java (in which many industrial applications are written), the related RV
research soon split into two major approaches: One is the idea of monitoring at Java byte-
code level, which is sometimes easier and universal, i.e., without the need of modifying the
original Java code) [1, 73, 85, 87, 88, 139]. The other approach is called Monitoring-Oriented
Programming (MOP) [39, 40, 42, 123], a new programming paradigm inspired by Aspect-
Oriented Programming (AOP)2. When using MOP, the user needs to write the monitoring
properties in a particular syntax given by the MOP framework, then a mini compiler is used
to compile the properties into another piece of Java code to be used together with the Java
application under scrutiny. Both approaches went beyond Java: some other programming
languages like Scala are also based on Java virtual machine and byte-code, while MOP has
a branch called BusMOP for monitoring PCI bus traffic (the usual MOP approach is then
called JavaMOP.) MOP has been proven very successful and was well known for its efficiency.
However, an important characteristic of this period is that each approach and tool involves
their own API or specification language for the description of monitoring properties, making
migrations of RV application from one approach to another a very hard task.

The RV community soon agreed on adopting various Temporal Logics as the common
specification languages for monitor synthesis.3 This also paves the way for RV competitions
in which different RV tools are compared by synthesizing monitors from the same set of
specifications (see [14] for a review of the first five years of the International Competition on
Runtime Verification (CRV)). Although branching temporal logics like Hennessy-Milner Logic
(HML) are sometimes involved [3, 7, 71], most researchers adopt variants of LTL [115] as
the working basis. This is a natural and reasonable choice, because in typical RV application
scenario the monitor is only given a single trace (or execution) of the system under scrutiny
and the evaluation of monitoring properties w.r.t. the given trace naturally fits into linear-time
semantics, i.e. the states of the trace form a linear order of time. See also [65] for a detailed
description of MOP and other early RV techniques.

The early history of RV regarding LTL focused on filling the gaps between standard LTL
semantics over infinite traces and the reality that runtime monitors can only see finite prefixes of
the infinite traces. In the case of automata-based RV approaches, although various translations
from LTL to𝜔-automata are available from the Model Checking community, one cannot just use
the translated automata as monitors by simulating input traces in them. As a branch of formal
methods, to synthesize LTL-based monitors, the formal definition of runtime monitors w.r.t. the

2See, e.g., https://en.wikipedia.org/wiki/Aspect-oriented_programming.
3The MOP framework also supports different “logic plugins” including LTL and ptLTL [123].

10

https://en.wikipedia.org/wiki/Aspect-oriented_programming

CHAPTER 2. BACKGROUND AND RELATED WORK 2.2. TAXONOMY, FRONTIERS AND TRENDS

standard LTL semantics must be established first.
Among various attempts (see [18] for more details), the LTL3 semantics [19] seems the

most convincing one due to its clarity and simplicity. LTL3 is based on the observation that,
given a finite trace as the prefix of some possible infinite traces extending it, some extensions
may satisfy property (according to the standard LTL semantics), while others may violate the
property. An LTL3 monitor only returns conclusive true (or conclusive false, respectively) if
all extensions of the current prefix satisfy (or violate, respectively) the monitoring property,
otherwise the monitor returns unknown (or inconclusive). Under LTL3, the LTL-RV problem
can be resolved by combining the two automata translated from the monitoring property and its
negated version [19].

However, many practical LTL properties are non-monitorable under LTL3. An LTL property
is monitorable iff the monitor generated from it has the possibility to return verdicts other than
inclusive. There are in general three possible solutions to this problem:

1. Replacing LTL3 with four-valued LTL [110], in which the inconclusive verdict (?) is
refined into ⊤p and ⊥p (the superscript p may stand for probable). However, without extra
information it is not meaningful saying a prefix having ?-verdict before now has more
probability to lead to a ⊤- (or ⊤-verdict, resp.) in the future.

2. Predictive LTL semantics, e.g. [150]. The LTL3 semantics is extended with bounded
predictions on the inputs, usually expressed in a table (mapping the current input to the
possible next inputs). And this may turn some non-monitorable properties monitorable.

3. Model-based LTL semantics, e.g. [109]. The LTL3 semantics is extended with a model
such that all inputs must be compatible with the model. With a suitable model, the resulting
monitor can also be predictive. However, LTL3 cannot capture the possibility that the actual
inputs are not compatible with the model, which may happen at runtime. ABRV can be
considered as a further extension of this idea.

2.2 Taxonomy, Frontiers and Trends

The research scope and basic approaches of RV is relatively “stabilized” since the publication
of the “official lecture” in 2017 [15]. A taxonomy of RV tools first appears in 2012 [108] and
later appears again as a more complete work in 2018 [66].

The assumption-based approach presented in this thesis or any other similar work has no
position in the above taxonomy. (The first two ABRV papers were published in RV 2019.)
Without considering assumptions, however, it is possible to put our tool implementation into the
2018 taxonomy. See Section 8.1 for more details.

11

2.3. ASSUMPTION-RELATED WORK CHAPTER 2. BACKGROUND AND RELATED WORK

2.3 Assumption-Related Work

The idea of leveraging partial knowledge of a system to improve monitorablity is not altogether
new. Leucker [109] considers an LTL3-based predictive semantics LTLP , where, given a finite
trace 𝑢, an LTL formula 𝜑 is evaluated on every extension of 𝑢 that are paths of a model P̂
of the SUS P. Our proposal is a proper conservative extension of this work: in case of full
observability, no reset, if the system always satisfies the assumption, i.e. L(P) ⊆ L(P̂), our
definition coincides with [109]. As L(P) ⊆ L(P̂) is a strong assumption there, if it is violated,
the monitor output will be undefined, while we explicitly take that possibility into account. Partial
observability is essential for extending traditional RV approaches such that assumptions are
really needed to evaluate the property (not only for prediction). Due to the partial observability,
ABRV-LTL monitors cannot be expressed in traditional RV approach (quantifiers over traces
would be necessary). Under full observability, if the model P̂ is expressed in LTL, the monitor
of [109] can be seen as an ABRV monitor for P̂ ∧ 𝜑 (without extra assumptions). Pinisetty et
al. further extend this idea to support RV of timed properties [127], where a priori knowledge
(also expressed in timed properties) about the behavior of the SUS allows for predictive monitors.

Similarly, Sistla et al. [141] construct monitors from a specification Φ w.r.t. another interface
specification Φ𝐼 which can be considered as a partial system model (as it comes from an off-the-
shelf component). The resulting monitor is roughly equivalent to the ABRV monitor synthesized
from Φ𝐼 → Φ (without extra assumptions).

Three-valued LTL semantics tracks its roots back to Kleene [106] but was mostly applied to
Model Checking (e.g. [30]) until LTL3 is used in RV. In another three-valued predictive LTL
semantics [150], the assumption is based on predictive words. Given a sequence 𝑢, a predictive
word 𝑣 of subsequent inputs is computed with static analysis of the monitored program and the
monitor output evaluates ⟦𝑢 · 𝑣 |= 𝜑⟧3. The assumption used in our framework can be also used
to predict the future inputs, but can associate to each 𝑢 an infinite number of words. Thus our
assumption-based RV framework is more general than [150], even without partial observability
and resets. On the other side, while our assumptions can be violated by the system execution,
the predictive word of [150] is assured by static analysis.

The research of partial observability in Discrete-Event Systems is usually connected with
diagnosability [133] and predicability [79, 80]. The presence of system models plays a crucial
role here, although technically speaking the support of partial observation is orthogonal with
the use of system models (or assumptions) in the monitoring algorithm. Given a model of the
system which includes faults (eventually leading the system to a failure) and which is partially-
observable (observable only with a limited number of events or data variables), diagnosability
studies the problem of checking if the faults can be detected within a finite amount of time. On
the other hand, if we take an empty specification (true) and use the system model as assumptions,

12

CHAPTER 2. BACKGROUND AND RELATED WORK 2.4. SMT-RELATED RV WORK

then our monitors will be checking if the system implementation is always consistent with its
model—the monitor only outputs⊤a and × in this case. This is in spirit of Model-based Runtime
Verification [8, 152], sometimes also combined with extra temporal specifications [145, 151].

The support of partial observability is found in the context of Model Checking by explicit
support of partial knowledge in the description of (incomplete) models, involving concepts like
Partial Kripke Structures, Model Transition Systems and Incomplete Büchi Automata (e.g. [20,
122]). In comparison with these work, the models (as assumptions) considered here are complete,
while the support of partial observability in our work is mostly reflected by input traces (of
monitors), which do not contain values of all the variables in the models.

Other work with partial observability appears in decentralized monitoring of distributed
systems [17, 56], where an LTL formula describing the system’s global behavior may be de-
composed into a list (or tree) of sub-formulae according to the system components, whose local
behaviors are fully observable.

To the best of our knowledge, the concept of resettable monitors was never published before
our first RV papers in RV 2019 [47]. Note that, if assumptions and past operators are not
considered, resetting monitors is not very meaningful (thus perhaps this is why resets were not
considered by other researchers before.) However, there exists some prior work with similar
keywords. For instance, in [140], the authors extend a runtime monitor for regular expressions
with recovery. Their concept of monitor recovery is based on a specific pattern of the monitoring
protocol and after an error, the monitor waits for a signal to restart the monitoring of the protocol.
Comparing with our work, it is specific to the given pattern and considers neither past operators,
nor the system model.

We note that it would be straightforward to extend the standard RV framework for LTL [19]
with the capability of resetting monitors. However, the task becomes non-trivial when assump-
tions on partial-observable systems are taken into account. The challenge is to reset the monitor
without losing the knowledge gathered during the previous observations (see also the intuition
of the motivating example). We provide a practical solution to this novel problem.

Monitorability is an important topic in RV and other related field [2, 126, 142]. Under
assumptions, some important results were discussed by T. Henzinger and N.E. Saraç in their RV
2020 paper [91].

2.4 SMT-Related RV Work

Despite the vast literature on SAT- and SMT-based symbolic model checking [22], currently
there are only few works on applying SAT/SMT solvers to Runtime Verification. One of the
prominent approaches in this direction is the one on Monitoring Modulo Theories (MMT) [59] for
monitoring Temporal Data Logic (TDL): propositional LTL extended with first-order quantifiers

13

2.4. SMT-RELATED RV WORK CHAPTER 2. BACKGROUND AND RELATED WORK

and theories. MMT is implemented on top of the Z3 SMT solver. The SMT solver in MMT
is mainly to deal with first-order quantifiers of TDL. They observed that, without first-order
quantifiers TDL can be monitored in the same way as propositional LTL by treating theory-
specific atoms as atomic propositions (AP). The situation is the same here, but NuRV also
supports assumptions. In general propositional LTL with infinite-state assumptions cannot be
synthesized into finite-state monitors.

In [146], SMT solvers are used to monitor partially synchronous distributed systems. In this
work, SMT solvers evaluate partially observable formulas that contain non-observable variables
that can have any possible value. However, in this work the SMT formula is generated in
highly domain-specific ways and is directly treated as the monitoring property, without temporal
extensions.

The relationship between MC and RV has been explored in previous research. The value
of models (as RV assumptions) in synthesizing better monitors was first reported in [109].
Adapting existing model checkers for RV purposes is a natural idea for reducing the costs of
tool development from scratch. Similar with NuRV, the DIVINE model checker was adapted to
perform runtime verification [100]. However, the model checker is used to check the property
on a trace (considered as system model), not to consider a system model as an assumption as in
ABRV.

We consider the predictive feature of ABRV monitors as a side effect of the assumption-based
approach, but there exist dedicated work on predictive semantics of runtime monitors, e.g. [150].

Belief states have been used in planning under partial observability. See, e.g., the work
of Hoffmann et al. [92], from which we borrow the idea of representing them with symbolic
formulas. To the best of our knowledge, our approach is the first attempt to combine them with
the evaluation of temporal properties for RV.

14

Chapter 3

Preliminaries

3.1 Finite and infinite words (or traces)

Let Σ be a finite alphabet, and 𝑢, 𝑣, 𝑤, . . . be finite or (countably) infinite words (i.e. sequences
of letters) over Σ. (Thus we have 𝑢 ∈ Σ∗ or 𝑤 ∈ Σ𝜔, if 𝑢 is finite and 𝑤 is infinite.) Empty words
are denoted by 𝜖 . Furthermore, 𝑢𝑖 denotes the zero-indexed 𝑖th letter in 𝑢 (hereafter 𝑖 ∈ N),
while 𝑢𝑖 denotes the sub-word of 𝑢 starting from 𝑢𝑖. |𝑢 | denotes the length of 𝑢. Finally, 𝑢 · 𝑣
is the concatenation of a finite word 𝑢 with another finite or infinite word 𝑣. These notions
are quite standard in Automata Theory. In RV scenario, however, infinite words are elements
of languages of models (or assumptions) of SUS, while finite words are usually executions of
systems. For this reason, we also call them finite or infinite traces.

Note also that, in RV of finite-state systems, Σ is nothing but a set of Boolean variables in
which all variables used in the monitoring specification and assumptions must be included. For
RV on infinite-state systems, with slight abuse of notions, we also use Σ to denote a first-order
signature and the set of involved variables (whose types may be Boolean, finite- or infinite-
domain) of Σ is denoted by 𝑉 (see below). Hereafter, when talking about a set of possibly
infinite-domain variables (in either LTL or FTS, see below), we mostly use 𝑉 instead of Σ.

In other words, let𝑉 be a set of variables, a (partial) value assignment 𝑠 is a function mapping
each variable 𝑥 ∈ 𝑉 to a value of its type, e.g. {𝑥 ↦→ 1, 𝑦 ↦→ 2}. A finite trace is a finite sequence
of such value assignments, 𝑢 = 𝑠0𝑠1 . . . 𝑠𝑛 (the subscript 0, 1, . . . are indexes of the trace). An
infinite trace is a countable infinite sequence of such value assignments. If any variable in 𝑉
has infinite possible values, e.g. unbounded integers or real numbers, the corresponding trace is
called infinite-state, either finite or infinite.

15

3.2. SATISFIABILITY MODULO THEORY CHAPTER 3. PRELIMINARIES

3.2 Satisfiability Modulo Theory

For RV on infinite-state systems, we work in the setting of Satisfiability Modulo Theory
(SMT) [9] and LTL Modulo Theory (see, e.g., [49]). First-order formulas are built as usual by
proposition logic connectives, a given set of variables 𝑉 and a first-order signature Σ, and are
interpreted according to a given Σ-theory T . We assume to be given the definition of 𝑀, 𝑠 |=T 𝜑
where 𝑀 is a Σ structure, 𝑠 is a value assignment to the variables in 𝑉 , and 𝜑 is a formula.
Whenever 𝑀 is clear from contexts we omit it and simply 𝑠 |=T 𝜑. With slight abuse of nota-
tions, we also use an assignment 𝑠 = {𝑥1 ↦→ 𝑣1, . . . , 𝑥𝑛 ↦→ 𝑣𝑛} to represent the corresponding
formula, i.e. the conjunction

∧
𝑖 (𝑥𝑖 = 𝑣𝑖). We sometimes write 𝜙(𝑉) or 𝜙(𝑉1, 𝑉2) instead of 𝜙

to highlight that the free variables of formula 𝜙 belong to 𝑉 or 𝑉1 ∪ 𝑉2, respectively. Arbitrary
first-order theories can be supported by our RV algorithm, as long as the underlying SMT solver
and model checker support them. For illustrating purposes, we only consider LRA, the theory
of linear arithmetics with real numbers.

3.3 Linear Temporal Logic

Linear Temporal Logic (LTL) is adopted as the specification language for monitoring synthesis
in this thesis. (In theory, the concepts of ABRV also work with other specification languages.)
LTL is recalled here mostly because different authors adopt slightly different set of primitive
operators, sometime also with different symbols.

Definition 3.3.1 (LTL Syntax [115]). The set of Propositional Linear Temporal Logic (LTL)
formulae is inductively defined by atomic propositions, Boolean combinations and temporal
operators:

𝜑 ::= true
�� 𝛼 �� ¬𝜑 �� 𝜑 ∨ 𝜑 �� X 𝜑

�� 𝜑U 𝜑
�� Y𝜑

�� 𝜑 S 𝜑

Here the (quantifier-free) formula 𝛼 as atomic propositions, is built by a set of variables
𝑉 and a first-order signature Σ, and is interpreted according to a Σ-theory T . (In the pure
Boolean case, 𝑉 consists of only Boolean variables.) The temporal operator X stands for next,
U for until, Y for previous, and S for since. Other logical constants and operators such as
false, ∧, → and ↔ are used as syntactic sugar with their usual meanings in propositional
logic. The following temporal operators are used as abbreviations: F 𝜑 ¤= true U 𝜑 (eventually),
G 𝜑 ¤=¬F¬𝜑 (globally), O 𝜑 ¤= true S 𝜑 (once), H 𝜑 ¤=¬O¬𝜑 (historically). In addition, X𝑛 𝑝

denotes a sequence of 𝑛 nested next operators: XX · · ·X 𝑝; Similar for Y𝑛 𝑝. Sometimes we
also need the weak until operator: 𝜑W𝜓 ¤= (G 𝜑) ∨ (𝜑U𝜓) or 𝜑U (𝜓 ∨ G 𝜑). Similarily, one
can define weak since. 1

1NuSMV supports a wide list of derived LTL temporal operators, including all operators mentioned here, more Boolean logic operators and
bounded versions of G, F, etc. (See Section 2.4.3 (LTL Specifications) of [38] for more details.) The NuRV tool supports all these operators,

16

CHAPTER 3. PRELIMINARIES 3.4. BOOLEAN FORMULAE AND FUNCTIONS

Definition 3.3.2 (Semantics of LTL over infinite words). Let 𝑤 = 𝑎0 . . . ∈ Σ𝜔 denote an infinite
trace. The truth value of LTL formulae 𝜑 w.r.t. 𝑤 at position 𝑖, denoted with ⟦𝑤, 𝑖 |= 𝜑⟧, is an
element of B ¤= {⊤,⊥} and is inductively defined as follows:

𝑤, 𝑖 |= true
𝑤, 𝑖 |= 𝑝 iff 𝑝 ∈ 𝑤𝑖
𝑤, 𝑖 |= ¬𝜑 iff 𝑤, 𝑖 ̸ |= 𝜑
𝑤, 𝑖 |= 𝜑 ∨ 𝜓 iff 𝑤, 𝑖 |= 𝜑 or 𝑤, 𝑖 |= 𝜓
𝑤, 𝑖 |= X 𝜑 iff 𝑤, 𝑖 + 1 |= 𝜑
𝑤, 𝑖 |= 𝜑U𝜓 iff for some 𝑘 ⩾ 𝑖, 𝑤, 𝑘 |= 𝜓 and for all 𝑖 ⩽ 𝑗 < 𝑘, 𝑤, 𝑗 |= 𝜑
𝑤, 𝑖 |= Y𝜑 iff 𝑖 > 0 and 𝑤, 𝑖 − 1 |= 𝜑
𝑤, 𝑖 |= 𝜑 S𝜓 iff for some 𝑘 ⩽ 𝑖, 𝑤, 𝑘 |= 𝜓 and for all 𝑘 < 𝑗 ⩽ 𝑖, 𝑤, 𝑗 |= 𝜑

We write ⟦𝑤 |= 𝜑⟧ for ⟦𝑤, 0 |= 𝜑⟧ and L(𝜑) ¤= {𝑤 ∈ Σ𝜔 | ⟦𝑤 |= 𝜑⟧ = ⊤} for the language
(i.e. the set of traces) of 𝜑. Two LTL formulae 𝜑 and 𝜓 are equivalent, denoted by 𝜑 ≡ 𝜓, if
L(𝜑) = L(𝜓).

3.4 Boolean formulae and functions

Let B ¤= {⊤,⊥} denote the type of Boolean values (⊤ for true, ⊥ for false). A set of Boolean
formulae Ψ(𝑉) over a finite set of propositional variables 𝑉 ¤= {𝑣1, . . . , 𝑣𝑛}, is the set of all well-
formed formulae (wff) [4] built from 𝑉 , B, logical connectives (¬, ∧, etc.) and parenthesises.
As usually in symbolic model checking, a Boolean formula 𝜓(𝑉) ∈ Ψ(𝑉) also denotes a set
of truth assignments that makes 𝜓(𝑉) true. Following McMillan [119], a Boolean formula
𝜓(𝑉) can be considered as same thing (they have the same types when sets are regarded as
predicates) as a function of type B|𝑉 | → B taking a vector of Boolean values and returning
another: _(𝑣1, . . . , 𝑣𝑛). 𝜓(𝑣1, . . . , 𝑣𝑛) or _𝑉. 𝜓(𝑉), assuming a fixed order of variables in 𝑉 .
Thus Ψ(𝑉) itself has the type (B|𝑉 | → B) → B. Whenever 𝑉 is clear from contexts, we can
omit the whole _–prefix. Therefore, set-theoretic operations such as intersection and union are
interchangeable with logical connectives on Boolean formulae. For example,

𝜑(𝑉) ∩ 𝜓(𝑉) ¤= (_𝑉. 𝜑(𝑉)) ∩ (_𝑉. 𝜓(𝑉))
= {(𝑣1, . . . , 𝑣𝑛) | 𝜑(𝑣1, . . . , 𝑣𝑛)} ∩ {(𝑣1, . . . , 𝑣𝑛) | 𝜓(𝑣1, . . . , 𝑣𝑛)}
= {(𝑣1, . . . , 𝑣𝑛) | 𝜑(𝑣1, . . . , 𝑣𝑛) ∧ 𝜓(𝑣1, . . . , 𝑣𝑛)}
= _𝑉. 𝜑(𝑉) ∧ 𝜓(𝑉) ¤= 𝜑(𝑉) ∧ 𝜓(𝑉).

but from a theoretic point of view they are nothing but syntactic sugar. In some RV literature, LTL is extended with intervals but the boundaries
can only be integers, NuRV naturally supports these extensions without extra coding efforts.

17

3.5. BINARY DECISION DIAGRAMS CHAPTER 3. PRELIMINARIES

3.5 Binary Decision Diagrams

Binary decision diagrams (BDD) [32] provide a data structure for representing and manipulating
Boolean functions in symbolic form. They have been especially effective as the algorithmic
basis for symbolic model checkers. A binary decision diagram represents a Boolean function as
a directed acyclic graph, corresponding to a compressed form of decision tree. Most commonly,
an ordering constraint is imposed among the occurrences of decision variables in the graph,
yielding ordered binary decision diagrams (OBDD). Representing all functions as OBDDs with
a common variable ordering has the advantages that (1) there is a unique, reduced representation
of any function (called canonical form) [31], (2) there is a simple algorithm to reduce any OBDD
to the unique form for that function, and (3) there is an associated set of algorithms to implement
a wide variety of operations on Boolean functions represented as OBDDs.

BDD representation of Boolean formulae and BDD operations do not directly appear in any
algorithm presented in this thesis. In another words, BDDs are only implicitly used in the RV
algorithm (for finite-state systems). However, some of the RV algorithms seriously rely on the
canonical form of BDDs. For example, the explicit-state monitor synthesis algorithm can only
terminate if each involved Boolean formula has an canonical form.

One notable BDD implementation is the CUDD (Colorado University Decision Diagram)
package by Fabio Somenzi. (The NuRV tool implementation is derived from NuSMV which
links with CUDD version 2.4.1.1.)

3.6 Fair Kripke Structure (Fair Transition System)

System models, assumptions and 𝜔-automata in this thesis are described by a symbolic pre-
sentation of Kripke structures called Fair Kripke Structure (FKS) [101], also known as Fair
Transition System (FTS) [116]:

Definition 3.6.1. Let 𝑉 be a set of Boolean variables, and 𝑉 ′ ¤= {𝑣′ | 𝑣 ∈ 𝑉} be the set of next
state variables (disjoint with 𝑉). A Fair Kripke Structure 𝐾 ¤= ⟨𝑉,Θ, 𝜌,J⟩ is given by the set of
variables 𝑉 , a set of initial states Θ(𝑉) ∈ Ψ(𝑉), a transition relation 𝜌(𝑉,𝑉 ′) ∈ Ψ(𝑉 ∪ 𝑉 ′),
and a set of Boolean formulae J ¤= {𝐽1(𝑉), . . . , 𝐽𝑘 (𝑉)} ⊆ Ψ(𝑉) called justice requirements2.

Given any 𝐾 ¤= ⟨𝑉,Θ, 𝜌,J⟩, a state 𝑠(𝑉) of 𝐾 is an element in 2𝑉 representing a full truth
assignment over 𝑉 , i.e., for every 𝑣 ∈ 𝑉 , 𝑣 ∈ 𝑠 if and only if 𝑠(𝑣) = ⊤. For example, if
𝑉 = {𝑝, 𝑞}, a state {𝑝} means 𝑝 = ⊤ and 𝑞 = ⊥. Whenever 𝑉 is clear from the context, we
can omit 𝑉 and write 𝑠 instead of 𝑠(𝑉). The transition relation 𝜌(𝑉,𝑉 ′) relates a state 𝑠 ∈ 2𝑉

to its successor 𝑠′ ∈ 2𝑉 ′ . We say that 𝑠′ is a successor of 𝑠 (and that 𝑠 is a predecessor of 𝑠′) if

2We omit compassion requirements as they are not used in our approach

18

CHAPTER 3. PRELIMINARIES 3.7. LTL TO 𝜔-AUTOMATA TRANSLATION

𝑠(𝑉) ∪ 𝑠′(𝑉 ′) |= 𝜌(𝑉,𝑉 ′). For instance, if 𝜌(𝑉,𝑉 ′) = (𝑝 ↔ 𝑞′), 𝑠′(𝑉 ′) = {𝑞′} is a successor of
𝑠(𝑉) = {𝑝}, since 𝑠(𝑉) ∪ 𝑠′(𝑉 ′) = {𝑝, 𝑞′} and {𝑝, 𝑞′} |= (𝑝 ↔ 𝑞′).

A path in 𝐾 is an infinite sequence of states 𝑠0, 𝑠1, . . . where 𝑠0(𝑉) |= Θ and, for all 𝑖 ∈ N,
𝑠𝑖 (𝑉) ∪ 𝑠𝑖+1(𝑉 ′) |= 𝜌(𝑉,𝑉 ′). A state 𝑠 is reachable if there exists a path 𝑠0, 𝑠1, . . . , 𝑠𝑘 such that
𝑠 = 𝑠𝑘 .

Definition 3.6.2 (forward image). The forward image of a set of states 𝜓(𝑉) on 𝜌(𝑉,𝑉 ′) is a
formula

fwd(𝜓(𝑉), 𝜌(𝑉,𝑉 ′)) (𝑉) ¤= (∃𝑉. 𝜌(𝑉,𝑉 ′) ∧ 𝜓(𝑉)) [𝑉/𝑉 ′] (3.1)

where [𝑉/𝑉 ′] denotes the substitution of (free) variables in 𝑉 ′ with the corresponding one in 𝑉 .

For finite-state FTS, the forward image computation can be effectively done by the existential
abstraction function provided by BDD library (in CUDD, it is Cudd_bddExistAbstract).
For infinite-state FTS, The existential quantifiers in forward images can be eliminated by QE
procedures (see Section 3.9 below). We assume that all fwd(·, ·) used in other definitions and
theorems in this thesis are quantifier-free formulae.

An infinite word 𝑠0𝑠1 . . . ∈ Σ𝜔 is a path of 𝐾 iff for all 𝑖 we have 𝑠𝑖 ∪ 𝑠′𝑖+1 |= 𝜌; it is a
fair path, in addition, if for all 𝐽 ∈ J and infinitely many 𝑖 we have 𝑠𝑖 |= 𝐽. We denote by
FP 𝜌

J (𝜓) the set of fair paths starting from 𝜓 (such that 𝑠0 |= 𝜓). The language L(𝐾) is the set
of fair paths, i.e. FP 𝜌

J (Θ). 𝐿 (𝐾) is the set of finite prefixes of paths in L(𝐾). The empty FKS
⟨𝑉, true, true, ∅⟩ is overloaded on ∅ for any given𝑉 . Then it is not hard to see that L(∅) = (2𝑉)𝜔
and 𝐿 (∅) = (2𝑉)∗, i.e. the empty FKS contains all possible paths.

A state 𝑠 is fair if it occurs in a fair path. The set of all fair states of 𝐾 , denoted by F𝐾 , can
be computed by standard algorithms like Emerson-Lei [63]. Finally, let 𝐾1 = ⟨𝑉1,Θ1, 𝜌1,J1⟩
and 𝐾2 = ⟨𝑉2,Θ2, 𝜌2,J2⟩, the synchronous product of 𝐾1 and 𝐾2 is defined as 𝐾1 ⊗ 𝐾2 ¤= ⟨𝑉1 ∪
𝑉2,Θ1 ∧ Θ2, 𝜌1 ∧ 𝜌2,J1 ∪ J2⟩. Roughly speaking, an execution of 𝐾1 ⊗ 𝐾2 can be viewed as a
joint execution of 𝐾1 and 𝐾2 [101].

3.7 LTL to 𝜔-automata Translation

Our RV work heavily relies on an existing symbolic translation algorithm from LTL to 𝜔-
automata. The algorithm traces its root back to [34, 52] where only future temporal operators
are supported, with additional support of past temporal operators [75]. Essentially it constructs
a tableau FKS 𝑇𝜑 from any LTL formula 𝜑. (See [136, 137] for its correctness and [149] for a
formal verification in HOL theorem prover, see also Chapter 10 for this topic.)

A set of propositional elementary variables of 𝜑, denoted by el(𝜑), is used for converting
any LTL formula into an equivalent propositional formula. For any LTL formula 𝜑 ∈ LTL(𝐴𝑃),
el(𝜑) can be defined recursively as follows (where 𝑝 ∈ 𝐴𝑃, 𝜙 and 𝜓 are subformulae of 𝜑):

19

3.7. LTL TO 𝜔-AUTOMATA TRANSLATION CHAPTER 3. PRELIMINARIES

el(true) = ∅, el(X𝜙) = {x𝜙} ∪ el(𝜙),
el(𝑝) = {𝑝}, el(𝜙U𝜓) = {x𝜙U𝜓} ∪ el(𝜙) ∪ el(𝜓),

el(¬𝜙) = el(𝜙), el(Y𝜙) = {y𝜙} ∪ el(𝜙),
el(𝜙 ∨ 𝜓) = el(𝜙) ∪ el(𝜓), el(𝜙S𝜓) = {y𝜙S𝜓} ∪ el(𝜙) ∪ el(𝜓).

By induction on temporal formula structure, it is not hard to see that, for any LTL formula 𝜑,
el(𝜑) = el(¬𝜑). And also 𝜑 can be rewritten into a Boolean formula 𝜒(𝜑) using only variables
in el(𝜑). Below is the full definition3 of 𝜒(·):

𝜒(𝜑) =

𝜑 for 𝜑 an elementary variable in el(·),
¬𝜒(𝜙) for 𝜑 = ¬𝜙,
𝜒(𝜙) ∨ 𝜒(𝜓) for 𝜑 = 𝜙 ∨ 𝜓,
x𝜙U𝜓 for 𝜑 in forms of X (𝜙U𝜓),
x𝜙 for 𝜑 in forms of X 𝜙 (except for X (𝜙U𝜓)),
y𝜙S𝜓 for 𝜑 in forms of Y(𝜙 S𝜓),
y𝜙 for 𝜑 in forms of Y𝜙 (except for Y(𝜙 S𝜓)).

(3.2)

Note that, to apply (3.2), all sub-formulas of 𝜑 leading by U and S must be wrapped within
X and Y, respectively. This can be done (if needed) by using the following Expansion Laws of
LTL4

𝜓U𝜙 ≡ 𝜙 ∨ (𝜓 ∧ X(𝜓U𝜙)), 𝜓 S𝜙 ≡ 𝜙 ∨ (𝜓 ∧ Y(𝜓 S 𝜙)). (3.3)

For instance, 𝜒(𝑝U𝑞) = 𝑞 ∨ (𝑝 ∧ x𝑝U𝑞), and thus 𝜒′(𝑝U𝑞) = 𝑞′ ∨ (𝑝′ ∧ x′
𝑝U𝑞).

The FKS translated from 𝜑 is given by 𝑇𝜑 ¤= ⟨𝑉𝜑,Θ𝜑, 𝜌𝜑,J𝜑⟩, where 𝑉𝜑 ¤= el(𝜑). The initial
condition Θ𝜑 is given by

Θ𝜑 ¤= 𝜒(𝜑) ∧
∧

y𝜓∈ el(𝜑)
¬y𝜓 . (3.4)

Here each y𝜓 ∈ el(𝜑) has an initial false assignment in Θ𝜑. This is essentially a consequence of
LTL semantics for the Y operator, i.e. for any word 𝑤 and LTL formula 𝜓, 𝑤, 0 ̸ |= Y𝜓.

The transition relation 𝜌𝜑 (as a formula of variables in el(𝜑) ∪ el′(𝜑)) is given by

𝜌𝜑 ¤=
∧

x𝜓∈ el(𝜑)

(
x𝜓 ↔ 𝜒′(𝜓)

)
∧

∧
y𝜓∈ el(𝜑)

(
𝜒(𝜓) ↔ y′𝜓

)
. (3.5)

3Strictly speaking, logical constants such as ¬ and ∧ in LTL syntax are not the same constants as those in propositional logic. 𝜒 (·) will
translate these constants to their counterparts in propositional logic.

4There is a subtle but important matter here: the expansion laws, also called unwinding laws, holds also for LTL3 (and also ABRV-LTL):
the set of finite traces satisfying (or violating) any LTL formula coincides with the set of finite traces satisfying the same LTL formula after
applying the expansion laws. Thus applying the expansion laws as the first step of ABRV monitor synthesis on the input LTL property does not
change the monitoring outputs. The same property, however, may not hold for other LTL semantics over finite traces, e.g. FLTL. See [18] for
more details and a comparison on several such LTL semantics for RV purposes.

20

CHAPTER 3. PRELIMINARIES 3.8. EXPLICIT-STATE AUTOMATA

Intuitively, the purpose of 𝜌𝜑 is to relate the values of elementary variables to their corresponding
temporal variables: for any 𝜓 ∈ el(𝜑), the current value of 𝜓 is memorized by the value of y𝜓 in
next state; and the next value of 𝜓 is guessed by the current value of x𝜓 .

The justice set J𝜑 is given by

J𝜑 ¤=
{
𝜒(𝜓U 𝜙)→ 𝜒(𝜙)

�� x𝜓U𝜙 ∈ el(𝜑)
}
. (3.6)

It guarantees that, whenever a sub-formula 𝜓U𝜙 is satisfied, 𝜙 is also satisfied. (Thus an infinite
sequence of 𝑞 cannot be accepted by the FKS translated from 𝑝U 𝑞.)

Notice that 𝑇𝜑 and 𝑇¬𝜑 only differ at their initial conditions Θ𝜑 and Θ¬𝜑. In practice, if one
needs both 𝑇𝜑 and 𝑇¬𝜑, it is possible to store the two parts of Θ𝜑 separately and get Θ¬𝜑 by an
inverse of 𝜒(𝜑).

Remark 3.7.1. The ABRV approach represented in this thesis, together with the actual moni-
toring algorithms for finite- and infinite-state systems, can be applied to any LTL properties and
assumptions. (It is the responsibility of users to choose appropriate assumptions, however, to
obtain useful monitors in which the properties are monitorable.) The ability of monitoring any
LTL property is because ABRV leverages existing symbolic translations from LTL to𝜔-automata
(though with some inspections on the translation internals for the realization of resets.) In the-
ory, any other specification language that can be translated into 𝜔-automata, can be also used
in the existing ABRV framework, only changing the LTL translation calls to the procedures of
the other specification language.5

3.8 Explicit-State Automata

Various kinds of explicit-state automata are intermediate outputs of explicit-state monitoring
synthesis algorithms to be presented in Chapter 5. However, we do not use DFA, for example, for
actually accepting any word. Instead, all kinds of explicit-state automata are only intermediate
results for building the final monitor finite-state machine (FSM), which is essentially a transducer
tranducing monitoring inputs to outputs. Furthermore, we need two output functions _ and _′

instead of one in the standard setting. Below is the formal definition of all automata used in this
thesis.

Definition 3.8.1 (Büchi Automata). A non-deterministic Büchi automaton (NBA) [33] is a tuple
A = ⟨Σ, 𝑄, 𝑄0, 𝛿, 𝐹⟩, where

• Σ is a finite alphabet,

• 𝑄 is a finite nonempty set of states,
5Not to mention, LTL variants that can be first translated to standard LTL, can be easily supported too. For instance, metric temporal

operators with integer-valued bounds.

21

3.8. EXPLICIT-STATE AUTOMATA CHAPTER 3. PRELIMINARIES

• 𝑄0 ⊆ 𝑄 is a set of initial states,

• 𝛿 : 𝑄 × Σ→ 2𝑄 is a transition function, and

• 𝐹 ⊆ 𝑄 is a set of accepting states.

We extend the transition function 𝛿 : 𝑄 × Σ→ 2𝑄 , as usual, to 𝛿∗ : 2𝑄 × Σ∗ → 2𝑄 by

𝛿∗(𝑄′, Y) = 𝑄′ and 𝛿∗(𝑄′, 𝑢 𝑎) =
⋃

𝑞′∈ 𝛿∗ (𝑄′,𝑢)
𝛿(𝑞′, 𝑎)

for 𝑄′ ⊆ 𝑄, 𝑢 ∈ Σ∗, and 𝑎 ∈ Σ. To simplify the notation, we use 𝛿 for both 𝛿 and 𝛿∗.
A run of an automaton A on an infinite word 𝑤 = 𝑎0𝑎1 . . . ∈ Σ𝜔 is a sequence of states

𝜌 = 𝑞0, 𝑞1, 𝑞2, . . . such that 𝑞0 ∈ 𝑄0 and 𝑞𝑖+1 ∈ 𝛿(𝑞𝑖, 𝑎𝑖) for all 𝑖 ∈ N. For a run 𝜌, let
Inf (𝜌) denote the states visited infinitely often. A run 𝜌 of an NBA A is called accepting iff
Inf (𝜌) ∩ 𝐹 ≠ ∅.

Definition 3.8.2 (Nondeterministic Finite-State Automata). A non-deterministic finite-state au-
tomaton (NFA) 𝐴 ¤= ⟨Σ, 𝑄, 𝑄0, 𝛿, 𝐹⟩ is an automaton where Σ, 𝑄, 𝑄0, 𝛿 and 𝐹 are defined as for
NBA but which operates on finite words. A run of NFA on a finite word 𝑢 = 𝑎0 . . . 𝑎𝑛 ∈ Σ∗ is a se-
quence of states 𝜌 = 𝑞0, 𝑞1, . . . , 𝑞𝑛+1, where 𝑞0 ∈ 𝑄0 and 𝑞𝑖+1 ∈ 𝛿(𝑞𝑖, 𝑎𝑖) for all 𝑖 = 0, 1, . . . , 𝑛.
The run is called accepting if 𝑞𝑛+1 ∈ 𝐹.

Definition 3.8.3 (Deterministic Finite Automata). An NFA is called deterministic iff for all
𝑞 ∈ 𝑄, 𝑎 ∈ Σ, |𝛿(𝑞, 𝑎) | = 1 and |𝑄0 | = 1. We use DFA to denote a deterministic finite
automaton.

Definition 3.8.4. A Finite-State Machine (FSM) 𝑀 ¤= ⟨Σ, 𝑄, 𝑄0, 𝛿,Δ, _,Δ
′, _′, . . .⟩ is a finite

state automaton enriched with output, where Σ, 𝑄, 𝑄0, and 𝛿 are defined as before and where
Δ is the output alphabet used in the output function _ : 𝑄 → Δ. The (main) output of an FSM,
defined by the function _, is thus determined by the current state 𝑞 ∈ 𝑄 alone, rather than by
input symbols. For a deterministic FSM, we denote with _ also the function that yields for a
given word 𝑢 the output in the state reached by 𝑢 rather than the sequence of outputs. Extra
outputs are provided by _′, . . . etc. with different output alphabets Δ′, We also denote
𝑀 (𝑢) ::= _(𝑢) when _ is the output function of 𝑀 .

Definition 3.8.5. A Finite-State Transducer (FST) F ¤= (Σ, 𝑄, 𝑄0, 𝛿,Δ, 𝜌), is a finite state au-
tomaton enriched with outputs, where Σ, 𝑄, 𝑄0, 𝛿, and Δ are defined as before. The output of an
FST, defined by the function 𝜌 : 𝑄 × Σ→ Δ, is determined by the current state 𝑞 ∈ 𝑄 and input
symbol. As before, 𝜌 extends to the domain of words as expected. For a deterministic FST, we
denote with 𝜌 also the function that yields for a given word 𝑢 the sequence of outputs.

22

CHAPTER 3. PRELIMINARIES 3.9. FIRST-ORDER QUANTIFIER ELIMINATION

3.9 First-Order Quantifier Elimination

First-Order Quantifier Elimination [117] methods, which convert formulas into T -equivalent
quantifier-free formulas, are parts of many SMT solvers (e.g., Z3, Yices and MathSAT) for
checking the satisfiability of quantified formulas. (Hereafter we will omit the words “first-
order” and only call it “quantifier elimination” or QE. cf. Second-Order Quantifier Elimination
(SOQE) [77].)

As an notable example of QE, from high school mathematics there is a theorem saying that
a univariate quadratic polynomial has a real root if and only if its discriminant is non-negative.
This can be expressed as a quantifier elimination problem:

∃𝑥 ∈ R. (𝑎 ≠ 0 ∧ 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0) ⇐⇒ 𝑎 ≠ 0 ∧ 𝑏2 − 4𝑎𝑐 ⩾ 0

where the formula on the left-hand side involves a quantifier ∃𝑥 ∈ R, and the equivalent formula
on the right does not.

Formally speaking, if 𝛼(𝑉1∪𝑉2) is quantifier-free formula (of the theory T) built by variables
from the set 𝑉1 ∪ 𝑉2, the role of quantifier elimination is to convert the first-order formula
∃𝑉1.𝛼(𝑉1 ∪ 𝑉2) into an T -equivalent formula 𝛽(𝑉2), where 𝛽 is quantifier-free and is built by
only variables from 𝑉2.

Quantifier elimination is not possible for arbitrary theories. For the theory domainLRA (lin-
ear arithmetics of real numbers), most SMT solvers implement at least one of the following pro-
cedures: Fourier-Motzkin [102], Ferrante-and-Rackoff [68] and Loos-and-Weispfenning [113].
Note also that QE procedures do not guarantee any kind of boundedness of the resulting formulas.

3.10 LTL Model Checking

Roughly speaking, the core task of LTL Model Checking6 [32] is to evaluate ⟦𝐾 |= 𝜑⟧ (LTL
semantics over infinite traces), where 𝐾 is the model of a system given as a transition system,
e.g. as a (Fair) Kripke Structure, while 𝜑 is a specification, which is usually a plain logic formula
(invariant checking) or temporal logic formula [53]. If ⟦𝐾 |= 𝜑⟧ = ⊤, then for all (fair) paths in
the model 𝐾 , the specification 𝜑 holds. Otherwise, there must exist at least one (fair) path in 𝐾 ,
which is called a counter-example, on which 𝜑 does not hold. A model checking algorithm is
required to effectively detect the case when ⟦𝐾 |= 𝜑⟧ = ⊤ (by simply indicating this fact), and
actually constructs and returns the counter-example when ⟦𝐾 |= 𝜑⟧ = ⊥

From software engineering point of view, the infrastructure provided by an LTL model checker
provides good working basis for creating an LTL runtime monitor. For example, NuRV is built

6In this thesis we do not consider CTL-based model checking and other MC techniques based on branching-time logics, despite branching
time logics have some positions in RV research. Whenever MC is referred, it always means LTL model checking.

23

3.10. LTL MODEL CHECKING CHAPTER 3. PRELIMINARIES

by directly extending an existing LTL model checker with core RV algorithms. Algorithmically
speaking, however, Model checking is involved in two aspects in this thesis:

1. There exists bidirectional reductions between ABRV and MC, and thus we show that ABRV
and MC have the same space and time complexities.

2. In RV of infinite-state systems, the RV algorithm is based on first-order quantifier elimina-
tion and LTL model checking.

For the purpose of infinite-state monitoring, we use the state-of-art LTL model checker
nuXmv (version: 2.0 and later) [27, 37] for infinite-state runtime monitoring.

More details of these aspects and the uses of MC will be given in Chapter 6, especially in
Section 6.5 (Incremental Bounded Model Checking).

24

Chapter 4

Runtime Verification

The RV approach presented in this thesis is based on an LTL semantics over finite traces
called LTL3. Finite traces can be also seen as truncated (infinite) traces.

As LTL3 is not the only LTL semantics over finite traces, it is imporant to discuss, before
other things, why our RV approach is based on LTL3. In Section 4.1, we give an overview
and comparison of existing LTL semantics over finite traces [18] with some further discussions.
The purpose is to try to convince the audience that LTL3 is a reasonable choice to be based on.
In the rest sections, Runtime Verification based on LTL3, with and without assumptions, are
introduced formally. Finally, we give the ABRV problem setting, to be resolved by algorithms
given in subsequent chapters.

4.1 LTL semantics for Runtime Verification

Following [18], we present and compare five LTL semantics over finite traces: FLTL, LTL+,
LTL−, LTL3 and RV-LTL. The key difference among various such semantics is the truth value
of X 𝜑 w.r.t. a trace 𝑢 having only one state (i.e. |𝑢 | = 1).

4.1.1 FLTL

FLTL traces its root back to [116], where Manna and Pnueli suggest to enrich the standard
framework by adding a dual operator, the weak next X̃, which allows to smoothly translate
formulae into negation normal form. In FLTL, the truth value of X 𝜑 w.r.t. a trace 𝑢 having only
one state (i.e. |𝑢 | = 1) is forcely defined as ⊥, while the dual formula X̃ 𝜑 is forcely defined as
⊤. See Def. 4.1.1 for more details.

Definition 4.1.1 (Semantics of FLTL [116]). Let 𝑢 = 𝑎0 . . . 𝑎𝑛−1 ∈ Σ∗ denote a finite trace
of length 𝑛 = |𝑢 |, with 𝑢 ≠ 𝜖 . The truth value of an FLTL formula 𝜑 w.r.t. 𝑢, denoted with
⟦𝑢 |= 𝜑⟧F, is an element of B2 and is inductively defined as follows: Boolean constants, Boolean

25

4.1. LTL SEMANTICS FOR RUNTIME VERIFICATION CHAPTER 4. RUNTIME VERIFICATION

(weak) next

⟦𝑢 |= X 𝜑⟧F =

⟦𝑢1 |= 𝜑⟧F if |𝑢 | > 1,

⊥ otherwise,
⟦𝑢 |= X̃ 𝜑⟧F =

⟦𝑢1 |= 𝜑⟧F if |𝑢 | > 1,

⊤ otherwise.

until/release

⟦𝑢 |= 𝜑U𝜓⟧F =

⊤ there exists 𝑘 ∈ {0 . . . 𝑛 − 1} : ⟦𝑢𝑘 |= 𝜓⟧F = ⊤ and

for all 𝑙 with 0 ⩽ 𝑙 < 𝑘 : ⟦𝑢𝑙 |= 𝜑⟧F = ⊤,

⊥ otherwise,

⟦𝑢 |= 𝜑V𝜓⟧F =

⊤ for all 𝑘 ∈ {0 . . . 𝑛 − 1} : ⟦𝑢𝑘 |= 𝜓⟧F = ⊤ or

[there exists 𝑘 ∈ {0 . . . 𝑛 − 1} : ⟦𝑢𝑘 |= 𝜑⟧F = ⊤ and

for all 𝑙 with 0 ⩽ 𝑙 ⩽ 𝑘 : ⟦𝑢𝑙 |= 𝜓⟧F = ⊤],

⊥ otherwise.

Figure 4.1: Semantics of FLTL formulae over a trace 𝑢 = 𝑎0 . . . 𝑎𝑛−1 ∈ Σ∗

combinations and atomic propositions are defined as in standard LTL. Until/release and (weak)
next are defined as shown in Fig. 4.11.

4.1.2 LTL∓

Note that the semantics of FLTL over empty traces is not specified. An alternative approach
is to maintain the standard semantics of X and define truth values for atomic propositions over
empty traces. Obviously, there are two variants of such semantics, originally proposed by Eisner
et al. [62]. In LTL+, the truth value of 𝑝 w.r.t. 𝑎0 (𝑝 ∈ 𝑎0) is ⊥, while in LTL− the truth value
of 𝑝 is ⊤. See Def. 4.1.2 for more details.

Definition 4.1.2 (Semantics of LTL∓ [62]). Let 𝑢 = 𝑎0 . . . 𝑎𝑛−1 ∈ Σ∗ denote a finite trace of
length 𝑛 = |𝑢 |. The truth value of an LTL∓ formula 𝜑 w.r.t. 𝑢, denoted with [𝑢 |= 𝜑]∓, is an
element of B2 and is inductively defined as follows: Boolean constants, Boolean combinations,
and atomic propositions are defined as shown in Fig. 4.2, while the semantics for the remaining
formulae is as in standard LTL.

4.1.3 LTL3

One major problem of FLTL and LTL∓ is that the semantics is defined regardless of the future
continution (or extension) of the current finite trace. LTL3, on the other hand, follows the idea

1In Fig. 4.1, the operator V is the weak until operator, which is R or W in some literals. Here we follow the symbols adopted by NuSMV.

26

CHAPTER 4. RUNTIME VERIFICATION 4.1. LTL SEMANTICS FOR RUNTIME VERIFICATION

⟦𝑢 |= 𝑝⟧− =

⊤ if 𝑢 = 𝜖 or 𝑝 ∈ 𝑎0,

⊥ otherwise.
⟦𝑢 |= 𝑝⟧+ =

⊤ if 𝑢 ≠ 𝜖 or 𝑝 ∈ 𝑎0,

⊥ otherwise.

⟦𝑢 |= ¬𝑝⟧− =

⊤ if 𝑢 = 𝜖 or 𝑝 ∉ 𝑎0,

⊥ otherwise.
⟦𝑢 |= ¬𝑝⟧+ =

⊤ if 𝑢 ≠ 𝜖 or 𝑝 ∉ 𝑎0,

⊥ otherwise.

Figure 4.2: Semantics of LTL∓ formulae over a trace 𝑢 = 𝑎0 . . . 𝑎𝑛−1 ∈ Σ∗

that a finite trace is a prefix of a so-far unknown infinite trace (which fits very well with the RV
scenario). In another word, the semantics of LTL3 for atomic propositions and each temporal
operator are fully given by the standard LTL semantics (over infinite traces), which is always
convincing. See Def. 4.1.3 for more details.

Definition 4.1.3 (Semantics of LTL3 [6]). Let 𝑢 = 𝑎0 . . . 𝑎𝑛−1 ∈ Σ∗ denote a finite trace of length
𝑛 = |𝑢 |. The truth value of a LTL3 formula 𝜑 w.r.t. 𝑢 at position 𝑖 (or trace element 𝑎𝑖), denoted
with ⟦𝑢, 𝑖 |= 𝜑⟧3, is an element of B3 ¤= {⊤,⊥, ?} and defined as follows:

⟦𝑢, 𝑖 |= 𝜑⟧3 =

⊤ if ∀𝑤 ∈ Σ𝜔 : ⟦𝑢 · 𝑤, 𝑖 |= 𝜑⟧ = ⊤,

⊥ if ∀𝑤 ∈ Σ𝜔 : ⟦𝑢 · 𝑤, 𝑖 |= 𝜑⟧ = ⊥,

? otherwise.

(4.1)

Furthermore2, ⟦𝑢 |= 𝜑⟧3 denotes ⟦𝑢, 0 |= 𝜑⟧3.

4.1.4 RV-LTL

One major drawback of LTL3 is that many practical LTL properties are non-monitorable, i.e.
the truth value of these LTL formulae are always inconclusive (?) regardless of the trace, as
mentioned in Section 1.1. To overcome this difficulty, Bauer et al. propose RV-LTL [18], which
refines the inconclusive verdict ? into two variants ⊤p and ⊥p based on both LTL3 and FLTL.
See Def. 4.1.4 for more details.

Definition 4.1.4 (Semantics of RV-LTL [18]). Let 𝑢 = 𝑎0 . . . 𝑎𝑛−1 ∈ Σ∗ denote a finite and
non-empty trace of length 𝑛 = |𝑢 |. The truth value of an RV-LTL formula 𝜑 w.r.t. 𝑢, denoted
with ⟦𝑢 |= 𝜑⟧RV, is an element of B4 ¤= {⊤,⊥,⊤p,⊥p} and is defined as follows:

⟦𝑢 |= 𝜑⟧RV =

⊤ if ⟦𝑢 |= 𝜑⟧3 = ⊤,

⊥ if ⟦𝑢 |= 𝜑⟧3 = ⊥,

⊤p if ⟦𝑢 |= 𝜑⟧3 = ? and ⟦𝑢 |= 𝜑⟧F = ⊤,

⊥p if ⟦𝑢 |= 𝜑⟧3 = ? and ⟦𝑢 |= 𝜑⟧F = ⊥.
2It is trivial to also modify Def. 4.1.1, 4.1.2 and 4.1.4 to support evaluation of LTL formulae on trace positions other than 0.

27

4.1. LTL SEMANTICS FOR RUNTIME VERIFICATION CHAPTER 4. RUNTIME VERIFICATION

We do not recommend RV-LTL, because its division of LTL3’s inconclusive verdict (?) into
⊤p (presumably true) and ⊥p (presumably false) is quite arbitrary and even counter-intuitive
sometimes.

To see the “arbitrary” point, note that FLTL distinguishes between strong and weak next
operators, but in practice it is hard for the end user to decide which one to use, because in RV
scenario a finite trace is nothing but a truncated version of the potential infinite trace coming
from the execution of the SUS.

To see the “distinguishes” point, let 𝑢 be such a trace and 𝜑 be a monitor property such that
⟦𝑢 |= 𝜑⟧RV = ⊤p. By Definition 4.1.4 we know that ⟦𝑢 |= 𝜑⟧3 = ? for the same 𝑢 and 𝜑.
By Definition 4.1.3, this means that there still exists different continutions of 𝑢 such that the
infinite trace 𝑤 extending 𝑢 may satisfy either 𝑤 |= 𝜑 or 𝑤 ̸ |= 𝜑. Let us take the second case
(𝑤 ̸ |= 𝜑) for the actual future inputs from the SUS, and assume that the SUS eventually arrives
at another finite trace 𝑢′ (extended from 𝑢) such that ⟦𝑢′ |= 𝜑⟧3 = ⊥ while ⟦𝑢 |= 𝜑⟧RV = ⊤p, i.e.
presumably true but actually conclusively false. There is no evidence that such an unfortunate
case has only small probabilities in practice.

4.1.5 Four Maxims of RV-LTL Semantics

The inventors of RV-LTL, on the other hand, consider the following four maxims that they
consider essential for LTL semantics aimed for runtime verification (we agree on this part):

Maxim 1 Existential next requires the inclusion of a strong next operator.

Maxim 2 Complementation by negation requires that a negated formula evaluates to the comple-
mented and different truth value.

Maxim 3 Impartiality requires that a finite trace is not evaluated to⊤ (⊥) if there still exists an infinite
continuation leading to another verdict.

Maxim 4 Anticipation requires that once every infinite continuation of a finite trace leads to the same
verdict, then the finite trace evaluates to this very same verdict.

In Table 4.1 (cf. Fig. 5 of [18] for more details), it is shown that RV-LTL satisfies all above
four maxims, while LTL3 does not satisfies Maxim 2 (Complementation by Negation). However,
RV-LTL has two serious drawbacks:

1. RV-LTL is not defined on empty traces;

2. RV-LTL is not LTL compliant (A linear temporal logic L is LTL compliant iff 𝜑 ≡ 𝜓
implies 𝜑 ≡L 𝜓).

For the applications and extensions to be presented in this thesis, both of them are fetal:

28

CHAPTER 4. RUNTIME VERIFICATION 4.2. RUNTIME VERIFICATION BASED ON LTL3

FLTL LTL∓ LTL3 RV-LTL
Domain 𝑢 ≠ ∅, 𝑢 ∈ Σ∗ Σ∗ Σ∗ 𝑢 ≠ ∅, 𝑢 ∈ Σ∗

Existential Next (Maxim 1) yes yes (+) / no (-) yes yes
Complementation by Negation (Maxim 2) yes no no yes
Impartiality (Maxim 3) no no yes yes
Anticipation (Maxim 4) no no yes yes

Boolean laws yes no yes yes
Equivalences yes yes yes yes
LTL compliant no no yes no
Negation Normal Form yes yes yes yes
Inductive definition yes yes no no

Table 4.1: Comparing LTL Semantics for Runtime Verification

1. The bidirectional reductions between ABRV and MC require LTL semantics over empty
traces. (Section 4.6.2 and 4.6.3)

2. LTL compliance is needed for the initial rewriting of LTL formulae based on Expanding
Law during LTL-to-Büchi translations. (Section 3.7)

On the other hand, we think that Maxim 2 is too strict, as it requires that the negation of any
verdict must be different with the verdict. For LTL3, the negation of inconclusive (?) can be
naturally considered as itself, i.e. ?̄ = ?. (Think, for example, that the negation of zero is still
zero: 𝑋𝑆 − 0 = 0.) Thus if we slightly modify Maxim 2 to the following revised version, then
even LTL3 can satisfy:

Maxim 2’ Complementation by negation (revised) requires that a negated formula evaluates to the
complemented and negated truth value (In particular, ?̄ = ?).

