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Abstract—Multi-access edge computing (MEC) represents an
emerging solution to improve the performance of mobile networks
by bringing computing resources closer to the edge of the network.
However, MEC requires the implementation of virtualization and
can be deployed using different hardware platforms, including
COTS devices. In this highly heterogeneous scenario, the digital
twin (DT), assisted by proper AI/ML solutions, is envisioned to
play a crucial role in automated network management, oper-
ating as an intermediate and collaborative layer enabling the
orchestration layer to better understand network behavior before
making changes to the physical network. In this paper, we aim
to develop a DT model that captures the behavior of a MEC
node supporting services with varying workloads. In pursuit of
this objective, we adopt a data-driven methodology that effectively
learn a model predicting three critical key performance indicators
(KPIs): throughput, computational load, and power consumption.
To demonstrate the viability and potential of such approach, a
measurement campaign is conducted on MEC nodes deployed
with different virtualization environments (bare metal, virtual
machine, and containerized), and the results are used to build
the DT of each node. Furthermore, machine learning models,
including k-nearest neighbors (KNN), support vector regression
(SVR), and polynomial fitting (PF), are used to understand the
amount of actual measurements required to achieve a suitably
low KPI prediction error. The results of this study provide a basis
for further research in the field of MEC DT models and carbon
footprint-aware orchestration.

Index Terms—MEC, 5G, Digital Twin, Green Communications.

I. INTRODUCTION

The integration of multi-access edge computing into the

next generation of mobile networks is widely acknowledged

as a crucial step to enable innovative services and use cases.

The separation of control and user planes has facilitated the

integration of edge computing, allowing for the virtualization

and management of network functions through the NFV/SDN

paradigm. This shift away from dedicated, expensive hardware

has opened up new possibilities for the deployment and man-

agement of network functions and services.

However, the high complexity and dynamicity of the edge

ecosystem bring additional complexity to network management.

These aspects have given rise to new orchestration challenges

to realize an intent-based networking mechanism where the

intents (e.g., service requests) are translated into management

actions on the network to ensure a correct trade-off between

the requested Quality of Service and network optimization.

The performance of services at the edge depends on the

resource availability, which might often be limited. Moreover,

power consumption is becoming a relevant issue to consider in

distributed systems and, in the case of MEC, energy efficiency

depends on many factors such as hardware, virtualization

technology, and software that might be used for deployment.

Trade-offs between performance and power consumption must

be considered for orchestration actions, such as edge node

selection for service deployment or task offloading [1].

The concept of a digital twin (DT), a virtual representation

of a physical system, is emerging as a promising solution

to address orchestration and power consumption issues. By

creating a DT of the MEC node, it is possible to simulate its

behavior, analyze its performance, and optimize its operations

in a virtual environment before implementing these changes

in the physical system. The existing works on DT mainly

focus on analytically deriving the MEC DT model -i.e., the

behavior of edge nodes in terms of key performance indicator

(KPI)- using mathematical reasoning and assumptions to model

it and design optimization algorithms. However, given the high

heterogeneity of the edge ecosystem, this approach might not

be sufficient to tackle the orchestration challenges effectively.

In this work we propose a data-driven approach to gain insights

into the behavior of MEC nodes and to accurately predict

their performance under varying workloads demand. To the

best of our knowledge, a data-driven approach to achieve an

online and self-learning DT model is essential to cope with

the heterogeneity of the MEC ecosystem, while also handling

possible MEC reconfiguration.

The contributions of the paper are as follows:

• We propose a data-driven MEC node performance analysis

based on actual measurements.

• We define a data-driven DT representation of the perfor-

mance of MEC nodes.

• We apply machine learning (ML) to improve the accu-

racy of the DT representation for different populations of

training sets.

In the remainder of the paper the related works are presented

in section II, while in section III we detail the rationale behind

this work and underline the followed methodology. Then, in

section IV we evaluate the proposed approach, and in section

V we conclude the paper.
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II. RELATED WORKS

A. Power consumption measurements and modelling

In [2] an overview is presented summarizing the challenges,

approaches and results of the state-of-the art research concern-

ing the empirical measurements and analytical modelling of

virtual entities power consumption in the telco cloud.

The performance of different virtualization technologies un-

der multiple workloads have been analyzed by several studies,

showing how each virtualization technology has it own specific

advantages as well as a different impact on using of hardware

resources. Containers have been proved to be more CPU and

memory efficient compared to unikernels and virtual machines

(although the lack of isolation might be a concern in specific

use-cases)[3]. Container virtualization also registered a lower

power consumption especially during the networking workloads

[4]. A more extensive comparison can be found in [5], which

analyses the power and energy consumption of four of the most

adopted hypervisors and container engines across six hardware

platforms and multiple workloads.

