
PhD Dissertation

International Doctorate School in Information and
Communication Technologies

DISI - University of Trento

Optimal Adaptations over Multi-Dimensional Adaptation

Spaces with a Spice of Control Theory

Konstantinos Angelopoulos

Advisor:

Prof. John Mylopoulos

Università degli Studi di Trento

April 2016

Abstract

(Self-)Adaptive software systems monitor the status of their requirements

and adapt when some of these requirements are failing. The baseline for

much of the research on adaptive software systems is the concept of a feed-

back loop mechanism that monitors the performance of a system relative

to its requirements, determines root causes when there is failure, selects an

adaptation, and carries it out. The degree of adaptivity of a software sys-

tem critically depends on the space of possible adaptations supported (and

implemented) by the system. The larger the space, the more adaptations a

system is capable of. This thesis tackles the following questions: (a) How

can we define multi-dimensional adaptation spaces that subsume proposals

for requirements- and architecture-based adaptation spaces? (b) Given one

of more failures, how can we select an optimal adaptation with respect to

one or more objective functions?

To answer the first question, we propose a design process for three-

dimensional adaptation spaces, named the Three-Peaks Process, that it-

eratively elicits control and environmental parameters from requirements,

architectures and behaviours for the system-to-be. For the second question,

we propose three adaptation mechanisms. The first mechanism is founded

on the assumption that only qualitative information is available about the

impact of changes of the system’s control parameters on its goals. The

absence of quantitative information is mitigated by a new class of require-

ments, namely Adaptation Requirements, that impose constraints on the

adaptation process itself and dictate policies about how conflicts among

failing requirements must be handled.

The second mechanism assumes that there is quantitative information

about the impact of changes of control parameters on the system’s goals and

that the problem of finding an adaptation is formulated as a constrained

multi-objective optimization problem. The mechanism measures the degree

of failure of each requirement and selects an adaptation that minimizes it

along with other objective functions, such as cost. Optimal solutions are de-

rived exploiting OMT/SMT (Optimization Modulo Theories/Satisfiability

Modulo Theories) solvers.

The third mechanism operates under the assumption that the environ-

ment changes dynamically over time and the chosen adaptation has to take

into account such changes. Towards this direction, we apply Model Predic-

tive Control, a well-developed theory with myriads of successful applications

in Control Theory. In our work, we rely on state-of-the-art system iden-

tification techniques to derive the dynamic relationship between require-

ments and possible adaptations and then propose the use of a controller

that exploits this relationship to optimize the satisfaction of requirements

relative to a cost-function. This adaptation mechanism can guarantee a

certain level of requirements satisfaction over time, by dynamically com-

posing adaptation strategies when necessary. Finally, each piece of our

work is evaluated through experimentation using variations of the Meeting-

Scheduler exemplar.

Keywords

[Three-Peaks, Adaptation requirements, Control Theory]

4

Aknowledgements
This thesis is not only a result of hard work, but also an outcome of

collaborating with many people during the years I have spent as PhD stu-

dent. The shared experiences, thoughts and discussions I had with them,

shaped me as a researcher and I am grateful to them for their contribution

to my journey in the research world.

I would like to thank my advisor, John Mylopoulos, for his guidance and

for teaching me how to approach a research problem. I am also thankful

for sharing his experience in research with me and for all the good quality

work we produced the past four and a half years.

I am also thankful to Vitor, with whom I collaborated closely all these

years and his work constituted the baseline of my research. I would also

like to thank Alessandro for his contribution to the last piece of this work

and sharing with me his expertise in the fascinating field of Control Theory.

I owe special thanks to both of you, as well as to Martina and Julio for

accepting my invitation to participate in my thesis committee.

Thanks to my colleagues at the University of Trento for the numerous

discussions, brainstormings, debates and seminars we shared, trying to

make each other a better researcher and person. I wish our future will

bring us again together collaborating, sharing ideas, pizzas and drinks. I

am also very thankful to all my friends for their company all this time, the

moments of joy and the experiences we shared.

Last, but not least, I would like to thank my parents for supporting me

in every decision I have taken in my life. For standing by my side whenever

I was in need or I wanted to share my happiness.

To all of you, thank you, grazie mille, ευχαριστώ!

This work has been supported by the ERC advanced grant 267856 Lucretius: “Foundations for

Software Evolution” (April 2011 - March 2016, http://www.lucretius.eu).

Contents

1 Introduction 1

1.1 Challenges of complex software systems 2

1.2 Software system adaptation 5

1.2.1 Definitions . 5

1.2.2 Feedback Loops . 7

1.2.3 SISO and MIMO systems 10

1.3 Objectives of our research 11

1.3.1 Overview and contributions 16

1.4 Structure of the thesis . 17

1.5 Published papers . 18

2 State of the Art 21

2.1 Baseline . 21

2.1.1 Goal Oriented Requirements Engineering 22

2.1.2 GORE for self-adaptive software systems 23

2.1.3 Requirements monitoring 25

2.1.4 Variability in goal models 28

2.1.5 Requirements Evolution 29

2.1.6 Software Architecture Modelling 31

2.1.7 Software Behaviour Modelling 34

2.2 Dynamic System Modelling 34

2.3 Related Work . 37

i

2.3.1 Requirements-based Adaptation 37

2.3.2 Architecture-based Adaptation 39

2.3.3 Behaviour-based Adaptation 41

2.3.4 Combined Model-based Adaptation 42

2.3.5 Control-based Adaptation 42

2.4 Chapter Summary . 44

3 Requirements and Architecture Approaches: A Compari-

son 47

3.1 Selected Adaptation Approaches 48

3.1.1 Rainbow . 49

3.1.2 Zanshin . 51

3.2 The ZNN.com Exemplar 52

3.2.1 Overview of the problem and its architectural solution 53

3.2.2 An RE-based solution to ZNN.com using Zanshin . 56

3.3 Comparison between Rainbow and Zanshin 61

3.3.1 Methodology . 62

3.3.2 Experimental Results 63

3.3.3 Discussion . 65

3.4 Chapter Summary . 69

4 Designing Adaptation Spaces 73

4.1 Capturing and exploring variability 74

4.1.1 Variability in behaviour 74

4.1.2 Variability in architecture 79

4.1.3 Variability in the environment 82

4.2 A Three-Peaks modelling process 83

4.3 Evaluation . 87

4.4 Chapter Summary . 91

ii

5 Qualitative Adaptation for Multiple Failures 93

5.1 Requirements for Adaptation 94

5.1.1 Prioritizing Requirements 94

5.1.2 Adaptation Requirements 96

5.2 Adaptation Process for Multiple Failures 101

5.3 Evaluation . 105

5.3.1 Meeting Scheduler Exemplar 105

5.3.2 Improved Adaptation 109

5.4 Chapter Summary . 110

6 The Next Adaptation Problem 113

6.1 Problem Formulation . 114

6.2 Prometheus Framework . 117

6.3 Evaluation . 120

6.3.1 The Meeting-Scheduler Exemplar 120

6.3.2 The E-shop Exemplar 126

6.3.3 Discussion . 130

6.4 Chapter Summary . 131

7 Control-based design of self-adaptive software 133

7.1 Model Predictive Control 134

7.1.1 Formal description 136

7.1.2 Formal guarantees 139

7.2 Design phase . 141

7.3 Chapter Summary . 145

8 Control-based software adaptation 147

8.1 The CobRA framework . 148

8.2 Evaluation . 150

8.2.1 Methodology . 151

iii

8.2.2 Experimental Results 153

8.2.3 Discussion . 154

8.3 Chapter Summary . 157

9 Conclusions and future work 159

9.1 Contributions to the state-of-the-art 160

9.2 Limitations of the approach 165

9.3 Future work . 166

Bibliography 169

iv

List of Tables

2.1 EvoReqs operations . 32

5.1 Pairwise Comparison Values 95

5.2 Scale For Pairwise Comparisons 97

5.3 Differential relations elicited for the Meeting Scheduler ex-

ample [SLAM13] . 106

5.4 Priority Values of AwReqs 107

5.5 Evoreq operations for AwReqs 107

6.1 Control Parameter Profile. 115

6.2 Control Parameter Profile. 123

6.3 Control Parameter Profile. 127

7.1 Reference goals . 143

7.2 EvoReqs operations . 143

7.3 Indicator Priorities . 144

7.4 Control Parameter weights 145

v

List of Figures

1.1 MAPE-K loop . 7

1.2 Feedback Loop . 8

1.3 SASO properties . 9

2.1 Goal model for the Meeting-Scheduler case study. 24

2.2 States assumed by requirements [SLRM11]. 25

2.3 Aggregate Awareness Requirements. 26

2.4 Trend Awareness Requirement. 27

2.5 Delta Awareness Requirement. 27

2.6 Goal model for the Meeting-Scheduler case study. 30

2.7 Architectural diagram for the Meeting-Scheduler 33

3.1 The components of the Rainbow framework [Che08]. 50

3.2 An overview of the Zanshin approach [SS12]. 51

3.3 Znn.com architecture [CGS06b] 53

3.4 Strategy SmarterReduceResponseTime in Stitch [Che08]. . 55

3.5 Goal model for the ZNN.com exemplar, mirroring the adap-

tation scenarios modelled in Rainbow 57

3.6 Specification of the SimpleReduceResponseTime strategy

with Zanshin. 59

3.7 Specification of AR3 for the SmarterReduceResponseTime

strategy. 61

3.8 Experimental results . 64

vii

4.1 Goal model for the Meeting Scheduler case study with flow

expressions. 75

4.2 BCP from AND-refinement 76

4.3 BCP from multiplicity operator 78

4.4 BCP from OR-refinement 79

4.5 ACP for component instance 80

4.6 ACP for alternative component 81

4.7 Domain model for the Meeting Scheduler environment . . . 83

4.8 The Three-Peaks process as a flowchart 84

4.9 The goal model after the Three-Peaks process 89

4.10 The architecture model after the Three-Peaks process . . . 90

5.1 Adaptation Requirements Goal Model 99

5.2 Zanshin Architecture . 101

5.3 Zanshin’s Adaptation Process 103

5.4 Adaptation Requirements Goal Model [SS12] 104

6.1 Goal model annotated with contributions 115

6.2 Prometheus framework . 118

6.3 Meeting-Scheduler goal model 121

6.4 E-shop goal model . 128

7.1 Control scheme. 139

7.2 Meeting Scheduler goal model 142

8.1 CobRA framework . 148

8.2 Indicator measured values 154

8.3 Control parameter values 155

8.4 Adaptation cost . 156

viii

Chapter 1

Introduction

There is nothing more difficult to take in hand,

more perilous to conduct, or more uncertain in

its success, than to take the lead in the

introduction of a new order of things.

Niccolò Machiavelli

The invasion of technology in every aspect of human life places numer-

ous challenges on Software Engineering. The growing expectations from

modern software systems and their use in highly dynamic environments

has resulted in founding the field of self-adaptive software systems. Such

systems are meant to satisfy large sets of complex requirements in contin-

uously changing environments, that in several cases cannot be captured

before the system’s deployment [EM13]. A fundamental mechanism of

self-adaptive systems is the feedback loop [BSG+09]. This mechanism con-

tinuously monitors if all goals are achieved and if not, a decision-making

mechanism composes a new strategy to anticipate the failure. As we will

see in the next chapter multiple approaches have been proposed to engineer

feedback loops but very few of them propose how to design high variability

self-adaptive systems that can cope with the environmental factors which

lead to failures and how to manage such variability efficiently. In this chap-

ter, we discuss the challenges that motivate the research in self-adaptive

1

CHAPTER 1. INTRODUCTION

systems. Finally, we present and overview of this thesis’ proposal and

contributions.

1.1 Challenges of complex software systems

As the environments of modern software systems become more dynamic,

the level of uncertainty under which they operate increases dramatically.

Therefore, software systems must be resilient to changes that can be fore-

seen, foreseeable or unforeseen [Lap08]. For the latter case, a configuration

management [KM90] mechanism has been proposed by Kramer and Magee

to respond dynamically to changes in the environment, requirements or

structure of the system. The baseline of this proposal is that an external

mechanism should be able to reconfigure the software system by following

a change management protocol that prescribes how to add, remove, link

and unlink software modules, without causing any disruptions. This mech-

anism should be independent of the particular application and its single

objective is to maintain the system in a consistent state that is able to

fulfil the system’s mandate.

The increasing complexity of software systems in terms of structure and

number of assigned tasks requires decision-making mechanisms that are

able to compose and apply at runtime new configurations while performing

trade-offs in order to achieve and maintain an equilibrium among various

stakeholder goals [CGS06a]. IBM in 2001 was among the first to identify

the risks of growing complexity and state the following in their techni-

cal report [Hor01]: “As computing evolves, the overlapping connections,

dependencies, and interacting applications call for administrative decision-

making and responses faster than any human can deliver.” Therefore, the

required decision-making mechanisms must be part of modern software

automating and improving human administration.

2

1.1. CHALLENGES OF COMPLEX SOFTWARE SYSTEMS

components must coordinate in sometimes hostile environments to achieve

common goals. Due to their size, replacement of such systems is impracti-

cal in terms of cost and therefore when failures take place or requirements

change, they must adapt. Another characteristic of ULS systems is that

many different groups of stakeholders are involved and each of them has

his or her own goals. Hence, trade-off mechanisms to satisfy all goals to a

degree that corresponds to the importance of each group becomes essential.

Similar to ULS, Ubiquitous Computing [Wei93] refers to a concept of

software engineering where multiple networked devices collaborate to pro-

vide various services. Applications of Ubiquitous Computing can be found

in Smart Homes [EG01] and Smart Cities [CNW+12] that are designed

in order to improve human daily tasks. The interconnected components

of such environments may vary from smartphones, tablets to remote con-

trolled house devices, all communicating with predefined protocols over

a network. One of the main challenges in Ubiquitous Computing is that

every user is unique, has his or her own goals and priorities. Therefore,

the devices used by individuals in order to interact with their environment

must adapt and be personalized. Moreover, user devices learn by time the

habits and the preferences of the users providing them a better quality of

service. Finally, as technology evolves, ubiquitous environments are popu-

lated with new kinds of devices that need to communicate with the existing

ones without interrupting their operation.

Cloud computing is another emerging field where adaptation has be-

come a necessity. This new paradigm for hosting and delivering services

on-demand over the Internet poses a set of new challenges for the Software

Engineering community [ZCB10]. Service providers are obliged to satisfy

certain Service Level Objectives (SLOs) related to non-functional proper-

ties, known as Quality of Service (QoS). For the SLO’s to be fulfilled at run-

time, an automated administration mechanism is required to perform with

3

CHAPTER 1. INTRODUCTION

precision resource provisioning Virtual Machine (VM) migration in order

to cope with unpredictable workload patterns and infrastructure failures.

This mechanism must also balance conflicting objectives such as perfor-

mance, operational cost and energy consumption and perform trade-offs

that maximize the revenue of the provider and guarantee its reliability.

A new generation of systems, named Cyber Physical systems [Lee08]

combine computational and physical capabilities. One of the main research

challenges of this kind of systems is to guarantee a level of robustness in

unknown environments by handling both software and physical failures.

Given that Cyber Physical systems are destined also for mission critical

operations, such as rescues in inaccessible locations, they must respond to

changes and failures with high precision.

From the perspective of IT industry, multiple initiatives have provided

solutions to many businesses. IBM’s Autonomic Computing presented in

2001 by Horn [Hor01] has been a point of reference for both academic and

industrial research on the topic. This work is followed by Sun’s N1 manage-

ment software [Sun], that was designed to tackle to problem of managing

large, complex and heterogeneous infrastructures. Microsoft with its Dy-

namic Software Initiative [Mic] contributed to a cost-effective automatic

resource allocation in order to meet the growing demands of the market.

At the same time Hewllett-Packard introduced the Adaptive Enterprise

Strategy approach while Intel proposed standards for implementing auto-

nomic computing solutions [TM06].

Despite the industrial efforts for producing software that can success-

fully operate in the modern ever-changing environment as new techno-

logical applications arise, software engineers must tackle more challenges.

Therefore, general principles for designing such systems in order to remain

sustainable through time are necessary. Moreover, as the field of software

adaptation becomes more interdisciplinary, software engineering practises

4

1.2. SOFTWARE SYSTEM ADAPTATION

must include techniques and guidelines from other fields such as Control

Theory, Mathematical Optimization, Artificial Intelligence, Formal Meth-

ods and others, in order implement effective decision-making and planning

mechanisms.

1.2 Software system adaptation

A solution proposed for dealing with the increasing complexity of software

systems and the uncertainty of their environment is to develop systems

that can manage themselves while being aware of the goals that they must

fulfil. This section describes the fundamental concepts that have been

the baseline of our work and provides the necessary definitions about the

properties the examined systems must demonstrate 1.

1.2.1 Definitions

In the literature the terms self-adaptive and autonomous system are of-

ten used interchangeably. However, according to Huebdcher and McCann

[HM08] self-adaptive systems are a subset of autonomic systems, whereas

McKinley et al. citemckinley2004composing argue that self-adaptive has

less coverage as it refers mostly to applications and middleware as opposed

to autonomic systems that handle all layers of the system’s architecture.

Laddaga and Robertson [RL05] use the definition of self-adaptive software

that was provided by a DARPA Broad Agency Announcement on self-

adaptive software (BAA-98-12) in December of 1997 and we adopt through

this thesis:

Self-Adaptive Software evaluates its own behaviour and changes

behaviour when the evaluation indicates that it is not accom-

1This thesis extends the work of Vitor E.S. Souza [SS12] and therefore, shares a certain number of

definitions and research baseline.

5

CHAPTER 1. INTRODUCTION

plishing what the software is intended to do, or when better func-

tionality or performance is possible. [. . .] This implies that the

software has multiple ways of accomplishing its purpose, and has

enough knowledge of its construction to make effective changes at

runtime. Such software should include functionality for evaluat-

ing its behaviour and performance, as well as the ability to replan

and reconfigure its operations in order to improve its operation.

On the other hand, the adaptive software is identical to self-adaptive

software except from the fact that the first one delegates to external actors

the decision-making process about the new configuration that must be ap-

plied. A common case of such systems are socio-technical systems [Bry09],

where humans are involved in the loop of the adaptation process.

In IBM’s Vision of Autonomic Computing [KC03] it is presented a set of

properties that must characterize each self-adaptive system. These prop-

erties are referred as as self-* properties and are described below:

• Self-configuration. The configuration of the components of the sys-

tem should be automated and follow a set of high-level policies. The

rest of the system must adjust automatically to the new configuration.

• Self-optimization. The components of the system constantly seek

to optimize and improve the performance and efficiency of the overall

system.

• Self-healing. The system automatically detects failures, diagnose

their cause and take actions to restore the malfunctioning software or

hardware.

• Self-protection. The system must be able to defend and recover

from malicious attacks. Hence, the system must have the capability

to compose plans in order to anticipate such attacks.

6

1.2. SOFTWARE SYSTEM ADAPTATION

1.2.2 Feedback Loops

The paradigm proposed by IBM for engineering self-adaptive systems in-

volves the adoption of a basic concept from Control Theory, the feedback

loop [BSG+09]. More specifically, a self-adaptive system must perform a

set of actions in order to guarantee the aforementioned self-* properties.

This loop is depicted in Figure 1.1 and is composed of the following actions:

Autonomic Manager

Monitor

Analyze Plan

Execute

Managed Element

Knowledge

Figure 1.1: MAPE-K loop

1. Monitor. A set of sensors capture event data from the managed

element’s operation and its environment. Then, the collected data is

registered in a knowledge base for future use.

2. Analyze. The analyzer compares the most recently received data

with the existing patterns in the knowledge base and diagnoses failures

in the managed element and their symptoms.

3. Plan. The planner, based on the cause of failure, composes a plan

that will lead the managed element to recovery.

4. Execute. A set of effectors interpret the high level adaptation plan

to low level actions and apply the changes to the managed element.

7

CHAPTER 1. INTRODUCTION

Despite the fact that the Autonomic Manager that is responsible for

performing these actions is presented as an external mechanism to the

managed element, this distinction is more conceptual rather than architec-

tural.

+
−

Controller System

Disturbances

u

Measurements

r e y

ym

Figure 1.2: Feedback Loop

From a control engineering point of view, a feedback loop is constructed

as presented in Figure 1.2. The reference input (r) is the desired value of

an elicited measurable goal. The output of the system (y) is measured by

sensors and in several cases is also filtered. The measured and filtered out-

put (ym) is compared to the reference input and their difference is known

as control error. The controller receives as input the control error and

changes values of control parameters in order for the measured value to

converge to the desired one. The adaptation process and in particular the

controller, must demonstrate certain characteristics known as SASO (sta-

bility, accuracy, settling time and overshoot) properties [HDPT04] depicted

in Figure 1.3 and explained below:

• Stability. The output of a stable system must always converge to

a desired value, given by a reference input. Despite the fact that

8

1.2. SOFTWARE SYSTEM ADAPTATION

the convergence is not constant due to disturbances from the envi-

ronment, there are operating regions (i.e. combinations of workloads

and configuration settings) in which their performance is considered

acceptable.

• Accuracy. This property refers to how close the measured output

converges to the desired value. Ideally, the measured value should be

equal to the desired value.

• Settling time. This refers to the time it takes to the controller in

order to drive the system’s goal as close as possible to the reference

input and must be minimal.

• Overshooting. This property refers to the maximum difference be-

tween the measured value and the desired value.

G
o
a
l

Figure 1.3: SASO properties

An additional property of equal importance is robustness. A controller

bases its decisions on a model that describes the system’s dynamics. In the

particular case of software systems there are no laws of nature that could

provide such models. Therefore, the dynamics of the system can be derived

9

CHAPTER 1. INTRODUCTION

through a process named system identification [Lju99] that provides ap-

proximate models of the system’s behaviour. Moreover, the measurements

in the outputs might be biased and often inaccurate. A robust control sys-

tem is capable of overcoming such inaccuracies and converge to the desired

value of its goal.

1.2.3 SISO and MIMO systems

Systems where there is just one control parameter the value of which is de-

cided by the controller and one output are called Single Input Single Output

systems. Consider a news website that is hosted by a number of replicated

servers. The servers are not property of the news website but are rented

and can be allocated and released dynamically. When a popular article is

posted on the website the traffic increases dramatically and more servers

must be allocated in order to maintain the desired response time. Hence,

while the system operates the controller must decide the number of servers

that are required to satisfy the connected clients. The number of servers

influences the output of the system and can be tuned by the controller,

hence it is a control parameter. Control Theory has provided solutions

such as the Proportional-Integral-Derivative (PID) controller [Ast95] that

if designed properly can demonstrate all the aforementioned properties.

Unfortunately, most systems in the software world are more complex,

including a large set of control parameters and outputs that occasionally

are coupled to each other. In the previous example, response time is not the

only output for which the stakeholders provide requirements. The servers

are rented and therefore, they bear a certain operation cost for the service

provider of the news website. An alternative to increasing the number

of servers in order to reduce the response time could be to reduce the

resolution of the multimedia content that is hosted on the website, which

though is going to decrease the fidelity of the users that is prescribed

10

1.3. OBJECTIVES OF OUR RESEARCH

by the stakeholders to remain high. One can easily understand that as

the number of control parameters, hereafter referred as adaptation space,

and the number of monitored goals grow, the self-optimization property

becomes increasingly more challenging. In this thesis we discuss only the

second category of systems and we refer to them as Multiple Input Multiple

Output (MIMO) systems [SP07].

1.3 Objectives of our research

In Section 1.2 we have described the main challenges in the field of self-

adaptive software systems and the basic concepts that define the research

direction for their design and implementation. We now specify explicitly

the research objective of this thesis, what are the open research questions

that we address to and present an overview of their answers.

Research Objective: to design high variability self-adaptive systems that

combine control parameters from their requirements, architecture and be-

haviour and develop adaptation mechanisms capable of dealing with multiple

failing requirements and making optimal decisions wrt the priority of each

failure.

RQ1: How does an adaptation space based on requirements re-

lates to architecture-based adaptation spaces?

In the beginning of our research, we investigated similarities and differences

between approaches that use requirements models for software adaptation

and others that use architecture models. The reason is that, as we will see

in the next chapter, requirements and architectural approaches for design-

ing self-adaptive systems cover the largest portion of the literature in the

11

CHAPTER 1. INTRODUCTION

field. This triggered our comparison study, where we used the same ex-

emplar and applied an representative framework from each category. The

main difference was found to be that requirements-based approaches cap-

ture high level goals and usually ignore the capabilities and the restrictions

of the target system, since those become available later, when design de-

cisions are taken. On the other hand, architecture-based approaches focus

on lower level requirements and are aware of the technical limitations of the

system. The conclusion of our comparison is that a combination of the two

approaches would capture in detail essential aspects of the software system.

RQ2: Can we extend existing techniques to relate requirements-

based adaptation spaces to other aspects of software systems?

To answer this question it is important to identify what are the variabil-

ity dimensions of a self-adaptive software system and how these are related

to each other. Variability is essential to self-adaptive software systems,

because it captures the space of alternative adaptations a system is capa-

ble of applying to cope with changes in its environment. Our work goes

beyond the existing one-dimensional view of adaptation spaces by defin-

ing adaptation spaces that accommodate three complementary dimensions.

The first dimension captures variability in fulfilling requirements and rep-

resents variability in the problem part of the adaptation space. The other

two dimensions capture variability with respect to behaviour and archi-

tecture. These dimensions capture variability in the solution space of the

system-to-be, representing how, by whom and in what sequence require-

ments are to be fulfilled. The variability of these dimensions is captured

by a process named Three-Peaks, by guiding designers to define iteratively

an adaptation space by introducing some requirements, deciding on their

architectural and behavioural dimensions, and then going back and intro-

12

1.3. OBJECTIVES OF OUR RESEARCH

ducing more requirements, including ones that are determined by archi-

tectural and behavioural decisions. This work extends the Twin-Peaks

approach [Nus01] that intertwines software requirements and architectures

promoting incremental development for faster specifications.

RQ3: How do we deal with multiple failing requirements under

the absence of quantitative information that describe the system

dynamics?

One of the main challenges in the area of self-adaptive software systems

is that there are no laws of nature to describe their behaviour. Therefore,

the impact of changing one control parameter from the adaptation space

on one or more systems goals is not known a priori. This increases the

complexity of the decision-making process. The reason is simple: in case

of failures F, F’, the candidate adaptations A, A’ may be conflicting, as A

may call for a behaviour that exacerbates F’, and vice versa with A’.

We tackle this problem by prioritizing systematically software require-

ments with the use of the Analytical Hierarchy Process (AHP) [KR97]. The

priorities are used in cases where the adaptation mechanism when multiple

failures are present and conflicts among requirements are present. In such

cases, the most important failures with respect to their priority are selected

to be fixed. Then we define a new kind of requirements named Adaptation

Requirements (AdReqs) provided by stakeholders that prescribe policies

and constraints for the adaptation process itself. For example, an adapta-

tion requirement may state that the adaptation should be conservative in

that it does not change parameters in a way that could harm non-failing

requirements. We also propose a qualitative adaptation process that takes

into account adaptation requirements and iteratively collects failures, se-

lects an adaptation, applies it, and observes results.

13

CHAPTER 1. INTRODUCTION

RQ4: How could the self-adaptation problem be formulated as

an optimization problem and how could it be solved?

For the cases in which quantitative relations between control parameters

and software goals are available multi-objective optimization techniques

can be applied for selecting an optimal adaptation. In our work, there

are two criteria that such an adaptation must satisfy: a) minimize the

degree of failure, (i.e. the control error we presented in Section 1.2.2)

for system requirements with respect to their importance and b) optimize

lexicographically [Ise82] quality attributes (e.g. cost, performance etc.) of

the system.

Before selecting an adaptation it is important to locate the cause of

failures. This means that the adaptation space is dynamic and the available

solutions depend on the failures that caused them. For instance, when a

Meeting-Scheduling system fails to book rooms, one possible solution is

to dispose more rooms. However, this might not be effective, because

the cause of failure was a long downtime of the external service that is

responsible for finding and booking rooms. Therefore, identifying the cause

of failure is critical for choosing an effective adaptation. Moreover, software

systems are characterized of various kinds of dependencies i.e. a change in

one control parameter enforces a change to another one.

The formulation we propose consists of three steps. First, goals and

quality attributes of the system are prioritized in the same manner as

we did for answering RQ3. Second, we define an objective function that

measures the aggregated degree of failure of each requirement and its in-

dependent variables are the control parameters of the system. Finally,

we define the constraints that capture the various dependencies of system

goals and components, the boundaries of the control parameters and ex-

14

1.3. OBJECTIVES OF OUR RESEARCH

clude solutions that are not effective based on the root cause of failures.

Finding values for the control parameters in order to minimize the defined

objective function is referred as the Next Adaptation Problem.

This problem rises every time one or more requirements of the system

fail. As a solution to the Next Adaptation Problem we propose a framework

that monitors the success of system goals and when failures are detected

a root cause analysis component identifies the source(s) of failure. Based

on the output of this component a new adaptation space is composed with

all the candidate solutions for the occurred failure. Then an optimization

component finds values for the available control parameters that minimize,

ideally eliminate, the failures and optimize lexicographically the system’s

quality attributes.

RQ5: How to find an optimal adaptation under the absence of

any information about system’s dynamics?

The solution to the previous question is based on the assumption that

quantitative information is available by domain experts. Given the quick

pace new kinds of application are introduced such expertise cannot be

taken for granted.

We tackle this problem with the use of Control Theory and more specifi-

cally Model Predictive Control [CBA04]. Our approach integrates software

development with control engineering practises by simulating the system-

to-be and eliciting an analytical model that captures the relation between

goals and the success rate of the monitored goals. A controller uses this

model in order to predict the system’s behaviour and make any necessary

changes in order to maintain the control error of each goal to the minimum

with respect to its priority.

The controller is part of a framework that monitors success rates of

15

CHAPTER 1. INTRODUCTION

functional and non-functional requirements and when control errors occur

the embedded controller composes an adaptation plan to minimize them.

Inevitable inaccuracies and nonlinearities of the analytical model are han-

dled by a Kalman filter [Lju99] that linearizes the model at runtime over

an operational point. Furthermore, Model Predictive Control can provide

formal guarantees for satisfying the SASO properties that we discussed

earlier.

1.3.1 Overview and contributions

In summary the contributions of this thesis are:

• A systematic process — Three-Peaks — for extracting incrementally

variability from goal models. We model requirements, behavioural

and architecture control parameters as well as parameters of the en-

vironment. The purpose of this process is to derive a sufficiently

large adaptation space, able to cope with environmental uncertainty

responding to RQ1 and RQ2.

• A new type of requirements — AdReqs — that capture constraints of

the adaptation process itself. This new type of requirements is meant

to increase the precision of the proposed adaptation mechanisms and

respond to RQ3, RQ4 and RQ5.

• A qualitative adaptation mechanism that exploits requirement pri-

orities in order can handle multiple failures without any analytical

models for the system’s dynamics. This also contributes to RQ3.

• A formulation of the Next adaptation problem and a framework that

exploits quantitative models, root cause analysis to solve it. This

addresses RQ4.

16

1.4. STRUCTURE OF THE THESIS

• A set of guidelines for applying control engineering practises in the

development of self-adaptive software for eliciting the system’s be-

haviour and design a controller that can correct multiple requirement

failures offering formal guarantees. This addresses RQ5.

1.4 Structure of the thesis

The remainder of this thesis presents in detail the proposed approach we

summarized above in the following structure:

• Chapter 2 overviews the research baseline of our proposal and the

state-of-the-art.

• Chapter 3 presents a comparison between two model-based adapta-

tion mechanisms. One uses architecture and the other requirements

models. The results of this comparison reveals the advantages and

disadvantages of each approach.

• Chapter 4 describes the sources of variability in software system de-

sign and proposes models to capture requirement, behavioural, ar-

chitectural and environmental variability. Moreover, it describes a

systematic iterative process that guides the elicitation of this multi-

dimensional variability.

• Chapter 5 presents the concept of Adaptation Requirements and a

qualitative adaptation mechanism for handling multiple failures.

• Chapter 6 defines the problem of adaptation as a constrained multi-

objective optimization problem and describes in detail a framework

that performs root cause analysis each time one or more requirements

fail, composes a new adaptation space and composes an optimal adap-

tation.

17

CHAPTER 1. INTRODUCTION

• Chapter 7 describes how the design of an MPC controller can become

part of software engineering for self-adaptive systems.

• Chapter 8 presents a framework that uses an MPC controller to pro-

duce adaptation plans by exploiting estimated analytical models that

describe the system’s dynamics.

• Chapter 9 concludes the thesis with a summary of our contributions,

discussing the advantages and the limitations of our proposal as well

as the possibilities for a new research agenda.

1.5 Published papers

• Vı́tor E. Silva Souza, Alexei Lapouchnian, Konstantinos Angelopou-

los, John Mylopoulos: Requirements-driven software evolution. Com-

puter Science - R&D 28(4): 311-329 (2013)

• Konstantinos Angelopoulos, Vı́tor E. Silva Souza, João Pimentel: Re-

quirements and architectural approaches to adaptive software systems:

a comparative study. SEAMS 2013: 23-32

• João Pimentel, Konstantinos Angelopoulos, Vı́tor E. Silva Souza, John

Mylopoulos, Jaelson Castro: From Requirements to Architectures for

Better Adaptive Software Systems. iStar 2013: 91-96

• João Pimentel, Jaelson Castro, John Mylopoulos, Konstantinos An-

gelopoulos, Vı́tor E. Silva Souza: From requirements to statecharts

via design refinement. SAC 2014: 995-1000

• Konstantinos Angelopoulos, Vı́tor E. Silva Souza, John Mylopou-

los: Dealing with multiple failures in zanshin: a control-theoretic ap-

proach. SEAMS 2014: 165-174

18

1.5. PUBLISHED PAPERS

• Antonio Filieri, Martina Maggio, Konstantinos Angelopoulos, Nicolás

D’Ippolito, Ilias Gerostathopoulos, Andreas B. Hempel, Henry Hoff-

mann, Pooyan Jamshidi, Evangelia Kalyvianaki, Cristian Klein, Filip

Krikava, Sasa Misailovic, Alessandro Vittorio Papadopoulos, Suprio

Ray, Amir Molzam Sharifloo, Stepan Shevtsov, Mateusz Ujma, Thomas

Vogel: Software Engineering Meets Control Theory. SEAMS@ICSE

2015: 71-82

• Konstantinos Angelopoulos, Alessandro Vittorio Papadopoulos, John

Mylopoulos: Adaptive predictive control for software systems.