Finally, the fact that LTL3 (and also RV-LTL) cannot be inductively defined has no impact for
automata-based RV algorithms where the present thesis finds its place. In rewriting-based RV
techniques [130], the verdict of LTL formulae is calculated by its sub-formulae, and in this case
neither LTL3 nor RV-LTL is a good choice of LTL semantics in rewriting-based RV techniques.

The conclusion here is that LTL3 is the perfect choice of an LTL semantics over finite traces.
For previous mentioned issue that most LTL properties are non-monitorable, our solution is to
use assumptions to further narrow down the possible continuations of trace prefixes.

4.2 Runtime Verification Based on LTL3

The (traditional) LTL3-based RV approach is depicted on the left of Fig. 1.1. The SUS exposes
to the monitor a run over a set of (observable) variables. We assume that the connection between

29

4.3. ASSUMPTIONS AND PARTIAL OBSERVABILITY CHAPTER 4. RUNTIME VERIFICATION

the SUS and the monitor is synchronous, i.e. at each monitoring step some information about the
SUS is conveyed to the monitor, typically with fixed sampling rates. (There are also practical
situations where the information flows from the SUS to the monitor in asynchronous ways, e.g. in
event-driven settings, but we consider them out of the scope of this thesis. We only remark that
the asynchronous view can be obtained by extending the synchronous one [25].) The monitor
synthesis process takes as input a specification 𝜙(𝑂), and returns the corresponding monitor. At
each cycle, the SUS conveys to the monitor a total truth assignment, assigning Boolean values
to each observable variable in𝑂 (the set of observables). Whenever the monitor takes as input a
new letter of the run, which amounts to having a series of prefixes of increased length, it returns
⊤ (or ⊥, resp.) if the observed prefix 𝑢 is such that, for all suffixes 𝑣, 𝑢 · 𝑣 |= 𝜙 (or 𝑢 · 𝑣 |= ¬𝜙,
resp.), or ? otherwise. The monitor is clearly monotonic: once the output verdict is conclusive
(⊤ or ⊥), future outputs remain the same.

Definition 4.2.1 (LTL3 monitor [19]). Given an LTL property 𝜑(𝑂). The goal of LTL3-based RV
is to construct a monitor functionM𝜑 : Σ∗ → B3 such that for all 𝑢 ∈ Σ∗,M𝜑 (𝑢) = ⟦𝑢 |= 𝜑⟧3.

4.3 Assumptions and Partial Observability

Let 𝜑 ∈ LTL(𝐴𝑃) be a monitor specification, 𝐾 ¤= ⟨𝑉𝐾 ,Θ𝐾 , 𝜌𝐾 ,J𝐾⟩ be an FTS representing the
assumptions under which 𝜑 is monitored. 𝐾 can be either a detailed model of the SUS or just a
simple constraint over the variables in 𝐴𝑃. In general, we do not have any specific restrictions
on the overlapping of 𝐴𝑃 and 𝑉𝐾 ; although it is quite common that 𝐴𝑃 ⊆ 𝑉𝐾 . Note that 𝑉𝐾 can
be empty if there is no assumption at all. Let 𝑉 ¤=𝑉𝐾 ∪ 𝐴𝑃 be the set of all involved Boolean
variables.

We say that the SUS is partially observable when the monitor can observe only a subset
𝑂 ⊆ 𝑉 of variables (𝑂 is called the observables). Thus, the input trace of the monitor contains
only variables from 𝑂. However, it is not required that all variables in 𝑂 must be observable
in each input state of the input trace. For instance, if 𝑂 = {𝑝, 𝑞}, an observation reads that the
value of 𝑝 is true but do not know anything about 𝑞. It is even possible that an observation
does not know anything about 𝑝 and 𝑞, except that the SUS has indeed moved to the next state
(i.e. the descrete time increased by one). Thus in general an observation can be viewed as a set
of possible assignments to𝑂. In particular, if𝑂 = 𝑉 and the observation contains a single (full)
assignment to 𝑉 , then we are speaking of full observability.

A partial observation of SUS states can be represented by a Boolean formula over the set of
observables 𝑂. Thus in our RV framework the monitoring algorithm takes as input a sequence
of Boolean formulae over 𝑂. For example, suppose that 𝑂 = {𝑝, 𝑞} and the input trace is
` = 𝑝 · 𝑞 · ⊤. Then in the first state, the monitor observes that 𝑝 is true but does not see the
value of 𝑞; in the second state, 𝑞 is true but the value of 𝑝 is not observed; in the third state,

30

CHAPTER 4. RUNTIME VERIFICATION 4.4. ASSUMPTION-BASED RUNTIME VERIFICATION

neither the value of 𝑝 nor of 𝑞 is available (all four assignments are possible). Thus, the actual
behavior of the SUS may be any trace compatible with these constraints.

However, in practice an input state of 22 |𝑂 | possible values is too much. For instance, a Boolean
formula like (𝑝 ∧ ¬𝑞) ∨ (¬𝑝 ∧ 𝑞) (or equivalently {{𝑝}, {𝑞}}, denoting either 𝑝 = ⊤ ∧ 𝑞 = ⊥
or 𝑝 = ⊥ ∧ 𝑞 = ⊤) may never appear in the application scenario, but this kind of inputs can
indeed be handled by our symbolic monitoring algorithm (to be given) without extra efforts. A
slightly restricted approach is to consider each variable in 𝑂 with three possible values in each
input state: true (⊤), false (⊥) and unknown (?). For those variables whose value is unknown,
we just assume that both ⊤ and ⊥ is possible. Under this setting, the possible values in each
input is reduced from 22 |𝑂 | to 3|𝑂 |, suitable for low-level monitor code generation.

4.4 Assumption-Based Runtime Verification

Now we formally present the generalized RV framework which extends the traditional RV with
three new features: assumptions, partial observability and resets. The ABRV-LTL semantics is
an extension of LTL3:

Definition 4.4.1. (Semantics of ABRV-LTL [47]) Let 𝐾 ¤= ⟨𝑉𝐾 ,Θ𝐾 , 𝜌𝐾 ,J𝐾⟩ be an FTS, and
𝑢 = 𝑎0 . . . 𝑎𝑛−1 ∈ Ψ(𝑂)∗ be a finite sequence of Boolean formulae over 𝑂 ⊆ 𝑉𝐾 ∪ 𝐴𝑃 (|𝑢 | = 𝑛)
and

L𝐾 (𝑢) ¤=
{
𝑤 ∈ L(𝐾)

�� 𝑤𝑖 (𝑉𝐾 ∪ 𝐴𝑃) |= 𝑎𝑖 (𝑂) for all 𝑖 < 𝑛
}

(4.2)

be the set of runs in 𝐾 which are compatible with 𝑢. The truth value of an ABRV-LTL formula
𝜑 w.r.t. 𝑢 (at index 𝑖) under the assumption 𝐾 , denoted with ⟦𝑢, 𝑖 |= 𝜑⟧𝐾4 , is an element of
B4 ¤= {⊤a,⊥a, ?,×} and defined as follows:

⟦𝑢, 𝑖 |= 𝜑⟧𝐾4 ¤=

× if L𝐾 (𝑢) = ∅,
⊤a if L𝐾 (𝑢) ≠ ∅ and ∀𝑤 ∈ L𝐾 (𝑢) : 𝑤, 𝑖 |= 𝜑,

⊥a if L𝐾 (𝑢) ≠ ∅ and ∀𝑤 ∈ L𝐾 (𝑢) : 𝑤, 𝑖 |= ¬𝜑,

? otherwise.

(4.3)

We also write ⟦𝑢 |= 𝜑⟧𝐾4 for ⟦𝑢, 0 |= 𝜑⟧𝐾4 .

ABRV-LTL proposes the following four verdicts:

• conclusive true (⊤a): the specification is satisfied under the RV assumptions;

• conclusive false (⊥a): the specification is violated under the RV assumptions;

• inconclusive (?): the satisfication/violation of specification is unknown, but the input trace
is still compatible with the RV assumptions;

31

4.4. ASSUMPTION-BASED RUNTIME VERIFICATION CHAPTER 4. RUNTIME VERIFICATION

• out-of-model (×): the input trace from the SUS violates the RV assumptions.

Note that, the last verdict out-of-model (×) can be added to other LTL semantics over finite trace,
e.g. RV-LTL, when RV assumptions are taken into account during monitor synthesis.

Remark 4.4.2. We note that the assumption of ABRV cannot be simply included in the property
as the premise of an implication. More specifically, even if L(𝐾) could be expressed by an LTL
formula 𝜓, the ABRV semantics ⟦𝑢, 𝑖 |= 𝜑⟧𝐾4 is in general different from ⟦𝑢, 𝑖 |= 𝜓 → 𝜑⟧3 . For
example, it is possible that ⟦𝑢, 𝑖 |= 𝜑⟧𝐾4 = ⊥a (thus, ∀𝑤 ∈ L𝐾 (𝑢). 𝑤, 𝑖 |= ¬𝜑) and that there
exists 𝑤 such that 𝑢 · 𝑤, 𝑖 ̸ |= 𝜓 (thus, 𝑢 · 𝑤, 𝑖 |= 𝜓 → 𝜑 and ⟦𝑢, 𝑖 |= 𝜓 → 𝜑⟧3 = ?).

4.4.1 Partial Observability

Due to partial observability, the finite trace 𝑢 is actually a set of finite traces over 𝑂, where each
state 𝑎𝑖 is a set of truth assignments over𝑂. When L𝐾 (𝑢) = ∅, the monitor is unable to “follow”
the behaviour shown from the SUS, hence the fourth verdict out-of-model (×) comes.

The sequence of observations can be paired with a sequence of Boolean reset signals.
(Hereafter, traces paired with reset signals are presented by Greek letters like `.) Intuitively,
if the monitor receives a reset at the index 𝑖, then the monitor will start to evaluate the truth
value of 𝜑 at 𝑖 (and does so until the next reset). Formally, the monitor receives inputs in
Ψ(𝑂) × B, a cross-product between formulae over the observables and the reset values. Thus
` = (𝑢0, res0), (𝑢1, res1), . . . , (𝑢𝑛, res𝑛). We denote, with res(`) and obs(`), the projection of
` on the reset and observation components, respectively, i.e. res(`) = res0, res1, . . . , res𝑛 and
obs(𝑢) = 𝑢0, 𝑢1, . . . , 𝑢𝑛.

4.4.2 ABRV problems and monitor definition

Definition 4.4.3 (ABRV with Partial Observability and Resets). Let 𝐾 , 𝜑 and 𝑂 have the same
meaning as in Def. 4.4.1, Let ` ∈ (Ψ(𝑂) × B)∗ be a finite sequence of observations paired with
resets. The problem of Assumption-based Runtime Verification (ABRV) w.r.t. assumptions 𝐾 ,
monitoring property 𝜑 and observables 𝑂 is to construct a functionM𝐾

𝜑 : (Ψ(𝑂) × B)∗ → B4

such that
M𝐾

𝜑 (`) = ⟦obs(`),mrr(`) |= 𝜑⟧𝐾4 (4.4)

where mrr(`) (the most recent reset) is the maximal 𝑖 such that res(`𝑖) = ⊤, or 0 if such a
maximal 𝑖 does not exist (e.g., when res(`𝑖) = ⊥ for all 𝑖).

An illustration of ABRV monitors is shown in Fig. 4.3. It shows how the belief states inside
the monitor are narrowed down by each input states, while the monitoring outputs depend on
the emptiness of belief states.

32

CHAPTER 4. RUNTIME VERIFICATION 4.5. MOTIVATING EXAMPLE

¬φ

φ

L(K)

Σω \ L(K)

u0 u1 u2 u3 u4

σ0

σ1

σ2

σ3

σ4

σ5

σ6

Figure 4.3: ABRV Illustration

4.5 Motivating Example

Here we present a motivating example to clarify the significance of the assumption-based RV
approach. This is a real-world example taken from [67], which models a (simplified) assembly
line in a factory, as shown in Fig. 4.4. Some empty bottles need to pass three positions in the
assembly line to have two different ingredients filled in. The red ingredient is filled at position
0, while the green ingredient is filled at position 1. In case of faults, some ingredients may not
be filled successfully. There is a transmission belt (as the grey bottom line in Fig. 4.4) moving
all bottles to their next positions, and the filling operations can only be done when the belt stops
(i.e. not moving). All variables in the model are Boolean: bottle_present[] (with index
0–2) denotes the existence of a bottle at a position. Similarly, bottle_ingr1[] denotes the
existence of the red ingredient in the bottle at a position, and bottle_ingr2[] for the green
ingredient. Besides, move_belt denotes if the belt is moving, and new_bottle denotes if there
is a new bottle coming at position 0 before the belt starts to move. Finally, two unobservable
variables fault[0] and fault[1] denote the faults: whenever it happens, the corresponding
filling operations will definitely fail and the corresponding ingredients are not filled into the
bottle at the positions. The belt moves infinitely often (i.e. it does not stop forever after certain
time), and this is guaranteed by the fairness condition of the model.

The precise model definition in smv language is given in the Appendix (Section A.1). But all
the model does is to guarantee that physically impossible things will not happen, e.g. any bottle
or the ingredients inside them does not suddenly appear or disappear, plus that the transmission
belt does not stop forever (i.e. it infinitely often moves).

The monitoring specification is that, whenever there is a bottle at position 2, both ingredients

33

4.6. THEORETICAL RESULTS OF ABRV CHAPTER 4. RUNTIME VERIFICATION

0 1 2

Figure 4.4: The Factory Model

are filled in that bottle. This can be expressed by LTL property G (bottle_present[2] →
(bottle_ingr1[2] ∧ bottle_ingr2[2])). Partial observability of this factory model is the
following: except for fault[0] and fault[1], everything else is observable.

Consider an execution in which a fault happens and then a bottle is at position 0 but the red
ingredient is not filled correctly, i.e. bottle_present[0] is true while bottle_ingr1[0] is
false. It is not hard to imagine that the same bottle will eventually also present itself at position
2 without the red ingredient, i.e. bottle_present[2] is true while bottle_ingr1[2] is
false. The ABRV monitor of the above specification and the model will predict this violation
immediately after this bottle left position 0 but before arriving at position 2, while any monitor
just synthesized from the specification itself will not be able to predict the violation so early.

Instead of writing the above monitoring specification explicitly by variables bottle_-
present[2], bottle_ingr1[2], bottle_ingr2[2], another equivalent way is to monitor
the LTL property G¬(fault[0] ∨ fault[1]). Note that this new LTL property involves non-
observable variables whose value cannot be directly obtained from the input traces. But anyway
the corresponding ABRV monitor works and is also predictive. This is because, the value of
fault[0] and fault[1] can be inferred from other observable variables in the model, and
the actual input trace will provide enough information for deciding their values (and also the
violation of the above new monitor specification.)

Finally, let us consider the case where two faults happen at different time for two different
bottles. After detecting the first fault, we would like to reset the monitor to detect also the
second fault. However, suppose the second fault occurs before the last reset: in this case, the
observations before the reset may be necessary to detect the second fault. Resettable monitors
allow us to change the monitor outputs back to those before faults happen, without losing track
of the internal states of the SUS.

4.6 Theoretical Results of ABRV

Having the goal of ABRV monitor synthesis established (Def. 4.4.3, before we present monitor
synthesis algorithms in next chapters, for both finite- and infinite-state systems, in this section
we first discuss some theoretical results of ABRV monitors, to be used in later chapters.

34

CHAPTER 4. RUNTIME VERIFICATION 4.6. THEORETICAL RESULTS OF ABRV

⊤

?

OO

��
⊥

LTL3

×

⊤a

99

⊥a

ee

?

ee 99

ABRV-LTL

Figure 4.5: LTL3 (left) v.s. ABRV-LTL (right), the direction of arrows indicate the possible changes of monitor
outputs after more inputs (without being reset)

4.6.1 Basic properties of ABRV monitors

Here are some basic properties of the monitor defined in Def. 4.4.3. Let (B4, ⊑) be a lattice with
the partial order ? ⊑ ⊤a/⊥a ⊑ ×, shown in Fig. 4.5 (with a comparison to the LTL3 lattice).
The proofs are similar with the monitonicity of LTL3:

Lemma 4.6.1. If there is no reset, the monitorM𝐾
𝜑 is always mono-increasing:

∀𝑢 ∈ (Ψ(𝑂) × {⊥})∗, 𝜓 ∈ Ψ(𝑂).M𝐾
𝜑 (𝑢) ⊑ M𝐾

𝜑 (𝑢 · (𝜓,⊥)) .

Lemma 4.6.2. ABRV-LTL monitor is anti-monotonic w.r.t. assumptions:

∀𝐾1, 𝐾2. L(𝐾2) ⊆ L(𝐾1) ⇒ ∀𝑢 ∈ (Ψ(𝑂) × B)∗.M𝐾1
𝜑 (𝑢) ⊑ M𝐾2

𝜑 (𝑢) .

We say that the assumption 𝐾 is valuable (or useful) for 𝜑 if there exists 𝑢 ∈ (Ψ(𝑂) × {⊥})∗
such that M∅𝜑 (𝑢) = ? and M𝐾

𝜑 (𝑢) = ⊤a or ⊥a. This can happen when the monitor M𝐾
𝜑 is a

diagnostic monitor which deduces non-observable values from the assumption and observations,
or when the monitorM𝐾

𝜑 is a predictive monitor, which deduces future facts from the assumption
and observations.

Actually it is not hard to see that ABRV-LTL semantics satisfies all four maxims mentioned
in Section 4.1, under the revised version of Maxim 2: the negation of out-of-model (×) is itself,
while⊤a and⊥a are negations of each other. It is not very useful, on the other hand, to discuss if
the four verdicts of ABRV-LTL form a lattice or not, because we never need to do any calculation
on these verdicts (coming from sub-formulae, e.g.).

4.6.2 MC reduced to ABRV

From algorithmic point of view, having some extra assumptions during the monitor synthesis
is nothing but an extra (Fair) Kripke Structure (a model as RV assumptions) synchronously

35

4.6. THEORETICAL RESULTS OF ABRV CHAPTER 4. RUNTIME VERIFICATION

composed into the Kripke Structure translated from the monitoring property [109], thus RV
assumptions have minor impacts in the shape of ABRV algorithms. On the other hand, although
RV is usually considered as a lightweight verification technique, with the addition of assumptions
we can show that any model checking problem can be reduced to ABRV monitoring with the
same temporal logic. as the next theorem shows:

Theorem 4.6.3 (MC reduced to ABRV). Let 𝐾 be a model (as an FTS), and 𝜑 be a property in
temporal logics like LTL. The model checking problem 𝐾 |= 𝜑 can be done by ABRV monitoring
on empty traces using the same model as RV assumptions.

Proof. Let 𝜖 be an empty trace. From Definition 4.4.3 and 4.4.1 we have

M𝐾
𝜑 (𝜖) =

⊤a, if ⟦𝐾 |= 𝜑⟧ = ⊤ (and ⟦𝐾 |= ¬𝜑⟧ = ⊥),

⊥a, if ⟦𝐾 |= 𝜑⟧ = ⊥ (and ⟦𝐾 |= ¬𝜑⟧ = ⊤),

? , if ⟦𝐾 |= 𝜑⟧ = ⟦𝐾 |= ¬𝜑⟧ = ⊥ (counterexamples exist on both sides),

×, if ⟦𝐾 |= 𝜑⟧ = ⟦𝐾 |= ¬𝜑⟧ = ⊤ (i.e. L(𝐾) = ∅, i.e. 𝐾 is an empty model).

Thus ⟦𝐾 |= 𝜑⟧ = ⊤ iffM𝐾
𝜑 (𝜖) = ⊤a (or × if the model 𝐾 is empty). □

Thus ABRV cannot have lower time/space complexity than MC w.r.t. the combined size
of the model 𝐾 and the checking property 𝜑. Also note that the benefits of choosing LTL3

(over RV-LTL) as the basis of LTL semantics over finite trace now show up: both LTL3 and
ABRV-LTL are specified on empty traces.

4.6.3 ABRV reduced to MC

What is more interesting and useful, is that ABRV monitoring can be reduced to model checking,
as the following theorem shows:

Theorem 4.6.4 (ABRV reduced to MC). Let 𝐾 be RV assumptions (as FTS), and 𝜑 be a
monitoring property in temporal logics like LTL. Let 𝑢 = 𝑎0 . . . 𝑎𝑛−1 be a finite trace (|𝑢 | = 𝑛).
The ABRV monitoring problemM𝐾

𝜑 (𝑢) can be done by two calls of model checking on combined
models from 𝐾 and 𝑢.

Proof. Let 𝑐 be a fresh integer variable3 taking finite domain values from 0 to 𝑛 − 1. Let
𝑆𝑢 = ⟨𝑉𝑘 ∪ {𝑐},Θ, 𝜌, ∅⟩ be a Kripke Structure built from 𝑢, where

Θ ¤= (𝑐 = 0) ∧ 𝑎0, 𝜌 ¤=
𝑛∧
𝑖=0

(
(𝑐 = 𝑖) → (𝑐′ = 𝑖 + 1 ∧ 𝑎′𝑖+1)

)
Then, by Definition 4.4.3 and 4.4.1M𝐾

𝜑 (𝑢) can be computed by two MC calls ⟦𝐾 × 𝑆𝑢 |= 𝜑⟧
and ⟦𝐾 × 𝑆𝑢 |= ¬𝜑⟧, with the output verdict given by Table 4.2. □

36

CHAPTER 4. RUNTIME VERIFICATION 4.6. THEORETICAL RESULTS OF ABRV

⟦𝐾 × 𝑆𝑢 |= 𝜑⟧ ⟦𝐾 × 𝑆𝑢 |= ¬𝜑⟧ M𝐾
𝜑 (𝑢)

⊤ ⊤ ×
⊤ ⊥ ⊤a

⊥ ⊤ ⊥a

⊥ ⊥ ?

Table 4.2: Output table in ABRV-MC reduction

Model
Checking O

ut
pu

t

u MK
ϕ (u)

⟦K × Su |= φ⟧

⟦K × Su |= ¬φ⟧

Figure 4.6: ABRV reduced to MC

Theorem 4.6.4 can be seen as a universal ABRV monitoring algorithm, as long as there exists
model checkers supporting the temporal logics of the monitoring properties. Fig. fig:ABRVtoMC
shows the workflow of such a trivial ABRV monitor. Note that this reduction-based ABRV mon-
itor is not incremental, i.e. by taking one more input state from the SUS, new model checking
calls cannot benefit from previous model checking results. To overcome this difficulity, in
Chapter 6 (RV of infinite-state systems), an improved reduction-based RV algorithm based on
incremental BMC model checkers will be given.

4.6.4 Undecidability of RV on infinite-state systems

Combining Theorem 4.6.3 and 4.6.4, one can see that ABRV and MC basically have the same
space and time complexities, as there exist bidirectional reductions between them. Such a close
relationship betwen ABRV and MC does not hold for traditional RV without assumptions.

In particular, it is known that MC on infinite-state systems is in general undecidable (mostly
because the reachability problem is undecidable for infinite-state transition systems [44]), thus
RV on infinite-state systems is also in general undecidable.4

4.6.5 ABRV extended with counter-examples

The MC-to-ABRV reduction given in Section 4.6.2 has one problem: when MC returns negative
results, there is no way to have counter examples from ABRV monitors since monitors only
report simple verdicts.

3Thus 𝑐 can be encoded into at most log2 𝑛 new Boolean variables if the underlying model checker supports only Boolean variables.
4Courtesy of Prof. César Sánchez, Here we also add his another comment which further illustrates our undecidability result in another

(better) way: “Obviously, it is easy to prove that for arbitrary infinite-state systems the (monitoring) problem becomes undecidable (even for
simple properties and complex systems - one could easily cover the Halting problem - or for trivial/no system and complex property - one could
model PCP or counter machines.)

37

4.6. THEORETICAL RESULTS OF ABRV CHAPTER 4. RUNTIME VERIFICATION

To overcome this difficulty (bringing also other benefits), ABRV monitors (Definition 4.4.3)
can be modified to optionally provide extra informations together with B4 verdicts:

Definition 4.6.5 (Extended ABRV monitors). The ABRV monitorM𝐾
𝜑 (`) may optionally return

two (lasso-shaped, i.e. with ending loop) infinite traces 𝑤1, 𝑤2 ∈ L𝐾 (obs(𝑢)) (if they exist) such
that 𝑤1,mrr(`) |= 𝜑 and 𝑤2,mrr(`) |= ¬𝜑.

Note that 𝑤1 and 𝑤2 do not always exist:

• whenM𝐾
𝜑 (`) = ⊤a, only 𝑤1 exists;

• whenM𝐾
𝜑 (`) = ⊥a, only 𝑤2 exists;

• whenM𝐾
𝜑 (`) = ?, both 𝑤1 and 𝑤2 exist;

• whenM𝐾
𝜑 (`) = ×, none of 𝑤1 and 𝑤2 exists.

Now reconsider the ABRV-based model checker constructed in Theorem 4.6.3. When MC
gives negative results, i.e. ⟦𝐾 |= 𝜑⟧ = ⊥, in this case we have M𝐾

𝜑 (𝜖) = ⊥a or ?. For both
verdicts 𝑤2 always exists and is the needed counter example such that 𝑤2 ∈ L(𝐾) and 𝑤2 ̸ |= 𝜑.

In practice, 𝑤1 and 𝑤2 should be as short as possible (i.e. as lasso-shaped traces they reach
the ending loop as soon as possible). Meanwhile, since they are compatible with the current
trace prefix `, once can imagine that only the continuation parts of 𝑤1 and 𝑤2, after the end state
of `, provides some new information: a prediction of the SUS leading to conclusive verdicts.
When M𝐾

𝜑 (`) = ?, instead of knowning nothing, 𝑤1 and 𝑤2 will provide some hints on how
the SUS may evolve to different monitoring results. This is more precise than RV-LTL which
refines LTL3’s inclusive verdict (?) into ⊤p and ⊥p disregarding the future continuation of the
current (finite) trace prefix.

4.6.6 Monitorability under assumptions

The assumption-based RV approach has received some attentions by other researchers since its
initial publications in RV 2019 conference [47, 48]. The most profound one is the research
of monitorability under assumptions. Here we briefly recall some key results (translated into
symbols in this thesis), with comments.

A property is monitorable (classic, without assumptions) if every prefix of every trace
has a finite extension that allows a verdict, positive or negative [129]. All safety and co-
safety properties, and their boolean combinations, are monitorable [19, 64]. The classical
monitorability has been extensively researched in scope of some variants of Hennessy-Milner
Logic (beside LTL and CTL) [2, 3, 72]. The classic definition of monitorability assumes that the
system may generate any trace. Under assumptions, Henzinger et al. [91] propose the following
revised definition of monitorability:

38

CHAPTER 4. RUNTIME VERIFICATION 4.6. THEORETICAL RESULTS OF ABRV

Definition 4.6.6. Let 𝜑 be a monitoring property, 𝐾 be an assumption (Σ be its alphabet), and
𝑢 ∈ 𝐿 (𝐾) a finite trace. The property 𝜑 is positively determined under 𝐾 by 𝑢 iff, for all infinite
traces 𝑤 ∈ Σ𝜔, if 𝑢 · 𝑤 ∈ L(𝐾), then 𝑢 · 𝑤 |= 𝜑. Similarly, 𝜑 is negatively determined under 𝐾
by 𝑢 iff, for all 𝑤 ∈ Σ𝜔, if 𝑢 · 𝑤 ∈ L(𝐾), then 𝑢 · 𝑤 ̸ |= 𝜑.

Definition 4.6.7 (Monitorability under assumptions). The property 𝜑 is 𝑢-monitorable under
the assumption 𝐾 , where 𝑢 ∈ 𝐿 (𝐾) is a finite trace, iff there is a finite continuation 𝑣 such that
𝑢 · 𝑣 ∈ 𝐿 (𝐾) positively or negatively determines 𝜑 under 𝐾 . The property 𝜑 is monitorable
under 𝐾 iff it is 𝑢-monitorable under 𝐾 for all finite traces 𝑢 ∈ 𝐿 (𝐾). The set of properties that
are monitorable under 𝐾 is denoted by Mon(𝐾).

Henzinger et al. proved the following interesting results regarding Mon(𝐾):

Theorem 4.6.8. For every assumption 𝐾 , the set Mon(𝐾) is closed under Boolean operations.

Switching from properties to assumptions, monitorability, however, is not preserved under
complementation, intersection, nor under union of assumptions. Among these Boolean opera-
tions, the union is arguably the most interesting one on assumptions. It is interesting that, under
the supposition of compatibility (see below) with respect to a given property, the monitorability
is preserved under the union of assumptions.

Definition 4.6.9 (Compatibility of assumptions). Let 𝐴 and 𝐵 be two assumptions, and 𝜑 be a
property such that 𝜑 ∈ Mon(𝐴) and 𝜑 ∈ Mon(𝐵). The assumptions 𝐴 and 𝐵 are compatible
with respect to 𝜑 iff for every finite trace 𝑢 ∈ 𝐿 (𝐴) that positively (resp. negatively) determines
𝜑 under 𝐴, there is no finite extension 𝑣 such that 𝑢 · 𝑣 ∈ 𝐿 (𝐵) and 𝑢 · 𝑣 negatively (resp.
positively) determines 𝜑 under 𝐵, and vice versa.

Theorem 4.6.10 (Preservation of monitorability under union). Let 𝐴 and 𝐵 be assumptions,
and 𝜑 be a property such that 𝜑 ∈ Mon(𝐴) and 𝜑 ∈ Mon(𝐵). If 𝐴 and 𝐵 are compatible with
respect to 𝜑, then 𝜑 ∈ Mon(𝐴 ∪ 𝐵).

The preservation of monitorability under the strengthening and weakening of assumptions is
also explored: (Note that, in general, monitorability is neither downward nor upward preserved.)

Theorem 4.6.11. Let 𝐴 and 𝐵 be assumptions, and 𝜑 be a property such that 𝐵 ⊆ 𝐴5 and
𝜑∩𝐴 = 𝜑∩𝐵. If 𝜑 ∈ Mon(𝐴) and 𝐵 ⊆ Mon(𝐴) such that every prefix that negatively determines
𝐵 under 𝐴 has a proper prefix that negatively determines 𝜑 under 𝐴, then 𝜑 ∈ Mon(𝐵).

Theorem 4.6.12. Let 𝐴 and 𝐵 be assumptions, and 𝜑 be a property such that 𝐵 ⊆ 𝐴 and
𝜑 ∩ 𝐴 = 𝜑 ∩ 𝐵. If 𝜑 ∈ Mon(𝐵) and 𝐵 ⊆ Mon(𝐴), then 𝑃 ∈ Mon(𝐴).

5If 𝐴 and 𝐵 are both FTS, then 𝐵 ⊆ 𝐴 is nothing but an abbreviation of L(𝐵) ⊆ L(𝐴) . Other set operations between assumptions, or
between assumtions and properties, e.g. 𝜑 ∩ 𝐴, should be understood similarly as set operations on their languages, i.e. set of infinite traces.

39

4.6. THEORETICAL RESULTS OF ABRV CHAPTER 4. RUNTIME VERIFICATION

The above results have provided methodologies and useful guidelines for users of assumption-
based monitor synthesis tools (including NuRV) to choose properly the RV assumptions for
having monitorable properties (and the final monitors) as much as possible. The algorithms to
be presented in this thesis, however, will only focus on the synthesis of correct monitors given
the properties and assumptions.

4.6.7 ABRV and FDI (monitor vs. diagnoser)

Technically speaking, there is no much difference between ABRV monitors and the so-called
diagnosers from the field of Fault Detection, Identification (FDI) [25], mostly because both
monitors and diagnosers are synthesized with the knowledge of the system to be monitored or
diagnosed.

FDI provides the ability to detect when and which faults occur during operation. Faults are
often not directly observable. Their occurrence can only be inferred by observing the effects
that they have on the observable parts of the system. An FDI component, also referred as a
diagnoser, processes sequences of observations, made available by predefined sensors, and is
required to trigger a set of predefined alarms in a timely and accurate manner [26]. Using RV
terminologies, before a diagnoser actually triggers an alarm, it can be understood as a monitor
returning inconclusive verdicts, while the alarm can be understood as a conclusive verdict (more
precisely, a conclusive false⊥a). Roughly speaking, a plant is diagnosable iff its alarm conditions
(as monitoring properties) are monitorable under the assumption as plant model. There exists
extensive research on diagnosability of discrete-event systems [133].

Formally speaking, a diagnoser is a machine 𝐷 that synchronizes with observable traces of
the plant 𝑃. 𝐷 has a set A of Boolean alarm variables that are activated in response to the
monitoring of 𝑃. The first element for the specification of the FDI requirements is given by
the conditions that must be monitored, denoted with 𝛽. In FDI, the diagnosis condition 𝛽 to be
monitored cannot be a temporal formula. Instead it is a Boolean combination of state variables
of the plant, including the (non-observable) faults.

The temporal aspects of diagnosis conditions are provided by the second element of the
specifiation of FDI requirements: the relation between a diagnosis condition and the raising
of an alarm. An alarm condition is composed of two parts: the diagnosis condition and the
delay. The delay relates the time between the occurrence of the diagnosis condition and the
corresponding alarm; it might be the case that the occurrence of a fault can go undetected for
a certain amount of time. By interaction with industrial experts four 6 initial patterns of alarm
conditions are identified:

1. ExactDel(𝐴, 𝛽, 𝑛) specifies that whenever 𝛽 is true, 𝐴 must be triggered exactly 𝑛 steps

6The first three alarm patterns are defined in [25, 26]. The fourth pattern BoundDel𝑂 (𝐴, 𝛽, 𝑛) is added in [24].

40

CHAPTER 4. RUNTIME VERIFICATION 4.6. THEORETICAL RESULTS OF ABRV

Alarm Condition LTL (Correctness) LTL (Completeness)
ExactDel(𝐴, 𝛽, 𝑛) G(𝐴→ Y𝑛𝛽) G(𝛽→ X𝑛𝐴)
BoundDel(𝐴, 𝛽, 𝑛) G(𝐴→ O⩽𝑛𝛽) G(𝛽→ F⩽𝑛𝐴)
FiniteDel(𝐴, 𝛽) G(𝐴→ O 𝛽) G(𝛽→ F𝐴)
BoundDel𝑂 (𝐴, 𝛽, 𝑛) G(𝐴→ O 𝛽) G(𝛽→ F⩽𝑛𝐴)

Table 4.3: Alarm conditions as LTL [24]

later and 𝐴 can be triggered only if 𝑛 steps earlier 𝛽 was true;

2. BoundDel(𝐴, 𝛽, 𝑛) specifies that whenever 𝛽 is true, 𝐴 must be triggered within the next
𝑛 steps and 𝐴 can be triggered only if 𝛽 was true within the previous 𝑛 steps;

3. FiniteDel(𝐴, 𝛽) specifies that whenever 𝛽 is true, 𝐴 must be triggered in a later step and
𝐴 can be triggered only if 𝛽 was true in some previous steps;

4. BoundDel𝑂 (𝐴, 𝛽, 𝑛) specifies that whenever 𝛽 is true, 𝐴must be triggered within the next
𝑑 steps and 𝐴 can be triggered only if 𝛽 was true in some previous steps.

The combination of diagnosis conditions and alarm patterns can be defined in uniformly in
LTL with past operators, as shown in Table 4.3.

ABRV monitors can be used as diagnosers: one can synthesize monitors using plant models
as RV assumptions. The non-monitorable faults appeared in LTL formulation of alarm patterns
can be infered by other observable state variables with help of the plant models. Furthermore,
note that the LTL formulae corresponding to alarm conditions must be evaluated at the last index
of current input trace prefix. ABRV monitors can handle such LTL evaluations by resets. (See
also Chapter 7 for an extensive application of resets when monitoring Past-Time LTL.)

41

4.6. THEORETICAL RESULTS OF ABRV CHAPTER 4. RUNTIME VERIFICATION

42

Chapter 5

Monitoring Finite-State Systems

In finite-state systems, all state and input variables involved in system models (as RV assump-
tions) and monitoring properties are either Boolean variables or finite-domain scalar variables
(enumerations, fixed-size machine words and arrays). The ABRV monitoring of finite-state
systems can be done efficiently done by a symbolic monitoring algorithm implemented by
BDD, and can be synthesized into explicit-state monitors generated into various programming
languages.

5.1 Symbolic Monitoring Algorithm

The symbolic monitoring algorithm is presented in Algorithm 1 for the RV problem given in
Def. 4.4.3, for finite-state systems. This algorithm leverages Boolean formulae and can be
effectively implemented in BDD. A monitor is built from an assumption 𝐾 ¤= ⟨𝑉𝐾 ,Θ𝐾 , 𝜌𝐾 ,J𝐾⟩
and an LTL property 𝜑. The monitor can be used with any finite trace 𝑢 ∈ (Ψ(𝑂) × B)∗, where
𝑂 ⊆ 𝑉𝐾 ∪ 𝐴𝑃 is the set of observables.

In the monitor building phase (L2–5), the LTL to𝜔-automata translation algorithm (Sect. 3.7)
is called on 𝜑 and ¬𝜑 for constructing 𝑇𝜑 and 𝑇¬𝜑. The set of fair states of 𝐾 ⊗𝑇𝜑 and of 𝐾 ⊗𝑇¬𝜑
are computed as F 𝐾𝜑 and F 𝐾¬𝜑. Starting from L7, the purpose is to update two belief states 𝑟𝜑
and 𝑟¬𝜑 according to the input trace 𝑢. If we imagine 𝐾 ⊗ 𝑇𝜑 and 𝐾 ⊗ 𝑇¬𝜑 as two NFAs, then
𝑟𝜑 and 𝑟¬𝜑 are the sets of current states in them. They are initialized with the initial conditions
of 𝐾 ⊗ 𝑇𝜑 and 𝐾 ⊗ 𝑇¬𝜑 (restricted to fair states). Indeed, their initial values are given by a
chain of conjunctions at L6. They are then intersected with the first input state 𝑢0 at L8. For
the remaining inputs (if they exist), when there is no reset (L11–12), the purpose is to walk
simultaneously in 𝐾 ⊗ 𝑇𝜑 and 𝐾 ⊗ 𝑇¬𝜑 by computing the forward images of 𝑟𝜑 and 𝑟¬𝜑 with
respect to the current input state and the set of fair states.

If any input state comes in with a reset signal, now the monitor needs to be reset (L14–15).
Remarkably, this can be obtained simply by taking 𝑟𝜑 ∨ 𝑟¬𝜑 at L14 (by calling compute_-

43

5.1. SYMBOLIC MONITORING ALGORITHM CHAPTER 5. FINITE-STATE CASE

Algorithm 1: The symbolic (offline) monitor

1 function symbolic_monitor(𝐾 ¤= ⟨𝑉𝐾 ,Θ𝐾 , 𝜌𝐾 ,J𝐾 ⟩, 𝜑(𝐴𝑃), 𝑢 ∈ (Ψ(𝑂) × B)∗)
2 𝑇𝜑 ¤= ⟨𝑉𝜑 ,Θ𝜑 , 𝜌𝜑 ,J𝜑⟩ := ltl_to_automata(𝜑);
3 𝑇¬𝜑 ¤= ⟨𝑉𝜑 ,Θ¬𝜑 , 𝜌𝜑 ,J𝜑⟩ := ltl_to_automata(¬𝜑);
4 F 𝐾𝜑 := get_fair_states(𝐾 ⊗ 𝑇𝜑);
5 F 𝐾¬𝜑 := get_fair_states(𝐾 ⊗ 𝑇¬𝜑);
6 ⟨𝑟𝜑 , 𝑟¬𝜑⟩ := ⟨Θ𝐾 ∧ Θ𝜑 ∧ F 𝐾𝜑 ,Θ𝐾 ∧ Θ¬𝜑 ∧ F 𝐾¬𝜑⟩;
7 if |𝑢 | > 0 then
8 ⟨𝑟𝜑 , 𝑟¬𝜑⟩ := ⟨𝑟𝜑 ∧ obs(𝑢0), 𝑟¬𝜑 ∧ obs(𝑢0)⟩;

9 for 1 ⩽ 𝑖 < |𝑢 | do
10 if res(𝑢𝑖) = ⊥ then /* without reset */
11 𝑟𝜑 := fwd(𝑟𝜑 , 𝜌𝐾 ∧ 𝜌𝜑) (𝑉𝐾 ∪𝑉𝜑) ∧ F 𝐾𝜑 ∧ obs(𝑢𝑖);
12 𝑟¬𝜑 := fwd(𝑟¬𝜑 , 𝜌𝐾 ∧ 𝜌𝜑) (𝑉𝐾 ∪𝑉𝜑) ∧ F 𝐾¬𝜑 ∧ obs(𝑢𝑖);

13 else /* with reset */
14 ⟨𝑟 ′𝜑 , 𝑟 ′¬𝜑⟩ := compute_reset(𝑟𝜑 , 𝑟¬𝜑);
15 ⟨𝑟𝜑 , 𝑟¬𝜑⟩ := ⟨𝑟 ′𝜑 ∧ obs(𝑢𝑖), 𝑟 ′¬𝜑 ∧ obs(𝑢𝑖)⟩;

16 if 𝑟𝜑 = 𝑟¬𝜑 = ⊥ then return ×;
17 else if 𝑟𝜑 = ⊥ then return ⊥a;
18 else if 𝑟¬𝜑 = ⊥ then return ⊤a;
19 else return ?;

20 function compute_reset(𝑟𝜑 , 𝑟¬𝜑)
21 𝑟 := 𝑟𝜑 ∨ 𝑟¬𝜑;
22 𝑟 ′𝜑 := fwd(𝑟, 𝜌𝐾 ∧ 𝜌𝜑) (𝑉𝐾 ∪𝑉𝜑) ∧ 𝜒(𝜑) ∧ F 𝐾𝜑 ;
23 𝑟 ′¬𝜑 := fwd(𝑟, 𝜌𝐾 ∧ 𝜌𝜑) (𝑉𝐾 ∪𝑉𝜑) ∧ 𝜒(¬𝜑) ∧ F 𝐾¬𝜑;
24 return ⟨𝑟 ′𝜑 , 𝑟 ′¬𝜑⟩;

reset()). Then the forward image computed at L15 is for shifting the current values of all
elementary variables by one step into the past, then the conjunction of 𝜒(𝜑) (or 𝜒(¬𝜑), resp.)
makes sure that at next round the “new” automata will accept 𝜑 (or ¬𝜑, resp.). Note that we
cannot use Θ𝜑 or Θ¬𝜑 here, because they contain the initial all-false assignments of the past
elementary variables, which may wrongly overwrite the history stored in 𝑟, as some of these
variables may not be false any more. The whole reset process completes here, then the current
input observation obs(𝑢𝑖) is finally considered and the new belief states must be restrict in fair
states. Finally (L16–19) the monitor outputs a verdict in B4, depending on four possible cases
on the emptiness of 𝑟𝜑 and 𝑟¬𝜑. This is in line with ABRV-LTL given in Def. 4.4.1.

Remark 5.1.1. The Boolean formula 𝑟 in the function compute_reset actually represents the
history of the current input trace and the current “position” in the RV assumption. This is
because, before taking the disjunction, 𝑟𝜑 as belief states represents 3 things: the history of the

44

CHAPTER 5. FINITE-STATE CASE 5.1. SYMBOLIC MONITORING ALGORITHM

current input trace, the current position in the RV assumption, and the evaluation of 𝜑; while 𝑟¬𝜑
also represents 3 things: represents the history of the current input trace, the current position
in the RV assumption, and the evaluation of ¬𝜑. If we take the disjunction, the third would
become the evaluation of 𝜑 ∨ ¬𝜑, or true, thus just disappeared, remaining the history of the
current input trace and the current position in the RV assumption, which is used as the new
initial condition for re-monitoring the same property 𝜑.

Running example Suppose we monitor 𝜑 = 𝑝U 𝑞 assuming 𝑝 ≠ 𝑞, and both 𝑝 and 𝑞 are
observable. Here we have:

• 𝑂 = {𝑝, 𝑞},

• 𝑉𝜑 = {𝑝, 𝑞, 𝑥 ¤=x𝑝U𝑞},

• Θ𝜑 = 𝑞 ∨ (𝑝 ∧ 𝑥), Θ¬𝜑 = ¬(𝑞 ∨ (𝑝 ∧ 𝑥)),

• 𝜌𝜑 = 𝑥 ↔ (𝑞′ ∨ (𝑝′ ∧ 𝑥′)),

• 𝐾 = ⟨𝑂,⊤, 𝑝′ ≠ 𝑞′, ∅⟩,

• F 𝐾𝜑 = F 𝐾¬𝜑 = ⊤ (thus J𝜑 and J¬𝜑 can be ignored since all states are fair).

Now let 𝑢 = {𝑝}{𝑝} · · · {𝑞}{𝑞} · · · (i.e., no resets). Initially (L7–6), 𝑟𝜑 = Θ𝜑, 𝑟¬𝜑 = Θ¬𝜑,
Intersecting with the initial state {𝑝}, they become (L8):

𝑟𝜑 = Θ𝜑 ∧ (𝑝 ∧ ¬𝑞) = 𝑝 ∧ ¬𝑞 ∧ 𝑥,
𝑟¬𝜑 = Θ¬𝜑 ∧ (𝑝 ∧ ¬𝑞) = 𝑝 ∧ ¬𝑞 ∧ ¬𝑥 .

Since both 𝑟𝜑 and 𝑟¬𝜑 are not empty, the monitor outputs ? (if 𝑢 ends here). If the next state is
still {𝑝}, the values of 𝑟𝜑 and 𝑟¬𝜑 actually remain the same, because 𝜌𝜑 ∧ (𝑝′ ∧ ¬𝑞′) ≡ 𝑥 ↔ 𝑥′

and L11–12 does not change anything. Thus the monitor still outputs ?, until it received {𝑞}: in
this case 𝜌𝜑 ∧ (¬𝑝′ ∧ 𝑞′) ≡ 𝑥 ↔ ⊤, and fwd(𝑟¬𝜑, 𝜌𝜑) (𝑉𝜑) ∧ (¬𝑝′ ∧ 𝑞′) (L12) is unsatisfiable,
i.e. 𝑟¬𝜑 = ⊥, while 𝑟𝜑 is still not empty, thus the output is ⊤a. Taking more {𝑞} does not change
the output, unless the assumption 𝑝 ≠ 𝑞 is broken (then 𝑟𝜑 = 𝑟¬𝜑 = ⊥, the output is × and
remains there, unless the monitor were reset).

Theorem 5.1.2. The function symbolic_monitor given in Algorithm 1 correctly implements
the monitor functionM𝐾

𝜑 (·) given in Def. 4.4.3.

Proof. Fix a trace 𝑢 ∈ (2𝑂 × B)∗, we define the following abbreviations:

𝑢 ≲ 𝑤 ⇔ ∀𝑖. 𝑖 < |𝑢 | ⇒ 𝑤𝑖 (𝑉𝑘 ∪ 𝐴𝑃) |= obs(𝑢𝑖) (𝑂), (5.1)
L𝐾𝜑 (𝑢) ¤=

{
𝑤 ∈ L(𝐾) | (𝑤,mrr(𝑢) |= 𝜑) ∧ 𝑢 ≲ 𝑤

}
, (5.2)

𝐿𝐾𝜑 (𝑢) ¤=
{
𝑣 | ∃𝑤. 𝑣 · 𝑤 ∈ L𝐾𝜑 (𝑢) ∧ |𝑣 | = |𝑢 |

}
. (5.3)

45

5.1. SYMBOLIC MONITORING ALGORITHM CHAPTER 5. FINITE-STATE CASE

Intuitively, if 𝑢 ≲ 𝑤 holds, 𝑤 is an (infinite) run of the FKS 𝐾 compatible with the input trace
𝑢; L𝐾𝜑 (𝑢) is the set of (infinite) 𝑢-compatible runs of 𝐾 which satisfies 𝜑 with respect to the last
reset position; And 𝐿𝐾𝜑 (𝑢) is the set of |𝑢 |-length prefixes from L𝐾𝜑 (𝑢).

It is not hard to see that, Def. 4.4.3 can be rewritten in terms of 𝐿𝐾𝜑 (𝑢) and 𝐿𝐾¬𝜑 (𝑢):

M𝐾
𝜑 (𝑢) = ⟦obs(𝑢),mrr(𝑢) |= 𝜑⟧𝐾4 =

×, if 𝐿𝐾𝜑 (𝑢) = ∅ ∧ 𝐿𝐾¬𝜑 (𝑢) = ∅,
⊤a, if 𝐿𝐾𝜑 (𝑢) ≠ ∅ ∧ 𝐿𝐾¬𝜑 (𝑢) = ∅,
⊥a, if 𝐿𝐾𝜑 (𝑢) = ∅ ∧ 𝐿𝐾¬𝜑 (𝑢) ≠ ∅,
?, if 𝐿𝐾𝜑 (𝑢) ≠ ∅ ∧ 𝐿𝐾¬𝜑 (𝑢) ≠ ∅ .

Now the proof of Theorem 5.1.2 can be reduced to the following sub-goals:

𝐿𝐾𝜑 (𝑢) = ∅ ⇒ 𝑟𝜑 (𝑢) = ∅ and 𝐿𝐾¬𝜑 (𝑢) = ∅ ⇒ 𝑟¬𝜑 (𝑢) = ∅ . (5.4)

(Notice that, however, 𝑟𝜑 (𝑢) ≠ 𝐿𝐾𝜑 (𝑢) (and 𝑟¬𝜑 (𝑢) ≠ 𝐿𝐾¬𝜑 (𝑢)), because 𝑟𝜑 (𝑢) is a Boolean for-
mula over𝑉𝐾∪𝑉𝜑 which may contain some extra elementary variables from the LTL translations,
while 𝐿𝐾𝜑 (𝑢) is a Boolean formula over a smaller (or equal) set of variables 𝑉𝐾 ∪ 𝐴𝑃.)

Equation (5.4) trivially holds when 𝑢 = 𝜖 , i.e. |𝑢 | = 0. Below we assume |𝑢 | > 0. We first
prove the invariant properties of 𝑟𝜑 and 𝑟¬𝜑: (c.f. L10–15 of Algorithm 1)

𝑟𝜑 (𝑢) = {𝑠 | ∃𝑤 ∈ L(𝐾 × 𝑇0
𝜑). (𝑤,mrr(𝑢) |= 𝜑) ∧ 𝑢 ≲ 𝑤 ∧ 𝑤 |𝑢 |−1 = 𝑠},

𝑟¬𝜑 (𝑢) = {𝑠 | ∃𝑤 ∈ L(𝐾 × 𝑇0
𝜑). (𝑤,mrr(𝑢) |= ¬𝜑) ∧ 𝑢 ≲ 𝑤 ∧ 𝑤 |𝑢 |−1 = 𝑠}

(5.5)

where 𝑇0
𝜑 = ⟨𝑉𝜑,Θ0

𝜑, 𝜌𝜑,J𝜑⟩ and Θ0
𝜑 =

∧
y𝑝∈ el(𝜑)

¬y𝑝, i.e. Θ𝜑 without 𝜒(𝜑).

Intuitively, 𝑟𝜑 (𝑢) is the set of last states of 𝑢-compatible runs in 𝐾 satisfying 𝜑 with respect
to the last reset position mrr(𝑢). Now we prove (5.5) by induction:

• If |𝑢 | = 1, then 𝑟𝜑 = Θ𝐾 ∧ Θ𝜑 ∧ F𝐾,𝜑 ∧ obs(𝑢0). Thus, 𝑟𝜑 contains all states 𝑠 such that
∃𝑤 ∈ L(𝐾 × 𝑇0

𝜑). (𝑤, 0 |= 𝜑) ∧ 𝑢0 ≲ 𝑤0 ∧ 𝑤0 = 𝑠. The same for 𝑟¬𝜑, (5.5) is proven.

• If |𝑢 | > 1 and res(𝑢𝑛) = ⊥, let |𝑢 | = 𝑛 + 1 and 𝑢 = 𝑣 · 𝑢𝑛 with |𝑣 | > 0. Here mrr(𝑢) =
mrr(𝑣). By induction hypothesis, 𝑟𝜑 (𝑣) = {𝑠 | ∃𝑤 ∈ L(𝐾 × 𝑇0

𝜑). (𝑤,mrr(𝑣) |= 𝜑) ∧ 𝑣 ≲
𝑤 ∧ 𝑤𝑛−1 = 𝑠}. Thus 𝑟𝜑 (𝑢) = fwd(𝑟𝜑 (𝑣), 𝜌𝐾 ∧ 𝜌𝜑) ∧ obs(𝑢𝑛) = {𝑠 | ∃𝑤 ∈ L(𝐾 ×
𝑇0
𝜑). (𝑤,mrr(𝑣) |= 𝜑) ∧ 𝑣 · 𝑢𝑛 ≲ 𝑤 ∧ 𝑤𝑛 = 𝑠}. Same arguments for 𝑟¬𝜑 (𝑢).

• If |𝑢 | > 1 and res(𝑢𝑛) = ⊤, let |𝑢 | = 𝑛 + 1 and 𝑢 = 𝑣 · 𝑢𝑛 with |𝑣 | > 0. Here mrr(𝑢) = 𝑛.
By induction hypothesis, we have

𝑟𝜑 (𝑣) = {𝑠 | ∃𝑤 ∈ L(𝐾 × 𝑇0
𝜑). (𝑤,mrr(𝑣) |= 𝜑) ∧ 𝑣 ≲ 𝑤 ∧ 𝑤𝑛−1 = 𝑠},

𝑟¬𝜑 (𝑣) = {𝑠 | ∃𝑤 ∈ L(𝐾 × 𝑇0
𝜑). (𝑤,mrr(𝑣) |= ¬𝜑) ∧ 𝑣 ≲ 𝑤 ∧ 𝑤𝑛−1 = 𝑠} .

46

CHAPTER 5. FINITE-STATE CASE 5.2. EXPLICIT-STATE MONITOR CONSTRUCTION

Here, if we take the union of 𝑟𝜑 (𝑣) and 𝑟¬𝜑 (𝑣), the two conjugated terms (𝑤,mrr(𝑣) |= 𝜑)
and (𝑤,mrr(𝑣) |= ¬𝜑) will be just neutralized, i.e., 𝑟𝜑 (𝑣) ∨𝑟¬𝜑 (𝑣) = {𝑠 | ∃𝑤 ∈ L(𝐾 ×𝑇0

𝜑). 𝑣 ≲
𝑤 ∧ 𝑤𝑛−1 = 𝑠}. Thus 𝑟𝜑 (𝑢) = fwd(𝑟𝜑 (𝑣) ∨ 𝑟¬𝜑 (𝑣), 𝜌𝐾 ∧ 𝜌𝜑) ∧ obs(𝑢𝑛) ∧ 𝜒(𝜑) = {𝑠 | ∃𝑤 ∈
L(𝐾 × 𝑇0

𝜑). (𝑤, 𝑛 |= 𝜑) ∧ 𝑣 · 𝑢𝑛 ≲ 𝑤 ∧ 𝑤𝑛 = 𝑠}. Similar steps for 𝑟¬𝜑 (𝑢), and thus (5.5) is
proven.

To finally prove (5.4), we first unfold (5.2) into (5.3) and get 𝐿𝐾𝜑 (𝑢) = {𝑣 | ∃𝑤. 𝑣 · 𝑤 ∈
L(𝐾 × 𝑇0

𝜑) ∧ (𝑣 · 𝑤,mrr(𝑢) |= 𝜑) ∧ 𝑢 ≲ 𝑣 ∧ |𝑣 | = |𝑢 |}. If 𝐿𝐾𝜑 (𝑢) is empty, then by (5.5) 𝑟𝜑 (𝑢)
must be also empty, simply because L(𝐾 ⊗ 𝑇0

𝜑) ⊆ L(𝐾). This proves the first part of (5.4), the
second part follows in the same manner. □

5.2 Explicit-State Monitor Construction

It is possible to remove the dependency of BDDs and generate an explicit-state monitor au-
tomaton, which can be further converted into standalone monitor programs. The whole process
consists of three steps (suppose 𝜑 is the monitor specification):

1. Generate two DFAs corresponding to 𝜑 and ¬𝜑;

2. Combine the two DFAs into the monitor FSM;

3. Generate code from the monitor FSM to other programming languages.

Algorithm 2 is used for building two DFAs 𝐴𝜑 and 𝐴¬𝜑. For the actual work it calls the
function update_dfa, which is also needed later in Algorithm 3 for updating DFAs with new
initial (reset) states. Note that the set of observables 𝑂 is used for picking transition actions in
the DFAs.