Other efforts focus on the design of models for the estimation

of power consumption without relying on direct measurements.

The survey in [6] benchmarks and evaluates the performance

of 24 state-of-the-art power consumption models on different

server architectures. The results highlight how interpolation and

support vector machine (SVM) have the lowest error for single

and multi variable models respectively.

B. Digital Twin and MEC

DT has gained a lot of attention recently as an effective

tool for modelling simple as well as complex systems. The

combination of MEC and DT can be leveraged to improve

the network performance by optimizing the task offloading and

resource allocation. Authors [1] define the digital twin edge

network (DITEN) paradigm and show how it can be used to

bridge the physical edge system and the digital space. In their

work, they also provide a comprehensive survey.

In [7] a task offloading latency minimization problem while

optimizing the transmit power of UEs is proposed. The DT

model is derived analytically using mathematical reasoning

and assumptions for modelling the processing capacity, latency

and energy consumption. In [8], DT-assisted task offloading

is modelled as a Markov decision problem. A mathematical

optimization model is used to reduce the system delay and

power consumption. In [9] a DT architecture to improve task

offloading and task caching techniques is proposed. The aim is

to minimise the E2E task offloading delay while bounding the

energy consumption to a maximum value. Also in this work, the

DT model is derived analytically using mathematical reasoning

and assumptions to derive the DT predictions.

C. Our contribution

It is worth noticing that the MEC ecosystem is expected to be

highly heterogeneous with varying performance from device to

device depending on many factors such as, hardware, software,

and virtualization technology. Further, a DT model should be
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Fig. 1. Conceptual architecture of the MEC Digital Twin -enabled orchestration
envisioned in this work.

adaptive to account for possible HW/SW updates. However,

most of the works in literature focus on optimisation strategies

assuming an analytically derived model of the DT which, in our

opinion, does not meet the needs of a real scenario with high

heterogeneity as discussed before. To the best of the knowledge

of the authors, data-driven strategies to develop an online self-

learning DT model of a network and its performance is still to

be investigated. Therefore, the main novelties of the proposed

approach include:

• A data-driven MEC performance analysis based on actual

measurements.

• A demonstration of the high heterogeneity of performance

profiles based on different variables of the system.

• A data-driven DT representation of the performance of

MEC nodes.

• The usage of ML to improve the accuracy of the DT

representation in sparse training sets.

III. MOTIVATION AND PROPOSED METHODOLOGY

In this paper we envision a DT-enabled orchestration ar-

chitecture as highlighted in Fig. 1. Indeed, the DT plays a

crucial role in managing the network if used for simulating

possible what-if scenarios or analyzing the potential impact of

different strategies. Indeed, it allows the orchestration layer to

take charge of network intents, i.e., services to be deployed, and

to exploit the DT models to understand the network behavior

before actually applying changes to the physical network. By

introducing the DT in the learning loop of the orchestration,

the orchestration layer receives predicted KPIs to evaluate the

expected network behavior. After taking actions on the physical

network, the orchestration layer informs the MEC DT and

forwards relevant metrics to the twin, allowing it to learn a

digital representation of the physical MEC performance and

predict future requests.

In this paper, our focus is on developing a DT model of a

MEC system following a measurement based approach.

We consider the aggregated data-rate and CPU demand as

the input requests. Conversely, the performance KPIs of interest



are the achieved data-rate, the CPU load, and the MEC power

consumption.

In the first stage of our study, we conducted a measurement

campaign on MECs with various virtualization technologies

under different loads. In order to evaluate the performance

of MEC, we generated data traffic with varying CPU loads

that imitate the communication/computation demands of appli-

cations running on the MEC. This was done by considering

different workload profiles (WPs), with each WP representing

a specific requested load in the MEC. We simultaneously

collected the relevant KPIs such as achieved data-rate, CPU-

load, and power consumption of the MEC. It’s important to

note that, in addition to network KPIs which play a crucial role

in providing the required service QoS, the power consumption

is also an important KPI to model in order to enable a carbon

footprint aware orchestration.

In our measurement campaign we considered three type of

MEC deployments where the 5G core network is either directly

installed in the bare metal (BM), deployed within a virtual

machine (VM), or deployed in a containerized environment

(CT). As mentioned already, previous works already investi-

gated the performance of different virtualization technologies

in running specific applications. However, in this work the aim

is to evaluate the power consumption in each scenarios as well

in order to understand and model the trade-off between network

KPI and power consumption.