CTSE@SIGSOFT FSE 2015: 17-21

• Konstantinos Angelopoulos, Vı́tor E. Silva Souza, John Mylopou-

los: Capturing Variability in Adaptation Spaces: A Three-Peaks Ap-

proach. ER 2015: 384-398

• Konstantinos Angelopoulos, Fatma Basak Aydemir, Paolo Giorgini,

John Mylopoulos: Solving the Next Adaptation Problem with Prometheus.

RCIS 2016

• Konstantinos Angelopoulos, Alessandro Vittorio Papadopoulos, Vı́tor

E. Silva Souza, John Mylopoulos: Model Predictive Control for Soft-

ware Systems with CobRA. SEAMS 2016 (accepted)

19

Chapter 2

State of the Art

To know what you know and what you do not

know, that is true knowledge.

Confucius

The area of self-adaptive software is broad and interdisciplinary with

rich literature of diverse approaches that tackle the problem of software

adaptation using a variety of conceptual models and techniques. In this

chapter we overview the baseline this thesis is built on and we summarize

the state-of-the-art in this area.

2.1 Baseline

Every software development project starts with the elicitation of stake-

holder requirements and continues with making decisions on the design of

the system-to-be in order to satisfy as many as possible of these require-

ments. The particularity of self-adaptive systems is that their requirements

might change over time or cease to be satisfied due to the environment’s

uncertainty. Our work treats requirements as first class citizens and the

point of reference when a new adaptation plan must be composed. The

next sections introduce concepts related to Requirements Engineering and

Software Variability along with their applications in software adaptation.

21

CHAPTER 2. STATE OF THE ART

2.1.1 Goal Oriented Requirements Engineering

The importance of requirements in software engineering development is in-

troduced by Ross and Schoman [RS79] with the notion of the requirements

problem. More specifically, they stated that: ‘even the best structured pro-

gramming code will not help if the programmer has been told to solve the

wrong problem, or, worse yet, has been given a correct description but

has not understood it.’ Later, Zave and Jackson [ZJ97] suggest that the

requirements problem amounts to finding the specification S that for given

domain knowledge K satisfies the given requirements R. The previous sen-

tence is depicted in the in the following mathematical logic form K,S ` R.

Goal-Oriented Requirements Engineering (GORE) was founded with

the premise to give a solution to the requirements problem with the use

of modelling languages. According to GORE, stakeholder requirements

are expressed as goals — desired state-of-affairs — which must be elicited,

modelled, analyzed and validated. There is rich literature [vL00] which

focuses on producing requirement specifications that includes these steps.

In their work Jureta et al. put the requirements problem in the context

of adaptive systems [JBEM14], advocating the need of configurable speci-

fications. Such specifications prescribe a set of possible configurations for

the system-to-be that only one is active at runtime. Therefore, when the

initial assumption about the system or the requirements change a new con-

figuration is applied. The work by Souza [SS12], which this thesis extends,

addresses to this problem by proposing requirements to monitor the success

or failure of other requirements and capture changes at requirements level.

In the same line of work, a qualitative adaptation mechanism is proposed

and performed by the Zanshin framework [SS12] which we explain in detail

in the next Chapter.

22

2.1. BASELINE

2.1.2 GORE for self-adaptive software systems

Goal Models. In this thesis we also use goal models for representing

stakeholder requirements. A goal model captures both functional and non-

functional requirements, referred as hard goals and soft goals respectively.

Hard goals are AND/OR-refined until each goal is operationalized by tasks.

Along with goals, domain assumptions represent preconditions that must

hold for the system to operate properly.

Figure 2.1 captures the requirements of a Meeting-Scheduler system

[LDM95] that is meant to facilitate the process of organizing meetings in

a large institution. For the system to satisfy its top goal ScheduleMeeting,

every time a meeting request arrives, must initiate a meeting by creating

a new meeting event, collect the participant list, the meeting’s topic and

the required equipment for the meeting. Next, the timetables are collected

by each participant either by e-mail, by phone or automatically by the

system. In order for the system though to collect the timetables the domain

assumption that participants use the system calendar must hold. Then, a

date and room must be selected either manually by the meeting organizer

or automatically by the system. In addition, the system must allow the

meeting organizer to confirm or cancel the occurrence of the meeting, send

invitations to the participants and modify the date or the topic if needed.

Finally the system must store all the date related to the meeting and make

them accessible to the meeting organizer.

Soft goals represent desired qualities of the system-to-be [MCN92]. In

spite of their qualitative nature, soft goals can be operationalized by qual-

ity constraints that quantify the degree to which they are fulfilled. For

example, Fast Scheduling may be operationalized by the quality constraint

duration(Schedule Meeting) ≤ 6hrs. Alternatively, quality goals can be

operationalized by optimization constraints, named quality attributes. For

23

CHAPTER 2. STATE OF THE ART

G
0

:S
c
h

e
d

u
le

M
e
e
ti
n

g

A
N
D

G
1

:
In

it
ia

te

M
e
e
ti
n

g

t0
:c

re
a
te

m
e
e
ti
n

g

t2
:

a
d

d

p
a
rt

ic
ip

a
n

t

lis
t

A
N
D

t3
:

s
e
le

c
t

re
q

u
ir
e
d

e
q

u
ip

m
e
n

t

t1
:c

h
a
ra

c
te

ri
z
e

m
e
e
ti
n

g

G
4

:
S

to
re

D
a
ta

t1
9

:s
a
v
e
 d

a
ta

t2
0

:p
ro

v
id

e

d
a
ta

t2
1

:d
e
le

te

d
a
ta

A
N
D

t1
8

:u
p

d
a
te

d
a
ta

G
3

:
M

a
n

a
g

e

M
e
e
ti
n

g

A
N
D

t1
4

:
e
d

it

m
e
e
ti
n

g
t1

5
:c

a
n

c
e
l

m
e
e
ti
n

g

t1
3

:c
o

n
fi
rm

m
e
e
ti
n

g

t1
6

:e
-m

a
il

c
h

a
n

g
e
s

to
 p

a
rt

ic
ip

a
n

ts

t1
7

:s
e
n

d

re
m

in
d

e
r

G
2

:
B

o
o

k

M
e
e
ti
n

g

A
N
D

t1
2

:r
e
g

is
te

r

m
e
e
ti
n

g

L
o

w
 C

o
s
t

W
e
e
k
ly

 c
o

s
t

m
u

s
t

b
e
 l
e
s
s
 t

h
a
n

 5
0

0
€

G
o

o
d

P
a
rt

ic
ip

a
ti
o

n
8

0
%

 o
f

th
e
 p

a
rt

ic
ip

a
n

ts

s
h

o
w

 u
p

F
a
s
t

S
c
h

e
d

u
lin

g

S
c
h

e
d

u
le

s
 m

u
s
t

b
e

p
ro

d
u

c
e
d

 i
n

 1
 d

a
y

G
o

o
d

 Q
u

a
lit

y

M
e
e
ti
n

g
s

M
e
e
ti
n

g
 r

o
o

m
s
 h

a
v
e

th
e
 r

e
q

u
ir
e
d

 e
q

u
ip

m
e
n

t

t1
1

:
s
c
h

e
d

u
le

a
u

to
m

a
ti
c
a
lly

G
7

:F
in

d
 D

a
te

t1
0

:
s
c
h

e
d

u
le

m
a
n

u
a
lly

O
R

G
6

:
F

in
d

 R
o

o
m

O
R

t8
:

s
e
le

c
t

ro
o

m

m
a
n

u
a
lly

t9
:s

e
le

c
t

ro
o

m

a
u

to
m

a
ti
c
a
lly

lo
c
a
l
ro

o
m

s

&
 h

o
te

l
ro

o
m

s

a
v
a
ila

b
le

G
5

:
C

o
lle

c
t

T
im

e
ta

b
le

s

t7
:

a
u

to
m

a
ti
c
a
lly

t6
:

b
y
 e

-m
a
il

t5
:

b
y
 p

h
o

n
e

O
R

G
o

a
l

T
a

s
k

S
o

ft
-G

o
a

l
Q

u
a

li
ty

 C
o

n
s

tr
a

in
t

K
e
y
:

D
o

m
a

in
 A

s
s

u
m

p
ti

o
n

+

-

+

R
e

fi
n

e
m

e
n

t
b

in
d

in
g

-

C
o

n
fl

ic
t

e
d

g
e

F
ig

u
re

2.
1:

G
oa

l
m

o
d
el

fo
r

th
e

M
ee

ti
n
g-

S
ch

ed
u
le

r
ca

se
st

u
d
y.

24

2.1. BASELINE

instance, Fast Scheduling may be operationalized by minimizing the time

it takes to schedule meetings.

A goal model for a self-adaptive system captures the functional require-

ments for the system-to-be. The system at runtime can switch among

alternative refinements where this is possible, in order to guarantee the

satisfaction of all root goals. However, choices among alternatives can

be constrained. For instance, as Figure 2.1 shows, if the timetables are

collected automatically then the meeting’s date must be selected automat-

ically by the system as well. Such relationships are called goal constraints

[NSGM16a] and capture dependencies among goals.

2.1.3 Requirements monitoring

As explained in the previous Chapter, one of the fundamental components

of an adaptation mechanism is monitoring. A system must be aware of

its goals and the degree in which they are fulfilled at runtime [SBW+10].

Fickas and Feather in their work [FF95] explore the need of specifications

with focus on monitoring requirements of systems that operate in ever-

changing environments.

Figure 2.2: States assumed by requirements [SLRM11].

The requirements of a software system are meant to be satisfied more

than once at runtime. In other words, one can assume that each elicited

requirement is a class that is going to be instantiated multiple times. For

25

CHAPTER 2. STATE OF THE ART

example, the goal CollectTimetables of the Meeting-Scheduler exemplar

must be fulfilled every time a new request arrives and therefore, a new

instance of this goal is created. Goal instances go through certain states

as shown in Figure 2.2. When the goal instance is created its state is

Undecided. Eventually as the system pursues to fulfil the goal, the instance

will either have Succeeded or Failed. In case the goal is taking too long to

be fulfilled, another potential state is Cancelled.

Low Cost

Weekly cost must

be less than 500€

(AR1) SuccessRate(85%)

(a)

t11: schedule

automatically

G7:Find Date

t10: schedule

manually

OR

(AR8)

 ComparableSuccess

(schedule manually, 10)

(AR5) NeverFail

(b)

Figure 2.3: Aggregate Awareness Requirements.

Awareness Requirements (AwReqs) are associated with goals, tasks, do-

main assumptions and quality constraints. The monitoring mechanism,

every time a new instance of a goal is created records every change in its

state. This allows to measure the success of requirements over time. For

example, the quality constraint of the soft goal Low Cost prescribes that

the weekly cost of meetings must be less than 500e. In Figure 2.3a the

AwReq AR1 prescribes that the 85% of its instances must have been in

the state Succeded before the end of their sessions, which in this case lasts

one week. Another example is AR5 that indicates none of the instances of

the goal Find Date must ever be in the state Failed, whereas AR8 that the

task schedule automatically succeeds ten times more than the task sched-

26

2.1. BASELINE

ule manually. Such AwReqs that monitor the states of other requirements

over the time are referred as aggregate AwReqs .

Trend AwReqs is yet another type of AwReq that compares success rates

over a number of periods. For example, in Figure 2.4 AR6 prescribes that

the success rate of the goal Collect Timetables should not decrease two

weeks in a row. This type of AwReqs is used to identify how success/fail

rates evolve over time.

(AR6) notTrend

Decrease(7d,2)

G5: Collect

Timetables

t7: automatically
t6: by e-mail

t5: by phone

OR

Figure 2.4: Trend Awareness Requirement.

A third type of AwReq are the Delta AwReqs . This type focuses on

specifying acceptable thresholds for fulfilling the constrained goals. For in-

stance, AR9 in Figure 2.5 specifies that when the meeting’s date is sched-

uled manually, the task must be completed within one hour.

(AR9) StateDelta(Undecided,*,1h)

t10: schedule

manually

Figure 2.5: Delta Awareness Requirement.

AwReqs are implemented as constraints expressed in Object Constraint

27

CHAPTER 2. STATE OF THE ART

Language (OCL) [Rob07] and the values of their success rates are captured

by variables named indicators. For example, indicator I1 = 85% means

that the 85% of the times the quality constraint for the goal Low Cost is

satisfied and therefore, AR1 succeeds. Listing 2.1 depicts the OCL con-

straint for AR1 where Q CostLess500 is the class of the quality attribute

of the Low Cost soft goal.� �
-- AwReq AR1: QC ‘Weekly cost must be lesss than 500e’ should have success

rate 85%.
context Q_CostLess500

def: all: Set = Q_CostLess500.allnstances ()
def: success : Set = all ->select(x | x.oclInState(Succeeded))
inv AR1: always(success ->size() / all ->size() >= 0.85)� �

Listing 2.1: AR1 in OCL

2.1.4 Variability in goal models

For an adaptive system it is useful to implement all alternatives that are

captured as OR-refinements in the goal model because this allows multiple

reconfigurations during adaptation. Hence, some (in our example, all) OR

refinements can be marked as variation points (see labels VP1 –VP3 in

Figure 2.6). In this case, all tasks associated with each variation must be

implemented and the system can switch from one configuration to another

during adaptation [SLM11], as long as it adheres to its behaviour model

(discussed next).

Another source of variability along the requirements dimension consists

of control variables. These represent the amount of resources and effort

allocated for the system-to-be while it fulfils its requirements. For instance,

FhM represents from how many participants the system should collect time

tables before goal G5 is considered satisfied (a percentage value). MCA

is another control variable that represents the maximum conflicts allowed

for the timeslot chosen for the meeting and participant time tables. RfM

is yet another, representing how many local (on the premises) rooms have

been allocated for meetings, while, HfM represents how many hotel rooms

28

2.1. BASELINE

are reserved for meetings, and finally VPA indicates whether the system

has authorization to access personal time tables.

Control variables and variation points, hereafter requirement control pa-

rameters (ReqCPs), can be adjusted at runtime by the adaptation mech-

anism, to fix failing AwReqs . The qualitative relation between AwReqs

and parameters is captured through a systematic process called qualitative

system identification1. During this process the domain expert captures

the positive or negative influence that a parameter change can have on an

AwReq . More specifically, the differential relationship ∆(I2/MCA) < 0

means that by increasing MCA by one unit the success rate of AR2 will

decrease. Similarly, ∆(I5/MCA) > 0 means that by increasing MCA the

success rate of AR5 will increase. Differential relations are symmetric

with respect to increases/decreases, meaning that if MCA is decreased the

success rate of AR5 will also decrease.

2.1.5 Requirements Evolution

Requirements elicitation is not an easy task and stakeholders often change

their minds during the development of the system-to-be or after the system

is delivered. Moreover, setting thresholds for soft goals and constraints is

not easy either, especially because some of these goals are conflicting and

estimating an equilibrium is almost impossible until the system is deployed.

In other cases, stakeholders have very high expectations from the system

that cannot be always met due to external disturbances which are not

captured during the design phase.

In order to cope with these challenges we use a new kind requirements,

named Evolution Requirements (EvoReqs) [SLAM13]. This type of re-

quirements specifies required changes to other requirements when certain

1In the original work presented in [SLM11] the process is referred simply as system identification. To

avoid confusion with the system identification we present next for deriving analytical models, we add to

this one the term qualitative

29

CHAPTER 2. STATE OF THE ART

G
0
:S

c
h
e
d

u
le

M
e
e
ti
n
g

A
N

D

G
1
:
In

it
ia

te

M
e
e
ti
n
g

t0
:c

re
a
te

m
e
e
ti
n
g

t2
:
a
d

d

p
a
rt

ic
ip

a
n
t

lis
t

A
N

D

t3
:
s
e
le

c
t

re
q

u
ir
e
d

e
q

u
ip

m
e
n
t

t1
:c

h
a
ra

c
te

ri
z
e

m
e
e
ti
n
g

G
4
:
S

to
re

D
a
ta

t1
9
:s

a
v
e
 d

a
ta

t2
0
:p

ro
v
id

e

d
a
ta

t2
1
:d

e
le

te

d
a
ta

A
N

D
t1

8
:u

p
d

a
te

d
a
ta

G
3
:
M

a
n
a
g

e

M
e
e
ti
n
g

A
N

D

t1
4
:
e
d

it

m
e
e
ti
n
g

t1
5
:c

a
n
c
e
l

m
e
e
ti
n
g

t1
3
:c

o
n
fi
rm

m
e
e
ti
n
g

t1
6
:e

-m
a
il

c
h
a
n
g

e
s

to
 p

a
rt

ic
ip

a
n
ts

t1
7
:s

e
n
d

re
m

in
d

e
r

G
2
:
B

o
o

k

M
e
e
ti
n
g

A
N

D

t1
2
:r

e
g

is
te

r

m
e
e
ti
n
g

L
o

w
 C

o
s
tW

e
e
k
ly

 c
o

s
t

m
u
s
t

b
e
 l
e
s
s
 t

h
a
n
 5

0
0
€

(A
R

1
)

S
u

c
c

e
s
s
R

a
te

(8
5
%

)

G
o

o
d

P
a
rt

ic
ip

a
ti
o

n
8
0
%

 o
f

th
e
 p

a
rt

ic
ip

a
n
ts

s
h
o

w
 u

p

(A
R

2
)

S
u

c
c

e
s
s
R

a
te

(7
5
%

)

F
a
s
t

S
c
h
e
d

u
lin

g

S
c
h
e
d

u
le

s
 m

u
s
t

b
e

p
ro

d
u
c
e
d

 i
n
 1

 d
a
y

(A
R

3
)

S
u

c
c

e
s
s
R

a
te

(9
0
%

)

G
o

o
d

 Q
u
a
lit

y

M
e
e
ti
n
g

s

M
e
e
ti
n
g

 r
o

o
m

s
 h

a
v
e

th
e
 r

e
q

u
ir
e
d

 e
q

u
ip

m
e
n
t

(A
R

7
)

S
u

c
c

e
s
s
R

a
te

(9
0
%

)

(A
R

6
)

n
o

tT
re

n
d

D
e

c
re

a
s
e

(7
d

,2
)

(A
R

4
)

N
e

v
e

rF
a

il
(A

R
5
)

N
e

v
e

rF
a

il M
C

A

t1
1
:
s
c
h
e
d

u
le

a
u
to

m
a
ti
c
a
lly

G
7
:F

in
d

 D
a
te

t1
0
:
s
c
h
e
d

u
le

m
a
n
u
a
lly

O
R

(A
R

8
)

 C
o

m
p

a
ra

b
le

S
u

c
c

e
s
s

(s
c

h
e

d
u

le
 m

a
n

u
a

ll
y,

 1
0
)

G
6
:
F

in
d

 R
o

o
m

O
R

t8
:
s
e
le

c
t

ro
o

m

m
a
n
u
a
lly

t9
:s

e
le

c
t

ro
o

m

a
u
to

m
a
ti
c
a
lly

H
fM

lo
c
a
l
ro

o
m

s

&
 h

o
te

l
ro

o
m

s

a
v
a
ila

b
le

R
fM

G
5
:
C

o
lle

c
t

T
im

e
ta

b
le

s

t7
:
a
u
to

m
a
ti
c
a
lly

t6
:
b

y
 e

-m
a
il

t5
:
b

y
 p

h
o

n
e

O
R

F
h

M
V

P
A

V
P

1

V
P

2

V
P

3

F
ig

u
re

2.
6:

G
oa

l
m

o
d
el

fo
r

th
e

M
ee

ti
n
g-

S
ch

ed
u
le

r
ca

se
st

u
d
y.

30

2.1. BASELINE

conditions apply (e.g., the failure of an AwReq). For example, If require-

ment R fails three times in a row, replace it with requirement R′, where R

is a weaker (i.e., easier to fulfil) requirement. Such requirements are use-

ful to evolve unfeasible requirements that were initially elicited from the

stakeholders.

EvoReqs are applied by operations that are triggered by preconditions

specified by stakeholders and designers. The triggering events can be a re-

quirement failure of a scheduled event. Furthermore, the changes applied

can either be permanent or temporary. Table 2.1 presents EvoReqs oper-

ations specified for the Meeting-Scheduler system. For example, when the

system receives large amount of requests because a special event is taking

place, or when the prices of the hotel rooms rise, the 85% threshold set

by AR1 becomes infeasible. Therefore, when one of the aforementioned

events takes place, the threshold is relaxed to 75% by the EvoReq opera-

tion Relax(AR1,AR1′ 75). When the environment returns to its previous

state, meaning that the meeting requests are reduced, or the prices are

decreased the threshold can be restored to the values by the EvoReq oper-

ation Strengthen(AR1,AR1′ 85). Other EvoReq operation might indicate

that the system should wait for a certain amount of time before evaluating

again the success of an AwReq as in the case of AR6 and AR7 or replace

it permanently with another one such AR5.

2.1.6 Software Architecture Modelling

In [KOS06] Krutchen et al. describe software architecture as “the struc-

ture and organization by which modern system components and subsystems

interact to form systems, and the properties of systems that can best be

designed and analyzed at the system level”. The software architecture is

highly coupled to the requirements of a system since the latter prescribes

what needs to be achieved and why , while the former describes how fulfil-

31

CHAPTER 2. STATE OF THE ART

Table 2.1: EvoReqs operations

AwReq EvoReq operation

AR1
1. Relax(AR1,AR1′ 75)

2. Strengthen(AR1,AR1′ 85)

AR2 Relax(AR2,AR2′ 90)

AR3 Relax(AR3,AR3′ 90)

AR4
1. wait(3 days)

2. Relax(AR4,AR4′ 75)

AR5 Replace(AR5,AR5′ 3)

AR6 wait(3 days)

AR7 wait(2 days)

ment is achieved.

More specifically, David Garlan in [Gar14] illustrates six aspects that

software architecture contribute to software development. First, software

architecture allows a better understanding of large and complex systems,

since a high-level design is more comprehensible. Next, architecture design

allows designers to reuse solutions to similar problems and facilitates the

construction of the system-to-be. Moreover, when new components must

be added or older ones are modified, the designers can reason about the

impact on the system’s integrity.

Architectures are described in terms of the concepts of components and

connectors. A component constitutes the basic building block of architec-

ture and is responsible for carrying out operations toward the fulfilment

of goals. Components can be software, hardware components or human

actors that interact with the system through an interface. Furthermore,

components interact with each other within an architecture using commu-

nication links, named connectors. Multiple architecture description lan-

guages have been proposed during the years, such as ACME [GMW00],

C2 [MTWJ96], Darwin [MDEK95], Koala [vOvdLKM00], Wright [AG94]

and others. However to the moment this thesis is written, these languages

32

2.1. BASELINE

Figure 2.7: Architectural diagram for the Meeting-Scheduler

have been neglected by the software industry. Therefore, for our purposes,

we use class diagrams to represent an architecture [ICG+04], where classes

model components, while associations model connectors. Other types of re-

lations between classes (e.g. composition) capture the structural relations

of the system. For example, the class diagram in Figure 2.7 shows the

architecture of the meeting scheduler system, where the TimetableCollec-

tor component is part of the MeetingInitiator component and can interact

with one or more Secretary components.

Variability is captured in architectural models in terms of alternative

components that can fulfil the same goal, but with different qualitative

properties (e.g., better performance but lesser usability). Variability here

can also be introduced by having a number of component instances par-

ticipating in the runtime architecture. For instance, the meeting scheduler

may have an additional component to what is shown on Figure 2.7 that

takes in meeting scheduling requests and distributes them among one or

more servers each of which consists of the architecture shown in Figure 2.7.

This kind of variability is exploited by the Rainbow framework [GCH+04].

33

CHAPTER 2. STATE OF THE ART

2.1.7 Software Behaviour Modelling

Another aspect of software systems is their behaviour and by that we mean

the sequence in which the components execute their assigned tasks. There

is rich literature on languages that describe software behaviour, such as

Petrinets [Mur89], Statecharts [Har87], and BPMN [Whi04]. In this work,

we represent the behaviour of the system using flow expressions [PCM+14,

DBHM13] as attachments to each goal (in Figure 2.6, goals G0 –G7). These

are extended regular expressions that describe the flow of system behaviour,

with each atomic component of allowed sequences of fulfilment of sub-goals

that lead to the fulfilment of a parent goal.

The operators ; (sequential), | (alternative), opt() (optional), * (zero

or more), + (one or more), # (shuffle) allow us to specify sequences of

system actions that constitute a valid behaviour. Shuffle specifies that its

operands are to be fulfilled concurrently. For example, G0 # G1 means

that goals G0 and G1 are to be fulfilled in parallel. Of course, each of

these goals has its own flow expression to describe in what order its own

subgoals and tasks are to be fulfilled/executed.

Behavioural models contribute to disambiguating certain refinements of

the goal models. For instance in Figure 2.6, Manage Meeting is AND-

refined to five tasks. From a design point of view, this means that all the

five functionalities must be supported by the system-to-be. However, at

runtime, it is not an acceptable behaviour to cancel and confirm the same

meeting.

2.2 Dynamic System Modelling

In the previous section we presented how the relations between control pa-

rameters and indicators can be captured using only qualitative information.

Often, using qualitative adaptation is a necessity, given the lack of quanti-

34

2.2. DYNAMIC SYSTEM MODELLING

tative models for software systems. However, in many cases, a sufficiently

accurate analytical model, can be obtained through system identification

techniques [Lju99], and can be used for control design. Letting u(t) ∈ Rm

be the vector of m control parameter values at time t, and y(t) ∈ Rp be the

vector of p indicators, their respective dynamic relation is described as:

yi(t) =

p∑
j=1

ny∑
k=1

αijkyj(t− k) +
m∑
j=1

nu∑
k=1

βijkuj(t− k) (2.1)

for all i = 1, . . . , p, and with αijk ∈ R, βijk ∈ R. The quantitative dy-

namic model (2.1) relates the values of the indicator yi at time t with

past values of all the indicators – accounting for possible mutual influences

of the indicators – and with past values of control parameters. For ex-

ample, I1, that measures the success rated of the Low Cost goal in the

Meeting-Scheduler exemplar, might achieve a high value because of good

management of hotel room assignments or because of the constant failure

of I4, the success rate of Find Room. The reason is that if meetings fail to

be scheduled, no rooms are reserved and consequently the cost of meetings

remains low. Such implicit relationships among indicators can be cap-

tured by model (2.1) to guide the adaptation process. Notice that if some

of the mentioned variables are not influencing the value of the indicator

yi(t), then the corresponding parameters are simply zero. An equivalent

and more compact representation of this relation is the discrete-time state-

space dynamic model:x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t),
(2.2)

where x(·) is a vector named dynamic state of the model. While for physical

systems, the state x(·) is typically associated with meaningful physical

quantities, in general the state can be just an abstract representation of

35

CHAPTER 2. STATE OF THE ART

the system, and it is not necessarily measurable. The values of the matrices

(A,B,C) fully describe how the inputs dynamically affect the outputs of

the system, and these matrices are the outcome of the System Identification

process.

The analytical model of Equation (2.1) shows that the system’s output

might be related to past outputs and control inputs. Indicators related

to aggregate AwReqs [SLRM11] express success rates over time about the

satisfaction of an associated goal and, therefore, their current values are

naturally bound to their past values and to the values of AwReqs that

produced them. These are dynamic systems in Control Theory. In case

no relation with past behaviour of the indicators and of the control inputs

is present, A is a matrix with all zero elements, and the system is just

mapping inputs to outputs with the static relation:

y(t) = CBu(t− 1).

Therefore, the model of Equation (2.2) accounts for both dynamic and

static systems.

Equation (2.2) can be used to design a control system able to adjust the

values of every control parameter, in order to make each indicator converge

to the value prescribed by an AwReq threshold — under the assumption

that the set of chosen control parameters is able to drive the system to

the prescribed goals. In contrast to qualitative adaptation, such quanti-

tative models allow one to handle conflicts with precision. For example,

an increase of the control parameter MCA results in an increase of I5,

the success rate of Find Date, as it becomes easier to find a commonly

agreed timeslot for the meeting, but the participation might drop and con-

sequently I2, the success rated of High Participation, is decreased. The

analytical model can prevent the adaptation mechanism from decreasing

I2 excessively. Performing such trade-offs on a daily basis while taking into

36

2.3. RELATED WORK

account priorities among indicators based on their business value (higher

priority indicators should converge faster than less important ones), and

preferences among control parameters (e.g. increasing RfM is preferred

to increasing HfM) is a complex process. In chapters 7 and 8 we present

a control-theoretic approach in order to efficiently implement this process

and maintain an equilibrium among conflicting goals.

2.3 Related Work

In the past decade the literature in the area of self-adaptive systems has

been enriched with multiple proposed frameworks, languages and tech-

niques. In this section we present the state-of-the art of such approaches

dividing them in four categories. First, we present approaches for software

adaptation that use requirements, architectural and behavioural concep-

tual models or combinations of them. Finally, we conclude this Section

with approaches that apply control theoretic techniques.

2.3.1 Requirements-based Adaptation

A well-known Requirements-based approach is RELAX [WSB+10], which

aims at capturing uncertainty declaratively with modal, temporal and or-

dinal operators applied over SHALL statements (e.g., “the system SHALL

... AS CLOSE AS POSSIBLE to ...”). A recent extension of this work,

AutoRELAX [FDC14], uses genetic algorithms in order to produce RE-

LAXed goal models to change system requirements for avoiding failures

caused by environmental uncertainty.

A similar approach, but based on the goal-oriented language KAOS

[DvLF93], is FLAGS [BPS10]. This approach extends the linear temporal

logic (LTL) used in KAOS with fuzzy relational and temporal operators,

allowing some goals to be satisfied even if values are “around” but not ex-

37

CHAPTER 2. STATE OF THE ART

actly equal to the desired ones. FLAGS also proposes an operationalization

of its models in a service-oriented infrastructure.

The LoREM approach [GSB+08], also based on KAOS, uses an exten-

sion of LTL that includes an Adapt operator and defines a systematic pro-

cess for performing goal-oriented RE for adaptive systems. Later, Cheng

et al. [CSBW09] integrated this approach with the RELAX language in

order to explore environmental uncertainty using threat modelling.

In [ZSL14] the authors propose the use of a cost-function for optimizing

the non-functional requirements of the target system, captured by goal

models, while minimizing the number the penalties taken for violating

Service Level Objectives. The available adaptations are ranked with the use

of the Analytic Hierarchy Process (AHP) [Saa80] by the designers before

the system’s deployment. Then, by applying a search-based method the

adaptation which would optimize the cost-function is selected.

Another requirements-based and control theoretic approach is presented

in [PCYZ10]. In this work the authors propose the use of a PID controller

that finds a different configuration over a goal model that captures the

system requirements. A SAT-solver is used to find the best configuration

based on goal preferences. When soft-goals are not met, the controller

tunes the values of the assigned preferences in order fors the SAT-solver to

find a better configuration.

There are also a few RE-based approaches for the design of adaptive sys-

tems based on i∗ [YGMM11] and Tropos [BPG+04]. Tropos4AS [MPP09]

is a methodology for the design of agent-based adaptive systems founded

on the Belief-Desire-Intention (BDI) model. As run-time infrastructure,

Tropos4AS proposes the mapping of goal models to Jadex.2 The CARE

method [QP10] also bases itself on Tropos, but focuses on service-based

applications. Adaptive requirements are specified at design time and a

2A BDI Agent System, see http://jadex-agents.informatik.uni-hamburg.de/.

38

http://jadex-agents.informatik.uni-hamburg.de/

2.3. RELATED WORK

run-time infrastructure based on environment monitoring, service selec-

tion and customization is provided. Dalpiaz et al. [DGM12] propose an

architecture that adds self-reconfiguring capabilities to a system using a

Monitor-Diagnose-Compensate (MDC) loop based on the system’s require-

ments models in i∗. Different reconfiguration algorithms are proposed on

top of this architecture.

2.3.2 Architecture-based Adaptation

In [OGT+99] Oreizy et al. propose one of the first reference frameworks

for architecture-based adaptation. On the foundations of this approach

there is an architectural model constructed using C2 [MTWJ96] which

captures the properties and the component structure of the system. The

purpose of the architectural model is twofold. First, it allows to maintain

the integrity of the system as the system evolves by adding and removing

components. Next, the proposed reference framework includes a planning

mechanism that produces adaptation plans on the fly to cope with the

environment’s uncertainty, The architecture model facilitates the planning

process by giving an overview of the systems status and hence locating

where changes are required.

On the side of architecture-based approaches, Rainbow [CGS06b] is a

well known framework that we have also used to represent architecture-

based adaptation approaches to perform a comparative study, illustrated in

the next chapter. The adaptation space of Rainbow is captured by ACME

architecture models and the control parameters are instances of compo-

nents or properties of the latter. The adaptation strategies are meant to

automate administration tasks performed by humans and are captured by

a script language named Stitch [CG12]. Then the framework that is an

implementation of the MAPE loop we presented earlier, uses Utility The-

ory in order to select which adaptation strategy is most suitable for every

39

CHAPTER 2. STATE OF THE ART

failure. In the same research line, in [CGSP15] the authors propose the use

of probabilistic model checking techniques to compose dynamically adap-

tation strategies taking also into account latencies about when the impact

of a change in a control parameter will appear to the system’s output.