The procedure update_dfa() uses a stack to recursively build an explicit-state automaton.
Each state represents a set of belief states (of the SUS) after the current observed inputs.
The transition labels are observation in each input state. The function split_states, whose
definition is missing here, splits a set of belief states according to the set of observables 𝑂. It is
implemented by low level functions of the BDD library which repeatedly picks minimal terms
from 𝑞0 with respect to 𝑂.

Algorithm 3 builds the final monitor FSM from 𝐴𝜑 and 𝐴¬𝜑. The idea is to walk simul-
taneously in both automata following the same input labels, thus each location in the monitor
FSM represents a pair of locations in 𝐴𝜑 and 𝐴¬𝜑. For any input state which corresponds to
a simultaneous transition in 𝐴𝜑 and 𝐴¬𝜑, if both automata are reachable, the current output is
inconclusive (?); If only 𝐴𝜑 is reachable, the current output is conclusively false (⊥a); If instead
only 𝐴¬𝜑 is reachable, the current output is conclusively true (⊤a). In case both automata are not
reachable, the current output is out-of-model (×), but there is no actual transition in the monitor

47

5.2. EXPLICIT-STATE MONITOR CONSTRUCTION CHAPTER 5. FINITE-STATE CASE

Algorithm 2: Construction of DFA 𝐴𝐾,𝑂 from 𝑇 , 𝐾 and 𝑂

1 function compute_dfa(𝑇 ¤= ⟨𝑉,Θ, 𝜌,J⟩, 𝐾 ¤= ⟨𝑉𝐾 ,Θ𝐾 , 𝜌𝐾 ,J𝐾 ⟩, 𝑂)
2 F := get_fair_states(𝐾 ⊗ 𝑇);
3 𝑞0 := Θ𝐾 ∧ Θ ∧ F ;
4 𝐴 := ⟨𝑉𝐾 ∪𝑉, ∅, ∅, ∅, {𝑞0}⟩;
5 update_dfa(𝐴,𝑇, 𝐾, 𝑂, 𝑞0);
6 return 𝐴;

7 procedure update_dfa(𝐴 ¤= ⟨_, 𝑄, _, 𝛿, _⟩, 𝑇, 𝐾, 𝑂, 𝑞0)
8 𝑄 := 𝑄 ∪ {𝑞0};
9 foreach (𝑙, 𝑞) ∈ split_states(𝑞0, 𝑂) do

10 𝛿 := 𝛿 ∪ {(𝑞0, 𝑙, 𝑞)};
11 if 𝑞 ∉ 𝑄 then
12 𝑄 := 𝑄 ∪ {𝑞}; push(𝑞, 𝑆𝑡𝑎𝑐𝑘)

13 while 𝑆𝑡𝑎𝑐𝑘 is not empty do
14 𝑞 := pop(𝑆𝑡𝑎𝑐𝑘);
15 𝑞′ := fwd(𝑞, 𝜌𝐾 ∧ 𝜌) (𝑉𝐾 ∪𝑉) ∧ F ;
16 foreach (𝑙, 𝑞′′) ∈ split_states(𝑞′, 𝑂) do
17 𝛿 := 𝛿 ∪ {(𝑞, 𝑙, 𝑞′′)};
18 if 𝑞′′ ∉ 𝑄 then
19 𝑄 := 𝑄 ∪ 𝑞′′; push(𝑞′′, 𝑆𝑡𝑎𝑐𝑘)

FSM, instead this case is handled directly in later phases when generating the monitor code.
This process always terminate, as there are only finite number of locations in 𝐴𝜑 and 𝐴¬𝜑.

Whenever the monitor is reset, the current location “jumps” before processing the input states.
Since for each current location there is also a corresponding “reset location”, this information
must be calculated for each location. However, sometimes the reset location goes outside of the
original 𝐴𝜑 and 𝐴¬𝜑, and in this case we need to add new locations in 𝐴𝜑 and 𝐴¬𝜑, done in
L25–26 of Algorithm 3.

48

CHAPTER 5. FINITE-STATE CASE 5.2. EXPLICIT-STATE MONITOR CONSTRUCTION

Algorithm 3: Explicit-state monitor construction

1 function build_monitor(𝐴𝜑, 𝐴¬𝜑, 𝐾 , 𝑇𝜑, 𝑇¬𝜑, 𝑂, 𝑙𝑒𝑣𝑒𝑙)
2 𝑞0 := ⟨𝑞𝜑0 , 𝑞

¬𝜑
0 ,⊤⟩; 𝑄 := {𝑞0}; push(𝑞0, Stack);

3 while Stack is not empty do
4 ⟨𝑟1, 𝑟2, 𝑏⟩ := pop(Stack);
5 if 𝑙𝑒𝑣𝑒𝑙 = 4 then /* for ptLTL monitors */
6 ⟨𝑞1, 𝑞2⟩ := compute_reset(𝑟1, 𝑟2)
7 else ⟨𝑞1, 𝑞2⟩ := ⟨𝑟1, 𝑟2⟩;
8 for 𝑙 ∈

{
𝛼 | 𝛿𝜑 (𝑞1, 𝛼) ≠ ∅ ∨ 𝛿¬𝜑 (𝑞2, 𝛼) ≠ ∅

}
do

9 𝑞′1 := 𝛿𝜑 (𝑞1, 𝑙), 𝑞′2 := 𝛿¬𝜑 (𝑞2, 𝑙);
10 if ⟨𝑞′1, 𝑞

′
2,⊥⟩ ∉ 𝑄 then

11 𝑄 := 𝑄 ∪ {⟨𝑞′1, 𝑞
′
2,⊥⟩}; 𝛿(⟨𝑟1, 𝑟2, 𝑏⟩, 𝑙) := ⟨𝑞′1, 𝑞

′
2,⊥⟩;

12 if 𝑞′1 ≠ ∅ ∧ 𝑞′2 ≠ ∅ then
13 _(⟨𝑞′1, 𝑞

′
2,⊥⟩) := ? ; push(⟨𝑞′1, 𝑞

′
2,⊥⟩, Stack);

14 else if 𝑞′1 ≠ ∅ then
15 _(⟨𝑞′1, 𝑞

′
2,⊥⟩) := ⊤;

16 if 𝑙𝑒𝑣𝑒𝑙 > 1 then push(⟨𝑞′1, 𝑞
′
2,⊥⟩, Stack);

17 else
18 _(⟨𝑞′1, 𝑞

′
2,⊥⟩) := ⊥;

19 if 𝑙𝑒𝑣𝑒𝑙 > 1 then push(⟨𝑞′1, 𝑞
′
2,⊥⟩, Stack);

20 if 𝑙𝑒𝑣𝑒𝑙 = 3 then /* for resettable monitors */
21 ⟨𝑞′1, 𝑞

′
2, ⟩ := compute_reset(𝑞1, 𝑞2);

22 _′(⟨𝑞1, 𝑞2, 𝑏⟩) := ⟨𝑞′1, 𝑞
′
2,⊤⟩;

23 if ⟨𝑞′1, 𝑞
′
2,⊤⟩ ∉ 𝑄 then

24 𝑄 := 𝑄 ∪ {⟨𝑞′1, 𝑞
′
2,⊤⟩}; push(⟨𝑞

′
1, 𝑞
′
2,⊤⟩, Stack);

25 if 𝑞′1 ∉ 𝐴𝜑 then update_dfa(𝐴𝜑, 𝑇𝜑, 𝐾, 𝑂, 𝑞′1);
26 if 𝑞′2 ∉ 𝐴¬𝜑 then update_dfa(𝐴¬𝜑, 𝑇¬𝜑, 𝐾, 𝑂, 𝑞′2);

27 return ⟨𝑄, {𝑞0}, 𝛿, _, _′⟩;

Remark 5.2.1. The intuition of Algorithm 3 is to “walk” in the belief states of the symbolic
automaton as the monitor, with respect to the set of observables, just like it were explicit-state
automaton. Each belief state which is already visited, is kept in a hash table so that later it
will not be visited again when a later belief state has a transition back to it. Since the symbolic
automaton has only finite states (when viewed as an explicit-state automaton), so must be the
belief states (as sets of states), thus the walking process must terminate.

49

5.2. EXPLICIT-STATE MONITOR CONSTRUCTION CHAPTER 5. FINITE-STATE CASE

1

3 : ⊤a

(!p & q) 2 : ?

(p & !q)

(!p & q)

(p & !q)

1

3 : ⊤a

(!p & q) 2 : ?

(p & !q)

4 : ⊤a (p & !q)

(!p & q)(p & !q)

(!p & q)

(!p & q)

(p & !q)

1

3 : ⊤a

(!p & q)2 : ?

(p & !q)

4 : ⊤a (p & !q)

(!p & q) (p & !q)

(!p & q)

(!p & q)

(p & !q)

Level 1 Level 2 Level 3

Figure 5.1: LTL monitors of 𝑝 U 𝑞 (level 1–3), assuming 𝑝 ≠ 𝑞

5.2.1 Levels of Explicit-state monitors

For the efficiency of generated monitors in different scenarios, Algorithm 3 supports four levels
of explicit-state monitors (controlled by the parameter 𝑙𝑒𝑣𝑒𝑙 ranged from 1 to 4):

• Level 1: the monitor synthesis stops at all conclusive states;

• Level 2: the monitor synthesis explores all states;

• Level 3: the monitor synthesis explores all states and reset states;

• Level 4: the monitor always resets before taking next inputs.

Level 1 monitors are usually very small, but still fully functional when the monitor is never
reset and the underlying assumption is never violated. (In this case the monitor is monotonic and
never outputs ×.) Also, comparison tests to other RV tools are usually done by level 1 monitors,
as they give exactly the same outputs in comparison with LTL3 monitors. Level 2 monitors are
full automata whose language is exactly the same as the language of the monitor specification
(filtered or restricted by the assumption). Level 3 monitors are full-featured monitors supporting
arbitrary resets, supporting all features of the ABRV framework. In addition, level 4 monitors
consider the special use scenario in which the monitor is repeatedly reset before each new input
state. This scenario is particularly useful for monitoring ptLTL, see Chapter 7 for more details.

A sample explicit-state monitor for LTL property 𝑝 U 𝑞 (level 1–3) is shown in Fig. 5.1. The
monitor is generated under the assumption that 𝑝 and 𝑞 are always disjoint (𝑝 ≠ 𝑞). The monitor

50

CHAPTER 5. FINITE-STATE CASE 5.2. EXPLICIT-STATE MONITOR CONSTRUCTION

1

3 : ⊥a

(p & !q)

2 : ⊤a

(!p & q)

1

2 : ⊤a

(!p & q)

3 : ⊥a

(p & !q)

10 : ⊤a

(!p & q)

8 : ⊤a

(p & !q)

(!p & q)

(p & !q)

(!p & q)

9 : ⊤a

(p & !q)

6(!p & q)

(p & !q)

(!p & q)

(p & !q)

7 : ⊥a (!p & q)

(p & !q)

5 : ⊥a

(!p & q)4 : ⊥a

(p & !q)

(!p & q)

(p & !q)

(!p & q)

(p & !q)

Figure 5.2: LTL monitors of Y𝑝 ∨ 𝑞 (level 1 & 3), assuming 𝑝 ≠ 𝑞

starts at location 1, and returns ? if the input is 𝑝 ∧ ¬𝑞 until it received ¬𝑝 ∧ 𝑞, which has the
output ⊤a. The level 1 monitor has no further transition at locations associated with conclusive
verdicts (⊤a or ⊥a), since it can be easily proved that ABRV-LTL monitors are monotonic if the
assumption is always respected by the input trace. The level 2 monitor contains all locations
and transitions, thus it may return × even after the monitor reached conclusive verdicts. The
level 3 monitor additionally contains information for the resets: in case the monitor is reset, the
current location will first jump to the location following the dash lines, then goes to next location
according to the input state. However, in the above monitor all reset locations are just the initial
location (1), this is mostly because the assumption is an invariant property and the LTL property
does not have any past operators.

Fig. 5.2 shows the level 1 and 3 monitors generated from LTL property Y𝑝 ∨ 𝑞 (the level
2 is monitor is omitted; it is like the level 3 monitor without dash lines and location 6). Fine
structures of level 3 monitors are revealed here: depending on the last input, the monitor may be
reset to location 1 or 6. In practice, the choice of monitor levels depends on the use scenarios,
monitoring properties and assumptions, with the purpose of minimizing their size (while still
fully functional).

51

5.3. FROM OFFLINE TO ONLINE MONITORING CHAPTER 5. FINITE-STATE CASE

5.3 From Offline to Online Monitoring

Algorithm 1 returns a single verdict after processing the entire input trace. This fits into
Def. 4.4.3. However, runtime monitors are usually required to return verdicts for each input
state and “should be designed to consider executions in an incremental fashion” [111]. Our
algorithm can be easily modified for online monitoring, it outputs one verdict for each input
state. It is indeed incremental since 𝑟𝜑 and 𝑟¬𝜑 are updated on each input state, and the time
complexity of processing one input state is only in terms of the size of 𝐾 and 𝜑, thus trace-length
independent [60]. Space complexity is also important, as a monitor may eventually blow up
after storing enough inputs. Our algorithm is trace non-storing [130] with bounded memory
consumption.

Algorithm 4 shows how the algorithm presented in Section 4 can be turned into an “online”
monitor, that incrementally processes the observations received on an input stream. Functions
update and output are defined as before.

Algorithm 4: The symbolic online monitor

1 program online_monitor(𝐾 = ⟨𝑉,Θ, 𝜌,J⟩,𝜑(𝑉),𝑂,io)
2 𝑇𝜑 ¤= ⟨𝑉𝜑 ,Θ𝜑 , 𝜌𝜑 ,J𝜑⟩ := ltl_to_automata(𝜑);
3 𝑇¬𝜑 ¤= ⟨𝑉𝜑 ,Θ¬𝜑 , 𝜌𝜑 ,J𝜑⟩ := ltl_to_automata(¬𝜑);
4 F𝐾,𝜑 = get_fair_states(𝐾 ⊗ 𝑇𝜑);
5 𝑟𝜑 := Θ𝐾 ∧ Θ𝜑 ∧ F𝐾,𝜑;
6 𝑟¬𝜑 := Θ𝐾 ∧ Θ¬𝜑 ∧ F𝐾,𝜑;
7 write_stream (output(⟨𝑟𝜑 , 𝑟¬𝜑⟩)) /* before any observation */;
8 𝑢0 := read_stream(𝑖𝑜);
9 𝑟𝜑 := Θ𝐾 ∧ Θ𝜑 ∧ F𝐾,𝜑 ∧ obs(𝑢0);

10 𝑟¬𝜑 := Θ𝐾 ∧ Θ¬𝜑 ∧ F𝐾,𝜑 ∧ obs(𝑢0);
11 write_stream (output(⟨𝑟𝜑 , 𝑟¬𝜑⟩)) /* after first observation */;
12 while io open do
13 𝑢𝑖 := read_stream(𝑖𝑜);
14 𝑟𝜑 , 𝑟¬𝜑 := update(𝑟𝜑 , 𝑟¬𝜑 , res(𝑢𝑖), obs(𝑢𝑖));
15 write_stream (output(⟨𝑟𝜑 , 𝑟¬𝜑⟩)) /* more observations */;

5.4 Code Generation

The monitor FSM built in this way is deterministic. It is straightforward to generate program
code which is equivalent to the monitor FSM. The idea is to update the current monitor location
according to input state and possible reset signal, and return the monitor outputs stored at
each location. Instead of representing FSM as special data structures, we can generate flat

52

CHAPTER 5. FINITE-STATE CASE 5.4. CODE GENERATION

code handling the transitions at each location, based on a direct comparison of input state and
transition labels. The performance is also better due to the time saving on searching in the data
structures.

Algorithm 5 shows the skeleton of the generated monitor code. The code skeleton can be
easily adapted to different programming languages, without any third-party dependence. In case
of small number of observables (less than the size of machine words), the cost of processing
each input states is constant.

Algorithm 5: Skeleton of generated monitor code

1 function runtime_monitor_0(state, *current_loc, reset)
2 𝑜𝑢𝑡𝑝𝑢𝑡 := ?;
3 if 𝑟𝑒𝑠𝑒𝑡 = H then *current_loc := 1; /* hard reset to init loc */
4 switch *current_loc do /* jump to current location */
5 case 1 do goto 𝑙𝑜𝑐1;
6 case 2 do
7 if 𝑟𝑒𝑠𝑒𝑡 = S then goto 𝑙𝑜𝑐 𝑗 ;
8 else goto 𝑙𝑜𝑐2;

9 · · ·

10 𝑙𝑜𝑐1 :
11 switch state do
12 case 𝑙𝑎𝑏𝑒𝑙1 do ∗𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑜𝑐 := 𝑘; /* inconclusive state */
13 case 𝑙𝑎𝑏𝑒𝑙2 do 𝑜𝑢𝑡𝑝𝑢𝑡 := ⊤; /* conclusive state */
14 · · ·
15 otherwise do 𝑜𝑢𝑡𝑝𝑢𝑡 := ×; /* out of model */

16 goto 𝑒𝑥𝑖𝑡;
17 𝑙𝑜𝑐2 :
18 switch state do
19 · · ·

20 goto 𝑒𝑥𝑖𝑡;

21
...

22 𝑒𝑥𝑖𝑡 :
23 return output;

The engineering aspects of monitor code generation in various programming languages are
presented in more details in Section 8.7.1

1When the number of states and transitions are too many, the generated monitor code may become too large in the code structure given in
Algorithm 5, sometimes near one million lines of source code (GCC can still compile it, however). In later versions of our tool implementation,
data tables and binary searching code are used instead of constant-time code jumping structures. These new design changes have greatly reduced
the size of generated code while the performance lost is minor, but all these changes are merely engineering level work without much academic
values.

53

5.4. CODE GENERATION CHAPTER 5. FINITE-STATE CASE

54

Chapter 6

Monitoring Infinite-State Systems

In this chapter we present a general approach for ABRV of infinite-state systems (the related
algorithms can also be applied to finite-state systems), originally published in RV 2021 [50].
There are some minor algorithmic corrections in this thesis.

Instead of relying on BDD, the idea of monitoring infinite-system systems is based on
Satisfiability Modulo Theory (SMT) [9] and infinite-state LTL model checking. We show
how ABRV problems can be directly reduced to LTL model checking problems, which is then
solvable by SMT-based model checkers like nuXmv [37]. This solution is general because the
theory domain is actually irrelevant with the core monitoring algorithm: any LTL MC (and QE)
algorithms can be used, as long as they support the involved infinite-state variables occurred in
the monitoring LTL properties and RV assumptions.

The ABRV definition and the related LTL semantics over finite traces is still the same, as
described in Section 4.4. A basic reduction from ABRV to MC has also been described there
(see Section 4.6.3). We will start from this basic reduction, gradually improving its performance
by bringing new helper techniques into it, including First-Order Quantifier Elimination [117]
and Bounded Model Checking (BMC) [23]. By modifying the original BMC algorithm to
let it perform the model checking tasks incrementally (with respect to new monitor inputs),
eventually we obtain a high performance SMT-based monitoring algorithm for infinite-state
systems. All time-consuming underlying computations are essentially by SMT provers. If all
involved variables are Boolean, then only SAT solvers can be used in place of SMT solvers, and
the original IC3 model checker can be used in place of IC3-IA (stands for “IC3 Modulo Theories
via Implicit Predicate Abstraction”) model checker.

More importantly, we will show that, when the monitor outputs are inconclusive, it does not
need to involve the complete (but slow) IC3-based model checkers [46], and thus can perform
the verification quickly with performance comparable with BDD. The fact that when the monitor
outputs are inconclusive, the BMC checker only needs to find counter-examples (thus the BMC
loop stops before reaching a maximal bound), was the key to guarantee the SMT-based monitor

55

6.1. MOTIVATING EXAMPLE CHAPTER 6. INFINITE-STATE CASE

performance in practice, before any conclusive verdict were reached.
Essentially, the (online) infinite-state monitoring algorithm still works like the finite-state

monitor based on BDD: it relies on the same LTL translation algorithm and keeps tracking two
belief states which represent all the possible states in which the system may be at, after certain
observations. The major difference is that now belief states have to be represented by raw
formulas, which may be unbounded in worst case. However, we will show that this is inevitable
in general for any ABRV algorithm over infinite-state systems: for certain RV assumptions the
monitor just cannot use bounded resources (Section 6.7).

The following contents of this chapter are organized as following: First we give another
motivating example to show the usefulness of infinite-state monitoring; Then we will construct
a series of monitoring algorithms with gradually improved performance and complexities (so
that they can be well understood one by one). The last one should be used in practice. This
chapter ends by showing infinite-state ABRV monitors cannot use only bounded resources.

In general, there may be performance bottlenecks in MC- or SMT-based RV approaches in
comparison with BDD-based approaches, because both model checking and quantifier elimina-
tion are computationally heavy. However, some real project use cases have shown that, for very
complex RV assumptions and monitoring properties (all variables are Boolean), the SMT-based
monitors are sometimes faster then BDD-based monitors.

6.1 Motivating Example

In this section, we describe another motivating example, where ABRV with infinite-state as-
sumptions are used in a simple example of a temperature controller. Consider a system that
heats the water in a tank until reaching the temperature of 100. The temperature is represented
by a real variable 𝑡. The internal state of the system, which may be heating or not, is represented
by the Boolean variable ℎ. The command to switch on the heating system is represented by
𝑠, while 𝑓 represents a fault that switches off the system permanently. Let us define a system
model 𝐾 with the following formulas:

• Initial condition: 𝑡 = 0 (the temperature is initially 0)

• Transition conditions (implicitly conjoined):

– 𝑡′ ≥ 0 ∧ 𝑡′ ≤ 100 (the temperature always remains between 0 and 100)

– ℎ → ((𝑡 = 100 ∧ 𝑡′ = 100) ∨ (10 ≤ 𝑡′ − 𝑡 ≤ 20)) (if the system is heating, the
temperature increases by a rate between 10 and 20 or remains 100 if it already reached
that temperature)

56

CHAPTER 6. INFINITE-STATE CASE 6.2. ABRV REDUCED TO MODEL CHECKING

– ¬ℎ → ((𝑡 = 0 ∧ 𝑡′ = 0) ∨ (−20 ≤ 𝑡′ − 𝑡 ≤ −10)) (if the system is not heating, the
temperature decreases by a rate between−20 and−10 or remains 0 if it already reached
that temperature)

– ℎ→ (ℎ′↔ ¬ 𝑓) (if the system is heating, it remains so unless there is a fault)

– (¬ℎ) → (ℎ′↔ (𝑠 ∧ ¬ 𝑓)) (if the system is not heating and is not faulty, then it can be
switched on with the command 𝑠)

– 𝑓 → 𝑓 ′ (the fault is permanent)

Suppose we can only observe the temperature and the switching command, and that we want
to monitor the following property: 𝜑1 = G(𝑠 → F(𝑡 = 100)) (whenever the heating system is
switched on, the temperature will eventually reach the temperature of 100). The assumption
that the system behaves according to 𝐾 can be exploited by the ABRV monitor to deduce things
like, whenever the temperature decreases there was a fault and so the temperature will never
reach the desired level. Thus the monitor can detect the violation of a property which, without
assumptions, would not be monitorable.

More specifically, consider the finite trace of observations 𝑢 = {𝑡 ↦→ 0, 𝑠 ↦→ ⊤}, {𝑡 ↦→
20, 𝑠 ↦→ ⊥}, {𝑡 ↦→ 10, 𝑠 ↦→ ⊤}. Since, without considering the assumption, there is a continua-
tion of 𝑢 satisfying 𝜑1 and one violating 𝜑1, a standard RV monitor is inconclusive (the output
is ?). Considering 𝐾 as assumption, all fair paths of 𝐾 compatible with 𝑢 violate 𝜑. Thus,
⟦𝑢, 0 |= 𝜑1⟧𝐾4 = ⊥𝑎.

As an additional example, consider a stronger property G(𝑠→ F≤7(𝑡 = 100)), i.e., whenever
the heating system is switched on, the temperature will reach 100 degree within 7 steps. In this
case, from the assumption on the rates of the temperature, the ABRV monitor can deduce that
after a number of steps, if the temperature is still low, it will not reach 𝑡 = 100 in time. For
example, if after 4 steps, the temperature is still less than 40, even with the maximum rate, it
will not reach 100 in other 3 steps. Thus, at runtime the monitor can say that the property is
violated 3 steps in advance.

6.2 ABRV Reduced to Model Checking

Given an FTS 𝐾 as the RV assumption, a set of observable variables 𝑂, an LTL formula 𝜑 as
the monitoring property, and a finite trace 𝑢 over 𝑂, let 𝑆𝑢 be an FTS whose fair paths are those
compatible with 𝑢 (formally, an FTS such that L(𝑆𝑢) = LU (𝑢), whereU = ⟨𝑉,⊤,⊤, ∅⟩ is the

57

6.2. ABRV REDUCED TO MODEL CHECKING CHAPTER 6. INFINITE-STATE CASE

FTS with an universal language). Then we have by (4.3),

M𝐾
𝜑 (𝑢) = ⟦𝑢, 𝑖 |= 𝜑⟧𝐾4 =

×, if 𝐾 × 𝑆𝑢 |= 𝜑 and 𝐾 × 𝑆𝑢 |= ¬𝜑
⊤a, if 𝐾 × 𝑆𝑢 |= 𝜑 and 𝐾 × 𝑆𝑢 ̸ |= ¬𝜑
⊥a, if 𝐾 × 𝑆𝑢 ̸ |= 𝜑 and 𝐾 × 𝑆𝑢 |= ¬𝜑
?, otherwise .

(6.1)

From this equation, we can derive a simple monitor called monitor1, which calls the model
checker twice for each input state. It is already depicted in Fig. 4.6, where the output is defined
as in (6.1) (cf. Table 4.2).

The Algorithm 6 shows the pseudo code for an implementation of monitor1(), a infinite-
state monitor based on ABRV-MC reductions. The theoretical basis has been already discussed
in Section 4.6.3.

Algorithm 6: ABRV reduced to model checking

1 function monitor1(𝐾 ¤= ⟨𝑉𝐾 ,Θ𝐾 , 𝜌𝐾 ,J𝐾 ⟩, 𝜑, 𝑢 ¤= 𝑎0 . . . 𝑎𝑛−1)
2 Θ := ⊤, 𝜌 := ⊤;
3 if |𝑢 | > 0 then
4 Θ := (𝑐 = 0) ∧ 𝑎0;
5 if |𝑢 | > 1 then

6 𝜌 :=
|𝑢 |−1∧
𝑖=0

(
(𝑐 = 𝑖) → (𝑐′ = 𝑖 + 1 ∧ 𝑎′𝑖+1)

)
;

7 𝑆𝑢 := ⟨𝑉𝑘 ∪ {𝑐},Θ, 𝜌, ∅⟩;
8 𝑏1 := model_checking(𝐾 × 𝑆𝑢, 𝜑);
9 𝑏2 := model_checking(𝐾 × 𝑆𝑢, ¬𝜑);

10 if 𝑏1 ∧ 𝑏2 then return ×; // out of model
11 else if 𝑏1 then return ⊤a; // conditionally true
12 else if 𝑏2 then return ⊥a; // conditionally false
13 else return ?; // inconclusive

The correctness of Algorithm 6 can be seen from the following theorem:

Theorem 6.2.1. The function monitor1 given in Algorithm 6 correctly implements the ABRV
monitorM𝐾

𝜑 (·).

sketch. The algorithm first constructs an FTS 𝑆𝑢 from the input trace 𝑢 (line 4–7). Here 𝑐 is a
fresh integer variable used as an internal counter. It is not hard to see that all paths of 𝑆, when
projecting out 𝑐, are compatible with the input trace. For each 𝜎 ∈ 𝐾 × 𝑆, we have 𝜎𝑖 |=T 𝑢𝑖
when 𝑖 < |𝑢 |. Thus roughly speaking we have L(𝐾 × 𝑆𝑢) = L𝐾 (𝑢) (L(𝐾 × 𝑆𝑢) contains also
value assignments of 𝑐).

58

CHAPTER 6. INFINITE-STATE CASE 6.2. ABRV REDUCED TO MODEL CHECKING

On the other hand, by LTL semantics (over infinite traces), for any infinite trace 𝑤 we have

⟦𝑤 |= X𝑟 𝜑⟧ = ⟦𝑤, 𝑟 |= 𝜑⟧ (6.2)

The output of the monitor (line 10–13) is defined as in Eq. 6.1. There are four cases:

1. ⟦𝐾 × 𝑆𝑢 |= 𝜑⟧ = ⟦𝐾 × 𝑆𝑢 |= ¬𝜑⟧ = ⊤. Thus,

∀𝑤 ∈ L(𝐾 × 𝑆𝑢). 𝑤, 0 |= 𝜑
∀𝑤 ∈ L(𝐾 × 𝑆𝑢). 𝑤, 0 |= ¬𝜑

But this is impossible, unless there is actually no fair path in 𝐾 × 𝑆𝑢. Thus we have
L(𝐾 × 𝑆𝑢) = ∅, or L𝐾 (𝑢) = ∅. By (4.3),M𝐾

𝜑 (𝑢) = ⟦𝑢, 𝑖 |= 𝜑⟧𝐾4 = ×.

2. ⟦𝐾 × 𝑆𝑢 |= 𝜑⟧ = ⊤, ⟦𝐾 × 𝑆𝑢 |= ¬𝜑⟧ = ⊥. In this case we have

∀𝑤 ∈ L(𝐾 × 𝑆𝑢). 𝑤, 0 |= 𝜑
∃𝑤 ∈ L(𝐾 × 𝑆𝑢). 𝑤, 0 ̸ |= ¬𝜑 (or 𝑤, 0 |= 𝜑)

The sole purpose of the above second formula is to guarantee L(𝐾 × 𝑆𝑢) = L𝐾 (𝑢) ≠ ∅,
as there exists at least one fair path 𝑤 for the universal quantifier of the first formula. Thus
by (4.3),M𝐾

𝜑 (𝑢) = ⟦𝑢, 𝑖 |= 𝜑⟧𝐾4 = ⊤a.

3. ⟦𝐾 × 𝑆𝑢 |= 𝜑⟧ = ⊥, ⟦𝐾 × 𝑆𝑢 |= ¬𝜑⟧ = ⊤. The proof of this case is simiar with the previous
case, and we haveM𝐾

𝜑 (𝑢) = ⟦𝑢, 𝑖 |= 𝜑⟧𝐾4 = ⊥a.

4. ⟦𝐾 × 𝑆𝑢 |= 𝜑⟧ = ⟦𝐾 × 𝑆𝑢 |= ¬𝜑⟧ = ⊥. In this case, nothing universal can be asserted,
except for L𝐾 (𝑢) ≠ ∅. It falls into the “otherwise” case of (4.3) and we haveM𝐾

𝜑 (𝑢) =
⟦𝑢, 𝑖 |= 𝜑⟧𝐾4 = ? (inconclusive).

□

If there is no reset nor assumption, the monitor becomes an LTL3 monitor, as in this case
⟦𝑆𝑢 |= 𝜑⟧ = ⟦𝑆𝑢 |= ¬𝜑⟧ = ⊤ can never happen (because L(𝑆𝑢) is definitely not empty). We
think this elegant connection and algorithm reduction from RV to MC suggests some advantages
of the LTL3 semantics (also the ABRV-LTL semantics) over other finite-trace LTL semantics.
(See [18] for a detailed comparison.)

However, this algorithm is expensive and not incremental: the entire input trace must be
used in constructing the model 𝑆𝑢. For long traces this results in big model checking problems,
and the performance is far from linear to the size of input traces. The next algorithm greatly
improves the situation.

59

6.3. ABRV REDUCED TO MC AND QE CHAPTER 6. INFINITE-STATE CASE

Quantifier
Elimination

Model
Checking O

ut
pu

t

u MK
ϕ (u)

rϕ
⟦K × Tϕ(rϕ) |= false⟧

r¬ϕ
⟦K × Tϕ(r¬ϕ) |= false⟧

Figure 6.1: ABRV reduced to MC and QE

6.3 ABRV Reduced to MC and QE

In monitor1 the entire input trace (the prefix received so far) must be encoded into a model
(i.e. an FTS) 𝑆𝑢, and obviously the model checker is called on increasingly bigger problems
linear to the length of the trace prefix. In practice, monitor1() is too slow after receiving even
a small number of input states. The key for obtaining a better RV algorithm is to find a way to
maintain some internal states (of the monitors), which is to be updated by each input state of the
trace. For automata-based RV monitors, this internal state is the location of monitor automata.
(For some rewriting-based RV approaches, the state is the current form(s) of the monitoring
property after rewriting.)

Recall in the finite-state ABRV algorithm [47], the BDD-based symbolic monitor keeps
track of two belief states 𝑟𝜑 and 𝑟¬𝜑 as the possible internal locations of automata 𝐾 × 𝑇𝜑 and
𝐾 ×𝑇¬𝜑 (𝐾 is the RV assumption, 𝑇𝜑 and 𝑇¬𝜑 are LTL translations of 𝜑 and ¬𝜑, resp.), reachable
with fair paths compatible with the input trace.These states are updated at each input. Since
previous input states are not accessible by the algorithm, and the belief states as BDDs have
bounded memory consumption, the RV algorithm given in [47] is trace-length independent [60],
i.e. having bounded memory consumption (with also a time complexity linear to the length of
the trace prefix).

¬⟦𝐾 × 𝑇𝜑 (𝑟𝜑) |= false⟧ ¬⟦𝐾 × 𝑇𝜑 (𝑟¬𝜑) |= false⟧ M𝐾
𝜑 (·)

⊤ ⊤ ?
⊤ ⊥ ⊤a

⊥ ⊤ ⊥a

⊥ ⊥ ×

Table 6.1: Output Table of Fig. 6.1 and Algorithm 7

The monitor monitor2 detailed in Algorithm 7 is very similar to the symbolic algorithm
given [47]. Instead of representing formulas as BDDs, now we directly operate on raw formulas
involving any type of variables. (However, in the worse case these formulas have unbounded

60

CHAPTER 6. INFINITE-STATE CASE 6.3. ABRV REDUCED TO MC AND QE

Algorithm 7: The RV monitor for infinite-state systems

1 function monitor2(𝐾 ¤= ⟨𝑉𝐾 ,Θ𝐾 , 𝜌𝐾 ,J𝐾 ⟩, 𝜑, 𝑢)
2 𝑇𝜑 ¤= ⟨𝑉𝜑 ,Θ𝜑 , 𝜌𝜑 ,J𝜑⟩ := ltl_translation(𝜑); // 𝜒(𝜑) is in Θ𝜑

3 𝑇¬𝜑 ¤= ⟨𝑉𝜑 ,Θ¬𝜑 , 𝜌𝜑 ,J𝜑⟩ := ltl_translation(¬𝜑);
4 𝑉 := 𝑉𝐾 ∪𝑉𝜑;
5 ⟨𝑟𝜑 , 𝑟¬𝜑⟩ := ⟨Θ𝐾 ∧ Θ𝜑 ,Θ𝐾 ∧ Θ¬𝜑⟩;
6 if |𝑢 | > 0 then
7 ⟨𝑟𝜑 , 𝑟¬𝜑⟩ := ⟨𝑟𝜑 ∧ 𝑢0, 𝑟¬𝜑 ∧ 𝑢0⟩;

8 for 1 ⩽ 𝑖 < |𝑢 | do
9 𝑟𝜑 := quantifier_elimination(𝑉 , 𝜌𝐾 ∧ 𝜌𝜑 ∧ 𝑟𝜑) ∧ 𝑢𝑖;

10 𝑟¬𝜑 := quantifier_elimination(𝑉 , 𝜌𝐾 ∧ 𝜌𝜑 ∧ 𝑟¬𝜑) ∧ 𝑢𝑖;

11 𝑏1 := ¬model_checking(⟨𝑉, 𝑟𝜑 , 𝜌𝐾 ∧ 𝜌𝜑 ,J𝐾 ∪ J𝜑⟩, false);
12 𝑏2 := ¬model_checking(⟨𝑉, 𝑟¬𝜑 , 𝜌𝐾 ∧ 𝜌𝜑 ,J𝐾 ∪ J𝜑⟩, false);
13 if 𝑏1 ∧ 𝑏2 then return ? ; // inconclusive
14 else if 𝑏1 then return ⊤a; // conditionally true
15 else if 𝑏2 then return ⊥a; // conditionally false
16 else return ×; // out of model

sizes.)
The inputs of the algorithm are the RV assumption 𝐾 (as an FTS), the monitoring property 𝜑

and a finite input trace 𝑢. See also Fig. 6.1, where 𝐾 ×𝑇𝜑 (𝑟𝜑) is an abbreviation of ⟨𝑉, 𝑟𝜑, 𝜌𝐾 ∧
𝜌𝜑,J𝐾 ∪ J𝜑⟩. At first, 𝜑 and ¬𝜑 are translated into two FTS 𝑇𝜑 and 𝑇¬𝜑 (line 2–3). The
initial conditions of 𝑇𝜑 and 𝑇¬𝜑, namely Θ𝜑 and Θ¬𝜑 are respectively in the form 𝜒(𝜑) ∧ b and
¬𝜒(𝜑) ∧ b, where 𝜒(𝜑) restricts the paths to satisfy 𝜑 and b initializes the encoding of past
operators.

Initially, the belief states 𝑟𝜑 and 𝑟¬𝜑 are the initial conditions of 𝑇𝜑 and 𝑇¬𝜑, composed with
the initial condition of 𝐾 (line 5). The first input state 𝑢0 is directly intersected with belief states
(line 7). The forward images of current belief states are computed and then intersected with the
current input state 𝑢𝑖 (line 9–10).

The undefined function quantifier_elimination can be any (first-order) quantifier elim-
ination procedure (for more details, see Section 3.9) such that

quantifier_elimination(𝑉 , 𝛼(𝑉 ∪𝑉 ′)) ¤= (∃𝑉.𝛼(𝑉 ∪𝑉 ′)) [𝑉/𝑉 ′] = 𝛽(𝑉) (6.3)

where [𝑉/𝑉 ′] substitutes the prefixed formula with all variables in 𝑉 ′ to the corresponding
variables in 𝑉 . All variables in 𝑉 must be eliminated from ∃𝑉.𝛼(𝑉,𝑉 ′). 𝛽(𝑉) as the outcome
of quantifier elimination is quantifier-free.

The main difference with the previous BDD-based algorithm (Algorithm 1 of [47]) is the
treatment of fair states. For BDD-based FTS, the set of fair states can be computed a priori

61

6.4. OPTIMIZATION TO ABRV-MC REDUCTION CHAPTER 6. INFINITE-STATE CASE

(by algorithms like Emerson-Lei [63]) and intersected with the belief states whenever they are
computed. However, for infinite-state FTS represented by raw formulas this is impossible. Thus
𝑟𝜑 and 𝑟¬𝜑 may have non-fair states in them. To check their (non)emptiness w.r.t. fair states, we
leverage LTL model checking, by checking LTL formula false on the model 𝐾 ×𝑇𝜑 (or 𝐾 ×𝑇¬𝜑,
resp.) with 𝑟𝜑 (or 𝑟¬𝜑, resp.) as the initial condition (line 11–12). Here is the idea: if the model
checking returned ⊤ saying for all fair paths in the input model the LTL property “false” holds
(which is impossible), then the only possibility is that the input model actually does not have
any fair path, i.e. the belief state is empty. The output of the monitor w.r.t. the model checking
results (line 13–16) is summarized in Table 6.1.

The correctness of Algorithm 7 is given by the following theorem: (the proof is omitted due
to page limits.)

Theorem 6.3.1. The function monitor2 given in Algorithm 7 correctly implements the ABRV
monitorM𝐾

𝜑 (·).

6.4 Optimization to ABRV-MC Reduction

In this section, we present few simple optimizations that reduce unnecessary (complete) MC
calls, which are computationally expensive, or to replace them with relatively-cheap incomplete
MC calls, which can only be used to detect counter-examples, e.g. the plain Bounded Model
Checking (BMC). (Also note that, for infinite-state systems, the property may be violated but
no lasso-shaped counter-example exists; in this case, neither BMC or the full IC3-IA algorithm
can find it.)

The following four basic optimizations, namely o1–o4, are identified:

o1 If the monitor has already reached conclusive verdicts (⊤a or ⊥a), then for the runtime
verification of the next input state at most one MC call is need. In other words, one of 𝑏1

and 𝑏2 in 7 will not change its value if the monitor returns conclusive verdicts for the last
input state. This is obvious. In Algorithm 6, if one of the two MC calls, say ⟦𝐾 × 𝑆𝑢 |= 𝜑⟧,
returns ⊤, then by the semantics of model checking we have 𝜑 is true for all paths in
the model 𝐾 × 𝑆𝑢. Taking one more input state 𝑠, the new model 𝐾 × 𝑆𝑢·𝑠 is only more
restrictive at its transition relation but all its (fair) paths are still paths of 𝐾 × 𝑆𝑢, thus for
sure ⟦𝐾 × 𝑆𝑢·𝑠 |= 𝜑⟧ = ⊤.

In fact, in this case, one of the belief states 𝑟𝜑 or 𝑟¬𝜑 becomes empty, while empty belief
states can only lead to empty belief states by forward image computations. Furthermore,
if the monitor has reached the verdict × (out-of-model), then it will maintain the same
verdict, thus in this case no more MC (and QE) calls are necessary.

62

CHAPTER 6. INFINITE-STATE CASE 6.4. OPTIMIZATION TO ABRV-MC REDUCTION

o2 Before calling model checkers to detect the emptiness of a belief state (w.r.t. fairness),
an SMT checking can be done first, to check if the belief state formula can be satisfied or
not. If the SMT solver returns UNSAT, then it means the formula is equivalent to ⊥, then
there is no need to further call model checkers to detect its emptiness. This is especially
useful when combining with the [o4] optimization (to be explained shortly) where BMC
is involved. In the plain BMC algorithm, the number of unrolling 𝑘 in the BMC-encoded
formula increases (until reaching a maximal given bound max_k) when SAT/SMT checking
gives UNSAT. But if the UNSAT were actually caused by an unsatisfied initial condition,
the MC procedure should immediately stop trying a bigger 𝑘 and returns (⊤), instead of
unrolling once more (until reaching max_k).

o3 When monitor2 is used as online monitor, the same LTL properties are sent to LTL model
checkers with different models and are internally translated into equivalent FTS, in which
either the initial condition (Algorithm 7) or the transition relation (Algorithm 6) is changed.
Internally, the LTL properties are first translated into a tableau with respect to the fairness
of the model, e.g. (∧𝜓∈J𝐾∪J𝜑 GF𝜓) → false in the case of Algorithm 7, and

The translation can be done just once as part of the RV algorithm, if the involved model
checkers can be modified to take pre-translated tableaux instead of LTL properties.

o4 Some model checking algorithms such as IC3-IA are more effective in proving properties,
while others such as BMC can be used in practice to find counter-examples. This opti-
mization is to call the incomplete plain BMC (or any other MC procedure which detects
counter-examples) before calling a complete model checker such as IC3-IA. Note that the
BMC bound parameter max_k can be chosen arbitrarily without hurting the correctness of
the entire RV algorithm: if the counter-example does exist but BMC fails to find it due to
a small max_k, the next complete MC call will still find it and lead to the same monitoring
output as in the algorithm without this BMC optimization. On the other hand, if the plain
BMC procedure reaches max_k, it could be that the initial condition of the input model
is actually unsatisfiable. To prevent the full MC procedure being called as a fallback, the
previously mentioned optimization [o2] must be also used.

The optimized versions of Algorithm 6 and 7 by the above ideas are given in Algorithm 8
and 9, respectively. (o3 is not implemented for Algorithm 6 due to some technical limitations
in our chosen model checkers but in theory the pre-translation is possible.) In the optimized
algorithms, the Boolean flags 𝑜1, 𝑜2, 𝑜3 and 𝑜4 should be understood as global variables to
control separately how each of the four optimizations are activated. The function model_-
checking is now defined explicitly and shared by both Algorithm 8 and 9, where BMC (the
external bounded model checker, always assumed to be incomplete) is called before IC3_IA (the
external IC3-IA model checker).

63

6.4. OPTIMIZATION TO ABRV-MC REDUCTION CHAPTER 6. INFINITE-STATE CASE

Algorithm 8: The optimized version of Algorithm 6

1 function monitor1_optimized(𝐾 ¤= ⟨𝑉𝐾 ,Θ𝐾 , 𝜌𝐾 ,J𝐾 ⟩, 𝜑, 𝑢)
2 Θ := ⊤, 𝜌 := ⊤;
3 if 𝑜1 then 𝑏1 := 𝑏2 := ⊥ ;
4 if |𝑢 | > 0 then
5 Θ := (𝑐 = 0) ∧ 𝑢0;
6 if |𝑢 | > 1 then

7 𝜌 :=
|𝑢 |−1∧
𝑖=0

(
(𝑐 = 𝑖) → (𝑐′ = 𝑖 + 1 ∧ 𝑢′𝑖+1)

)
;

8 𝑆𝑢 := ⟨𝑉𝑘 ∪ {𝑐},Θ, 𝜌, ∅⟩;
9 if 𝑜1 → ¬𝑏1 then 𝑏1 := model_checking(𝐾 × 𝑆𝑢, X𝑟𝜑) ;

10 if 𝑜1 → ¬𝑏2 then 𝑏2 := model_checking(𝐾 × 𝑆𝑢, X𝑟¬𝜑) ;
11 if 𝑏1 ∧ 𝑏2 then return ×; // out of model
12 else if 𝑏1 then return ⊤a; // conditionally true
13 else if 𝑏2 then return ⊥a; // conditionally false
14 else return ?; // inconclusive

Theorem 6.4.1. Assuming BMC always find the counter-example whenever it exists, IC3_IA is
called at most twice in the “online” version of Algorithm 8 with all optimizations.

Proof. The “online” version of Algorithm 8 means that, for each input state 𝑢𝑖+1 in the input
trace 𝑢, the translation relation 𝜌 is updated incrementally each time, i.e. 𝜌 := 𝜌 ∧ (𝑐 = 𝑖) →
(𝑐′ = 𝑖 + 1 ∧ 𝑢′

𝑖+1), and then the lines 8–14 are executed with a verdict returned, and then the
same procedure happens again for the next input state.

Without loss of generality, assume that the monitor initially returns ? (inconclusive), then
after some inputs changes to ⊤a, and finally ×. We analyze how the values of 𝑏1 and 𝑏2 changed
for the entire trace:

1. Initially 𝑏1 = 𝑏2 = ⊥ (so that the verdict is ?). This means that both model checking calls
return ⊥, i.e. BMC gives counter-examples.

2. If the monitor maintains the current verdict (?), for each successive input states two BMC
calls are performed, returning ⊥ (counter-example found).

3. After some inputs, at the moment when the monitor firstly returns ⊤a, we have 𝑏1 = ⊤ and
𝑏2 = ⊥. IC3_IA is called once at line 9, BMC is called once (due to [o4]) at line 10.

4. If the monitor maintains the current verdict (⊤a), IC3_IA will not be called again, because
it is disabled by [o1] (at line 9) when 𝑏1 = ⊤. (BMC is still called at line 10.)

5. After some inputs, at the moment when the monitor firstly returns ×, we have 𝑏1 = 𝑏2 = ⊤
(the value of 𝑏2 changed). IC3_IA is called once again (at line 10).

64

CHAPTER 6. INFINITE-STATE CASE 6.4. OPTIMIZATION TO ABRV-MC REDUCTION

6. From now on, no BMC nor IC3_IA is called, as they are all disabled by [o1], and the monitor
maintains the verdict × (out of model).

Thus, in summary IC3_IA is called at most twice for any input trace. □

We found that IC3_IA is never called for 𝑝U 𝑞, as in this case whenever the belief states
are empty, they are literally unsatisfiable formulas. For LTL properties like X2false, the call to
complete model checkers is inevitable, as in this case the involved belief states are only “empty”
w.r.t. fairness.

Algorithm 9: The optimized version of Algorithm 7

1 function monitor2_optimized(𝐾 ¤= ⟨𝑉𝐾 ,Θ𝐾 , 𝜌𝐾 ,J𝐾 ⟩, 𝜑, 𝑢)
2 𝑇𝜑 ¤= ⟨𝑉𝜑 ,Θ𝜑 , 𝜌𝜑 ,J𝜑⟩ := ltl_translation(𝜑); // 𝜒(𝜑) is in Θ𝜑

3 𝑇¬𝜑 ¤= ⟨𝑉𝜑 ,Θ¬𝜑 , 𝜌𝜑 ,J𝜑⟩ := ltl_translation(¬𝜑);
4 𝑉 := 𝑉𝐾 ∪𝑉𝜑;
5 ⟨𝑟𝜑 , 𝑟¬𝜑⟩ := ⟨Θ𝐾 ∧ Θ𝜑 ,Θ𝐾 ∧ Θ¬𝜑⟩;
6 if 𝑜1 then 𝑏1 := 𝑏2 := ⊤ ;
7 if 𝑜3 then 𝐹 := ltl_translation(

(∧
𝜓∈J𝐾∪J𝜑 GF𝜓

)
→ false) ;

8 if |𝑢 | > 0 then
9 ⟨𝑟𝜑 , 𝑟¬𝜑⟩ := ⟨𝑟𝜑 ∧ 𝑢0, 𝑟¬𝜑 ∧ 𝑢0⟩;

10 for 1 ⩽ 𝑖 < |𝑢 | do
11 𝑟𝜑 := quantifier_elimination(𝑉 , 𝜌𝐾 ∧ 𝜌𝜑 ∧ 𝑟𝜑) ∧ 𝑢𝑖;
12 𝑟¬𝜑 := quantifier_elimination(𝑉 , 𝜌𝐾 ∧ 𝜌𝜑 ∧ 𝑟¬𝜑) ∧ 𝑢𝑖;

13 if 𝑜1 → 𝑏1 then 𝑏1 := check_nonemptiness(𝑟𝜑) ;
14 if 𝑜1 → 𝑏2 then 𝑏2 := check_nonemptiness(𝑟¬𝜑) ;
15 if 𝑏1 ∧ 𝑏2 then return ? ; // inconclusive
16 else if 𝑏1 then return ⊤a; // conditionally true
17 else if 𝑏2 then return ⊥a; // conditionally false
18 else return ×; // out of model

19 function check_nonemptiness(𝑟)
20 if 𝑜2 ∧ (SMT(r) = unsat) then return ⊥ ;
21 else
22 return ¬model_checking(⟨𝑉, 𝑟, 𝜌𝐾 ∧ 𝜌𝜑 ,J𝐾 ∪ J𝜑⟩, 𝑜3 ? 𝐹 : false)

23 function model_checking(𝑀 , 𝜓)
24 if 𝑜4 then
25 if BMC(𝑀 , 𝜓) = ⊥ then return ⊥; // counter-example found
26 else // max_k reached
27 return IC3_IA(𝑀 , 𝜓)

28 else return IC3_IA(𝑀 , 𝜓);

One may think that the calls of complete model checkers (IC3_IA) are a bottleneck rendering

65

6.5. INCREMENTAL BOUNDED MODEL CHECKING CHAPTER 6. INFINITE-STATE CASE

the whole idea infeasible. In fact, given all above optimizations we can prove that IC3_IA is
called at most twice for each input trace:

Theorem 6.4.2. Assuming BMC always find the counter-example whenever it exists, IC3_IA is
called at most twice in the “online” version of Algorithm 9 with all optimizations.

Proof. Without loss of generality, we analyze how the values of 𝑏1 and 𝑏2 change during the
verification of a typical trace:

1. Initially 𝑏1 = 𝑏2 = ⊤ (so that the verdict is ?). This means that both calls of check_-
nonemptiness (at line 13–14) return ⊤, which further means that the underlying call to
model_checking (line 22) returns ⊥, i.e. BMC is involved returning ⊥ (counter-examples
found).

2. If the monitor maintains the current verdict (?), we have 𝑏1 = 𝑏2 = ⊤, and two BMC calls
are performed, each returning ⊥.

3. At the moment when the monitor firstly returns ⊤a, we have 𝑏1 = ⊤, 𝑏2 = ⊥, i.e. the call
to check_nonemptiness at line 14 returns ⊥. There are two possibilities:

• The belief state 𝑟¬𝜑 is literally⊥ or unsatisfiable, detected by SMT (line 20) due to [o2].
No call to IC3_IA in this case.

• The call to model_checking (line 22) returns ⊤, which means IC3_IA is called once
(after BMC fails to find a counter-example.)

4. If the monitor maintains the current verdict (⊤a), IC3_IA will not be called again, because
it is disabled by [o1] (at line 14) when 𝑏2 = ⊥.

5. At the moment when the monitor firstly returns ×, we have 𝑏1 = 𝑏2 = ⊥ (the value of
𝑏1 changed). check_nonemptiness returns ⊥ is line 13. Either SMT is called (line 20)
when 𝑟𝜑 is unsatisfiable (due to [o2]), or IC3_IA is called internally by model_checking
(line 22) returning ⊤.

6. From now on, no BMC nor IC3_IA is called, as they are all disabled by [o1], and the monitor
maintains the verdict × (out of model).

Thus, in summary IC3_IA is called at most twice for any input trace. □

6.5 Incremental Bounded Model Checking

Bounded Model Checking (BMC) [22, 23] is a SAT-based model checking technique. Given a
FSM 𝑀 and an LTL specification 𝑓 , the idea is to look for counter-examples of maximum length

66

CHAPTER 6. INFINITE-STATE CASE 6.5. INCREMENTAL BOUNDED MODEL CHECKING

𝑘 , and to generate a Boolean formula which is satisfiable if and only if such counter-example
exists. The Boolean formula is then given as input to a SAT solver (or SMT solver, if the theory
domain is beyond propositional).

In theory, if the maximum length 𝑘 has reached certain bound (depending on 𝑀), which
is called the diameter of 𝑀 [22], and there is still no counter-example found, then the whole
model checking process can also be considered as completed with the conclusion that no
counter-example exists. But such a bound is hard to compute and is ofter too large for practical
problems. Thus, in practice BMC is usually used as a preliminary step before other unbounded
MC procedures are involved.

With the above notations 𝑀 and 𝑓 , the BMC process can be formally described as a sequence
of model checking problem 𝑀 |=𝑘 E 𝑓 , meaning “there exist an execution path of 𝑀 of length 𝑘
satisfying the temporal property 𝑓 ”, where 𝑘 ranges from 0 to a maximal given bound (whose
value is given heuristically and is usually much smaller than the diameter of 𝑀). Roughly
speaking, the checking of 𝑀 |=𝑘 E 𝑓 is equivalent to the satisfiability problem of a Boolean
formula [[𝑀, 𝑓]]𝑘 defined as follows:

[[𝑀, 𝑓]]𝑘 := [[𝑀]]𝑘 ∧ [[𝑓]]𝑘 = 𝐼 (𝑉0) ∧
(
𝑘−1∧
𝑖=0
𝑇 (𝑉𝑖, 𝑉𝑖+1)

)
∧ [[𝑓]]𝑘 (6.4)

where 𝐼 (𝑉0) and 𝑇 (𝑉𝑖, 𝑉𝑖+1) represent the initial condition and transition relation of 𝑀 , respec-
tively, unrolled with state variables from certain discrete time. (Thus, for example, if the actual
initial condition is 𝑝 ∧ 𝑞 where 𝑝 and 𝑞 are state variables, then 𝐼 (𝑉0) := 𝑝0 ∧ 𝑞0.) The term
[[𝑓]]𝑘 is called the ending term, which, besides representing the paths which satisfy 𝑓 , also
induces loops from the current step 𝑘 back to all previous steps. The precise form of [[𝑓]]𝑘 is
not relevant here and has several versions [45].

Note that, if [[𝑀]]𝑘 for certain 𝑘 is already unsatisfiable (i.e. the input model 𝑀 is actually
empty), then there is no need to do SMT checking on [[𝑀]]𝑘 ∧ [[𝑓]]𝑘 , which must ba also
unsatisfiable. Furthermore, there is also no need to do next rounds with bigger 𝑘 values.

Now consider the following question of Incremental BMC:

Question 6.5.1 (Incremental BMC). If a previous BMC process (on 𝑀, 𝑓) has completed at
certain value of 𝑘 , say 𝑘 = 𝑘0 (assuming 𝑘0 > 0), with a counter-example found, and then the
model 𝑀 is updated to 𝑀′ by having one or more observations at certain time, does the new
BMC process for 𝑀′, 𝑓 need to restart from 𝑘 = 0?