In a next stage of our research, we focused on using ML

to model the MEC DT. The goal is to compare the results

of the learned model to the real measurements obtained in

the measurement campaign, and evaluate its accuracy. To do

this, we adopted three different ML algorithms, namely k-

nearest neighbors (KNN), support vector regression (SVR), and

polynomial fitting (PF).

Regarding the KNN, the parameter specifying the number of

neighbors has been set to k = 5. This value has been selected

since appeared to be a sensible trade-off to prevent high bias

and high complexity, happening with high k, and sensitivity to

noise, happening with a low value of k.

For the SVR, we used radial basis function (RBF) kernel

which is commonly recognised as one of the most well-

performing kernels in many cases. Moreover, we set the regu-

larization parameter C = 100 since performing cross-validation

it appears to be the best compromise to avoid under-fitting (low

C) and over-fitting (high C).

The polynomial fitting method is proposed in this paper as an

analytical model of the different MEC deployments. With the

aim to provide a basis for further research, the collected data-set

and the methodology and parameters of the polynomial fitting

are provided in the Appendix A of the paper and available

online. The goal is to encourage the replication of our results

and facilitate the advancement of related research, leveraging

the findings and insights obtained in this work.

These models are trained with the collected measurements

to understand how they perform, and to determine which

algorithm provides the best results.
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Fig. 2. Testbed set-up for the proposed investigation.

IV. EXPERIMENTAL RESULTS

This section provides the details about the experimentation

proposed study. We first provide the details on the environment

used for the performance evaluation, followed by a description

on the experiments. Later, we provide details on the measured

KPIs and the MEC performances under different virtualization

technology. Finally, we provide the details on the prediction

performance of the MEC behaviour using the three types of

ML algorithm to model the MEC system.

A. Testbed setup

For our experimentation we built a testbed composed by

5 Intel next unit of computing (NUC) connected via a fast

switch, as shown in Fig. 2. The rationale behind the setup

is to demonstrate 5G-enabled MECs with different types of

virtualization technologies. In each MEC we leverage the

Open5GS1 software to realise the 5G Core Network, which

has been deployed with three configurations: BM, VM and CT.

The three types of MECs, are realised with the same type of

NUC which is equipped with a i5− 7260U CPU @2.20GHz.

This is essential in order to have comparable results between

the three types of MEC deployments. Conversely, the nodes to

emulate the radio access network (RAN) and the controller are

realised with two NUCs equipped with a i5− 1145G7 CPU

@2.60GHz. All the NUCs are connected toghether via a TL-

SG105E five-ports Gigabit switch.

In the VM case, we utilize the quick emulator (QEMU)

hypervisor with kernel-based virtual machine (KVM) accelera-

tion as it is widely accepted for its cost-effectiveness and high

performance. On the other hand, for the CT deployment, we

opt for Docker to create container hosting the 5G core (5GC)

functions. This decision was made to simplify the process and

avoid unnecessary overhead that comes with other solutions like

Kubernetes, since we only target a single MEC.

The RAN is established with the use of UERANSIM2 which

is an emulator designed to simplify the deployment of an E2E

5G network. Upon initiation, the user equipment (UE) process

effectively establishes a data-plane connection between the UE

1https://open5gs.org
2https://github.com/aligungr/UERANSIM

https://open5gs.org
https://github.com/aligungr/UERANSIM
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Fig. 3. Relations between the measured KPIs for each type of MEC.

and the selected Open5GS deployment. Although UERANSIM

does not include the protocol stack below the radio resource

control (RRC), making it unsuitable for scenarios where lower

layers are needed, this limitation is deemed beyond the scope

of this paper. We thus resort to this solution for its simplicity.

In our experiments, the MEC nodes were subjected to various

combinations of CPU and data-rate loads. The CPU load

is generated using stress-ng allowing to set an overall CPU

load, in percentage, within a NUC. Conversely, the data-rate

is generated by deploying an Iperf client at the UE side and

connecting it to the server in the controller node.

The Controller node oversees the generation of experiments

and the collection of measurements. It hosts an Iperf server for

terminating the data traffic generated by an UE and flowing

through the desired MEC. In each experiment we gather the

relevant KPIs related to a MEC such as power consumption,

overall data-rate, and the CPU usage. To measure the CPU

usage and data-rate KPIs in the MEC nodes, we utilize the psutil

Python package. After proper instruction from the controller,

the MEC nodes report the collected measurement to the Redis3

database hosted in the Controller. On the other hands, to

measure the power consumption KPI each NUC hosting a

MEC node is connected to a Meross MSS310 smart plug that

monitors its power consumption. To gather those values, the

Controller nodes queries the smart plugs via a WiFi connection

and send them to Redis. All the measures are collected every

second and stored in the Redis database, allowing us to have

a centralized repository of all the gathered data. This makes it

easier to analyze and interpret the results of the experiments.