Sykes et al. in their work [SHMK10] assign utility properties to all

components of the system. Dependency graphs are used to capture com-

ponent constraints and each component is annotated with utilities that

indicate how it will improve or harm the non-functional requirements of

the system. When one or more requirements fail the proposed adaptation

mechanism finds a new component composition that maximizes the the

overall utility and at the same time respects the architectural dependen-

cies and constraints. Similar to this approach, the SASSY framework uses

optimization as a decision-making mechanism to decide alternative service

compositions for Service Oriented Architectures (SOA) [MGMS11]. In the

same context Foster et al. propose an online reconfiguration process for

SOA, that exploits prediction models in order to anticipate environmental

changes such as workload peaks.

Another architecture-based approach is presented in [SBP+08]. In this

work, the authors propose a resource provisioning system that allows the

users to state their preferences about the quality of service of the system.

For instance, the users have to choose if latency or accuracy is more im-

portant for them and as well as they expected thresholds they expect the

system to comply with. Therefore, the adaptation framework will perform

trade-offs based on the user preferences producing adaptation plans that

include resource provisioning and forecasting.

Flashmob [SMK11] is yet another architecture-based approach for en-

gineering self-adaptive systems. The main focus of Flashmob is the com-

ponent distribution and how loosely components can coordinate in order

to cope with failing nodes of the system. Flashmob exploits a communica-

40

2.3. RELATED WORK

tion protocol gossip which is used by the system’s components in order to

inform each other about their status. When a requirement fails or a com-

ponent is malfunctioning, the healthy components which are individually

aware of the system’s architecture and goals, coordinate in order to deploy

new components or assign tasks to existing ones in order for the system to

recover.

2.3.3 Behaviour-based Adaptation

In [LYM07], Lapouchnian et al. describe how to derive high variability

business process models that capture the system’s behaviour from goal

models. The behaviour derivation process is carried out by annotating

flow expressions to goal models as it is demonstrated in Section 2.1.7.

Then, these expressions are converted to BPEL [Jur06] processes. Finally,

using the contributions of the hard goals to the soft goals specified by

the stakeholders and the system designers a configuration is decided. The

contribution of this proposal is the construction of high variability business

processes that can adapt to changes of stakeholder preferences.

Another behaviour-based approach is the CEVICHE framework [HSD10]

which uses a Complex Event Processing engine to identify exception to the

regular business process. These exceptions are handled with predefined

adaptation that are encoded in a BPEL variation, namely SBPEL. This

case-based adaptation mechanism allows to maintain a specific level of

Quality of Service (QoS) without having to implement all the potential

variations of the business process since the system can reconfigure dynam-

ically.

In the same line of research with the previous approaches VxBPEL

[KSSA09] is one more variation of BPEL for adaptation purposes. VxBPEL

allows the user to define high variability workflows. Then, the adaptation

engine is capable of reconfiguring the business process on-the-fly, by select-

41

CHAPTER 2. STATE OF THE ART

ing values for the variation points of the workflow, based on the input of

the adaptation process.

2.3.4 Combined Model-based Adaptation

Having as a starting point a goal model, Yu et al. [YLL+08] propose

heuristics to derive other models such as feature models, statecharts and

component-connector models. Their purpose is to express the same level

of variability in different dimensions of the system.

The STREAM-A approach presented in [PLC+12] derives ACME ar-

chitectural models from goal models using model transformations. The

environment’s influence on the requirements is captured in terms of con-

text. The main purpose of this work is to relate the requirements to compo-

nents and place accordingly the actuators and the sensors of the adaptation

mechanism.

In [SHMK08] goals and components are related with reactive plans.

When a failure takes place or a goal is changing, the proposed adaptation

mechanism generates a new plan of actions that needs to be carried out and

the available components that are required are reconfigured to the current

architecture. This approach demonstrates the advantages of architectural

variability, by assigning goals to multiple components.

Chen et al. in [CPY+14] propose the combination of goal models and

architectural decisions in order compose a larger adaptation space. More

specifically, the tasks of the goal model are assigned to one or more compo-

nents that can be used interchangeably. Then, the adaptation mechanism

can select alternatives between the variation points of the goal model and

the alternative components available.

42

2.3. RELATED WORK

2.3.5 Control-based Adaptation

Most approaches that have been proposed have in common the adoption

of the concept of feedback loop from Control Theory. As we mentioned

earlier Control Theory has solved in multiple domains of other engineering

disciples adaptation problems, where a quantitative goal and one or more

control parameters are available. Recently, there has been some significant

effort on introducing control engineering approaches in the development

process of self-adaptive software systems [FMA+15]. Hereby, we present

approaches that have applied formal control theoretic techniques in order

to develop adaptive software systems.

One of the first proposals that builds a controller as an adaptation

mechanism is presented in [PGH+01]. In this work the authors use an ana-

lytical model to capture how the allowed number of remote procedure calls

to an IBM Lotus Domino server affect its response time. Therefore, the

analytical model captures the relationship of these two variables through

time. Then this information is used in order to build an integral controller

that can stabilize the response time to the given reference input. In addi-

tion to this work, building various kinds for controlling computing systems

[HDPT04] and resources in operating systems [LMPT13] are present in

literature.

An automated solution to introduce control in a seamless way was pro-

posed in [FHM14]. This solution treats Single Input and Single Output

(SISO) systems by varying a single input and measuring the output. The

solution builds on a simple and qualitative dynamic model which is iden-

tified online. More precise yet complicated models can be used at the cost

of a higher overhead at runtime [ABG+13]. However, this approach works

only for SISO systems, while the case of Multiple Inputs and Multiple Out-

puts (MIMO) cannot be addressed. In the same line of research the authors

43

CHAPTER 2. STATE OF THE ART

extended their approach in order to deal with MIMO systems [FHM15]

where the MIMO control is obtained as an automated synthesis by com-

posing SISO controllers in a hierarchical way.

Finally, in the domain of Cloud Computing variations of Model Pre-

dictive Control (MPC), which we discuss in detail in chapter 7 have been

applied extensively. In [GC15, KKH+09] the authors apply look-ahead con-

trol to improve the energy consumption and the performance of the cloud.

Similarly, in [GLPB14] MPC is applied to improve the replica placement

mechanism and deal with multiple SLOs.

All these approaches offer significant improvements to their respective

applications, although are highly customized to the specific problem they

are solving. On the other hand, our approach is more generic and therefore

easier for software engineers that have no expertise on Control Theory to

use it. Moreover, in our work we integrate control design and requirements

engineering in order to provide a guideline about to how to integrate MPC

with the development of self-adaptive software.

2.4 Chapter Summary

In this chapter, we summarized the baseline for presenting our proposals

through this thesis. This work is a continuation of a requirements-based

adaptation approach presented in [SS12] and therefore, most of its compo-

nents constitute the foundations of our research. First, we presented the

concept of AwReqs in order to monitor the success of other requirements.

Next, we explored model for capturing three important dimensions of soft-

ware systems, requirements, behaviour and architecture, with main focus

on variability. We presented a qualitative system identification process to

model the relationships between the system’s variables and the success of

its requirements.We also discussed another kind of requirements, namely

44

2.4. CHAPTER SUMMARY

EvoReqs that prescribe how other requirements should change over time.

The last piece of our baseline describes how a system can be described

using analytic models and how the latter are related to the system’s goals

and variables.

Finally, this chapter summarizes different approaches for implementing

adaptation mechanisms. We mainly categorized these proposal by the kind

of models they are using in each of the three dimensions of software systems

we investigate in this thesis.

45

Chapter 3

Requirements and Architecture

Approaches: A Comparison

Computer Science is a science of abstraction -

creating the right model for a problem and

devising the appropriate mechanizable

techniques to solve it.

A. Aho and J. Ullman

In Section 2.3 we presented various proposals, intended to guide develop-

ers in the development of self-adaptive systems, some focus on architecture

models that capture architectural variability and support reconfigurations

in the system’s structure, propagating the effects to the actual system, in

response to certain situations. Instead, other approaches, advocate the use

of requirements models to capture variability and support adaptation.

This dichotomy has motivated us to investigate whether these two types

of approaches can produce the same results, what are their respective ad-

vantages and drawbacks, and study whether they are complementary, pro-

viding answers to RQ1.

In this Chapter we present a comparative study of one representative

approach of each of the aforementioned categories, respectively: Rainbow

[GCH+04] and Zanshin [SS12]. Our methodology consisted of applying

47

CHAPTER 3. REQUIREMENTS AND ARCHITECTURE APPROACHES: A
COMPARISON

both frameworks to the same exemplar: the ZNN.com case study presented

in [CGS09] for the Rainbow framework. Models of the system’s adaptation

rules were produced for each framework and adaptation scenarios based on

an implementation of ZNN.com were executed.

3.1 Selected Adaptation Approaches

In the previous chapter we overviewed several approaches that use various

kinds of models in order to adapt when they fail to fulfil their mandate. In

the literature the two most common models used for software adaptation

capture either the requirements or the architecture of the target system.

Therefore, we selected a representative framework for each category to

analyze the characteristics of both kinds of models and their role in the

adaptation process.

• Requirements-based (henceforth RE-based) approaches: extend

Requirements Engineering techniques in order to represent the re-

quirements of adaptation and/or the inherent uncertainty of the en-

vironment in which the system operates. These approaches may or

may not include mechanisms for runtime reasoning and frameworks

that operationalize the adaptation requirements, since they focus on

capturing and analyzing the problem rather than implementing solu-

tions.

• Architecture-based approaches: concentrate on helping designers

build architectures that support adaptation. They usually propose

the use of an architectural model that shows system components and

how they communicate amongst themselves through connectors. Such

proposals often include the runtime software infrastructure on top of

which to build the adaptive system, taking care of its adaptation rules

and how to evolve its models.

48

3.1. SELECTED ADAPTATION APPROACHES

As we mentioned earlier, for our comparative study, we selected the Zan-

shin and Rainbow to represent requirement and architecture-based adapta-

tion frameworks respectively. These frameworks were chosen for a number

of reasons. Firstly, they are good representatives of their respective schools

of thought on building adaptive software systems. Secondly, they are fairly

comprehensive and quite well documented in guiding the design of adap-

tive systems. Thirdly, there was code readily available for running our

experiments. We summarize both approaches next.

3.1.1 Rainbow

The Rainbow framework [GCH+04] is a prominent architecture-based ap-

proach for the design of self-adaptive systems. According to the proposal,

adaptation rules are used to monitor the operational conditions of the sys-

tem and define actions to be taken if the conditions are unfavourable. For

example, given a news website (which we will detail in Section 3.2), if mea-

sured response times are too long, actions such as enlisting more servers

or switching from multimedia to textual mode can be executed to try and

improve response time.

The framework prescribes the use of the ACME architecture description

language [GMW10], which extends the usual component-connector repre-

sentation with the concept of families, allowing designers to define different

architectural variants and styles [SG02]. This allows for the specialization

of the framework to specific application domains, defining style-specific

architectural operators and repair strategies [GCS03].

Figure 3.1, adopted from [Che08], shows the elements that compose the

Rainbow framework. Monitoring is done with a set of Probes deployed in

the target system, which send observations to Gauges that interpret the

probe measurements in terms of higher-level models. The Model Manager

is responsible for tracking the changes in the models’ states and keeping it

49

CHAPTER 3. REQUIREMENTS AND ARCHITECTURE APPROACHES: A
COMPARISON

Figure 3.1: The components of the Rainbow framework [Che08].

consistent with the target system. Moreover, other components query the

Model Manager for information about the current state of the model.

One of these components is the Architecture Evaluator, which detects

changes in the status of the properties of the system’s architecture and en-

vironment, validating such changes with respect to the constraints stated

in the model. In case of a violation, it triggers the Adaptation Manager in

order for it to select the most appropriate strategy, using Utility Theory

(details in [Che08]) for the decision. Finally, the Strategy Executor coordi-

nates the execution process, deciding the operators that should be applied

through the Effectors at the System Layer.

For the final parts of the adaptation loop, Rainbow uses a language

called Stitch, which captures routine human adaptation knowledge as ex-

plicit adaptation policies [CG12]. The language allows designers to specify

50

3.1. SELECTED ADAPTATION APPROACHES

Figure 3.2: An overview of the Zanshin approach [SS12].

what, when and how to adapt, thus automating the adaptation process.

In Section 3.2 we will see some examples of Stitch applied to the exemplar

chosen for our experiments, the news website ZNN.com [Che08].

3.1.2 Zanshin

Zanshin, is an RE-based framework for the design of adaptive systems

that exploits concepts presented in the previous section such as AwReqs ,

EvoReqs and feedback loops to design adaptive software systems [SS12].

The core idea of the approach is to make the elements of the feedback loops

that provide adaptivity first class citizens in the requirements models. An

overview of the approach is shown in Figure 3.2. In particular, Zanshin

uses AwReqs is its monitoring mechanism and differential relations as a

basis of its adaptation.

Strategy Specification focuses on the adaptation part of the feedback

51

CHAPTER 3. REQUIREMENTS AND ARCHITECTURE APPROACHES: A
COMPARISON

loop. Its objective is to associate one or more adaptation strategies (e.g.,

“Retry/delegate a task”, “Relax a requirement”, etc.) with each AwReq in

order to have them executed in case of an AwReq failure at runtime. These

strategies should also be elicited from the stakeholders and are represented

by EvoReqs . As we explained in Section 2.1.3, EvoReqs prescribe how

other requirements of the model should evolve in response to an AwReq

failure, and are specified using a set of primitive operations, each of which

is associated with application-specific actions to be implemented in the

system. One strategy in particular, the Reconfiguration strategy, uses the

information elicited during qualitative System Identification to reconfig-

ure the system, also allowing designers to specify different reconfiguration

algorithms depending on the amount of information available.

A prototype framework that operationalizes a feedback loop based on

the models produced by Zanshin is available at https://github.com/

sefms-disi-unitn/Zanshin. The experiments described in this chapter

(cf. Section 3.3) were conducted using this framework and can be repeated

by the interested reader. In the next section, we will derive a goal model

to represent the requirements of the ZNN.com exemplar used in the exper-

iments and apply Zanshin to it.

3.2 The ZNN.com Exemplar

An exemplar, or a model problem, is a shared, well-defined problem adopted

by researchers of a specific field for presenting and comparing propos-

als. The Software Engineering for Adaptive and Self-Managing Systems

(SEAMS) research community has proposed some exemplars in their web-

site,1 among which we chose ZNN.com to perform the comparative study

presented in this chapter.

1See https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/.

52

https://github.com/sefms-disi-unitn/Zanshin
https://github.com/sefms-disi-unitn/Zanshin
https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

3.2. THE ZNN.COM EXEMPLAR

Figure 3.3: Znn.com architecture [CGS06b]

The choice of ZNN.com was also motivated by the fact that it had

already been used in [Che08] as a case study for the proposal of the Rainbow

framework. In this section, we present an overview of this model problem

and how it was solved by Rainbow ; then we apply Zanshin to it in order

to be able to compare these two approaches.

3.2.1 Overview of the problem and its architectural solution

ZNN.com is a news service that serves multimedia news content to its

customers through a website. It is a simplified version of real sites such as

cnn.com.

ZNN.com’s adaptive features are needed when the website experiences

spikes in news requests due to, for instance, popular events. In these cases,

response times for user requests might become unacceptable and the system

has two possible adaptation strategies: enlisting new servers to divide the

load of requests or switch from multimedia to text-mode to make each

request quicker to respond. However, these strategies may cause problems

in two other requirements of this system: first, the website managers would

like to run the system at the lowest cost possible and adding new servers

costs money; second, the users would like to see news with high content

fidelity (i.e., high presentation quality), preferring multimedia over simple

53

cnn.com

CHAPTER 3. REQUIREMENTS AND ARCHITECTURE APPROACHES: A
COMPARISON

text.

Like most high demand websites, the architecture for ZNN.com, de-

picted in Figure 3.3 includes a load balancer (LB) that distributes requests

among multiple web servers and a database server. Current technology for

load balancing and cloud computing already supports some level of adapta-

tion, but automating trade-offs among multiple objectives like stated above

is usually not supported [Che08]. For the ZNN.com case study, the opera-

tional target of the system is to keep a balance among its cost, performance

and content fidelity.

The challenge of such systems is to achieve their mandate even when

they operate under critical conditions. The difficulty lies in taking the right

decision at the right time, in the sense that the problem should be detected

promptly and the most efficient strategy to stabilize operation should be

applied immediately. Under such circumstances, human intervention can

be insufficient and automated mechanisms are required to carry out both

decision making and adaptation.

Rainbow tackles this challenge through a software architecture model

of ZNN.com written in the ACME language. The model includes ele-

ments representing clients, servers, connections and the proxy ; as well

as properties for the client’s experienced response time, the connection’s

bandwidth and the server’s cost, load and fidelity. Moreover, operations for

(de)activating a server and setting its fidelity allowed architectural design-

ers to create four tactics that can be applied when adaptation is necessary:

enlisting/discharging servers and raising/lowering the fidelity [CGS09].

Tactics such as these are combined in strategies, written in Stitch to form

high level adaptation processes. The exact definition of the adaptation

strategies used in ZNN.com are described in Appendix C of Shang-Wen

Cheng’s thesis [Che08]. We show one of these strategies in Figure 3.4 and

summarize them below:

54

3.2. THE ZNN.COM EXEMPLAR

Figure 3.4: Strategy SmarterReduceResponseTime in Stitch [Che08].

• SimpleReduceResponseTime: In case a client experiences response

time above a predefined threshold then the fidelity is lowered by one

step. In case response time remains high, fidelity is decreased again

one more step;

• SmarterReduceResponseTime: If an unacceptable percentage of clients

experiences high response time, then enlist one server, then enlist an-

other server and finally lower fidelity by one step. Repeat twice the

last two actions until response time is restored;

• ReduceOverallCost: If server cost is higher than a threshold value

then reduce the number of servers by one. If response time is low and

cost remains high repeat the previous action, until cost is returned to

normal;

• ImproveOverallFidelity: If content fidelity level is below threshold

then raise fidelity of all servers by one step. If response time is low

and fidelity remains low then raise fidelity level one more step.

The strategies above compose the possible options of the Adaptation

Manager we described earlier when it is required to restore the system’s

55

CHAPTER 3. REQUIREMENTS AND ARCHITECTURE APPROACHES: A
COMPARISON

invariants such as cost, performance and content fidelity to their desired

levels.

Given the availability of Rainbow models for the ZNN.com exemplar, to

conduct the comparative study we needed to produce models of the system

according to Zanshin. The results of this effort are reported next.

3.2.2 An RE-based solution to ZNN.com using Zanshin

Using available documentation, we have elicited requirements for the ZNN.com

exemplar, producing the model shown in Figure 3.5. Of course, the figure

does not represent complete requirements for a news service (which would

include concerns such as adding news, searching, managing advertisement,

etc.), but concentrates on the adaptation scenario described earlier.

Requirements for the system are represented using Goal-Oriented Re-

quirements Engineering (GORE) elements such as goals, tasks, softgoals,

quality constraints and refinement relations that indicate how (soft)goals

are satisfied using Boolean semantics as we discussed in Section 2.1. One

of ZNN.com’s goals is to Serve news to its visitors, which can be accom-

plished using text-only, low resolution or high resolution contents. Three

non-functional requirements also compose this simple scenario:

• Cost-efficiency : the system should either be operating using a single

server, unless response times are above a certain minimum threshold

(MINRT), which would justify the addition of extra servers;

• High fidelity : analogously, the system should prefer high resolution

content over lower ones, unless response times are above the minimum

threshold;

• High performance: response time and server load should be under a

certain maximum threshold (MAXRT).

56

3.2. THE ZNN.COM EXEMPLAR

F
ig

u
re

3.
5:

G
oa

l
m

o
d
el

fo
r

th
e

Z
N

N
.c

om
ex

em
p
la

r,
m

ir
ro

ri
n
g

th
e

ad
ap

ta
ti

on
sc

en
ar

io
s

m
o
d
el

le
d

in
R

ai
n

bo
w

.

57

CHAPTER 3. REQUIREMENTS AND ARCHITECTURE APPROACHES: A
COMPARISON

Quantitative values for MINRT and MAXRT should eventually be pro-

vided by the stakeholders, but are not essential to the discussion herein.

On top of this base model, we have applied Zanshin to elicit require-

ments for adaptation as well. In the model of Figure 3.5, these are repre-

sented by AwReqs AR1, AR2 and AR3, variation point VP1 and control

variable NoS (Number of Servers). Moreover, by applying System Identifi-

cation to ZNN.com we have come up with the following qualitative relations

among indicators and control parameters:

∆ (I1/NoS) [0,maxServers] < 0 (3.1)

∆ (I3/NoS) [0,maxServers] > 0 (3.2)

The equations tell us that increasing the number of servers will hurt cost-

efficiency (3.1) decreasing the indicator I1, but contribute toward higher

performance (3.2) by increasing the indicator I3. Relations between vari-

ation point VP1 and AwReqs AR2 and AR3 were also identified, but are

not necessary to produce the ZNN.com scenarios presented in the previous

subsection (we come back to those in Section 3.3.3). Finally, Figure 3.6

shows the complete specification for AwReqs AR1 –AR3, based on Rain-

bow ’s SimpleReduceResponseTime strategy presented earlier.

Assuming initial values NoS = 4 and V P1 = high resolution, AR1

will never actually fail (the simple scenario does not include enlisting of

servers) and AR2 (checked for every user request) will not fail initially.

When ZNN.com experiences spikes in news requests it may cause AR3

(related to High performance and also checked at every request) to fail,

starting an adaptation session for it.

The first adaptation strategy (AS3.1), applicable only for the first failure

of the session, is to change parameter VP1, which will take the value low.

For the next 1000ms, other requests with response time over threshold

58

3.2. THE ZNN.COM EXEMPLAR

Figure 3.6: Specification of the SimpleReduceResponseTime strategy with Zanshin.

will activate strategy 3.2 (Do Nothing), simulating the waiting period of

Rainbow ’s strategy.

If AR3 keeps failing for more than a second, AS3.2 will cease to be

applicable, giving turn to AS3.3, which switches the fidelity to text-only

mode and becomes immediately inapplicable. Further failures in the next

3 seconds will activate AS3.4 to simulate another waiting period. If the

problem is not solved during this entire time, the Abort strategy (by de-

fault, the last resort in all AwReq failures) will take place and close the

session.

59

CHAPTER 3. REQUIREMENTS AND ARCHITECTURE APPROACHES: A
COMPARISON

The problem is considered solved when its resolution condition becomes

true. This means that AR3 was evaluated as being satisfied for a request

that happened after one of the useful strategies (i.e., the ones that are

not Do Nothing) was applied. Until this is true and AR3 ’s session is

closed, failures of AR2 will not lead to its strategy being executed, given

its applicability condition. Once AR3 is done and response time goes under

MINRT , AR2 ’s strategy will be applicable and, as a result of its execution,

ZNN.com will go back to serving multimedia content.

As the description above shows, the models produced by applying Zan-

shin can produce, at runtime, the same result as the Rainbow ’s Simple

ReduceResponseTime strategy. It is also possible to model the Smarter

ReduceResponseTime strategy, by changing the specification of AR3, as

follows.

First, its definition would change from “High performance should never

fail” to “High performance should not fail for more than the MAXunhappy%

of the clients”, where MAXunhappy represents the percentage of clients who

experience high response times that is tolerated before something has to

be done. Second, its adaptation strategies and resolution condition should

also change, as shown in Figure 3.7.

The new specification of AR3 represents, in a declarative way, the same

algorithm described for SmarterReduceResponseTime in the previous sub-

section: reconfiguration (enlisting of additional servers) is applied at first

with half a second of wait, then multiple times more (as long as the num-

ber of servers does not overcome maxServers) interposed with gradual

reductions of fidelity.

The above exercise of mapping ZNN.com’s Rainbow specification to

Zanshin indicates that the latter, although using a different representation,

has at least equivalent expressiveness to the former. We will come back to

this in the discussion of Section 3.3.3.

60

3.3. COMPARISON BETWEEN RAINBOW AND ZANSHIN

Figure 3.7: Specification of AR3 for the SmarterReduceResponseTime strategy.

The expressiveness of Zanshin is due to its extensibility, allowing for

new AwReq/EvoReq patterns and applicability/resolution conditions to be

created. In effect, most of the conditions used in the examples of Fig-

ure 3.6–3.7 did not yet exist when we started this experiment.

3.3 Comparison between Rainbow and Zanshin

In the previous section we represented the adaptation strategies that Rain-

bow implements using Stitch with the EvoReqs of Zanshin. This allowed

us to repeat the same experiment that simulates a scenario of highly in-

creasing traffic that was already implemented for Rainbow [CGS09], but

this time assigning the adaptation control to Zanshin.

It is important to point out that the purpose of this work is not to

61

CHAPTER 3. REQUIREMENTS AND ARCHITECTURE APPROACHES: A
COMPARISON

compare the performance of the two frameworks or provide a better solu-

tion for the case study, but to compare and contrast the two approaches.

To this end we mirror the solution of the ZNN.com case study using the

Zanshin framework in order to make an apples-to-apples comparison. In

what follows, we describe the methodology of our experiment, present its

result and discuss the two frameworks based on our experience.

3.3.1 Methodology

For purposes of this work, we implemented in Zanshin the goal model

shown in Figure 3.5, along with the specification of the SimpleReduce

ResponseTime strategy described in Figure 3.6. For the base system (the

ZNN.com website) we used the source code available on the SEAMS com-

munity website.

The deployment configuration is similar to the one described in [CGS09]

for the evaluation of the Rainbow framework and includes five Apache web

servers (four replicated hosts and one proxy) and a MySql database server

running on a Debian-flavored operating system. A JavaTM application

called JMeter, which is used to perform stress tests on web applications, is

instantiated in one additional machine that plays the role of the clients who

send requests to the server. The workload we created for the experiment

(equivalent to that of [CGS09]) simulates a real world case that many

websites like ZNN.com deal with on a regular basis. The traffic scenario is

as follows:

1. Slow start with 6 visits/min;

2. Sudden increase for five minutes where the traffic increases by 120

visits/min every minute until it reaches 600 visits/min;

3. Hold the load for 18 minutes;

62

3.3. COMPARISON BETWEEN RAINBOW AND ZANSHIN

4. For the remaining 36 minutes reduce the workload by 15 visits/min

every minute.

After running the experiment and evaluating the effectiveness of Zan-

shin, we compare the characteristics of the two approaches by indicating

weaknesses and advantages. The comparison points we set include a) adap-

tation type b) the kind of models used by each approach, c) the adaptation

actions, d) the adaptation triggering, e) the adaptation selection and f)

how each framework deals with adaptation failures. The outcome of this

comparison can be exploited by the ongoing research on adaptive systems,

leading to adaptation frameworks that would combine the maximum set

of advantages of the current approaches.

3.3.2 Experimental Results

We conducted two trials, one without any adaptation process and another

applying Zanshin’s adaptation strategies. The results we extracted from

JMeter’s output are presented in figures 3.8a and 3.8b, produced by the

online service Loadosophia2. The Baseline trial represents the one without

the adaptation process, whereas the one referred as Test represents the

trial where Zanshin controls ZNN.com.

Figure 3.8a shows that the response time has been improved by 67.4%

after applying the adaptation strategies and the throughput has been im-

proved by 8.7%. While in Figure 3.8b the distribution of the experienced

response times is depicted. From the latter we notice that in the case where

Zanshin is present the distribution of the low response times is higher than

in the case where an adaptation mechanism is absent.

To evaluate the efficiency of our approach we measured the failures of the

AwReqs for every trial. The results have shown that without the use of an

adaptation framework AR3 failed 518 times, while with the use of Zanshin
2https://loadosophia.org

63

CHAPTER 3. REQUIREMENTS AND ARCHITECTURE APPROACHES: A
COMPARISON

(a
)

S
u

m
m

ar
y

co
m

p
ar

is
on

re
p

or
t

(b
)

D
is

tr
ib

u
ti

on
of

re
sp

on
se

ti
m

es

F
ig

u
re

3.
8:

E
x
p

er
im

en
ta

l
re

su
lt

s

64

3.3. COMPARISON BETWEEN RAINBOW AND ZANSHIN

it failed 408 times but also AR2 failed 214 times. The improvement in the

performance is obvious but it came with the cost of not providing high

fidelity content for the whole duration of the experiment. The analysts of

the system could use these metrics to evaluate their strategies and apply

the suitable thresholds.

3.3.3 Discussion

In this subsection we juxtapose the core ideas of the architecture-based

approach followed by Rainbow and the RE-based approach followed by

Zanshin.

We start by noticing that both approaches base their adaptation pro-

cess on a closed loop, where the system monitors its output, detects pos-

sible malfunctions and changes its parameters in order to keep fulfilling

its mandate. The necessity of the closed loop in software engineering has

been pointed out by [BMSG+09] as a tool that will give the opportunity

to produce systems based on the principles of Control Theory. Another

common point of the two frameworks, is that the control is external, which

means that the target system does not implement any part of the control

loop. In [CGS05] it is mentioned that by delegating the control of the

system to an external mechanism, higher generality, cost-effectiveness and

composability can be achieved.

The main difference of the two frameworks lies on the different kinds of

models they utilise to support their adaptation mechanism. The architec-

tural model of Rainbow gives information about the capabilities and the

restrictions of the system, which later on will be exploited as operators

and adaptation conditions accordingly. Furthermore, basing the adapta-

tion strategies on an architectural model that describes a family of systems

makes them reusable to any target system that conforms to the same ar-

chitecture.

65

CHAPTER 3. REQUIREMENTS AND ARCHITECTURE APPROACHES: A
COMPARISON

However, having as a starting point the architectural model of the sys-

tem can result in capturing only low level requirements about it. On the

other hand, a requirements model as the one Zanshin uses can capture

every requirement that comes from the stakeholders. Nevertheless, techni-

cal restrictions and properties can be revealed only at a later stage of the

requirements analysis process and sometimes important details are over-

looked unintentionally. In the next chapter we examine case of require-

ments that were elicited only when an architectural decision was made

first.

We saw earlier that the possible adaptation actions of Rainbow are de-

fined by the set of basic operators provided by the target system, e.g.,

activate server and change fidelity. These operators can be combined in

tactics, which are then combined in strategies expressed in Stitch language.

These strategies are intended to encapsulate human expertise on specific

situations, where external intervention is required to restore a malfunction-

ing system. On the other hand, Zanshin provides two kinds of adaptation:

reconfiguration and evolution. A reconfiguration can either change a pa-

rameter of the system (control variable) or switch to an alternative selected

for a variant point (OR-refinement on the goal model). The new configura-

tion is informed to the system, which can then take further actions related

to this change. It is also important to point out that the ability of self-

inspecting in Zanshin provides a lot of expression power for its adaptation

strategies. However, as it is usually the case in any modelling language,

this should be used with care in order not to make models that are very

difficult to manage. These modifications are based on the differential re-

lations mined during the system identification process and let the system

compose its own adaptation strategies given the holding conditions.

EvoReqs , however, are modelled as Event-Condition-Action (ECA) rules,

where the actions are composed of sixteen basic operations [SLAM13].

66

3.3. COMPARISON BETWEEN RAINBOW AND ZANSHIN

From these, thirteen are system-specific thus must be implemented in the

target system. These operations allow the adaption mechanism, among

other things, to retry a given goal, to change the parameters of the system,

to delegate the issue to an actor and to relax the awareness requirements

(meta-adaptation). In the previous section we managed to express Rainbow

strategies with EvoReqs and Reconfiguration using applicability and reso-

lution conditions. Defining a formal transformation from one approach to

the other, though, is not an easy task. The adaptation strategies composed

by EvoReqs are more close to those of the Rainbow framework written in

Stitch as they both capture static administrative operations while the lat-

ter gives a more clear representation of the priorities of the objectives using

Utility Theory [Fis70].

Regarding the monitoring part (malfunction detection), in Rainbow an

adaptation is triggered when any invariant in the ACME model fails. An

example of invariant is response time < MAXRT . Thus, if the response

time gets equal or higher than the maximum allowed, an adaptation is trig-

gered. Instead of invariants, Zanshin utilizes AwReqs in the requirements

model to reason about the status of the target system’s operation.

For instance, considering a quality constraint of responsetime < MAXRT ,

an AwReq may state that this should be the case in at least 90% of the

time. If the percentage goes below that threshold, an adaptation is trig-

gered. We can say that both frameworks are based on the models that they

use as a centerpiece for their adaptation, in order to define the variables

of the system which should be monitored. However, the variety of AwReqs

offer a higher level of expressiveness to represent objectives to be satisfied

at runtime, than the simple conditions of the architectural model.

Another comparison point is adaptation triggering. In Rainbow , it is

guided by pre-conditions for the execution of adaptation strategies. If more

than one is applicable, the best one is selected according to an aggregate

67

CHAPTER 3. REQUIREMENTS AND ARCHITECTURE APPROACHES: A
COMPARISON

attribute vector that considers a) the cost-benefit of the tactics in a strat-

egy, b) the weights of predefined criteria, and c) the likelihood of each

tactic being applicable. In Zanshin, EvoReqs have a similar format: there

are pre-conditions that define whether a strategy applies or not. If more

than one is applicable, the first one is selected (according to the order on

which the EvoReqs were defined).

However, when Zanshin uses reconfiguration, the new values for the

system’s parameters are defined based on a control-theoretic approach.

Differential relations are used to define the impact of parameter changes

on the AwReqs (benefit). Different adaptation algorithms can be used to

select which reconfiguration to perform. In Section 3.2.2, given that we

were mirroring the scenario implemented in Rainbow , only one parameter

(NoS) was used in the process and reconfiguration was trivial. We could

have, however, included differential relations about VP1 as well:

∆ (I2/V P1) > 0 (3.3)

∆ (I3/V P1) < 0 (3.4)

These equations represent the fact that an increase in the fidelity level

would contribute positively to the success rate of I2 (3.3) but at the same

time decrease the success rate of the I3 (3.4). Considering these equations

together with the ones presented earlier, we can prioritize the relations that

involve the same indicator to declare which parameters have greater impact

on it. For example, ∆ (I3/NoS) [0,maxServers] > ∆ (I3/V P1) would

mean that by increasing the number of servers the probability to have

high performance (AR3) is increasing faster than by decreasing the fidelity.