The answer is no. To explain this answer, first we must clarify what an observation (also
called step constraint) is:

Definition 6.5.2 (Step constraints). A step constraint (aka observation) of the model

𝑀 ¤= ⟨𝑉, 𝐼 (𝑉), 𝑇 (𝑉,𝑉 ′),J⟩

67

6.5. INCREMENTAL BOUNDED MODEL CHECKING CHAPTER 6. INFINITE-STATE CASE

is a pair ⟨𝑡, 𝑠(𝑉)⟩, where 𝑡 is an integer indicating discrete time, and 𝑠(𝑉) is a formula of𝑉 . The
model 𝑀 updated with ⟨𝑡, 𝑠(𝑉)⟩, denoted by 𝑀 + ⟨𝑡, 𝑠(𝑉)⟩, is a new model 𝑀′ defined below:

𝑀′ ¤= ⟨𝑉 ∪ {𝑐},
𝐼 (𝑉),
𝑇 (𝑉,𝑉 ′) ∧ (𝑐′ = min{𝑐 + 1, 𝑡 + 1}) ∧ ((𝑐 = 𝑡) → 𝑠(𝑉)),
J⟩

where 𝑐 ∉ 𝑉 is a fresh variable used as a counter, whose finite domain is from 0 to 𝑡 + 1. The
initial value of 𝑐 is 0, and is increased by one at each new step, until reaching 𝑡 + 1. The sole
purpose of this counter is to make sure that, when its value is 𝑡, there is an extra step constraint
𝑠(𝑉) in addition to the existing transition relation 𝑇 (𝑉,𝑉 ′) at time 𝑡.

With the above observation ⟨𝑡, 𝑠(𝑉)⟩, if L(𝑀′) is the language of 𝑀′, then it is not hard
to see that, for all infinite traces ` ∈ L(𝑀′), the index 𝑡 of the trace ` as a formula must be
compatible with 𝑠(𝑉), i.e. `𝑡 |= 𝑠(𝑉).

Furthermore, if the orignal model 𝑀 is updated by multiple observations at different time,
such as ⟨𝑡1, 𝑠1(𝑉)⟩, ⟨𝑡2, 𝑠2(𝑉)⟩, etc., then we also have `𝑡1 |= 𝑠1(𝑉), `𝑡2 |= 𝑠2(𝑉), etc., if ` is a
trace of the updated model, no matter what the order of updates is.

To answer Question 6.5.1, let us first consider the case of just one observation: 𝑀′ = 𝑀 +
⟨𝑡, 𝑠(𝑉)⟩. Suppose the previous BMC process terminates at 𝑘0 (less than the maximal bounds),
then this means that a counter-example was found when doing SMT checking of [[𝑀, 𝑓]]𝑘0 (see
Equation 6.4), which is satisfiable, while for all 𝑘 < 𝑘0, [[𝑀, 𝑓]]𝑘 is unsatisfiable.

Now consider the form of [[𝑀′, 𝑓]]𝑘 , where 𝑀′ = 𝑀 + ⟨𝑡, 𝑠(𝑉)⟩ and 𝑘 ⩽ 𝑘0. There are two
possible cases:

1. If 𝑡 ⩽ 𝑘0, then [[𝑀′]]𝑘 and [[𝑀]]𝑘 ∧ 𝑠(𝑉𝑡) are equi-satisfiable, where 𝑠(𝑉𝑡) occurs either
in the initial condition (𝑡 = 0) or the transition relation (𝑡 > 0) of 𝑀′,

2. If 𝑡 > 𝑘0, then [[𝑀′, 𝑓]]𝑘 is unsatisfiable due to the domain of counter variable 𝑐.

For any 𝑘 < 𝑘0, if [[𝑀, 𝑓]]𝑘 is unsatisfiable, then obviously [[𝑀′, 𝑓]]𝑘 is also unsatisfiable,
thus there is no need to retry 𝑘 < 𝑘0 for the BMC process of 𝑀′, 𝑓 . On the other side, for 𝑘 = 𝑘0,
as we know that [[𝑀, 𝑓]]𝑘0 is satisfiable, but after pushing one more term 𝑠(𝑉𝑡), the resulting
new form [[𝑀′, 𝑓]]𝑘0 may become unsatisfiable, thus the BMC process of 𝑀′, 𝑓 should retry
𝑘 = 𝑘0 and also 𝑘 + 1, 𝑘 + 2, until the maximal BMC bound.

Thus we have the following result for doing the BMC checking of [[𝑀′, 𝑓]]𝑘 incrementally:

Lemma 6.5.3 (Incremental BMC). The BMC process for 𝑀′, 𝑓 , if done incrementally from the
BMC process of 𝑀, 𝑓 , should start from [[𝑀′, 𝑓]]𝑘0 (the accumulated formula left by previous

68

CHAPTER 6. INFINITE-STATE CASE 6.6. ABRV WITH INCREMENTAL BMC

BMC process) but may need to keep unrolling until reaching [[𝑀′, 𝑓]]max(𝑘0,𝑡) , which contains
the current observation ⟨𝑡, 𝑠(𝑉)⟩.

If there are more than one observations, it is not hard to see that, the incremental BMC
process should keep unrolling until all observations are presented in the SMT formula, i.e. the
minimal BMC starting position (i.e. where the SMT checking starts to happen) is the maximal
time of all observation. On the other hand, if any observation falsifies the updated model, i.e. by
making it an empty model. To skip the entire new BMC process, for each BMC round, an SMT
checking can be done first without ending term, to trigger early termination of the entire BMC
process.

In the next section, we show how this idea can be used to further optimize our ABRV
monitoring algorithm of infinite-state systems.

6.6 ABRV with Incremental BMC

Continue with Section 6.4, further optimizations can be done by leveraging Incremental BMC,
the idea has been discussed in the previous section, in Algorithm 9, where the function BMC has
already been used as incomplete preliminary step before the full IC3_IA calls.

To see how the Incremental BMC is used in ABRV algorithms, first notice that, in Algorithm 9,
all models used for model checking in check_nonemptiness (line 22) only differ at the initial
condition 𝑟, while the transition relation 𝜌𝐾∧𝜌𝜑 and fairness components J𝐾∪J𝜑 never change.
But even the initial condition does not change arbitrarily: for the (non)emptiness checking of
each side (𝑟𝜑 and 𝑟¬𝜑, see line 13 and 14) the next version of 𝑟𝜑 (or 𝑟¬𝜑) is nothing but the forward
image of its current version, intersected with the next observation (from the input trace). This
leave us the possibility to just assert the new observation on the BMC encoding (as unrolling of
initial condition and transition relations) left by the previous BMC call, to get the equisatisfiable
BMC encoding for the subsequent BMC calls.

We first define a BMC encoding of the belief states after a sequence of observations
𝑢0𝑢1 · · · 𝑢𝑛, denoted by bs(𝑢0𝑢1 · · · 𝑢𝑛). These are inductively given by

bs(𝑢0) (𝑉) = 𝐼 (𝑉) ∧ 𝑢0(𝑉), (6.5)
bs(𝑢0𝑢1 · · · 𝑢𝑖+1) (𝑉) = fwd

(
bs(𝑢0𝑢1 · · · 𝑢𝑖) (𝑉), 𝑇 (𝑉,𝑉 ′)

)
(𝑉) ∧ 𝑢𝑖+1(𝑉) . (6.6)

The following theorem shows the relation between the belief states and a BMC encoding
conjoined with the sequence of observations:

Theorem 6.6.1 (Equisatisfiability). When 𝑘 > 1, the following two formulas

𝐼 (𝑉0) ∧ 𝑢0(𝑉0) ∧
𝑘−1∧
𝑗=0

[
𝑇 (𝑉 𝑗 , 𝑉 𝑗+1) ∧ 𝑢 𝑗+1(𝑉 𝑗+1)

]
, (6.7)

69

6.6. ABRV WITH INCREMENTAL BMC CHAPTER 6. INFINITE-STATE CASE

and
bs(𝑢0𝑢1 · · · 𝑢𝑘) (𝑉) (6.8)

are equisatisfiable.

The proof of Theorem 6.6.1 derives by repeatedly applying the following Lemma 6.6.2:

Lemma 6.6.2 (Equisatisfiability). The following three formulas

𝐼 (𝑉0) ∧ 𝑢0(𝑉0) ∧
𝑘−1∧
𝑗=0

[
𝑇 (𝑉 𝑗 , 𝑉 𝑗+1) ∧ 𝑢 𝑗+1(𝑉 𝑗+1)

]
, (6.9)

and

bs(𝑢0) (𝑉0) ∧
𝑘−1∧
𝑗=0

[
𝑇 (𝑉 𝑗 , 𝑉 𝑗+1) ∧ 𝑢 𝑗+1(𝑉 𝑗+1)

]
, (6.10)

and (if 𝑘 > 1)

bs(𝑢0𝑢1) (𝑉1) ∧
𝑘−1∧
𝑗=1

[
𝑇 (𝑉 𝑗 , 𝑉 𝑗+1) ∧ 𝑢 𝑗+1(𝑉 𝑗+1)

]
(6.11)

are equi-satisfiable.

Proof of Lemma 6.6.2. It is obvious that (6.9) and (6.10) are equivalent (using (6.5)) thus also
equisatisfiable. Below we show that (6.10) and (6.11) are equisatisfiable. Actually it is sufficient
to only show that the following two sub-formulas:

𝐴(𝑉0, 𝑉1) ¤= bs(𝑢0) (𝑉0) ∧ 𝑇 (𝑉0, 𝑉1) ∧ 𝑢1(𝑉1), (6.12)
𝐵(𝑉1) ¤= bs(𝑢1) (𝑉1) (6.13)

are equisatisfiable. (They cannot be just equivalent because 𝐴 contains more free variables then
𝐵.)

Expand 𝐵(𝑉1) by definition of bs (Eqs 6.5 and 6.6) and fwd (Eq 3.1):

𝐵(𝑉1) = fwd
(
bs(𝑢0) (𝑉), 𝑇 (𝑉,𝑉 ′)

)
(𝑉1) ∧ 𝑢1(𝑉1)

= (∃𝑉. 𝑇 (𝑉,𝑉 ′) ∧ bs(𝑢0) (𝑉)) [𝑉1/𝑉 ′] ∧ 𝑢1(𝑉1)
= (∃𝑉. 𝑇 (𝑉,𝑉1) ∧ bs(𝑢0) (𝑉)) ∧ 𝑢1(𝑉1)
= (∃𝑉0. 𝑇 (𝑉0, 𝑉1) ∧ bs(𝑢0) (𝑉0)) ∧ 𝑢1(𝑉1) (𝛼-conversion)

Now it is clear that 𝐴 and 𝐵 are equisatisfiable:

∃𝑉1. 𝐵(𝑉1) = ∃𝑉1. (∃𝑉0. 𝑇 (𝑉0, 𝑉1) ∧ bs(𝑢0) (𝑉0)) ∧ 𝑢1(𝑉1)
= ∃𝑉0, 𝑉1. 𝑇 (𝑉0, 𝑉1) ∧ bs(𝑢0) (𝑉0) ∧ 𝑢1(𝑉1)
= ∃𝑉0, 𝑉1. bs(𝑢0) (𝑉0) ∧ 𝑇 (𝑉0, 𝑉1) ∧ 𝑢1(𝑉1)
= ∃𝑉0, 𝑉1. 𝐴(𝑉0, 𝑉1) .

Thus (6.9), (6.10) and (6.11) are all equisatisfiable. □

70

CHAPTER 6. INFINITE-STATE CASE 6.6. ABRV WITH INCREMENTAL BMC

Now comes the second part of this idea: there is also no need to restart BMC inner loop
from 0 (to the maximal bound 𝑘) after asserting a new observation. This is because, whenever
the BMC inner loop stops at a value 𝑘 in the previous call, all SMT formulas corresponding in
steps 𝑖 < 𝑘 are UNSAT, and they are still UNSAT after asserting anything new. In the ideal case
(when BMC stopped by having found a counter-example, and the overall monitoring verdicts
is conclusive), the monitor only needs to call SMT solver once to decide the next monitoring
output.

In Algorithm 10 we gave the pseudo code of the optimized RV monitor based on incre-
mental BMC. There are several undefined functions (methods) used here (to be given later in
Algorithm 11 and 12):

• init_nonemptiness for creating a persistent SMT solver instance,

• update_nonemptiness for checking the non-emptiness of the belief states after a new
observation,

• reset_nonemptiness for resetting the SMT solver, cleaning up all existing observations.

Here the code is given in object-oriented styles, with two instances of SMT solvers created
by init_nonemptiness. Others methods operates on these instances, possibly with further
arguments.

The correctness of Algorithm 10 (relative to the correctness of undefined methods) can be
seen by a comparison with Algorithm 7. Now the computation of belief states from a sequence
of observations is done in a new function compute_belief_states() on the object, which
holds a sequence of observations asserted by each call of update_nonemptiness.

71

6.6. ABRV WITH INCREMENTAL BMC CHAPTER 6. INFINITE-STATE CASE

Algorithm 10: The optimized RV monitor based on Incremental BMC (toplevel)

1 function bmc_monitor(𝐾 ¤= ⟨𝑉𝐾 ,Θ𝐾 , 𝜌𝐾 ,J𝐾⟩, 𝜑, 𝑢, 𝑚𝑎𝑥_𝑘 , 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒)
2 𝑇𝜑 ¤= ⟨𝑉𝜑,Θ𝜑 , 𝜌𝜑,J𝜑⟩ := ltl_translation(𝜑); // 𝜒(𝜑) is in Θ𝜑

3 𝑇¬𝜑 ¤= ⟨𝑉𝜑,Θ¬𝜑, 𝜌𝜑,J𝜑⟩ := ltl_translation(¬𝜑);
4 𝑉 := 𝑉𝐾 ∪𝑉𝜑;
5 𝑒1 := init_nonemptiness(Θ𝐾 ∧ Θ𝜑 , 𝜌𝐾 ∧ 𝜌𝜑);
6 𝑒2 := init_nonemptiness(Θ𝐾 ∧ Θ¬𝜑, 𝜌𝐾 ∧ 𝜌𝜑);
7 if |𝑢 | > 0 then
8 𝑏1 := update_nonemptiness(𝑒1, 𝑢0);
9 𝑏2 := update_nonemptiness(𝑒2, 𝑢0);

10 for 1 ⩽ 𝑖 < |𝑢 | do
11 𝑏1 := update_nonemptiness(𝑒1, 𝑢𝑖);
12 𝑏2 := update_nonemptiness(𝑒2, 𝑢𝑖);

13 if 𝑏1 ∧ 𝑏2 then return ? ; // inconclusive
14 else if 𝑏1 then return ⊤a; // conditionally true
15 else if 𝑏2 then return ⊥a; // conditionally false
16 else return ×; // out of model

17 function compute_belief_states(𝑒)
18 𝑟 := 𝑒.𝐼 (𝑉);
19 for 𝑖 ← 0 to 𝑒.𝑛 do
20 if 𝑖 = 0 then 𝑟 := 𝑟 ∧ 𝑒.𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠[𝑖] (𝑉);
21 else
22 𝑟 := quantifier_elimination(𝑉 , 𝑟 ∧ 𝑇 (𝑉,𝑉 ′)) ∧ 𝑒.𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠[𝑖] (𝑉);

23 return 𝑟;

In Algorithm 11 the code of init_nonemptiness and reset_nonemptiness are given.
Note that, although new BMC solver instances are created from just the initial condition and
transition relation for simplification purposes, the actual code also needs the translation of
LTL property

(∧
𝜓∈J𝐾∪J𝜑 GF𝜓

)
→ false as in Algorithm 9. The unrolling of this translated

formula at time 𝑖, as the ending terms of BMC encodings, will be simply presented as [[𝐹]]𝑖
in the related code (update_nonemptiness). The BMC solver object has some extra member
variables, whose purposes are given in the comments of reset_nonemptiness. Whenever
SMT solving is needed, it is done on the member variable 𝑝𝑟𝑜𝑏𝑙𝑒𝑚.

72

CHAPTER 6. INFINITE-STATE CASE 6.6. ABRV WITH INCREMENTAL BMC

Algorithm 11: Methods for Checking (Non)emptiness (Part 1)

1 function init_nonemptiness(𝐼, 𝑇)
2 𝑒 := new BMC solver with initial formula 𝐼 and transition relation 𝑇 ;
3 reset_nonemptiness(𝑒, 𝐼);
4 return 𝑒;

5 procedure reset_nonemptiness(𝑒, 𝐼)
6 𝑒.𝑝𝑟𝑜𝑏𝑙𝑒𝑚 := 𝐼 (𝑉0); // the initial formula unrolled at time 0
7 𝑒.𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 := []; // an array holding observations
8 𝑒.𝑛 := 0; // the number of observations
9 𝑒.𝑚𝑎𝑝 := {}; // a hash map from time to (unused) observations

10 𝑒.𝑘 := 0; // the number of unrolled transition relations
11 𝑒.𝑚𝑖𝑛_𝑘 := 0; // internal parameter, to be updated by 𝑒.𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

12 𝑒.𝑚𝑎𝑥_𝑘 := 𝑚𝑎𝑥_𝑘; // a local copy of external parameter 𝑚𝑎𝑥_𝑘

The core of incremental BMC algorithm for RV, update_nonemptiness, is finally given in
Algorithm 12. The overall structure of this algorithm is essentially the Incremental Bounded
Model Checking algorithm described in Section 6.5, plus some further treatments when BMC
search bound has been reached: in the latter case the belief states must be re-calculated from
the last version accumulating all new observations, and is then sent to the IC3-based model
checker, represented by the function IC3_IA(). In particular, note that there are both 𝑚𝑖𝑛_𝑘
and𝑚𝑎𝑥_𝑘 being updated each time when the function update_nonemptiness() is called. The
purposes of 𝑚𝑖𝑛_𝑘 is to guarantee all input observations are taken into consideration (otherwise
the monitoring outputs may be wrong), while 𝑚𝑎𝑥_𝑘 is the BMC search bound, which must be
enlarged by one for the next calls of update_nonemptiness() so that there be always enough
times of unrolling (equals to the initial BMC bound) for each new monitor input when searching
for counter-examples. Finally, an independent parameter 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 (usually set to twice
of the initial value of 𝑚𝑎𝑥_𝑘) sets the hard limit of the total number of unrolling of the SMT
formula being tested in the BMC procedure. This is useful in practice when BMC becomes too
slow due to the over long size of SMT formulas.

Remark 6.6.3. Note some red-marked code in the pseudo code, they are the bugfix of this
algorithm after the initial publication in RV 2021 [50]. The bug is due to lacking consideration
of 𝑚𝑖𝑛_𝑘 , which caused some input observations beyond the current 𝑘 in BMC loop not being
considered in the found counter-examples, which leads to wrong monitor outputs.

73

6.6. ABRV WITH INCREMENTAL BMC CHAPTER 6. INFINITE-STATE CASE

Algorithm 12: Methods for Checking (Non)emptiness (Part 2)

1 function update_nonemptiness(𝑒, 𝑜)
2 𝑒.𝑚𝑎𝑝 [𝑒.𝑛] := 𝑜; // store new observation in the map
3 𝑒.𝑛 := 𝑒.𝑛 + 1;
4 𝑒.𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠[𝑒.𝑛] = 𝑜; // store new observation in the list
5 for (𝑘, 𝑣) : 𝑒.𝑚𝑎𝑝 do
6 if 𝑘 ⩽ 𝑒.𝑘 then
7 𝑒.𝑝𝑟𝑜𝑏𝑙𝑒𝑚 := 𝑒.𝑝𝑟𝑜𝑏𝑙𝑒𝑚 ∧ 𝑣(𝑉𝑖);
8 delete 𝑒.𝑚𝑎𝑝 [𝑘];
9 if 𝑘 > 𝑒.𝑚𝑖𝑛_𝑘 then

10 𝑒.𝑚𝑖𝑛_𝑘 := 𝑘; // set to the maximal time of observations

11 𝑟𝑒𝑠𝑢𝑙𝑡 := ?;
12 while 𝑒.𝑘 ⩽ 𝑒.𝑚𝑎𝑥_𝑘 and 𝑟𝑒𝑠𝑢𝑙𝑡 = ? do
13 𝑖 := 𝑒.𝑘;
14 if SMT(𝑒.𝑝𝑟𝑜𝑏𝑙𝑒𝑚)= unsat then
15 𝑟𝑒𝑠𝑢𝑙𝑡 := ⊥; // literally empty believe states
16 break

17 if 𝑒.𝑘 ⩾ 𝑒.𝑚𝑖𝑛_𝑘 and SMT(𝑒.𝑝𝑟𝑜𝑏𝑙𝑒𝑚 ∧ [[𝐹]]𝑖)= sat then
18 𝑟𝑒𝑠𝑢𝑙𝑡 = ⊤; // counter-example found (nonempty)
19 break

20 𝑒.𝑝𝑟𝑜𝑏𝑙𝑒𝑚 := 𝑒.𝑝𝑟𝑜𝑏𝑙𝑒𝑚 ∧ 𝑒.𝑇 (𝑉𝑖, 𝑉𝑖+1);
21 if 𝑒.𝑚𝑎𝑝 [𝑖 + 1] exists then
22 𝑒.𝑝𝑟𝑜𝑏𝑙𝑒𝑚 := 𝑒.𝑝𝑟𝑜𝑏𝑙𝑒𝑚 ∧ 𝑒.𝑚𝑎𝑝 [𝑖 + 1] (𝑉𝑖+1);
23 delete 𝑒.𝑚𝑎𝑝 [𝑖 + 1];
24 𝑒.𝑘 := 𝑒.𝑘 + 1;

25 𝑒.𝑚𝑎𝑥_𝑘 := 𝑒.𝑚𝑎𝑥_𝑘 + 1; // increase the search bound for next calls
26 if 𝑒.𝑘 > 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 or 𝑟𝑒𝑠𝑢𝑙𝑡 = ? then
27 𝑟 := compute_belief_states(𝑒);
28 reset_nonemptiness(𝑒, 𝑟); // prepare for complete model checking

29 if 𝑟𝑒𝑠𝑢𝑙𝑡 = ⊤ or 𝑟𝑒𝑠𝑢𝑙𝑡 = ⊥ then
30 return 𝑟𝑒𝑠𝑢𝑙𝑡;

31 else
32 return ¬IC3_IA(⟨𝑉, 𝑟, 𝑒.𝑇,J𝐾 ∪ J𝜑⟩, false);

74

CHAPTER 6. INFINITE-STATE CASE 6.7. UNBOUNDEDNESS OF INFINITE-STATE MONITORS

6.7 Unboundedness of Infinite-State Monitors

Now we show the unboundedness of infinite-state monitors. This answers the question of
constructing infinite-state monitors (in some paper submissions, nowhere to cite), which claims
to be trace-length independent.

The symbolic ABRV monitors of finite-state systems constructed in Chapter 5 has bounded
memory consumptions, for reasons below:

1. The monitor never needs to look back to the previous input states of the input trace. Instead,
at each cycle the monitor only needs the current state of the trace, besides other internal
states, to decide the current monitor verdict.

2. Those “other internal states” are fixed number of variables hold BDDs of fixed number of
Boolean variables, where the number is a function of combined size of RV assumptions and
the monitoring property. Thus the maximal memory consumptions of all such variables
must be bounded.

Not every RV work can guarantee the above two points. And it would be nice if a monitor
can run for a long period without blowing up the memories (or disk space) of the hosting
computer. For ABRV monitors of infinite-state systems, believe states are now represented
by raw formulas. After forward image computations by quantifier elimination procedure, the
resulting new formulas may grow in size, and this size is in general unbounded.

In fact, it is hopeless to have a “better” monitoring algorithm which consumes only bounded
memories in our general ABRV setting. Below we construct an counter-example to show that
constant-memory monitor does not exist for a simple monitoring property under a special RV
assumption, based on Cantor’s Ternary Set1.

The RV assumption (as a symbolic model) has two real variable 𝑎 and 𝑏, initially 𝑎 = 0,
𝑏 = 1. Imagine they represent a closed interval [𝑎, 𝑏], which is to be divided into the union of
3 closed intervals with equal lengths:

[𝑎, 𝑎 + (𝑏 − 𝑎)/3], [𝑎 + (𝑏 − 𝑎)/3, 𝑎 + 2(𝑏 − 𝑎)/3], [𝑎 + 2(𝑏 − 𝑎)/3, 𝑏]

At next discrete time, the new values of 𝑎, 𝑏, denoted by 𝑎′ and 𝑏′, are either the ends of 1st
or the ends of 3rd intervals, i.e.

(𝑎′ = 𝑎 ∧ 𝑏′ = 𝑎 + (𝑏 − 𝑎)/3) ∨ (𝑎′ = 𝑎 + 2(𝑏 − 𝑎)/3 ∧ 𝑏′ = 𝑏)

Thus, we can observe the following patterns:

1. At time 0, there is only one interval [0, 1];
1https://en.wikipedia.org/wiki/Cantor_set

75

https://en.wikipedia.org/wiki/Cantor_set

6.7. UNBOUNDEDNESS OF INFINITE-STATE MONITORS CHAPTER 6. INFINITE-STATE CASE

2. At time 1, there are two intervals: [0, 1
3] and [23 , 1];

3. At time 2, there are four intervals: [0, 1
9], [

2
9 ,

1
3], [

2
3 ,

7
9], [

8
9 , 1].

4. At time 3, there are 8 intervals: [0, 1
27], [

2
27 ,

1
9], [

2
9 ,

7
27], [

8
27 ,

1
3], [

2
3 ,

18
27], [

20
27 ,

7
9], [

8
9 ,

25
27],

[26
27 , 1];

5. At time 4, there are 16 intervals: ...

The above mentioned intervals are actually possible intervals where we can find another
particular value 𝑥, which is another input variable of the model. Here the monitoring property
is simply this: G¬(𝑎 ⩽ 𝑥 ∧ 𝑥 ⩽ 𝑏), i.e. 𝑥 is NOT in any of the intervals.

If a monitor were built from the above property and assumptions, one can see that, for each
new discrete time there must be doubled memories to hold a doubled amount of end points of all
the possible (disjoint) intervals in forms of [𝑎, 𝑏], and none of them can be pruned or simplified
away. Thus the monitor cannot have bounded or constant memory uses.

76

Chapter 7

Monitoring ptLTL (Past-Time LTL)

7.1 Introduction

Runtime Verification is commonly restricted to Past-time LTL (or ptLTL), i.e. LTL with only
past operators [86]. The ptLTL is supported by many RV tools (some of these tools also
support future-time LTL), such as Java PathExplorer [86, 87], RuleR [12], JavaMOP [40], RV-
Monitor1 [114], TraceContract [10], DejaVu [89] and R2U2 [131]. We show that ptLTL can
also be monitored in our ABRV framework through a connection of ptLTL with LTL3 semantics.

There are two slightly different ptLTL semantics found in the literature. The standard one,
which is followed by most RV tools mentioned above, is neither a fragment of LTL nor LTL3

semantics:

Definition 7.1.1 (ptLTL semantics). Let 𝜑, 𝜓 be ptLTL formulae and 𝑝 ∈ 𝐴𝑃 (atomic propo-
sitions), the semantics of 𝜑 with respect to a finite word 𝑢 = 𝑠0 · · · 𝑠𝑛−1 (thus |𝑢 | = 𝑛), denoted
by ⟦𝑢 |=p 𝜑⟧ hereafter, is inductively defined as follows: (𝑢 |𝑖 = 𝑠0𝑠1 · · · 𝑠𝑖−1, 𝑖 ⩽ 𝑛, denotes the
prefix of 𝑢 with the first 𝑖 states.)

𝑢 |=p true
𝑢 |=p 𝑝 iff 𝑝 ∈ 𝑠𝑛−1

𝑢 |=p ¬𝜑 iff 𝑢 ̸ |=p 𝜑

𝑢 |=p 𝜑 ∨ 𝜓 iff 𝑢 |=p 𝜑 or 𝑢 |=p 𝜓

𝑢 |=p Y𝜑 iff 𝑢 |𝑛−1 |=p 𝜑 if 𝑛 > 1 or 𝑢 |=p 𝜑 if 𝑛 = 1
𝑢 |=p 𝜑 S𝜓 iff for some 𝑗 ⩽ 𝑛, 𝑢 | 𝑗 |=p 𝜓 and for all 𝑗 < 𝑖 ⩽ 𝑛, 𝑢 |𝑖 |=p 𝜑

The key is at the semantics of Y, which is “consistent with the view that a trace consisting of
exactly one state 𝑠 is considered like a stationary infinite trace containing only the state 𝑠.” [86,

1The ptLTL plugin of RV-Monitor comes from JavaMOP.

77

7.2. CONNECTION WITH LTL3 SEMANTICS CHAPTER 7. MONITORING PTLTL

p. 345] For instance, with the above definition we have ⟦{𝑝} |=p Y2 𝑝 ⟧ = ⟦{𝑝} |=p Y 𝑝 ⟧ =

⟦{𝑝} |=p 𝑝 ⟧ = ⊤. In this case, we may understand 𝑢 = {𝑝} as an backward infinite word
𝑤 = · · · 𝑠−2𝑠−1𝑠0 = · · · {𝑝}{𝑝}{𝑝}, and therefore 𝑤 |= Y 𝑝 iff 𝑝 ∈ 𝑠−1(= 𝑠0), while 𝑤 |= Y2 𝑝

iff 𝑝 ∈ 𝑠−2(= 𝑠0).
Alternatively, one could consider that Y 𝑝 is false on a one-state trace for any atomic propo-

sition 𝑝 [84, p. 98], as follows:

Definition 7.1.2 (alternative ptLTL semantics). Following the same notation, the alternative
semantics of ptLTL formula 𝜑 with respect to a finite word 𝑢, denoted by ⟦𝑢 |=p′ 𝜑⟧, is inductively
defined as in Definition 7.1.1, except for Y operator:

𝑢 |=p′Y𝜑 iff 𝑛 > 1 and 𝑢 |𝑛−1 |=p′ 𝜑

With this alternative definition we have ⟦{𝑝} |=p Y2 𝑝 ⟧ = ⟦{𝑝} |=p Y 𝑝 ⟧ = ⊥. In this case,
we may understand 𝑢 = {𝑝} as an infinite word 𝑤 = · · · 𝑠−2𝑠−1𝑠0 = · · · ∅ · ∅ · {𝑝}, and therefore
𝑤 ̸ |= Y 𝑝 as 𝑝 ∉ 𝑠−1(= ∅), while 𝑤 ̸ |= Y2 𝑝 as 𝑝 ∉ 𝑠−2(= ∅).

7.2 Connection with LTL3 Semantics

The corresponding RV problem (under full observability, without assumptions) for ptLTL can be
resolved by rewriting-based [130], rule-based [11] approaches, or dynamic programming [86].
But none of the existing work is based on well-known tableau translations from LTL to Büchi
automata.

ABRV framework provides a unified approach, which can handle ptLTL as a side effect.
Now it is possible to generate an automaton - internally it is symbolic and is implemented
by BDDs - monitoring ptLTL, just like the automata generated from normal LTL. The key is
to convert ptLTL semantics to LTL3 semantics, and then make sure that the monitor is reset
before walking into next positions in the (finite-state) monitor automaton. The code generation
techniques represented in Section 5.4 can be also used for generating monitor code synthesized
from ptLTL.

The following lemma and theorem show the connection between (alternative) ptLTL and
LTL3 (without future temporal operators) semantics:

Lemma 7.2.1. The LTL3 semantics of any ptLTL formula 𝜑 with respect to any non-empty finite
trace 𝑢 (thus |𝑢 | > 0) is always conclusive:

∀𝑖 < |𝑢 |. ⟦𝑢, 𝑖 |= 𝜑 ⟧3 = ⊤ or ⊥.

Proof. The original proof goal can be reduced (by LTL3 semantics) to the following one: the
standard LTL semantics is the same for any two continuations of 𝑢, i.e., for any 𝑤, 𝑤′ ∈ (2𝐴𝑃)𝜔

78

CHAPTER 7. MONITORING PTLTL 7.2. CONNECTION WITH LTL3 SEMANTICS

we have
∀𝑖 < |𝑢 |. 𝑢 · 𝑤, 𝑖 |= 𝜑⇔ 𝑢 · 𝑤′, 𝑖 |= 𝜑 (7.1)

The above goal can be proven by an outer complete induction on 𝑖, i.e., by showing (7.1) holds
for any 𝑖 < |𝑢 | assuming it holds for all 𝑗 < 𝑖, with an inner induction on the structure of 𝜑
for each ptLTL operator. The complete proof of this lemma is trivial but tedious. It has been
formalized in HOL Theorem Prover (See Section 10.5 for more details.) □

Theorem 7.2.2. The alternative semantics of any ptLTL formula 𝜑with respect to any non-empty
finite trace 𝑢 can be expressed by LTL3 semantics, i.e.,

⟦𝑢 |=p′ 𝜑 ⟧ = ⟦𝑢, |𝑢 | − 1 |= 𝜑⟧3 (7.2)

Similarily with the proof of Lemma 7.2.1, the above theorem can be proven by an outer
complete induction on the length of 𝑢, i.e., we can prove (7.2) assuming it holds for all 𝑣 such
that |𝑣 | < |𝑢 | (but 𝑣 does not need to be a subtrace of 𝑢), with an inner induction on the structure
of 𝜑 for each ptLTL operator. For atomic propositions, ¬ and ∨, the outer induction hypothesis
is not used. Non-trivial cases are for the temporal operators Y and S. Lemma 7.2.1 is repeatedly
used during the proof.

Proof of Theorem 7.2.2. We prove (7.2) by a complete induction on the length of 𝑢 (|𝑢 | > 0).
Fixing 𝑢 (and let 𝑛 = |𝑢 | hereafter), the induction hypothesis is the following (𝜓 is any ptLTL
formula):

∀𝑣, 𝜓. 0 < |𝑣 | < 𝑛⇒ ⟦𝑣 |=p′ 𝜓 ⟧ = ⟦𝑣, |𝑣 | − 1 |= 𝜓 ⟧3 (7.3)

Now the only free variable of (7.2) is 𝜑, we further do an induction on the structure of 𝜑. In
other words, if we see (7.2) as 𝑃(𝜑), to prove it we need to prove the following subgoals instead
(all involved LTL formulae are ptLTL formulae, i.e. having no future operator):

1. 𝑃(true) and ∀𝑝 ∈ 𝐴𝑃. 𝑃(𝑝);

2. ∀𝜓. 𝑃(𝜓) ⇒ 𝑃(¬𝜓);

3. ∀𝜓1, 𝜓2. 𝑃(𝜓1) ∧ 𝑃(𝜓2) ⇒ 𝑃(𝜓1 ∨ 𝜓2);

4. ∀𝜓. 𝑃(𝜓) ⇒ 𝑃(Y𝜓);

5. ∀𝜓1, 𝜓2. 𝑃(𝜓1) ∧ 𝑃(𝜓2) ⇒ 𝑃(𝜓1 S𝜓2).

The proofs of the first three subgoals are straightforward, where the induction hypothesis (7.3)
is not used. We focus on the last two subgoals about the past temporal operators.

79

7.2. CONNECTION WITH LTL3 SEMANTICS CHAPTER 7. MONITORING PTLTL

Case 1 (Y operator) Here the goal is to prove

⟦𝑢 |=p′Y𝜓 ⟧ = ⟦𝑢, 𝑛 − 1 |= Y𝜓 ⟧3 (7.4)

assuming (7.3), and ⟦𝑢 |=p′ 𝜓 ⟧ = ⟦𝑢, 𝑛 − 1 |= 𝜓 ⟧3 (but this latter fact is not used).
If 𝑛 = 1, (7.4) can be directly proved, as both its left and right sides are ⊥ by LTL, LTL3 and

(alternative) ptLTL semantics. If 𝑛 > 1, by Definition 7.1.2 the goal (7.4) can be reduce to

⟦𝑢 |𝑛−1 |=p′ 𝜓 ⟧ = ⟦𝑢, 𝑛 − 1 |= Y𝜓 ⟧3

and further (by induction hypothesis (7.3), taking 𝑣 = 𝑢 |𝑛−1) to

⟦𝑢 |𝑛−1, 𝑛 − 2 |= 𝜓 ⟧3 = ⟦𝑢, 𝑛 − 1 |= Y𝜓 ⟧3 (7.5)

By Lemma 7.2.1, ⟦𝑢𝑛−1, 𝑛 − 2 |= 𝜓 ⟧3 and ⟦𝑢, 𝑛 − 1 |= Y𝜓 ⟧3 can only be ⊤ or ⊥, thus
there are four combinations. When they have the same value, the proof is finished; It remains
to show that the other two subcases where they have different values, are actually impossible.
For instance, suppose ⟦𝑢𝑛−1, 𝑛 − 2 |= 𝜓 ⟧3 = ⊤ and ⟦𝑢, 𝑛 − 1 |= Y𝜓 ⟧3 = ⊥, by LTL and LTL3

semantics we have

∀𝑤. 𝑢 |𝑛−1 · 𝑤, 𝑛 − 2 |= 𝜓 (7.6)
∀𝑤′. 𝑢 · 𝑤′, 𝑛 − 1 ̸ |= Y𝜓 or ∀𝑤′. 𝑢 · 𝑤′, 𝑛 − 2 ̸ |= 𝜓 (7.7)

Choosing𝑤 = 𝑠𝑛−1 ·𝑤′ (for any𝑤′, e.g. ∅𝜔 = ∅ · · ·) in (7.6), we have 𝑢 |𝑛−1 ·𝑤 = (𝑢 |𝑛−1 ·𝑠𝑛−1) ·𝑤′ =
𝑢 · 𝑤′ and thus 𝑢 · 𝑤′, 𝑛 − 2 |= 𝜓 but this is conflict with (7.7). The other subcase is similar.

Case 2 (S operator) Here the goal is to prove

⟦𝑢 |=p′ 𝜓1 S𝜓2 ⟧ = ⟦𝑢, 𝑛 − 1 |= 𝜓1 S𝜓2 ⟧3 (7.8)

assuming the outer induction hypothesis (7.3) and the following inner induction hypothesises:

⟦𝑢 |=p′ 𝜓1 ⟧ = ⟦𝑢, 𝑛 − 1 |= 𝜓1 ⟧3 (7.9)
⟦𝑢 |=p′ 𝜓2 ⟧ = ⟦𝑢, 𝑛 − 1 |= 𝜓2 ⟧3 (7.10)

Again, by Lemma 7.2.1 all involved LTL3 semantics are conclusive. By Definition 7.1.2 the
goal (7.8) can be reduced to(
∃ 𝑗 . 𝑗 ⩽ 𝑛 ∧ 𝑢 | 𝑗 |=p′ 𝜓2 ∧ ∀𝑖. 𝑗 < 𝑖 ⩽ 𝑛⇒ 𝑢 |𝑖 |=p′ 𝜓1

)
= ⟦𝑢, 𝑛 − 1 |= 𝜓1 S𝜓2 ⟧3 (7.11)

Depending on the value of ⟦𝑢, 𝑛 − 1 |= 𝜓1 S𝜓2 ⟧3, the above proof goal can be further reduced
to one of the following two subgoals:

80

CHAPTER 7. MONITORING PTLTL 7.2. CONNECTION WITH LTL3 SEMANTICS

Case 2.1 (⟦𝑢, 𝑛 − 1 |= 𝜓1 S𝜓2 ⟧3 = ⊤) In this case, we need to prove

∃ 𝑗 . 𝑗 ⩽ 𝑛 ∧ 𝑢 | 𝑗 |=p′ 𝜓2 ∧ ∀𝑖. 𝑗 < 𝑖 ⩽ 𝑛⇒ 𝑢 |𝑖 |=p′ 𝜓1 (7.12)

assuming (7.3), (7.9), (7.10), and, by LTL3 semantics, ∀𝑤. 𝑢 ·𝑤, 𝑛−1 |= 𝜓1 S𝜓2, or equivalently

∀𝑤. ∃𝑘. 𝑘 ⩽ 𝑛 − 1 ∧ 𝑢 · 𝑤, 𝑘 |= 𝜓2 ∧
∀𝑙. 𝑘 < 𝑙 ⩽ 𝑛 − 1⇒ 𝑢 · 𝑤, 𝑙 |= 𝜓1

(7.13)

Let 𝑤 = ∅𝜔 in (7.13), then 𝑘 is fixed, such that 𝑘 ⩽ 𝑛 − 1 and

𝑢 · ∅𝜔, 𝑘 |= 𝜓2 (7.14)
∀𝑙. 𝑘 < 𝑙 ⩽ 𝑛 − 1⇒ 𝑢 · ∅𝜔, 𝑙 |= 𝜓1 (7.15)

Now we choose 𝑗 = 𝑘 + 1 in (7.12) Thus 𝑗 ⩽ 𝑛, and it remains to prove 𝑢 |𝑘+1 |=p′ 𝜓2 and
∀𝑖. 𝑘 + 1 < 𝑖 ⩽ 𝑛⇒ 𝑢 |𝑖 |=p′ 𝜓1, respectively (the order is not important):

• To prove 𝑢 |𝑘+1 |=p′ 𝜓2, the special case 𝑘 = 𝑛 − 1 (thus 𝑢 |𝑘+1 = 𝑢 |𝑛 = 𝑢) must be eliminated
first. This can be done by using (7.10), (7.14), Lemma 7.2.1 and LTL3 semantics.

If 𝑘 < 𝑛 − 1 (thus 𝑘 + 1 < 𝑛), let 𝑣 = 𝑢 |𝑘+1, 𝜓 = 𝜓2 in (7.3) and we have

⟦𝑢 |𝑘+1 |=p′ 𝜓2 ⟧ = ⟦𝑢 |𝑘+1, 𝑘 |= 𝜓2 ⟧3 (7.16)

Now we show that ⟦𝑢 |𝑘+1, 𝑘 |= 𝜓2 ⟧3 cannot be ⊥ (by Lemma 7.2.1 it also cannot be
?), because if it is, by LTL3 semantics we have ∀𝑤. 𝑢 |𝑘+1 · 𝑤, 𝑘 ̸ |= 𝜓2. Taking 𝑤 =

𝑠𝑘+1 · · · 𝑠𝑛−1 · ∅𝜔 (or 𝑤 = 𝑠𝑛−1 · ∅𝜔 if 𝑘 + 1 = 𝑛 − 1), we have 𝑢 |𝑘+1 · 𝑤 = 𝑢 · ∅𝜔 and thus
𝑢 · ∅𝜔, 𝑘 ̸ |= 𝜓2, which conflicts with (7.14). Thus ⟦𝑢 |𝑘+1, 𝑘 |= 𝜓2 ⟧3 = ⊤ and we have
𝑢 |𝑘+1 |=p′ 𝜓2 by (7.16).

• To prove 𝑢 |𝑖 |=p′ 𝜓1 for all 𝑖 such that 𝑘 + 1 < 𝑖 ⩽ 𝑛 (thus 𝑘 < 𝑛 − 1), the special case
𝑖 = 𝑛 (thus 𝑢 |𝑖 = 𝑢 |𝑛 = 𝑢) must be eliminated first. This can be done by using (7.9), (7.15)
(taking 𝑙 = 𝑛 − 1), Lemma 7.2.1 and LTL3 semantics.

If 𝑘 + 1 < 𝑖 < 𝑛, let 𝑣 = 𝑢 |𝑖, 𝜓 = 𝜓1 in (7.3) and we have

⟦𝑢 |𝑖 |=p′ 𝜓1 ⟧ = ⟦𝑢 |𝑖, 𝑖 − 1 |= 𝜓1 ⟧3 (7.17)

Similarly with the above item, we can show that ⟦𝑢 |𝑖, 𝑖 − 1 |= 𝜓1 ⟧3 cannot be ⊥, which
conflicts with (7.15) (taking 𝑙 = 𝑖 − 1). By Lemma 7.2.1 it also cannot be ?. Thus it must
be ⊤ and we have 𝑢 |𝑖 |=p′ 𝜓1 by (7.17).

Case 2.2 (⟦𝑢, 𝑛−1 |= 𝜓1 S𝜓2 ⟧3 = ⊥) This case is slightly more tricky, as we need to prove (cf. (7.11))

¬(∃ 𝑗 . 𝑗 ⩽ 𝑛 ∧ 𝑢 | 𝑗 |=p′ 𝜓2 ∧ ∀𝑖. 𝑗 < 𝑖 ⩽ 𝑛⇒ 𝑢 |𝑖 |=p′ 𝜓1)

81

7.2. CONNECTION WITH LTL3 SEMANTICS CHAPTER 7. MONITORING PTLTL

or equivalently, for any 𝑗 ⩽ 𝑛,

𝑢 | 𝑗 |=p′ 𝜓2 ⇒ ∃𝑖. 𝑗 < 𝑖 ⩽ 𝑛 ∧ 𝑢 |𝑖 ̸ |=p′ 𝜓1 (7.18)

assuming (7.3), (7.9), (7.10), and, by LTL3 semantics, ∀𝑤. 𝑢 · 𝑤, 𝑛 − 1 ̸ |= 𝜓1 S𝜓2. Taking
𝑤 = ∅𝜔 in the latter equation, by LTL semantics we have

∀𝑘. 𝑘 ⩽ 𝑛 − 1 ∧ 𝑢 · ∅𝜔, 𝑘 |= 𝜓2 ⇒
∃𝑙. 𝑘 < 𝑙 ⩽ 𝑛 − 1 ∧ 𝑢 · ∅𝜔, 𝑙 ̸ |= 𝜓1

(7.19)

The special case 𝑗 = 𝑛 (thus 𝑢 | 𝑗 = 𝑢 |𝑛 = 𝑢) must be eliminated first. In this case, an 𝑖
such that 𝑛 < 𝑖 ⩽ does not exist in (7.18), thus the goal is to find a contradiction between
the antecedent 𝑢 |=p′ 𝜓2 and other assumptions. By (7.10) we have ⟦𝑢, 𝑛 − 1 |= 𝜓2 ⟧3, or
equivalently ∀𝑤′. 𝑢 · 𝑤′, 𝑛 − 1 |= 𝜓2. But this is impossible: taking 𝑘 = 𝑛 − 1 in (7.19) an 𝑙 such
that 𝑛 − 1 < 𝑙 ⩽ 𝑛 − 1 does not exist, therefore we have 𝑢 · ∅𝜔, 𝑛 − 1 ̸ |= 𝜓2 (an exception of 𝑤′).

Below we assume 𝑗 < 𝑛, and the new goal is to find that 𝑖 in (7.18) assuming 𝑢 | 𝑗 |=p′ 𝜓2. As
|𝑢 𝑗 | < |𝑢 |, by induction hypothesis (7.3) we have ⟦𝑢 | 𝑗 , 𝑗 −1 |= 𝜓2 ⟧3 = ⊤ or∀𝑤′. 𝑢 | 𝑗 ·𝑤′, 𝑗 −1 |=
𝜓2 by LTL3 semantics. Taking 𝑤′ = 𝑠 𝑗 · · · 𝑠𝑛−1 · ∅𝜔 (or 𝑤′ = 𝑠𝑛−1 · ∅𝜔 if 𝑗 = 𝑛 − 1) we have
𝑢 · ∅𝜔, 𝑗 − 1 |= 𝜓2, which could be the antecedent of (7.19) if we take 𝑘 = 𝑗 − 1. So there exists
𝑙 such that 𝑗 − 1 < 𝑙 ⩽ 𝑛 − 1 and

𝑢 · ∅𝜔, 𝑙 ̸ |= 𝜓1 (7.20)

Again, the special case 𝑙 = 𝑛 − 1 must be eliminated. This can be done by choosing 𝑖 = 𝑛 in
(7.19), then by (7.9) the goal can be reduced to ⟦𝑢, 𝑛 − 1 |= 𝜓1 ⟧3 = ⊥. By Lemma 7.2.1, this
means ⟦𝑢, 𝑛 − 1 |= 𝜓1 ⟧3 ≠ ⊤ or ¬∀𝑤′′. 𝑢 · 𝑤′′, 𝑛 − 1 |= 𝜓1 or ∃𝑤′′. 𝑢 · 𝑤′′, 𝑛 − 1 ̸ |= 𝜓1, and
(7.20) just provided such an instance.

Finally, we have 𝑗 − 1 < 𝑙 < 𝑛 − 1 or 𝑗 < 𝑙 + 1 < 𝑛. By choosing 𝑖 = 𝑙 + 1 in (7.19),
the goal can be reduced to 𝑢 |𝑙+1 ̸ |=p′ 𝜓1. As |𝑢𝑙+1 | < |𝑢 |, by induction hypothesis (7.3) the
goal can be further reduced to ⟦𝑢𝑙+1, 𝑙 |= 𝜓1 ⟧3 = ⊥. By Lemma 7.2.1 and LTL3 semantics, it
suffices to find just one continuation 𝑤′′′ such that 𝑢𝑙+1 · 𝑤′′′ ̸ |= 𝜓1. By (7.20) we can simply
take 𝑤′′′ = 𝑠𝑙+1 · · · 𝑠𝑛−1 · ∅𝜔 (or 𝑤′′′ = 𝑠𝑛−1 · ∅𝜔 if 𝑙 + 1 = 𝑛 − 1). □

The above proof has been formalized in Higher Order Logic (HOL4) interactive theorem
prover. See Chapter 10 for more details.

Fig. 7.1 demonstrates the equivalence of ptLTL (with alternative semantics) and LTL3 mon-
itors for the same future-free LTL property 𝜑 on the same trace 𝜎 = 𝑢0 𝑢1 · · · 𝑢𝑛 · · · , where the
size of trace prefix |𝑢0𝑢1 · · · 𝑢𝑛 | = 𝑛 + 1 (cf. Equation (7.2) in Theorem 7.2.2). Note that, most
existing LTL3 monitors can only monitor LTL3 semantics at time 0, i.e. ⟦𝑢0 𝑢1 · · · 𝑢𝑛, 0 |= 𝜑⟧3.
ABRV resolves this problem by always resetting the monitors such that mrr(𝑢) ≡ |𝑢 | − 1 for
any trace prefix 𝑢 (cf. Equation (4.4) in Definition 4.4.3). Besides, obviously ABRV supports
monitoring ptLTL under assumptions.

82

CHAPTER 7. MONITORING PTLTL 7.3. CONTRUCTING EXPLICIT-STATE PTLTL MONITORS

φ LTL3

φ ptLTL
u0 u1 u2 · · · un

⟦u0 u1 · · · un |=p′ φ⟧

u0

⊤
u1

⊤
u2

⊤
· · ·
· · ·

un
⊤ (reset signals)

⟦u0 u1 · · · un, n |= φ⟧3

Figure 7.1: ptLTL (alternative) semantics vs. LTL3 semantics

7.3 Contructing Explicit-state ptLTL Monitors

Using Algorithm 3 with 𝑙𝑒𝑣𝑒𝑙 = 4, we can construct explicit-state ptLTL monitors, which
always reset themselves before taking next inputs. See Fig. 7.2 for the sample monitors of ptLTL
formula closed ∧ Y open taken from [84, p. 99]. Both level 3 and level 4 monitors are given.
Note that, the level 3 monitor contains more information as it can be reset arbitrarily, while the
level 4 monitor takes no explicit reset signal and it always resets itself before taking next inputs.
Given the same trace, it is not hard to see that, both monitors give the same results (assuming
the level 3 always jump to the reset locations before taking next inputs).

7.4 Monitoring the original semantics of ptLTL

We conjecture that, by modifying the initial condition in the LTL to 𝜔-automata translation
(Section 3.7), the original semantics of ptLTL (Definition 7.1.1) can also be monitored in NuRV.
The modified Θ′𝜑 is given by

Θ′𝜑 ¤= 𝜒(𝜑) ∧
∧

y𝜓∈ el(𝜑)

(
y𝜓 ↔ 𝜒(𝜓)

)
. (7.21)

Intuitionally, the initial value assignments of all past elementary variables are by their corre-
sponding present value (instead of false). This idea is not implemented so far.

83

7.4. MONITORING THE ORIGINAL SEMANTICS OF PTLTL CHAPTER 7. MONITORING PTLTL

1

3 : ⊥a

open

2 : ⊥a

!open

11 : ⊤a open

8 : ⊤a

!open

6

10 : ⊤a

open 9 : ⊤a

!open

7

!open

5 : ⊥a

open

open

!open

open

!open

open

!open

open

4 : ⊥a

!open

open

!open

open

!open

open

!open

1

3 : ⊥a

open

2 : ⊥a

!open5 : ⊥a open

4 : ⊤a

!open

open

!open

open

!open

open

!open

Figure 7.2: ptLTL monitors of closed ∧ Y open’ (level 3 and 4) (assuming open ≠ closed)

84

Chapter 8

NuRV: The Tool Implementation

ABRV has been implemented in a tool called NuRV1 since 2018. NuRV is built on top of nuXmv
model checker [37] thus can access all functionalities of nuXmv and the underlying tools like
BDD library and SAT/SMT checkers. In other words, NuRV implements the Assumption-based
Runtime Verification (ABRV) with partial observability and resets. Monitoring properties
are expressed in Propositional Linear Temporal Logic (LTL) [115] with both future and past
temporal operators.

8.1 Functionalities

As a program, NuRV takes an assumption (as SMV model), some LTL properties and input
traces, and output the verification results or some standalone monitor code, according to a batch
of commands.

The detailed functionalities of NuRV can be described by the classification of RV tools
according to the taxonomy proposed in [66], as shown in Table 8.1.

NuRV can generate embedded standalone monitor code in various programming languages,
including C, C++, Java and Common Lisp. In addition, the monitor can be generated as SMV
models, whose correctness and other properties can be further verified in NuSMV or nuXmv.

From the end-users’ point of view, NuRV extends nuXmv with the following new commands:

1. build_monitor: build the symbolic monitor for a given LTL property;

2. verify_property: verify a currently loaded trace in the symbolic monitor;

3. heartbeat: verify one input state in the symbolic monitor (online monitoring);

4. generate_monitor: generate standalone monitors in a target language.

1The official web site is currently at https://es-static.fbk.eu/tools/nurv/.

85

https://es-static.fbk.eu/tools/nurv/

8.1. FUNCTIONALITIES CHAPTER 8. NURV: THE TOOL IMPLEMENTATION

Concepts Branches Classification of NuRV
Specification data propositional

output verdict, stream
time (logical) total order (linear time)
time (physical) N (discrete time)

modality all (future, past, current)
paradigm all (declarative, operational)

Monitor decision procedure automata-based
generation all (implicit, explicit)
execution all (interpreted, direct)

Deployment stage all (online, offline)
synchronisation synchronous

architecture centralised
placement all (inline, outline)

instrumentation none
Reaction active none

passive specification output
Trace information all (events, states)

sampling all (event-triggered, time-triggered)
evaluation points
precision all (precise, imprecise)

model infinite (LTL), finite (LTL3, ptLTL)

Table 8.1: Classification of NuRV according to the taxonomy [66]

The commands build_monitor and verify_property together implemented the offline mon-
itoring algorithm described in [47]. The command generate_monitor further generates
explicit-state monitors in various languages from the symbolic monitor built by the command
build_monitor. These commands must work with other nuXmv commands [27] to be useful.

4. read_model: reads a SMV file into nuXmv;

5. flatten_hierarchy: flattens the hierarchy of modules;

6. encode_variables: builds the BDD variables necessary to compile the model into a
BDD;

7. build_flat_model: compiles the flattened hierarchy into a Scalar FSM;

8. build_model: compiles the flattened hierarchy into a BDD;

9. add_property: adds an (LTL) property to the list of properties;

10. read_trace: loads a previously saved trace (in XML format).

86

CHAPTER 8. NURV: THE TOOL IMPLEMENTATION 8.2. ARCHITECTURE

Concepts BDD-based (offline) BDD-based (online) Code generation
Specification: output verdict stream both (verdict, stream)
Monitor: generation implicit implicit explicit
Monitor: executation interpreted interpreted direct
Deployment: stage offline online both (online, offline)

Deployment: placement outline outline inline

Table 8.2: Distinguished features of three NuRV modes

Model

PropDB

TraceMgr

F
la
tt
en
in
g

B
o
ol
ea
n
en
co
d
in
g

Model

Construction

Monitor

Construction

Offline

Monitor

Monitor

Generator

Online

Monitor

u1

u2

u′
1

u′
2

u′′
1

u′′
2

MK
φ1

(u1)

MK
φ1

(u2)

s0, s1, . . .

MK
φ2

(s0), . . .
φ1

φ2

φ3

φ′
1

φ′
2

φ′
3

φ′′
1

φ′′
2

φ′′
3

K K ′ K ′′

MK
φ1

MK
φ2

MK
φ3

MK
φ3

in C
MK

φ3
in C++

MK
φ3

in Java
MK

φ3
in Lisp

MK
φ3

in SMV

Figure 8.1: The architecture of NuRV

In model checking scenario, the commands 4–8 essentially initialize the system for the ver-
ification. If all these commands take default parameters (while the input model is given in
other ways, e.g. by environment variable or command line argument), the user could instead
use a single command go, which is equivalent to the command sequence 4–8. The command
add_property can be used to add new LTL properties, with each of them a monitor can be
built and associated by calling the command build_monitor. (An alternative way of adding
properties is to put them into SMV files as LTL specifications, i.e. LTLSPEC [27].)