B. MEC performance and measured KPIs

We first analyze the power consumption and performance

trade-offs in the evaluated MEC deployments, namely BM, VM,

and CT. Each MEC was tested by setting WPs with CPU loads

ranging from 0% to 90% and data-rates between 100 and 700
Mbps. For each WP, we gathered measurements every second

within a 30-second time frame. The experiments are depicted in

Figure 3, where each plot displays the relationship between the

measured KPIs (power consumption, CPU load, and data-rate)

3https://hub.docker.com/r/redislabs/redistimeseries

for each type of MEC. The aim of this measurement campaign

extends beyond investigating the impact of virtualization on

MEC performance; it also aims to create a data-set to study

the prediction performance of the MEC DT which is detailed

in the next sections.

By examining the results under high data-rate and low CPU

usage, we observe that the VM is the one consuming the

highest amount of power, while the BM is the most efficient,

as expected. The CT falls in between the two, with results that

are close to those of the BM. Although it may not be clearly

visible from the figure, it is worth mentioning that the higher

power consumption in the VM can be attributed to its greater

CPU usage in handling high data-rates. On the other hand, the

BM MEC is the most efficient in traffic management, and the

CT case represents a compromise between the two.

When the set WP demands higher CPU loads and high traffic,

we see that the CT’s power consumption is always greater

than the BM. When the imposed demand is the highest which

corresponds to 90% of CPU load and 700Mbps of traffic, the

CT consumes about 5W more than the BM. However, it is still

able to achieve the same BM data-rate without impairments.

On the other hand, the power consumption for the VM appears

to decrease significantly under high data-rate demand. This

decrease is actually the result of impairments in the data-rate,

which drops from the requested 700Mbps to an actual 250Mbps

when the CPU and data-rate demand is the highest.

The lower data-rate achieved with the VM can be attributed

to several factors. It is worth mentioning that the 5GC virtual

machine is run using QEMU, a type-2 hypervisor, with KVM

acceleration for improved performance. Despite the KVM ac-

celeration, the QEMU VM adds an extra layer of virtualiza-

tion, which can result in overhead and reduced performance.

Furthermore, Docker utilizes a different networking approach

compared to virtual machines, which can provide better speed

and reduced latency due to leveraging the host’s network stack,

unlike virtual machines that use virtual network interface cards

and incur additional overhead.

C. Digital Twin prediction under complete training data-set

The aim of this analysis is to determine the accuracy of

the DT in predicting the KPIs of the MEC deployments under

https://hub.docker.com/r/redislabs/redistimeseries
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Fig. 4. DT KPI prediction error in the different MEC deployments. The error bars represent the NRMSE standard deviation across the different WPs.
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Fig. 5. Prediction error with incomplete training-set for the VM MEC. In (a) we show the NRMSE vs. the number of episodes, in each episode a new randomly
picked WP is added to the training set. Considering one single run, in (b) we plot the predicted power consumption for three episodes.

different WPs. Building upon the findings discussed in the prior

section, we delve deeper to evaluate the forecasting accuracy

of a DT using the data-set obtained from aforementioned

measurement campaign. As explained in section III, we evaluate

three type of ML algorithms, namely KNN, RBF and PF. To

do so, we use a subset of the collected data to train the DT

by considering all the WPs but using 2/3 of the samples. To

determine the effectiveness of the DT in accurately predicting

the behavior of the MEC deployments, we use the remaining

samples as a validation set.

The results of the DT prediction performance are depicted

in Fig. 4. The figure displays the normalized root mean square

error (NRMSE) for each predicted KPI for each MEC de-

ployment. The NRMSE metric was chosen as it provides a

percentage representation of the error relative to the absolute

value of each KPI.

The low prediction error observed in all the cases highlights a

good accuracy of all the three methods employed demonstrating

their applicability to realise the DT prediction. However, our

findings indicate that the SVR model performs better than KNN

and PF models in the majority of cases. Nevertheless, the PF

still displayed noteworthy performance, proving the viability

of utilizing analytical models for further research in this area.

In the CT scenario, the error on the CPU is more significant

because of the observed variability in CPU usage, which may

be due to scheduling problems with Docker. Interestingly,

compared to the other deployment scenarios, the prediction

error for the data-rate in the VM scenario is higher. This is

because of the data-rate degradation explained in the previous

section and shown in Fig. 3 which makes more challenging in

the VM case to forecast the data-rate accurately.