This way, Zanshin can provide dynamic adaptation based on control theory

principles, while the adaptation process in Rainbow is in this sense static.

Finally, we contrast how the two frameworks deal with adaptation fail-

68

3.4. CHAPTER SUMMARY

ures. In Rainbow a tactic fails when a) its pre-conditions are not satisfied,

b) the execution of its operators fail, or c) the result of the tactic is different

than expected (which is assessed through post-conditions). These failures

are predicted in the strategies, which can request alternative tactics to be

executed when a given tactic fails. If all the possible tactics were applied,

but the goal of the strategy is not achieved, a termination condition is trig-

gered and the strategy ends. Then Rainbow will recalculate which is the

most suitable strategy to apply. Similarly, in Zanshin when none of the

applicability conditions of the EvoReqs for a given adaptation is satisfied,

the adaptation is aborted. After an adaptation action is performed, but

the AwReq that triggered the adaptation still fails, the adaptation selection

is performed again.

3.4 Chapter Summary

In this chapter we conducted a comparative study between two adaptation

approaches, one architecture-based and one RE-based. As a reference point

we used the ZNN.com exemplar, applying both frameworks to provide

adaptation mechanisms according to its described scenarios. Results have

shown that both frameworks can provide significant improvement to the

system’s operation, without any human intervention.

We also performed a side by side comparison of the core elements of

both approaches. The outcome of this comparison is that architecture

models can capture all the properties and technical restrictions of the target

system and by using them as a guide to develop adaptation strategies the

reusability of the adaptation mechanism becomes applicable.

More specifically, Rainbow captures the human experience and expertise

in its strategies and, by applying techniques from decision theory, selects

the one that is most suitable. Therefore, the control level of Rainbow does

69

CHAPTER 3. REQUIREMENTS AND ARCHITECTURE APPROACHES: A
COMPARISON

not exceed the one of the human intervention but automates it, offering

better reaction time and eliminating human errors.

On the other hand, a requirements model captures more explicitly the

objectives of the systems and, with the use of quality constraints, can

also express the technical restrictions. However, the exact values of the

thresholds of these constraints can be provided either by the instantiation of

the architecture model or by the expertise of the system analyst. Moreover,

some practitioners may consider that detailed architectural information do

not belong in requirements models.

Regarding the adaptation process, the Zanshin framework provides higher

variability by applying EvoReqs or letting the system adjust its parame-

ters through a reconfiguration strategy. In this way, the system relies its

adaptation process not only on human expertise but also on well-founded

principles of control theory.

Our comparison focuses only on requirements and architectural ap-

proaches while behavioural adaptation is ignored. The main reason is the

lack of any landmark framework that could be used to express the adap-

tation strategies the way Zanshin and Rainbow did. However, in the next

chapter we discuss in detail how behaviour can play a significant role in

the adaptation process.

In summary, this study revealed the advantages and the vulnerabilities

of two well-known approaches in the field of software adaptation. The

results suggest that requirement and architectural models should be com-

bined in order to capture every detail of the target system’s adaptation

needs. The purpose of this combination is to mine all the alternatives

that are embedded in the solution and the problem space. The require-

ments models can provide a broader set of alternatives (e.g., in the case

of ZNN.com, delegate the video hosting to an external service, such as

YouTube), while the architectural models can provide variability in the

70

3.4. CHAPTER SUMMARY

deployment of the solution. Moreover, AwReqs and parameters can indi-

cate the specific components of the system or variables of the environment

that should be monitored, instead of putting probes empirically.

71

Chapter 4

Designing Adaptation Spaces

Some problems are better evaded than solved.

C. A. R. Hoare

The results of our comparative study in the previous chapter have shown

that the approaches on software adaptation using requirement models can

be complementary to those using architecture models, since they focus on

different but equally important aspects of the system.

In this chapter we provide an answer to RQ2 and go beyond this one-

dimensional view of adaptation spaces by defining adaptation spaces that

accommodate three complementary dimensions. The first dimension cap-

tures variability in fulfilling requirements and represents variability in the

problem space of the system-to-be, whereas the other two dimensions cap-

ture variability with respect to behaviour and architecture. The last two

dimensions capture variability in the solution space of the system-to-be,

representing how, by whom and in what sequence requirements are to be

fulfilled. Together, the three dimensions constitute the adaptation space

where an adaptive system searches for alternative reconfigurations.

More specifically, we propose a parametrized model for adaptation spaces

that is constituted by a requirements, an architectural and a behavioural

dimension. Moreover, we propose a technique for building such models

73

CHAPTER 4. DESIGNING ADAPTATION SPACES

by adopting a Three-Peaks approach where an adaptation space is defined

iteratively by introducing some requirements, deciding on their architec-

tural and behavioural dimensions, and then going back and introducing

more requirements, including ones that are determined by architectural

and behavioural decisions. This work extends the Twin-Peaks approach

[Nus01] which advocates that as the granularity of the requirements grows

so does the system’s architecture’s. In other words, every time a require-

ment is elicited or further refined, an architectural decision must be taken

about what components are going to fulfil it. Taking architectural decisions

in parallel with requirements refinement reveals additional constraints and

consequently requirements the system-to-be must satisfy. Therefore, an

intertwining design and requirement refinement can result in a more com-

plete specification. Finally, to better illustrate and evaluate our approach

we use the Meeting-Scheduler exemplar.

4.1 Capturing and exploring variability

In Chapter 1 we motivated the need to introduce variability along all three

dimensions – goals, behaviours, architecture – to ensure that the system

has a large space of adaptation options in trying to cope with one or more

requirements failures. In this section we demonstrate how to elicit and

capture behavioural and architectural control parameters (CPs) and their

impact on system requirements.

4.1.1 Variability in behaviour

The semantics of AND/OR refinements are clear at design time: If goal

G is AND/OR refined into sub-goals G1, ..., Gn, then the functionality of

the system-to-be needs to include functions that fulfil all/at least one of

G1, ..., Gn.

74

4.1. CAPTURING AND EXPLORING VARIABILITY
G

0
:S

c
h
e
d

u
le

M
e
e
ti
n
g

A
N

D

G
1
:
In

it
ia

te

M
e
e
ti
n
g

t0
:c

re
a
te

m
e
e
ti
n
g

t2
:
a
d

d

p
a
rt

ic
ip

a
n
t

lis
t

A
N

D

t3
:
s
e
le

c
t

re
q

u
ir
e
d

e
q

u
ip

m
e
n
t

t1
:c

h
a
ra

c
te

ri
z
e

m
e
e
ti
n
g

G
4
:
S

to
re

D
a
ta

t1
9
:s

a
v
e
 d

a
ta

t2
0
:p

ro
v
id

e

d
a
ta

t2
1
:d

e
le

te

d
a
ta

A
N

D
t1

8
:u

p
d

a
te

d
a
ta

G
3
:
M

a
n
a
g

e

M
e
e
ti
n
g

A
N

D

t1
4
:
e
d

it

m
e
e
ti
n
g

t1
5
:c

a
n
c
e
l

m
e
e
ti
n
g

t1
3
:c

o
n
fi
rm

m
e
e
ti
n
g

t1
6
:e

-m
a
il

c
h
a
n
g

e
s

to
 p

a
rt

ic
ip

a
n
ts

t1
7
:s

e
n
d

re
m

in
d

e
r

G
2
:
B

o
o

k

M
e
e
ti
n
g

A
N

D

t1
2
:r

e
g

is
te

r

m
e
e
ti
n
g

L
o

w
 C

o
s
tW

e
e
k
ly

 c
o

s
t

m
u
s
t

b
e
 l
e
s
s
 t

h
a
n
 5

0
0
€

(A
R

1
)

S
u

c
c

e
s
s
R

a
te

(8
5
%

)

G
o

o
d

P
a
rt

ic
ip

a
ti
o

n
8
0
%

 o
f

th
e
 p

a
rt

ic
ip

a
n
ts

s
h
o

w
 u

p

(A
R

2
)

S
u

c
c

e
s
s
R

a
te

(7
5
%

)

F
a
s
t

S
c
h
e
d

u
lin

g

S
c
h
e
d

u
le

s
 m

u
s
t

b
e

p
ro

d
u
c
e
d

 i
n
 1

 d
a
y

(A
R

3
)

S
u

c
c

e
s
s
R

a
te

(9
0
%

)

G
o

o
d

 Q
u
a
lit

y

M
e
e
ti
n
g

s

M
e
e
ti
n
g

 r
o

o
m

s
 h

a
v
e

th
e
 r

e
q

u
ir
e
d

 e
q

u
ip

m
e
n
t

(A
R

7
)

S
u

c
c

e
s
s
R

a
te

(9
0
%

)

(A
R

6
)

n
o

tT
re

n
d

D
e

c
re

a
s
e

(7
d

,2
)

(A
R

4
)

N
e

v
e

rF
a

il
(A

R
5
)

N
e

v
e

rF
a

il M
C

A

t1
1
:
s
c
h
e
d

u
le

a
u
to

m
a
ti
c
a
lly

G
7
:F

in
d

 D
a
te

t1
0
:
s
c
h
e
d

u
le

m
a
n
u
a
lly

O
R

(A
R

8
)

 C
o

m
p

a
ra

b
le

S
u

c
c

e
s
s

(s
c

h
e

d
u

le
 m

a
n

u
a

ll
y,

 1
0
)

G
6
:
F

in
d

 R
o

o
m

O
R

t8
:
s
e
le

c
t

ro
o

m

m
a
n
u
a
lly

t9
:s

e
le

c
t

ro
o

m

a
u
to

m
a
ti
c
a
lly

H
fM

lo
c
a
l
ro

o
m

s

&
 h

o
te

l
ro

o
m

s

a
v
a
ila

b
le

R
fM

G
5
:
C

o
lle

c
t

T
im

e
ta

b
le

s

t7
:
a
u
to

m
a
ti
c
a
lly

t6
:
b

y
 e

-m
a
il

t5
:
b

y
 p

h
o

n
e

O
R

F
h

M
V

P
A

V
P

1

V
P

2

V
P

3

F
ig

u
re

4.
1:

G
oa

l
m

o
d
el

fo
r

th
e

M
ee

ti
n
g

S
ch

ed
u
le

r
ca

se
st

u
d
y

w
it

h
fl
ow

ex
p
re

ss
io

n
s.

75

CHAPTER 4. DESIGNING ADAPTATION SPACES

Behaviour talks about the allowable sequences of fulfilment of G1, ...Gn

at runtime and we use flow expressions as described in Section 2.1.7. Each

sequence needs to include one or more of G1, ..., Gn, but not all. So, it can

be the case that for an AND-refinement we have sequences that fulfil only

some of G1, ..., Gn and for OR refinements we have sequences that fulfil

all of G1, ..., Gn. We For example, the goal Manage Meeting, although all

of its tasks must be implemented, confirm meeting and cancel meeting are

actually conflicting and their use cannot coincide in the same execution

sequence. Therefore, the | operator indicates that only one of the two is

allowed for any one execution of the system as shown in Figure 4.1.

G2: Book
Meeting

AND
t12:register

meeting
(AR4) NeverFail

(AR5) NeverFail

G7:Find DateG6: Find Room

(| [BCP1] G6;G7 G7;G6) ; t12

G6 ; G7 ; t12

Figure 4.2: BCP from AND-refinement

The ; operator is useful when modelling the behaviour of an AND-

refinement and prescribes the order in which sub-goals/tasks must be ful-

filled. It is common practice in software design to impose only one possible

order, thereby limiting the reconfiguration capabilities of the system-to-be.

In our framework, the designer is encouraged to select multiple alterna-

tive behaviours for fulfilling a goal. Accordingly, we introduce behavioural

control parameters (BCPs) that are assigned to the goal’s behaviour and

whose possible values are all the allowed sequences. A BCP is defined as

(|[parameter name]alt1 ... altn), using infix notation for the alternative

operator. For example, for the goal Book Meeting if the meeting organiz-

76

4.1. CAPTURING AND EXPLORING VARIABILITY

ers select a meeting room first and then find a date, participation might

be low because of conflicts with participant time tables. If they select the

date first and the room afterwards, participation may improve but it is

not guaranteed that the selected room will have all required equipment.

A BCP defined by (| [BCP1] G6;G7 G7;G6) takes as values the two

possible sequences G6;G7 and G7;G6. Its impact on the requirements is

captured by the differential relations ∆(I2/BCP1)[G6;G7→ G7;G6] > 0

and ∆(I7/BCP1)[G6;G7→ G7;G6] < 0 while the new behaviour for the

goal Book Meeting is depicted in Figure 4.2.

Another variability factor of system behaviour is related to the multi-

plicity of the fulfilments of a goal or a task. When there is the option

for the system to fulfil multiple times a goal or a task, the designer must

consider the impact of this variability on AwReqs . For example, the task

t17 send reminder is performed by the system–to-be and can be executed

multiple times if the goal Good Participation is failing. To this end, as

depicted in Figure 4.3, we substitute when needed the operators * and +

with a BCP (in this case named NoR) and based on a differential relation

such as ∆(I2/NoR) > 0 the adaptation mechanism can adjust its value

when Good Participation is failing. The range of values of NoR varies from

one to five executions of task t17.

The repetitive execution of a task or fulfilment of a goal raises the issue

of time synchronization. In the previous example, if NoR = 3 and all the

reminders are sent one after the other within seconds, the outcome is likely

to be an unhappy one. Hence, we introduce a behavioural function wait()

that takes as argument a BCP with a range of values related to time units,

in this case days. This function is part of the behavioural model as shown

in Figure 4.3 and BCP3 is defined as (| [BCP3] 1day 2days 3days).

Next, we revisit OR-refinements in order to extract additional variabil-

ity. The traditional perception of these refinements at runtime is that the

77

CHAPTER 4. DESIGNING ADAPTATION SPACES

G3: Manage

Meeting

AND

t14: edit

meeting

t15:cancel

meeting

t13:confirm

meeting

t16:e-mail changes

to participants

t17:send

reminder

Figure 4.3: BCP from multiplicity operator

satisfaction of any subgoal would lead to the satisfaction of the parent goal.

Therefore, the ReqCPs associated with an OR-refinement have as candi-

date value one of the subgoals. The system-to-be though may require in

certain occasions the fulfilment of all the subgoals to guarantee the satis-

faction of the parent goal. For example, scheduling a meeting requires the

fulfilment of the goal G5: Collect Timetables that can be achieved by either

contacting the participants by phone, by e-mail or collecting them auto-

matically from a common system calendar. However, when one or more of

the invited participants do not use the system calendar the third option

could harm AR2 , since these participants will not receive any invitation

for the meeting. Dealing with such a situation requires the utilization of all

the alternatives under the OR-refinement. This means that participants

who do not have an account for using the system’s calendar and therefore

their timetables must be collected either by phone or by e-mail while the

timetables of the remaining participants can be collected automatically by

the system. To capture this additional variability a new BCP is introduced

defined as (| [BCP2] V P1 t5#t7 t6#t7), as depicted in Figure 4.4.

78

4.1. CAPTURING AND EXPLORING VARIABILITY

G5: Collect
Timetables

t7: automatically
t6: by e-mail

t5: by phone

OR

FhM

VPAVP1

(| [BCP2] VP1 t5#t7 t6#t7)

Figure 4.4: BCP from OR-refinement

As a rule of thumb the designers must analyze each AND refinement

of the goal model and using domain expertize, whenever the sequence in

which the subgoals are fulfilled has impact on one or more indicators, then

a BCP is identified. Next, the designers must identify how many times

each goal or task must be fulfilled in order the parent goal to be fulfilled.

If the number is greater than one, it influences one or more indicators and

can be put under the control of the adaptation mechanism, the a BCP is

identified. In the second case, the designers must synchronize the multiple

fulfilments of a goal or task with the use of the wait() function.

4.1.2 Variability in architecture

We consider next the third peak, architecture, looking for opportunities to

introduce variability. In order to be fulfilled, each goal or task must be

assigned to at least one component1. For this peak there are two sources of

variability. The first is related to each component’s multiplicity. Certain

components may be instantiated multiple times for requirements to be ful-

1Each component must be able to satisfy on its own the assigned goal.

79

CHAPTER 4. DESIGNING ADAPTATION SPACES

filled. For example, as shown in Figure 4.5, an instance of the component

TimetableCollector can be associated with multiple instances of the com-

ponent Secretary. The number of instances of the latter, is an adjustable

variable that affects the operational cost of the meeting scheduling pro-

cess (AR1), but also how fast the meetings are scheduled (AR3). We refer

to such variables as architectural control parameters (ACPs) following the

same definition construct as BCPs . In this case we introduce the number

of secretaries NoS parameter defined as (| [NoS] 1..5) that will substitute

the abstract multiplicity notation, representing explicitly the presence of a

new configuration point. The impact of this ACP on the requirements is

captured by the differential relations ∆(I1/NoS) < 0 and ∆(I3/NoS) > 0.

Figure 4.5: ACP for component instance

The second source of architectural variability is related to the selection

among multiple candidate components that are assigned with the same

goal/task. For the goal Find Room we have two candidate software com-

ponents that are both part of the system and can be used interchangeably.

The first component finds the cheapest room reducing the overall cost of

the meetings, but does not guarantee that all the required equipment will

be present, while the other one finds the best equipped room but might ex-

ceed the budget available for scheduling meetings. These two components

can be used either interchangeably or concurrently. The concurrent use of

both components allows the users select which result is more suitable for

them. In specific occasions such as low budget periods, the system may

80

4.1. CAPTURING AND EXPLORING VARIABILITY

switch to the exclusive use of the component that provides the best price.

Therefore, as shown in Figure 4.6 we add to the architecture model an ACP

named ACP1 with candidate values all the possible uses of these com-

ponents, with the following definition (| [ACP1] BestEquipRoomFinder

BestPriceRoomFinder BestEquipRoomFinder#BestPriceRoomFinder).

The shuffle operator indicates concurrent use of the operand components.

Figure 4.6: ACP for alternative component

As a guideline to the designers, architectural variability lies in relation-

ships of among components, where multiplicity greater than one is present.

In such cases, if the number of instances can be controlled by the adapta-

tion mechanism and then an ACP is identified. In practice, components

with not a constant number of instances play the role of resources. An

active resource is responsible for carrying out tasks (e.g. secretaries) and a

passive resource is used as a means of executing a task (e.g. hotel rooms).

As it concerns the architectural variability related to alternative compo-

nents, the designers every time a component is assigned with a goal/task

must examine if an alternative component is capable of fulfilling the same

goal/task but influence different indicators. However, the financial limita-

tions and the component dependencies must be taken into account.

81

CHAPTER 4. DESIGNING ADAPTATION SPACES

4.1.3 Variability in the environment

In the previous sections we examined the variability in the three dimen-

sions that constitute the software system that can be controlled by the

adaptation mechanism. As we explained in Chapter 1 the environment’s

uncertainty is one of the main motivations for designing self-adaptive sys-

tems. Hence, we need to explore the variables in the environment of the

system, that are the driving force for eliciting large adaptation spaces.

Toward this direction, we introduce a domain model, as shown in Fig-

ure 4.7. Environmental variability is captured here with a new type of

parameter named environmental parameter (EP).

An EP can indicate the number of instances of a domain entity and

therefore its multiplicity in the domain model. The difference from archi-

tectural multiplicity is that in the case of the environment the adaptation

mechanism has no control on the value of the EPs . For instance, there is

no control on the number of meeting requests (NoMR) the meeting orga-

nizers are sending, neither the number of participants (NoP) attending a

meeting, and therefore these are represented as EPs .

The attributes and the operations of domain entities constitute another

source for environmental variability. For example, participants may con-

firm their participation, but in the end not attend a meeting. The EP per-

centage of consistency (PoC) captures this, while the average hotel price

captures the current average cost for reserving a hotel room for meetings.

EPs influence the AwReqs in the same manner as CPs . However, the

adaptation mechanism can only monitor them, identifying undesired sit-

uations and change CPs to compensate for changes. For example, when

the PoC is decreased because participants tend to forget meetings they

are supposed to attend and the participation is harmed according to the

differential relation ∆(I2/PoC) < 0, then the adaptation mechanism can

82

4.2. A THREE-PEAKS MODELLING PROCESS

Figure 4.7: Domain model for the Meeting Scheduler environment

increase NoR to compensate.

4.2 A Three-Peaks modelling process

The modelling process for Three-Peaks models is depicted in Figure 4.8.

It guides the elicitation of all elements of a Three-Peaks model, including

control parameters. Our process is iterative and intertwined, analyzing

and expanding problem and solution spaces simultaneously.

The process starts by getting as input a goal or a task, which initially will

be the root goal such as G0: Schedule Meeting. The next step is to identify

if there are any AwReqs , softgoals or domain assumptions related to the

input. Then, if the input is a goal, it is refined into subgoals, otherwise the

requirement and behaviour analysis are skipped. The designers, along with

domain experts, examine what needs to be fulfilled and how, starting from

eliciting parameters required for that inserted goal to be satisfied, such as

how many conflicts are allowed before finding a date or if the system can

view private appointments. These parameters are ReqCPs and their values

83

CHAPTER 4. DESIGNING ADAPTATION SPACES

Start

Stop

refine goal

refinement
type

Different order
impacts different

AwReq(s)? AND OR
add ReqCP

substitute sequence
with a BCP

Yes

examine next
sequential behavior

are all sequential
behaviors
examined?

No

examine next +
or * multiplicity

is it
controllable?

impacts
AwReqs?

Yes

substitute multiplicity
with a BCP

Yes

Yes

No

No

Are all + and *
multiplicities
examined?

insert not
processed
goal/task

No No

Is the whole goal model
processes and all goal

operationalized?

Multiple
components
assigned?

assigned
components

influence AwReqs
differently?

Yes

ACP already
exists?

Yes

add ACP

add new class as a value

Multiplicity
influences
AwReqs?

No

substitute
multiplicity with an

ACP

Yes

add task(s) as
operations to the

assigned component

No

add ReqCPs and BCPs as
attributes to the assigned

classes

No

add additional
attributes/operations

new attributes/
operations impose
new requirements?

mark current goal/
task as processed

No

Yes

Yes

No Do
conflicts exist?

No
Yes, but deal with
them at runtime

Yes, further refinement
 is needed

Insert
behavior

Goal requires
additional parameter

to be fulfilled?
add ReqCP

Yes

goal

add ReqCP and shuffle
combinations to a BCP

Add time
function

elicit softgoals,
AwReqs and

domain
assumptions

assign
components

Associate
with other

components

type of
input

No

task

type of input

goal

mark parent
goal as not
processed

insert
parent
goal

task

Figure 4.8: The Three-Peaks process as a flowchart

84

4.2. A THREE-PEAKS MODELLING PROCESS

may vary during alternative executions of the system.

Continuing the analysis of how a goal can be fulfilled, designers provide

an initial behavioural model using the notation introduced in Section 2.1.4.

If the goal is OR-refined then each subgoal becomes a candidate value for

a ReqCP such as V 1 − V 3 in Figure 4.1. Then, the behavioural model is

refined by adding a BCP with range of values according to existing ReqCP

and shuffle combinations of the refinements as in Figure 4.4. In the case of

AND-refinement, the order in which the operands of sequential behaviours

(the parts of the model that include only the ; operator) is examined.

If a different order of the operands implies influence to different AwReqs

a new BCP is introduced with range of values, all the potential orders.

Concluding this iteration of behaviour analysis, the process examines every

∗ and + operators in order to substitute them with a BCP , if needed, as

described in Section 4.1. In that case also the wait(BCP) function with its

own BCP is added. The last step leads to a new refinement of the goal

since a wait task is added as a refinement of the examined goal.

Moving to the architecture peak, designers associate the input goal or

task to one or more components of the architecture. This determines who

is responsible for the satisfaction of the goal or task. When more than

one component is assigned, an ACP is added and can be tuned by the

adaptation mechanism at runtime in order to activate the most suitable

component or a combination of them for fixing failing requirements. Next,

if the new component can be instantiated multiple times at runtime and

this number has impact on the AwReqs while under the control of the

adaptation mechanism, the associated multiplicity is substituted with an

ACP . Then, the assigned components get as attributes the ReqCPs and

BCPs of the goal, as they must be aware of what behaviour must follow

and what are the values of these parameters. Once the previously elicited

variability has been embedded in the assigned component, the designers

85

CHAPTER 4. DESIGNING ADAPTATION SPACES

of the architecture, provided that the goal is fully or partially operational-

ized, add the tasks produced by the refinement as operations. Finally, the

designers may provide additional attributes and operations to the compo-

nent of more technical nature that are not related neither to requirements

nor to behaviour. For every new attribute or operation, the process must

investigate whether there is need of adding new requirements. If the initial

input was a goal then it is refined again, but in case of a task then it is the

parent goal that must be processed again.

The last step of the process inspects if the current set of configurations

is able to guarantee the the satisfaction of all the AwReqs related to the

investigated goal under any possible environmental condition. In case there

are situations where the system is not able to guarantee success of all

the related AwReqs , then two actions can be taken: a) perform further

refinements, finding new CPs , goals or tasks; or b) deal with conflicting

requirements, using the conflict resolution mechanism that we discuss in

detail Chapter 5. When all goals and tasks are processed and every goal

is operationalized, the process terminates.

As the designers perform the Three-Peaks process it is very important

to keep track of all the differential relation between the elicited AwReqs

and CPs . An ideal result of the process would be a system where every

AwReqs has a CP that if its value changes to improve one indicator it will

not decrease another. In other words, every indicator can be controlled

independently, by at least one CP . Of course, even such an ideal design

cannot eliminate the possibility of conflicts. The reason is that every CP

is bounded and therefore, when the upper or lowest value is reached, the

adaptation mechanism might not be able to tune it in order to fix a failing

indicator. This is the reason we require large adaptation spaces and design

adaptation mechanism to resolve conflicts among requirements that we

present in detail in the next chapters.

86

4.3. EVALUATION

4.3 Evaluation

Following the Three-Peaks process presented in the previous section we

produce a goal model with annotated behaviour (Figure 4.9) and an archi-

tectural model (Figure 4.10) which includes several additional parameters

over what was presented in Section 2.1.

More specifically, six new CPs are derived from the behavioural model

(BCP1−BCP5 and NoR) and two from the architectural model (ACP1

and NoS). Moreover, the Three-Peaks process resulted in eliciting three

additional tasks (t22, t23 and t24). The task t23: be online along with

AR9 are result of the attribute assigned to the component Database that is

responsible for the goal G4: Store Data. This prescribes that the status of

the Database must be monitored to ensure that it is constantly online. The

task t24:wait is introduced by the assigned behaviour to goal G3: Manage

Meeting. Finally, the task t22: do meeting online, has been introduced to

resolve situations where there are few suitable dates due to many conflicts

among participants, and there are not enough available rooms.

Not taking into account the holding conditions of the environment car-

ries the risk of choosing the wrong adaptation for fixing failing require-

ments. For instance, consider the case where participants forget to attend

their meetings, resulting in the failure of AR2. The adaptations offered

by the original goal model (not generated by the Three-Peaks process) for

fixing AR2 are either to start viewing private appointments of participants

by setting VPA to true or decreasing MCA allowing fewer conflicts. Nei-

ther one anticipates the real cause of the failure. The Three-Peaks model

though offers the parameter NoR that increases the number of reminders

thereby tackling the source of the problem, and capable of increasing the

success rate of AR4.

Another case where requirements-only variability proves to be insuffi-

87

CHAPTER 4. DESIGNING ADAPTATION SPACES

cient concerns the room selection by the meeting organizers before or after

finding a date for their meeting. Each of the alternative orders works well

in different contexts. Selecting room first guarantees good quality meet-

ings, since the meeting organizers select a room that can provide all the

required equipment, assuming that the invited participants are available

the same date the room is available, otherwise the success rate of AR5 is

at risk. On the other hand, when meeting organizers select date first, it

is more likely that they will find a date convenient to most invited par-

ticipants, but a sufficiently equipped room might not be found in periods

with high workload for the meeting scheduler, decreasing the success rate

of AR7. Using behavioural variability, an adaptive meeting scheduler exe-

cutes the order that complies with the existing context by tuning BCP1.

Moreover, to maintain the equilibrium between the success rate of AR1

and AR7 when the system selects rooms automatically the system can

use either a component that finds the cheapest room available or the best

equipped respectively, exploiting architectural variability and more partic-

ularly ACP1.

The previous failure scenarios show that the high variability models of

the Three-Peaks process can handle better changes in the system’s environ-

ment where the requirements-only model would provide ineffective adap-

tations. A limitation of our approach is that dependencies among CPs are

not captured. For instance, it makes sense for MCA to be changed only

if the value of V P3 is set first to “schedule automatically”. In order to

alleviate this obstacle, we are planning to extend our notation in order to

capture this kind of constraint. Another limitation on the scalability of our

proposal is that for every variable introduced into the model, its impact

on all AwReqs must be examined.

88

4.3. EVALUATION
G

0
:S

c
h

e
d

u
le

M

e
e
ti
n

g

A
N

D

G
1

:
In

it
ia

te

M
e
e
ti
n

g

t0
:c

re
a
te

m

e
e
ti
n

g

t2
:

a
d

d

p
a
rt

ic
ip

a
n

t
lis

t

A
N

D

t3
:

s
e
le

c
t

re
q

u
ir
e
d

e
q

u
ip

m
e
n

t

t1
:c

h
a
ra

c
te

ri
ze

m

e
e
ti
n

g

G
4

:
S

to
re

D

a
ta

t1
9

:s
a
v
e
 d

a
ta

t2
0

:p
ro

v
id

e

d
a
ta

t2
1

:d
e
le

te

d
a
ta

A
N

D

t1
8

:u
p

d
a
te

d

a
ta

G
3

:
M

a
n

a
g

e

M
e
e
ti
n

g

A
N

D

t1
4

:
e
d

it

m
e
e
ti
n

g
t1

5
:c

a
n

c
e
l

m
e
e
ti
n

g

t1
3

:c
o

n
fi
rm

m

e
e
ti
n

g

t1
6

:e
-m

a
il

c
h

a
n

g
e
s

to
 p

a
rt

ic
ip

a
n

ts

t1
7

:s
e
n

d
re

m
in

d
e
r

G
2

:
B

o
o

k

M
e
e
ti
n

g

A
N

D

t1
2

:r
e
g

is
te

r
m

e
e
ti
n

g

L
o

w
 C

o
s
tW

e
e
k
ly

 c
o

s
t

m
u

s
t

b
e
 l
e
s
s
 t

h
a
n

 5
0

0
€

(A
R

1
)

S
u

c
c

e
s
s
R

a
te

(8
5

%
)

G
o

o
d

P

a
rt

ic
ip

a
ti
o

n
8

0
%

 o
f

th
e
 p

a
rt

ic
ip

a
n

ts

s
h

o
w

 u
p

(A
R

2
)

S
u

c
c

e
s
s
R

a
te

(7
5

%
)

F
a
s
t

S
c
h

e
d

u
lin

g

S
c
h

e
d

u
le

s
 m

u
s
t

b
e

p
ro

d
u

c
e
d

 i
n

 1
 d

a
y

(A
R

3
)

S
u

c
c

e
s
s
R

a
te

(9
0

%
)

G
o

o
d

 Q
u

a
lit

y
M

e
e
ti
n

g
s

M
e
e
ti
n

g
 r

o
o

m
s
 h

a
v
e

th
e
 r

e
q

u
ir
e
d

 e
q

u
ip

m
e
n

t

(A
R

7
)

S
u

c
c

e
s
s
R

a
te

(9
0

%
)

(A
R

6
)

n
o

tT
re

n
d

D
e

c
re

a
s
e

(7
d

,2
)

(A
R

4
)

N
e

v
e

rF
a

il
(A

R
5
)

N
e

v
e

rF
a

il M
C

A

t1
1

:
s
c
h

e
d

u
le

a
u

to
m

a
ti
c
a
lly

G
7

:F
in

d
 D

a
te

t1
0

:
s
c
h

e
d

u
le

m
a
n

u
a
lly

O
R

(A
R

8
)

 C
o

m
p

a
ra

b
le

S
u

c
c

e
s
s

(s
c

h
e

d
u

le
 m

a
n

u
a

ll
y,

 1
0
)

G
6

:
F

in
d

 R
o

o
m

O
R

t8
:

s
e
le

c
t

ro
o

m

m
a
n

u
a
lly

t9
:s

e
le

c
t

ro
o

m
a
u

to
m

a
ti
c
a
lly

H
fM

lo
c
a
l
ro

o
m

s
&

 h
o

te
l
ro

o
m

s
a
v
a
ila

b
le

R
fM

G
5

:
C

o
lle

c
t

T
im

e
ta

b
le

s

t7
:

a
u

to
m

a
ti
c
a
lly

t6
:

b
y
 e

-m
a
il

t5
:

b
y
 p

h
o

n
e

O
R

F
h

M
V

P
A

V
P

1

V
P

2
V

P
3

(
|
[B

C
P

1
]
G

6
;G

7
 G

7
;G

6
)
 ;

 t
1

2

t2
2

:d
o

 m
e
e
ti
n

g

o
n

lin
e

(|
[B

C
P

2
]
V

P
1

 t
5

#
t7

 t
6

#
t7

)

(|
[B

C
P

4
]
V

P
3

 t
1

0
#

t1
1
)

(|
[B

C
P

5
]
V

P
2

 t
8

#
t9

)

t2
3

:b
e
 o

n
lin

e

(A
R

9
)

N
e

v
e

rF
a

il

t2
4

:w
a
it

F
ig

u
re

4.
9:

T
h
e

go
al

m
o
d
el

af
te

r
th

e
T

h
re

e-
P

ea
k
s

p
ro

ce
ss

89

CHAPTER 4. DESIGNING ADAPTATION SPACES

F
ig

u
re

4.
10

:
T

h
e

ar
ch

it
ec

tu
re

m
o
d
el

af
te

r
th

e
T

h
re

e-
P

ea
k
s

p
ro

ce
ss

90

4.4. CHAPTER SUMMARY

4.4 Chapter Summary

In this chapter we propose a systematic process for extracting incremen-

tally variability from goal models. The source of variability lies in the three

peaks of a software system: requirements, behaviour and architecture. We

investigate how variability can be elicited along each peak, introducing

behavioural and architecture control parameters and how to model envi-

ronmental variability. We also present a Three-Peaks process to derive

incrementally high variability requirements, behavioural and architecture

models. Finally, we have evaluated our models through execution scenar-

ios of the meeting scheduler exemplar, showing that offering adaptations

along three peaks enables the system to handle more failures.