The command read_trace can be used for loading offline traces into nuXmv for offline
monitoring. In nuXmv, a trace consists of an initial state, optionally followed by a sequence of
state-inputs pairs corresponding to a possible execution of the model. However, in RV scenario
we treat the model as an assumption which estimates the SUS, thus the trace may goes outside
of the model if being simulated on the model. The only requirement for the successful loading
of a trace, is that all variables used in the trace file (in nuXmv’s XML format) must be defined
in the model. If a variable is not mentioned in any state of the input trace, it is assumed that its
value is not observed in that state. In this way, partial observed traces can still be monitored.

87

8.2. ARCHITECTURE CHAPTER 8. NURV: THE TOOL IMPLEMENTATION

8.2 Architecture

The internal structure of NuRV is shown in Fig. 8.1. The monitor construction starts from the
modular description of a model 𝐾 (used as assumptions in ABRV) and a set of LTL properties
𝜑1, . . . , 𝜑𝑛. The model is used also to declare the variables (and their types) in which the
LTL properties are expressed, thus the alphabet of the input words of the monitors. NuRV
has inherited nuXmv’s support of hierarchical models and rich variable types (such as bound
integers and arrays), all input data (models, properties and traces) are flattened and boolean
encoded before going to further steps. The Model Construction component generates (from the
model) a BDD-based representation of the Finite State Machine (FSM), which is then used in
the monitor construction step, together with the monitoring property, to produce another BDD-
based FSM representing the symbolic monitor. The resulting monitor can be used in two ways:
1) as an online/offline monitor running inside nuXmv, accepting finite traces incrementally,
outputting verification results for each input states. 2) as the input of the Monitor Generator
component, resulting into standalone monitor code.

The Monitor Generator components internally generate monitor code in two steps: 1) gener-
ating explicit-state monitor automata from the symbolic monitor; 2) converting monitor automata
into code in specific languages. NuRV can generate

Standalone monitor code are literally translated from these monitor automata (FSMs). The
correctness of monitors in C, for instance, comes indirectly from the correctness of the symbolic
algorithm and mode checking on SMV-based monitors.

8.3 Use Case Scenario

Now we briefly demonstrate the process of generating a monitor for LTL properties 𝜑0 = 𝑝 U 𝑞

and 𝜑1 = Y𝑝 ∨ 𝑞, assuming 𝑝 ≠ 𝑞. A batch of commands shown in Fig. 8.2 does the work (also
c.f. Fig. 8.3 for the contents of two helper files).

The command go builds the model from the input file disjoint.smv which defines two
Boolean variables 𝑝 and 𝑞, together with the invariant 𝑝 ≠ 𝑞.

The generated monitors M0.c and M1.c (together with their C headers) are under the full
observability of 𝑝 and 𝑞. The variable ordering is given by the file default.ord, in which each
line denotes one variable in the model.

The simplest way to use the generated monitor, M0 for instance, is to declare an integer and
call the monitor function like this: (e.g. when monitoring a C program linked with the generated
monitor code, 𝑝 and 𝑞 may denote two assertions in the program)
int monitor_loc , out;
out = M0 (0b01 /* p & !q */, 1 /* hard */, &monitor_loc);
out = M0 (0b10 /* !p & q */, 0 /* none */, &monitor_loc);

88

CHAPTER 8. NURV: THE TOOL IMPLEMENTATION 8.3. USE CASE SCENARIO

set input_file "disjoint.smv"
set input_order_file "default.ord"
go
add_property -l -p "p␣U␣q"
add_property -l -p "Y␣p␣|␣q"
build_monitor -n 0
build_monitor -n 1
generate_monitor -n 0 -l 3 -L "c" -o "M0"
generate_monitor -n 1 -l 3 -L "c" -o "M1"
quit

Figure 8.2: Batch commands for generating monitors of 𝑝U𝑞 and Y𝑝 ∨ 𝑞

MODULE main
VAR p : boolean; q : boolean;
INVAR p != q

p
q

Figure 8.3: disjoint.smv and default.ord

There is no need to initialize the integer monitor_loc as the first M0 call with a value 1 will
also do the monitor initialization. (Actually it just set monitor_loc to 1, we may call it a hard
reset.) The first function call returns 0 indicating ABRV-LTL value ? (unknown); the second
call returns 1 indicating ⊤a (conclusive true).

For offline monitoring, there is no need to call generate_monitor in above batch command.
Suppose a trace 𝑢 = 𝑝 𝑝 𝑝 𝑞 𝑞 𝑞 has been loaded (by read_trace), the command verify_-
property verifies the trace against the symbolic monitor of 𝜑0, shown in Fig. 8.4 (here “-n 0”
denotes the first monitor, and 1 denotes the first loaded trace).

It is also possible to verify just one input state by heartbeat (online monitoring). It has a

NuRV > verify_property -n 0 1
1, unknown
2, unknown
3, unknown
4, true
5, true
6, true

Figure 8.4: Offline monitoring in NuRV

89

8.4. ONLINE MONITORING CHAPTER 8. NURV: THE TOOL IMPLEMENTATION

similar interface with verify_property, just the trace ID is replaced by a single state expressed
by a logical formula (as a string), e.g. "p & !q".

8.4 Online Monitoring

In online monitoring, the synthesized runtime monitor takes a single input state and immediately
output a verdict corresponding to the input state. The related NuRV command is heartbeat.
(For a “real” online monitor which can be called from remote, see Appendix B.) The monitor
maintains it internal states (aka belief states) for handling future inputs. The monitor can be
softly or hardly reset when taking an input state.

For RV on finite-state systems, it is also possible to generate monitor code into various
programming languages (see Chapter ?? for more details). Then it is up to the user to use such
generated monitors in a online or offline manner. However, essentially the generated monitor
are online monitors taking input states one by one.

As an example of online monitoring (using the same setting given in Fig. 8.5), the following
batch command (saved as online.cmd) can be used for demo purposes:
go
build_monitor -n 0
heartbeat -n 0 -c "p"
heartbeat -n 0 -c "p"
heartbeat -n 0 -c "p"
heartbeat -n 0 -c "q"
heartbeat -n 0 -c "q"
heartbeat -n 0 -c "q"
quit

If one calls NuRV in the following way:

$ NuRV -quiet -source online.cmd disjoint.smv <RET>

It will output the following results indicating the command output of each heartbeat
commands: (However, in practice the commands should be understood as receiving at runtime
from the system under scrutiny.)
unknown
unknown
unknown
true
true
true

Currently the online monitoring support of NuRV can only be used for debugging or manual
testing purposes (of the monitors), because interactively calling heartbeat commands is not

90

CHAPTER 8. NURV: THE TOOL IMPLEMENTATION 8.5. OFFLINE MONITORING

very useful when NuRV is actually used as online monitors. In future versions NuRV may
provide a network-based monitor server so that external callers may call heartbeat commands,
among other commands, remotely.

8.5 Offline Monitoring

In offline monitoring, one or more traces must be loaded into NuRV’s trace manager by the
command read_trace. Then user can use the command verify_property to check if a
loaded trace is verified or violated against an LTL property.

For RV on finite-state systems, it is also possible to generate monitor code into various
programming languages (see Chapter ?? for more details). Then it is up to the user to use such
generated monitors in a online or offline manner. However, essentially the generated monitor
are online monitors taking input states one by one.

MODULE main
VAR

p : boolean;
q : boolean;

INVAR
p != q

LTLSPEC
p U q

Figure 8.5: The SMV file disjoint.smv for 𝑝 U 𝑞 (assuming 𝑝 ≠ 𝑞)

The SMV model file including the LTL property is given in Fig. 8.5. Suppose we wanted to
monitor a trace 𝑢 = {𝑝,¬𝑞}{𝑝,¬𝑞}{𝑝,¬𝑞}{¬𝑝, 𝑞}{¬𝑝, 𝑞}{¬𝑝, 𝑞}, that is, for the first 3 states
𝑝 is true (and 𝑞 is false), then 𝑞 becomes true (and 𝑝 becomes false). The following XML file
(saved as trace.xml, for example) should be prepared (or generated by the user using other
programs) as the trace:
<?xml version="1.0" encoding="UTF -8"?>
<counter -example type="0" id="1" desc="LTL␣Counterexample">

<node>
<state id="1">

<value variable="p">TRUE</value>
<value variable="q">FALSE </value>

</state >
</node>
<node>

<state id="2">
<value variable="p">TRUE</value>
<value variable="q">FALSE </value>

91

8.5. OFFLINE MONITORING CHAPTER 8. NURV: THE TOOL IMPLEMENTATION

</state >
</node>
<node>

<state id="3">
<value variable="p">TRUE</value>
<value variable="q">FALSE </value>

</state >
</node>
<node>

<state id="4">
<value variable="p">FALSE </value>
<value variable="q">TRUE</value>

</state >
</node>
<node>

<state id="5">
<value variable="p">FALSE </value>
<value variable="q">TRUE</value>

</state >
</node>
<node>

<state id="6">
<value variable="p">FALSE </value>
<value variable="q">TRUE</value>

</state >
</node>

</counter -example >

The following batch command (saved as offline.cmd) will load the trace and call verify_-
property to verify the trace:
go
build_monitor -n 0
read_trace trace.xml
verify_property -n 0 1
quit

Now NuRV can be called in this way:

$ NuRV -quiet -source offline.cmd disjoint.smv <RET>

The above command will output the following results (beside a message saying the trace has
been correctly loaded and stored) indicating the verdict ? for the first 3 states and ⊤a for the
rest states: (To write monitoring results into a file, use -o command-line option with verify_-
property. Also note that the output is 0-indexed while the input trace XML is 1-indexed.)
1, unknown
2, unknown

92

CHAPTER 8. NURV: THE TOOL IMPLEMENTATION 8.6. API OF GENERATED CODE

3, unknown
4, true
5, true
6, true

Note that, starting from version 1.7.0, the first column of the output of command verify_-
property has been changed to be aligned with trace manager, i.e. the state indexes of loaded
traces now starts from 1.

8.6 API of Generated Code

NuRV currently (version 1.9.1 by the time of thesis writing) supports monitor code generation
into the following programming languages: C, C++, Java, Python, Common Lisp and Prolog.
NuRV can also generate LLVM IR (Intermediate Representation) code [107] which is near
assembly and can run on bare matel (i.e. no dependency on any external library). Besides,
NuRV supports generating SMV models. The structure of generated monitor code for all these
target languages are the same. It is simple but efficient: it simply mimics the simulations of
deterministic FSMs.

The monitor code generated (in C, for example) has the following signature:
monitor

(long /* state [in] */,
int /* reset [in] (0 = none , 1 = hard , 2 = soft) */,
int* /* current_loc: [in/out] */);

The function name (monitor here) is given by the user. It takes three parameters: 1) state:
an encoded long integer representing the current input state of the trace, 2) reset, an integer
representing the possible reset signal, and 3) current_loc: a pointer of integer holding the
internal state of the monitor. It is caller’s responsibility to allocate an integer and provide the
pointer to the monitor (otherwise the function returns -1 indicating invalid locations), and this
is actually the only thing to identify a monitor instance. The sole purpose of the function is
to update *current_loc (the value behind the pointer) according to state and reset and to
return a monitoring output. NuRV supports two different encodings for state:

1. static partial observability: state denotes a full assignment of the observables, encoded
in binary bits: 0 for false (⊥), 1 for true (⊤);

2. dynamic partial observability: state denotes a ternary number, whose each ternary bit
represents 3 possible values of an observable variable: 0 for unknown (?), 1 for true (⊤)
and 2 for false (⊥).

Note that the symbolic monitoring algorithm can take in general input states expressed in Boolean

93

8.7. CODE GENERATION – BACKENDS CHAPTER 8. NURV: THE TOOL IMPLEMENTATION

formulae (e.g., if the observables are 𝑝 and 𝑞, our monitor may take an input state “𝑝 xor 𝑞”,
either 𝑝 or 𝑞 is true but not both), but this is not supported by the generated code.

BDD operations are implemented by the BDD manager. Their performance strongly depends
on the variable ordering used in the BDD construction. This can be controlled by setting an
input_order_file in nuXmv. The input of generated monitor code requires an encoding of
BDDs into long integers according to this file. This encoding is done from the least to the
most significant bit. For instance, if the observables are 𝑝 and 𝑞 with the same order, an binary
encoding for the state {𝑝 = ⊤, 𝑞 = ⊥} would be (01)2 = 1, and a ternary encoding for the
same state would be (21)3 = 7. The design purpose is to make sure that the comparison of two
encoded states can be as fast as possible. The signatures of monitors in other languages are
quite similar, except that the parameter current_loc can be put inside C++/Java classes as an
member variable, and each monitor is an instance of the generated monitor class.

8.7 Code Generation – Backends

NuRV supports code generation of runtime monitors in Propositional LTL under finite-state
assumptions. The generated monitor code, whenever in programming languages, can be regarded
as online monitors which can also be used in offline manners. (Any online monitor is also an
offline monitor, but not vice versa.)

The monitor is deterministic. It is straightforward to generate progarm code equivalent to
the monitor FSM. The idea is to update the current monitor location according to input state and
possible reset signal, and return the monitor outputs stored at each location.

8.7.1 Code generation in Prolog

Since NuRV 1.8.0. the monitor code can be generated in ISO Prolog (by using command-line
option -L "prolog" when calling generate_monitor) as a module:
:- module(rvsynth , [monitor/5, monitor_old /5]).

where monitor is the monitor function name given by the caller, and rvsynth is the default
module name.

Monitor code in Prolog is particular interesting because essentially the monitor is generated
into relational data which can be directly put into relational database systems (RDBMS) like
Oracle (and the SQL engine can be monitoring engine).

For example, the following Prolog code is generated from LTL property G (𝑝 → X X 𝑞)
under the invariant assumption that 𝑝 ≠ 𝑞. The monitor FSM has seven locations in total. The
first part is the reset table. Since there is no past operators, all states reset to the initial state
1, including the initial state itself: (Note that code lines leading by % are Prolog comments.)

94

CHAPTER 8. NURV: THE TOOL IMPLEMENTATION 8.7. CODE GENERATION – BACKENDS

1

3 : ?
[1]

(!p & q)

2 : ?
[1]

(p & !q)

7 : N
[1]

(!p & q)

6 : N
[1]

(p & !q)(!p & q)

(p & !q)

5 : ?
[1]

(p & !q)

(!p & q)

(!p & q)

(p & !q)

4 : ?
[1]

(p & !q)

(!p & q)

(!p & q)

(p & !q)

Figure 8.6: Explicit-state monitor of G (𝑝 → X X 𝑞)

% monitor_reset_table(loc , next_loc)
monitor_reset_table (7, 1).
monitor_reset_table (6, 1).
monitor_reset_table (5, 1).
monitor_reset_table (4, 1).
monitor_reset_table (3, 1).
monitor_reset_table (2, 1).
monitor_reset_table (1, 1).

The second part is the transition table of
the monitor FSM. The table has four columns:
location, (input) states, output, and next loca-
tion. Note that input states are single element
list, in which the elements are bitwise encod-
ing of two Boolean variables 𝑝 and 𝑞:

% monitor_trans_table(loc , states , output , next_loc)
monitor_trans_table (7, [1], 2, 6).
monitor_trans_table (7, [2], 2, 7).
monitor_trans_table (6, [1], 2, 6).
monitor_trans_table (6, [2], 2, 7).
monitor_trans_table (5, [1], 2, 6).
monitor_trans_table (5, [2], 0, 3).
monitor_trans_table (4, [1], 2, 6).
monitor_trans_table (4, [2], 0, 5).
monitor_trans_table (3, [1], 0, 2).
monitor_trans_table (3, [2], 0, 3).
monitor_trans_table (2, [1], 0, 4).
monitor_trans_table (2, [2], 0, 5).
monitor_trans_table (1, [1], 0, 2).
monitor_trans_table (1, [2], 0, 3).

The third part is just a table translating
the numerical outputs into symbolic verdicts:
(Note that there is still another symbol error
as out-of-model.)

% monitor_output_table(output , verdict)
monitor_output_table (0, unknown).
monitor_output_table (1, true).
monitor_output_table (2, false).

The main Prolog predicate is called monitor with the following API of five parameters:

% new API: monitor(states , reset , loc , output , next_loc)

95

8.7. CODE GENERATION – BACKENDS CHAPTER 8. NURV: THE TOOL IMPLEMENTATION

Of the five parameters: states, reset and loc are input parameters, while output and next_loc
are output parameters. The actual definition of the monitor engine is divided by different
combinations of input parameters:

1. On hard resets, the monitor sets whatever current location to the initial location and issues
no reset for the rest of processing:
monitor(S, hard_reset , _, V, NL) :- monitor(S, no_reset , 1, V, NL), !.

2. On soft resets, the current location is changed according to the reset table, then the monitor
is given by the location after resets, while other parameters are the same:
monitor(S, soft_reset , L, V, NL) :-

monitor_reset_table(L, RL), !,
monitor(S, no_reset , RL, V, NL).

3. If the current location match any location in the transition table, then the monitor’s output
can now be decided:
monitor ([S0], no_reset , L, V, NL) :-

monitor_trans_table(L, [S0], O, NL), !,
monitor_output_table(O, V).

4. Finally, if the current location match any location in the transition table, which indicates
that the monitor has gone outside of the model (assumptions):
monitor(_, no_reset , L, error , L).

Note that the above Prolog code logic can be easily implemented in SQL while the data tables
can be real tables in any RDBMS. In the other code generation languages, essentially we are
following the same structure of the above Prolog code.

8.7.2 Code generation in C

The monitor code generated in ANSI C (by using command-line option -L "c" in generate_-
monitor) has the following (old) signature:
int /* [out] (0 = unknown , 1 = true , 2 = false , 3 = out -of -model) */

monitor
(long /* state [in] */,
int /* reset [in] (0 = none , 1 = hard , 2 = soft) */,
int* /* current_loc: [in/out] */);

Note that the maximum number of observable bits is limited by C long type, which has at
most 31 valid bits in portable code. Starting from NuRV 1.8.0, the following new signature
is also generated with first parameter long states extended to an array of longs which can
support arbitrary number of underlying bits:

96

CHAPTER 8. NURV: THE TOOL IMPLEMENTATION 8.7. CODE GENERATION – BACKENDS

RV_value monitor_ex
(long *states , /* [in] */
size_t width , /* [in] */
RV_reset reset , /* [in] */
int *current_loc); /* [in/out] */

The two types RV_value and RV_reset involved in the above signature are enumerations
with underlying values compatible with the old interface:
typedef enum {

RV_UNKNOWN = 0, RV_TRUE = 1, RV_FALSE = 2, RV_ERROR = 3,
RV_INVALID_ARG = 4, RV_INVALID_LOC = 5

} RV_value;

typedef enum {
NO_RESET = 0, HARD_RESET = 1, SOFT_RESET = 2

} RV_reset;

The function name (monitor here) is given by the user when calling the NuRV command
generate_monitor. (Note that, in the new signature, a suffix _ex is attached to the monitor
function name.)

The generated monitor fucntions takes three (or four) parameters:

1. state (or states): an encoded long integer (or an array of long integers) representing the
current input state of the trace,

2. width: in the new signature, this is the length of states supplied by the user.

3. reset, an integer representing the possible reset signal, and

4. current_loc: a pointer of integer holding the internal state of the monitor.

It is the caller’s responsibility to allocate an integer and provide the pointer to the monitor
(otherwise the function returns -1 or RV_INVALID_LOC indicating invalid locations).

NuRV supports two different encodings for state (or states) (depending on the presense
of the command-line option -p when calling generate_monitor):

1. Static partial observability: state denotes a full assignment of the observables, encoded
in binary bits: 0 for false (⊥), 1 for true (⊤);

2. Dynamic partial observability: state denotes a ternary number, whose each ternary bit
represents 3 possible values of an observable variable: 0 for unknown (?), 1 for true (⊤)
and 2 for false (⊥).

Note that the symbolic monitoring algorithm can take in general input states expressed in
Boolean formulae (e.g., if the observables are 𝑝 and 𝑞, our monitor may take an input state
“𝑝 xor 𝑞”, either 𝑝 or 𝑞 is true but not both), but this is not supported by the generated code.

97

8.7. CODE GENERATION – BACKENDS CHAPTER 8. NURV: THE TOOL IMPLEMENTATION

BDD operations are implemented by the BDD manager. Their performance strongly depends
on the variable ordering used in the BDD construction. This can be controlled by setting an
input_order_file in nuXmv. The input of generated monitor code requires an encoding of
BDDs into long intergers according to this file. This encoding is done from the least to the
most significant bit. For instance, if the observables are 𝑝 and 𝑞 with the same order, an binary
encoding for the state {𝑝 = ⊤, 𝑞 = ⊥} would be (01)2 = 1, and a ternary encoding for the
same state would be (21)3 = 7. The design purpose is to make sure that the comparison of two
encoded states can be as fast as possible.

In the new signature, an array of long integers states with the length of array, width, are
supplied by the caller. To correctly fill up this array, it is important for the caller to know the
following information:

1. How many bits are encoded into a single long integer?

This value is given by a per-monitor generated C macro monitor_segment, whose default
value is 31 but may be changed to be flexible in the future.

2. How many long integers are necessary?

The minimal value of width is given by a C macro monitor_width. Note that providing
a bigger array will not cause any issue as the generated monitor code simply will not read
those extra elements. On the other hand, an input array whose length is smaller than
monitor_width will immediately cause the monitor to return RV_INVALID_ARG (invalid
arguments).

8.7.3 Structure-based interface of monitors in C

Note that, besides Boolean variables, the SMV language also supports finite-domain integers
and fixed-length machine words, which is called scalar variables. In the BDD-based symbolic
monitoring, scalar variables can be freely used in the model and monitoring properties, because
internally they are encoded as Boolean bits. (In the SMT-based monitoring, most of the scalar
variables are directly handled by the underlying SMT solvers.)

However, when generating standalone monitor code, it is almost impossible for the end user
to do the bit encodings for scalar variables, because the mapping between a scalar variable and
its underlying bits is totally an internal matter of NuRV without clear patterns. Even with only
Boolean variables in the model, the encoding of Boolean values into state (or states) should
be a task that can be automated during the code generation process.

Suppose there are 4 Boolean variables 𝑝, 𝑞, 𝑟, 𝑠 in the model, NuRV also generates the
following scalar signature:
/* input data */
typedef struct {

98

CHAPTER 8. NURV: THE TOOL IMPLEMENTATION 8.7. CODE GENERATION – BACKENDS

short p; /* 0: false , other: true */
short q; /* 0: false , other: true */
short r; /* 0: false , other: true */
short s; /* 0: false , other: true */

} monitor_input_t;

/* input masks (0: not observable , 1: observable) */
typedef struct {

unsigned int p : 1;
unsigned int q : 1;
unsigned int r : 1;
unsigned int s : 1;

} monitor_mask_t;

/* 3. scalar API */
RV_value monitor_scalar

(monitor_input_t *input ,
monitor_mask_t *masks ,
RV_reset reset ,
int *current_loc);

Now, instead of encoding the values of 𝑝, 𝑞, 𝑟, 𝑠 into long integers, now the end user only
need to allocate a structure monitor_input_t and set the Boolean values directly as slots of
this structure. (Note that each Boolean variable is mapped to a C short value.)

Remark 8.7.1. (The other structure monitor_mask_t is intended to support partial observ-
ability of values in the structure monitor_input_t, i.e. an input value is considered observable
whenever the corresponding slot in monitor_mask_t is non-zero. Currently this is not imple-
mented yet, and user can just supply NULL as the value of masks.)

In another case, the model contains the following variables:
VAR

i : 140 .. 160;
k : {a, b, 0, 1};
l : {b, c};

where a, b and c are constant symbols. NuRV may generate the following code where m1 is the
monitor name:
/* constants used in the model */
enum {

b = 2,
a = 3,
c = 4

};

/* input data */

99

8.7. CODE GENERATION – BACKENDS CHAPTER 8. NURV: THE TOOL IMPLEMENTATION

typedef struct {
int i;
int k;
int l;

} m1_input_t;

/* input masks (0: not observable , 1: observable) */
typedef struct {

unsigned int i : 1;
unsigned int k : 1;
unsigned int l : 1;

} m1_mask_t;

/* 3. scalar API */
RV_value m1_scalar

(m1_input_t *input ,
m1_mask_t *masks ,
RV_reset reset ,
int *current_loc);

Then the caller may, for example, set 𝑖 = 150, 𝑘 = 𝑏, 𝑙 = 𝑏 when calling the generated monitor
code. The encoding of scalar varibles into underlying Boolean bits are done automatically by
the generated monitor code. BDD input ordering file is not needed if the caller only uses the
scalar API.

8.7.4 Observable expressions in generated monitor

One major problem of using scalar variables in generated monitor code is that there are usually
too many underlying Boolean bits. For example, a finite domain integer having values from
0 to 1024 will involved 10 underlying Boolean bits, and in the worst case each single value
of this integer may correspond to one possible monitor input (transition arc) in the generated
explicit-state monitor. With several scalar variables it is easy to cause a blow up in the size of
generated code.

To overcome the potential blow up in the size of generated monitor code. NuRV now
supports setting observable expressions during the monitor code generation. For example, if
the monitoring property is (𝑖 < 150) U (𝑖 >= 150), while 𝑖 is a finite domain integer having a
large range of values, without further constraints in the model the generated monitor could be
already accurate if (𝑖 < 150) and (𝑖 >= 150) were considered as atomic propositions, and the
generated monitor should have the same size as the one generated from 𝑝U 𝑞 where 𝑝 and 𝑞
are Boolean variables. However, the generated monitor should still accept the original values
of 𝑖, and the calculation of (𝑖 < 150) and (𝑖 >= 150) should be done in the generated code,
to re-contruct the underlying internal bits. The propositions (𝑖 < 150) and (𝑖 >= 150) can

100

CHAPTER 8. NURV: THE TOOL IMPLEMENTATION 8.7. CODE GENERATION – BACKENDS

be considered as observable expressions. (It is user’s responsibility to supply a good list of
observable expressions to have the generated monitors accurate enough.)

To generate monitor with observable expressions, a new parameter -C is added into the
command generate_monitor. -C takes a file name, in which each line is an observable
expression. See NuRV User Manual [51] for more details.

8.7.5 Code generation in C++

The monitor code can be generated as classes in C++ (ISO/IEC 14882, aka C++98) (by using
command-line option -L "cpp" when calling generate_monitor.) The generated monitor
class headers are like this:
class monitor : base_monitor {
public:

monitor () { current_loc = 1; }
int run(long state , int reset); // old API
RV_value run(vector <long > &states , RV_reset reset); // new API

private:
...

}

Both old and new APIs are supported. For the new API, a vector of long values are supplied to
support arbitrary number of Boolean bits.

All generated monitor C++ classes inherit a common base class called base_monitor:
class base_monitor {
protected:

int current_loc;
public:

virtual RV_value run(vector <long > &states , RV_reset reset) {
return RV_ERROR;

};
};

The presense of a share base class allows calling different monitors from the (virtual) method
calls of the base class (polymorphism). The involved types RV_value and RV_reset have the
same definitions as the generated code in C.

The generated C++ code is compatible with C++98, C++11 and later C++ standards.

8.7.6 Code generation in Java

The monitor code can be generated in Java (by using command-line option -L "java" when
calling generate_monitor.) Java code is always object oriented. The Java monitor class has
the following structure:

101

8.7. CODE GENERATION – BACKENDS CHAPTER 8. NURV: THE TOOL IMPLEMENTATION

package eu.fbk.rvsynth;

public class Monitor extends BaseMonitor {
private int current_loc = 1;
// old API
public int // 0 = unknown , 1 = true , 2 = false , 3 = error

run (long state ,
int reset) // 0 = none , 1 = hard , 2 = soft

{
...

}

// new API
public RV_value run(long[] states , RV_reset reset)
{

...
}

}

The default Java package name eu.fbk.rvsymth can be changed by -m parameter of the
command generate_monitor.

A base class BaseMonitor is generated in a separate code file BaseMonitor.java in the
same directory with the following contents:

package eu.fbk.rvsynth;

// monitor base class
public abstract class BaseMonitor {

// old API
public abstract
int /* out (0 = unknown , 1 = true , 2 = false , 3 = error) */

run (long state ,
int reset /* in (0 = none , 1 = hard , 2 = soft) */);

// new API
public abstract RV_value run(long[] states , RV_reset reset);

};

Two helper classes RV_reset and RV_value are also generated in separate code files. The
generated Java code is tested on JDK 8 and should work in more recent JDK versions.

8.7.7 Code generation in Common Lisp

The monitor code can be generated in Common Lisp, a major dialect of LISP, the second (the first
is FORTRAN) oldest advanced programming language in the history of computer science. This
is supported in NyRV by using command-line option -L "lisp" when calling generate_-

102

CHAPTER 8. NURV: THE TOOL IMPLEMENTATION 8.7. CODE GENERATION – BACKENDS

monitor. The generated Common Lisp is Object-Oriented (in CLOS, aka the Common Lisp
Object System), having the following structure:
;;; base monitor class
(defclass base -monitor ()

((current -loc :type fixnum :accessor current -loc :initform 1)
(reset -table :type simple -vector :reader reset -table)
(trans -table :type simple -vector :reader trans -table))

(: documentation "NuRV␣base␣monitor␣class"))

;;; generic function
(defgeneric run (instance states reset)

(: documentation "monitor␣entry␣function"))

;;; monitor class
(defclass monitor (base -monitor)

()
(: documentation "NuRV␣monitor␣class"))

;;; old API
(defmethod run ((instance monitor) (state fixnum) (reset symbol))

...)

;;; new API
(defmethod run ((instance monitor) (states sequence) (reset symbol))

...)

8.7.8 Code generation in LLVM IR

The monitor code can be generated in LLVM Intermediate Representation (LLVM IR) [107], by
using command-line option -L "llvm" when calling generate_monitor. This functionality
is made by outputting LLVM IR code in plain text without linking any library from LLVM.
In particular, the resulting LLVM IR code does not call any external function like functions in
standard C library. For this purposes, when doing binary search, the searching algorithm is also
emitted in LLVM IR as part of the embedded monitor engine.

Essentially the API is the same as the generated C code, except that all involved long values
in the C code are fixed as signed 32-bit integers in LLVM IR code. Both old and new APIs are
supported. Below are the code pieces showing the beginning part of external functions:
; main function (old API)
define external i32 @monitor

(i32 %state_in , ; [in]
i32 %reset , ; [in]
i32* %current_loc) ; [in/out]

{

103

8.7. CODE GENERATION – BACKENDS CHAPTER 8. NURV: THE TOOL IMPLEMENTATION

...
}
; main function (new API)
define external i32 @monitor_ex

([1 x i32]* %states , ; [in]
i32 %width , ; [in]
i32 %reset , ; [in]
i32* %current_loc) ; [in/out]

{
...

}

There’s no separate header generated. The headers generated for C code can be used in a
compatible way.

LLVM IR is assembly-like, simplier to parse and analyze (by using libraries from the LLVM
project, thus is considered as a good intermediate language for exchanging purposes. In theory,
end users can write their own translators for the translation of generated monitor code from
LLVM IR to other programming languages.

8.7.9 Code generation in SMV

The monitor code generated in SMV (by using command-line option -L "smv" when calling
generate_monitor) are mainly for model checking purposes (to verify the correctness of the
monitor itself). The following SMV file represents the monitor of 𝑝U𝑞:
MODULE monitor (p, q, _reset)

VAR
_loc : 0 .. 4;
_rloc : 0 .. 4;
_out : { true , false , unknown , error };

DEFINE
_true := ((_loc = 4) | (_loc = 3) | FALSE);
_false := (FALSE);
_unknown := ((_loc = 2) | (_loc = 1) | FALSE);
_error := (_loc = 0);
_valid := _true | _false | _unknown;
_concl := _true | _false;

ASSIGN
_out := case

_true : true; _false : false; _unknown : unknown; TRUE : error;
esac;

_rloc := _reset ? case

104

CHAPTER 8. NURV: THE TOOL IMPLEMENTATION 8.7. CODE GENERATION – BACKENDS

(_loc = 4) : 1; (_loc = 3) : 1; (_loc = 2) : 1; (_loc = 1) : 1; TRUE : 0;
esac : _loc;

init(_loc) := 1;
next(_loc) := case

((_rloc = 4) & (!p & q)): 3;
((_rloc = 4) & (p & !q)): 4;
((_rloc = 3) & (!p & q)): 3;
((_rloc = 3) & (p & !q)): 4;
((_rloc = 2) & (!p & q)): 3;
((_rloc = 2) & (p & !q)): 2;
((_rloc = 1) & (!p & q)): 3;
((_rloc = 1) & (p & !q)): 2;
TRUE : 0;

esac;

INVARSPEC
count(_true , _false , _unknown , _error) = 1;

In Section 9.1.2, we show how the generated SMV models are used for verifying some
characteristics of the corresponding monitors.

105

8.7. CODE GENERATION – BACKENDS CHAPTER 8. NURV: THE TOOL IMPLEMENTATION

106

Chapter 9

Experimental Evaluation

9.1 Tests for Finite-State Monitors

In this section, we report about the experiments performed to validate the approach and evaluate
its performance. The correctness of generated explicit-state monitor code has been extensively
tested by comparing the outputs with those from the symbolic monitors, on a large set of LTL
properties and random traces.

9.1.1 Tests on the factory model

As a proof of concept, we evaluated the factory example described in Section 4.5. The related
model files are part of the downloadable artifacts. The SMV model definition is also given in
Appendix (Section A.1).

In particular, we found that the monitor of the property, generated with the factory model as
assumption, is indeed predictive: it outputs⊥a almost immediately after the first fault happened.1
To see such a possible trace, again we used model checking. In particular, we considered the
LTL specification ¬F AV with AV := (M1._concl ∧ ¬ M2._concl), where M1 and M2 are the
monitor instances of the SMV modules generated from the above safety property built with
(without) assumption, respectively. The counter-example shows such a trace: the fault happens
at state 4, and the filling of the red ingredient at position 0 failed at position 1; the monitor with
assumption outputs ⊥a at state 6, before the bottle is moved to position 1, while the monitor
without assumption can only output⊥a at state 10, after the bottle is moved to position 2. This is
because any unfilled bottle at position 0 or 1 will remain unfilled at position 2 under the model,
thus the monitor with assumption knows the faults before any unfilled bottle arrived at position
2, even if the fault itself is not directly observable. In practice, there may be more positions (and

1Actually in this case the monitor outputs ⊥a one step after the fault happens. It did not immediately outputs ⊥a at the moment when the
fault happens because, according to the model, the bottle may get filled again before the belt moves.

107

9.1. TESTS FOR FINITE-STATE MONITORS CHAPTER 9. EXPERIMENTAL EVALUATION

more ingredients) in the assembly line, reporting the faults as early as possible may skip the rest
of filling operations of the faulty bottle (e.g. the bottle can be removed from the assembly line
by a separate recovery process) and potentially reduce the costs.

In another test (see fault_monitor.cmd in the artifacts), a monitor for LTL property
G¬(fault[0] ∨ fault[1]) is built for monitoring faults. Two sample traces are prepared,
with a fault happens at position 1 and 2, respectively. With the factory model as assumptions,
the monitor immediately reports ⊥a when the fault happens.

In the test of resets, we simulated a scenario in which two faults happens at different time2,
and we would like to see the monitor being reset after the first detection of violation and
continue to work just like the fault did not happen, until the next fault. In the sample trace,
observables are the following: bottle_present[0], bottle_ingr1[0], bottle_ingr2[1],
bottle_present[2], bottle_ingr1[2], and bottle_ingr2[2].

The first fault happens at state 3 when the red ingredient was being filled into a new bottle
at position 0, while the second fault happens at state 7 when the red ingredient was being filled
into another new bottle at position 0. The first fault is detected by the monitor at state 4 (as
early as possible, given the observations), and then the bottle moved out of the assembly line
since state 8. Here the resetting strategy is to reset the monitor immediately after each violation.
However, since the faulty bottle remains on the belt until state 7, the monitor will keep outputting
⊥a for these states (from 4 to 7). At state 8 the monitor verdicts would have been restored to
inconclusive if there were no other faulty bottles, but actually the verdict is still⊥a, as the second
fault is now detected, although the faulty bottle is still at position 1, thanks to the observations
since state 6. (The monitor of G¬(fault[0] ∨ fault[1]), on the other hand, reports the first
fault immediately at state 3, and after resets the monitor verdicts restored to inconclusive; Then it
reports the second fault again immediately (at state 7) and restored to inconclusive after resets.)

9.1.2 Tests on Dwyer’s LTL patterns

To show the feasibility and effectiveness of our RV approach, we have generated monitors from
a wide coverage of practical specifications, i.e. Dwyer’s LTL patterns [61]3.

To show the impact of assumptions, we generated two groups of monitors, with and with-
out assumption. The chosen assumption says that the transitions to 𝑠-states occur at most 2
times, which can be expressed in LTL as ((¬𝑠)W (𝑠W ((¬𝑠)W (𝑠W (G¬𝑠))))). Under this
assumption we found that, non-monitorable properties like G(𝑝 → F𝑠) now become moni-
torable, i.e. the monitor may output conclusive verdicts on certain inputs. This is because, if
the transitions to 𝑠-state have already occurred 2 times, there should be no 𝑠 any more in the

2See factory_example/trace3.xml in the artifact for the contents of this trace.
3The latest version (55 in total) is available at https://matthewbdwyer.github.io/psp/patterns/ltl.html. We call them Pattern

0, 1, . . . , 54 in the same order.

108

https://matthewbdwyer.github.io/psp/patterns/ltl.html

CHAPTER 9. EXPERIMENTAL EVALUATION 9.1. TESTS FOR FINITE-STATE MONITORS

×
×

××

×

×

×

×

×
×

×

×

×

×

×

×
×

×× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

××

×
×

×

×

×

×

×
×
× ×

×

×
×

×

×

××
××

×

×

×

×

×

×
×

×

××

××

×
×

×

×

×

×

×

×
×

×
×

×

×

×

××

××

×
×

×

×
×

×

×

×

×

×

×

×

×

×

××

×

×

×

×
××

×

×

×

×

××

×

× ×

×
×

×

×

×

×

×

×
×
×

×
×

×

××
×

×

×

×

×

×

× ×

×

×

×

×

×

×
××

×

× ××

×

×

×

×

×
×

×

×

×

×

××

×

×

×

×

×

× ×

×
×

×

×

×

×

×

×
×

×
××

×

×××××

×

×

×

×

×

×

×

×

×
×

×

×

××
×

×
×

×
× ×

× ××

××

×

×
×

×

×

×

×
×

×

×

×

×

×

× ×

×

×

×

×

×
×

×
×

×

×

×

×

××

×
×

×

×
×

×

×

×
×
×

×

×

×
×
×

×

× ×
×
×

×

×

×

×

×

×

×

×

×

×

×

×
×

××
×

×

×

0 10 20 30 40

0

10

20

30

40

Length of trace before concl. (w/o assumption)

Pattern 49 (288 of 500 traces)

Le
ng

th
of

tra
ce

be
fo

re
co

nc
l.

(w
ith

as
su

m
pt

io
n)

×
×

××

×

×

×

×

××

×

×

×
×

×

×
×

×× ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×
××
×
×

×

×

×

×

×
×

×

×
×

×

××
××

××

×

×

×

× ×

×

××

××

×
×

×

×

×

×
×

×
×

×

×

××

×
×

×
×

×

×
×

×

×

×

×

×

×

×
×

×

×

×

×

×

×××

×

×

×
×

×

××

×
×

×

×

×
×

×

×

×××

×

×

×

×

×

× ×

×

×

×

×

×
××

×

×
×

×

×

×

×

×
×

×

×

×
××

×

×
×

×

× ×

×
×

×

×

×

×

×

×
×

×

×××××

×

×

×

×

×

×

×

× ×

×

××
×

×
×

×
× ×

××

××

×

×
×

×

×

×

×
×

×

×

×

×

×

× ×

×

×

×

×
×

×

×

×

×

×

××

×

×

×

×

×
×

×

×

×

×
×

×

××
× ×

×

×

×

×

×

×

×

×

×××
×

×

×

0 10 20 30 40

0

10

20

30

40

Length of trace before concl. (w/o assumption)

Pattern 54 (255 of 500 traces)

Le
ng

th
of

tra
ce

be
fo

re
co

nc
l.

(w
ith

as
su

m
pt

io
n)

Figure 9.1: The number of observations before a conclusive verdict, with and without assumptions

remaining inputs. Thus whenever 𝑝 occurs, for whatever future inputs it is impossible to satisfy
F𝑠, thus the property is violated conclusively. Eight monitors (Pattern 25, 27, 40, 42, 43, 44,
45, 50) are found to be monitorable under this fairness assumption.

On the other hand, under this assumption some patterns result in predictive monitors, which
output conclusive verdicts earlier than those without assumptions. For showing it, we generated
500 random traces (uniformly distributed), each with 50 states, under the assumption (thus
the monitor outputs cannot be out-of-model). For each pair of monitors (with and without
assumption), we record two numbers of states before reaching a conclusive verdict. Whenever
the two numbers are the same, the related plot is omitted. In summary, fifteen monitors (Pattern
25, 27, 29, 37, 38, 39, 40, 41, 42, 43, 44, 45, 49, 50, 54) are predictive, and five of them (Pattern
29, 37, 41, 49, 54) have more than 50 traces showing the difference. Fig. 9.1 shows, for example,
the tests of Pattern 29 (𝑠 responds to 𝑝 after 𝑞 until 𝑟) and 49 (𝑠, 𝑡 responds to 𝑝 after 𝑞 until
𝑟). The time needed to run the tests on all traces is almost negligible (less than one second) for
each pattern.

The interesting traces (which show predictive verdicts) can be also obtained by model check-
ing on monitors generated into SMV models. Suppose we have two monitors M1 (with as-
sumption) and M2 (w/o assumption), and AV := (M1._concl ∧ ¬ M2._concl) (the assump-
tion is valuable iff M1 has reached conclusive verdicts (⊤a, ⊥a or ×) while M2 has not),
then the counter-example of model-checking ¬F AV (AV cannot eventually be true) will be
a trace showing that the monitor M1 is predictive: ∅, {𝑝, 𝑠}, ∅, 𝑠, 𝑝, ∅, Furthermore, it
is possible to find a trace such that the distance of conclusive outputs from the two mon-

109

9.1. TESTS FOR FINITE-STATE MONITORS CHAPTER 9. EXPERIMENTAL EVALUATION

Table 9.1: Eight long formulae from Dwyer’s patterns
ID Pattern LTL
13 Trans to 𝑝 occ. at most twice (betw. 𝑞 and 𝑟) G ((𝑞 ∧ F 𝑟) → ((¬𝑝 ∧ ¬𝑟) U (𝑟 ∨ ((𝑝 ∧ ¬𝑟) U (𝑟 ∨

((¬𝑝 ∧ ¬𝑟) U (𝑟 ∨ ((𝑝 ∧ ¬𝑟) U (𝑟 ∨ (¬𝑝U 𝑟))))))))))
14 Trans to 𝑝 occ. at most twice (after 𝑞 until 𝑟) G (𝑞 → ((¬𝑝 ∧ ¬𝑟) U (𝑟 ∨ ((𝑝 ∧ ¬𝑟) U (𝑟 ∨ ((¬𝑝 ∧ ¬𝑟)

U (𝑟 ∨ ((𝑝 ∧ ¬𝑟) U (𝑟 ∨ (¬𝑝W 𝑟) ∨G 𝑝)))))))))
39 𝑝 precedes 𝑠, 𝑡 (after 𝑞 until 𝑟) G (𝑞 → (¬(𝑠 ∧ (¬𝑟) ∧ X (¬𝑟 U (𝑡 ∧ ¬𝑟))) U (𝑟 ∨ 𝑝)∨

G (¬(𝑠 ∧ X F 𝑡))))
43 𝑝 responds to 𝑠, 𝑡 (between 𝑞 and 𝑟) G ((𝑞 ∧ F 𝑟) → (𝑠 ∧ X (¬𝑟 U 𝑡) → X (¬𝑟 U (𝑡 ∧ F 𝑝))) U 𝑟)
44 𝑝 responds to 𝑠, 𝑡 (after 𝑞 until 𝑟) G (𝑞 → (𝑠 ∧ X (¬𝑟 U 𝑡) → X (¬𝑟 U (𝑡 ∧ F 𝑝)))

U (𝑟 ∨G (𝑠 ∧ X (¬𝑟 U 𝑡) → X (¬𝑟 U (𝑡 ∧ F 𝑝)))))
49 𝑠, 𝑡 responds to 𝑝 (after 𝑞 until 𝑟) G (𝑞 → (𝑝 → (¬𝑟 U (𝑠 ∧ ¬𝑟 ∧ X (¬𝑟 U 𝑡)))) U (𝑟∨

G (𝑝 → (𝑠 ∧ X F 𝑡))))
53 𝑠, 𝑡 without 𝑧 responds to 𝑝 (betw. 𝑞 and 𝑟) G ((𝑞 ∧ F 𝑟) → (𝑝 → (¬𝑟 U (𝑠 ∧ ¬𝑟 ∧ ¬𝑧∧

X ((¬𝑟 ∧ ¬𝑧) U 𝑡)))) U 𝑟)
54 𝑠, 𝑡 without 𝑧 responds to 𝑝 (after 𝑞 until 𝑟) G (𝑞 → (𝑝 → (¬𝑟 U (𝑠 ∧ ¬𝑟 ∧ ¬𝑧 ∧ X ((¬𝑟 ∧ ¬𝑧) U 𝑡))))

U (𝑟 ∨G (𝑝 → (𝑠 ∧ ¬𝑧 ∧ X (¬𝑧U 𝑡)))))

itors is arbitrary large. For this purpose, we can setup a bounded counter 𝑐, whose value
only increases when AV is true and then verify if 𝑐 can reach a given maximum value, say,
10. By checking the invariance specification 𝑐 < 10, the counter-example will be the de-
sired trace. Similarly, the monotonicity (G M._unknown ∨ (M._unknownU M._concl)), the
correctness ((F M._true) → 𝜑 and (F M._false) → ¬𝜑), and the correctness of resets
(X𝑛 (M._reset ∧ X(¬ M._resetU M._true)) → X𝑛𝜑) of any monitor M generated from 𝜑

can also be checked in nuXmv.

9.1.3 Comparisons with RV-Monitor

The purpose here is to generate the same monitors from NuRV and RV-Monitor (rvm) and
compare their performances and other characteristics. All these patterns are expressed in six
Boolean variables (𝑝, 𝑞, 𝑟, 𝑠, 𝑡 and 𝑧). RV-Monitor is event-based, i.e. the alphabet is the set
of these variables instead of their power set. This means our monitors can be built under the
assumption that all six variables are disjoint.

Unfortunately, RV-Monitor (rvm) fails in generating monitors from eight long formulae
(Pattern 13, 14, 39, 43, 44, 49, 53 and 54), shown in Table 9.1. Also it does not generate4

monitors from all ten safety properties (Pattern 5, 7, 22, 25, 27, 40, 41, 42, 45 and 50).
Eventually we got only 37 monitors out of 55 LTL patterns, and we confirmed that, whenever
rvm monitors report violations, our monitors behave the same. Our 55 monitors were quickly
generated in 0.467s (MacBook Pro with Intel Core i7 2.6 GHz, 4 cores) using a single core,

4The error message is “violation is not a supported state in this logic, ltl.”

110

CHAPTER 9. EXPERIMENTAL EVALUATION 9.1. TESTS FOR FINITE-STATE MONITORS

Figure 9.2: Performance of generated Java monitors on 107 states.

while the 37 rvm monitors were generated in 78.619s on the same machine using multiple cores.

We observed that rvm monitors does not report further violations once the first violation
happens, and goes into terminal states. To get visible performance metrics we chose to reset all
monitors once a violation is reported. Also, to prevent extra performance loss in rvm monitors
by creating multiple monitor instances [41], we have used a single trace (stored in a vector) with
107 random states. For each of the 37 LTL patterns, we recorded the time (in ms) spent by
both monitors (running in the same Java process), the result is shown in Fig. 9.2. Our monitors
(in Java) have shown a constant-like time complexity (approx. 250ms), i.e. the time needed
for processing one input trace is almost the same for all patterns. This reflects the spirit of
automata-based approaches. Rvm monitors vary from 500ms to more than 6s, depending on the
number of resets.

9.1.4 Comparisons with DejaVu (for ptLTL)

We compared the performance of NuRV with DejaVu on several typical ptLTL formulae. The
monitoring specification of DejaVu is QTL (Quantifier Temporal Logic) with only past temporal
operators [90]. Ignoring first-order quantifiers, the rest of the QTL semantics, especially for the
past operator, is exactly the same as the alternative ptLTL semantics given in Definition 7.1.2.
Thus the same (first-order) ptLTL property should result into equivalent monitors between
DejaVu and NuRV.

However, as NuRV supports only propositional LTL, we have to simplify the original QTL
formulae, shown in Table 9.2, to propositional ptLTL formulae with selective instantiations of

111

9.1. TESTS FOR FINITE-STATE MONITORS CHAPTER 9. EXPERIMENTAL EVALUATION

quantifiers, shown in Table 9.3. The QTL specification access requires that to access a file a
user must first login (without logout) while the file must be opened before being closed. In its
ptLTL version, we assume that there are just one user and one file. The QTL specification file
says that to close a file it must be first opened without being closed yet. In its ptLTL version, we
assume three such files, each has the same requirements independently. The QTL specification
fifo describes a FIFO (First In First Out) scenario: whoever enters an area must also exit first.
In its ptLTL version we consider only two such persons. DejaVu is event-based, i.e. each state
of the input trace has just one (first-order) proposition. Thus NuRV must assume all involved
propositions are djsjoint.

Name QTL specification
access ∀𝑢𝑠𝑒𝑟, 𝑓 𝑖𝑙𝑒. 𝑎𝑐𝑐𝑒𝑠𝑠(𝑢𝑠𝑒𝑟, 𝑓 𝑖𝑙𝑒) →

[𝑙𝑜𝑔𝑖𝑛(𝑢𝑠𝑒𝑟), 𝑙𝑜𝑔𝑜𝑢𝑡 (𝑢𝑠𝑒𝑟)) ∧ [𝑜𝑝𝑒𝑛(𝑓 𝑖𝑙𝑒), 𝑐𝑙𝑜𝑠𝑒(𝑓 𝑖𝑙𝑒))
file ∀ 𝑓 . 𝑐𝑙𝑜𝑠𝑒(𝑓) → ∃𝑚. [𝑜𝑝𝑒𝑛(𝑓 , 𝑚), 𝑐𝑙𝑜𝑠𝑒(𝑓))
fifo ∀𝑥. (𝑒𝑛𝑡𝑒𝑟 (𝑥) → ¬Y O 𝑒𝑛𝑡𝑒𝑟 (𝑥)) ∧

(𝑒𝑥𝑖𝑡 (𝑥) → ¬Y O 𝑒𝑥𝑖𝑡 (𝑥)) ∧ (𝑒𝑥𝑖𝑡 (𝑥) → Y O 𝑒𝑛𝑡𝑒𝑟 (𝑥)) ∧
(∀𝑦. (𝑒𝑥𝑖𝑡 (𝑦) ∧O (𝑒𝑛𝑡𝑒𝑟 (𝑦) ∧ Y O 𝑒𝑛𝑡𝑒𝑟 (𝑥))) → Y O 𝑒𝑥𝑖𝑡 (𝑥))

Table 9.2: The original QTL specification used in tests. [𝑝, 𝑞) is an abbreviation of (¬𝑞) S 𝑝.

Name ptLTL specification
access 𝑎𝑐𝑐𝑒𝑠𝑠→ Y ((¬ 𝑙𝑜𝑔𝑜𝑢𝑡 S 𝑙𝑜𝑔𝑖𝑛) ∧ (¬ 𝑐𝑙𝑜𝑠𝑒 S 𝑜𝑝𝑒𝑛))

file (𝑐𝑙𝑜𝑠𝑒[0] → Y (¬𝑐𝑙𝑜𝑠𝑒[0] S 𝑜𝑝𝑒𝑛[0])) ∧
(𝑐𝑙𝑜𝑠𝑒[1] → Y (¬𝑐𝑙𝑜𝑠𝑒[1] S 𝑜𝑝𝑒𝑛[1])) ∧
(𝑐𝑙𝑜𝑠𝑒[2] → Y (¬𝑐𝑙𝑜𝑠𝑒[2] S 𝑜𝑝𝑒𝑛[2]))

fifo (𝑒𝑛𝑡𝑒𝑟 [0] → ¬Y O 𝑒𝑛𝑡𝑒𝑟 [0]) ∧
(𝑒𝑥𝑖𝑡 [0] → ¬Y O 𝑒𝑥𝑖𝑡 [0]) ∧
(𝑒𝑥𝑖𝑡 [0] → Y O 𝑒𝑛𝑡𝑒𝑟 [0]) ∧
((𝑒𝑥𝑖𝑡 [1] ∧O (𝑒𝑛𝑡𝑒𝑟 [1] ∧ Y O 𝑒𝑛𝑡𝑒𝑟 [0])) → Y O 𝑒𝑥𝑖𝑡 [0]) ∧
(𝑒𝑛𝑡𝑒𝑟 [1] → ¬Y O 𝑒𝑛𝑡𝑒𝑟 [1]) ∧
(𝑒𝑥𝑖𝑡 [1] → ¬Y O 𝑒𝑥𝑖𝑡 [1]) ∧
(𝑒𝑥𝑖𝑡 [1] → Y O 𝑒𝑛𝑡𝑒𝑟 [1]) ∧
((𝑒𝑥𝑖𝑡 [0] ∧O (𝑒𝑛𝑡𝑒𝑟 [0] ∧ Y O 𝑒𝑛𝑡𝑒𝑟 [1])) → Y O 𝑒𝑥𝑖𝑡 [1])

Table 9.3: The ptLTL versions of QTL specifications of Table 9.2.

DejaVu first generates the corresponding monitor code (in Scala) in which a Java-based BDD
library is used, then runs the generated code on CSV-based input traces. NuRV, on the other
hand, runs in two modes: 1) it loads the specification and XML-based trace file into memory
and then call the BDD-based verify_property command to get the monitoring outputs. 2) it
first generates a standalone monitor funtion in C, then we write another small C program to read
the trace (also in CSV) and get the monitor outputs. For the outputs, DejaVu only reports the

112

CHAPTER 9. EXPERIMENTAL EVALUATION 9.1. TESTS FOR FINITE-STATE MONITORS

Property Trace length DejaVu NuRV (BDD) NuRV (C)
compilation trace analysis trace loading trace analysis

access 100,000 4.51s 1.17s 1.35s 2.77s 0.069s
1,000,000 4.40s 3.84s 13.5s 27.5s 0.411s

file 100,000 4.29s 1.43s 1.50s 3.04s 0.066s
1,000,000 4.56s 5.05s 15.14s 28.91s 0.451s

fifo 100,000 5.04s 2.05s 1.64s 2.77s 0.055s
1,000,000 4.29s 14.01s 14.75s 29.05s 0.431s

Table 9.4: Evaluations of DejaVu and NuRV.

trace indexes which corresponding to the violation of the monitoring specification, while NuRV
outputs another CSV file of the same length of the input trace, each line contains the trace index
and a string: true for ⊤a and false for ⊥a. For each pair of QTL and ptLTL specifications in
above tables, the same random traces are generated in supported formats of DejaVu and NuRV.
In all these tests, first of all, we confirmed that both tools give the same monitoring outputs which
only differ in formats. Thus the only focus is on their performance and memory consumptions.

The evalution results are given in Table 9.4. For both DejaVu and NuRV (BDD) the time
values consist of the time of monitor synthesis and the time for the verification of trace. For
NuRV (C) the time values include only the time for loading offline traces into memory and the
time for the actual verification. The test environment is a MacBook Pro running Mac OS X
10.11.6, with 2.6GHz Intel Core i7 CPU (4 cores) and 16GB memory. For each properties we
generated two random traces of the length 100,000 and 1,000,000. The time spent by DejaVu
consists of two parts: 1) the time of monitor synthesis, which is quite stable in all cases; 2)
the time of actual verification. NuRV uses only one CPU core when executing a single batch
command, the BDD-based offline monitoring also takes significant time to load the XML-based
traces (the time for monitor synthesis is negligible), while the overall timing for BDD-based
monitors are slightly slower than DejaVu, perphaps because both of them internally use BDD for
the actual computation. On the other hand, the C-based standalone monitors generated by NuRV
are much faster. In fact, these monitors are very small: all three monitor automata have less than
100 nodes, and the compiled C object files are less than 20KB. It turns out that, for both software
the actual monitor synthesis time is negligible in comparison with other time-consuming work.5

5According to DejaVu developers, in DejaVu a processes are spawned to (a) compile the generated monitor in Scala, and (b) to execute it,
since this is the only way to do this (compile and run another program Y) from within a program X. It is a purely operation systems technicality.
There is no concurrent execution going on. Things are executed in sequential order: first compilation and the trace analysis. Also note that
most of the monitor synthesis time is spent on compiling the generated Scala program (the Scala compiler is slow), and not on synthesizing it,
which usually is very quick (no more than a second). Finally, DejaVu was designed for the first-order case, with the propositional case being a
special case without quantifiers. The main challenge of DejaVu was how to handle quantifiers over data.