D. Model prediction under incomplete data-set

In this section, we analyze how accurate the DT forecast is

with sparse data, as opposed to having a complete set of WPs

available for training as was analyzed in the previous section.

Training is conducted in several episodes, with measurements

for a randomly selected WP being added for each episode,

representing the variable measurements that might be acquired

by the networking infrastructure. To evaluate the performance

of the different ML algorithms, the results in terms of NRMSE

were averaged over 20 trials, where in each trial a different

WP was randomly selected as the test set, while the remaining

WP were used for training. The goal of this approach is to

understand the extent to which the different ML approaches are

able to generalize the prediction when working with incomplete

data, and to provide insight on how much the WP domain shall

be explored before to achieve an acceptable prediction error.

In Fig. 5(a), we report the results showing the NRMSE

against the number of episodes. These results pertain to the

experiments carried out on VM MEC. As expected, the error

in prediction decreases as the number of episodes increases.

Interestingly, while the SVR method outperformed the others

techniques under complete training sets, the KNN algorithm

achieved a better prediction accuracy when the training data

is incomplete. This is because of KNN only relies on the

proximity of the data points in the feature space, conversely

the SVR is a model-based algorithm which potentially leads to

biased or incorrect model fit under missing data.



The evaluation of the PF method reveals a substantial pre-

diction error until episode 40. This can be attributed to the

polynomial fitting’s tendency to produce extreme spikes when

evaluating it outside the range covered by the training set. This

is demonstrated in the plot of predicted power consumption for

different episodes in Fig. 5(b). If the training set is sparse, the

polynomial fitting may be quite ineffective, as highlighted in

episode 20. However, the prediction is significantly better as in

episode 40 and eventually stabilizes later on. This underlines

that the polynomial fitting method can be used to improve the

accuracy of the DT representation, even if it requires a suitable

number of samples to properly capture the characteristics of the

physical twin. To encourage the usage of this concept to model

networks and MEC in particular, the polynomial fitting model

is shared online in the Appendix A.

V. CONCLUSIONS

In this work we proposed a data driven approach to realise

a MEC DT. We first performed a measurement campaign

analysing the impact of the virtualization on the MEC perfor-

mance and power consumption using a lab testbed. Using the

collected data-set, we explored how a DT can be effectively

realised using three types of ML techniques to predict the

MEC behaviour. The results demonstrate that the approach can

effectively be used in order to predict the MEC behaviours.

Such prediction capabilities potentially enables an orchestration

layer to learn off-line the best action to take before to act on

the physical network. This will be subject of further work on

the topic.

APPENDIX

A. Polynomial fitting

The process for developing the MEC analytical model using

polynomial fitting is as follows. Let c and t be the requested

WP for the MEC expressing the CPU and throughput demand,

respectively. Let {ĉ, t̂, p̂} be the predicted KPIs for the overall

CPU load, throughput, and power consumption. To model

the MEC behaviour with respect to each KPI, we define the

polynomial equation in (1), where pi,kkpi are the polynomial

parameters as shown in Table I.

Fkpi(c, t) =
∑

i

∑

k

pi,kkpic
iti, ∀KPI ∈ {ĉ, t̂, p̂} (1)

TABLE I
POLYNOMIAL FITTINGS.

k=0 k=1 k=2 k=3

i=0 p0,0kpi p0,1kpi p0,2kpi p0,3kpi

i=1 p1,0kpi p1,1kpi p1,2kpi 0

i=2 p2,0kpi p2,1kpi 0 0

i=3 p3,0kpi 0 0 0

For each KPI, we use the non-linear least squares method

to fit the set of observations with the non-linear equation (1).

The derived analytical models based and the measurement are

available online4. As an exemplification, in Table II we report

the PF parameters for the BM case. It is worth to highlight that

this model is valid within the considered range of WPs.

TABLE II
FITTING PARAMETERS FOR BAREMETAL MEC.

KPI ĉ t̂ p̂

p0,0kpi 5.425 3.208 7565.895

p0,1kpi 0.689 -7.570e-2 308.480

p0,2kpi 2.88e-3 1.204e-3 -4.116

p0,3kpi -8.433e-06 -8.066e-06 3.087e-2

p1,0kpi 5.265e-2 1.004 22.686

p1,1kpi 9.978e-4 3.888e-4 0.470

p1,2kpi -8.702e-06 -1.712e-06 -3.167e-3

p2,0kpi -1.753e-4 9.015e-05 -4.634e-2

p2,1kpi -3.886e-07 -2.214e-07 -3.232e-4

p3,0kpi 1.862e-07 -7.497e-08 4.503e-05
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