91

Chapter 5

Qualitative Adaptation for Multiple

Failures

Things which matter most must never be at

the mercy of things which matter least.

Johann Wolfgang von Goethe

In this chapter we propose an adaptation mechanism that can handle

multiple failures (i.e., multiple failing requirements). This mechanism is

constructed under the assumption that only qualitative information be-

tween control parameters and indicators is available, providing an answer

to RQ3. As opposed to Zanshin, which treats failures sequentially, our

proposal considers at the same time all failing requirements and attempts

to select an adaptation that is coherent in the sense that it reduces the

overall degree of failure, taking into account priorities among requirements.

Our proposal supports the definition of Adaptation Requirements provided

by stakeholders. For example, an adaptation requirement may state that

the adaptation should be conservative in that it does not change parame-

ters in a way that could harm non-failing requirements. Such adaptation

requirements are taken into account as the adaptation mechanism con-

siders iteratively current failures, selects an adaptation, applies it, and

observes results. The ultimate goal of this approach is to handle depen-

93

CHAPTER 5. QUALITATIVE ADAPTATION FOR MULTIPLE FAILURES

dencies among requirements in a way that is consistent with stakeholder

expectations about the adaptation process itself.

5.1 Requirements for Adaptation

Handling multiple requirements failures requires trade-offs. To achieve this,

we extend Zanshin in a way that it can dynamically put together adapta-

tion strategies using priorities over the requirements as criteria for resolving

runtime conflicts among requirements that could not be eliminated at de-

sign time. We also propose the specification of Adaptation Requirements

(AdReqs) . These requirements are defined by reusing concepts of the

Zanshin framework, namely AwReqs and EvoReqs .

5.1.1 Prioritizing Requirements

Requirements are prioritized in order to support the selection among al-

ternative adaptations during the adaptation process. If R, R’ are both

failing, it is important to know which of the two has higher priority. To

make our adaptation mechanism more precise in dealing with failures, we

actually require information on how much higher priority does R have over

R’, a little or a lot. Moreover, we need to define policies about dealing

with conflicts even in cases where not every involved requirement is fail-

ing. For example and adaptation plan to fix a failing requirement R might

threaten a non-failing requirement R’ of much higher priority. Hence, the

adaptation mechanism should be instructed if taking the risk of fixing a

failing requirement but harming a non-failing one is acceptable and if so,

under which circumstances.

Given such information, we can adopt the Analytic Hierarchy Process

(AHP) [Saa80] which has been proven to be one of the most effective meth-

ods to accurately prioritize objectives [KWR98]. Other applications of the

94

5.1. REQUIREMENTS FOR ADAPTATION

AHP prioritize requirements as a means to select those that are more im-

portant to be implemented [KR97]. In our case the prioritization is use-

ful for selecting which requirement failure should be fixed and which one

should not because it would create further failures that should lead to

changes to other requirements.

The process for prioritizing the indicators of the system’s AwReqs in-

cludes the following steps. First, after the system identification process is

carried out using the Three-Peaks process where the qualitative relations

among indicators and the parameters are elicited. Of course, as we men-

tioned in the previous chapter, it is not always possible to resolve every

conflict with the use of the Three-Peaks process. We remind that by the

term ‘conflict’ we mean that two indicators are influenced by the same

parameter in opposite directions. For example, if I1 and I2 are both in-

fluenced by parameter P4 and ∆ (I1/P4) > 0 and ∆ (I2/P4) < 0 their

differential relations mean that if AR1 and AR2 are failing and we can

treat them only by tuning P4 then we cannot fix both of them. Then, by

using the scale presented in Table 5.2 we compare all the pairs of indicators

and assign a value to each pair. For the purpose of illustration consider

that we have four indicators I1, I2, I3 and I4 and the result of the pairwise

comparisons is shown in Table 5.1.

- I1 I2 I3 I4

I1 1 3 1/5 1

I2 1/3 1 7 1/5

I3 5 1/7 1 1/5

I4 1 5 5 1

Table 5.1: Pairwise Comparison Values

For a most effective use of the given scale we apply a set of heuristics

that works as a guideline for the stakeholders in order to assign accurate

95

CHAPTER 5. QUALITATIVE ADAPTATION FOR MULTIPLE FAILURES

values. These heuristics are the following:

Heuristic 1: Indicators associated with hard-goals are preferred over those

of soft-goals.

Heuristic 2: Indicators of hard-goals that are closer to the top-goal are

preferred over lower level ones.

The purpose of these heuristics is to give higher priority to to the func-

tional integrity of the system over satisfaction of the non-functional re-

quirements. The process continues by calculating the eigenvalues and then

normalizing sums of rows. The final result is shown in equation 1.

1

4
·


0.87

0.75

0.84

1.45

 =


0.22

0.18

0.21

0.36



I1

I2

I3

I4

 (5.1)

We have now assigned weights over each indicator that represent their

value and we have a numerical guide to perform comparisons when needed.

For instance, in the case where the system has to choose between fixing

either I1 and I3 or I4, even if I4 is ranked higher than the other two their

aggregated weight is higher and therefore should be preferred.

5.1.2 Adaptation Requirements

Our proposal includes a component that, given a requirements model and

differential relations among indicators and CPs , is able to dynamically

compose adaptation strategies that can handle multiple failures. As a first

step we prioritized the indicators of the target system with weights that

also measure their overall contribution to the correct operation of the sys-

tem. This, combined with the qualitative relations from the system iden-

tification process allows the extended Zanshin to automatically compose

96

5.1. REQUIREMENTS FOR ADAPTATION

Relative Intensity Definition Explanation

1 Of equal importance The two indicators are not con-

flicting

3 Slightly more important Experience and judgement

slightly favours one indicator

over the other

5 Essentially more important Experience strongly favours one

indicator over another

7 Very much more important An indicator is strongly favoured

and its dominance is demon-

strated in practice

9 Extremely more important The evidence favouring one over

the other is of the highest possible

validity

2,4,6,8 Intermediate values When compromise needed

Reciprocals: If indicator I has one of the above numbers assigned to it when compared

with requirement I’, then I’ has the reciprocal value when compared with I.

Table 5.2: Scale For Pairwise Comparisons

adaptation strategies, reconfiguring the system and maximizing the value

of the satisfied indicators.

Our framework deals with the following kinds of failure:

• Single Failure (SF): Only one indicator is failing and needs to be fixed.

• Multiple Independent Failures (MIF): Many indicators are failing and

either they do not have any common parameters or the common pa-

rameters have the same monotonicity with every failing indicator.

• Multiple Dependent Failures (MDF): Many indicators are failing and

all or groups of them share parameters with opposite monotonicity.

• Priority Conflict (PC): A failing indicator can be fixed only by tuning

a parameter that harms a non-failing indicator of higher value.

97

CHAPTER 5. QUALITATIVE ADAPTATION FOR MULTIPLE FAILURES

• Synchronization Conflict (SC): An indicator is currently being treated

and in the meantime a new failing indicator requires to tune a param-

eter that has a negative impact on the first one.

In Control Theory systems with multiple goals that present such con-

flicts are referred as coupled MIMO systems [ADH+08]. A common tech-

nique to tackle the problem of coupled goals is Model Predictive Control

(MPC) which is described in detain in Chapter 7. However, MPC requires

the existence of an analytical model that describes the relationship between

control parameters and indicators and is not always available in advance.

Therefore, a trade-off mechanism that can perform with qualitative infor-

mation is required. In this work we exploit the capability of Zanshin to

achieve conflict resolution and minimize the error caused by failing AwReqs

with the use of EvoReqs . More specifically, EvoReqs are used as a com-

pensation mechanism during the the trade-offs. When a conflict arises

between two goals, the most important one is fixed whereas the other is

either relaxed or suspended, until the system recovers.

Toward this direction, we model in the extended Zanshin additional

requirements that refer explicitly to the adaptation process, rather than

the base-system, named Adaptation Requirements (AdReqs). Figure 5.1

presents a simple goal model that prescribes how conflicts should be re-

solved during the adaptation process. The task Adapt Conservatively in-

structs the framework not to harm non-failing AwReqs while fixing the

failing ones. The alternative task Adapt with Compensation represents

the compensation mechanism we mentioned earlier. More specifically, the

adaptation framework is allowed to harm a non-failing AwReqs of higher

value for fixing another one, only if there is a possible action that would

increase the indicator of the AwReq being harmed. Along the same lines,

Adapt Optimistically does not consider priority conflicts as hazards for the

base system because there is the assumption that the non-failing AwReqs

98

5.1. REQUIREMENTS FOR ADAPTATION

are tolerant enough to a potential negative impact.

Figure 5.1: Adaptation Requirements Goal Model

To monitor the success/failure of requirements for the adaptation pro-

cess depicted in Figure 5.1 we use AwReqs . In this case AR2 imposes the

constraint that non-failing AwReqs should not fail when receiving negative

impact. As we would do for any goal model of a target system we define

an adaptation strategy to overcome failures of this Awareness Requirement.

Given the differential relation ∆ (I2/V P1) [AdaptConservatively → Adapt

withCompensation → AdaptOptimistically] < 0 (the arrow identifies to-

ward which direction the enumeration value grows [SLM11]) the strategy

switches among the possible values of the parameter V P1.

� �
AwReq AR2: Non -failing indicators do not fail when receiving

negative impact
-Checked at: every 5 minutes
-Adaptation Strategy 3.1: ChangeParam(VP1 , Adapt with

Compensation)
-Applicability Condition: this is the first failure
-Adaptation Strategy 3.2: ChangeParam(VP1 , Adapt with

Compensation)
-Applicability Condition: AS3.1 applied last , more than 5 minutes

ago
-Adaptation Strategy 3.3: ChangeParam(VP1 , Adapt Optimistically)

99

CHAPTER 5. QUALITATIVE ADAPTATION FOR MULTIPLE FAILURES

-Applicability Condition: no failure for more than 1 hour� �
Listing 5.1: Adaptation Strategy for Adaptation Requirements

Independently of the value of parameter V P1, the adaptation frame-

work is required to perform trade-offs among indicators of failing and non

failing AwReqs . For some indicators there is a parameter to change in

order to be brought it closer to fulfilment. For others there will not be

any, at least ones that do not harm higher priority indicators. Hence,

when potential conflicts are detected during system identification process

EvoReqs operations (e.g. abort, retry, replace etc) should be assigned to

every indicator that may conflict with others. For instance, for the Meet-

ing Scheduler, the goal model of which is depicted in Figure 5.4, AR6 and

AR10 are both dependent on the parameter FhM through the differential

relations ∆ (I6/FhM) > 0 and ∆ (I10/FhM) < 0. Consequently, if AR6

has higher priority than AR10 and AR10 fails, but the framework applies

conservative adaptation, a predefined EvoReqs operation for AR10 could

be Replace(AR10 1day,AR10 2days). This way we acquire compensation

in accordance with requirements set by the stakeholders.

Given the fact that the changes to parameter values do not take ef-

fect immediately and in the meantime more failures may take place, it is

important to apply a form of synchronization to the adaptation process.

In Figure 5.1 the AvoidSynchronizationConflicts and the AR1 satisfy

this need. This goal states that when a failing indicator is being fixed

no parameter can be tuned in a way that will affect the failing indicator

negatively. For example, if AR8 is failing and the adaptation framework

increases RfM to fix it. However, this change may require significant time

to take effect and before that happens, AR2 fails. In order to fix AR2

the parameter V P2 must be decreased, but that would affect negatively

AR8 before the latter has been fixed. To avoid such situations that could

lead the adaptation process into non-converging adaptations, we set as a

100

5.2. ADAPTATION PROCESS FOR MULTIPLE FAILURES

Figure 5.2: Zanshin Architecture

requirement not to apply changes that affect unresolved indicators for the

sake of fixing other failures.

5.2 Adaptation Process for Multiple Failures

In the previous section we presented a set of features such as prioritiza-

tion and compensation mechanisms that can help us handle simultaneously

multiple failing indicators and compose dynamically adaptation strategies.

This section describes the additions to the Zanshin framework that im-

plement these features and explains the steps that the adaptation process

carries out.

Figure 5.2 depicts the conceptual architecture of the extended Zanshin

framework. A Monitor Component examines the log files that are produced

at runtime from the base system; if any failing AwReqs are detected the

Failure Manager and the Adaptation Manager are informed. The Failure

Manager groups failing indicators according to the presence of conflicts

with other indicators and informs the Decision-Maker component. The

Adaptation Manager is responsible for configuring the adaptation process

by monitoring the requirements model such as the one in Figure 5.1. When

101

CHAPTER 5. QUALITATIVE ADAPTATION FOR MULTIPLE FAILURES

an AwReq fails, it selects an adaptation strategy for this failure. Then, it

informs the Decision-Maker about the selected parameter values of the

adaptation process goal model in order to perform the trade-offs accord-

ingly. The Decision-Maker exploits input from other components and the

indicators’ value derived from the AHP to select which indicators should

be tuned and which should be compensated. The Strategy Manager con-

verts decisions to adaptation strategies by putting together all the required

operations. Finally, the Adapt component executes the operations that are

prescribed in the adaptation strategy.

To give a better understanding of how the framework operates, the

diagram of the Figure 5.3 presents the steps of Qualia+ the adaptation

process which is followed by the extended Zanshin. The steps are the

following:

1. All the AwReq failures are collected by the failure manager;

2. The indicators of the failing AwReqs are separated with criteria related

to the conflicts they may be part of;

3. The decision-maker exploiting the differential relations and the values

assigned to each indicator resolves any conflicts that may exist by

deciding what action should be performed;

4. The values for the selected parameters are calculated;

5. The values of the selected parameters are changed and the EvoReqs

operations for the indicators that cannot be treated are executed;

6. The framework waits for the changes to take effect;

7. After the wait time the indicators are evaluated again;

102

5.2. ADAPTATION PROCESS FOR MULTIPLE FAILURES

8. In each cycle, the process learns from the outcome of this change and

the recorded data could be used to derive quantitative relations among

indicators and parameters;

9. Finally, if there are no more failing AwReqs after the evaluation the

process terminates successfully.

10. Otherwise, the framework will look for violations on the requirements

for the adaptation process and if any are found the defined adaptation

strategy will be executed.

Figure 5.3: Zanshin’s Adaptation Process

The strategy manager composes a new strategy with all the actions that

will apply the new values to the parameters. These actions are executed by

Requirement evolution operations on the target system. The framework

waits for an amount of time for the changes to take place and then evalu-

ates the indicators that were treated. There is a step that the framework is

103

CHAPTER 5. QUALITATIVE ADAPTATION FOR MULTIPLE FAILURES

F
ig

u
re

5.
4:

A
d
ap

ta
ti

on
R

eq
u
ir

em
en

ts
G

oa
l

M
o
d
el

[S
S
12

]

104

5.3. EVALUATION

performing learning in order to derive quantitative relations among param-

eters and indicators, but it is part of our future research agenda and is not

examined in this thesis. Finally, the algorithm terminates if all the failing

AwReqs are fixed and, if not, the policy manager controls the status of of

the adaptation requirements and switches policy if there are any failures.

5.3 Evaluation

This section explains how the Qualia+ mechanism works through the Meet-

ing Scheduler case study we introduced in Chapter 2. Then we demonstrate

several cases that the older version of Zanshin would not be able to handle

as effectively as the extended one does.

5.3.1 Meeting Scheduler Exemplar

The first step for building an adaptive system that will be managed by

our proposed framework is to perform system identification and elicit the

differential relations among AwReqs and the parameters of the system’s

goal model. From the goal model of the Meeting Scheduler depicted in

Figure 5.4 we elicit a set of differential relations presented in Table 5.3.

We then apply AHP as discussed earlier and show the result in Table 5.4.

The final step for having all the prerequisites for our frameworks input

is to assign to each AwReq an EvoReq operation to be executed in case

it cannot be fixed by changing a parameter value due to the presence of

conflict(s). For our case study the assigned EvoReq operations are listed

in Table 5.5.

According to [SLAM13] we state that some EvoReq operations can act

either at instance level or class level. For example, when a requirement R

is replaced by a requirement R’ at an instance level, it means that future

runs of the base system will use R, not R’. On the other hand, a class-level

105

CHAPTER 5. QUALITATIVE ADAPTATION FOR MULTIPLE FAILURES

order (RF) : listonly ≺ short ≺ full (5.2)

order (V P2, AR10) : partner ≺ hotel ≺ local (5.3)

∆ (I1/RF) < 0 (5.4)

∆ (I2/RfM) < 0 (5.5)

∆ (I2/V P2) < 0 (5.6)

∆ (I3/FhM) < 0 (5.7)

∆ (I4/RfM) > 0 (5.8)

∆ (I4/V P2) > 0 (5.9)

∆ (I5/MCA) > 0 (5.10)

∆ (I5/V P3) < 0 (5.11)

∆ (I6/RF) > 0 (5.12)

∆ (I6/FhM) > 0 (5.13)

∆ (I6/V PA) {false→ true} > 0 (5.14)

∆ (I6/MCA) < 0∆ (I6/V P1) < 0 (5.15)

∆ (I6/V P3) < 0 (5.16)

∆ (I7/V PA) {false→ true} < 0 (5.17)

∆ (I8/RfM) [0, enough] > 0 (5.18)

∆ (I8/V P2) > 0 (5.19)

∆ (I9/MCA) > 0 (5.20)

∆ (I9/V P3) > 0 (5.21)

∆ (I10/RF) < 0 (5.22)

∆ (I10/FhM) < 0 (5.23)

∆ (I10/V P1) > 0 (5.24)

∆ (I10/V P2) > 0 (5.25)

∆ (I10/V P3) > 0 (5.26)

Table 5.3: Differential relations elicited for the Meeting Scheduler example [SLAM13]

106

5.3. EVALUATION

AwReq Priority Value

AR6 1.63

AR5 1.58

AR4 1.17

AR1 1.09

AR8 0.93

AR2 0.8

AR3 0.7

AR7 0.76

AR9 0.64

AR10 0.6

Table 5.4: Priority Values of AwReqs

AwReq EvoReq operation

AR1 Retry(50000ms)

AR2 Replace(AR2,AR2 200euro)

AR3 Replace(AR3,AR3 14d)

AR4 Retry(1day)

AR5 Retry(10000)

AR6 Replace(AR6,AR6 80%prt)

AR7 Warning()

AR8 Replace(AR8,AR8 14d)

AR9 Abort()

AR10 Replace(AR10,AR10 3days)

Table 5.5: Evoreq operations for AwReqs

107

CHAPTER 5. QUALITATIVE ADAPTATION FOR MULTIPLE FAILURES

change means that subsequent executions of the base system will see only

R’. As it is presented in Table 5.5 AR2, AR3, AR6, AR8 and AR10 can

be replaced by other requirements with weaker quality constraints. For

example, for Good participation, instead of expecting 90% participation we

could lower expectations to 80%. For the AwReqs AR1, AR4 and AR5 we

do not weaken requirements but rather postpone dealing with them, using

the Retry(time) operation. For AR7 and AR9 we use the EvoReq opera-

tions Warning() and Abort() respectively. The first one prints a warning

message and the second one suspends the requirement altogether.

Now that all the required input for Zanshin has been specified we present

a case of multiple failures and how these are resolved. The adaptation re-

quirements for the framework are those presented in Figure 5.1 and the

predefined value of V P1 is Adapt Optimistically. The monitor compo-

nent checks periodically every 1 hour if there are any failures. In the first

scenario the monitor detects failures of AR1, AR2. Then the Failure Man-

ager collects the parameters than can tune failing indicators. According

to Table 5.3 for AR1 the only option is to decrease RF (required fields to

organize a meeting) and for AR2 either decrease RfM (Rooms for Meet-

ings available) or decrease V P2. There are though priority conflicts with

non-faillling AwReqs a) AR1 conflicts with AR6 and b) AR2 conflicts with

AR4 and AR8. The Decision-Maker takes into account the adaptation

goal Adapt Optimistically and ignores the priority conflicts. Therefore,

the Strategy Executor composes an adaptation strategy that executes two

operations decrease(RF) and decrease(RfM). The framework will wait

for the effects to take place and then examines if the indicators still need

improvement. The previous AwReqs are not failing anymore, but AR4

and AR8 are adversely affected as they are now failing. Moreover, the

Adaptation Manager because of these new failures switches to Adapt with

Compensation. The Decision Manager then decides to increase the param-

108

5.3. EVALUATION

eter RfM to improve AR4 and AR8 and executes the assigned EvoReq

operation for AR2 since it has the lowest priority and no other parame-

ter to be reconfigured. The result is a new strategy with the operations

increase(RfM) and Replace(AR2, AR2 200euro). The outcome is that

the new AR2 is not failing anymore and AR4 and AR8 are not failing.

5.3.2 Improved Adaptation

The previous version of Zanshin and Qualia adaptation mechanism were

ignoring the fact that there are cases where multiple failures cannot be

handled independently by treating individually and sequentially indicators

of failing AwReqs . The scenarios presented below demonstrate the advan-

tages that the new adaptation mechanism offers.

Scenario 1: The monitor detects failures for AR4 and AR8.

Qualia : The framework will treat first the failure that was detected first,

in this case AR4. The parameter RfM is increased due to the differ-

ential relation (7) of Table 5.3. If after the change AR4 is not failing

a new adaptation session starts for AR8 increasing V P2 due to the

differential relation (18). When AR8 ceases to fail as a consequence

of the parameters increment AR2 fails because of the negative impact

the changes (differential relations (4) and (5)). Then Qualia would

decrease again either RfM or V P2 (or both) in order for AR2 to re-

cover. It is obvious that such an adaptation mechanism will fall into

an infinite loop doing and undoing the same changes.

Qualia+: The framework is instructed how to adapt in these cases using

AdReqs as described in the example of the previous subsection.

Scenario 2: The monitor detects failures for AR5, AR6 and AR9.

109

CHAPTER 5. QUALITATIVE ADAPTATION FOR MULTIPLE FAILURES

Qualia : The framework treats again the failures sequentially changing

parameters that would result again in an infinite loop.

Qualia+: The Failure Manager finds MCA (maximum conflicts allowed

among the participants’ time-schedules) as only available parameter

which means that the Decision Maker has to choose between increas-

ing MCA to improve AR5 and AR9 and worsen AR6 or decrease

MCA to improve AR6 and worsen AR5 and AR9. The choice is

based on the priority values of the indicators shown in Table 5.4 and

since (1.58 + 0.64 > 1.63) AR5 and AR9 are preferred. The finally

result would be a strategy with the operations: a) increase(MCA)

and b) Replace(AR6, AR6 80%prt). This way we compensate for not

improving AwReq while meeting adaptation requirements.

We note that adaptation strategies could have also been composed defin-

ing rules that specify in what order should EvoReqs operations be executed

and under what circumstances. However, such rules are outside the scope

of requirements and hard for stakeholders to conceptualize, and therefore

define. Qualia+ allows stakeholders to define the policies by which such

conflicts should be resolved during the adaptation process. Moreover, the

dynamic composition of adaptation strategies means that the adaptation

process does not need to go off-line when adaptation requirements are

changed.

5.4 Chapter Summary

In this chapter we presented a requirements-based adaptation mechanism

that is able handle multiple concurrent requirements failures. To accom-

plish this, we have extended the Zanshin framework with two basic new

features. The first is the concept of AdReqs , which are requirements about

the adaptation process itself. Like all requirements, these come from the

110

5.4. CHAPTER SUMMARY

stakeholders and define policies the adaptation process has to comply with.

The second feature is a decision making mechanism that takes into ac-

count AdReqs to decide which requirements should be improved and which

have to be compensated temporarily or permanently by EvoReqs opera-

tions. The new adaptation mechanism, called Qualia+, makes it possible

for stakeholders to reflect their needs and preferences for the adaptation

process by assigning priorities and compensation operations to base system

requirements. Moreover, the fact that adaptation strategies are composed

dynamically allows stakeholders to change AdReqs during system opera-

tion.

111

Chapter 6

The Next Adaptation Problem

The formulation of the problem is often more

essential than its solution, which may be

merely a matter of mathematical or

experimental skill.

Albert Einstein

In this chapter we describe how the problem of choosing values for con-

trol parameters when indicators fail can be formulated as a constrained

multi-objective optimization problem. More specifically, we focus on the

Next Adaptation Problem, concerned with the selection of a new adaptation

to address one or more failures. One of the main challenges for any adapta-

tion mechanism is to select an optimal adaptation relative to one or more

objective functions, such as minimizing cost of adaptation, minimizing de-

gree of failure, and/or maximizing customer value. Hereby, we answer the

RQ4: How the self-adaptation problem is formulated as an optimization

problem and how it can be solved?

We answer this question by proposing a framework that does not just

choose a good adaptation for the failing requirements, but actually selects

an optimal one, relative to user-specified objective functions. In particular,

given an analytical model that describes the relation between requirements

success rates and control parameters, and given a set of failing require-

113

CHAPTER 6. THE NEXT ADAPTATION PROBLEM

ments, the adaptation mechanism searches for new values for control pa-

rameters that reduce the degree of failure, while optimizing given objective

functions which are related to quality attributes of the system. A quality

attribute is a measurable quantity associated with the goals of the system

e.g. time required to schedule a meeting or the average cost of meetings.

If there are several quality attributes, the adaptation chosen optimizes

them lexicographically [Ise82], i.e. best adaptations are selected relative

to the most important objective function, among those best adaptations

are selected relative to the second most important objective function, etc.

Finally, we evaluate our approach with two exemplars, namely the Meeting

Scheduler and an e-shop.

6.1 Problem Formulation

Tuning a control parameter results in a change of value of certain indicators

and quality attributes. Therefore, after every diagnosis, the available goals

and tasks are annotated with the potential contributions that can provide

to the associated indicators as shown in Figure 6.1. In this example the full

form of the goal model (the possible values for CV s are represented as OR-

refinements) is captured along with impact of each goal or task to indicators

and quality attributes based on the control parameter profile presented

in Table 6.1. More specifically, increasing FhM from 70% to 100% will

result in a decreased I3 by 1.5%, whereas the increasing the percentage of

maximum allowed conflicts (MCA) over the number of invitees from 20%

to 40% increases I3 by 1.6%. Each alternative results in different time

that it takes for the goal Find Date to be fulfilled and therefore there is an

annotation with the value of the quality attribute find date time for each

of them. The values of Table 6.1 as well as the those for quality attributes

are provided by domain experts and can be updated if necessary to increase

114

6.1. PROBLEM FORMULATION

precision.

Table 6.1: Control Parameter Profile.

∆CP ∆I3(%)

MCA ±0.08

FhM ∓0.05

V P3{automatically → manually} +6

schedule

automatically

MCA = 0%

schedule

automatically

MCA = 10% schedule

automatically

MCA = 20%

schedule

automatically

MCA = 30%

schedule

automatically

MCA = 40%

current value

schedule_time=0.2h

ΔΙ3 = -1,6%

schedule_time=0.1h

ΔΙ3 = -0,8%

schedule_time=0.2h
ΔΙ3 = + 0,8%

schedule_time=0.4h

ΔΙ3 = + 1,6%

schedule_time=0.5h

OR

schedule

manually

OR

ΔΙ3 = + 6%

schedule_time = 1h

Collect

Timetables

FhM = 50%

Collect

Timetables

FhM = 60%

Collect

Timetables

FhM = 100%Collect

Timetables

FhM = 70%

current value

OR

ΔΙ3 = +1%

ΔΙ3 = +0,5%

ΔΙ3 = -1,5%

…

…
…

…

…

…
…

VP3

Figure 6.1: Goal model annotated with contributions

Each time one or more indicators fail, the goal model must be annotated

based on what were the previous values of the control parameters and the

control parameter profile.

115

CHAPTER 6. THE NEXT ADAPTATION PROBLEM

When the measured value of an indicator Imj is below the threshold Ioj
by Rj = Ioj − Imj , a new adaptation is triggered in order to minimize Rj

(ideally, it should be zero) for every indicator.

Definition 1 (Indicator Cost-Function) Let DI = {Im, Io, R,AS ′}, be

the diagnosis for the indicator I, where Im is its measured value, Io is its

threshold, R = Io − Im and AS ′ the set of all available goals or tasks that

can contribute to the current value of I positively, negatively or zero. An

Indicator Cost-Function F I is defined as F I = R+
∑

∆I, where
∑

∆I is

the the sum of contributions that I will receive by the next adaptation.

According to Figure 6.1 if the next adaptation includes FhM = 60%

and schedule manually is selected,
∑

∆I3 = 0.5+6 = 6.5%. Therefore, the

indicator I3 is going to be increased by 6.5%. The target of the adaptation

mechanism is to minimize all Indicator Cost-Functions. However, due to

the presence of conflicting contributions among the indicators the adapta-

tion mechanism needs to settle for a trade-off. Towards this direction, we

prioritize all indicators using AHP, eliciting weights that represent their

importance.

Definition 2 (Global Cost-Function) Let F be the set of all Indicator

Cost-Functions and W the set of their respective weights. A Global Cost-

Function FG is defined as FG =
∑
wj × F I

j , where wj ∈ W and F I
j ∈ F .

The role of the adaptation mechanism is twofold. First, a configuration

of the goal model must be found so that the root goal is satisfied while the

Global Cost-Function is minimized. In other words, the next adaptation

problem consists of a combination of two different problems a) satisfiabil-

ity of all constraints and b) multi-objective optimization. Such combined

problems are solved by reasoning technologies, notable Satisfiability and

Optimization Modulo Theories (SMT/OMT) [ST15].

116

6.2. PROMETHEUS FRAMEWORK

In Figure 6.1 apart from the contributions to the indicators, goals and

tasks are also annotated with certain kinds of costs. For example, the

value selection for MCA includes the amount of time it takes to schedule a

meeting’s date (finddate time), whereas the value for FhM determines the

time it takes to collect timetables (collection time = FhM × 0.02). Stake-

holders, usually require the satisfaction of their goals with the minimal

cost adaptation. This means that the total time for scheduling a meeting

(total scheduling time = collection time + find date time) must also be

minimized. The Next Adaptation Problem can encompass optimizations

relative to other costs, such as total scheduling time.

Definition 3 (Next Adaptation Problem) Let P = {FG, QA1, .., QAn,

AS ′} be a tupple where FG is a global cost-function, QA1, ..., QAn a set

of quality attributes, and AS ′ the new adaptation space that includes all

the available control parameters. The Next Adaptation Problem refers to

finding an optimal configuration over the goal model that minimizes FG

and lexicographically optimizes each quality attribute (based on stakeholder

preferences), wrt to the availability of goals and tasks in AS ′.

6.2 Prometheus Framework

In the previous section we presented how the adaptation process is mod-

elled as an optimization problem using goal models and a quantitative

information about the relationship between control parameters and indi-

cators. This section describes the steps of the adaptation process at run-

time as well as the proposed Prometheus framework, whose architecture is

shown in Figure 6.2.

Prometheus interacts with the target system and its environment through

monitors and actuators that are the responsibility of system designers

to build and usually are application-specific. The internal mechanism of

117

CHAPTER 6. THE NEXT ADAPTATION PROBLEM

Environment

OptiMathSAT

Evolution Manager

Failure Manager

Diagnostic Component

M
o

d
e
l
M

a
n

a
g

e
r EvoReqs

Adaptation
Space

logs

goal
model

CP
profile

monitorsactuators

Target System

optimal
adaptation

Indicator values

Figure 6.2: Prometheus framework

Prometheus consists of five components described below.

Diagnostic Component This component reads the system logs and rea-

sons about the root causes of the identified failures. More specifically,

discovers denied domain assumptions or failing tasks that could not be

performed. These domain assumptions and tasks are marked as denied in

the new available adaptation space constraining the available options for

finding the optimal next adaptation. For instance, if the domain assump-

tion DA1 in Figure 6.3 is denied then t3 cannot be selected as an option for

118

6.2. PROMETHEUS FRAMEWORK

collecting timetables and due to a goal constrain neither t8 can be selected

for finding a date.

Failure Manager This component reads the system logs and measures

the success rates of each indicator. When the measured value of one or

more indicators is found below the threshold imposed by the associated

AwReq a new adaptation is triggered and a new configuration over the

goal model must be chosen.

Evolution Manager This component reads system logs and checks if any

precondition holds; if it does, the goal model is updated in accordance with

the EvoReq .

Model Manager This component stores the control parameter profile of

the system and the elicited goal model. Each time a new adaptation is

triggered the goal model is annotated with the impact values of each goal

to the indicators.

OptiMathSAT This component receives the annotated goal model along

with the new adaptation space that disables a certain amount of alter-

natives. Based on this model and the measured values of the indicators

produces an optimal next adaptation.

To give a better understanding of how the framework operates, we de-

scribe every step followed for finding the next adaptation. The steps are:

1. Collect system logs. The success or failure of the executed tasks is

recorded in logs collected by the designed monitors.

2. Detect failures. The Failure Manager compares measured values of

the indicators with those that are imposed by their associated AwReqs .

If one or more failures are detected a new adaptation is triggered.

119

CHAPTER 6. THE NEXT ADAPTATION PROBLEM

3. Find root causes. The diagnostic tool provides the new adaptation

space which excludes the goals that caused the detected failures and

marks as denied the domain assumptions that do not hold any more.