113

9.2. TESTS FOR INFINITE-STATE MONITORS CHAPTER 9. EXPERIMENTAL EVALUATION

9.2 Tests for Infinite-State Monitors

The correctness of RV algorithms for infinite-state systems, beside the related theorems and
proofs, lies also on the fact that, for each input trace (and RV assumptions) being tested, all
five RV algorithms (monitor1, monitor1_optimized, monitor2, monitor2_optimized, and
bmc_monitor) give the same results (except that monitor1 and monitor1_optimized only
give the verdicts for the last state of the input trace). Below we mainly focus on their (relative)
performance.

On the other hand, the performance of RV algorithms presented in this thesis heavily depend
on the performance of underlying model checkers, SMT solvers and QE procedures, as different
choices of these underlying tools lead to not only monitors of different performance but also
monitors handling different kind of properties and assumptions. (We have chosen MathSAT5
as the SMT solver, which provides also the QE APIs based on Fourier-Motzkin and Loos-and-
Weispfenning methods (the two methods did not show any performance difference in our cases).
For the purposes of model checking, we have used the “msatic3” library created by the same
authors of MathSAT5. All IC3-IA calls are wrapped through the nuXmv model checker, which
additionally provides the LTL translation interface. The plain BMC procedure is provided by the
“msatic3” library.) Due to limitations of the underlying tools, the actual support of infinite-state
systems is limited to those with linear constraints of variables, e.g. linear arithmetic on the
rationals/reals, integers and mixed rational-integers, etc.

We mainly focus on the overall complexity behavior and relative performance of the algo-
rithms with respect to optimizations. In particular, we want to show that, the performance of
monitors changes dramatically after the optimizations described in Section 6.4.

9.2.1 Tests on the motivating example

The actual monitoring results on the motivating example in Section 6.1 are the same with those
expected. The total execution time for the offline monitoring of the two sample properties on the
three-state sample trace 𝑢 is about: 2.3s (monitor1_optimized), 13s (monitor2_optimized)
and 0.9s (bmc_monitor). Note that monitor1_optimized is faster than monitor2_optimized
mostly because the input trace is very short and it only needs to output the verdict for the last
input state. On the other hand, the BMC search bound (max_k) in bmc_monitor was set to 50,
while the execution time can be shorten to 0.6s if max_k were set to 30.

114

CHAPTER 9. EXPERIMENTAL EVALUATION 9.2. TESTS FOR INFINITE-STATE MONITORS

9.2.2 Tests on Dwyer’s LTL patterns

We use again Dwyer’s LTL patterns [61] (55 in total6) as the main LTL benchmark, which
comes from a wide coverage of practical specifications and has a good coverage on different
kind of LTL properties. The original patterns involve six Boolean variables 𝑝, 𝑞, 𝑟, 𝑠, 𝑡, 𝑧, and
to adapt them for infinite-state scenarios we have changed to use one integer variable 𝑖 and one
real variable 𝑥 for the replacements of 𝑞 and 𝑟: 𝑞 ↔ 0 ⩽ 𝑖 and 𝑟 ↔ 0.0 ⩽ 𝑥. Then we generated
random traces where 𝑖 ∈ [−500, 500] and 𝑥 ∈ [−0.500, 0.500] are uniformly chosen, such that
𝑞 and 𝑟 become random in the original patterns. Furthermore, we choose a model with fairness
as the RV assumptions, in which the 𝑝-transition (i.e., from ¬𝑝 to 𝑝) happens at most 4 times.
The purpose of this assumption is to force the monitor to arrive at × verdicts at certain moments,
so that the related monitors could go through different verdicts as much as possible.

Figure 9.3: Performance of five RV algorithms on Pattern 49

Fig. 9.3 gives the relative performance of all five RV algorithms on Pattern 49 (𝑠, 𝑡 responds
to 𝑝 after 𝑞 until 𝑟, results are similar for other patterns), a complex property for showing the
performance of RV algorithms in practical. The monitors are generated under the above chosen
assumptions, which is expressed as an infinite-state model. The length of input traces increases

6See also https://matthewbdwyer.github.io/psp/patterns/ltl.html.

115

https://matthewbdwyer.github.io/psp/patterns/ltl.html

9.2. TESTS FOR INFINITE-STATE MONITORS CHAPTER 9. EXPERIMENTAL EVALUATION

from 1 to 30. Each plot represents the average time of a monitor spent on certain length of three
random traces. We found that 1) the optimizations on monitor1 and monitor2 indeed work;
2) bmc_monitor is about 10x faster than monitor2_optimized, which is again about 10x
faster than monitor1_optimized. Note that these relative performance (“10x faster”) between
different monitors is based middle-sized traces: if the trace is too short, usually monitor1 is
faster.

Figure 9.4: Performance of bmc_monitor and monitor2_optimized on all patterns

Fig. 9.4 additionally shows the relative performance between bmc_monitor and monitor2_-
optimized. For each LTL pattern, the two monitors with the fairness assumptions take 10
random traces as input, each with 50 states. The 𝑥- and 𝑦-axes of each plot (identified by pattern
ID) corresponds to the overall time spent on the two monitors. For most patterns (and also on
average), bmc_monitor is about 10x faster than monitor2_optimized.

116

Chapter 10

HOL Formalization

10.1 Introduction

In this chapter, we present a partial formalization on the correctness of the finite-state ABRV
monitors (Chapter 5, together with the formal version of the equivalence between ptLTL and
LTL3 semantics given in Chapter 7. The main tool used here is Higher Order Logic theorem
prover, also called HOL41

Most of the RV tools developed so far, including NuRV, are not formally verified. Actually
this is a common problem of most working software in nowadays. For things like model
checkers, runtime monitors and even SAT/SMT solvers, the following chain of issues may cause
their potential failures in applications:

1. The algorithms used by the software are usually described in academic papers with informal,
paper-and-pencil proofs, and in rare cases the algorithms may give wrong outputs (at certain
boundary inputs, if not all.)

2. The algorithms were mathematically correct, but the software engineering process (i.e. pro-
gramming or coding) has introduced the so-called “bugs”, which some times cannot be
found by unit tests or other test methods.

3. Both algorithms and programming implementations were correct, but the compiler used
in building the software has (usually very rare) bugs, causing wrong translations from the
high-level programming language(s) to low-level machine assembly code.

4. Finally, even all above aspects were correct, the computer hardware where the software
runs has design problems, typically at the CPU but nowadays has extended to GPU and
other components due to their high complexities.

1The official site of HOL4 is at https://hol-theorem-prover.org.

117

https://hol-theorem-prover.org

10.1. INTRODUCTION CHAPTER 10. HOL

The above points 1) can be resolved by (interactive) theorem provers, most if not all. The
point 2) can also be resolved by some theorem provers but usually the best (or feasible) approach
is to first develop formal proofs and then generate working program code from the proofs. The
point 3) requires verified programming language compilers, and perhaps also a verified operating
system, at least the kernel part. They are very rare, but see, e.g., the CakeML project and the
seL4 verified microkernel. The point 4) can be either resolved by (interactive) theorem provers
or automatic verification tools like model checkers, by CPU vendors like Intel, AMD and ARM.

A classic and famous example of the above point 4) is the Pentium FDIV bug. It is a hardware
bug affecting the floating-point unit (FPU) of the early Intel Pentium processors. Because of the
bug, the processor would return incorrect binary floating point results when dividing certain pairs
of high-precision numbers. (See https://en.wikipedia.org/wiki/Pentium_FDIV_bug for
more details.)

A quite new story related to the above point 2) is recently experienced by the author of this
thesis. The old version of the famous MiniSAT SAT solver, version 1.14, obsoleted but still used
inside HOL theorem prover, has a bug so far only observed on Linux/ARM64, where for certain
inputs it should report UNSAT but actually SAT (with fake models). The root cause was that
the author of MiniSAT uses C type char for holding signed integers (ranged from -127 to 128),
but unfortunately char is unsigned on Linux/ARM64. (The root cause was found by another
proof engineer using the UndefinedBehaviorSanitizer (UBSan)2 from LLVM project, and the
fix is quite simple, just replacing most char to int8_t in the code.)

Some classes of tools is immune to at least the above points 1) and 2), but only at certain
classes of inputs, and the results thus can be trusted. For instance, if an SAT/SMT solver returns
“SAT” (satisfied) with some models, in principle these outputs can be either manually verified
or verified by third-party tools. Similarily, if a model checker returns “false” with counter
examples, in principle one can easily verify the output by using the counter examples. On the
other hand, if SAT/SMT solvers simply returns “UNSAT”, or model checkers simply returns
“true”, it’s possible that the results are actually wrong due to software bugs.

In the field of Interactive Theorem Proving (ITP), software tools called Theorem Provers or
Proof assistants are used for the verification tasks.3 When proving a theorem, a similar duality
like the above cases can be observed: if the proof completes successfully, it usually can be
fully trusted, because the core inference enginee of theorem provers is usually written in several
hundreds lines of programming language code and has been well checked for its correctness
in logical, algorithmic and software engineering levels. Potential bugs in the other part of the
theorem provers can only cause the proof not completed, which coincides also with the case that
the original theorem statements are actually wrong.

2https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
3Note that modern theorem provers usually contain automatic decision procedures or semi-automatic provers, which greatly improves the

productivities of proof engineers on many practical logic fragments (usually decidable ones).

118

https://en.wikipedia.org/wiki/Pentium_FDIV_bug
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

CHAPTER 10. HOL 10.2. HIGHER ORDER LOGIC (HOL)

Back to the RV area, Joshua Schneider at al. has done the first (at least the first one that the
author is aware of) formalization of their MFOTL-based monitoring algorithm [134], in Isabelle
proof assistant4. Using Isabelle, they managed to generate from the formal proofs to working
monitor software, which is slower than previously hand-coded programs but now is formally
verified (thus the output can be fully trusted.)

For us, one possible research goal is to formally verify its core monitoring algorithms
(presented in this thesis and related papers) in a theorem prover. However, it would be infeasible
to directly verify the programming code of NuRV, which is written in C and C++. By choosing
Higher Order Logic (HOL4), which is essentially a general programming language platform
(Standard ML) enhanced with theorem proving kernal and libraries, it is in theory possible to
re-implement the RV algorithms to produce another monitor synthesis tool compatible with
NuRV. Beside the partial formalization itself, a key message is to convince the audience that,
there are already good formalizations of LTL, automata, etc., which can be used as the working
basis for a possible, full formalization of RV algorithms or even a runtime monitor (or monitor
synthesis tool.)

10.2 Higher Order Logic (HOL)

Higher Order Logic (HOL) [94, 143] traces its roots back to the Logic of Computable Functions
(LCF) [82, 124] by Robin Milner and others since 1972. It is a variant of Church’s Simple Theory
of Types (STT) [43], plus a higher order version of Hilbert’s choice operator Y, Axiom of Infinity,
and Rank-1 (prenex) polymorphism. HOL4 has implemented the original HOL, while some
other theorem provers in the HOL family (e.g. Isabelle/HOL) have certain extensions. Indeed,
HOL has considerably simpler logical foundations than most other theorem provers. As a
consequence, theories and proofs verified in HOL are easier to understand for people who are
not familiar with more advanced dependent type theories, e.g. the Calculus of Inductive and
Co-inductive Constructions implemented by Coq.

The word “HOL” is both the name of a logic system and the software which implements this
logic. HOL4 is the latest version of the software, which is implemented in Standard ML (SML).
SML as a general programming language plays three different roles:

• The underlying implementation language for the core HOL engine;

• The language in which proof tactics are implemented;

• The interface language of the HOL proof scripts and interactive shell.

Moreover, using the same language HOL4 users can write complex automatic verification tools
by calling HOL’s theorem proving facilities.

4https://isabelle.in.tum.de

119

https://isabelle.in.tum.de

10.2. HIGHER ORDER LOGIC (HOL) CHAPTER 10. HOL

The HOL logic is a formal system of typed logical terms. The types are expressions that
denote sets (in the universeU). HOL type system is much simpler than those based on dependent
types and other type theories. There are four kinds of types in the HOL logic, as illustrated
in Fig. 10.1 for its BNF grammar. In HOL, the standard atomic types bool and ind denote,
respectively, the distinguished two-element set 2 and the distinguished infinite set I.

𝜎 ::= 𝛼

type variables

6
| 𝑐

atomic types
6
| (𝜎1, . . . , 𝜎𝑛)𝑜𝑝︸ ︷︷ ︸

compound types6

| 𝜎1→𝜎2︸ ︷︷ ︸
function types

(domain 𝜎1, codomain 𝜎2)

6

Figure 10.1: HOL’s type grammar

HOL terms represent elements of the sets denoted by their types. There are four kinds of
HOL terms, which can be described (in simplified forms) by the BNF grammar in Fig. 10.2.
(See [94] for a complete description of HOL, including the primitive derivative rules to be
mentioned below.)

𝑡 ::= 𝑥

variables

6
| 𝑐

constants
6
| 𝑡 𝑡′︸︷︷︸

function applications
(function 𝑡 , argument 𝑡 ′)

6

| _𝑥. 𝑡︸︷︷︸
_-abstractions

6

Figure 10.2: HOL’s term grammar

The deductive system of HOL is specified by eight primitive derivative rules:

1. Assumption introduction (ASSUME);

2. Reflexivity (REFL);

3. 𝛽-conversion (BETA_CONV);

4. Substitution (SUBST);

5. Abstraction (ABS);

6. Type instantiation (INST_TYPE);

7. Discharging an assumption (DISCH);

8. Modus Ponens (MP).

120

CHAPTER 10. HOL 10.3. LINEAR TEMPORAL LOGIC IN HOL

All proofs are eventually reduced to applications of the above rules, which also give the semantics
of two fundamental logical connectives, equality (=) and implication (⇒). The remaining logical
connectives and first-order quantifiers, including the logical true (T) and false (F), are further
defined as _-functions:
⊢ T def

= ((_𝑥bool. 𝑥) = (_𝑥bool. 𝑥))
⊢ ∀ def

= _𝑃𝛼→bool. 𝑃 = (_𝑥. T)
⊢ ∃ def

= _𝑃𝛼→bool. 𝑃(Y 𝑃)
⊢ F def

= ∀𝑏bool. 𝑏

⊢ ¬ def
= _𝑏. 𝑏 ⇒ F

⊢ ∧ def
= _𝑏1 𝑏2. ∀𝑏. (𝑏1 ⇒ (𝑏2 ⇒ 𝑏)) ⇒ 𝑏

⊢ ∨ def
= _𝑏1 𝑏2. ∀𝑏. (𝑏1 ⇒ 𝑏) ⇒ ((𝑏2 ⇒ 𝑏) ⇒ 𝑏)

⊢ One_One def
= _ 𝑓𝛼→𝛽. ∀𝑥1 𝑥2. (𝑓 𝑥1 = 𝑓 𝑥2) ⇒ (𝑥1 = 𝑥2)

⊢ Onto def
= _ 𝑓𝛼→𝛽. ∀𝑦. ∃𝑥. 𝑦 = 𝑓 𝑥

⊢ Type_Definition def
= _𝑃𝛼→bool 𝑟𝑒𝑝𝛽→𝛼 . One_One 𝑟𝑒𝑝 ∧ (∀𝑥. 𝑃𝑥 = (∃𝑦. 𝑥 = 𝑟𝑒𝑝 𝑦))

The last logical constant, Type_Definition, can be used to define new HOL types as bĳections
of subsets of existing types [120]. HOL Datatype package [93, 121] automates this tedious
process. Finally, the whole HOL standard theory is based on the following four axioms:5

BOOL_CASES_AX ⊢ ∀𝑏. (𝑏 = T) ∨ (𝑏 = F)
ETA_AX ⊢ ∀ 𝑓𝛼→𝛽. (_𝑥. 𝑓 𝑥) = 𝑓

SELECT_AX ⊢ ∀𝑃𝛼→bool 𝑥. 𝑃 𝑥 ⇒ 𝑃(Y 𝑃)
INFINITY_AX ⊢ ∃ 𝑓ind→ind. One_One 𝑓 ∧ ¬(Onto 𝑓)

Usually the above four axioms are the only axioms allowed in conventional formalisation
projects in HOL4: adding new axioms manually may break logical consistency.

Remark 10.2.1. HOL4 has been used by the author in a formalization of Milner’s Calculus
of Concurrent Systems with some new results obtained [147], during the PhD period. In
comparision with other theorem provers, HOL4 is a good choice for its rich core theories
(especially in formal mathematics like Probability Theory), good community support and its
simple and elegant logical foundation, which is easy to understand while strong enough for most
applications.

10.3 Linear Temporal Logic in HOL

The most difficult part of a possible formalization of RV algorithms in this thesis, in any theorem
prover, is to choose a way to formalize LTL and the translation from LTL to 𝜔-automata, which
plays a core role in LTL model checking and several work are currently available in HOL.

5HOL is strictly weaker than ZFC (the Zermelo-Frankel set theory with the Axiom of Choice), thus not all theorems valid in ZFC can be
formalised in HOL. (See [94] for more details.)

121

10.3. LINEAR TEMPORAL LOGIC IN HOL CHAPTER 10. HOL

There are in general two approaches to formalize another logic system in theorem provers
like HOL: deep and shallow embeddings, each has pros and cons.

In shallow embeddings of LTL, each “atomic” proposition is a function of the typenum -> bool,
i.e. a total function mapping all natural numbers to Boolean values. By evaluating this function
on each natural numbers, one can get its truth values along the whole infinite trace. Each
temporal operator is defined separately, thus there is no distinguish between primitive temporal
operators (like X and U) and derived operators (like G and F) at all. For example, in HOL’s
official core theory Temporal_LogicTheory (contributed by Klaus Schneider et al. [135, 138])
the next (X) and always (G) operator can be defined below:

[NEXT]
⊢ NEXT (P :num -> bool) = (_ (t :num). P (SUC t))
[ALWAYS]
⊢ ALWAYS (P :num -> bool) (t0 :num) ⇐⇒ ∀(t :num). P (t + t0)

Another character of shallow embeddings is that Boolean connectives in LTL are nothing
but the original Boolean connectives in the host logic systems (HOL itself, in this case). The
following simple lemma shows that the logical and can be safely moved out from “atomic”
propositions to the temporal formulae levels:

[AND_NEXT]
⊢ ∀Q P. NEXT (_ t. P t ∧ Q t) = (_ t. NEXT P t ∧ NEXT Q t)

One can imagine that, each temporal formula represented in this way can be satisfied by
a set of infinite traces. 𝜔-automata, on the other hand, are nothing but the same kind of
Boolean functions, only with existential quantified variables as input symbols. The “translation”
from LTL to 𝜔-automata (in particular, Büchi automata) is nothing but a process of translating
temporal formulae into existential quantified variables:

[BUECHI_TRANSLATION]
⊢ (Phi (NEXT phi) ⇐⇒ ∃ q0 q1. T ∧ (∀ t. (q0 t ⇐⇒ phi t) ∧ (q1 t ⇐⇒ q0 (t + 1))) ∧ Phi q1) ∧

(Phi (ALWAYS a) ⇐⇒
∃ q. T ∧ (∀ t. q t ⇐⇒ a t ∧ q (t + 1)) ∧ (∀ t1. ∃ t2. a (t1 + t2) ⇒ q (t1 + t2)) ∧ Phi q) ∧

(Phi (EVENTUAL a) ⇐⇒
∃ q. T ∧ (∀ t. q t ⇐⇒ a t ∨ q (t + 1)) ∧ (∀ t1. ∃ t2. q (t1 + t2) ⇒ a (t1 + t2)) ∧ Phi q) ∧

(Phi (a SUNTIL b) ⇐⇒
∃ q. T ∧ (∀ t. q t ⇐⇒ b t ∨ a t ∧ q (t + 1)) ∧

(∀ t1. ∃ t2. q (t1 + t2) ⇒ ¬a (t1 + t2) ∨ b (t1 + t2)) ∧ Phi q) ∧
(Phi (a UNTIL b) ⇐⇒
∃ q. T ∧ (∀ t. q t ⇐⇒ b t ∨ a t ∧ q (t + 1)) ∧

(∀ t1. ∃ t2. ¬q (t1 + t2) ⇒ ¬a (t1 + t2) ∨ b (t1 + t2)) ∧ Phi q) ∧
(Phi (a SWHEN b) ⇐⇒
∃ q. T ∧ (∀ t. q t ⇐⇒ if b t then a t else q (t + 1)) ∧

(∀ t1. ∃ t2. q (t1 + t2) ⇒ b (t1 + t2)) ∧ Phi q) ∧
(Phi (a WHEN b) ⇐⇒
∃ q. T ∧ (∀ t. q t ⇐⇒ if b t then a t else q (t + 1)) ∧

(∀ t1. ∃ t2. q (t1 + t2) ∨ b (t1 + t2)) ∧ Phi q) ∧
(Phi (a SBEFORE b) ⇐⇒
∃ q. T ∧ (∀ t. q t ⇐⇒ ¬b t ∧ (a t ∨ q (t + 1))) ∧

122

CHAPTER 10. HOL 10.3. LINEAR TEMPORAL LOGIC IN HOL

(∀ t1. ∃ t2. q (t1 + t2) ⇒ a (t1 + t2) ∨ b (t1 + t2)) ∧ Phi q) ∧
(Phi (a BEFORE b) ⇐⇒
∃ q. T ∧ (∀ t. q t ⇐⇒ ¬b t ∧ (a t ∨ q (t + 1))) ∧

(∀ t1. ∃ t2. ¬q (t1 + t2) ⇒ a (t1 + t2) ∨ b (t1 + t2)) ∧ Phi q)

The pros of shallow embeddings is at their elegance: they uses things from the host logic
systems as much as possible. The cons is that shallow embeddings cannot easily support finite
traces, and the lacking of fixed alphabet (i.e. the set of involved Boolean variables) may create
extra difficulties in support partial observability found in ABRV.

Deep embeddings, on the other side, defines LTL as an inductive algebraic structure: a
system of logical terms inductively built from atomic propositions, (fake) logical connectives
and temporal operators. Here, all primitive temporal operators must be included as the very
definition, then other temporal operators can be defined as syntax sugars of primitive temporal
operators. For example, in HOL’s official temporal_deep example (contributed by Thomas
Tüerk et al. [148, 149]), Full LTL (i.e. with both future and past operators) is defined in the
following code as an algebraic datatype in HOL [121]:

Datatype :
ltl = LTL_PROP (’prop prop_logic)

| LTL_NOT ltl
| LTL_AND (ltl # ltl)
| LTL_NEXT ltl (* X in NuSMV *)
| LTL_SUNTIL (ltl # ltl) (* U in NuSMV *)
| LTL_PSNEXT ltl (* Y in NuSMV *)
| LTL_PSUNTIL (ltl # ltl) (* S in NuSMV *)

End

The standard semantics (over infinite traces), Definition 3.3.2, must be explicitly and induc-
tively formalized: (Note that in shallow embeddings the semantics is directly associated with
the definition of each temporal operator)

[LTL_SEM_TIME_def]
⊢ (∀ v t f. LTL_SEM_TIME t v (LTL_NOT f) ⇐⇒ ¬LTL_SEM_TIME t v f) ∧

(∀ v t f2 f1.
LTL_SEM_TIME t v (LTL_AND (f1,f2)) ⇐⇒ LTL_SEM_TIME t v f1 ∧ LTL_SEM_TIME t v f2) ∧

(∀ v t b. LTL_SEM_TIME t v (LTL_PROP b) ⇐⇒ P_SEM (v t) b) ∧
(∀ v t f. LTL_SEM_TIME t v (LTL_NEXT f) ⇐⇒ LTL_SEM_TIME (SUC t) v f) ∧
(∀ v t f2 f1.

LTL_SEM_TIME t v (LTL_SUNTIL (f1,f2)) ⇐⇒
∃ k. k ≥ t ∧ LTL_SEM_TIME k v f2 ∧ ∀ j. t ≤ j ∧ j < k ⇒ LTL_SEM_TIME j v f1) ∧

(∀ v t f. LTL_SEM_TIME t v (LTL_PREV f) ⇐⇒ t > 0 ∧ LTL_SEM_TIME (PRE t) v f) ∧
∀ v t f2 f1.

LTL_SEM_TIME t v (LTL_SINCE (f1,f2)) ⇐⇒

123

10.3. LINEAR TEMPORAL LOGIC IN HOL CHAPTER 10. HOL

∃ k. k ≤ t ∧ LTL_SEM_TIME k v f2 ∧ ∀ j. k < j ∧ j ≤ t ⇒ LTL_SEM_TIME j v f1

[LTL_SEM_def]
⊢ LTL_SEM v f ⇐⇒ LTL_SEM_TIME 0 v f

Furthermore, for LTL variants like ptLTL it is possible to define special predicate to limit the
use of temporal operators:6

[IS_PAST_LTL_def]
⊢ (∀b. IS_PAST_LTL (LTL_PROP b) ⇐⇒ T) ∧

(∀ f. IS_PAST_LTL (LTL_NOT f) ⇐⇒ IS_PAST_LTL f) ∧
(∀ f2 f1. IS_PAST_LTL (LTL_AND (f1,f2)) ⇐⇒ IS_PAST_LTL f1 ∧ IS_PAST_LTL f2) ∧
(∀ f. IS_PAST_LTL (LTL_PREV f) ⇐⇒ IS_PAST_LTL f) ∧
(∀ f2 f1. IS_PAST_LTL (LTL_SINCE (f1,f2)) ⇐⇒ IS_PAST_LTL f1 ∧ IS_PAST_LTL f2) ∧
(∀ f. IS_PAST_LTL (LTL_NEXT f) ⇐⇒ F) ∧ ∀ f2 f1. IS_PAST_LTL (LTL_SUNTIL (f1,f2)) ⇐⇒ F

The translation of LTL deep embeddings into 𝜔-automata (more precisely, the generalized
Büchi automata) involves many formal definitions which we do not use so far. Here we only
show the main translation theorem without explaination in details (roughly speaking, what
LTL_TO_GEN_BUECHI___EXTEND_def has for each temporal operator is equivalent with LTL
translation algorithm given in Section 3.7.

[LTL_TO_GEN_BUECHI_def]
⊢ LTL_TO_GEN_BUECHI l b1 b2 =

LTL_TO_GEN_BUECHI___EXTEND l b1 b2 EMPTY_LTL_TO_GEN_BUECHI_DS

[LTL_TO_GEN_BUECHI___EXTEND_def]
⊢ (∀p b2 b1 DS.

LTL_TO_GEN_BUECHI___EXTEND (LTL_PROP p) b1 b2 DS =
((_ sv. p),
EXTEND_IV_BINDING_LTL_TO_GEN_BUECHI_DS DS { (LTL_PROP p,b1,b2,(_ sv. p)) }

(P_USED_VARS p))) ∧
(∀ l b2 b1 DS.

LTL_TO_GEN_BUECHI___EXTEND (LTL_NOT l) b1 b2 DS =
(let

(pf ′1,DS′1) = LTL_TO_GEN_BUECHI___EXTEND l b2 b1 DS
in

((_ sv. P_NOT (pf ′1 sv)),
EXTEND_IV_BINDING_LTL_TO_GEN_BUECHI_DS DS′1
{ (LTL_NOT l,b1,b2,(_ sv. P_NOT (pf ′1 sv))) } ∅))) ∧

(∀ l2 l1 b2 b1 DS.
LTL_TO_GEN_BUECHI___EXTEND (LTL_AND (l1,l2)) b1 b2 DS =
(let

(pf ′1,DS′1) = LTL_TO_GEN_BUECHI___EXTEND l1 b1 b2 DS;

6Another way is to define a subtype as a bĳection from the set of full LTL formulae to a subset satisfying the same predicate. However, in
HOL tradition proof engineers tend to simply add more antecedents into theorems to limit the applicability of theorems to a conceptual subset
of involved types.

124

CHAPTER 10. HOL 10.3. LINEAR TEMPORAL LOGIC IN HOL

(pf ′2,DS′2) = LTL_TO_GEN_BUECHI___EXTEND l2 b1 b2 DS′1
in

((_ sv. P_AND (pf ′1 sv,pf ′2 sv)),
EXTEND_IV_BINDING_LTL_TO_GEN_BUECHI_DS DS′2
{ (LTL_AND (l1,l2),b1,b2,(_ sv. P_AND (pf ′1 sv,pf ′2 sv))) } ∅))) ∧

(∀ l b2 b1 DS.
LTL_TO_GEN_BUECHI___EXTEND (LTL_NEXT l) b1 b2 DS =
(let

(pf ′1,DS′1) = LTL_TO_GEN_BUECHI___EXTEND l b1 b2 DS
in

((_ sv. P_PROP (sv DS′1.SN)),
EXTEND_LTL_TO_GEN_BUECHI_DS DS′1 1 [] ∅

[(_ sv. XP_EQUIV (XP_PROP (sv DS′1.SN),XP_NEXT (pf ′1 sv)))] []
{ (LTL_NEXT l,b1,b2,(_ sv. P_PROP (sv DS′1.SN))) }))) ∧

(∀ l b2 b1 DS.
LTL_TO_GEN_BUECHI___EXTEND (LTL_PREV l) b1 b2 DS =
(let

(pf ′1,DS′1) = LTL_TO_GEN_BUECHI___EXTEND l b1 b2 DS
in

((_ sv. P_PROP (sv DS′1.SN)),
EXTEND_LTL_TO_GEN_BUECHI_DS DS′1 1 [(DS′1.SN,F)] ∅

[(_ sv. XP_EQUIV (XP_NEXT_PROP (sv DS′1.SN),XP_CURRENT (pf ′1 sv)))] []
{ (LTL_PREV l,b1,b2,(_ sv. P_PROP (sv DS′1.SN))) }))) ∧

(∀ l2 l1 b2 b1 DS.
LTL_TO_GEN_BUECHI___EXTEND (LTL_SUNTIL (l1,l2)) b1 b2 DS =
(let

(pf ′1,DS′1) = LTL_TO_GEN_BUECHI___EXTEND l1 b1 b2 DS;
(pf ′2,DS′2) = LTL_TO_GEN_BUECHI___EXTEND l2 b1 b2 DS′1

in
((_ sv. P_PROP (sv DS′2.SN)),
EXTEND_LTL_TO_GEN_BUECHI_DS DS′2 1 [] ∅

[(_ sv.
XP_EQUIV

(XP_PROP (sv DS′2.SN),
XP_OR

(XP_CURRENT (pf ′2 sv),
XP_AND (XP_CURRENT (pf ′1 sv),XP_NEXT_PROP (sv DS′2.SN)))))]

(if b1 then [(_ sv. P_IMPL (P_PROP (sv DS′2.SN),pf ′2 sv))] else [])
{ (LTL_SUNTIL (l1,l2),b1,b2,(_ sv. P_PROP (sv DS′2.SN))) }))) ∧

∀ l2 l1 b2 b1 DS.
LTL_TO_GEN_BUECHI___EXTEND (LTL_SINCE (l1,l2)) b1 b2 DS =
(let

(pf ′1,DS′1) = LTL_TO_GEN_BUECHI___EXTEND l1 b1 b2 DS;
(pf ′2,DS′2) = LTL_TO_GEN_BUECHI___EXTEND l2 b1 b2 DS′1

in
((_ sv. P_OR (pf ′2 sv,P_AND (pf ′1 sv,P_PROP (sv DS′2.SN)))),
EXTEND_LTL_TO_GEN_BUECHI_DS DS′2 1 [(DS′2.SN,F)] ∅

125

10.4. PARTIAL FORMALIZATION OF MAIN THEOREM 5.1.2 CHAPTER 10. HOL

[(_ sv.
XP_EQUIV

(XP_NEXT_PROP (sv DS′2.SN),
XP_OR

(XP_CURRENT (pf ′2 sv),
XP_AND (XP_CURRENT (pf ′1 sv),XP_PROP (sv DS′2.SN)))))] []

{ (LTL_SINCE (l1,l2),b1,b2,
(_ sv. P_OR (pf ′2 sv,P_AND (pf ′1 sv,P_PROP (sv DS′2.SN))))) }))

[LTL_TO_GEN_BUECHI_THM]
⊢ LTL_TO_GEN_BUECHI_DS___SEM (SND (LTL_TO_GEN_BUECHI l b1 b2)) ∧

(l,b1,b2,FST (LTL_TO_GEN_BUECHI l b1 b2)) ∈ (SND (LTL_TO_GEN_BUECHI l b1 b2)).B

10.4 Partial Formalization of Main Theorem 5.1.2

We provide a partial formalization of the main RV theorem, Theorem 5.1.2, without support of
partial observability and resets. Full proof scripts can be found in Appendix, Section A.3.

For any finite trace 𝑢, an infinite traces 𝑖 is said to extend 𝑢 if there exists another infinite
trace 𝑐 such that 𝑖 = 𝑢 · 𝑐:7
[extends_def]
i extends u def

= ∃ c. i = u ++ c

Here we formalize the RV assumptions as a (possibly infinite) set of infinite traces, i.e. the
language of an FTS. An finite trace 𝑢 is said to be compatible with a model 𝐾 , if after extending
𝑢 into an infinite trace, this infinite trace is in the language of 𝐾:

[compatible_def]
compatible u K def

= ∃ c. u ++ c ∈ K

Next, the ABRV monitor output table is defined by mapping two Boolean parameters (they
will correspond to the emptiness of 𝑟𝜑 and 𝑟¬𝜑 in the informal proofs of Theorem 5.1.2) to LTL3
verdicts:

[LTL4_output_def]
LTL4_output T T def

= unknown
LTL4_output T F def

= true
LTL4_output F T def

= false
LTL4_output F F def

= error

The “belief states” here (or we can call it a “belief run”) is defined as a set of infinite traces
compatible with the current input trace prefix w.r.t. an LTL property (and the model):

[GEN_LTL4_belief_run_def]
GEN_LTL4_belief_run K phi u t def

= { i | i extends u ∧ LTL_SEM_TIME t i phi ∧ i ∈ K }

Note that GEN_LTL4_belief_run is the reason that we call this formal proof an “abstract”
one: it is a correct math definition but from it one does not directly get a working algorithm: to

7In the formalization, trace concatenation · is overloaded by the sum operator +.

126

CHAPTER 10. HOL 10.5. LTL3 AND PTLTL (ALTERNATIVE SEMANTICS)

actually compute the set of infinite traces, or a set of automata locations, one has to first translate
LTL to 𝜔-automata and compute forward images w.r.t. to each state in the input trace prefixes.

Now, the ABRV monitor can be defined below, usingLTL4_output andGEN_LTL4_belief_run:

[ABRV_monitor_def]
ABRV_monitor K phi u t def

=

LTL4_output (GEN_LTL4_belief_run K phi u t ≠ ∅)
(GEN_LTL4_belief_run K (LTL_NOT phi) u t ≠ ∅)

On the other hand, the formal definition of ABRV-LTL semantics precisely follows Defini-
tion 4.4.1:

[LTL4_SEM_TIME_def]
⊢ LTL4_SEM_TIME K phi u t =

if ¬compatible u K then error
else if compatible u K ∧ ∀w. u ++ w ∈ K ⇒ LTL_SEM_TIME t (u ++ w) phi then true
else if compatible u K ∧ ∀w. u ++ w ∈ K ⇒ ¬LTL_SEM_TIME t (u ++ w) phi then false
else unknown

Now we can prove that the ABRV monitor is correct, because for all LTL properties, the
monitoring verdict is the same as the ABRV-LTL semantics of the same LTL properties (at the
same time of the same trace prefix, w.r.t. the assumptions):

[ABRV_monitor_thm]
⊢ ABRV_monitor K phi u t = LTL4_SEM_TIME K phi u t

Remark 10.4.1. The formal proof of the above theorem has indeed followed a part of the original
informal proof of Theorem 5.1.2, though the monitor defined in this way is not represented by
symbolic automata, thus no hope to further synthesize explicit-state automata-based monitors.
In fact, this proof looks very similar as an alternative definition of LTL3 semantics based on
standard LTL semantics. It remains to work out a full formalization of Theorem 5.1.2 based on
automata translations and other first-class principles in HOL.

10.5 LTL3 and ptLTL (Alternative Semantics)

As a preliminary work, the semantics of LTL3 and the equivalence between semantics of ptLTL
and LTL3 (at last index), Theorem 7.2.2, has been formalized by the author of this thesis. (The
formal proofs have been committed to HOL4 official, as part of the temporal_deep example.)

Below is the formalization of LTL3 semantics (Definition 4.1.3):

[LTL3_SEM_DEF]
⊢ LTL3_SEM u f =

if ∀ v. LTL_SEM (u ++ v) f then LTL3_T
else if ∀ v. ¬LTL_SEM (u ++ v) f then LTL3_F
else LTL3_U

The formalization of ptLTL (alternative) semantics (Definition 7.1.2):

127

10.5. LTL3 AND PTLTL (ALTERNATIVE SEMANTICS) CHAPTER 10. HOL

[PTLTL_SEM_ALT_def]
⊢ (∀u p. PTLTL_SEM_ALT u (LTL_PROP p) ⇐⇒ P_SEM (LAST u) p) ∧

(∀u f. PTLTL_SEM_ALT u (LTL_NOT f) ⇐⇒ ¬PTLTL_SEM_ALT u f) ∧
(∀u f2 f1.

PTLTL_SEM_ALT u (LTL_AND (f1,f2)) ⇐⇒ PTLTL_SEM_ALT u f1 ∧ PTLTL_SEM_ALT u f2) ∧
(∀u f. PTLTL_SEM_ALT u (LTL_PREV f) ⇐⇒ 1 < LENGTH u ∧ PTLTL_SEM_ALT (BUTLASTN 1 u) f) ∧
∀u f2 f1.

PTLTL_SEM_ALT u (LTL_SINCE (f1,f2)) ⇐⇒
∃ k. k < LENGTH u ∧ PTLTL_SEM_ALT (BUTLASTN k u) f2 ∧

∀ j. j < k ⇒ PTLTL_SEM_ALT (BUTLASTN j u) f1

And the formalization of Theorem 7.2.2:

[PTLTL_SEM_ALT_LTL3]
⊢ IS_PAST_LTL f ∧ 0 < LENGTH u ⇒

(PTLTL_SEM_ALT u f ⇐⇒ THE (LTL3_SEM_TIME (LENGTH u − 1) u f))

Furthermore, we can show that, by taking the time parameter to the last position of the
input trace prefix, if the monitoring properties contain only past temporal operators, then the
monitoring verdict from an LTL3 monitor (as a reduced version of ABRV monitor without
assumptions) is exactly the same as alternative ptLTL semantics of the same ptLTL properties:

[PTLTL_monitor_thm]
⊢ IS_PAST_LTL f ∧ 0 < LENGTH u ⇒

(PTLTL_SEM_ALT u f ⇐⇒ THE (GEN_LTL3_monitor f u (LENGTH u − 1)))

128

Chapter 11

Conclusions

In this thesis, we proposed an extended RV framework called ABRV, where assumptions, partial
observability and resets are considered in monitor synthesis. We proposed a new four-valued LTL
semantics called ABRV-LTL and have shown its necessity in RV monitors under assumptions.
As the solution, we gave a simple symbolic LTL monitoring algorithm and demonstrated that,
under certain assumptions the resulting monitors are predictive, while some non-monitorable
properties becomes monitorable.

The ABRV framework has been also extended to assumptions defined as infinite-state system,
where infinite-state belief states are represented as quantifier-free first-order formulas and the
emptiness checkings are reduced to SMT-based model checking. We start from a trivial reduction
from RV to MC, and eventually obtained an highly optimized RV algorithm, based on Incremental
BMC. The final version is hundreds of times faster than the initial one. But as observed in [146],
a “major question regarding the use of SMT solvers in performing runtime monitoring is
whether they are fast enough.” We argue that, for some partially-observable systems, like
planets explorers, where the frequency of observations is low, there is a trade-off between the
required speed of the monitor and the complexity of the assumptions needed to reason on the
non-observable parts.

We also present NuRV, a nuXmv extension for Runtime Verification. It supports assumption-
based RV for propositional LTL with both future and past operators, with the supports of partial
observability and resets. It has functionalities for offline and online monitoring, and code
generation of the monitors in various programming languages. The software engineer aspects of
NuRV include its ability to generate standalone monitor code in various programming language,
and the ability to do network-based (remote) monitoring based on CORBA.

The experimental evaluations on Dwyer’s LTL patterns and other examples show that NuRV
is quite efficient in both generation-time and runtime.

129

11.1. FUTURE DIRECTIONS CHAPTER 11. CONCLUSIONS

11.1 Future Directions

Someone said that a section about future directions is the most important part of a thesis. After
all, a scientific research direction without possible future extension is considered as a dead
direction, either because every possible directions were already touched, or because it is too
hard to make even one more footstep. Runtime Verification is not a dead direction, of course, at
least not in the assumption-based branch. There are still some important work to do.

11.1.1 Multi-property monitoring

In ABRV, each monitor is essentially synthesized from the combination of two inputs: the
monitoring property and the assumptions. One can imagine that the computation efforts re-
garding each monitor at runtime, when processing each input states, is a combination of the
computation efforts caused by the assumptions and those by the monitoring property itself, and
their relative complexities roughly lead the same proportions of the total computation efforts,
either at monitor-synthesis time or at runtime.

In practice, it is usually the case that multiple monitors are synthesized from different
properties but all under the same assumptions (e.g. the system model). If each of these monitors
were synthesized on its own, all the computation efforts regarding the assumptions would have
to be repeated. This issue is especially critical when the assumptions are very complex while
each monitoring properties are relatively simple: either the formulas are short, or the formulas
only involve a very small portions of all variables defined in the model as assumptions.

Of source, having each monitor working in a standalone manner brings flexibilities: the end
user has freedom to choose which subset of these monitors to be used. But if multiple monitors
of different properties could be synthesized into a single monitor, which takes the same inputs
as before, but can outputs multiple verdicts at once: each representing the monitoring outputs
of one monitor, just like it were synthesized alone.

More formally speaking, in the problem of multi-property monitoring in ABRV, there is a
single FTS 𝐾 as the RV assumptions, and a vector of 𝑛 LTL formulae 𝜑 ¤= ⟨𝜑1, 𝜑2, . . . , 𝜑𝑛⟩ as
the monitoring properties. The goal is to generate a single combined monitorM𝐾

𝜑
such that, for

all input trace prefix ` (with reset signals),

M𝐾
𝜑
(`) = 𝑣 ¤= ⟨𝑣1, 𝑣2, . . . , 𝑣𝑛⟩, (11.1)

where
𝑣𝑖 =M𝐾

𝜑𝑖
(`) ¤= ⟦obs(`),mrr(`) |= 𝜑𝑖⟧𝐾4 (𝑖 = 1, . . . , 𝑛) . (11.2)

Let call eachM𝐾
𝜑𝑖

a sub-monitor of the combined monitorM𝐾
𝜑

. A major drawback here is
that, if such a monitor must be reset, essentially all sub-monitors are being reset, and there is
no way to selectively do resets on only some of them. But in practice this limitation should

130

CHAPTER 11. CONCLUSIONS 11.1. FUTURE DIRECTIONS

not be a big problem: usually all sub-monitors should emit inconclusive verdicts, until one of
them reports a conclusive verdict (and then all sub-monitors would have to be reset, for the next
rounds.)

Note that, even without any assumptions, the idea of multi-property monitoring is still useful.
For example, if multiple LTL formulas as monitoring properties share a large piece of sub-
formulas (in the extreme case, one property is just the sub-formula of another property), then
we can imagine that, the computation efforts regarding shared formulas could have been once
just once for multiple monitors involving them.1

It is not hard to imagine that, in the worse case, the required computation efforts of the com-
bined monitor is just a literal summation (and perhaps also with extra costs) of the computations
involved in each sub-monitors. For example, there is no assumptions, and each LTL properties
involve different disjoint sets of variables. Better situations, however, occur in the following
cases:

1. The assumptions are relatively complex but each properties are relatively simple (short),

2. Multiple properties as LTL formulas share large piece of sub-formulas.

Below we give an idea for multi-property monitoring algorithm. It works (i.e. can save some
computation efforts) because of the following two reasons, corresponding to the above two cases:

1. The components (initial condition, transition relation and fairness) of assumptions, either as
raw formulas or being encoded into BDDs, occurs only one time in the combined monitor,
thus the computation efforts regarding assumptions should be the same as in the case of
single-property monitors.

2. The set of elementary variables due to LTL translations of multiple LTL properties, is
a union of elementary variables of each LTL properties, while the same sub-formula
occurring in multiple LTL properties only leads to the same elementary variable.

The above first reason should be easy to understand. Now we explain the second one. Note
that, in LTL to𝜔-automata translation (Section 3.7), for each LTL property 𝜑 the initial condition
Θ𝜑 of the translated 𝜔-automata represents the LTL formula itself, which is now converted into
a propositional formula where elementary variables are used to represent sub-formulas leading
by temporal operators. The transition relation 𝜌𝜑, instead, is irrelevant to 𝜑 itself but is a
conjunction of equations, each passing values of an elementary variable from the past to present,

1In rewriting-based monitoring approach using ptLTL, the monitoring verdicts are always conclusive, i.e. Boolean, and for any input trace
prefix, the semantics of any ptLTL formula can be inductively defined by the verdicts of its sub-formulas. For ABRV-LTL and LTL3, we already
know that such inductive definition is impossible. Besides, here we are attacking a more general problem where multiple formulas may only
share some sub-formulas but not necessary in sub-formula relations.

131

11.1. FUTURE DIRECTIONS CHAPTER 11. CONCLUSIONS

and from the present to the future:

𝜌𝜑 ¤=
∧

x𝜓∈ el(𝜑)

(
x𝜓 ↔ 𝜒′(𝜓)

)
∧

∧
y𝜓∈ el(𝜑)

(
𝜒(𝜓) ↔ y′𝜓

)
.

It is easy to see that the same elementary variable, which represents the same model variable or
temporal sub-formula, always leads to the same equation in the overall transition relation, even
in another LTL translation process. Furthermore, if the above transition relation were further
conjuncted with another transition relation from another LTL property 𝜑′, i.e.

𝜌𝜑 ∧ 𝜌𝜑′ =

∧
x𝜓∈ el(𝜑)

(
x𝜓 ↔ 𝜒′(𝜓)

)
∧

∧
y𝜓∈ el(𝜑)

(
𝜒(𝜓) ↔ y′𝜓

)
∧

∧

x𝜓∈ el(𝜑′)

(
x𝜓 ↔ 𝜒′(𝜓)

)
∧

∧
y𝜓∈ el(𝜑′)

(
𝜒(𝜓) ↔ y′𝜓

)
Then we can imagine that, e.g., those equations from elementary variables x𝜓 ∈ el(𝜑′) \ el(𝜑)
will not cause anything wrong, if we have had used 𝜌𝜑 ∧ 𝜌𝜑′ instead of 𝜌𝜑 for the monitor
synthesis of 𝜑. Besides, the size of 𝜌𝜑 ∧ 𝜌𝜑′ may not be that long: perhaps el(𝜑′) and el(𝜑)
are very similar due to large piece of sharing in the two LTL formulas. This idea of combining
transition relation without hurting monitor correctness is a key to our multi-property monitor
synthesis algorithm.

The other key idea is the disjoint combination of belief states. Recall in the symbolic
monitoring algorithm, Algorithm 1, the two belief states 𝑟𝜑 and 𝑟¬𝜑 are initially given by the
initial condition of LTL translations, Θ𝜑 and Θ¬𝜑 (plus the initial condition of assumptions), and
is repeatedly transformed by forwarding images (w.r.t. inputs and fairness), while the monitoring
outputs are based on their emptiness. Now support we have two such belief states (the positive
parts, for example) 𝑟𝜑1 and 𝑟𝜑2 from the monitor construction of two LTL properties 𝜑1 and 𝜑2.
By introducing a Boolean flag 𝑡, we construct the following new belief states formula:

𝑟𝜑 ¤= if 𝑡 then 𝑟𝜑1 else 𝑟𝜑2 (11.3)

For more than two properties, in general, such as 𝜑1, 𝜑2, . . . 𝜑𝑛, we can introduce a finite-domain
integer 𝑡 (of values from 1 to 𝑛) as the tag and construct the new belief states formulas in the
following way:

𝑟𝜑 ¤=
∧
𝑖=1...𝑛

[
(𝑡 = 𝑖) → 𝑟𝜑𝑖

]
(11.4)

By having 𝑡 = 𝑡′ (𝑡′ is the next version of 𝑡 in transition relations) as part of the combined
transition relation 𝜌𝜑, we can imagine that the forward images of 𝑟𝜑 must also have the same
form in names of forwarding images of each 𝑟𝜑𝑖 . To retrieve each 𝑟𝜑𝑖 from the combined 𝑟𝜑, it
suffices to just do one more conjunction: 𝑟𝜑 ∧ (𝑡 = 𝑖) ≡ 𝑟𝜑𝑖 .

132

CHAPTER 11. CONCLUSIONS 11.1. FUTURE DIRECTIONS

Finally, to support resets of monitors (by resetting all sub-monitors at once), it suffices to do
a union of the combined belief states 𝑟𝜑 and 𝑟¬𝜑 (here ¬𝜑 is an abbreviation of the vector of the
negations of all involved LTL properties). Under the protection of tags the previous smart idea
of computing belief states representing only the history of SUS, still works.

We omit the actual symbolic monitoring algorithm which reflects the above ideas.

11.1.2 SAT-based finite-state monitoring

When the RV assumptions are complex with too many variables, and maybe the LTL monitoring
properties are also complex. The performance of BDD-based monitoring algorithms represented
in Chapter 5 may be too slow. This is not surprised, as the same phenomenon has also been
observed in BDD-based symbolic model checking scenarios, and the attempts to resolve this
problem has lead to SAT-based symbolic model checking such as Bounded Model Checking [22]
in 1999 and then the “Incremental Construction of Inductive Clauses for Indubitable Correctness”
(IC3) algorithm [28] in 2011.

When NuRV were used in real projects, we have found that sometimes the BDD-based
monitors cannot give satisfied performance on large finite-state models used as RV assumptions.
In this case, the infinite-state monitoring algorithms can be directly used as an alternative
solution, because any SMT solver is also a SAT solver and there is nothing wrong of applying
the SMT-based monitoring algorithms given in Chapter 6, to finite-state systems with finite-
domain and Boolean variables. In case the performance is still not good enough, the next idea
would be using pure SAT solvers and pure Boolean (original) IC3 model checkers instead of the
SMT-based ones.2 This works because, in general, the performance of dedicated SAT solvers
(such as MiniSAT) are better than SMT solvers designed for various theory domains.

Instead of raw formulas, when applying SAT solvers and SAT-based model checkers, Reduced
Boolean Circuits (RBC) [96] can be used instead. Note that RBCs do not have canonical
forms like BDDs, thus there is no way to generate standalone monitors with this SAT-based
approach. Note also that, Boolean quantifier elimination procedures are still needed. In
the actual implementation, if such QE procedures are not available, those provided by SMT
solvers (like MathSAT5) can still be used as intermediate steps before calling other SAT-based
procedures.

2A small story here. The author of this thesis was ever faced on a task of inventing a new runtime monitoring algorithm for finite-state
systems, where only SAT solvers were needed, i.e. without using any model checker. This was after the RV 2019 paper publications but right
before RV 2021 where the infinite-state ABRV paper got published. That invented algorithm, called “Bounded Trace Contraction” by the author,
was correct (at least it looks so), but it involves SAT formulas whose length is near the diameter of combined automata of the assumptions
and the translated monitoring property. In fact, it is equivalent to the current last version of the infinite-state monitoring algorithm based on
Incremental Bounded Model Checking, just the 𝑚𝑎𝑥_𝑘 of BMC procedure must be set to the diameter of the problem so that neither quantifier
elimination nor IC3 model checker will not be actually called. That “Bounded Trace Contraction” was invented before the author realized that
ABRV can be reduced to Model Checking (and vice versa), which indicates that during ABRV monitoring, the number of SAT solving calls
and the size of SAT input formulas cannot be polynomial to the combined size of LTL property and RV assumptions, because ABRV/MC is
PSPACE-complete while SAT is only NP-complete.

133

11.1. FUTURE DIRECTIONS CHAPTER 11. CONCLUSIONS

11.1.3 Parametric Trace Slicing

In general, both events and states can be monitored, even when they go beyond Boolean variables
having infinite-state states. For example, an SUS may have two events open(file) and close(file),
where file can be any string representing a file. Of course, from the view of infinite-state systems
we can think them as two infinite-state variables open and close, and the two events can be then
represented by value assignments (or equations) open = file and close = file. For any literal
file, one can easily construct monitoring properties using these equations involving infinite-state
variables and their values in LTL formula. But if the goal is to monitor something like “for
all the files, whenever it is open there must be a close operation on the same file within certain
time.” Note that the outmost quantification is not always universal. In another case, it may
be that “there exists a file, which is eventually closed twice.” Thus, roughly speaking safety
properties are implicitly universal, while liveness properties are implicitly existential, while all
other cases of quantifications including nesting of quantifications are assumed to not exist.

Currently the existing ABRV framework lacks the support of such parametric events with
implicit quantifications. But it is not hard to add such supports on top of the existing ABRV
framework. The Parametric Trace Slicing [41] technique implemented by the MOP framework
of runtime monitoring [123] represents one such solution. Roughly speaking, in MOP, an input
trace such as

𝑠 = open(𝑓1), open(𝑓2), close(𝑓1), close(𝑓2), . . .

is interpreted internally as two traces:

𝑠1 = open(𝑓1), noop, close(𝑓1), noop, . . . ,
𝑠2 = noop, open(𝑓2), noop, close(𝑓2), . . .

The noop states in the above traces are placeholders only for keeping all other states in the two
sliced traces aligned with the original input trace. The trace slicing operations happen when a
new file is encountered by the monitor. The monitor reports violation (or verification, depending
on the setting) once there is one sub-monitor (of sliced traces) reports so, and each sub-monitors
only need to support standard LTL monitoring. The MOP framework supports many different
plugins which covers a wide range of different monitoring specification languages, since the
MOP framework itself only take care of the trace slicing while leave the actual monitoring to
the plugins.

Thus, in theory, NuRV can be modified to servce as a MOP plugin, to support Parametric
Trace Slicing. The support of implicit quantifications in parametric events, although leading
to efficient implementations, is often too limited in practice. A perfect approach is to support
first-order quantifications (over data) in general.

134

CHAPTER 11. CONCLUSIONS 11.1. FUTURE DIRECTIONS

11.1.4 LTL with first-order quantification over data

Many authors talk about First-Order LTL without actually supporting first-order quantifiers in
their LTL definitions. Perhaps they were just having in mind the classical result that LTL (with
the until operator, possibly without past operators) has the same expressiveness with first-order
logics (FOL). If not wrong, Kamp’s this impressive LTL expressiveness result [97], with proof
later refined by Shelah et al. [76], was the very reason that the until operator was added into the
initial version of LTL invented by Amir Pnueli [128]. Note that LTL semantics (Definition 3.3.2
is given in FOL, i.e. by using universal and existential quantifiers over time, while it is a bit
surprising that arbitrary FOL formula can be back translatd to LTL formula using temporal
operators including until, although the formula size may blow up. (To add this, translating LTL
past operators to future operators may also cause a blow up in formula size. [112])

Thus “first-order quantification over time” is not meaning as a possible new feature in runtime
monitoring, because this is just what the standard LTL can do. Parametric Trace Slicing can
be seen as a special case: implicit first-orders quantification over data. Many RV researchers
have attacked “LTL with first-order quantification over data” in general, but the existing work
and progress is not quite satisfied. Among these works, the author highlights the following two
of them:

1. Monitoring over Quantifier Temporal Logic (QTL) with bounded quantifiers [83].

2. Monitoring over Metric First-Order Temporal Logic (MFOTL) [16].

Both QTL and MFOTL originally came from Model Checking community. These logics
are strong enough, however, existing RV work is never able to support monitoring arbitrary
formulas given in these logics. (Whenever a new RV paper on these logics were published,
the audience should carefully find sentences around words “limitations” or “fragments” in the
paper, to see what kind of properties are actually supported, and such limitations usually are not
mentioned in the paper title or abstract.) For instance, in the above QTL work, two specialized
quantifiers ∀̃ and ∃̃ are added, which quantify over only seen values. In the work of MFOTL, on
the other hand, only properties of the form G 𝜑, where 𝜑 is bounded, is supported. It is basically
imposible to extend the existing work, to support arbitrary nesting of first-order quantifiers over
data in the monitoring property, no matter how slow the resulting monitor will be.

Below is the author’s proposal to a complete solution of monitoring LTL with first-order quan-
tification over data. The key idea can be summarized into the following thesis (cf. Church–Turing
thesis, just for the meaning of “thesis” here):

Thesis 11.1.1. In linear-time logics, first-order quantification over data can be reduced to
second-order quantification over time.

135

11.1. FUTURE DIRECTIONS CHAPTER 11. CONCLUSIONS

To illustrate this point, let us think again the sample property given in Section 11.1.3: “for all
the files, whenever it is open there must be a close operation on the same file within certain time.”
For each possible file, the previous mentioned Parametric Trace Slicing technique essentially
does a filtering on the input trace, to construct a sub-trace which does not contain operations for
other files. In words, the actual monitoring is done only on such sub-traces whose indexes as a
set of (non-negative) integers (used as discrete time) is a subset of all integers.

Obviously, for any file 𝑓 occurred in the trace, there exists a maximal set of integers 𝑁
containing all open(𝑓) and close(𝑓). By maximal we mean that any other set of integers 𝑁′

also containing the same operators, is a subset of 𝑁 . Then, the actual monitoring property can
be written either in standard LTL over 𝑁 or directly in first-order logic where all quantifications
are implicitly over time points in 𝑁 . In more formally language, the monitoring property is
something like this:

∀𝑁. (∀𝑡, 𝑡′ ∈ 𝑁. (operand(𝑡) = operand(𝑡′)))∧
(∀𝑁′. (∀𝑡, 𝑡′ ∈ 𝑁. (operand(𝑡) = operand(𝑡′))) ⇒ 𝑁′ ⊆ 𝑁) ⇒
G𝑁 ((operation = open) ⇒ F𝑁 (operation = close))

(11.5)

or

∀𝑁. (∀𝑡, 𝑡′ ∈ 𝑁. (operand(𝑡) = operand(𝑡′)))∧
(∀𝑁′. (∀𝑡, 𝑡′ ∈ 𝑁. (operand(𝑡) = operand(𝑡′))) ⇒ 𝑁′ ⊆ 𝑁) ⇒
∀𝑡 ∈ 𝑁 ((operation(𝑡) = open) ⇒ ∃𝑡′ ∈ 𝑁. 𝑡 ⩽ 𝑡′ ∧ (operation(𝑡) = close))

(11.6)

Note that, for any operation like open(𝑓) we have used two functions operation and operand
to retrieve open and 𝑓 , respectively. They are essentially labelling functions over time. On the
other hand, temporal operators like G𝑁 must be associated with a set of time (by default, without
such association, it should be understood as all time, i.e. the set of all integers N). In our LTL
syntax (Definition 3.3.1), G is not primitive. However, if we rewrite all temporal operators to
the primitives ones, then their semantics (over infinite traces) should be understood w.r.t. 𝑁 , for
example, the following semantics definition of until operator (cf. Definition 3.3.2) should be
understood as all involved time 𝑖, 𝑗 , 𝑘 ∈ 𝑁 if U𝑁 were used in place of U:

𝑤, 𝑖 |= 𝜑U𝑁 𝜓 (assuming 𝑖 ∈ 𝑁) ⇔
∃𝑘. 𝑘 ∈ 𝑁 ∧ 𝑖 ⩽ 𝑘 ∧ [𝑤, 𝑘 |= 𝜓] ∧ (∀ 𝑗 . 𝑗 ∈ 𝑁 ∧ 𝑖 ⩽ 𝑗 < 𝑘 ⇒ [𝑤, 𝑗 |= 𝜑])

Some cautions must be taken for the next operator X𝑁 : because it may not hold that ∀𝑖 ∈
𝑁. 𝑖 + 1 ∈ 𝑁 . In practice, one may choose to add more variants of the next operator, to allow
access either the absolute time or relative time w.r.t. 𝑁 . 3 Due to these potential difficulties of
interpreting LTL operators, it seems better to abandon LTL, is only used as a syntactic sugar for

3So far the author do not have a full picture on this modifiction to LTL syntax and semantics used a syntax sugar of FO fragments in MSO.

136

CHAPTER 11. CONCLUSIONS 11.1. FUTURE DIRECTIONS

easily writing monitoring properties. For the desired monitor synthesis task, instead of working
on (11.5) one would rather work directly on (11.6).

In (11.6) there are two kind of quantifiers, one is the quantifier over 𝑁 , a set of time, the other
is the quantifier over variables like 𝑡, the time itself. In general, both universal and existential
quantifications may occur for 𝑁 and 𝑡. This kind of logic, is called Monadic Second-Order
Logic, abbreviated as MSOL (or MSO). It is said monadic to distinguish from (general) Second-
Order Logic, where second-order quantifiers (like 𝑁) may occur as a relation (at least binary)
of first-order quantifiers (like 𝑡). It is well known that, in certain scenarios like logic of graphs,
MSO is decidable while second-order logic itself is not in general [58].

Roughly speaking, finite traces and RV assumptions are both graphs. In particular, a single
finite trace is nothing but a chain of time vertices, where the actual state observation occurs as
labelling functions of each time vertex. A monitoring property expressed in MSO essentially
gives a set of finite graphs, while Courcelle has proved that every set of finite graphs, that
is definable in monadic second-order logic is recognizable. [57]. Note that, by recognizable
essentially it means that one can build a finite-state machine which has the same language as the
MSO formula. There are similar further results for infinite graphs, when infinite-state systems
are under consideration.

The semantics of MSO, once the syntax is fixed, should be clear and self-explaining. The
MSO syntax suitable for monitor synthesis should be minimized by defining derivative operators
in primitive operators. Following some ideas from Courcelle [57], the first step of the MSO
syntax minimization is to eliminate first-order quantifiers by introducing a unary operator SING
for detecting if a set is singleton. Thus, instead of ∀𝑡. 𝑡 ∈ 𝑁 ⇒ · · · , we can use ∀𝑃. SING(𝑃) ∧
𝑃 ⊆ 𝑁 ⇒ · · · . Note how set member tests (∈) also get all eliminated if no set elements
(individual time points) directly occur in the MSO formula. Furthermore, it is well known
that universal quantifiers can be rewritten by negation and existential quantifiers, in both first-
order and second-order cases. Thus, eventually a possible minimized MSO syntax (with only
primitive operators) should include at least the following: basic Boolean connectives, second-
order existential quantification (∃ over sets), set singleton test (SING), subset test (⊆), and
labelling functions (but working on sets instead of individual set elements) for actually storing
the information.

We omit further details here, only to mention that MSO-based approach was ever used in
Model Checking. One such fruit is the MONA model checker [105] for WS1S (Weak Second-
Order Logic of One Successor)4 MONA was not very successful in practice, because it generates
huge explicit-state automata translated from WS1S. To the best of our knowledge, nobody ever
tried to generate symbolic automata instead, which may resolve the potential state-explosion

4By weak it means that the second-order quantification is not only over sets but also finite sets. Because runtime monitors, unlike the case of
model checking, only see finite traces as inputs, thus, in theory, any second-order (set) variable used in monitoring properties should implicitly
be assumed as finite. Thus perhaps only Weak MSO are needed in RV. So far the author do not know the possible benefits of this observation.

137

11.1. FUTURE DIRECTIONS CHAPTER 11. CONCLUSIONS

issues found in explicit-state MSO-based model checkers. So far there is no known work on
monitoring MSO in general, except that many temporal logics found in RV field can be reduced to
MSO. Besides QTL and MFOTL mentioned above, the author believe that hyperproperties [54]
can also be expressed in MSO. Existing work on monitoring hyperproperties only focus on some
easy fragments [70].

11.1.5 Monitoring with out-of-order inputs

The infinite-state monitoring algorithm given in Section 6.6, based on Incremental Bounded
Model Checking, can be easily extended to support out-of-order inputs. This is mostly because,
in the BMP loops, new step constraints (as observations) added incrementally can be injected
into any position in the SMT formula being constructed.

To illustrate out-of-order input traces, we need to slightly modify the definition of finite and
infinite traces given in Section 3.1. Instead, a finite- or infinite-trace can be seen as a sequence
of pair ⟨𝑡, 𝑠⟩ where 𝑡 is the time and 𝑠 is the actual word from the alphabet Σ. The part 𝑡 can be
seen as a time tag explicitly supplied to the monitor. For normal (ordered) traces, the time tag
is always the same as the corresponding trace index. More generally, we can think a trace as a
function 𝑓 mapping natural numbers N (or just a subset of it) to the set of pairs in form of ⟨𝑡, 𝑠⟩.
Let us use fst and snd to access the inside elements in the pairs. Thus, for normal traces we have
∀𝑖 ∈ N. fst(𝑓 (𝑖)) ≡ 𝑖, while for out-of-order traces this property does not hold. For example, for
a trace like 𝑠 = 𝑠0𝑠1𝑠2 · · · , the monitor may first receive 𝑠1, then 𝑠2, and then 𝑠0. The goal is to
make sure that the monitoring output after receiving these three input states is always the same,
regardless of the order of these states.

Furthermore, the behavior of this monitor which is capable to process out-of-order inputs
must at least support partial observability (even without supporting assumptions and resets).
Using again the above sample trace, the desired monitoring output after receiving 𝑠1 and 𝑠2

but without 𝑠0 should be interpreted as, at time 0 there is no observation except for knowing
the discrete time has advanced by one. Then, the monitor received 𝑠0, and the internal belief
states must be updated according to 𝑠0 such that some paths previously not compatible with 𝑠0

must now be excluded, and this sometimes may change the monitoring output (at time 2) from
inconclusive to conclusive verdicts.

In practice, such out-of-ordering of trace states may only happen locally, i.e. the correct
position for a new input state should be close to the end of the current trace prefix. For example,
a monitor after taking trace inputs from 𝑠2 to 𝑠100 but now suddenly faces 𝑠1. Such a monitor
can be very inefficient in practice, even its output is always correct.

In the existing ABRV framework using monitoring algorithms based on Incremental BMC,
the monitor can naturally accept out-of-order inputs between the present time and last time
when the monitor is reset, or internal QE is called to accumulate a new pair of belief states. In

138

CHAPTER 11. CONCLUSIONS 11.1. FUTURE DIRECTIONS

other words, as long as only Incremental BMC gets involved, it is always possible to inject new
observations into the SMT formula for BMC checking, no matter if the observation happens at
the present or earlier time.

Out-of-order traces may occur in distributed environments where multiple components of
the SUS may not be totally synchronized, thus producing events (belonging to the same discrete
time) at slightly different real time. To the best of our knowledge, currently there is no RV
research on supporting out-of-order traces.5

11.1.6 Monitoring hybrid systems

In the so-called hybrid systems, both discrete- and continuous-time transitions come into play.
Hybrid systems can be described by timed automata [5]. The language of timed automata is
called timed language defined in the following way:

Definition 11.1.2 (Timed language (of timed automata)). Let 𝜏 = 𝜏1𝜏2 · · · , where 𝜏𝑖𝑖𝑛R are real
values, be called a time sequence, then a timed word over an alphabet Σ is a pair (𝜎, 𝜏) where
𝜎 = 𝜎1𝜎2 · · · in an infinite word of over Σ as usual. A timed language over Σ is a set of timed
words over Σ.

When monitoring LTL (possibly with additional operators designed for dense time) under
assumptions given by timed automata, the basic idea is the same: the monitoring property
is translated into FTS, which is then composed with the timed automaton representing RV
assumptions. The resulting time automaton will be used as a runtime monitor, which also takes
timed words as inputs. Another way is to rely on the ABRV-MC reduction (Section 4.6.3) and
use timed model checkers (e.g. nuXmv 2.0.0 supports a timed checking mode) or model checker
specially designed for hybrid systems.

Note, however, that Bounded Model Checking cannot be used any more, because it is no more
possible to construct any SMT formula by unrolling the transition relations in a timed automata.
Instead, the monitor must rely on repeated computations of forwarding images, for each new
inputs, to get the belief states for deciding the monitor outputs. Note also that, this forwarding
image computations may not terminate at all, unless the timed automata is guaranteed to be
zeno-free: any possible time sequence from the timed language must not have limiting points
except at the infinite. No further details can be said here.

11.1.7 ABRV and probabilistic models

There are still many other possible directions. For one last example, we know assumptions may
come from system models, but what if the system is stochastic and is described by a Markov

5However, the author has ever seen a paper submission on supporting out-of-order traces in monitoring of hybrid systems with dense time
setting. But unfortunately that submission was rejected finally. Let us hope it will re-appear.

139

11.1. FUTURE DIRECTIONS CHAPTER 11. CONCLUSIONS

chain? It is not easy for the existing ABRV framework to support probabilistic systems, mostly
because probabilistic systems are rarely described in symbolic manner. (It is hard to assign
transition probabilities to symbolic automata with transition relation for each pair of states 𝑠, 𝑠′

satisfying 𝑇 (𝑉,𝑉 ′).) However, conceptually we can imagine that, LTL, after being translated
into 𝜔-automata, can still be composed with the probabilistic models of the SUS. Previously
we said that those impossible transitions make non-monitorable properties monitorable, now we
should say that transitions with low probabilities make non-monitorable properties monitorable,
if we cut off those paths with low probabilities. Another way is to assign probability values to
the monitor outputs, e.g. to give the probabilities for each possible outputs.

The author hopes that the above discussions on future directions may inspire some new
research work on the side of the audience of this thesis.

140

Bibliography

[1] Parker Abercrombie and Murat Karaorman. jContractor: Bytecode Instrumentation Tech-
niques for Implementing Design by Contract in Java. Electr. Notes Theor. Comput. Sci.,
70(4):55–79, December 2002.

[2] Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoli-
ina Lehtinen. An Operational Guide to Monitorability. In Peter Csaba Ölveczky
and Gwen Salaün, editors, LNCS 11724 - Software Engineering and Formal Methods
(SEFM 2019), pages 433–453. Springer International Publishing, Cham, 2019. doi:
10.1007/978-3-030-30446-1_23.

[3] Luca Aceto, Antonis Achilleos, Adrian Francalanza, Anna Ingólfsdóttir, and Karoliina
Lehtinen. Adventures in monitorability: from branching to linear time and back again.
Proceedings of the ACM on Programming Languages, 3(POPL):1–29, January 2019.

[4] W. Ackermann. Solvable cases of the Decision Problem. North-Holland Publishing
Company, 1954. ISBN 1024589568. doi: 10.2307/2964059.

[5] Rajeev Alur and David L Dill. A Theory of Timed Automata. Theor. Comput. Sci., 126
(2):183–235, 1994.

[6] Oliver Arafat, Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verifi-
cation revisited. Technical Report Technical Report TUM-I0518, Technische Universität
München, München, 2005.

[7] Duncan Paul Attard and Adrian Francalanza. A Monitoring Tool for a Branching-Time
Logic. In LNCS 10012 - Runtime Verification (RV 2016), pages 473–481. Springer, Cham,
September 2016.

[8] Shaun Azzopardi, Christian Colombo, and Gordon J Pace. A Model-Based Approach to
Combining Static and Dynamic Verification Techniques. In Tiziana Margaria and Steffen
Bernhard, editors, LNCS 9952 - Leveraging Applications of Formal Methods, Verification
and Validation (ISoLA 2016, Part I), pages 416–430. Springer, October 2016. doi:
10.1007/978-3-319-47166-2_29.

141

BIBLIOGRAPHY BIBLIOGRAPHY

[9] Clark Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfiability
Modulo Theories. In Handbook of Satisfiability, pages 825–885. IOS Press, January
2009. doi: 10.3233/978-1-58603-929-5-825.

[10] Howard Barringer and Klaus Havelund. TraceContract - A Scala DSL for Trace Analysis.
In LNCS 6664 - FM 2011: Formal Methods, pages 57–72. Springer Berlin Heidelberg,
April 2011. doi: 10.1007/978-3-642-21437-0_7.

[11] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Rule-Based
Runtime Verification. In Bernhard Steffen and Giorgio Levi, editors, LNCS 2937 -
Verification, Model Checking, and Abstract Interpretation (VMCAI 2004), pages 44–57.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. doi: 10.1007/978-3-540-24622-0_
5.

[12] Howard Barringer, David E Rydeheard, and Klaus Havelund. Rule Systems for Run-
Time Monitoring: From Eagle to RuleR. In LNCS 4389 - Runtime Verification (RV
2007), pages 111–125. Springer Berlin Heidelberg, December 2007. doi: 10.1007/
978-3-540-77395-5_10.

[13] Detlef Bartetzko, Clemens Fischer, Michael Möller 0002, and Heike Wehrheim. Jass -
Java with Assertions. Electron. Notes Theor. Comput. Sci., 2001.

[14] Ezio Bartocci, Yliès Falcone, and Giles Reger. International Competition on Runtime
Verification (CRV). In LNCS 11429 - Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 2019, Part III), pages 1–9. Springer, New York, NY, March
2019.

[15] Bartocci, Ezio and Falcone, Yliès. LNCS 10457 - Lectures on Runtime Verification,
volume 10457 of Introductory and Advanced Topics. Springer, Cham, August 2017. doi:
10.1007/978-3-319-75632-5.

[16] David A. Basin, Felix Klaedtke, Samuel Müller, and Eugen Zalinescu. Monitoring Metric
First-Order Temporal Properties. J. ACM, 62(2):15:1–15:45, 2015.

[17] Andreas Bauer and Yliès Falcone. Decentralised LTL monitoring. Formal Methods in
System Design, 48(1-2):46–93, April 2016. doi: 10.1007/s10703-016-0253-8.

[18] Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing LTL Semantics
for Runtime Verification. Journal of Logic and Computation, 20(3):651–674, February
2010. doi: 10.1093/logcom/exn075.

[19] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime Verification for LTL
and TLTL. ACM Transactions on Software Engineering and Methodology, 20(4):14–64,
September 2011. doi: 10.1145/2000799.2000800.

142

BIBLIOGRAPHY BIBLIOGRAPHY

[20] Anna Bernasconi, Claudio Menghi, Paola Spoletini, Lenore D. Zuck, and Carlo Ghezzi.
From Model Checking to a Temporal Proof for Partial Models. In Antonio Cerone and
Marco Roveri, editors, LNCS 10469 - Software Engineering and Formal Methods (SEFM
2017), pages 54–69. Springer, Cham, 2018. doi: 10.1007/978-3-319-66197-1_4.

[21] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development.
Coq’Art: The Calculus of Inductive Constructions. Springer Science & Business Media,
Berlin, Heidelberg, March 2013. doi: 10.1007/978-3-662-07964-5.

[22] Armin Biere, Alessandro Cimatti, Edmund M Clarke Jr, and Yunshan Zhu. Symbolic
Model Checking without BDDs. In LNCS 1579 - Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS 1999), pages 193–207. Springer, Berlin, Heidelberg,
1999. doi: 10.1007/3-540-49059-0_14.

[23] Armin Biere, Alessandro Cimatti, Edmund M Clarke Jr, Ofer Strichman, and Yunshan
Zhu. Bounded Model Checking. In Advances in Computers: Highly Dependable Software,
pages 117–148. Academic Press, 2003. doi: 10.1016/s0065-2458(03)58003-2.

[24] Benjamin Bittner, Marco Bozzano, Alessandro Cimatti, Marco Gario, Stefano Tonetta,
and Viktoria Vozarova. Diagnosability of Fair Transition Systems. In Press, 2022.

[25] Marco Bozzano, Alessandro Cimatti, Marco Gario, and Stefano Tonetta. Formal Design
of Fault Detection and Identification Components Using Temporal Epistemic Logic. In
LNCS 8413 - Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2014), pages 326–340. Springer, Berlin, Heidelberg, February 2014. doi: 10.1007/
978-3-642-54862-8_22.

[26] Marco Bozzano, Alessandro Cimatti, Marco Gario, and Stefano Tonetta. Formal De-
sign of Asynchronous Fault Detection and Identification Components using Tempo-
ral Epistemic Logic. Logical Methods in Computer Science, 11(4):1–33, 2015. doi:
10.2168/LMCS-11(4:4)2015.

[27] Marco Bozzano, Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Grig-
gio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano
Tonetta. nuXmv 2.0.0 User Manual, 2019. URL https://es.fbk.eu/tools/nuxmv/
downloads/nuxmv-user-manual.pdf.

[28] Aaron R. Bradley. SAT-Based Model Checking without Unrolling. In Ranjit Jhala and
David Schmidt, editors, LNCS 6538 - Verification, Model Checking, and Abstract Inter-
pretation (VMCAI 2011), pages 70–87. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011. doi: 10.1007/978-3-642-18275-4_7.

143

https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf
https://es.fbk.eu/tools/nuxmv/downloads/nuxmv-user-manual.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[29] Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander
Pretschner, editors. LNCS 3472 - Model-Based Testing of Reactive Systems. Springer,
Berlin, Heidelberg, 2005. doi: 10.1007/b137241.

[30] Glenn Bruns and Patrice Godefroid. Model Checking Partial State Spaces with 3-Valued
Temporal Logics. In Nicolas Halbwachs and Doron A Peled, editors, LNCS 1633 -
Computer Aided Verification (CAV 1999), pages 274–287. Springer Berlin Heidelberg,
Berlin, Heidelberg, July 1999. doi: 10.1007/3-540-48683-6_25.

[31] Randal E Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers, 1986. doi: 10.1109/TC.1986.1676819.

[32] Randal E Bryant. Binary Decision Diagrams. In Edmund M Clarke Jr, Thomas A
Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking,
pages 191–217. Springer International Publishing, Cham, May 2018. doi: 10.1007/
978-3-319-10575-8_7.

[33] J Richard Büchi. On a decision method in restricted second order arithmetic. In The
Collected Works of J. Richard Büchi, pages 425–435. Springer, 1990.

[34] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-Jinn
Hwang. Symbolic model checking: 1020 states and beyond. Information and computation,
98(2):142–170, June 1992. doi: 10.1016/0890-5401(92)90017-A.

[35] Ian Cassar, Adrian Francalanza, Duncan Paul Attard, Luca Aceto, and Anna Ingólfsdót-
tir. A Generic Instrumentation Tool for Erlang. In RV-CuBES 2017. An International
Workshop on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for
Runtime Verification Tools, 2017.

[36] Ian Cassar, Adrian Francalanza, Duncan Paul Attard, Luca Aceto, and Anna Ingólfsdóttir.
A Suite of Monitoring Tools for Erlang. In RV-CuBES 2017. An International Workshop
on Competitions, Usability, Benchmarks, Evaluation, and Standardisation for Runtime
Verification Tools, 2017.

[37] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro
Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuXmv
Symbolic Model Checker. In LNCS 8559 - Computer Aided Verification (CAV 2014),
pages 334–342. Springer, Cham, June 2014. doi: 10.1007/978-3-319-08867-9_22.

[38] Roberto Cavada, Alessandro Cimatti, Charles Arthur Jochim, Gavin Keighren, Emanuele
Olivetti, Marco Pistore, Marco Roveri, and Andrei Tchaltsev. NuSMV 2.6 User Manual,
October 2015. URL https://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf.

144

https://nusmv.fbk.eu/NuSMV/userman/v26/nusmv.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[39] Feng Chen and Grigore Roşu. Towards Monitoring-Oriented Programming. Electr. Notes
Theor. Comput. Sci., 89(2):108–127, November 2003.

[40] Feng Chen and Grigore Roşu. MOP: An Efficient and Generic Runtime Verification
Framework. In 22nd annual ACM SIGPLAN conference, pages 569–588, New York,
USA, October 2007. ACM Press.

[41] Feng Chen and Grigore Roşu. Parametric Trace Slicing and Monitoring. In LNCS 5505 -
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2009), pages
246–261. Springer, Berlin, Heidelberg, March 2009. doi: 10.1007/978-3-642-00768-2_
23.

[42] Feng Chen, Marcelo d’Amorim, and Grigore Roşu. Checking and Correcting Behaviors
of Java Programs at Runtime with Java-MOP. Electr. Notes Theor. Comput. Sci., 144(4):
3–20, May 2006.

[43] Alonzo Church. A formulation of the simple theory of types. The journal of symbolic
logic, 5(2):56–68, 1940. doi: 10.2307/2266170.

[44] Alessandro Cimatti and Alberto Griggio. Software Model Checking via IC3. In LNCS
7358 - Computer Aided Verification (CAV 2012), pages 277–293. Springer, Berlin, Hei-
delberg, July 2012. doi: 10.1007/978-3-642-31424-7_23.

[45] Alessandro Cimatti, Marco Pistore, Marco Roveri, and Roberto Sebastiani. Improving
the Encoding of LTL Model Checking into SAT. In Agostino Cortesi, editor, LNCS
2294 - Verification, Model Checking, and Abstract Interpretation (VMCAI 2002), pages
196–207. Springer Berlin Heidelberg, Berlin, Heidelberg, April 2002. doi: 10.1007/
3-540-47813-2_14.

[46] Alessandro Cimatti, Alberto Griggio, Sergio Mover, and Stefano Tonetta. IC3 Modulo
Theories via Implicit Predicate Abstraction. In Erika Ábrahám and Klaus Havelund, edi-
tors, TACAS, volume 8413 of Lecture Notes in Computer Science, pages 46–61. Springer,
2014. doi: 10.1007/978-3-642-54862-8_4.

[47] Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Assumption-Based Runtime Verifi-
cation with Partial Observability and Resets. In LNCS 11757 - Runtime Verification (RV
2019), pages 165–184. Springer, 2019. doi: 10.1007/978-3-030-32079-9_10.

[48] Alessandro Cimatti, Chun Tian, and Stefano Tonetta. NuRV: A nuXmv Extension for
Runtime Verification. In LNCS 11757 - Runtime Verification (RV 2019), pages 382–392.
Springer, 2019. doi: 10.1007/978-3-030-32079-9_23.

145

BIBLIOGRAPHY BIBLIOGRAPHY

[49] Alessandro Cimatti, Alberto Griggio, Enrico Magnago, Marco Roveri, and Stefano
Tonetta. SMT-based satisfiability of first-order LTL with event freezing functions and
metric operators. Inf. Comput., 272:104502, 2020. doi: 10.1016/j.ic.2019.104502.

[50] Alessandro Cimatti, Chun Tian, and Stefano Tonetta. Assumption-Based Runtime
Verification of Infinite-State Systems. In LNCS 12974 - Runtime Verification (RV
2021), pages 207–227. Springer International Publishing, October 2021. doi: 10.1007/
978-3-030-88494-9_11.

[51] Alessandro Cimatti, Chun Tian, and Stefano Tonetta. NuRV 1.9.0 User Manual, September
2022. URL https://es-static.fbk.eu/tools/nurv/nurv-manual_190.pdf.

[52] Edmund M. Clarke, Orna Grumberg, and Kiyoharu Hamaguchi. Another Look at LTL
Model Checking. Formal Methods in System Design, 10(1):47–71, 1997. doi: 10.1023/A:
1008615614281.

[53] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick Bloem, editors.
Handbook of Model Checking. Springer International Publishing, May 2018. doi: 10.
1007/978-3-319-10575-8.

[54] Michael R Clarkson and Fred B Schneider. Hyperproperties. In 2008 21st IEEE Computer
Security Foundations Symposium, pages 51–65. IEEE, 2008.

[55] Aaron R. Coble. Anonymity, information, and machine-assisted proof. Technical Report
UCAM-CL-TR-785, University of Cambridge, Computer Laboratory, July 2010. URL
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-785.pdf.

[56] Christian Colombo and Yliès Falcone. Organising LTL monitors over distributed systems
with a global clock. Formal Methods in System Design, 49(1):109–158, May 2016. doi:
10.1007/s10703-016-0251-x.

[57] Bruno Courcelle. The Monadic Second-Order Logic of Graphs I. Recognizable Sets
of Finite Graphs. Information and Computation, 85(1):12–75, 1990. doi: 10.1016/
0890-5401(90)90043-H.

[58] Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic
- A Language-Theoretic Approach. Encyclopedia of mathematics and its applications,
2012.

[59] Normann Decker, Martin Leucker, and Daniel Thoma. Monitoring modulo theories.
International Journal on Software Tools for Technology Transfer, 18(2):205–225, 2015.
doi: 10.1007/s10009-015-0380-3.

146

https://es-static.fbk.eu/tools/nurv/nurv-manual_190.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-785.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[60] Xiaoning Du, Yang Liu, and ALwen Tiu. Trace-Length Independent Runtime Monitoring
of Quantitative Policies in LTL. In Nikolaj Bjørner and Frank de Boer, editors, LNCS
9109 - FM 2015: Formal Methods, pages 231–247. Springer, Cham, May 2015. doi:
10.1007/978-3-319-19249-9_15.

[61] Matthew B Dwyer, George S Avrunin, and James C Corbett. Patterns in Property Specifi-
cations for Finite-State Verification. In Proceedings of the 21st International Conference
on Software Engineering, pages 411–420, New York, USA, 1999. ACM Press. doi:
10.1145/302405.302672.

[62] Cindy Eisner, Dana Fisman, John Havlicek, Yoad Lustig, Anthony McIsaac, and David
Van Campenhout. Reasoning with Temporal Logic on Truncated Paths. In LNCS 2725
- Computer Aided Verification (CAV 2003), pages 27–39. Springer, Berlin, Heidelberg,
2003. doi: 10.1007/978-3-540-45069-6_3.

[63] E Allen Emerson and Chin-Laung Lei. Temporal Reasoning Under Generalized Fairness
Constraints. In LNCS 210 - Theoretical Aspects of Computer Science (STACS 1986),
pages 21–36. Springer, Berlin, Heidelberg, 1986. doi: 10.1007/3-540-16078-7_62.

[64] Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier. What can you verify and
enforce at runtime? Int. J. Softw. Tools Technol. Transf., 14(3):349–382, 2012. doi:
10.1007/s10009-011-0196-8.

[65] Ylies Falcone, Klaus Havelund, and Giles Reger. A tutorial on runtime verifica-
tion. Engineering Dependable Software Systems, 34:141–175, 2013. doi: 10.3233/
978-1-61499-207-3-141.

[66] Yliès Falcone, Srdjan Krstic, Giles Reger, and Dmitriy Traytel. A Taxonomy for Clas-
sifying Runtime Verification Tools. In Christian Colombo and Martin Leucker, editors,
LNCS 11237 - Runtime Verification (RV 2018), pages 241–262. Springer, Cham, 2018.
doi: 10.1007/978-3-030-03769-7_14.

[67] Davide Fauri, Daniel Ricardo dos Santos, Elisa Costante, Jerry den Hartog, Sandro
Etalle, and Stefano Tonetta. From System Specification to Anomaly Detection (and
back). In CPS-SPC, pages 13–24, 2017. doi: 10.1145/3140241.3140250. URL https:
//doi.org/10.1145/3140241.3140250.

[68] Jeanne Ferrante and Charles Rackoff. A Decision Procedure for the First Order Theory of
Real Addition with Order. SIAM Journal on Computing, 4(1):69–76, March 1975. doi:
10.1137/0204006.

147

https://doi.org/10.1145/3140241.3140250
https://doi.org/10.1145/3140241.3140250

BIBLIOGRAPHY BIBLIOGRAPHY

[69] Jean-Christophe Filliatre and Clément Pascutto. Ortac: Runtime Assertion Checking for
OCaml (Tool Paper). In LNCS 12974 - Runtime Verification (RV 2021), pages 1–10.
Springer International Publishing, October 2021.

[70] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. Monitoring
hyperproperties. Formal Methods in System Design, 18(6):1–28, June 2019.

[71] Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. On Verifying Hennessy-Milner
Logic with Recursion at Runtime. In LNCS 9333 - Runtime Verification (RV 2015), pages
71–86. Springer, Cham, September 2015.

[72] Adrian Francalanza, Luca Aceto, and Anna Ingólfsdóttir. Monitorability for the Hen-
nessy–Milner Logic with recursion. Formal Methods in System Design, 51(1):87–116,
March 2017.

[73] Lars-Åke Fredlund. Guaranteeing Correctness Properties of a Java Card Applet. Electr.
Notes Theor. Comput. Sci., 113:217–233, January 2005.

[74] Lars-Åke Fredlund, Julio Mariño, Sergio Pérez, and Salvador Tamarit. Runtime Verifi-
cation in Erlang by Using Contracts. In WFLP, 2018.

[75] Ariel Damián Fuxman. Formal Analysis of Early Requirements Specifications. PhD
thesis, University of Toronto, 2001. URL https://tspace.library.utoronto.ca/
handle/1807/15905.

[76] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the Temporal Analysis
of Fairness. In The 7th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 163–173, January 1980.

[77] Dov M Gabbay, Renate A Schmidt, and Andrzej Szałas. Second-Order Quantifier Elim-
ination. Foundations, Computational Aspects and Applications. College Publications,
2008.

[78] D Garbervetsky, C Nakhli, S Yovine, and H Zorgati. Program Instrumentation and
Run-Time Analysis of Scoped Memory in Java. Electr. Notes Theor. Comput. Sci., 113:
105–121, January 2005.

[79] Sahika Genc and Seéphane Lafortune. Predictability of event occurrences in partially-
observed discrete-event systems. Automatica, 45(2):301–311, February 2009. doi: 10.
1016/j.automatica.2008.06.022.

[80] Sahika Genc and Stéphane Lafortune. Predictability in Discrete-Event Systems Under
Partial Observation. IFAC Proceedings Volumes, 39(13):1461–1466, 2006. doi: 10.3182/
20060829-4-CN-2909.00243.

148

https://tspace.library.utoronto.ca/handle/1807/15905
https://tspace.library.utoronto.ca/handle/1807/15905

BIBLIOGRAPHY BIBLIOGRAPHY

[81] Michael J C Gordon and Thomas F Melham. Introduction to HOL. A Theorem Proving
Environment for Higher Order Logic. Cambrige University Press, New York, NY, USA,
1993.

[82] Michael J. C. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Edinburgh LCF:
A Mechanised Logic of Computation, volume 78 of Lecture Notes in Computer Science.
Springer, Berlin Heidelberg, 1979. doi: 10.1007/3-540-09724-4.

[83] Klaus Havelund and Doron A Peled. Efficient Runtime Verification of First-Order Tem-
poral Properties. In LNCS 10869 - Model Checking Software (SPIN 2018), pages 26–47.
Springer, Cham, June 2018. doi: 10.1007/978-3-319-94111-0_2.

[84] Klaus Havelund and Doron A Peled. Runtime Verification: From Propositional to First-
Order Temporal Logic. In LNCS 11237 - Runtime Verification (RV 2018), pages 90–112.
Springer, Cham, October 2018. doi: 10.1007/978-3-030-03769-7_7.

[85] Klaus Havelund and Grigore Roşu. Monitoring Java Programs with Java PathExplorer.
Electr. Notes Theor. Comput. Sci., 55(2):200–217, 2001.

[86] Klaus Havelund and Grigore Roşu. Synthesizing Monitors for Safety Properties. In Joost-
Pieter Katoen and Perdita Stevens, editors, LNCS 2280 - Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2002), pages 342–356. Springer, Berlin,
Heidelberg, 2002. doi: 10.1007/3-540-46002-0_24.

[87] Klaus Havelund and Grigore Roşu. An overview of the runtime verification tool Java
PathExplorer. Formal Methods in System Design, 24(2):189–215, March 2004.

[88] Klaus Havelund, Grigore Roşu, and Daniel Clancy. Java PathExplorer: A Runtime
Verification Tool. In Proceeding of International Symposium on Artificial Intelligence,
Robotics and Automation in Space, pages 1–8, Montreal, Canada, January 2001.

[89] Klaus Havelund, Doron A Peled, and Dogan Ulus. First order temporal logic monitoring
with BDDs. In Formal Methods in Computer-Aided Design (FMCAD 2017), pages 116–
123. IEEE, September 2017. doi: 10.23919/FMCAD.2017.8102249.

[90] Klaus Havelund, Doron A Peled, and Dogan Ulus. First-order temporal logic monitoring
with BDDs. Formal Methods in System Design, 2(3):117–23, January 2019. doi: 10.
1007/s10703-018-00327-4.

[91] Thomas A Henzinger and N Ege Saraç. Monitorability Under Assumptions. In Jy-
otirmoy Deshmukh and Dejan Nickovic, editors, LNCS 12399 - Runtime Verifica-
tion (RV 2020), pages 3–18. Springer International Publishing, Cham, 2020. doi:
10.1007/978-3-030-60508-7_1.

149

BIBLIOGRAPHY BIBLIOGRAPHY

[92] Jörg Hoffmann and Ronen I. Brafman. Contingent planning via heuristic forward search
with implicit belief states. In Susanne Biundo, Karen L. Myers, and Kanna Rajan,
editors, Proceedings of the Fifteenth International Conference on Automated Planning
and Scheduling (ICAPS 2005), June 5-10 2005, Monterey, California, USA, pages 71–
80. AAAI, 2005. URL http://www.aaai.org/Library/ICAPS/2005/icaps05-008.
php.

[93] HOL4 contributors. The HOL System DESCRIPTION (Kananaskis-13 re-
lease), August 2019. URL http://sourceforge.net/projects/hol/files/hol/
kananaskis-13/kananaskis-13-description.pdf.

[94] HOL4 contributors. The HOL System LOGIC (Kananaskis-13 release),
August 2019. URL http://sourceforge.net/projects/hol/files/hol/
kananaskis-13/kananaskis-13-logic.pdf.

[95] Joe Hurd. Formal verification of probabilistic algorithms. Technical Report UCAM-
CL-TR-566, University of Cambridge, Computer Laboratory, May 2003. URL https:
//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-566.pdf.

[96] Paul B Jackson and Daniel Sheridan. Clause Form Conversions for Boolean Circuits. In
Holger H Hoos and David G Mitchell, editors, LNCS 3542 - Theory and Applications
of Satisfiability Testing (SAT 2004), pages 183–198. Springer, Berlin, Heidelberg, 2005.
doi: 10.1007/11527695_15.

[97] Johan Anthony Willem Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
UCLA, 1979.

[98] Murat Karaorman and Jay Freeman. jMonitor: Java Runtime Event Specification and
Monitoring Library. Electr. Notes Theor. Comput. Sci., 113:181–200, January 2005.

[99] Matt Kaufmann, Panagiotis Manolios, and J Strother Moore. Computer-Aided Reasoning:
An Approach, volume 3 of Advances in Formal Methods. Springer, Boston, MA, July
2000.

[100] Katarína Kejstová, Petr Rockai, and Jiri Barnat. From Model Checking to Runtime
Verification and Back. In LNCS 10548 - Runtime Verification (RV 2017), pages 225–240.
Springer, Cham, August 2017. doi: 10.1007/978-3-319-67531-2_14.

[101] Yonit Kesten, Amir Pnueli, and Li-on Raviv. Algorithmic Verification of Linear Temporal
Logic Specifications. In LNCS 1443 - Automata, Languges and Programming (ICALP
1998), pages 1–16. Springer, Berlin, Heidelberg, May 1998. doi: 10.1007/BFb0055036.

150

http://www.aaai.org/Library/ICAPS/2005/icaps05-008.php
http://www.aaai.org/Library/ICAPS/2005/icaps05-008.php
http://sourceforge.net/projects/hol/files/hol/kananaskis-13/kananaskis-13-description.pdf
http://sourceforge.net/projects/hol/files/hol/kananaskis-13/kananaskis-13-description.pdf
http://sourceforge.net/projects/hol/files/hol/kananaskis-13/kananaskis-13-logic.pdf
http://sourceforge.net/projects/hol/files/hol/kananaskis-13/kananaskis-13-logic.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-566.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-566.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

[102] Leonid Khachiyan. Fourier–Motzkin Elimination Method. In Encyclopedia of Op-
timization, pages 1074–1077. Springer US, Boston, MA, 2009. doi: 10.1007/
978-0-387-74759-0_187.

[103] Moonjoo Kim, Sampath Kannan, Insup Lee, and Oleg Sokolsky. Java MaC: a Run-time
Assurance Tool for Java Programs. Electr. Notes Theor. Comput. Sci., 55(2):1–18, October
2001. doi: 10.1016/S1571-0661(04)00254-3.

[104] Moonjoo Kim, Sampath Kannan, Insup Lee, Oleg Sokolsky, and Mahesh Viswanathan.
Computational Analysis of Run-time Monitoring - Fundamentals of Java-MaC. Electr.
Notes Theor. Comput. Sci., 70(4):80–94, December 2002.

[105] Nils Klarlund, Anders Møller, and Michael I Schwartzbach. MONA Implementation
Secrets. BRICS Report Series, 7(40), June 2000.

[106] Stephen Cole Kleene. Introduction to Metamathematics. Wolthers-Noordhoff, New York,
1971.

[107] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In Proceedings of the 2004 International Symposium on Code
Generation and Optimization (CGO’04), Palo Alto, California, Mar 2004.

[108] Martin Leucker. Teaching Runtime Verification. In Sarfraz Khurshid and Koushik Sen,
editors, LNCS 7186 - Runtime Verification (RV 2011), pages 34–48. Springer, Berlin,
Heidelberg, 2012.

[109] Martin Leucker. Sliding between Model Checking and Runtime Verification. In LNCS
7687 - Runtime Verification (RV 2012), pages 82–87. Springer, Berlin, Heidelberg, January
2013. doi: 10.1007/978-3-642-35632-2_10.

[110] Martin Leucker. Runtime Verification for Linear-Time Temporal Logic. In Jonathan P
Bowen, Zhiming Liu, and Zili Zhang, editors, LNCS 10215 - Engineering Trustworthy
Software Systems (SETSS 2016), pages 151–194. Springer International Publishing, Cham,
April 2017. doi: 10.1007/978-3-319-56841-6.

[111] Martin Leucker and Christian Schallhart. A brief account of runtime verification. The
Journal of Logic and Algebraic Programming, 78(5):293–303, 2009. doi: 10.1016/j.jlap.
2008.08.004.

[112] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck. The Glory of the Past. In Logics of
Programs, pages 196–218, 1985.

151

BIBLIOGRAPHY BIBLIOGRAPHY

[113] Rüdiger Loos and Volker Weispfenning. Applying linear quantifier elimination. The
computer journal, 36(5):450–462, 1993. URL https://dblp.org/rec/journals/
cj/LoosW93.

[114] Qingzhou Luo, Yi Zhang, Choonghwan Lee, Dongyun Jin, Patrick O’Neil Meredith,
Traian-Florin Serbanuta, and Grigore Roşu. RV-Monitor: Efficient Parametric Runtime
Verification with Simultaneous Properties. In LNCS 8734 - Runtime Verification (RV
2014), pages 285–300. Springer, Cham, August 2014. doi: 10.1007/978-3-319-11164-3_
24.

[115] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag New York, 1992. doi: 10.1007/978-1-4612-0931-7.

[116] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag New York, 1995. doi: 10.1007/978-1-4612-4222-2.

[117] Annalisa Marcja and Carlo Toffalori. Quantifier Elimination. In A Guide to Classical
and Modern Model Theory, pages 43–83. Springer Netherlands, Dordrecht, 2003. doi:
10.1007/978-94-007-0812-9_2.

[118] C Mascle, D Neider, M Schwenger, and P Tabuada. From LTL to rLTL monitoring:
improved monitorability through robust semantics. In 23rd International Conference on
Hybrid Systems Computation and Control, pages 1–12, New York, NY, USA, April 2020.
ACM. doi: 10.1145/3365365.3382197.

[119] Kenneth L McMillan. Symbolic Model Checking. Springer Science+Business Media,
1993. doi: 10.1007/978-1-4615-3190-6.

[120] Thomas F Melham. Automating Recursive Type Definitions in Higher Order Logic.
In Current Trends in Hardware Verification and Automated Theorem Proving, page 64.
Springer Science & Business Media, 1989. doi: 10.1007/978-1-4612-3658-0_9.

[121] Thomas F Melham. A Package For Inductive Relation Definitions In HOL. In HOL
Theorem Proving System and Its Applications (HOL 1991), pages 350–357. IEEE, Davis,
CA, USA, August 1991. doi: 10.1109/HOL.1991.596299.

[122] Claudio Menghi, Paola Spoletini, and Carlo Ghezzi. Dealing with Incompleteness in
Automata-Based Model Checking. In LNCS 9995 - FM 2016: Formal Methods. Springer,
October 2016. doi: 10.1007/978-3-319-48989-6.

[123] Patrick O’Neil Meredith, Dongyun Jin, Dennis Griffith, Feng Chen, and Grigore Roşu.
An overview of the MOP runtime verification framework. International Journal on

152

https://dblp.org/rec/journals/cj/LoosW93
https://dblp.org/rec/journals/cj/LoosW93

BIBLIOGRAPHY BIBLIOGRAPHY

Software Tools for Technology Transfer, 14(3):249–289, April 2011. doi: 10.1007/
s10009-011-0198-6.

[124] Robin Milner. Logic for computable functions: description of a machine implementation.
Technical report, Stanford Univ., Dept. of Computer Science, 1972. URL http://www.
dtic.mil/dtic/tr/fulltext/u2/785072.pdf.

[125] Jeremy W Nimmer and Michael D. Ernst. Static verification of dynamically detected
program invariants - Integrating Daikon and ESC/Java. Electron. Notes Theor. Comput.
Sci., 55(2):255–276, October 2001.

[126] Doron A Peled and Klaus Havelund. Refining the Safety-Liveness Classification of
Temporal Properties According to Monitorability. In Models, Mindsets, Meta: The
What, the How, and the Why Not?, pages 218–234. Springer, June 2019. doi: 10.1007/
978-3-030-22348-9_14.

[127] Srinivas Pinisetty, Thierry Jéron, Stavros Tripakis, Yliès Falcone, Hervé Marchand, and
Viorel Preoteasa. Predictive runtime verification of timed properties. Journal of Systems
and Software, 132:353–365, October 2017. doi: 10.1016/j.jss.2017.06.060.

[128] Amir Pnueli. The Temporal Logic of Programs. In FOCS, pages 46–57, 1977.

[129] Amir Pnueli and A Zaks. PSL Model Checking and Run-Time Verification Via Testers. In
FM 2006: Formal Methods, pages 573–586. Springer, Berlin, Heidelberg, August 2006.
doi: 10.1007/11813040_38.

[130] Grigore Roşu and Klaus Havelund. Rewriting-based techniques for runtime veri-
fication. Automated Software Engineering, 12(2):151–197, 2005. doi: 10.1007/
s10515-005-6205-y.

[131] Kristin Yvonne Rozier and Johann Schumann. R2U2: Tool Overview. Kalpa Publications
in Computing, 3:138–156, 2017. doi: 10.29007/5pch.

[132] Usa Sammapun, Raman Sharykin, Margaret DeLap, Myong Kim, and Steve Zdancewic.
Formalizing Java-MaC. Electr. Notes Theor. Comput. Sci., 89(2):171–190, November
2003.

[133] Meera Sampath, Raja Sengupta, Stéphane Lafortune, Kasim Sinnamohideen, and De-
mosthenis Teneketzis. Diagnosability of discrete-event systems. IEEE Transactions on
Automatic Control, 40(9):1555–1575, September 1995. doi: 10.1109/9.412626.

[134] Joshua Schneider, David A Basin, Srdjan Krstic, and Dmitriy Traytel. A Formally Verified
Monitor for Metric First-Order Temporal Logic. In Bernd Finkbeiner and Leonardo

153

http://www.dtic.mil/dtic/tr/fulltext/u2/785072.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/785072.pdf

BIBLIOGRAPHY BIBLIOGRAPHY

Mariani, editors, LNCS 11757 - Runtime Verification (RV 2019), pages 1–19. Springer
International Publishing, Porto, Portugal, October 2019.

[135] Klaus Schneider. Translating linear temporal logic to deterministic 𝜔-automata. In
GI/ITG/GMM WORKSHOP METHODEN DES ENTWURFS UND DER VERIFIKATION
DIGITALER SYSTEME, pages 149–158, 1997.

[136] Klaus Schneider. Improving automata generation for linear temporal logic by considering
the automaton hierarchy. In International Conference on Logic for Programming Artificial
Intelligence and Reasoning, pages 39–54. Springer, 2001. doi: 10.1007/3-540-45653-8_
3.

[137] Klaus Schneider. Temporal Logics. In Verification of Reactive Systems - Formal Methods
and Algorithms, pages 279–404. Springer-Verlag, Berlin, Heidelberg, 2004. doi: 10.1007/
978-3-662-10778-2_5.

[138] Klaus Schneider and Dirk W Hoffmann. A HOL Conversion for Translating Linear Time
Temporal Logic to 𝜔-Automata. In LNCS 1690 - Theorem Proving in Higher Order
Logics (TPHOLs 1999), pages 255–272. Springer, Berlin, Heidelberg, September 1999.

[139] Viktor Schuppan, Marcel Baur, and Armin Biere. JVM Independent Replay in Java.
Electr. Notes Theor. Comput. Sci., 113:85–104, January 2005.

[140] Konstantin Selyunin, Stefan Jaksic, Thang Nguyen, Christian Reidl, Udo Hafner, Ezio
Bartocci, Dejan Nickovic, and Radu Grosu. Runtime Monitoring with Recovery of the
SENT Communication Protocol. In Rupak Majumdar and Viktor Kunčak, editors, LNCS
10426 - Computer Aided Verification (CAV 2017, Part I). Springer, July 2017. doi:
10.1007/978-3-319-63387-9_17.

[141] A. Prasad Sistla, Min Zhou, and Lenore D. Zuck. Monitoring Off-the-Shelf Components.
In E Allen Emerson and Kedar S Namjoshi, editors, LNCS 3855 - Verification, Model
Checking, and Abstract Interpretation (VMCAI 2006), pages 222–236. Springer, Berlin,
Heidelberg, 2006. doi: 10.1007/11609773_15.

[142] A Prasad Sistla, Milos Zefran, and Yao Feng. Monitorability of Stochastic Dynamical
Systems. In LNCS 6806 - Computer Aided Verification (CAV 2011), pages 720–736.
Springer, Berlin, Heidelberg, September 2018. doi: 10.1007/978-3-642-22110-1_58.

[143] Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Aït Mo-
hamed, César Muñoz, and Sofiène Tahar, editors, LNCS 5170 - Theorem Proving
in Higher Order Logics (TPHOLs 2008). Springer, Berlin, Heidelberg, 2008. doi:
10.1007/978-3-540-71067-7_6.

154

BIBLIOGRAPHY BIBLIOGRAPHY

[144] Volker Stolz and Frank Huch. Runtime Verification of Concurrent Haskell Programs.
Electr. Notes Theor. Comput. Sci., 113:201–216, January 2005.

[145] Li Tan, Jesung Kim, O Sokolsky, and Insup Lee. Model-based testing and monitoring for
hybrid embedded systems. In IEEE International Conference on Information Reuse and
Integration, pages 487–492. IEEE, November 2004. doi: 10.1109/IRI.2004.1431508.

[146] Vidhya Tekken Valapil, Sorrachai Yingchareonthawornchai, Sandeep Kulkarni, Eric
Torng, and Murat Demirbas. Monitoring Partially Synchronous Distributed Systems
Using SMT Solvers. In Shuvendu Lahiri and Giles Reger, editors, LNCS 10548
- Runtime Verification (RV 2017), pages 277–293. Springer, Cham, 2017. doi:
10.1007/978-3-319-67531-2_17.

[147] Chun Tian and Davide Sangiorgi. Unique solutions of contractions, CCS, and their
HOL formalisation. Information and Computation, pages 104606–37, July 2020. doi:
10.1016/j.ic.2020.104606.

[148] Thomas Tuerk and Klaus Schneider. Relationship Between Alternating Omega-Automata
and Symbolically Represented Nondeterministic Omega-Automata. Technical report,
University of Kaiserslautern, November 2005.

[149] Thomas Tuerk, Klaus Schneider, and Mike Gordon. Model Checking PSL Using HOL
and SMV. In Eyal Bin, Avi Ziv, and Shmuel Ur, editors, LNCS 4383 - Hardware and
Software: Verification and Testing (HVC 2006), pages 1–15. Springer, Berlin, Heidelberg,
2007. doi: 10.1007/978-3-540-70889-6_1.

[150] Xian Zhang, Martin Leucker, and Wei Dong. Runtime Verification with Predictive
Semantics. In LNCS 7226 - NASA Formal Methods (NFM 2012), pages 418–432. Springer,
Berlin, Heidelberg, March 2012. doi: 10.1007/978-3-642-28891-3_37.

[151] Y Zhao, S Oberthür, M Kardos, and F J Rammig. Model-based Runtime Verification
Framework for Self-optimizing Systems. Electr. Notes Theor. Comput. Sci., 144(4):
125–145, May 2006. doi: 10.1016/j.entcs.2006.02.008.

[152] Yuhong Zhao and Franz Rammig. Model-based Runtime Verification Framework. Electr.
Notes Theor. Comput. Sci., 253(1):179–193, October 2009. doi: 10.1016/j.entcs.2009.
09.035.

155

Appendix A

Data and Tables

A.1 SMV Models

The Model 2 (M2) used in this thesis (Section 9.1.2), generated from Dwyer’s Pattern 10, is
represented by the following smv program. We first use NuSMV’s ltl2smv program to translate
the LTL, then fill in other system variables. All x_ variables are elementary temporal variables.
It also shows how the symbolic LTL to Büchi translation described in Sec. 3.7 works.

MODULE main
VAR

p : boolean; q : boolean; r : boolean;
s : boolean; t : boolean; z : boolean;
x_11 : boolean; x_9 : boolean; x_7 : boolean;
x_5 : boolean; x_3 : boolean; x_1 : boolean;

DEFINE
x_2 := ((!x_4 | x_6) | (!s & x_3));
x_6 := ((!x_0 | x_8) | (s & x_7));
x_8 := ((!x_4 | x_10) | (!s & x_9));
x_10 := (!x_0 | (s & x_11));
x_4 := (!s | x_5);
x_0 := (s | x_1);

INIT
(!x_0 | x_2)

JUSTICE
(!x_2 | (!x_4 | x_6))

JUSTICE
(!x_6 | (!x_0 | x_8))

JUSTICE
(!x_8 | (!x_4 | x_10))

JUSTICE
(!x_10 | !x_0)

TRANS next(x_2) = x_3
TRANS next(x_6) = x_7

157

A.2. DWYER’S LTL PATTERNS APPENDIX A. DATA AND TABLES

TRANS next(x_8) = x_9
TRANS next(x_10) = x_11
TRANS next(x_4) = x_5
TRANS next(x_0) = x_1

A.2 Dwyer’s LTL Patterns

Dwyer’s LTL patterns [61] in NuSMV’s LTL syntax are given in Table A.1 and A.2.