4. Apply EvoReqs.The Evolution Manager updates the goal model

with EvoReqs if any of the preconditions specified applies.

5. Annotate the goal model. The Model Manager annotates the goal

model based on the control parameter profile.

6. Find Optimal Next Adaptation. OptiMathSAT produces an op-

timal adaptation.

7. Apply new adaptation. The new adaptation is applied to the target

system by the actuators.

6.3 Evaluation

In this section we describe the Meeting-Scheduler and E-shop exemplars

as well as the evaluation process of Prometheus by using failure scenarios.

6.3.1 The Meeting-Scheduler Exemplar

As we discussed in the previous chapters, the main goal of the Meeting-

Scheduler application is to receive meeting requests and produce meeting

bookings. Figure 6.3 captures system goals. For the top goal to be satisfied,

timetables must be collected (satisfy G1), make a booking for every meet-

ing (satisfy G2) and allow the meeting organizers to manage their meetings

(satisfy G3). The timetables can be collected by phone, by e-mail, or au-

tomatically by the system. However, the third option is available only if

the meeting participants are using the system calendar. Next, booking a

meeting involves finding a location and an appropriate date. The system

120

6.3. EVALUATION

G
0

:S
c

h
e

d
u

le

M
e

e
ti

n
g

L
o

w
 C

o
s

t

m
in

im
iz

e
d

a
il
y

 c
o

s
t

G
o

o
d

P

a
rt

ic
ip

a
ti

o
n

m
a

x
im

iz
e

a

v
e

ra
g

e
 p

a
rt

ic
ip

a
ti

o
n

G
1

:
C

o
ll
e

c
t

T
im

e
ta

b
le

s

t3
:

b
y
 s

y
s
te

m

t2
:

b
y
 e

-m
a

il
t1

:
b

y
 p

h
o

n
e

G
2

:
B

o
o

k
 M

e
e

ti
n

g

G
3

:
M

a
n

a
g

e

M
e

e
ti

n
g

t1
1

:
e

d
it

m
e

e
ti

n
g

t1
0

:c
a

n
c

e
l

m
e

e
ti

n
g

t9
:c

o
n

fi
rm

m
e

e
ti

n
g

t1
3

:e
-m

a
il
 c

h
a

n
g

e
s

to
 p

a
rt

ic
ip

a
n

ts

t1
2

:s
e

n
d

re
m

in
d

e
r

V
P

2

F
h

M

F
a

s
t

S
c

h
e

d
u

li
n

g

M
in

im
iz

e

s
c

h
e

d
u

li
n

g
 t

im
e

(A
R

1
)

n
o

tT
re

n
d

D
e

c
re

a
s

e
(7

d
,2

)

N
o

R

(A
R

3
)

N
e

v
e

rF
a

il t8
:

s
c

h
e

d
u

le

a
u

to
m

a
ti

c
a

ll
y

G
6

:F
in

d
 D

a
te

t7
:

s
c

h
e

d
u

le

m
a

n
u

a
ll
y

V
P

3

G
5

:
F

in
d

 L
o

c
a

ti
o

n

t4
:

s
e

le
c

t

fr
o

m
 l
is

t

t5
:s

e
le

c
t

fr
o

m

s
u

g
g

e
s
ti

o
n

s

V
P

1

H
fM

R
fM

M
C

A

-

+

G
o

a
l

T
a

s
k

S
o

ft
-G

o
a

l
Q

u
a

li
ty

 C
o

n
s

tr
a

in
t

A
w

R
e

q

K
e

y
:

C
o

n
tr

o
l
V

a
ri

a
b

le

+

R
e

fi
n

e
m

e
n

t
b

in
d

in
g

-

C
o

n
fl

ic
t

e
d

g
e

D
o

m
a

in
 A

s
s

u
m

p
ti

o
n

R
e

fi
n

e
m

e
n

t

D
A

1
:

P
a

rt
ic

ip
a

n
ts

 u
s

e

th
e

 s
y

s
te

m
 c

a
le

n
d

a
r

A
N

D

A
N

D

A
N

D

O
R

O
R

O
R

G
4

:
C

o
ll
e

c
t

a
u

to
m

a
ti

c
a

ll
y

A
N

D

G
7

:
B

o
o

k
 R

o
o

m

t6
:

s
c

h
e

d
u

le

o
n

li
n

e
 m

e
e

ti
n

g

(A
R

4
)

N
e

v
e

rF
a

il

(A
R

2
)

S
u

c
c

e
s

s
R

a
te

(8
0

%
)

G
8

:
s

e
n

d
a

d
d

it
io

n
a

l
re

m
in

d
e

rs

D
A

2
:

P
a

rt
ic

ip
a

n
ts

 u
s

e

n
o

t
p

u
n

c
tu

a
l

A
N

D

A
N

D

F
ig

u
re

6.
3:

M
ee

ti
n
g-

S
ch

ed
u
le

r
go

al
m

o
d
el

121

CHAPTER 6. THE NEXT ADAPTATION PROBLEM

offers at the same time the opportunity to book a room or schedule an

online meeting in case rooms are not available. A room can be selected

from the entire list of existing rooms or from the suggested rooms by the

system (t4 and t5 respectively). In the same manner, a date can be selected

manually by the meeting organizer or the system selects one automatically

(t7 and t8 respectively). A date though can be selected automatically only

if the timetables are collected automatically and vice versa. Finally, meet-

ing organizers can confirm, cancel and edit their meetings (t9, t10 and t11

respectively), while the system is responsible for e-mailing the participants

in case a modification takes place (t13) and send more reminders in case

the participants are not punctual enough.

To monitor the success of these requirements, four AwReqs are placed

over the certain goals that are prone to failure. AR1 dictates that goal G1

must not fail more than twice a week and AR4 imposes on AR1 to never

fail. Next, AR2 prescribes that at least for 80% of the meetings a room

must have successfully be found and AR3 that G6 must always be fulfilled.

In addition to FhM and MCA, other control parameters are available

to manipulate the success rate of the indicators associated to the afore-

mentioned AwReqs . First, the goal Book Room is related with two CV s

that control the number of local rooms RfM and hotel rooms HfM that

are reserved for meetings. The number of additional reminders NoR asso-

ciated to task t12 is yet another CV . Along with the CV s there are three

V P s that stem from the OR-refinements of the goal model. In Table 6.2

the full control parameter profile for the Meeting-Scheduler application is

presented.

In Figure 6.3 three soft goals are specified to capture the non-functional

requirements of the system. The Low Cost soft goal is associated with

the quality attribute daily cost. The cost of a hotel rooms is 20e and the

daily cost for calls is call cost = 30e if timetables are collected by phone,

122

6.3. EVALUATION

Table 6.2: Control Parameter Profile.

∆CP ∆I2(%) ∆I3(%) ∆I4(%)

MCA 0 ±0.08 0

FhM 0 ∓0.05 0

RfM ±2.1 0 0

HfM ±2.7 0 0

NoR 0 0 0

V P1{t4→ t5} +2 0 0

V P1{t5→ t4} −2 0 0

V P2{t1→ t2} 0 0 −2

V P2{t1→ G4} 0 0 +6

V P2{t2→ t1} 0 0 +4

V P2{t2→ G4} 0 0 +6

V P2{G4→ t1}(DA1 is true) 0 0 −5

V P2{G4→ t2}(DA1 is true) 0 0 −6

V P2{G4→ t1}(DA1 is false) 0 0 +5

V P2{G4→ t2}(DA1 is false) 0 0 +3

V P3{t7→ t8} 0 −2 0

V P3{t8→ t7} 0 +6 0

otherwise call cost = 0e. Therefore daily cost = 20×HfM + call cost is

a quality attribute that must be minimized. Next, the soft goal High Par-

ticipation is associated with the quality attribute average participation =

80 + 0.2× FhM − 0.2×MCA+ 5×NoR(%) which must be maximized.

When V P3 = t7 then MCA = 20. Finally, the soft goal Fast Scheduling

is calculated as described in the previous sections.

To evaluate our approach we implemented a simulation of the Meeting-

Scheduler application. In this simulation we encoded a failure scenario and

inserted it as input to both Prometheus and Zanshin integrated with the

Qualia as described in [SLM12a]. Both frameworks are requirements-based

and this has been our main motivation for carrying out this comparison.

123

CHAPTER 6. THE NEXT ADAPTATION PROBLEM

� �
! I2 = 72%, I3 = 94%, I4 = 87%
Current Configuration:
VP1=t5 , VP2=t3 , VP3=t8
MCA=10, FhM=70, NoR=0, RfM=6, HfM=4
! DA1 = false DA2 = false
! No EvoReqs apply
P1: MCA=20, FhM=78, NoR=0, RfM=12, HfM=3

VP1=t4 , VP2=t1 , VP3=t7
P2: MCA=20, FhM=78, NoR=0, RfM=3, HfM =10

VP1=t5 , VP2=t1 , VP3=t7

Output
P1: I2=79.9% , I3=100%, I4=92%

total_cost = 90
average_participation = 91.6%
total_scheduling_time = 6.6 hrs

P2: I2=78%, I3=100%, I4=92%
total_cost = 230
average_participation = 91.6%
total_scheduling_time = 6.6 hrs� �

Listing 6.1: Prometheus Output

However, Zanshin uses qualitative information for capturing the impact

of control parameters on indicators and does not optimize as opposed to

the quantitative and optimizing approach of Prometheus . Moreover, the

default adaptation algorithm of Zanshin select randomly a control param-

eter that contributes positively to the treated failure, which is increased

by a predefined amount of units. In order also to demonstrate the impor-

tance of lexicographic optimization we execute the adaptation process of

Prometheus with and without optimizing quality attributes. Among the

quality attributes cost is optimized first, participation second and schedul-

ing time third. In Listing 6.1 the results of the simulation are presented.

P2 marks the next adaptation and the consequent output of Prometheus

when only the Global Cost-Function is optimized whereas P1 also opti-

mizes (lexicographically) with respect to quality attributes. Finally, Z in

Listing 6.2 indicates the next adaptation and output produced by Zanshin.

The results in Listing 6.1 and Listing 6.2 show that Prometheus per-

124

6.3. EVALUATION

� �
! I2 = 72%, I3 = 94%, I4 = 87%
Current Configuration:
VP1=t5 , VP2=t3 , VP3=t8
MCA=10, FhM=70, NoR=0, RfM=6, HfM=4
! DA1 = false DA2 = false
! No EvoReqs apply

Output
Iteration 1
Z: I2=72.54% , I3=100% , I4=92%
Z: MCA= 20, FhM=70, NoR=0, RfM=6, HfM=6

VP1=t5 , VP2=t1 , VP3=t7
total_cost = 150
average_participation = 90%
total_scheduling_time = 6.6 hrs

Iteration 2
Z: I2=73.58% , I3=100% , I4=92%
Z: MCA= 20, FhM=70, NoR=0, RfM=6, HfM=8

VP1=t5 , VP2=t1 , VP3=t7
total_cost = 190
average_participation = 90%
total_scheduling_time = 6.6 hrs

Iteration 3
Z: I2=74.46% , I3=100% , I4=92%
Z: MCA= 20, FhM=70, NoR=0, RfM=10, HfM=8

VP1=t5 , VP2=t1 , VP3=t7
total_cost = 190
average_participation = 90%
total_scheduling_time = 6.6 hrs

Iteration 4
Z: I2=75.84% , I3=100% , I4=92%
Z: MCA= 20, FhM=70, NoR=0, RfM=14, HfM=8

VP1=t5 , VP2=t1 , VP3=t7
total_cost = 190
average_participation = 90%
total_scheduling_time = 6.6 hrs

Iteration 5
Z: I2=79.44% , I3=100% , I4=92%
Z: MCA= 20, FhM=70, NoR=0, RfM=18, HfM=10

VP1=t5 , VP2=t1 , VP3=t7
total_cost = 230
average_participation = 90%
total_scheduling_time = 6.6 hrs

Iteration 6
Z: I2=82.5% , I3=100% , I4=92%
Z: MCA= 20, FhM=70, NoR=0, RfM=22, HfM=10

VP1=t5 , VP2=t1 , VP3=t7
total_cost = 230
average_participation = 90%
total_scheduling_time = 6.6 hrs� �

Listing 6.2: Zanshin Output

125

CHAPTER 6. THE NEXT ADAPTATION PROBLEM

forms better than Zanshin since it exploits quantitative relations between

control parameters and indicators. On the other hand, Zanshin changes

by a fixed amount randomly chosen control parameters that is known to

improve the failing indicators. This means that it would take more itera-

tions for Zanshin to fix a failure or to minimize it. More specifically, in

the simulated failure scenario it took six steps until I3 and I4 converges

to the best possible value whereas I2 slightly overshoots. Moreover, the

results indicate that the qualities of the system are not taken into account

while deciding the next adaptation. Large number of iterations for the in-

dicators to converge to their prescribed thresholds, implies that Zanshin

is not suitable for rapidly changing environment, since by the tame a good

solution is found the failing indicators might be different. Given the result

of the simulation lexicographic optimization can provide the same results

for the failing indicators as the optimization of the Global Cost-Function

only, but also considerably improves quality attributes, such as total cost

in this case.

6.3.2 The E-shop Exemplar

The main goal of the E-shop application is to place orders of goods that

clients buy online. Figure 6.4 captures the goals for this system. For the

top goal to be satisfied the customer must select the product they would

like to order (goal G1) and check-out the order (goal G2). The customer is

able to search for products they are interested in (task t1), view the details

of the product (goal G5) in textual mode (task t3) or multimedia mode

(task t4). For an order to be checked out the customer must fist login (task

t5). Then, the product’s availability is checked (goal G3). The goal G3

can be fulfilled either by making a new order (goal G6) or by removing the

selected item from the stock list (taksk t9). The product is ordered either

from a retailer (goal G7) or from a wholesaler (goal G8). A precondition for

126

6.3. EVALUATION

sending an order to a retailer or a wholesaler (tasks t7 and t8 respectively)

is a retailer or a wholesaler to be available (DA1 and DA2 respectively).

For the requirements of this exemplar we elicited three AwReqs . AR1

prescribes that multimedia mode for viewing product details must by used

10 times more than textual model and according to AR2 this constraint

must not fail more than 80% of the times. Next, the goal G2 must not fail

more than 95%.

The elicited AwReqs are related to three control parameters. AR2 can

be controlled by changing the value of V P1, or in other words witching

textual to multimedia mode and vice versa and the number of servers

(NoS) that are deployed to host the webpage of the e-shop. Finally, V P1

and V P2 can be used to control the success of AR3.

Table 6.3: Control Parameter Profile.

∆CP ∆I2(%) ∆I3(%) response

time(ms)

cancellation

rate(%)

NoS ±1.2 0 ∓200 0

V P1{t3→ t4} 3 0 +1000 0

V P1{t4→ t4} 3 0 +200 0

V P1{t4→ t3} −1 0 +1 0

V P1{t3→ t3} −0.2 0 0 0

V P2{G6→ t9} 0 +3.4 0 +4

V P2{t9→ G6} 0 0 0 −4

V P3{G7→ G8}
(DA1 is false)

0 +1.2 0 0

V P3{G8→ G7}
(DA2 is false)

0 +0.8 0 0

In Figure 6.4 four soft goals are specified to capture non-functional

requirements for the e-shop exemplar. First, High Performance is asso-

ciated with the quality attribute response time of the deployed servers,

which in this case is not only minimized but also constrained to be lower

127

CHAPTER 6. THE NEXT ADAPTATION PROBLEM

G
4

:
O

rd
e

r
B

e

P
la

c
e

d
G

3
:S

to
c

k
 B

e

C
h

e
c

k
e

d

G
2

:O
rd

e
r

B
e

C

h
e

c
k

e
d

 O
u

t

G
1

:P
ro

d
u

c
ts

B
e

 S
e

le
c

te
d

G
0

:P
ro

d
u

c
ts

B

e
 S

o
ld

t1
:s

e
a

rc
h

p
ro

d
u

c
t

t7
:s

e
n

d
 o

rd
e

r
to

re
ta

il
e

r

t6
:P

a
y
 O

rd
e

r

t5
:L

o
g

in

t4
:V

ie
w

 i
n

M
u

lt
im

e
d

ia

m
o

d
e

t3
:V

ie
w

 i
n

te
x
tu

a
l
m

o
d

e

t2
:a

d
d

p
ro

d
u

c
t

to
 c

a
rt

G
5

:D
e

ta
il
s

 B
e

V
ie

w
e

d

t1
0

:c
o

ll
e

c
t

d
e

li
v
e

ry

in
fo

rm
a

ti
o

n

t1
0

:c
o

n
fi

rm

o
rd

e
r

t9
:R

e
m

o
v
e

o
u

t
o

f
s
to

c
k

it
e

m
s

D
A

1
:

R
e

ta
il
e

r
is

a

v
a

il
a

b
le

G
6

:M
a

k
e

 n
e

w
O

rd
e

r

A
N

D

A
N

D
A

N
D

A
N

D

A
N

D

O
R

O
R

N
o

S

H
ig

h

P
e

rf
o

rm
a

n
c

e

re
s

p
o

n
s

e
 t

im
e

 <
 2

.5
m

s

L
o

w
 C

o
s

t m
in

im
iz

e
o

p
e

ra
ti

o
n

a
l
c

o
s

t

L
o

w
 O

rd
e

r
C

a
n

c
e

ll
a

ti
o

n
 R

a
te

m
in

im
iz

e
c

a
n

c
e

ll
a

ti
o

n
 r

a
te

H
ig

h
 U

s
a

b
il
it

y

m
a

x
im

iz
e

u
s

a
b

il
it

y

(A
R

1
)

C
o

m
p

a
ra

b
le

S
u

c
c

e
s

s
(t

3
,1

0
)

(A
R

2
)

S
u

c
c

e
s

s
R

a
te

(9
5

%
)

(A
R

3
)

S
u

c
c

e
s

s
R

a
te

(9
5

%
)

V
P

1

V
P

2

t8
:S

e
n

d
 o

rd
e

r
to

w
h

o
le

s
a

le
r

D
A

2
:

W
h

o
le

s
a

le
r

is

a
v

a
il
a

b
le

A
N

D

G
7

:
O

rd
e

r
fr

o
m

 r
e

ta
il
e

r

G
8

:
O

rd
e

r
fr

o
m

w

h
o

le
s

a
le

r

O
R

V
P

3

F
ig

u
re

6.
4:

E
-s

h
op

go
al

m
o
d
el

128

6.3. EVALUATION

� �
! I2 = 93%, I3 = 94%
!response time = 4000ms
!cancellation rate = 10 %
Current Configuration:
VP1=t4 , VP2=G6 , VP3=G7
NoS=3
! DA1 = false DA2 = true
! No EvoReqs apply

P: NoS=4
VP1=t4 , VP2=G6 , VP3=t8

Output
P: I2=99.6% , I3 =95.2%

usability = 5
response time = 1400ms
cancellationRate =6 %
cost = 1920 euro� �

Listing 6.3: Prometheus Output

than 2.5s. The disposal of more servers results in lower response time.

Next, High Usability is associated to the quality attribute usability which

taakes the value 5 when the website is viewed in multimedia mode and

the value 3 when text mode is selected. Next, Low Cost relates to the

quality attribute operational cost = server cost + ordering cost, where

server cos = 120×NoS and ordering cost is the cost of making a new or-

der which is 1200e in case the products are ordered from a wholesaler and

1000e in case it ordered from a retailer. The prices might vary through

time since they depend on which products are mostly sold in a particular

period of time and in what quantities. Therefore, it is responsibility of the

domain experts to update this numbers. Finally, Low Order Cancellation

Rate is associated with the quality attribute cancellation rate.

As for the Meeting-Scheduler exemplar also in this case we simulated a

failure scenario and we compare the responses of Prometheus and Zanshin.

The control parameter profile is presented in Table 6.3 whereas the results

output of Prometheus and Zanshin are depicted in Listing 6.3 and List-

ing 6.4 respectively.

129

CHAPTER 6. THE NEXT ADAPTATION PROBLEM

� �
! I2 = 93%, I3 = 94%
!response time = 4000ms
!cancellation rate = 10 %
Current Configuration:
VP1=t4 , VP2=G6 , VP3=G7
NoS=3
! DA1 = false DA2 = true
! No EvoReqs apply

Output
Iteration 1
Z: NoS=4

VP1=t4 , VP2=t9 , VP3= -
Z: I2=97.2% , I3 =97.4%

usability = 5
response time = 4000ms
cancellationRate = 14 %
cost = 480 euro� �

Listing 6.4: Zanshin Output

The results in Listing 6.3 and Listing 6.4 show that both frameworks

managed to find a good solution for the failing indicators. However, as in

the previous case Prometheus managed to find optimal solutions for the

soft goals as well.

6.3.3 Discussion

The experiments ran on a computer with an Intel i5 processor at 2.5GHz

and 16GB of RAM. Both OptiMathSAT [ST15] and its extension CGM−
tool [NSGM16b] which has been the basis of the Prometheus prototype

have been tested in terms of scalability and can handle up to 8000 nodes in

negligible time. Compared to Zanshin, Prometheus is able to select among

all the equivalent solutions the one that optimizes the quality attributes of

the system as well.

The main bottleneck of the approach is producing the control parameter

profile, which is a human-driven process and the time overhead depends

on the amount of the control parameters and the level of expertise of the

software designers.

130

6.4. CHAPTER SUMMARY

6.4 Chapter Summary

In this chapter we proposed a framework that can compose an optimal

adaptation when one or more requirements fail. The optimal nature of the

produced adaptation refers to the minimization of the degree of failure of

the system’s functional requirements while non-functional properties of the

system are optimized lexicographically according to stakeholder priorities.

Our proposed framework is built on top of a diagnostic component that

reads the logs of the monitored system and reasons about the causes of

failure. Failing domain assumptions and tasks define the new adaptation

space where all the potential solutions lie in. Then, each alternative of

the adaptation space is annotated with the quantitative impact that will

bare to the indicators. Finally, the OptiMathSAT solver finds the best

alternative in the new adaptation space.

The contribution of the chapter of this thesis, is a requirements-driven

approach that determines optimal adaptations for multiple failures and

with respect to multiple objective functions. Moreover, we have demon-

strated experimentally that our proposal performs better than a qualita-

tive, requirements-driven framework (Zanshin), and also established that

our proposal works for real world-size problems.

131

Chapter 7

Control-based design of self-adaptive

software

All models are wrong; some models are useful.

George E. P. Box

In Chapter 1 we mentioned that one the fundamental components of

self-adaptive systems, the feedback loop, is adopted from Control Theory.

Then, in Chapter 2 we presented various approaches that have as a basis a

controller that decides the values of control parameters in order to reduce

the control error of the monitored goal(s). Using a controller as an adapta-

tion mechanism provides also a set of formal guarantees that we described

in Chapter 1 as SASO properties.

A key element of software adaptation is to capture the dynamics of the

controlled system. In the previous chapter the adopted model ignored the

time dimension in the relation between control input and control output.

More specifically, we assumed that the expected increase/decrease of an

indicator after changing the value of one or more control parameters will be

instant. However, this assumption does not always hold and more advanced

models are required, that involve also the time dimension. In Section 2.1

we presented the analytical model, shown below, for capturing also the

133

CHAPTER 7. CONTROL-BASED DESIGN OF SELF-ADAPTIVE SOFTWARE

impact of time on the composition of adaptation strategies.x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t),
(7.1)

In this chapter we present a control-theoretic approach, named Model

Predictive Control that has been used to solve myriad of problems in other

engineering disciplines, such as automotive engineering, chemical engineer-

ing etc. More specifically, we illustrate step by step how an MPC con-

troller is designed and how each of its components relates to the software

engineering ones we have used until now for developing adaptation mech-

anisms. Our purpose is to put the foundations for building an adaptation

framework that includes an MPC controller as a decision mechanism. This

framework is described in detail in the next chapter.

7.1 Model Predictive Control

Based on the dynamic model of Equation (7.1), different control strategies

can be designed. Hereby, we present a receding horizon MPC [CBA04,

Mac02] that is able to manage the achievement of multiple conflicting goals

by means of multiple control parameters. When the controller is comple-

mented with a Kalman Filter (KF) [Lju99], it can learn online how to adapt

the controller to the system’s behaviour, overcoming inevitable inaccura-

cies coming from dynamics not captured from model (7.1) and unknown

disturbances acting on the system.

MPC is a control technique that formulates an optimization problem to

use a set u(·) of control parameters (actuators) to make a set of indica-

tors y(·) achieve a set of goals y◦(·) over a prediction horizon H. At every

control instant t, the values of the control parameters u? are obtained by

minimizing a cost function Jt, subject to given constraints. The optimiza-

134

7.1. MODEL PREDICTIVE CONTROL

tion problem includes a prediction of the future behaviour of the system

based on the dynamic model (7.1). An obtained solution is therefore a plan

of the future control parameter values u? =
[
u?t , u

?
t+1, . . . , u

?
t+H−1

]
over the

prediction horizon. This planning is especially needed in the case of delay

in the effects of changes of control parameters. For example, increasing

the number of hotel rooms requires approval by the administration coun-

cil that meets only every 2 days. Hence, the adaptation mechanism must

be aware of when changes to control parameters impact on the indicators

and make look-ahead plans. According to the receding horizon principle,

only the first computed value u?t is applied to the system, i.e. u(t) = u?t .

The reason is that for real-world systems, it is impossible to derive perfect

models that describe their dynamic behaviour. Therefore, the plan must

be corrected at each step and the horizon recedes by one unit. Another

reason the plan might fail is a change in the external disturbances (e.g.

system workload). In other words, the plan would have been followed as

is only if a perfect model were available and no disturbances were present,

which in practice is impossible. To tackle this obstacle, at the next control

instant, a new plan is computed according to the new measured values of

the indicators. This accounts for modelling uncertainties, and possible un-

predictable behaviours of the system that are not captured by model (7.1).

135

CHAPTER 7. CONTROL-BASED DESIGN OF SELF-ADAPTIVE SOFTWARE

7.1.1 Formal description

In order to present the underlying rationale of the MPC, it is convenient

to rewrite dynamic model (7.1) in an “augmented velocity form”:

x̃(t+1)︷ ︸︸ ︷[
∆x(t+ 1)

y(t)

]
=

Ã︷ ︸︸ ︷[
A 0n×p

C Ip×p

] x̃(t)︷ ︸︸ ︷[
∆x(t)

y(t− 1)

]
+

B̃︷ ︸︸ ︷[
B

0p×m

]
∆u(t)

y(t) =

C̃︷ ︸︸ ︷[
C Ip×p

] x̃(t)︷ ︸︸ ︷[
∆x(t)

y(t− 1)

]
(7.2)

Here, ∆x(t) = x(t)−x(t−1) is the state variation and ∆u(t) = u(t)−u(t−
1) is the control increment. The output of the system y(t) is unchanged,

but is now expressed with respect to the state variations ∆x(t) and not with

respect to the state values x(t). The new dynamic model (7.2) is used as

a prediction model over a finite horizon H. This means that the controller

will use it to predict what values of the states and of the indicators are

going to be after H time steps from the current one. The MPC controller

minimizes the cost function

Jt =
H∑
i=1

[y◦t+i − yt+i]
T Qi [y◦t+i − yt+i] (7.3)

+ [∆ut+i−1]
T Pi [∆ut+i−1] , (7.4)

where Qi ∈ Rp×p and Pi ∈ Rm×m are symmetric positive semi-definite

weighting matrices, that respectively represent the importance of the dis-

tance between the goals and the current values and the “inertia” in chang-

ing the values of the actuators. In particular, Qi is a diagonal matrix that

contains the values of the set of weights that can be obtained by apply-

ing Analytical Hierarchy Process (AHP) [KR97], in which the stakeholders

136

7.1. MODEL PREDICTIVE CONTROL

perform pairwise comparisons to prioritize the elicited goals. This means

that when not all the goals are simultaneously feasible (for example because

one conflicts with another), the controller will favour the satisfaction of the

goals with the higher weights. The matrix Pi preferences over control pa-

rameters. When a control parameter is requested not to change frequently

its value the assigned weight must be relatively smaller than most of the

weights of the other control parameters. In the following we will consider

the weight matrix Q as Q := Q1 = Q2 = . . . = QH , and the weight matrix

P as P := P1 = P2 = . . . = PH , i.e., the weight matrices are considered to

be constant along the prediction horizon.

The resulting MPC optimization problem can written as follows:

minimize∆ut+i−1
Jt (7.5)

subject to umin ≤ ut+i−1 ≤ umax,

∆umin ≤ ∆ut+i−1 ≤ ∆umax,

x̃t+i = Ã · x̃t+i−1 + B̃ ·∆ut+i−1,

yt+i−1 = C̃ · x̃t+i−1,

i = 1, . . . , H,

xt = x(t).

This formulation is equivalent to a convex Quadratic Programming (QP)

problem [Mac02]. The problem has time complexity O(H3m3) [WB10].

A solution to the problem consists of a plan of optimal future ∆u?t+i−1,

i = 1, . . . , H, but only the first one is applied, i.e., ∆u(t) = ∆u?t , as we

explained earlier. The new control signal is then:

u(t) = u(t− 1) + ∆u(t). (7.6)

The MPC strategy assumes that the state of the system is measurable,

but in many cases this is not possible. Indeed, since there is often no

correlation with physical quantities, it is impossible to give a meaningful

137

CHAPTER 7. CONTROL-BASED DESIGN OF SELF-ADAPTIVE SOFTWARE

interpretation to x(t), hence it is impossible to measure. However, based

on the dynamic model (7.1), it is possible to estimate its value measuring

the values of y(t) and u(t). To accomplish this, we here use a KF that finds

an estimate x̂(t + 1) of the state x(t + 1), measuring the applied control

signal u(t) and the output y(t).

ŷ(t) = Cx̂(t)

x̂(t+ 1) = Ax̂(t) +Bu(t) +K (y(t)− ŷ(t))
(7.7)

Note that the variables of the KF are commonly denoted by a “hat”,

i.e., x̂(k) and ŷ(k), to distinguish them from the variables of the dynamic

model (7.1). Based on the state estimate x̂(t), the KF shown in (7.7) com-

putes an estimate of the output ŷ(t), to measure the difference between the

predicted value ŷ(t) and the real value y(t). The value of K, called Kalman

gain, weights the discrepancy between the predicted value ŷ(t) and the real

value y(t), adjusting the dynamics of the KF [Lju99]. The estimate x̂(t)

can be used, in place of x(t), to solve the optimization problem (7.5).

The adopted KF has a twofold functionality. First, as we just described,

based on the dynamic model (7.1), it computes a state estimate x̂(t) that

the MPC uses to compute the next control action. Second, it is adapting

the state estimate to the actual behaviour of the system. This is relevant

for a number of reasons: the controlled system may change its behaviour

over time, there might be unpredictable disturbances acting on the sys-

tem, or the system is not following the linear dynamics of the dynamic

model (7.1). In all the cases, the KF is adapting online the choice of the

estimate x̂(t), returning a value that is compatible with the input-output

behaviour of the running system, as if it was described exactly by the

dynamic model (7.1) [Lju99].

The block diagram for the resulting control scheme is represented Fig-

ure 7.1.

138

7.1. MODEL PREDICTIVE CONTROL

MPC Eq. (7.6) System

KF

y◦(t) ∆u(t) u(t) y(t)

x̂(t)

Figure 7.1: Control scheme.

7.1.2 Formal guarantees

Applying Control Theory to software systems provides a set of formal guar-

antees about the quality of the adaptation process [FMA+15]. The MPC

adopted in this work belongs to a class of controllers named optimal con-

trollers, since the computation of control decisions is based on the solution

of an optimization problem. In particular, the MPC accounts for model

predictions in order to make optimal adaptation plans with respect to

system requirements, and compliance to the requirements about the adap-

tation process itself [ASM14].

The formal guarantees for the MPC have as follows. First, it is possible

to ensure that all the goals are reached, subject to actuators constraints,

i.e. there exists a value of the actuators within the given constraints spec-

ified in the optimization problem (7.5) that allow the system to reach its

goals. If this is not the case, due to the optimal nature of the controller,

the MPC finds a configuration for the actuators that minimizes the dis-

tance between the indicators and the goals. Such a distance depends on the

chosen weights for each indicator in the cost function of the optimization

problem (7.5).

Furthermore, since the cost function accounts for a time horizon, it is pos-

sible to guarantee that the convergence time is minimum. The dynamic

139

CHAPTER 7. CONTROL-BASED DESIGN OF SELF-ADAPTIVE SOFTWARE

model (7.1) relates control parameters and indicators including the dimen-

sion of time. Therefore, the adaptation mechanism is able to drive the

system to the goals as soon as possible, as specified by the cost function of

the optimization problem (7.5). Moreover, the optimization problem (7.5)

can be easily extended in order to account for additional constraints, such

as for example ones on the indicators. AwReqs and AdReqs impose such

constraints over the elicited goals and the adaptation process respectively

which must be taken into consideration when a new adaptation plan is

produced.

The MPC formulation is well suited for addressing also real-time is-

sues and have been applied to various domains, such as aircraft control

[QB03, HJS+14a]. Since the proposed solution requires a solution to an

optimization problem at each control instant, it is critical to discuss pos-

sible such issues. In many cases, in fact, the time required for computing

the value of the next control action might be longer than the time between

two subsequent control actions. In order to overcome this challenge, there

is significant literature in the control community on how to implement

fast solvers [JKC12, Gis14], especially for embedded systems [JGR+14],

possibly co-designing also a dedicated hardware for the solution in case

of critical systems [HJS+14b]. An overview on the matter can be found

in [ZRD+14].

In many cases such kind of advanced algorithms are not required when

dealing with software components, and for the most critical applications

some modification to the control problem can help in reducing the com-

plexity. For example, one way to reduce the complexity is to set ∆ut+1 =

∆ut+2 = . . . = ∆ut+H−1 = 0, and let the optimization problem decide only

the value for ∆ut, i.e. the one that will be actually applied to the system.