Table A.1: Dwyer’s LTL patterns
ID Pattern LTL
0 𝑝 is false (Globally) G (!p)
1 𝑝 is false (Before 𝑟) F r -> (!p U r)
2 𝑝 is false (After 𝑞) G (q -> G (!p))
3 𝑝 is false (Between 𝑞 and 𝑟) G ((q & !r & F r) -> (!p U r))
4 𝑝 is false (After 𝑞 until 𝑟) G (q & !r -> ((G !p) | (!p U r)))
5 𝑝 becomes true (Globally) F p
6 𝑝 becomes true (Before 𝑟) (G !r) | (!r U (p & !r))
7 𝑝 becomes true (After 𝑞) G (!q) | F (q & F p)
8 𝑝 becomes true (Between 𝑞 and 𝑟) G (q & !r -> ((G !r) | (!r U (p & !r))))
9 𝑝 becomes true (After 𝑞 until 𝑟) G (q & !r -> (!r U (p & !r)))
10 trans to 𝑝 occ. ⩽ 2 (Globally) G (!p) | (!p U (G p | (p U (G (!p) |

(!p U (G p | (p U (G (!p)))))))))
11 trans to 𝑝 occ. ⩽ 2 (Before 𝑟) F r -> ((!p & !r) U (r | ((p & !r) U (r |

((!p & !r) U (r | ((p & !r) U (r | (!p U r)))))))))
12 trans to 𝑝 occ. ⩽ 2 (After 𝑞) F q -> (!q U (q & (G (!p) | (!p U (G p

| (p U (G (!p) | (!p U (G p | (p U (G !p)))))))))))
13 trans to 𝑝 occ. ⩽ 2 (Betw. 𝑞 and 𝑟) G ((q & F r) -> ((!p & !r) U (r | ((p & !r) U (r |

((!p & !r) U (r | ((p & !r) U (r | (!p U r))))))))))
14 trans to 𝑝 occ. ⩽ 2 (After 𝑞 until 𝑟) G (q -> ((!p & !r) U (r | ((p & !r) U (r | ((!p & !r) U

(r | ((p & !r) U (r | (G (!p) | (!p U r)) | G p)))))))))
15 𝑝 is true (Globally) G p
16 𝑝 is true (Before 𝑟) F r -> (p U r)
17 𝑝 is true (After 𝑞) G (q -> G p)
18 𝑝 is true (Between 𝑞 and 𝑟) G ((q & !r & F r) -> (p U r))
19 𝑝 is true (After 𝑞 until 𝑟) G (q & !r -> (G p | (p U r)))
20 𝑠 precedes 𝑝 (Globally) G (!p) | (!p U s)
21 𝑠 precedes 𝑝 (Before 𝑟) F r -> (!p U (s | r))
22 𝑠 precedes 𝑝 (After 𝑞) G (!q) | F (q & (G (!p) | (!p U s)))
23 𝑠 precedes 𝑝 (Between 𝑞 and 𝑟) G ((q & !r & F r) -> (!p U (s | r)))
24 𝑠 precedes 𝑝 (After 𝑞 until 𝑟) G (q & !r -> (G (!p) | (!p U (s | r))))

158

APPENDIX A. DATA AND TABLES A.2. DWYER’S LTL PATTERNS

Table A.2: Dwyer’s LTL patterns (continued)
ID Pattern LTL
25 𝑠 responds to 𝑝 (Globally) G (p -> F s)
26 𝑠 responds to p (Before 𝑟) F r -> (p -> (!r U (s & !r))) U r
27 𝑠 responds to 𝑝 (After 𝑞) G (q -> G (p -> F s))
28 𝑠 responds to p (Between 𝑞 and 𝑟) G ((q & !r & F r) -> (p -> (!r U (s & !r))) U r)
29 𝑠 responds to p (After 𝑞 until 𝑟) G (q & !r -> (G (p -> (!r U (s & !r))) |

((p -> (!r U (s & !r))) U r)))
30 𝑠, 𝑡 precedes 𝑝 (Globally) F p -> (!p U (s & !p & X (!p U t)))
31 𝑠, 𝑡 precedes 𝑝 (Before 𝑟) F r -> (!p U (r | (s & !p & X (!p U t))))
32 𝑠, 𝑡 precedes 𝑝 (After 𝑞) (G !q) | (!q U (q & F p ->

(!p U (s & !p & X (!p U t)))))
33 𝑠, 𝑡 precedes 𝑝 (Between 𝑞 and 𝑟) G ((q & F r) -> (!p U (r | (s & !p & X(!p U t)))))
34 𝑠, 𝑡 precedes 𝑝 (After 𝑞 until 𝑟) G (q -> (F p -> (!p U (r | (s & !p & X(!p U t))))))
35 𝑝 precedes 𝑠, 𝑡 (Globally) (F (s & X (F t))) -> ((!s) U p)
36 𝑝 precedes 𝑠, 𝑡 (Before 𝑟) F r -> ((!(s & (!r) & X (!r U (t & !r)))) U (r | p))
37 𝑝 precedes 𝑠, 𝑡 (After 𝑞) (G !q) |

((!q) U (q & ((F (s & X (F t))) -> ((!s) U p))))
38 𝑝 precedes 𝑠, 𝑡 (Between 𝑞 and 𝑟) G ((q & F r) ->

((!(s & (!r) & X (!r U (t & !r)))) U (r | p)))
39 𝑝 precedes 𝑠, 𝑡 (After 𝑞 until 𝑟) G (q -> (!(s & (!r) & X(!r U (t & !r)))

U (r | p) | G (!(s & X (F t)))))
40 𝑝 responds to 𝑠, 𝑡 (Globally) G (s & X (F t) -> X (F (t & F p)))
41 p responds to 𝑠, 𝑡 (Before 𝑟) F r -> (s & X (!r U t) -> X (!r U (t & F p))) U r
42 𝑝 responds to 𝑠, 𝑡 (After 𝑞) G (q -> G (s & X (F t) -> X (!t U (t & F p))))
43 𝑝 responds to 𝑠, 𝑡 (Between 𝑞 and 𝑟) G ((q & F r) ->

(s & X (!r U t) -> X (!r U (t & F p))) U r)
44 𝑝 responds to 𝑠, 𝑡 (After 𝑞 until 𝑟) G (q -> (s & X (!r U t) -> X (!r U (t & F p)))

U (r | G (s & X (!r U t) -> X (!r U (t & F p)))))
45 𝑠, 𝑡 responds to 𝑝 (Globally) G (p -> F(s & X (F t)))
46 𝑠, 𝑡 responds to p (Before 𝑟) F r -> (p -> (!r U (s & !r & X (!r U t)))) U r
47 𝑠, 𝑡 responds to p (After 𝑞) G (q -> G (p -> (s & X (F t))))
48 𝑠, 𝑡 responds to p (Between 𝑞 and 𝑟) G ((q & F r) ->

(p -> (!r U (s & !r & X (!r U t)))) U r)
49 𝑠, 𝑡 responds to p (After 𝑞 until 𝑟) G (q -> (p -> (!r U (s & !r & X (!r U t))))

U (r | G (p -> (s & X (F t)))))
50 𝑠, 𝑡 w/o 𝑧 resp. to 𝑝 (Globally) G (p -> F (s & !z & X (!z U t)))
51 𝑠, 𝑡 w/o z resp. to p (Before 𝑟) F r ->

(p -> (!r U (s & !r & !z & X ((!r & !z) U t)))) U r
52 𝑠, 𝑡 w/o z resp. to p (After 𝑞) G (q -> G (p -> (s & !z & X (!z U t))))
53 𝑠, 𝑡 w/o z resp. to p (Betw. 𝑞 and 𝑟) G ((q & F r) -> (p -> (!r U

(s & !r & !z & X ((!r & !z) U t)))) U r)
54 𝑠, 𝑡 w/o z resp. to p (After 𝑞 until 𝑟) G (q -> (p -> (!r U (s & !r & !z & X ((!r & !z)

U t)))) U (r | G (p -> (s & !z & X (!z U t)))))
159

A.2. DWYER’S LTL PATTERNS APPENDIX A. DATA AND TABLES

Table A.3: Size of monitors built from LTL patterns
ID |𝑀1 | ∥𝑀1∥ |𝑀2 | ∥𝑀2∥ |𝑀2

1 | ∥𝑀2
1 ∥ |𝑀2

2 | ∥𝑀2
2 ∥ |𝑀2

3 | ∥𝑀2
3 ∥ |𝑀1

1 | ∥𝑀
1
1 ∥ |𝑀1

2 | ∥𝑀
1
2 ∥

0 5 (2) 12 7 28 11 (5) 22 16 58 20 72 4 (1) 9 6 18
1 15 (8) 56 23 184 36 (20) 116 56 404 60 432 8 (2) 24 14 56
2 13 (4) 72 17 136 31 (10) 152 41 296 45 324 8 (1) 28 11 44
3 33 (8) 400 41 656 81 (20) 880 101 1456 105 1512 13 (1) 60 17 85
4 21 (4) 272 33 528 51 (10) 592 81 1168 85 1224 9 (1) 40 13 65
5 5 (2) 12 7 28 11 (5) 22 16 58 20 72 4 (1) 9 6 18
6 9 (6) 24 19 152 21 (15) 44 46 332 50 360 5 (2) 12 11 44
7 13 (4) 72 17 136 31 (10) 152 41 296 45 324 8 (1) 28 11 44
8 27 (8) 304 35 560 66 (20) 664 86 1240 90 1296 9 (1) 40 13 65
9 27 (8) 304 35 560 66 (20) 664 86 1240 90 1296 9 (1) 40 13 65

10 13 (2) 44 15 60 31 (5) 94 36 130 40 144 10 (1) 27 12 36
11 23 (8) 120 31 248 56 (20) 260 76 548 80 576 14 (2) 48 20 80
12 29 (4) 200 33 264 71 (10) 440 81 584 85 612 16 (1) 60 19 76
13 49 (8) 656 57 912 121 (20) 1456 141 2032 145 2088 21 (1) 100 25 125
14 37 (4) 528 49 784 91 (10) 1168 121 1744 125 1800 17 (1) 80 21 105
15 5 (2) 12 7 28 11 (5) 22 16 58 20 72 4 (2) 6 5 15
16 15 (8) 56 23 184 36 (20) 116 56 404 60 432 7 (2) 20 13 52
17 13 (4) 72 17 136 31 (10) 152 41 296 45 324 5 (1) 16 8 32
18 33 (8) 400 41 656 81 (20) 880 101 1456 105 1512 10 (1) 45 14 70
19 21 (4) 272 33 528 51 (10) 592 81 1168 85 1224 6 (1) 25 10 50
20 5 (3) 8 10 40 5 (3) 8 20 72 26 92 4 (2) 6 8 24
21 16 (10) 48 22 176 28 (16) 88 52 376 58 416 8 (3) 20 13 52
22 16 (4) 96 20 160 38 (8) 212 46 324 50 352 10 (1) 36 13 52
23 33 (8) 400 41 656 81 (20) 880 101 1456 105 1512 12 (1) 55 16 80
24 19 (2) 272 33 528 47 (6) 592 81 1168 85 1224 8 (1) 35 12 60
25 6 (0) 24 6 24 13 (1) 46 14 50 18 64 5 (0) 15 5 15
26 14 (8) 48 22 176 34 (20) 100 54 388 58 416 7 (2) 20 13 52
27 15 (0) 120 15 120 35 (2) 248 37 264 41 292 10 (0) 40 10 40
28 31 (8) 368 39 624 77 (20) 816 97 1392 101 1448 12 (1) 55 16 80
29 31 (8) 368 39 624 71 (18) 784 93 1360 97 1416 12 (1) 55 16 80
30 14 (8) 48 22 176 23 (15) 60 44 316 53 376 7 (2) 20 13 52
31 34 (20) 224 46 736 76 (48) 408 108 1560 117 1680 12 (3) 45 19 95
32 31 (20) 176 43 688 51 (36) 224 95 1376 109 1560 12 (5) 35 17 85
33 66 (16) 1600 82 2624 163 (40) 3536 203 5840 207 5952 17 (1) 96 22 132
34 42 (8) 1088 66 2112 103 (20) 2384 163 4688 167 4800 12 (1) 66 17 102
35 16 (8) 64 24 192 24 (12) 88 48 344 55 396 8 (2) 24 14 56
36 36 (20) 256 48 768 68 (40) 400 100 1424 107 1528 13 (3) 50 20 100
37 99 (0) 1584 99 1584 165 (8) 2416 165 2480 191 2888 40 (0) 200 40 200
38 75 (16) 1888 91 2912 165 (48) 3552 197 5600 201 5712 19 (1) 108 24 144
39 51 (8) 1376 75 2400 117 (32) 2656 165 4704 169 4816 14 (1) 78 19 114
40 16 (0) 128 16 128 33 (2) 228 35 244 39 272 11 (0) 44 11 44
41 36 (12) 384 40 640 74 (27) 680 87 1256 91 1312 17 (2) 75 20 100
42 39 (0) 624 39 624 85 (8) 1152 85 1216 89 1272 19 (0) 95 19 95
43 77 (0) 2464 77 2464 167 (16) 4512 167 4768 171 4880 30 (0) 180 30 180
44 67 (0) 2144 67 2144 147 (16) 3968 147 4224 151 4336 24 (0) 144 24 144
45 14 (0) 112 14 112 31 (2) 220 33 236 37 264 9 (0) 36 9 36
46 30 (16) 224 46 736 73 (40) 472 113 1624 117 1680 11 (2) 45 19 95
47 29 (4) 400 41 656 69 (12) 832 97 1408 101 1464 10 (1) 45 14 70
48 67 (16) 1632 83 2656 165 (40) 3584 205 5888 209 6000 18 (1) 102 23 138
49 111 (20) 2912 123 3936 243 (46) 5792 277 8096 281 8208 18 (1) 102 23 138
50 26 (0) 416 26 416 63 (8) 840 63 904 67 960 11 (0) 55 11 55
51 58 (32) 832 90 2880 143 (80) 1808 223 6416 227 6528 13 (2) 66 23 138
52 57 (16) 1312 73 2336 137 (40) 2816 177 5120 181 5232 12 (1) 66 17 102
53 131 (32) 6336 163 10432 325 (80) 14080 405 23296 409 23520 21 (1) 140 27 189
54 203 (48) 9920 219 14016 459 (118) 20032 501 29248 505 29472 21 (1) 140 27 189

160

APPENDIX A. DATA AND TABLES A.3. FORMAL PROOFS

A.3 Formal proofs

The following HOL proof scripts require HOL4’s temporal_deep example. In particular,
the runtime_verificationTheory 1 which contains the formal proof of formal theorems in
Section 10.5, was contributed by the same author of this thesis.
open HolKernel Parse boolLib bossLib;
open pred_setTheory hurdUtils Omega_AutomataTheory Temporal_LogicTheory;
open full_ltlTheory ltl_to_automaton_formulaTheory runtime_verificationTheory;

val _ = new_theory "paper";
val _ = hide "K";

val _ = set_fixity "extends" (Infix(NONASSOC , 450));

Definition extends_def : (* no partial observability *)
(i extends u) = ?c. i = concat u c

End

Definition compatible_def :
compatible u K = ?c. concat u c IN K

End

Definition LTL3_output_def :
(LTL3_output T T = LTL3_U) /\
(LTL3_output T F = LTL3_T) /\
(LTL3_output F T = LTL3_F)

End

(* "belief run" after taking a finite trace u *)
Definition LTL3_belief_run_def :

LTL3_belief_run l u = {i | i extends u /\ LTL_SEM i l}
End

(* LTL3 monitor (abstract version) *)
Definition LTL3_monitor_def :

LTL3_monitor l u = LTL3_output (LTL3_belief_run l u <> EMPTY)
(LTL3_belief_run (LTL_NOT l) u <> EMPTY)

End

(* correctness of LTL3 monitor , an abstract version *)
Theorem LTL3_monitor_thm :

!l u. LTL3_monitor l u = LTL3_SEM u l
Proof

RW_TAC std_ss [LTL3_monitor_def , LTL3_SEM_def]

1https://github.com/HOL-Theorem-Prover/HOL/blob/develop/examples/temporal_deep/src/examples/runtime_
verificationScript.sml

161

https://github.com/HOL-Theorem-Prover/HOL/blob/develop/examples/temporal_deep/src/examples/runtime_verificationScript.sml
https://github.com/HOL-Theorem-Prover/HOL/blob/develop/examples/temporal_deep/src/examples/runtime_verificationScript.sml

A.3. FORMAL PROOFS APPENDIX A. DATA AND TABLES

>> Cases_on ‘LTL3_belief_run l u = {}‘
>> Cases_on ‘LTL3_belief_run (LTL_NOT l) u = {}‘
>> fs [LTL3_output_def] (* 4 subgoals *)
>| [(* goal 1 (of 4) *)

fs [LTL3_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,
LTL_SEM_def , LTL_SEM_TIME_def] \\

Q.ABBREV_TAC ‘i = u ++ (\n. {})‘ \\
‘i extends u‘ by PROVE_TAC [extends_def] \\
METIS_TAC [],
(* goal 2 (of 4) *)
RW_TAC std_ss [Once EQ_SYM_EQ , LTL3_SEM_def , LTL3_SEM_TIME_F] \\
Q.PAT_X_ASSUM ‘LTL3_belief_run (LTL_NOT l) u <> {}‘ K_TAC \\
fs [LTL3_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,

LTL_SEM_def , LTL_SEM_TIME_def] \\
POP_ASSUM (MP_TAC o (Q.SPEC ‘u ++ v‘)) \\

‘u ++ v extends u‘ by PROVE_TAC [extends_def] \\
METIS_TAC [],
(* goal 3 (of 4) *)
RW_TAC std_ss [Once EQ_SYM_EQ , LTL3_SEM_def , LTL3_SEM_TIME_T] \\
Q.PAT_X_ASSUM ‘LTL3_belief_run l u <> {}‘ K_TAC \\
fs [LTL3_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,

LTL_SEM_def , LTL_SEM_TIME_def] \\
POP_ASSUM (MP_TAC o (Q.SPEC ‘u ++ v‘)) \\

‘u ++ v extends u‘ by PROVE_TAC [extends_def] \\
METIS_TAC [],
(* goal 4 (of 4) *)
RW_TAC std_ss [Once EQ_SYM_EQ , LTL3_SEM_def , LTL3_SEM_TIME_def] >|
[(* goal 4.1 (of 2) *)

Q.PAT_X_ASSUM ‘LTL3_belief_run l u <> {}‘ K_TAC \\
fs [LTL3_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,

LTL_SEM_def , LTL_SEM_TIME_def , extends_def] \\
POP_ASSUM (STRIP_ASSUME_TAC o (Q.SPEC ‘c‘)) \\
METIS_TAC [],
(* goal 4.2 (of 2) *)
Q.PAT_X_ASSUM ‘~!w. P‘ K_TAC \\
Q.PAT_X_ASSUM ‘LTL3_belief_run (LTL_NOT l) u <> {}‘ K_TAC \\
fs [LTL3_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,

LTL_SEM_def , LTL_SEM_TIME_def , extends_def] \\
POP_ASSUM (STRIP_ASSUME_TAC o (Q.SPEC ‘c‘)) \\
METIS_TAC []]]

QED

Definition GEN_LTL3_belief_run_def :
GEN_LTL3_belief_run l u t = {i | i extends u /\ LTL_SEM_TIME t i l}

End

(* alternative definition *)

162

APPENDIX A. DATA AND TABLES A.3. FORMAL PROOFS

Theorem LTL3_belief_run_alt :
!l u. LTL3_belief_run l u = GEN_LTL3_belief_run l u 0

Proof
RW_TAC std_ss [GEN_LTL3_belief_run_def , LTL3_belief_run_def , LTL_SEM_def]

QED

(* LTL3 monitor (abstract version) *)
Definition GEN_LTL3_monitor_def :

GEN_LTL3_monitor l u t =
LTL3_output (GEN_LTL3_belief_run l u t <> EMPTY)

(GEN_LTL3_belief_run (LTL_NOT l) u t <> EMPTY)
End

(* alternative definition *)
Theorem LTL3_monitor_alt :

!l u. LTL3_monitor l u = GEN_LTL3_monitor l u 0
Proof

RW_TAC std_ss [GEN_LTL3_monitor_def , GSYM LTL3_belief_run_alt ,
LTL3_monitor_def]

QED

(* correctness of LTL3 monitor , an abstract version *)
Theorem GEN_LTL3_monitor_thm :

!l u t. GEN_LTL3_monitor l u t = LTL3_SEM_TIME t u l
Proof

RW_TAC std_ss [GEN_LTL3_monitor_def]
>> Cases_on ‘GEN_LTL3_belief_run l u t = {}‘
>> Cases_on ‘GEN_LTL3_belief_run (LTL_NOT l) u t = {}‘
>> fs [LTL3_output_def] (* 4 subgoals *)
>| [(* goal 1 (of 4) *)

fs [GEN_LTL3_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,
LTL_SEM_TIME_def] \\

Q.ABBREV_TAC ‘i = u ++ (\n. {})‘ \\
‘i extends u‘ by PROVE_TAC [extends_def] \\
METIS_TAC [],
(* goal 2 (of 4) *)
RW_TAC std_ss [Once EQ_SYM_EQ , LTL3_SEM_TIME_F] \\
Q.PAT_X_ASSUM ‘GEN_LTL3_belief_run (LTL_NOT l) u t <> {}‘ K_TAC \\
fs [GEN_LTL3_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,

LTL_SEM_TIME_def] \\
POP_ASSUM (MP_TAC o (Q.SPEC ‘u ++ v‘)) \\

‘u ++ v extends u‘ by PROVE_TAC [extends_def] \\
METIS_TAC [],
(* goal 3 (of 4) *)
RW_TAC std_ss [Once EQ_SYM_EQ , LTL3_SEM_TIME_T] \\
Q.PAT_X_ASSUM ‘GEN_LTL3_belief_run l u t <> {}‘ K_TAC \\
fs [GEN_LTL3_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,

163

A.3. FORMAL PROOFS APPENDIX A. DATA AND TABLES

LTL_SEM_TIME_def] \\
POP_ASSUM (MP_TAC o (Q.SPEC ‘u ++ v‘)) \\

‘u ++ v extends u‘ by PROVE_TAC [extends_def] \\
METIS_TAC [],
(* goal 4 (of 4) *)
RW_TAC std_ss [Once EQ_SYM_EQ , LTL3_SEM_TIME_def] >|
[(* goal 4.1 (of 2) *)

Q.PAT_X_ASSUM ‘GEN_LTL3_belief_run l u t <> {}‘ K_TAC \\
fs [GEN_LTL3_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,

LTL_SEM_TIME_def , extends_def] \\
POP_ASSUM (STRIP_ASSUME_TAC o (Q.SPEC ‘c‘)) \\
METIS_TAC [],
(* goal 4.2 (of 2) *)
Q.PAT_X_ASSUM ‘~!w. P‘ K_TAC \\
Q.PAT_X_ASSUM ‘GEN_LTL3_belief_run (LTL_NOT l) u t <> {}‘ K_TAC \\
fs [GEN_LTL3_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,

LTL_SEM_TIME_def , extends_def] \\
POP_ASSUM (STRIP_ASSUME_TAC o (Q.SPEC ‘c‘)) \\
METIS_TAC []]]

QED

(* PTLTL monitor *)
Theorem PTLTL_monitor_thm :

!f u. IS_PAST_LTL f /\ 0 < LENGTH u ==>
(PTLTL_SEM_ALT u f = THE (GEN_LTL3_monitor f u (LENGTH u - 1)))

Proof
RW_TAC std_ss [PTLTL_SEM_ALT_LTL3 , GEN_LTL3_monitor_thm]

QED

(* -- *)
(* ABRV monitor (abstract version) *)
(* -- *)

(* ABRV -LTL *)
Type ABRV_LTL[pp] = ‘‘:LTL3 option ‘‘

Overload true = ‘‘SOME LTL3_T ‘‘
Overload false = ‘‘SOME LTL3_F ‘‘
Overload unknown = ‘‘SOME LTL3_U ‘‘
Overload error = ‘‘NONE :ABRV_LTL ‘‘

Definition LTL4_output_def :
(LTL4_output T T = unknown) /\
(LTL4_output T F = true) /\
(LTL4_output F T = false) /\
(LTL4_output F F = error)

End

164

APPENDIX A. DATA AND TABLES A.3. FORMAL PROOFS

Definition LTL4_SEM_TIME_def :
LTL4_SEM_TIME K phi (u :’a set list) t =
if ~compatible u K then error
else if compatible u K /\

(!w. (concat u w) IN K ==> LTL_SEM_TIME t (concat u w) phi) then true
else if compatible u K /\

(!w. (concat u w) IN K ==> ~LTL_SEM_TIME t (concat u w) phi) then false
else unknown

End

Definition GEN_LTL4_belief_run_def :
GEN_LTL4_belief_run K phi u t =

{i | i extends u /\ LTL_SEM_TIME t i phi /\ i IN K}
End

Definition ABRV_monitor_def :
ABRV_monitor K phi u t =
LTL4_output (GEN_LTL4_belief_run K phi u t <> EMPTY)

(GEN_LTL4_belief_run K (LTL_NOT phi) u t <> EMPTY)
End

Theorem ABRV_monitor_thm :
!K phi u t. ABRV_monitor K phi u t = LTL4_SEM_TIME K phi u t

Proof
RW_TAC std_ss [ABRV_monitor_def]

>> Cases_on ‘GEN_LTL4_belief_run K phi u t = {}‘
>> Cases_on ‘GEN_LTL4_belief_run K (LTL_NOT phi) u t = {}‘
>> RW_TAC std_ss [LTL4_output_def] (* 4 subgoals *)
>| [(* goal 1 (of 4) *)

fs [GEN_LTL4_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,
LTL_SEM_TIME_def] \\

rw [LTL4_SEM_TIME_def , compatible_def] >| (* 3 subgoals *)
[(* goal 1.1 (of 3) *)

CCONTR_TAC \\
Q.PAT_X_ASSUM ‘!w. u ++ w IN K ==> _‘ (MP_TAC o Q.SPEC ‘c‘) >> rw [] \\

‘u ++ c extends u‘ by METIS_TAC [extends_def] \\
METIS_TAC [],
(* goal 1.2 (of 3) *)
CCONTR_TAC >> fs [] \\

‘u ++ w extends u‘ by METIS_TAC [extends_def] \\
METIS_TAC [],
(* goal 1.3 (of 3) *)
CCONTR_TAC >> fs [] \\

‘u ++ w extends u‘ by METIS_TAC [extends_def] \\
METIS_TAC []],

(* goal 2 (of 4) *)

165

A.3. FORMAL PROOFS APPENDIX A. DATA AND TABLES

fs [GEN_LTL4_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,
LTL_SEM_TIME_def] \\

rw [LTL4_SEM_TIME_def , compatible_def] >| (* 3 subgoals *)
[(* goal 2.1 (of 3) *)
‘?c. x = u ++ c‘ by METIS_TAC [extends_def] \\
Q.PAT_X_ASSUM ‘!w. u ++ w IN K ==> _‘ (MP_TAC o (Q.SPEC ‘c‘)) >> rw [],
(* goal 2.2 (of 3) *)
fs [] >> Q.EXISTS_TAC ‘w‘ >> rw [],
(* goal 2.3 (of 3) *)
fs [] \\

‘u ++ w’ extends u‘ by METIS_TAC [extends_def] \\
METIS_TAC []],

(* goal 3 (of 4) *)
fs [GEN_LTL4_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,

LTL_SEM_TIME_def] \\
rw [LTL4_SEM_TIME_def , compatible_def] >| (* 3 subgoals *)
[(* goal 3.1 (of 3) *)
‘?c. x = u ++ c‘ by METIS_TAC [extends_def] \\
Q.EXISTS_TAC ‘c‘ >> rw [],
(* goal 3.2 (of 3) *)
fs [] \\
Q.PAT_X_ASSUM ‘!w. u ++ w IN K ==> _‘ (MP_TAC o (Q.SPEC ‘w‘)) >> rw [] \\

‘u ++ w extends u‘ by METIS_TAC [extends_def] \\
METIS_TAC [],
(* goal 2.3 (of 3) *)
fs [] \\

‘u ++ w extends u‘ by METIS_TAC [extends_def] \\
METIS_TAC []],

(* goal 4 (of 4) *)
fs [GEN_LTL4_belief_run_def , EXTENSION , NOT_IN_EMPTY , GSPECIFICATION ,

LTL_SEM_TIME_def] \\
rw [LTL4_SEM_TIME_def , compatible_def] >| (* 3 subgoals *)
[(* goal 4.1 (of 3) *)
‘?c. x’ = u ++ c‘ by METIS_TAC [extends_def] \\
Q.PAT_X_ASSUM ‘!w. u ++ w IN K ==> _‘ (MP_TAC o (Q.SPEC ‘c‘)) >> rw [],
(* goal 4.2 (of 3) *)
fs [] \\

‘?c. x = u ++ c‘ by METIS_TAC [extends_def] \\
Q.PAT_X_ASSUM ‘!w. u ++ w IN K ==> _‘ (MP_TAC o (Q.SPEC ‘c‘)) >> rw [],
(* goal 4.3 (of 3) *)
fs [] \\
Q.EXISTS_TAC ‘w‘ >> rw []]]

QED

val _ = export_theory ();

166

Appendix B

CORBA-Based Client-Server Monitoring

NuRV supports online remote monitoring (i.e. monitor server), based on CORBA (The Common
Object Request Broker Architecture). After executing a command, NuRV stops the interactive
shell and starts to listen on network so that user code can remotely execute the heartbeat
command (not directly but in an equivalent way) for online monitoring.

In some senses this is the “real” online monitoring, although it is in theory possible to run
NuRV as an interactive session inside another program. Furthermore, if there is only one client
and one server, NuRV can also be used as a dynamic library. This is like using SQLlite instead
of full RDBMS such as Oracle or MySQL. In any case, both finite- and infinite-state monitoring
are supported.

B.1 About CORBA

Object Management Group, Inc. describe their CORBA architecture as follows:

The Common Object Request Broker Architecture (CORBA), is the Object Manage-
ment Group’s answer to the need for interoperability among the rapidly proliferating
number of hardware and software products available today. Simply stated, CORBA
allows applications to communicate with one another no matter where they are lo-
cated or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object inter-
action within a specific implementation of an Object Request Broker (ORB). CORBA
2.0, adopted in December of 1994, defines true interoperability by specifying how
ORBs from different vendors can interoperate. The ORB is the middleware that es-
tablishes the client-server relationships between objects. Using an ORB, a client can
transparently invoke a method on a server object, which can be on the same machine

167

B.2. CLIENT-SERVER MONITORING APPENDIX B. CORBA

or across a network. The ORB intercepts the call and is responsible for finding an
object that can implement the request, pass it the parameters, invoke its method, and
return the results. The client does not have to be aware of where the object is located,
its programming language, its operating system, or any other system aspects that are
not part of an object’s interface. In so doing, the ORB provides interoperability be-
tween applications on different machines in heterogeneous distributed environments
and seamlessly interconnects multiple object systems. In fielding typical client/server
applications, developers use their own design or a recognized standard to define the
protocol to be used between the devices. Protocol definition depends on the imple-
mentation language, network transport and a dozen other factors. ORBs simplify this
process. With an ORB, the protocol is defined through the application interfaces via a
single implementation language-independent specification, the IDL. And ORBs pro-
vide flexibility. They let programmers choose the most appropriate operating system,
execution environment and even programming language to use for each component of
a system under construction. More importantly, they allow the integration of existing
components. In an ORB-based solution, developers simply model the legacy com-
ponent using the same IDL they use for creating new objects, then write "wrapper"
code that translates between the standardized bus and the legacy interfaces. CORBA
is a signal step on the road to object-oriented standardization and interoperability.
With CORBA, users gain access to information transparently, without them having to
know what software or hardware platform it resides on or where it is located on an
enterprise’s network. The communications heart of object-oriented systems, CORBA
brings true interoperability to today’s computing environment.

B.2 Client-Server Monitoring

With help of CORBA, NuRV supports multiple clients connecting to multiple servers. Here each
“monitor server” is a NuRV running process in which multiple LTL properties are added with
their corresponding runtime monitors built by build_monitor command. Note that a single
NuRV process can indeed provide multiple monitors corresponding to different LTL properties,
however all these monitors must share the same ground model as the RV assumptions. Thus the
ability of letting a single monitor client to connect to multiple NuRV processes (without extra
programming overheads) is necessary in certain applications.1

The following further descriptions may settle the potential concern on the scalability:

• Multiple NuRV processes (monitor server) can run together, on same or different machines,
1By running multiple NuRV processes one can also benefit from multiple CPUs in the host machine, as NuRV does not support multi-threading

in its core monitoring algorithms.

168

APPENDIX B. CORBA B.3. ADDITIONAL SOFTWARE DEPENDENCIES

without any concern on the potential conflict of listening ports. In another words, multiple
NuRV processes can start up in any order (even after the clients, as long as they are not
queried yet). However, each NuRV processes must have a unique "instance name". (This
should be a common need, as otherwise there’s no way to know who has what properties
being monitored.)

• All monitor servers register their names in a small central server daemon (the name service)
provided by third-party software (with multiple choices), just like Internet DNS (domain
name system).

• One or multiple monitor clients can connect to these monitor servers by only their instance
names. Client programming has the same complexity for one server or multiple servers,
because clients only need to know the location (address and port, etc.) of the central name
server. (We provide sample client code in C, C++, Java, Lisp and Python.)

Technically speaking, the monitor server currently supported by NuRV is based on a syn-
chronous, push model: the monitor clients are responsible to activately send observations to the
monitor server, and such sending operations must wait until the server finished the calculations,
i.e. the execution of underlying monitoring algorithms.2

Remark B.2.1. Other client-server protocols such as JSON-RPC 2.0 for runtime monitoring
are in consideration, due to the fact that in many recent programming languages there is no
CORBA support available. However, the support of these “other” protocols, when they come in
future versions of NuRV, will be designed as a CORBA bridge (or gateway): NuRV will behave
as a CORBA client (and also server) for translating other protocols into CORBA calls to the
same or another NuRV-based monitor server. This design will eliminate the need of CORBA
programming at the side of end users but CORBA itself will be always there.

B.3 Additional Software Dependencies

The monitor server functionality is provided by another execution NuRV_orbit. NuRV_orbit
has all functionalities of NuRV, plus the CORBA-based monitor server support. The reason we
provide two executions is that:

1. The additional software (by dynamically linking) required by NuRV_orbit may not be
available in some versions of operating systems of end users;

2. In the future, we may provide more execution variants linking different libraries.
2In the future, NuRV may additionally support the asynchronous, push model. This is particularily important when users want to send a

single observation to get the verdicts of many or all monitors, since checking the monitoring results for many properties may take a long time
while the client cannot wait.

169

B.4. A TUTORIAL OF CORBA-BASED MONITOR APPENDIX B. CORBA

On Linux (e.g. Debian and Ubuntu), NuRV_orbit requires a package called orbit2. On
Mac OS X, it requires the same package from MacPorts 3. (In future versions of NuRV, we plan
to switch to omniORB, which is a more active CORBA implementation than ORBit.)

To use the monitor server, third-party naming service is required. This service is provided
by many packages. The following 3 software are confirmed working:

• Java SE (JDK) 1.8 (execution name: tnameserv);

• Linux package orbit2-nameserver (execution name: orbit-name-server-2);

• Linux/Mac4 package omniorb (execution name: omniNames).

B.4 A Tutorial of CORBA-based Monitor

Let’s continue the online monitoring example in Section 8.4 (with the SMV file disjoint.smv
found in Section 8.5) and turn NuRV into a monitor server. 5

1. Open a Terminal window and start the third-party name service from JDK 1.8: (JDK prior
to 1.8 also provides it.)

$ tnameserv

The above command will print a long string starting with “IOR:” (which stands for an
Interoperable Object Reference) and listen on a TCP port.

2. Open another Terminal window and start NuRV (the variant with monitor server support)
in the same directory with disjoint.smv 6 (otherwise a new LTL property can be added
by the command add_property):

$ NuRV_orbit -int disjoint.smv

Keep in mind that an LTL property 𝑝U 𝑞 has been defined already and stored at index 0
of property manager. Following Section 8.4, the following NuRV commands builds the
internal monitor for it:

NuSMV> go
NuSMV> build_monitor -n 0

3https://www.macports.org
4On Mac OS X, the package is provided by MacPorts.
5This tutorial is tested on Mac OS X 10.15. The same steps should work on all supported versions of NuRV on Mac OS X and Linux.

Currently NuRV does not support monitor server on MS Windows.
6This SMV file is also in the directory client/c of the shipped common files.

170

https://www.macports.org

APPENDIX B. CORBA B.4. A TUTORIAL OF CORBA-BASED MONITOR

3. Start the monitor server by executing the command monitor_server with the IOR string
returned by tnameserv in the first step: (you must substitute “IOR:...” with the actual
(long) string returned by tnameserv)

NuSMV> monitor_server -N IOR:...

The above command should return something like “Binding service reference at name
service against id: NuRV/Monitor/Service”. Note that this monitor server is uniquely
identified by “NuRV/Monitor/Service”. 7

(Note: use Ctrl+C to terminate the monitor server and return to the shell prompt.)

4. Make sure Homebrew 8 or MacPorts packages orbit and pkg-config are installed in your
Mac system. Go to directory client/c and execute make to build the C-based monitor
client:

$ make

If everything goes correctly, at the end there will be an execution monitor_client being
built. It hardcoded a monitor client which sends the trace 𝑝𝑝𝑝𝑞𝑞𝑞 (3 times 𝑝 and 3 times
𝑞, just like the sample in Section 8.4) to the monitor server. Again, this client program
must know the location of the name server (by knowing the IOR string): (once again, you
must substitute “IOR:...” with the actual (long) string returned by tnameserv in the first
step)

$./monitor_client -ORBInitRef NameService=IOR:...

If everything goes fine, you should see the following outputs by the above monitor client.
The first line is a reminder of its usage, and next line says that it has found the monitor
server identified by the name “NuRV/Monitor/Service”. And the rest is the monitoring
outputs (3 times “unknown” and 3 times “true”):

*** Usage: ./monitor-client -ORBInitRef NameService=IOR:...

Resolving service reference from name-service with id "NuRV/Monitor/Service"
unknown
unknown
unknown
true
true
true

7The first two parts of the ID are always “NuRV/Monitor”, while the third part “Service” can be changed by using command option -i.
When starting multiple monitor servers (i.e. multiple NuRV processes, each of them should have different IDs.

8https://brew.sh

171

https://brew.sh

B.5. THE SIMPLE MONITOR INTERFACE APPENDIX B. CORBA

The business logic of the monitor client can be found near the end of the C code file
monitor-client.c (see Section B.6.2 for more details of the sample code and other files
in the same directory.)

B.5 The Simple Monitor Interface

It can be undersood that, the monitor server running inside NuRV is an instance (or object) of a
class, which has the following interface given in an Interface Definition Language (IDL):
#pragma prefix "eu.fbk"

module Monitor {
#pragma version Monitor 1.0

enum Verdict {RV_True , RV_False , RV_Unknown , RV_Error };
#pragma version Verdict 1.0

interface MonitorService {
#pragma version MonitorService 1.0

// this "any" index can only be string or long
Verdict heartbeat (in any index , in string state);
#pragma version heartbeat 1.0

oneway void reset (in any index , in boolean hard_p);
#pragma version reset 1.0

};
};

This class/interface is calledMonitorService, which currently has two methods: heartbeat
and reset. (It is safe to completely ignore those “progma” lines in the above IDL definition, as
they are totally internal matters.) The method heartbeat is for sending an observation to the
monitor. It takes two parameters: an integer- or string-valued index of LTL properties (each
LTL property corresponds one internal monitor, to be created by the command build_monitor),
and a string-valued state as a logical expression following NuSMV syntax representing the
current observation (e.g. “p & !q” means 𝑝 ∧ ¬𝑞). The return value is in an enumeration type
Verdict which has four possible values: RV_True, RV_False, RV_Unknown, and RV_Error.
The method reset is for resetting the monitor. It is a “oneway” method, which immediately
returns without any return value. Beside the same index parameter for identifying the internal
monitor (or property), the Boolean parameter hard_p is used for choosing between hard and
soft resets: if this parameter is true, then it is a hard reset, otherwise it is a soft reset.

The job of a monitor client is to mapping this monitor service instance from remote (i.e. the
process space of monitor server) to local. The monitor server(s), after startup, will register

172

APPENDIX B. CORBA B.6. MONITOR CLIENT PROGRAMMING

their instance to the central third-party naming service, while the monitor client(s) also find the
needed monitor service from the same naming service. Obviously each such monitor service
instance should have a unique name. This name is by default “NuRV/Monitor/Service” and
can be customized by the -i parameter of the command monitor_server. (See NuRV User
Manual [51] for more details.)

Once the monitor client succeed in mapping the monitor service instance to its local process
space, it will behave just like a normal object in its own (object-oriented) programming language
(for non-OO languages like C, the method calls are simulated by normal C functions on instance
pointers).

The present interface is “simple” in the sense that any method call of heartbeat must wait
until the related monitoring computation finished on the server side. In another words, this is a
synchronous interface.9

B.6 Monitor Client Programming

In this section we describe the monitor client programming in five supported programming
languages: C, C++, Java, Common Lisp and Python. All involved sample client code can be
found in NuRV common files shipped with the main executions.

NOTE: starting from version 1.7.0, NuRV ships with two execution files on platforms with
monitor server supports: NuRV[.exe] and NuRV_orbit, only the latter supports monitor server.
Using the command monitor_server on the normal NuRV[.exe] will cause the program
immediately quit. (Currently NuRV_orbit.exe is not available on MS Windows, but this is not
due to any essential technical difficulities.)

B.6.1 Preliminaries

By default, the monitor server only listen on Unix domain sockets and can only be connected
from monitor clients written in C (see Section B.6.2 for more details). To enable the monitor
server listening on TCP/IP (or even IPv6) ports, a file named “.orbitrc” must be created and
put into the home directory with the following contents:

ORBIIOPUSock=1
ORBIIOPIPv4=1
ORBIIOPIPv6=0

For instance, the above recommended config file enables Unix domain sockets, TCP/IPv4 but
keeps TCP/IPv6 disabled.

9In the future, NuRV may support a synchronous interface: the method calls immediately returns, while the monitor server will later contact
the monitor client (which must have an internal event loop to listen for such contacts) with the monitoring results returned.

173

B.6. MONITOR CLIENT PROGRAMMING APPENDIX B. CORBA

B.6.2 CORBA client in C

C is the native language in which NuRV and its monitor server support is written. When using
the C-based monitor client on the same machine with the monitor server, client and server does
not need TCP/IP at all: instead they can communicate directly by Unix domain sockets.

The C-based monitor client requires linking a library called orbit2, which can be easily
installed on many Linux and FreeBSD systems. On Mac OS X, users can install it from
Homebrew, Fink or MacPorts. The sample client code finds the needed library by pkg-config,
which therefore must be installed together by the same packaging system. Any client code must
include three C headers:
#include <orbit/orbit.h>
#include "monitor.h"
#include "toolkit.h" /* ie. etk_abort_if_exception () */

The header file orbit/orbit.h is provided by the orbit2 package. The header file
monitor.h is generated from the IDL interface, together with the C source monitor-common.c
and monitor-stubs.c. (End users do not need to re-generate them and can just copy the
already generated interface code for their own uses.) The header file toolkit.h, together with
toolkit.c, are small toolkit files for the ease use of orbit2. Users can freely use them too.

The only manually written code file is thus only monitor-client.c. The following global
variables are needed for holding the connection information.
static CORBA_ORB global_orb = CORBA_OBJECT_NIL; /* global orb */
static Monitor_MonitorService service = CORBA_OBJECT_NIL;
static CORBA_Environment ev[1];

Note that the variable service of the type Monitor_MonitorService. Each variable of this
type holds one monitor server. If a single monitor client needs to connect to multiple monitor
servers (by running multiple NuRV processes), multiple variables (or an array) of this type must
be used.

The following main stages are needed for a typical monitor client programming:

1. Initialization. The string “orbit-local-orb” can be arbitrary.
CORBA_exception_init(ev);
global_orb = CORBA_ORB_init (&argc , argv , "orbit -local -orb", ev);

2. Binding the name service. The sample code connects to the default monitor service name
(“NuRV/Monitor/Service” by default. Change the code if the monitor server is started with
different instance names.)
CosNaming_NamingContext name_service = CORBA_OBJECT_NIL;
gchar *id[] = {"NuRV", "Monitor", "Service", NULL};

174

APPENDIX B. CORBA B.6. MONITOR CLIENT PROGRAMMING

name_service = etk_get_name_service (global_orb , ev);
service = (Monitor_MonitorService) etk_name_service_resolve (name_service , id, ev);

3. Sending observations to the monitor. The following code prepare the monitor index at 0,
and the variables holding two observations “p” and “q”:

CORBA_long id = 0;
CORBA_any index;
index._type = TC_CORBA_long;
index._value = &id;

CORBA_char *state_p = "p";
CORBA_char *state_q = "q";

Then the following code can be used for sending an observation to the monitor:
Monitor_Verdict res;
res = Monitor_MonitorService_heartbeat (service , &index , state_p , ev);

4. Processing the monitor verdicts. The following same code pieces can translated the values
of the enum type Monitor_Verdict into different string-based outputs (and print out
them):

switch (res) {
case Monitor_RV_True:

g_print("true\n");
break;

case Monitor_RV_False:
g_print("false\n");
break;

case Monitor_RV_Unknown:
g_print("unknown\n");
break;

default:
g_print("error\n");

}

5. Resetting the monitor. The following code does a hard reset to the monitor at the previous
index:

CORBA_boolean hard_p = CORBA_TRUE;
Monitor_MonitorService_reset (service , &index , hard_p , ev);

6. Uninitialization and cleanup.
CORBA_Object_release(service , ev);

if (orb != CORBA_OBJECT_NIL) {

175

B.6. MONITOR CLIENT PROGRAMMING APPENDIX B. CORBA

CORBA_ORB_destroy(orb , ev);
}

More details can be found in “ORBit Beginners Documentation V1.6” available on Internet.

B.6.3 C++

The sample C++ client code provided at client/cpp requires a library called omniorb, which
is provided by most Linux distributions. On Mac, bot MacPorts and Homebrew provide them.

Monitor client code in C++ is more natural than the above code in C, in the sense that the
monitor service is represented by a real C++ object. Below we quickly give the relevant code
pieces corresponding to each stages: (Check the actual sample code for C++ exception handling.
Also note that the monitor server must enable TCP/IPv4.)

1. Initialization. (The C++ header file monitor.hh is generated from the IDL file.)
#include "monitor.hh"

CORBA:: ORB_ptr orb = CORBA:: ORB_init(argc , argv , "omniORB4");

2. Binding the name service.
CORBA:: Object_var obj = orb ->resolve_initial_references("NameService");
CosNaming :: NamingContext_var rootContext = CosNaming :: NamingContext :: _narrow(obj);

CosNaming ::Name name;
name.length (3);
name [0].id = (const char*) "NuRV"; // string copied
name [0]. kind = (const char*) ""; // string copied
name [1].id = (const char*) "Monitor";
name [1]. kind = (const char*) "";
name [2].id = (const char*) "Service";
name [2]. kind = (const char*) "";

CORBA:: Object_var obj2 = rootContext ->resolve(name);
Monitor :: MonitorService_var service = Monitor :: MonitorService :: _narrow(obj2);

3. Sending the observations.
CORBA:: String_var state = (const char*) "p";
CORBA::Any index;
CORBA::Long l = 0;
index <<= l;

Monitor :: Verdict res = service ->heartbeat (index , state);

176

APPENDIX B. CORBA B.6. MONITOR CLIENT PROGRAMMING

4. Processing the monitor verdicts.
string result;
switch (res) {
case Monitor :: RV_True:

result = "true";
break;

case Monitor :: RV_False:
result = "false";
break;

case Monitor :: RV_Unknown:
result = "unknown";
break;

default:
result = "error";

}

5. Resetting the monitor.
CORBA:: Boolean hard_p = false;
service ->reset (index , hard_p);

6. Ending the client.
orb ->destroy ();

More details can be found in omniORB 4 documents at http://omniorb.sourceforge.
net/docs.html.

B.6.4 Java

The Java client code (at client/java, as an Eclipse project) only supports JDK before or equals
to 1.8, in which JDK directly provides the needed libraries (Thus no third-party JAR is needed).
The monitor interface IDL is translated to some Java classes under the prefix eu.fbk.monitor.

Java program musst have a entry/main class. The connection information is held in its public
static member variable:
public static org.omg.CORBA.ORB orb = null;

1. Initialization.
Properties props = new Properties ();
String ior = "IOR :...";
props.put("org.omg.CORBA.ORBInitRef", "NameService=" + ior);
orb = org.omg.CORBA.ORB.init(args , props);

2. Binding name service.

177

http://omniorb.sourceforge.net/docs.html
http://omniorb.sourceforge.net/docs.html

B.6. MONITOR CLIENT PROGRAMMING APPENDIX B. CORBA

org.omg.CORBA.Object ncRef = orb.resolve_initial_references("NameService");
org.omg.CosNaming.NamingContext nc =

org.omg.CosNaming.NamingContextHelper.narrow(ncRef);

org.omg.CosNaming.NameComponent [] monitorName =
new org.omg.CosNaming.NameComponent [3];

monitorName [0] = new org.omg.CosNaming.NameComponent("NuRV", "");
monitorName [1] = new org.omg.CosNaming.NameComponent("Monitor", "");
monitorName [2] = new org.omg.CosNaming.NameComponent("Service", "");

org.omg.CORBA.Object monitorRef = nc.resolve(monitorName);
MonitorService service = MonitorServiceHelper.narrow(monitorRef);

3. Sending the observation.
org.omg.CORBA.Any index = orb.create_any ();
index.insert_long (0); // monitor 0
Verdict res = service.heartbeat(index , "TRUE");

4. Processing the outputs.
String result = new String ();
if (res == Verdict.RV_True) {

result = "true";
} else if (res == Verdict.RV_False) {

result = "false";
} else if (res == Verdict.RV_Unknown) {

result = "unknown";
} else { // res == Monitor.Verdict.RV_Error

result = "error";
}

5. Resetting the monitor.
service.reset(index , false);

6. Shutdown.
orb.shutdown(true);
orb.destroy ();

More details can be found in JDK 1.8 documentation.

B.6.5 Common Lisp

The Common Lisp client code is based on LispWorks Enterprise Edition. The interface IDL
file is part of the running program without any pre-translation.

178

APPENDIX B. CORBA B.6. MONITOR CLIENT PROGRAMMING

1. Initialization. (Suppose the IOR string is stored in a variable *ior*.)
(defvar *client-orb* nil) ; ORB
(defvar *name-service* nil) ; NS
(defvar *service* nil) ; Monitor:Service instance

(setq *client-orb* (op:orb_init nil "LispWorks␣ORB"))

2. Binding the name service.
(corba:set-pluggable-module-details "NameService" :ior-string *ior*)

(defun get-name-service (orb)
(let ((ref (op:resolve_initial_references orb "NameService")))

(when ref
(op:narrow ’CosNaming:NamingContext ref))))

(setq *name-service* (get-name-service *client-orb *))

(defun name-components (names)
(mapcar #’(lambda (name) (CosNaming:NameComponent :id name :kind "")) names))

(setq *monitor-name* (name-components ’("NuRV" "Monitor" "Service")))

(defun resolve-object (name)
(unless *name-service*

(warn "No␣name␣service␣found")
(return-from resolve-object nil))

(handler-case
(op:resolve *name-service* name)

(CosNaming:NamingContext/NotFound nil)))

(setq *service*
(op:narrow ’Monitor:MonitorService (resolve-object *monitor-name *))))

3. Sending the observation.
(defgeneric monitor (index))
(defmethod monitor ((index integer))

(corba:any :any-typecode corba:_tc_long :any-value index))

(defmethod monitor ((index string))
(corba:any :any-typecode corba:_tc_string :any-value index))

(op:heartbeat *service* (monitor 0) "p␣&␣q") ; 0 is the id of an LTL property
(op:heartbeat *service* (monitor "p0") "!p") ; "p0" is the name of an LTL property

4. Resetting the monitor.

179

B.6. MONITOR CLIENT PROGRAMMING APPENDIX B. CORBA

(op:reset *service* (monitor 0) nil) ; nil means soft reset (hard_p = false)

B.6.6 Python

The Python client code requires a Python package py-omniORBpy which can be found in
MacPorts. Similar packages (but with different names) are available on Linux, searching
keywords “py” + “omniorb”. The monitor interface IDL is directly read by Python code, some
minor stub Python code are also generated from the IDL file. (They are accessible by Python
code import Monitor.)

1. Initialization.
import sys
from omniORB import CORBA
from omniORB import any
import Monitor
import CosNaming

orb = CORBA.ORB_init(sys.argv , CORBA.ORB_ID)

2. Binding name service.
obj = orb.resolve_initial_references("NameService");
rootContext = obj._narrow(CosNaming.NamingContext)

name = [CosNaming.NameComponent("NuRV", ""),
CosNaming.NameComponent("Monitor", ""),
CosNaming.NameComponent("Service", "")]

obj = rootContext.resolve(name)
service = obj._narrow(Monitor.MonitorService)

3. Sending the observation (and reset):
service.heartbeat(to_any (0), "p␣&␣q")
service.reset(to_any("p0"))

More details can be found in omniORB 4 Python documents athttp://omniorb.sourceforge.
net/docs.html.

180

http://omniorb.sourceforge.net/docs.html
http://omniorb.sourceforge.net/docs.html

Index

𝜔-automata, 19

ABRV problems, 32
alarm condition, 40
ANSI C, 96
Automata Theory, 15

Büchi Automata, 21
Belief states, 14
Binary decision diagrams (BDD), 18
Bounded Model Checking, 6
Bounded Model Checking (BMC), 55, 66
branching-time logics, 23

C++, 101
Calculus of Inductive and Co-inductive Con-

structions, 119
canonical form, 18
Cantor’s Ternary Set, 75
Common Lisp, 102, 178
compassion requirements, 18
CORBA, 167
CUDD, 18

DejaVu, 77, 113
Deterministic Finite Automata, 22
diagnoser, 40
diagnosers, 41
diagnostic monitor, 35
diameter, 67
Discrete-Event Systems, 12
DIVINE model checker, 14
Dwyer’s LTL patterns, 7, 158

elementary variables, 19
Emerson-Lei, 19
equisatisfiable, 69
Execution Analysis, 2
Expansion Laws, 20
explicit-state automata, 21

Fair Kripke Structure (FKS), 18
fair states, 19
Fair Transition System (FTS), 18
Fault Detection, Identification (FDI), 3, 40
Ferrante-and-Rackoff, 23
Finite-State Machine (FSM), 22
Finite-State Transducer (FST), 22
First-order formulas, 16
First-Order Quantifier Elimination, 23, 55
first-order quantifiers, 135
forward image, 19
Fourier-Motzkin, 23, 114
future temporal operators, 19

Higher Order Logic, 119
Hilbert’s choice operator, 119
HOL4, 7
hybrid systems, 139
hyperproperties, 138

IC3, 55
IC3-IA, 55
Incremental BMC, 67
Incremental Bounded Model Checking, 138
initial condition, 20

181

INDEX INDEX

Instrumentation, 1
Interface Definition Language (IDL), 167

Java PathExplorer, 77
JavaMOP, 77
justice set, 21

Linear Temporal Logic (LTL), 16
LLVM, 103
Logic of Computable Functions, 119
Loos-and-Weispfenning, 23, 114
LTL Modulo Theory, 16
LTL Syntax, 16

Markov chain, 140
Metric First-Order Temporal Logic, 135
Model-based Runtime Verification, 13
MONA model checker, 137
Monadic Second-Order Logic, 137
monitor recovery, 13
Monitor Synthesis, 2
Monitorability, 13
monitorability under assumptions, 38
Monitoring Modulo Theories, 13
MOP framework, 134
motivating example, 33, 56
multi-property monitoring, 130

non-monitorable, 2
Nondeterministic Finite-State Automata, 22
NuRV, 7, 85

ordered binary decision diagrams (OBDD), 18
out-of-order inputs, 138

Parametric Trace Slicing, 134
Partial observability, 12
past temporal operators, 19
Past-time LTL, 77
predictive monitor, 35

probabilistic systems, 140
Prolog, 94
ptLTL, 77, 111
ptLTL semantics, 77

Quantifier Temporal Logic, 111, 135
quantifier-free formulae, 19

R2U2, 77
resettable monitors, 3
RuleR, 77
RV-Monitor, 77

SAT-based symbolic model checking, 133
Satisfiability Modulo Theory (SMT), 16, 55
Second-Order Logic, 137
Second-Order Quantifier Elimination, 23
Simple Theory of Types, 119
SMT-based symbolic model checking, 13
state-explosion, 1, 137
step constraint, 67
system under scrutiny (SUS), 1

tableau, 19
temporal operator, 16
Testing, 1
Theorem Proving, 1
timed language, 139
trace non-storing, 52
trace-length independent, 52, 75
TraceContract, 77
Traditional RV, 4
transition relation, 18, 20

undecidability, 37
univariate quadratic polynomial, 23
ustice requirements, 18

well-formed formulae, 17
WS1S, 137

182

	Introduction
	Motivation
	Assumption-Based RV Approach
	Innovative Aspects (aka Contributions)
	Product (aka Result)
	Structure of the Thesis

	Background and Related Work
	Background
	Taxonomy, Frontiers and Trends
	Assumption-Related Work
	SMT-Related RV Work

	Preliminaries
	Finite and infinite words (or traces)
	Satisfiability Modulo Theory
	Linear Temporal Logic
	Boolean formulae and functions
	Binary Decision Diagrams
	Fair Kripke Structure (Fair Transition System)
	LTL to -automata Translation
	Explicit-State Automata
	First-Order Quantifier Elimination
	LTL Model Checking

	Runtime Verification
	LTL semantics for Runtime Verification
	Runtime Verification Based on LTL3
	Assumptions and Partial Observability
	Assumption-Based Runtime Verification
	Motivating Example
	Theoretical Results of ABRV

	Monitoring Finite-State Systems
	Symbolic Monitoring Algorithm
	Explicit-State Monitor Construction
	From Offline to Online Monitoring
	Code Generation

	Monitoring Infinite-State Systems
	Motivating Example
	ABRV Reduced to Model Checking
	ABRV Reduced to MC and QE
	Optimization to ABRV-MC Reduction
	Incremental Bounded Model Checking
	ABRV with Incremental BMC
	Unboundedness of Infinite-State Monitors

	Monitoring ptLTL (Past-Time LTL)
	Introduction
	Connection with LTL3 Semantics
	Contructing Explicit-state ptLTL Monitors
	Monitoring the original semantics of ptLTL

	NuRV: The Tool Implementation
	Functionalities
	Architecture
	Use Case Scenario
	Online Monitoring
	Offline Monitoring
	API of Generated Code
	Code Generation – Backends

	Experimental Evaluation
	Tests for Finite-State Monitors
	Tests for Infinite-State Monitors

	HOL Formalization
	Introduction
	Higher Order Logic (HOL)
	Linear Temporal Logic in HOL
	Partial Formalization of Main Theorem 5.1.2
	LTL3 and ptLTL (Alternative Semantics)

	Conclusions
	Future Directions

	Bibliography
	Data and Tables
	SMV Models
	Dwyer's LTL Patterns
	Formal proofs

	CORBA-Based Client-Server Monitoring
	About CORBA
	Client-Server Monitoring
	Additional Software Dependencies
	A Tutorial of CORBA-based Monitor
	The Simple Monitor Interface
	Monitor Client Programming

	Index