This modification reduces the complexity to O(m3).

Another way to deal with real-time issues is to exploit simple properties

140

7.2. DESIGN PHASE

of interior point algorithms. In fact, the solution is obtained in a fixed

amount of steps with an iterative method. The current solution is always

a suboptimal yet feasible solution to the optimization problem. This means

that if the iterative method did not converge before a new control action

is required, it can be forced to stop and return the current sub-optimal

solution. This allows the controller to fulfil real-time deadlines.

Finally, another possibility to deal with real-time deadlines is exploiting

the proactive nature of the MPC. As we mentioned earlier, the MPC is

computing at each iteration step a plan of future actions ∆ut+i−1, i =

1, . . . , H, then according to the receding horizon principle, only the first one

is applied, i.e., ∆u(t) = ∆u?t . Assuming that at the next control instant,

the solver takes more time to converge and that a new control action is

required before the optimal solution is found, one can store the previously

computed plan and apply the second control action, i.e., ∆u(t+1) = ∆u?t+1.

This is obviously suboptimal, since it neglects the last information about

the measured output, but it is able to fulfil the real-time deadlines.

7.2 Design phase

Our approach starts with the elicitation of all kinds of requirements about

the target system. When all goals are refined, AwReqs are assigned to those

that are considered most important and prone to failure. An AwReq ARi

defines a reference goal y◦i (·) for the controller’s output. Table 7.1 enlists

all the reference goals for the Meeting-Scheduler exemplar as depicted in

Figure 7.2.

As we mentioned earlier, the constraints imposed by AwReqs are not

always feasible or might become infeasible in the future. For instance, the

prices of hotel rooms rise every year and consequently I1 will fail more often

as time passes. Alternatively, during summer prices are usually higher.

141

CHAPTER 7. CONTROL-BASED DESIGN OF SELF-ADAPTIVE SOFTWARE

G
0

:S
c

h
e

d
u

le

M
e

e
ti

n
g

L
o

w
 C

o
s

t

W
e

e
k

ly
 c

o
s

t
m

u
s

t
b

e
 l
e

s
s

th

a
n

 5
0

0
€

(A
R

1
)

S
u

c
c

e
s

s
R

a
te

(8
5

%
)

G
o

o
d

P

a
rt

ic
ip

a
ti

o
n

8
0

%
 o

f
th

e
 p

a
rt

ic
ip

a
n

ts

s
h

o
w

 u
p

(A
R

4
)

S
u

c
c

e
s

s
R

a
te

(7
5

%
)

G
1

:
C

o
ll
e

c
t

T
im

e
ta

b
le

s t3
:
a

u
to

m
a

ti
c

a
ll
y

t2
:
b

y
 e

-m
a

il
t1

:
b

y
 p

h
o

n
e

G
2

:
B

o
o

k
 M

e
e

ti
n

g

G
3

:
M

a
n

a
g

e

M
e

e
ti

n
g t9

:
e

d
it

m
e

e
ti

n
g

t8
:c

a
n

c
e

l

m
e

e
ti

n
g

t7
:c

o
n

fi
rm

m
e

e
ti

n
g

t1
1
:e

-m
a

il
 c

h
a

n
g

e
s

to
 p

a
rt

ic
ip

a
n

ts

t1
0
:s

e
n

d

re
m

in
d

e
r

V
P

1

F
h

M

F
a

s
t

S
c

h
e

d
u

li
n

g
S

c
h

e
d

u
le

s
 a

re

p
ro

d
u

c
e

d
 i
n

 1
 d

a
y

(A
R

5
)

S
u

c
c

e
s

s
R

a
te

(9
0

%
)

(A
R

6
)

n
o

tT
re

n
d

D
e

c
re

a
s

e
(7

d
,2

)

G
o

o
d

 Q
u

a
li
ty

M
e

e
ti

n
g

s

M
e

e
ti

n
g

 r
o

o
m

s
 h

a
v

e

th
e

 r
e

q
u

ir
e

d
 e

q
u

ip
m

e
n

t

(A
R

7
)

S
u

c
c

e
s

s
R

a
te

(9
0

%
)

N
o

R

(A
R

3
)

N
e

v
e

rF
a

il

t6
:F

in
d

 D
a

te
G

4
:

F
in

d
 R

o
o

m

t4
:
s
e

le
c

t

fr
o

m
 l
is

t

t5
:s

e
le

c
t

fr
o

m

s
u

g
g

e
s
ti

o
n

s

V
P

2

H
fM

R
fM

(A
R

2
)

N
e

v
e

rF
a

il

M
C

A

G
o

a
l

T
a

s
k

S
o

ft
-G

o
a

l
Q

u
a

li
ty

 C
o

n
s

tr
a

in
t

A
w

R
e

q

K
e

y
:

C
o

n
tr

o
l
V

a
ri

a
b

le

D
o

m
a

in
 A

s
s

u
m

p
ti

o
n

R
e

fi
n

e
m

e
n

t

P
a

rt
ic

ip
a

n
ts

 u
s

e
 t

h
e

s

y
s

te
m

 c
a

le
n

d
a

r

A
N

D

O
R

O
R

A
N

D

A
N

D

F
ig

u
re

7.
2:

M
ee

ti
n
g

S
ch

ed
u
le

r
go

al
m

o
d
el

142

7.2. DESIGN PHASE

Table 7.1: Reference goals

AwReq y◦(·)
AR1 y◦1(·) = 85

AR2 y◦2(·) = 100

AR3 y◦3(·) = 100

AR4 y◦4(·) = 75

AR5 y◦5(·) = 2

AR6 y◦6(·) = 90

AR7 y◦7(·) = 90

Hence, stakeholders could accept a lower success for I1 (in other words

y◦1(·) < 85). At this step of the design phase, the domain experts, along

with the stakeholders, analyze and evaluate such conditions and specify

EvoReqs for the system-to-be. The EvoReqs operations defined for the

AwReqs of the Meeting-Scheduler are presented in Table 7.2.

Table 7.2: EvoReqs operations

AwReq EvoReq operation

AR1
1. Relax(AR1,AR1′ 75)

2. Strengthen(AR1,AR1′ 85)

AR2 Relax(AR2,AR2′ 90)

AR3 Relax(AR3,AR3′ 90)

AR4
1. wait(3 days)

2. Relax(AR4,AR4′ 75)

AR5 Replace(AR5,AR5′ 3)

AR6 wait(3 days)

AR7 wait(2 days)

When summer season begins and hotel prices are higher, the first EvoReq

operation is triggered relaxing the reference goal from 85% to 75%. The

second EvoReq operation is triggered when summer season ends and the

threshold is restored to its previous value. Similarly, when AR2 and AR3

fail for more than 2 days in a row, the reference goals are relaxed for a

143

CHAPTER 7. CONTROL-BASED DESIGN OF SELF-ADAPTIVE SOFTWARE

week1. In case of AR5, when goal G1 tends to fail more than 2 times/week,

the constraint is permanently replaced by 3 times/week. Finally, when

AR6 and AR7 fail for more than 2 days the adaptation mechanism ignores

them for 3 and 2 days respectively.

Next, by applying AHP, weights are elicited for each indicator to cap-

ture their relative importance. As a rule of thumb, indicators assigned

to functional requirements have higher priority compare to non-functional

ones. These weights are the values of matrix Q of the cost function. The

controller, through the optimization function, finds an equilibrium for ev-

ery goal, putting more effort on fixing the most important ones. As for the

control parameters, their weights are empirically elicited assigning lower

weights to the control parameters we want to be tuned less often. These

weights are the values of matrix P of the cost function. In our exemplar,

for instance, increasing the number of rooms RfM is preferred over HfM

since it is a less costly solution, does not require any authorization and,

therefore, takes effect immediately. The elicited priorities for the indicators

of Meeting-Scheduler and the weights for control parameters as shown in

Table 7.3 and Table 7.4, respectively.

Table 7.3: Indicator Priorities

Indicator Priority

I1 0.15

I2 0.3

I3 0.3

I4 0.06

I5 0.2

I6 0.05

I7 0.04

The last set of requirements to be elicited are the AdReqs . These re-

1The relaxation duration and the triggering condition are prescribed by the stakeholders.

144

7.3. CHAPTER SUMMARY

Table 7.4: Control Parameter weights

Control Parameter Weight

FhM 1

MCA 1

RfM 1.2

HfM 0.6

NoR 1.2

V P1 0.8

V P2 1.4

quirements impose constraints to the adaptation process itself. For the

particular case of MPC, an AdReq specifies the receding horizon of the con-

troller and, consequently, how far in the future the adaptation plan should

target. Other AdReqs might refer to the magnitude of allowed change of

control parameters. For instance, HfM cannot be increase more than 5

units each time.

Finally, a quantitative model such as that in Equation 7.1 must be

derived. Given the absence of laws of nature we ran a long simulation of the

meeting scheduler system during which the control parameters change often

and both control input and output are recorded. With the aid of Matlab

and System Identification toolbox 2 we estimate the analytical model of

the system. Even if the system-to-be cannot be simulated accurately, the

model can be improved later on, when the real system is deployed, by means

of a learning mechanism during the runtime phase, which is explained in

detail in the next chapter.

7.3 Chapter Summary

In this chapter we illustrate the basic components of an MPC controller

and how these components are related to AwReqs , indicators and control

2http://it.mathworks.com/products/sysid/?requestedDomain=www.mathworks.com

145

http://it.mathworks.com/products/sysid/?requestedDomain=www.mathworks.com

CHAPTER 7. CONTROL-BASED DESIGN OF SELF-ADAPTIVE SOFTWARE

parameters, as we have examined them in the previous chapters. More

specifically, we presented how an analytical model derived using system

identification can be used to describe the dynamics of a software system,

including the time dimension. Next, we explained how MPC composes

adaptation plans over a predefined horizon, by solving a multi-objective

optimization problem. We also demonstrated the use of Kalman filters in

order to cope with unavoidable nonlinearities of the system.

146

Chapter 8

Control-based software adaptation

The voyage of discovery is not in seeking new

landscapes but in having new eyes.

Marcel Proust

In chapter 5 we presented a qualitative adaptation mechanism in order

to handle conflicting goals under the absence of analytical models that

describe the system’s behaviour. Next, in chapter 6 we demonstrated how

the next adaptation problem can be treated as multi-objective optimization

problem. In this case, we assumed the existence of quantitative relations

that describe the impact of control parameters over indicators. However,

this approach does not take into account the dimension of time. Moreover,

the analytic model that we used in chapter 6 might suffer from inaccuracies

and nonlinearities. Therefore, in chapter 7 we presented a control theoretic

approach for finding optimal adaptations with the use of a MPC.

This chapter illustrates an adaptation framework that has as main com-

ponent an MPC controller designed as prescribed in the previous chapter.

This framework provides and answer to RQ5: How to find an optimal

adaptation under the absence of any information about system’s dynam-

ics?

147

CHAPTER 8. CONTROL-BASED SOFTWARE ADAPTATION

E
n
v
ir
o

n
m

e
n
t

System

MPC controller

indicator

measurements

Requirements

Repository

Learning
Component

Evolution
Manager

Adaptation
Manager

EvoReq operations

reference goals

AdReqs

optimization
constraints

corrected
model

CobRA

adaptation

plan

monitors
actuators

Figure 8.1: CobRA framework

8.1 The CobRA framework

When the design phase is completed and the system is implemented, the

CobRA (Control-based Requirements-oriented Adaptation) framework can

be deployed and play the role of the adaptation mechanism. CobRA, de-

picted in Figure 8.1, has five main components. The monitors and the

actuators that integrate CobRA with the target system are application

specific and must be implemented by the designers of the system.

Requirements repository. This repository stores all the models pro-

duced during the design phase and provides information to the other com-

ponents of the framework when requested.

148

8.1. THE COBRA FRAMEWORK

Evolution manager. This component analyzes the logs provided by

the monitors in order to identify conditions that would trigger EvoReq

operations. If a requirement is replaced either permanently or temporarily,

it updates the requirements repository.

Adaptation manager. This component translates AdReqs to con-

straints for the optimization problem of Equation 7.5. Such constraints

are related to maximum allowed decrease or increase of a control parame-

ter in a single step and the weights of all indicators and control parameters

(matrices Q and P).

Learning component. Black-box system identification does not al-

ways provide precise models about the system’s behaviour. Therefore, we

include in our framework a learning component that, based on the applied

changes and the outcome values of indicator that occurred as a result of

these changes, revises the control law to adapt to changes of the behaviour

of the system. More specifically, this component is an implementation of

the Kalman Filter as it is described in the previous chapter.

MPC controller. The details of this component have been discussed

in the previous chapter. Summarizing its functionalities, the MPC con-

troller requests the requirements repository for the reference goal y◦(·) of

each indicator monitored. It then calculates the distance of each indicator

from its respective reference goal and composes an adaptation plan that

minimize every distance taking into account the indicator priorities in or-

der to restore equilibrium, subject to the given constraints on the control

parameters. The plan includes changes to control parameters in a prede-

fined horizon. For example, the indicators of the Meeting-Scheduler are

evaluated daily and the plan includes values for control parameters so that

indicators minimize their distance from y◦(·) for the next three days. If

two days after the plan is applied the result is not what was expected, e.g.,

because the number of meetings constantly grows, the controller produces

149

CHAPTER 8. CONTROL-BASED SOFTWARE ADAPTATION

a new plan which tries to anticipated future failures in a receding horizon

fashion.

The iterative adaptation process with CobRA includes the following

steps:

1. Step 1: The monitors collect the measurements of all the indicators

of the system.

2. Step 2: The Evolution Manager examines if any event that would

trigger an EvoReq operation is present and in that case updates the

evolved requirement in the Requirements Repository.

3. Step 3: The Adaptation Manager provides the MPC controller with

the weights for the indicators and control parameters as well as con-

straints for the optimization problem.

4. Step 4: The Learning Component provides the MPC with a corrected

model of the system based on the recent measurements.

5. Step 5: The MPC controller given the current reference goals pro-

vided by the Requirements Repository, and the corrected model pro-

duces a revised adaptation plan with the target each indicator value

to converge to the reference goal within the prediction horizon.

6. Step 6: The actuators apply the first step of the plan to the system.

It is important to mention that if an a new requirement is introduced

or an older one is removed the design phase must be repeated in order to

derive a new analytical model.

8.2 Evaluation

In the previous sections we provided the basic background for the structure

and functionalities of an MPC controller. We also presented the CobRA

150

8.2. EVALUATION

framework that exploits stakeholder goals and uses an MPC controller to

compose dynamically adaptation plans when requirements are not met. In

this section we evaluate and compare CobRA with Zanshin that also has

as its baseline for adaptation stakeholder requirements and adopts concepts

from Control Theory.

8.2.1 Methodology

We have conducted our experiments with a simulation of the Meeting-

Scheduler exemplar1 implemented in Python and ran on a computer with

an Intel i5 processor at 2.5GHz and 16GB of RAM. We ran the simulation

for 10.000 steps while automatically modifying all the control parameters

which must cover all the range of their potential values. The result of

this process is a log file with all the values of the inputs and outputs of

the system at every step. Then, we executed once a Matlab procedure

from the Matlab System Identification Toolbox in order to estimate an

analytical model that describe the system’s behaviour as it is described in

Section 2.2.

After acquiring the system’s quantitative model, we stress-tested the

simulation by modifying various environmental parameters such as the

user’s availability, punctuality and the number of meeting requests that

must be scheduled every day. At this phase, we tune the controller by

modifying the weights of the outputs and the inputs. If an indicator, es-

pecially a not very important one, constantly overshoots, its weight must

reduced. Similarly, if a control parameter that we do not wish to change

often, such as the number of hotel rooms available, the associated weight

must be increased. As a rule of thumb the user must keep the weight val-

ues in the same magnitude. Moreover, the order of the modified weights

1https://gitlab.com/konangelop/it.unitn.disi.konangelop.simulations.meeting_

scheduler_v2.git

151

https://gitlab.com/konangelop/it.unitn.disi.konangelop.simulations.meeting_scheduler_v2.git
https://gitlab.com/konangelop/it.unitn.disi.konangelop.simulations.meeting_scheduler_v2.git

CHAPTER 8. CONTROL-BASED SOFTWARE ADAPTATION

of the indicators must be compliant to the one the stakeholders provided.

When the MPC controller reaches a desired behaviour, the tuning phase

is completed.

Zanshin as opposed to CobRA does not involve any quantitative mod-

els, but only qualitative relations between inputs and outputs based on

human expertise. For example, it is known by the domain expert that by

increasingMCA the value of I3 increases. For our experimentation we used

the default adaptation algorithm of Zanshin as described in [SLM12b].

When a failure arrives Zanshin randomly selects a control parameter

that will improve this failure and increases or decreases it by a predefined

amount. Therefore, we provided such qualitative information to Zanshin

based on a previous studies of Meeting-Scheduler.

For the evaluation and the comparison of the two frameworks, we put

the simulated system under a stress-test and we compare the behaviour

of the outputs in each case. We also compare the values of the the cost-

function described in Section 7.1 through time for both frameworks, com-

paring which minimizes it most. The selection of Zanshin for the pur-

poses of our evaluation is based on two reasons. First, it uses the same

requirements-based monitoring mechanism using AwReqs as CobRA and

therefore, customization of the adaptation problem was not required. Sec-

ond, Zanshin decides adaptation plans based on qualitative information

provided by domain experts, while CobRA uses an automatically derived

quantitative model that captures the dynamics of the system.

The Meeting-Scheduler application receives daily a number of meeting

requests. Once the timetables are collected, a date for each meeting must

be found. The result of the finding date process is pseudorandom, given

that it depends on control and environmental parameters that change based

on stochastic processes we have encoded in the simulation. For instance, as

the availability of the participants drops, the more often the goal Find Date

152

8.2. EVALUATION

will fail. Similar pseudorandomness has been encoded for other goals such

as Find Room and High Participation. For the purpose of our experiment

we run the simulation for 60 steps (simulation days), during which the

number of meeting requests gradually increases and then decreases along

with the participants availability. Hereby, we present the results only for

indicators I1-I4.

8.2.2 Experimental Results

Figure 8.2 depicts the values of the indicators at each step of the simula-

tion. As the number of meetings grows the cost for the system increases

as well, resulting in the decrease of the indicator I1. However, CobRA

though manages to recover by preferring local rooms over hotel rooms as

it can be seen in Figure 8.3, whereas Zanshin fails to restore the fail-

ure. As it concerns indicator I2, CobRA converges almost immediately,

whereas Zanshin requires considerably more time. The reason of the de-

lay is that Zanshin increases its control parameters by a fixed amount

rather than basing it on the magnitude of failure as CobRA does. In the

case of I3 the human expertise provided to Zanshin matched the identified

relation we derived experimentally for CobRA, since the two frameworks

achieved almost identical values. Finally, for indicator I4 CobRA outper-

forms Zanshin, by increasing NoR more than the latter.

The last metric we use for our evaluation is the cost-function Ĵ(t) =

(y◦(t) − y(t))TQ(y◦(t) − y(t)) + ∆u(t)TP∆u(t). The value of the cost

function is calculated from the measured values of the indicators and the

changes performed over the control parameters. In Figure 8.4 we present

the individual value of the cost function at each step the simulation, on

the top and the cumulative cost
∑

t Ĵ(t) on the bottom. Ĵ(t) captures the

magnitude business value loss because of failing indicators and adaptation

costs for changing control parameters. CobRA minimizes more at each

153

CHAPTER 8. CONTROL-BASED SOFTWARE ADAPTATION

0

50

100
I1

MPC Zanshin y◦

0

50

100
I2

0 10 20 30 40 50

80

100

time

I3

0 10 20 30 40 50

80

100

time

I4

Figure 8.2: Indicator measured values

step the cost function and by the end of the simulation it produces more

stable results. On the other hand, Zanshin’s adaptation results in higher

losses at most steps, while the accumulated value of the cost-function is

growing monotonically. The minimization of the cost over the simulation

is highlighted in the cumulative cost showed in the bottom graph of Fig-

ure 8.4.

8.2.3 Discussion

From the experimental results we can safely assume that CobRA can pro-

duce adaptation plans that allow the system to recover faster from failures

while maintaining an equilibrium among conflicting requirements. More-

over, our framework outperformed the qualitative adaptation of Zanshin

in most cases and proved that Control Theory can be applied to generic

software systems such as the Meeting-Scheduler exemplar.

Another contribution of CobRA is that it managed to adapt even if the

underlying system has nonlinear behaviours. The used simulator, in fact,

154

8.2. EVALUATION

40

60

80

100 FhM

MPC Zanshin

0

2

4

6
NoR

0

50

100 MCA

0

20

40

RfM

0 10 20 30 40 50
0

10

20

30

time

HfM

0 10 20 30 40 50

0

0.5

1

time

V P2

Figure 8.3: Control parameter values

includes also nonlinear relationships between inputs and outputs, to obtain

more realistic behaviours. In practice most systems have input-output

relations that are nonlinear and therefore it is important for an adaptation

mechanism to handle efficiently model imperfections. In particular, the

KF contributes to correcting the model as the system runs, allowing MPC

to make more accurate predictions.

For the Meeting-Scheduler exemplar a linear model was sufficient for

predicting the system’s behaviour. However, this might not be always the

case. For systems with nonlinear dynamics, either tailored models can

be used [PMTL15], or more advanced system identification techniques are

available [Lju10, Lju99], and nonlinear MPC formulations can be adopted

155

CHAPTER 8. CONTROL-BASED SOFTWARE ADAPTATION

0

0.5

1

·105
Ĵ(t)

MPC Zanshin

0 5 10 15 20 25 30 35 40 45 50 55

0

1

2

3
·106

time

∑
t Ĵ(t)

Figure 8.4: Adaptation cost

[AZ00]. As future work we intend to evaluate further our approach using

more complex systems, identify their particularities and apply variations

of MPC to deal with them.

A main drawback of CobRA is that it requires a simulation or historical

data of the system in order to derive the analytical model it needs to

operate. This is not always possible since for software systems there are no

methodologies yet, as for physical systems, to guide the system designers

simulate a model that can produce data sufficiently similar to those of the

real system.Developing such methodologies for software engineers, as well

as establishing guidelines for tuning the MPC parameters, as described in

chapter ??, open new research agendas that go beyond the scope of this

thesis. However, relating concepts such as AwReqs ,EvoReqs and AdReqs

with the basic elements of control engineering is a first step towards this

direction.

Finally, it is worth noting that some control parameters of our exemplar,

such the number of rooms, are discrete, but according to the equation 2.1

156

8.3. CHAPTER SUMMARY

control parameters are continuous variables. In Control Theory this prob-

lem is known as the actuation design problem. There are two different

approaches a) using rounding of the continuous variable computed by the

MPC and b) by adopting a Pulse Width Modulation-like policy [MHP+12].

8.3 Chapter Summary

The main contribution of this chapter is adopt the concept of an MPC

to the design of self-adaptive software systems. To accomplish this, we

propose a framework, named CobRA, that integrates MPC components

with previous work on software engineering for self-adaptive systems. We

also provide guidelines on how to tune the variables of the MPC controller

for better results during the adaptation process.

The distinct feature of CobRA compared to other approaches is the

use of an analytical model to capture the relationship between the control

parameters and the output of the system. This model can accurately pre-

dict the system’s behaviour and allows CobRA to react to environmental

changes and compose dynamically adaptation plans. The analytical model

is the product of an automated system identification process, capturing

relations that human experts might not be aware of. We evaluated our

framework using an implementation of the Meeting-Scheduler exemplar

and compared the result to those of Zanshin framework. The results of

our evaluation show that control-theoretic concepts can be very effective

in producing adaptation plans for software systems and most of the times

provides better results than human experience-based approaches.

157

Chapter 9

Conclusions and future work

The only way to be truly satisfied is to do what

you believe is great work, and the only way to

do great work is to love what you do. If you

haven’t found it yet, keep looking, and don’t

settle. As with all matters of the heart, you’ll

know when you find it. And like any great

relationship, it just gets better and better as

the years roll on. So keep looking, don’t settle.

Steve Jobs

In this thesis we proposed a novel approach for designing self-adaptive

systems that is founded on high variability models and a set of frame-

works that are apply control-theoretic techniques. Throughout its chap-

ters we presented a methodology for eliciting large adaptations spaces that

allow software systems to tackle environmental uncertainty. Next, we pro-

posed a qualitative adaptation mechanism and the use of Adaptation Re-

quirements in order to compensate for the absence of analytical models

for handling multiple failures. This part of our work includes an exten-

sion of the Zanshin framework and is useful when no quantitative model

can be elicited, neither empirically nor by simulation. Then, we propose

two more adaptation mechanisms, one based Optimization Modulo Theo-

ries and Constrained Goal Models, named Prometheus , whereas the other,

159

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

named CobRA, is based on Control Theory and in particular Model Predic-

tive Control. Prometheus is suitable in cases where empirical quantitative

models can be provided in advance by domain experts or after using the

extended Zanshin for a a certain amount of time. Moreover, Prometheus

is suitable in cases where there are constraints among goals. On the other

hand, when a simulation of the system-to-be can be provided, CobRA can

provided adaptations of enhanced precision. The reason is that empirical

models usually suffer from inaccuracies, which are not handled at runtime

by Prometheus as opposed to CobRA. Each of our approaches is evaluated

with a well known exemplar in Software Engineering literature, namely the

Meeting-Scheduler.

In this chapter we conclude this thesis summarizing the contributions

of our work as well as its limitations. Finally, we present a list of ideas

that constitute our future work.

9.1 Contributions to the state-of-the-art

The contributions of this thesis provide answers to the research questions

we presented in Chapter 1 and we list below:

RQ1: How does an adaptation space based on requirements re-

lates to architecture-based adaptation spaces?

RQ2: Can we extend existing techniques to relate requirement-

based adaptation spaces to other aspects?

RQ3: How do we deal with multiple failing requirements under

the absence of quantitative information that describe the system

dynamics?

160

9.1. CONTRIBUTIONS TO THE STATE-OF-THE-ART

RQ4: How could the self-adaptation problem be formulated as

an optimization problem and how could it be solved?

RQ5: How to find an optimal adaptation under the absence of

any information about system’s dynamics?

The presence of multiple approaches in the literature of self-adaptive

systems motivated us to investigate their common characteristics, but most

importantly their differences. The main distinction point we identified was

the kind of models each approach uses to capture its adaptation space.

The two most applied kinds of models where requirement and architec-

ture models. Hence, we decided to select two representative frameworks,

one that its adaptation space is based on requirements and another on

architecture, Zanshin and Rainbow respectively.

For the comparison of the two frameworks we used a load balancing

exemplar where the main objectives of the system are to serve web content

while maintaining a certain level QoS. Even though the experimentation

has shown prominent results for both frameworks, the focus of our com-

parison was on conceptual level rather than technical. More specifically,

the comparison outcome has shown that requirement based approaches

document better the objectives of the system, but might overlook architec-

tural constraints and solutions that are not available before the system’s

design. On the other hand architecture based approaches encode system

requirements in their adaptation strategies without taking into account

that these might change under certain circumstances, as in the case of

Evolution Requirements. However, architecture adaptation spaces con-

sider dependencies among the architecture components and variability at

the lower level of the system. Therefore, the overall conclusion of this com-

161

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

parison was that combined adaptation spaces can improve the adaptation

process. This result has later been verified by Chen et al. in [CPY+14].

Guided by the outcome of our comparison, we developed a Three-Peaks

process that combines architecture and requirement adaptation spaces. In

addition to these dimensions we include that of behaviour. The purpose

of our process is to guide the designers of self-adaptive systems to design

high variability adaptation spaces that are able to tackle the environment’s

uncertainty. The process starts by eliciting system goals and in an inter-

twined manned make decisions about the components that will carry them

out as well as the system’s behaviour. As requirements, behaviour and

architecture are refined we identify AwReqs that need to be monitored and

parameters of the environment that could cause failures. Therefore, the

aim of our process is to elicit sufficient number of control parameters in each

of three dimensions of the adaptation space allowing always the system to

recover when failures take place, combining the advantages of the existing

requirements, architecture and behaviour-based adaptation approaches in

the state of the art.

Our work on designing high variability self-adaptive system improves

the state-of-the-art by combining the three complementary dimensions of

software systems, requirements, architecture and behaviour. Comparing

our work to STREAM-A [PLC+12], the latter omits the essential dimen-

sion of behaviour and the heurestics provided for eliciting architectures

from goal models aim to reflect the system’s requirements on components,

ignoring the impact of architectural decisions on the requirements. The

work by Sykes et al. [SHMK08], takes into account the intertwined re-

lationship of the three dimensions in a hierarchical manner. When the

architecture fails to fulfil its mandate, an architectural adaptation is ap-

plied. If this is not possible, a new behaviour for the system is decided. In

case a new behaviour is not feasible, an adaptation at requirements level

162

9.1. CONTRIBUTIONS TO THE STATE-OF-THE-ART

takes place. However, this approach as opposed to ours provides only a

reference framework that exploits existing variability to produce adapta-

tions and not producing sufficiently large adaptation space to cope with

uncertainty.

Next, we proposed a qualitative adaptation mechanism that extends

Zanshin and uses qualitative system identification to capture the impact

of control parameters on AwReqs . In this piece of work we investigated the

various types of conflicts that occur among system goals and introduced

a new kind of requirements, namely Adaptation Requirements in order

to define policies that allow efficient trade-offs. This work extended the

Qualia process [SS12], which considered only the case of SISO systems,

whereas our extension makes it possible to handle MIMO systems as well.

In Chapter 6 we defined the Next Adaptation Problem as a constrained

multi-objective optimization problem. Moreover, we illustrated that an

adaptation space is not static and it depends on the availability of the im-

plemented alternatives. In other words, certain alternatives can be applied

only if certain assumptions hold. Hence, we proposed a framework that

is built on the top of a diagnostic tool that detects failures and available

solutions composing a new adaptation each time one or more goals are not

met. The proposed framework minimizes the degree of failure for every

hard goal while optimizing quality attributes related to soft goals.

The extended Zanshin and Prometheus compared to other approaches

[Che08, SHMK10, SMK11, ZSL14] presented in Section 2.3 that use pri-

orities (referred also as utilities by the related work), our frameworks deal

with failures of both functional and non-functional requirements, whereas

the other approaches focus only on non-functional requirements. Another

distinct difference is that Prometheus provides a guide to the designers in

order to define the adaptation problem as a Multi-Objective Optimization

problem. Moreover, Zanshin and Prometheus compose adaptation strate-

163

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

gies dynamically, whereas Rainbow [Che08] only provides predefined adap-

tation strategies, automating human administration processes. Finally,

along with the implementation of Prometheus we propose guidelines on

how the designers can elicit the cost-functions that the adaptation frame-

work needs to optimize.

The last part of our approach integrates software engineering for self-

adaptive systems with Control Theory. More specifically, we introduced

the use of Model Predictive Control, a control-theoretic technique, in order

to develop an adaptation mechanism that minimizes the control error of

each monitored goal by selecting the less costly adaptation. This frame-

work requires the use of analytical models that are derived through formal

system identification. Such model are characterized by inevitable inaccu-

racies and nonlinearities and therefore we included a Kalman filter in order

to tackle these obstacles.

Comparing our work to later versions of Rainbow [CGSP15] where the

authors propose the use of Probabilistic Model Checking in order to com-

pose strategies dynamically, Our approach differs to theirs as it requires

precise knowledge of how each control parameter of the system influences

the output of the system, such as, adding one server improve response

time by one second. In systems with dynamic environments such relations

might change over time and are not always linear. CobRA’s MPC uses the

derived analytical model to reason about the impact of changing a control

parameter instead of human experience and overcomes nonlinearities by

applying a Kalman filter.

Compared to [FHM14] which provides a control-based approach which

treats SISO systems by varying a single input and measuring the output,

CobRA is more advanced since it can deal with MIMO systems. Next, an-

other approach that are proposed for controlling MIMO systems [FHM15],

where the MIMO control is obtained as an automated synthesis by compos-

164

9.2. LIMITATIONS OF THE APPROACH

ing SISO controllers in a hierarchical way. The approach has the limitation

that the influence of different control parameters on the indicators is not

included in the model and it is treated only coupling a single control pa-

rameter to a specific indicator. On the other hand, CobRA includes all the

mutual influences in the single model used for the control design. This can

be exploited when deciding the values of the control parameters in order

to obtain a better adaptation plan. Moreover, in our work, as opposed to

the control-based approaches presented in Section 2.3, we integrate control

design and requirements engineering in order to provide a guideline about

to how to integrate MPC with the development of self-adaptive software.

9.2 Limitations of the approach

While our approach provides high variability models and advanced adapta-

tion techniques that can efficiently deal with conflicting requirements and

multiple failures, it is limited in several aspects.

• Centralized control. For every adaptation mechanism we proposed,

we assumed that is able to control the entire system. However, very

large systems, where their components are highly distributed require

separate control mechanisms that are able to communicate. Another

limitation of centralized control is that the components loosely coupled

systems such as service oriented systems, are not aware of each other’s

goals and architectural constraints.

• Case tool. The Three-Peaks approach requires tool support in order

to handle large models. We have started building an Eclipse-based

tool that allows the designer to keep track of all the AwReqs and their

conflicts, providing suggestions for additional refinements.

• Framework prototype. Both Prometheus and CobRA have been

developed with the purpose of evaluating the proposed adaptation

165

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

mechanisms. However, all the required models graphical and analyt-

ical must be created manually by the user. Therefore, components

that facilitate the model derivation process must be included.

• Controller Design Overhead. The CobRA framework requires an

analytical model in order to produce adaptation plans. However, this

model is only derived if a simulation of the system is available. There-

fore, the system identification introduces an overhead in the design of

self-adaptive systems.

• Experiments. Every part of our approach has been evaluated with

a simulation of the Meeting-Scheduler exemplar 1. This system is a

good fit for illustrating all the aspects of our research proposal. More-

over, it is a generic kind of software system, that involves goals such

as performance, cost etc. that are common in most kind of systems.

However, every domain raises individual challenges and therefore fur-

ther experimentation is required for the evaluation of our approach

with larger case studies from various domains.

9.3 Future work

The limitations illustrated in the previous section extend our research

agenda in various ways. First, we are working on the implementation

of a graphic tool that supports the Three-Peaks process. This tool as we

mentioned in the previous section will provide indications to the designers

about potential conflicts and failures that might occur at runtime. After

the completion of the tools development we plan to evaluate the effective-

ness of the Three-Peaks process by a controlled experiment with master

students that will be divided in two groups. Both groups will be given the

1https://gitlab.com/konangelop/it.unitn.disi.konangelop.simulations.meeting_

scheduler_v2.git

166

https://gitlab.com/konangelop/it.unitn.disi.konangelop.simulations.meeting_scheduler_v2.git
https://gitlab.com/konangelop/it.unitn.disi.konangelop.simulations.meeting_scheduler_v2.git

9.3. FUTURE WORK

same case study description, one will model requirements, architecture and

behaviour following a sequential and not systematic process while the other

one will be guided to use the Three-Peaks Case tool. The purpose of this

experiment is identify which of the two groups produced larger adaptation

spaces and resolved better requirement conflicts.

Another aspect we are interested in investigating is applying various

control architectures such as decentralized, distributed and hierarchical

[Sca09] to deal with large scale systems. These architectures include local

controllers for individual components that are able to communicate and

coordinate for achieving common objectives.

Our future work includes further experimentation and evaluation of our

approaches with case studies produced within the research community of

self-adaptive systems 2. Moreover, we plan to compare our proposed frame-

works with those that have already been applied for these case studies to

identify new opportunities for improvement.

As we mentioned in Chapters 7 and 8, Control Theory is a discipline

with which only a few software engineers are familiar. Therefore, the soft-

ware lifecycle model should be revisited to include tasks such as simulation,

system identification and controller design. These new tasks must be sup-

ported by tools that will allow software engineers to design self-adaptive

applications with the use of control techniques without the need of under-

standing the heavy formalisms behind them.

Finally, the literature in the self-adaptive systems field offers multiple

approaches for producing adaptation strategies. Hence, we are interested

in performing a literature review where we can identify and categorize the

software systems with respect to certain characteristics, e.g. application

domain, continuous or discrete time, real time systems etc. The purpose

of such a review is to identify which decision-making mechanism is most

2https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

167

https://www.hpi.uni-potsdam.de/giese/public/selfadapt/exemplars/

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

suitable for each category based on its characteristics.

168

Bibliography

[ABG+13] Aldeida Aleti, Barbora Buhnova, Lars Grunske, Anne Kozi-

olek, and Indika Meedeniya. Software architecture opti-

mization methods: A systematic literature review. Software

Engineering, IEEE Transactions on, 39(5):658–683, 2013.

[ADH+08] Tarek Abdelzaher, Yixin Diao, Joseph L Hellerstein,

Chenyang Lu, and Xiaoyun Zhu. Introduction to control

theory and its application to computing systems. Perfor-

mance Modeling and Engineering, pages 185–215, 2008.

[AG94] Robert Allen and David Garlan. Formalizing architectural

connection. In Proceedings of the 16th International Con-

ference on Software Engineering, ICSE ’94, pages 71–80,

Los Alamitos, CA, USA, 1994. IEEE Computer Society

Press.

[ASM14] Konstantinos Angelopoulos, Vı́tor E. Silva Souza, and John

Mylopoulos. Dealing with multiple failures in zanshin: a

control-theoretic approach. In 9th International Symposium

on Software Engineering for Adaptive and Self-Managing

Systems, Proceedings, SEAMS 2014, pages 165–174, 2014.

[Ast95] Karl J Astrom. Pid controllers: theory, design and tuning.

Instrument society of America, 1995.

169

BIBLIOGRAPHY

[AZ00] Frank Allgöwer and Alex Zheng. Nonlinear model predictive

control, volume 26. Birkhäuser Basel, 2000.

[BMSG+09] Yuriy Brun, Giovanna Marzo Serugendo, Cristina Gacek,

Holger Giese, Holger Kienle, Marin Litoiu, Hausi M üller,

Mauro Pezzè, and Mary Shaw. Software engineering for

self-adaptive systems. chapter Engineering Self-Adaptive

Systems Through Feedback Loops, pages 48–70. Springer-

Verlag, Berlin, Heidelberg, 2009.

[BPG+04] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto

Giunchiglia, and John Mylopoulos. Tropos: An Agent-

Oriented Software Development Methodology. Autonomous

Agents and Multi-Agent Systems, 8(3):203–236, 2004.

[BPS10] Luciano Baresi, Liliana Pasquale, and Paola Spoletini.

Fuzzy Goals for Requirements-driven Adaptation. In Proc.

of the 18th IEEE International Requirements Engineering

Conference, pages 125–134. IEEE, 2010.

[Bry09] Volha Bryl. Supporting the design of socio-technical sys-

tems by exploring and evaluating design alternatives. Uni-

versity of Trento. Trento, Italy. Doctoral Thesis, page 134,

2009.

[BSG+09] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina

Gacek, Holger Giese, Holger Kienle, Marin Litoiu, Hausi

Müller, Mauro Pezzè, and Mary Shaw. Engineering self-

adaptive systems through feedback loops. In Software en-

gineering for self-adaptive systems, pages 48–70. Springer,

2009.

170

BIBLIOGRAPHY

[CBA04] Eduardo F. Camacho and Carlos Bordons Alba. Model Pre-

dictive Control. Springer London, 2004.

[CG12] Shang-Wen Cheng and David Garlan. Stitch: A language

for architecture-based self-adaptation. J. Syst. Softw.,

85(12):2860–2875, December 2012.

[CGS05] Shang-Wen Cheng, David Garlan, and Bradley Schmerl.

Self-star properties in complex information systems. chap-

ter Making Self-adaptation an Engineering Reality, pages

158–173. Springer-Verlag, Berlin, Heidelberg, 2005.

[CGS06a] Shang-Wen Cheng, David Garlan, and Bradley Schmerl.

Architecture-based self-adaptation in the presence of mul-

tiple objectives. In Proceedings of the 2006 International

Workshop on Self-adaptation and Self-managing Systems,

SEAMS ’06, pages 2–8, New York, NY, USA, 2006. ACM.

[CGS06b] Shang-Wen Cheng, David Garlan, and Bradley R. Schmerl.

Architecture-based self-adaptation in the presence of mul-

tiple objectives. In Proceedings of the 2006 international

workshop on Self-adaptation and self-managing systems,

SEAMS 2006, pages 2–8, 2006.

[CGS09] Shang-Wen Cheng, David Garlan, and Bradley Schmerl.

Evaluating the effectiveness of the rainbow self-adaptive

system. In Software Engineering for Adaptive and Self-

Managing Systems, 2009. SEAMS’09. ICSE Workshop on,

pages 132–141. IEEE, 2009.

[CGSP15] Javier Cámara, David Garlan, Bradley R. Schmerl, and

Ashutosh Pandey. Optimal planning for architecture-based

171

BIBLIOGRAPHY

self-adaptation via model checking of stochastic games. In

Proceedings of the 30th Annual ACM Symposium on Ap-

plied Computing, pages 428–435, 2015.

[Che08] Shang-Wen Cheng. Rainbow: cost-effective software

architecture-based self-adaptation. ProQuest, 2008.

[CNW+12] Hafedh Chourabi, Taewoo Nam, Shawn Walker, J Ramon

Gil-Garcia, Sehl Mellouli, Karine Nahon, Theresa A Pardo,

and Hans Jochen Scholl. Understanding smart cities: An

integrative framework. In System Science (HICSS), 2012

45th Hawaii International Conference on, pages 2289–2297.

IEEE, 2012.

[CPY+14] Bihuan Chen, Xin Peng, Yijun Yu, Bashar Nuseibeh, and

Wenyun Zhao. Self-adaptation through incremental gener-

ative model transformations at runtime. In Proceedings of

the 36th International Conference on Software Engineering,

pages 676–687. ACM, 2014.

[CSBW09] Betty H. C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon

Whittle. A Goal-Based Modeling Approach to Develop

Requirements of an Adaptive System with Environmen-

tal Uncertainty. In Andy Schürr and Bran Selic, editors,

Model Driven Engineering Languages and Systems, volume

5795 of Lecture Notes in Computer Science, pages 468–483.

Springer, 2009.

[DBHM13] Fabiano Dalpiaz, Alex Borgida, Jennifer Horkoff, and John

Mylopoulos. Runtime goal models: Keynote. In Research

Challenges in Information Science (RCIS), 2013 IEEE Sev-

enth International Conference on, pages 1–11, May 2013.

172

BIBLIOGRAPHY

[DGM12] Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos.

Adaptive socio-technical systems: a requirements-based ap-

proach. Requirements Engineering, pages 1–24, 2012.

[DvLF93] Anne Dardenne, Axel van Lamsweerde, and Stephen

Fickas. Goal-directed requirements acquisition. Sci. Com-

put. Program., 20(1-2):3–50, April 1993.

[EG01] W. Keith Edwards and Rebecca E. Grinter. At home with

ubiquitous computing: Seven challenges. In Proceedings of

the 3rd International Conference on Ubiquitous Comput-

ing, UbiComp ’01, pages 256–272, London, UK, UK, 2001.

Springer-Verlag.

[EM13] Naeem Esfahani and Sam Malek. Uncertainty in self-

adaptive software systems. In Software Engineering for

Self-Adaptive Systems II, pages 214–238. Springer, 2013.

[FDC14] Erik M Fredericks, Byron DeVries, and Betty HC Cheng.

Autorelax: Automatically relaxing a goal model to address

uncertainty. Empirical Software Engineering, 19(5):1466–

1501, 2014.

[FF95] Stephen Fickas and Martin S. Feather. Requirements moni-

toring in dynamic environments. In Requirements Engineer-

ing, 1995., Proceedings of the Second IEEE International

Symposium on, pages 140–147, Mar 1995.

[FHM14] Antonio Filieri, Henry Hoffmann, and Martina Maggio.

Automated design of self-adaptive software with control-

theoretical formal guarantees. In 36th International Con-

ference on Software Engineering, ICSE ’14, pages 299–310,

2014.

173

BIBLIOGRAPHY

[FHM15] Antonio Filieri, Henry Hoffmann, and Martina Maggio.

Automated multi-objective control for self-adaptive soft-

ware design. In Proceedings of the 2015 10th Joint Meeting

on Foundations of Software Engineering, ESEC/FSE 2015,

pages 13–24, New York, NY, USA, 2015. ACM.

[Fis70] Peter C Fishburn. Utility theory for decision making. Tech-

nical report, DTIC Document, 1970.

[FMA+15] Antonio Filieri, Martina Maggio, Konstantinos Angelopou-

los, Nicolás D’Ippolito, Ilias Gerostathopoulos, Andreas B.

Hempel, Henry Hoffmann, Pooyan Jamshidi, Evangelia

Kalyvianaki, Cristian Klein, Filip Krikava, Sasa Mis-

ailovic, Alessandro Vittorio Papadopoulos, Suprio Ray,

Amir Molzam Sharifloo, Stepan Shevtsov, Mateusz Ujma,

and Thomas Vogel. Software engineering meets control the-

ory. pages 71–82, May 2015.

[Gar14] David Garlan. Software architecture: A travelogue. In Pro-

ceedings of the on Future of Software Engineering, FOSE

2014, pages 29–39, New York, NY, USA, 2014. ACM.

[GC15] M. Gaggero and L. Caviglione. Predictive control for

energy-aware consolidation in cloud datacenters. Control

Systems Technology, IEEE Transactions on, pages 1–14,

2015.

[GCH+04] David Garlan, Shang-Wen Cheng, An-Cheng Huang,

Bradley Schmerl, and Peter Steenkiste. Rainbow:

Architecture-based self-adaptation with reusable infras-

tructure. Computer, 37(10):46–54, October 2004.

174

BIBLIOGRAPHY

[GCS03] David Garlan, Shang-Wen Cheng, and Bradley Schmerl.

Architecting dependable systems. chapter Increasing Sys-

tem Dependability Through Architecture-based Self-repair,

pages 61–89. Springer-Verlag, Berlin, Heidelberg, 2003.

[Gis14] Pontus Giselsson. Improved fast dual gradient methods

for embedded model predictive control. In IFAC World

Congress, volume 19, pages 2303–2309, 2014.

[GLPB14] Hamoun Ghanbari, Marin Litoiu, Przemyslaw Pawluk, and

Cornel Barna. Replica placement in cloud through sim-

ple stochastic model predictive control. In Cloud Comput-

ing (CLOUD), 2014 IEEE 7th International Conference on,

pages 80–87, June 2014.

[GMW00] David Garlan, Robert T Monroe, and David Wile. Acme:

Architectural description of component-based systems.

Foundations of component-based systems, 68:47–68, 2000.

[GMW10] David Garlan, Robert Monroe, and David Wile. Acme:

an architecture description interchange language. In CAS-

CON First Decade High Impact Papers, pages 159–173.

IBM Corp., 2010.

[GSB+08] Heather J. Goldsby, Pete Sawyer, Nelly Bencomo, Betty

H. C. Cheng, and Danny Hughes. Goal-Based Modeling of

Dynamically Adaptive System Requirements. In Proc. of

the 15th Annual IEEE International Conference and Work-

shop on the Engineering of Computer Based Systems, pages

36–45. IEEE, 2008.

175

BIBLIOGRAPHY

[Har87] David Harel. Statecharts: A visual formalism for complex

systems. Science of computer programming, 8(3):231–274,

1987.

[HDPT04] Joseph L Hellerstein, Yixin Diao, Sujay Parekh, and

Dawn M Tilbury. Feedback control of computing systems.

John Wiley & Sons, 2004.

[HJS+14a] Edward Nicholas Hartley, Juan Luis Jerez, Andrea Suardi,

Jan M Maciejowski, Eric C Kerrigan, and George A Con-

stantinides. Predictive control using an fpga with applica-

tion to aircraft control. Control Systems Technology, IEEE

Transactions on, 22(3):1006–1017, 2014.

[HJS+14b] E.N. Hartley, J.L. Jerez, A. Suardi, J.M. Maciejowski, E.C.

Kerrigan, and G.A. Constantinides. Predictive control us-

ing an fpga with application to aircraft control. Control Sys-

tems Technology, IEEE Transactions on, 22(3):1006–1017,

May 2014.

[HM08] Markus C. Huebscher and Julie A. McCann. A survey of

autonomic computing—degrees, models, and appli-

cations. ACM Comput. Surv., 40(3):7:1–7:28, August 2008.

[Hor01] Paul Horn. Autonomic computing: Ibm\’s perspective on

the state of information technology. 2001.

[HSD10] Gabriel Hermosillo, Lionel Seinturier, and Laurence

Duchien. Creating context-adaptive business processes.

In Service-Oriented Computing, pages 228–242. Springer,

2010.

176

BIBLIOGRAPHY

[ICG+04] James Ivers, Paul Clements, David Garlan, Robert Nord,

Bradley Schmerl, and Jaime R Silva. Documenting compo-

nent and connector views with uml 2.0. Technical report,

DTIC Document, 2004.

[Ise82] H Isermann. Linear lexicographic optimization. Operations-

Research-Spektrum, 4(4):223–228, 1982.

[JBEM14] Ivan J. Jureta, Alexander Borgida, Neil A. Ernst, and John

Mylopoulos. The requirements problem for adaptive sys-

tems. ACM Trans. Manage. Inf. Syst., 5(3):17:1–17:33,

September 2014.

[JGR+14] J.L. Jerez, P.J. Goulart, S. Richter, G.A. Constantinides,

E.C. Kerrigan, and M. Morari. Embedded online optimiza-

tion for model predictive control at megahertz rates. Au-

tomatic Control, IEEE Transactions on, 59(12):3238–3251,

Dec 2014.

[JKC12] Juan L. Jerez, Eric C. Kerrigan, and George A. Constan-

tinides. A sparse and condensed QP formulation for predic-

tive control of LTI systems. Automatica, 48(5):999–1002,

2012.

[Jur06] Matjaz B. Juric. Business Process Execution Language for

Web Services BPEL and BPEL4WS 2Nd Edition. Packt

Publishing, 2006.

[KC03] Jeffrey O Kephart and David M Chess. The vision of au-

tonomic computing. Computer, 36(1):41–50, 2003.

[KKH+09] Dara Kusic, Jeffrey O Kephart, James E Hanson, Na-

garajan Kandasamy, and Guofei Jiang. Power and perfor-

177

BIBLIOGRAPHY

mance management of virtualized computing environments

via lookahead control. Cluster computing, 12(1):1–15, 2009.

[KM90] Jeff Kramer and Jeff Magee. The evolving philosophers

problem: Dynamic change management. IEEE Trans.

Softw. Eng., 16(11):1293–1306, November 1990.

[KOS06] Philippe Kruchten, Henk Obbink, and Judith Stafford. The

past, present, and future for software architecture. IEEE

Softw., 23(2):22–30, March 2006.

[KR97] Joachim Karlsson and Kevin Ryan. A cost-value approach

for prioritizing requirements. IEEE Softw., 14(5):67–74,

September 1997.

[KSSA09] Michiel Koning, Chang-ai Sun, Marco Sinnema, and Paris

Avgeriou. Vxbpel: Supporting variability for web services

in bpel. Inf. Softw. Technol., 51(2):258–269, February 2009.

[KWR98] Joachim Karlsson, Claes Wohlin, and Björn Regnell. An

evaluation of methods for prioritizing software require-

ments. Information and Software Technology, 39(14):939–

947, 1998.

[Lap08] Jean-Claude Laprie. From dependability to resilience. In

38th IEEE/IFIP Int. Conf. On Dependable Systems and

Networks, pages G8–G9. Citeseer, 2008.

[LDM95] A. Van Lamsweerde, R. Darimont, and P. Massonet. Goal-

directed elaboration of requirements for a meeting sched-

uler: problems and lessons learnt. In Requirements Engi-

neering, 1995., Proceedings of the Second IEEE Interna-

tional Symposium on, pages 194–203, Mar 1995.

178

BIBLIOGRAPHY

[Lee08] Edward A Lee. Cyber physical systems: Design chal-

lenges. In Object Oriented Real-Time Distributed Com-

puting (ISORC), 2008 11th IEEE International Symposium

on, pages 363–369. IEEE, 2008.

[Lju99] Lennart Ljung. System Identification: Theory for the User.

Prentice Hall PTR, Upper Saddle River, NJ, USA, 1999.

[Lju10] Lennart Ljung. Approaches to identification of nonlinear

systems. In Control Conference (CCC), 2010 29th Chinese,

pages 1–5, July 2010.

[LMPT13] Alberto Leva, Martina Maggio, Alessandro Vittorio Pa-

padopoulos, and Federico Terraneo. Control-Based Oper-

ating System Design, volume 89 of IET Control Engineer-

ing Series. Institution of Engineering and Technology IET,

2013.

[LYM07] Alexei Lapouchnian, Yijun Yu, and John Mylopoulos.

Requirements-driven design and configuration management

of business processes. In Business Process Management,

pages 246–261. Springer, 2007.

[Mac02] Jan M. Maciejowski. Predictive Control: With Constraints.

Prentice Hall, 2002.

[MCN92] John Mylopoulos, Lawrence Chung, and Brian Nixon. Rep-

resenting and using nonfunctional requirements: A process-

oriented approach. Software Engineering, IEEE Transac-

tions on, 18(6):483–497, 1992.

[MDEK95] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff

Kramer. Specifying distributed software architectures. In

179

BIBLIOGRAPHY

Software Engineering—ESEC’95, pages 137–153. Springer,

1995.

[MGMS11] Daniel A Menascé, Hassan Gomaa, Sam Malek, and Joao P

Sousa. Sassy: A framework for self-architecting service-

oriented systems. Software, IEEE, 28(6):78–85, 2011.

[MHP+12] Martina Maggio, Henry Hoffmann, Alessandro Vittorio Pa-

padopoulos, Jacopo Panerati, Marco Domenico Santambro-

gio, Anant Agarwal, and Alberto Leva. Comparison of de-

cision making strategies for self-optimization in autonomic

computing systems. ACM Transactions on Autonomous

and Adaptive Systems, 7(4):36:1–36:32, 2012.

[Mic] Microsoft Dynamic Systems Initiative, white paper, Mi-

crosoft, 2003.

[MPP09] Mirko Morandini, Loris Penserini, and Anna Perini. Oper-

ational Semantics of Goal Models in Adaptive Agents. In

Proc. of the 8th International Conference on Autonomous

Agents and Multiagent Systems, pages 129–136. ACM,

2009.

[MTWJ96] Nenad Medvidovic, Richard N Taylor, and E James White-

head Jr. Formal modeling of software architectures at mul-

tiple levels of abstraction. ejw, 714:824–2776, 1996.

[Mur89] Tadao Murata. Petri nets: Properties, analysis and appli-

cations. Proceedings of the IEEE, 77(4):541–580, 1989.

[NSGM16a] Chi Mai Nguyen, Roberto Sebastiani, Paolo Giorgini, and

John Mylopoulos. Multi object reasoning with constrained

goal model. CoRR, abs/1601.07409, 2016.

180

BIBLIOGRAPHY

[NSGM16b] Chi Mai Nguyen, Roberto Sebastiani, Paolo Giorgini, and

John Mylopoulos. Multi object reasoning with constrained

goal model. arXiv preprint arXiv:1601.07409, 2016.

[Nus01] Bashar Nuseibeh. Weaving together requirements and ar-

chitectures. Computer, 34(3):115–119, 2001.

[OGT+99] Peyman Oreizy, Michael M. Gorlick, Richard N. Taylor,

Dennis Heimbigner, Gregory Johnson, Nenad Medvidovic,

Alex Quilici, David S. Rosenblum, and Alexander L. Wolf.

An architecture-based approach to self-adaptive software.

IEEE Intelligent Systems and their Applications, 14(3):54–

62, May 1999.

[PCM+14] João Pimentel, Jaelson Castro, John Mylopoulos, Kon-

stantinos Angelopoulos, and Vı́tor E. Silva Souza. From

requirements to statecharts via design refinement. In Pro-

ceedings of the 29th Annual ACM Symposium on Applied

Computing, SAC ’14, pages 995–1000, New York, NY, USA,

2014. ACM.

[PCYZ10] Xin Peng, Bihuan Chen, Yijun Yu, and Wenyun Zhao.

Self-tuning of software systems through goal-based feed-

back loop control. In Requirements Engineering Conference

(RE), 2010 18th IEEE International, pages 104–107, Sept

2010.

[PGH+01] Sujay Parekh, Neha Gandhi, Joe Hellerstein, Dawn Tilbury,

T Jayram, and Joe Bigus. Using control theory to achieve

service level objectives in performance management. In In-

tegrated Network Management Proceedings, 2001 IEEE/I-

FIP International Symposium on, pages 841–854, 2001.

181

BIBLIOGRAPHY

[PLC+12] João Pimentel, Márcia Lucena, Jaelson Castro, Carla Silva,

Emanuel Santos, and Fernanda Alencar. Deriving software

architectural models from requirements models for adaptive

systems: the stream-a approach. Requirements Engineer-

ing, 17(4):259–281, 2012.

[PMTL15] Alessandro Vittorio Papadopoulos, Martina Maggio, Fed-

erico Terraneo, and Alberto Leva. A dynamic mod-

elling framework for control-based computing system de-

sign. Mathematical and Computer Modelling of Dynamical

Systems, 21(3):251–271, 2015.

[QB03] S Joe Qin and Thomas A Badgwell. A survey of industrial

model predictive control technology. Control engineering

practice, 11(7):733–764, 2003.

[QP10] Nauman A. Qureshi and Anna Perini. Requirements Engi-

neering for Adaptive Service Based Applications. In Proc.

of the 18th IEEE International Requirements Engineering

Conference, pages 108–111. IEEE, 2010.

[RL05] Paul Robertson and Robert Laddaga. Model based diag-

nosis and contexts in self adaptive software. In Self-star

Properties in Complex Information Systems, pages 112–

127. Springer, 2005.

[Rob07] William Robinson. Extended ocl for goal monitoring. Elec-

tronic Communications of the EASST, 9, 2007.

[RS79] D. T. Ross and K. E. Schoman, Jr. Classics in software

engineering. chapter Structured Analysis for Requirements

Definition, pages 363–386. Yourdon Press, Upper Saddle

River, NJ, USA, 1979.

182

BIBLIOGRAPHY

[Saa80] T Saaty. Ahp: The analytic hierarchy process, 1980.

[SBP+08] João Pedro Sousa, Rajesh Krishna Balan, Vahe Poladian,

David Garlan, and Mahadev Satyanarayanan. A software

infrastructure for user–guided quality–of–service tradeoffs.

In Software and Data Technologies, pages 48–61. Springer,

2008.

[SBW+10] Pete Sawyer, Nelly Bencomo, Jon Whittle, Emmanuel

Letier, and Anthony Finkelstein. Requirements-aware sys-

tems: A research agenda for re for self-adaptive systems.

In Proceedings of the 2010 18th IEEE International Re-

quirements Engineering Conference, RE ’10, pages 95–103,

Washington, DC, USA, 2010. IEEE Computer Society.

[Sca09] Riccardo Scattolini. Architectures for distributed and hi-

erarchical model predictive control–a review. Journal of

Process Control, 19(5):723–731, 2009.

[SG02] Bradley Schmerl and David Garlan. Exploiting architec-

tural design knowledge to support self-repairing systems. In

Proceedings of the 14th International Conference on Soft-

ware Engineering and Knowledge Engineering, SEKE ’02,

pages 241–248, New York, NY, USA, 2002. ACM.

[SHMK08] Daniel Sykes, William Heaven, Jeff Magee, and Jeff

Kramer. From goals to components: A combined approach

to self-management. In Proceedings of the 2008 Interna-

tional Workshop on Software Engineering for Adaptive and

Self-managing Systems, SEAMS ’08, pages 1–8, New York,

NY, USA, 2008. ACM.

183

BIBLIOGRAPHY

[SHMK10] Daniel Sykes, William Heaven, Jeff Magee, and Jeff

Kramer. Exploiting non-functional preferences in architec-

tural adaptation for self-managed systems. In Proceedings

of the 2010 ACM Symposium on Applied Computing, SAC

’10, pages 431–438, New York, NY, USA, 2010. ACM.

[SLAM13] Vı́tor E. Silva Souza, Alexei Lapouchnian, Konstantinos

Angelopoulos, and John Mylopoulos. Requirements-driven

software evolution. Computer Science - R&D, 28(4):311–

329, 2013.

[SLM11] Vı́tor Estêvão Silva Souza, Alexei Lapouchnian, and John

Mylopoulos. System identification for adaptive software

systems: A requirements engineering perspective. In Con-

ceptual Modeling - ER 2011, 30th International Conference,

ER. Proceedings, pages 346–361, 2011.

[SLM12a] Vı́tor E. Silva Souza, Alexei Lapouchnian, and John

Mylopoulos. On the Move to Meaningful Internet Sys-

tems: OTM 2012: Confederated International Confer-

ences: CoopIS, DOA-SVI, and ODBASE 2012, Rome,

Italy, September 10-14, 2012. Proceedings, Part I, chapter

Requirements-Driven Qualitative Adaptation, pages 342–

361. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[SLM12b] Vı́torE.Silva Souza, Alexei Lapouchnian, and John My-

lopoulos. Requirements-driven qualitative adaptation. In

Robert Meersman, Hervé Panetto, Tharam Dillon, Stefanie

Rinderle-Ma, Peter Dadam, Xiaofang Zhou, Siani Pearson,

Alois Ferscha, Sonia Bergamaschi, and IsabelF. Cruz, edi-

tors, On the Move to Meaningful Internet Systems: OTM

184

BIBLIOGRAPHY

2012, volume 7565 of Lecture Notes in Computer Science,

pages 342–361. Springer Berlin Heidelberg, 2012.

[SLRM11] Vı́tor Estêvão Silva Souza, Alexei Lapouchnian, William N.

Robinson, and John Mylopoulos. Awareness requirements

for adaptive systems. In 2011 ICSE Symposium on Soft-

ware Engineering for Adaptive and Self-Managing Systems,

SEAMS, pages 60–69, 2011.

[SMK11] Daniel Sykes, Jeff Magee, and Jeff Kramer. Flashmob:

Distributed adaptive self-assembly. In Proceedings of the

6th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems, SEAMS ’11, pages

100–109, New York, NY, USA, 2011. ACM.

[SP07] Sigurd Skogestad and Ian Postlethwaite. Multivariable feed-

back control: analysis and design, volume 2. Wiley New

York, 2007.

[SS12] Vı́tor Estêvão Silva Souza. Requirements-based Software

System Adaptation. PhD thesis, University of Trento, 2012.

[ST15] Roberto Sebastiani and Patrick Trentin. Optimathsat: A

tool for optimization modulo theories. In Computer Aided

Verification - 27th International Conference, CAV 2015,

San Francisco, CA, USA, July 18-24, 2015, Proceedings,

Part I, pages 447–454, 2015.

[Sun] Sun Microsystems: Sun N1 Service Provisioning System

(2007). Accessed: 2016-02-23.

[TM06] Vijay Tewari and Milan Milenkovic. Standards for auto-

nomic computing. Intel technology journal, 10(4), 2006.

185

BIBLIOGRAPHY

[vL00] Axel van Lamsweerde. Requirements engineering in the

year 00: A research perspective. In Proceedings of the 22Nd

International Conference on Software Engineering, ICSE

’00, pages 5–19, New York, NY, USA, 2000. ACM.

[vOvdLKM00] Rob van Ommering, Frank van der Linden, Jeff Kramer,

and Jeff Magee. The koala component model for consumer

electronics software. Computer, 33(3):78–85, March 2000.

[WB10] Yang Wang and S. Boyd. Fast model predictive control us-

ing online optimization. Control Systems Technology, IEEE

Transactions on, 18(2):267–278, March 2010.

[Wei93] Mark Weiser. Some computer science issues in ubiquitous

computing. Commun. ACM, 36(7):75–84, July 1993.

[Whi04] Stephen A White. Introduction to bpmn. IBM Cooperation,

2(0):0, 2004.

[WSB+10] Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty Cheng,

and Jean-Michel Bruel. RELAX: a language to address

uncertainty in self-adaptive systems requirement. Require-

ments Engineering, 15(2):177–196, 2010.

[YGMM11] Eric S. K. Yu, Paolo Giorgini, Neil Maiden, and John My-

lopoulos. Social Modeling for Requirements Engineering.

MIT Press, 1st edition, 2011.

[YLL+08] Yijun Yu, Alexei Lapouchnian, Sotirios Liaskos, John My-

lopoulos, and Julio CSP Leite. From goals to high-

variability software design. In Foundations of Intelligent

Systems, pages 1–16. Springer, 2008.

186

BIBLIOGRAPHY

[ZCB10] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud comput-

ing: state-of-the-art and research challenges. Journal of

internet services and applications, 1(1):7–18, 2010.

[ZJ97] Pamela Zave and Michael Jackson. Four dark corners

of requirements engineering. ACM Trans. Softw. Eng.

Methodol., 6(1):1–30, January 1997.

[ZRD+14] Melanie N. Zeilinger, Davide M. Raimondo, Alexander

Domahidi, Manfred Morari, and Colin N. Jones. On

real-time robust model predictive control. Automatica,

50(3):683–694, 2014.

[ZSL14] Parisa Zoghi, Mark Shtern, and Marin Litoiu. Designing

search based adaptive systems: a quantitative approach. In

9th International Symposium on Software Engineering for

Adaptive and Self-Managing Systems, SEAMS 2014, Pro-

ceedings, pages 7–16, 2014.

187

	Introduction
	Challenges of complex software systems
	Software system adaptation
	Definitions
	Feedback Loops
	SISO and MIMO systems

	Objectives of our research
	Overview and contributions

	Structure of the thesis
	Published papers

	State of the Art
	Baseline
	Goal Oriented Requirements Engineering
	GORE for self-adaptive software systems
	Requirements monitoring
	Variability in goal models
	Requirements Evolution
	Software Architecture Modelling
	Software Behaviour Modelling

	Dynamic System Modelling
	Related Work
	Requirements-based Adaptation
	Architecture-based Adaptation
	Behaviour-based Adaptation
	Combined Model-based Adaptation
	Control-based Adaptation

	Chapter Summary

	Requirements and Architecture Approaches: A Comparison
	Selected Adaptation Approaches
	Rainbow
	Zanshin

	The ZNN.com Exemplar
	Overview of the problem and its architectural solution
	An RE-based solution to ZNN.com using Zanshin

	Comparison between Rainbow and Zanshin
	Methodology
	Experimental Results
	Discussion

	Chapter Summary

	Designing Adaptation Spaces
	Capturing and exploring variability
	Variability in behaviour
	Variability in architecture
	Variability in the environment

	A Three-Peaks modelling process
	Evaluation
	Chapter Summary

	Qualitative Adaptation for Multiple Failures
	Requirements for Adaptation
	Prioritizing Requirements
	Adaptation Requirements

	Adaptation Process for Multiple Failures
	Evaluation
	Meeting Scheduler Exemplar
	Improved Adaptation

	Chapter Summary

	The Next Adaptation Problem
	Problem Formulation
	Prometheus Framework
	Evaluation
	The Meeting-Scheduler Exemplar
	The E-shop Exemplar
	Discussion

	Chapter Summary

	Control-based design of self-adaptive software
	Model Predictive Control
	Formal description
	Formal guarantees

	Design phase
	Chapter Summary

	Control-based software adaptation
	The CobRA framework
	Evaluation
	Methodology
	Experimental Results
	Discussion

	Chapter Summary

	Conclusions and future work
	Contributions to the state-of-the-art
	Limitations of the approach
	Future work

	Bibliography

