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A B S T R A C T

A method classically used in the lower polynomial degree for the construction of a finite element
basis of the space of divergence-free functions is here extended to any polynomial degree for a
bounded domain without topological restrictions. The method uses graphs associated with two
differential operators: the gradient and the divergence, and selects the basis using a spanning
tree of the first graph. It can be applied for the two main families of degrees of freedom, weights
and moments, used to express finite element differential forms.

. Introduction

Graph techniques, and in particular the so-called tree-cotree decomposition, are widely used in computational electromagnetics.
t was first introduced in [1] (see also [2]) and since then many works have adapted and extended this technique; see, for instance,
ection 5.3 of the book of Bossavit [3] and the references therein. These works are based on the graph induced by vertices and
dges of the mesh and for this reason it is not easy the extension to high order finite elements. The use of the degrees of freedom
ntroduced in [4,5], the weights, leads to a natural extension because they have a straightforward geometrical visualization as a
raph. This fact suggests how to proceed when using more classical degrees of freedom, the moments. For these latter degrees of
reedom, the graph structure is not geometrically evident.

In this work we focus on the construction of a basis of the space of divergence free Raviart–Thomas finite elements of any
olynomial degree using tree-cotree techniques. Starting from a basis of the space of curl conforming edge elements we compute a
asis of the image of the curl operator using the tree-cotree decomposition of a graph associated with the gradient operator. If the
oundary of the domain is not connected, it is necessary to complete the previous set with discrete representatives of the second de
ham cohomology group basis (which are divergence-free functions that are not curls).

It is worth noting that this is not the only possible approach to construct a basis of divergence-free finite elements. In [6] (see
lso the references therein) the authors proceed by computing directly a basis of the kernel of the divergence operator. Moreover,
ertain 𝐻(div) conforming basis includes a basis of the space of divergence free elements (see, e.g. [7,8]).

The construction presented in this paper extends to finite elements of any polynomial degree a classical technique well-known
or spaces of degree one. The first results are those in [9–11]. In these contributions the computational domain is assumed to be
imply connected with a connected boundary. This approach has been extended in [12,13] to general computational domains for
inite elements space of degree one. We aim now at doing so for finite elements of any polynomial degree.
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Fig. 1. The de Rham complex for the continuous spaces (left) and for Whitney differential forms (right).

We will use the Finite Element Exterior Calculus (FEEC) formalism. It unifies the notation for the different finite element
paces involved in the construction and clarifies the important role that the de Rham complex and the homology of 𝛺 play in

the construction of the basis.
Let  be a tetrahedral mesh of a bounded polyhedral domain 𝛺 ⊂ R3. We will denote −

𝑟+1𝛬
𝑘( ) the space of Whitney 𝑘-

differential forms of degree 𝑟 + 1 (see e.g. [14]). They can be identified with 𝐿𝑟+1, the Lagrange finite elements of degree 𝑟 + 1, if
𝑘 = 0; with 𝑁𝑟+1, the first family of Nédélec finite elements of degree 𝑟+1, if 𝑘 = 1; with 𝑅𝑇𝑟+1, the Raviart–Thomas finite elements
of degree 𝑟+1, if 𝑘 = 2; and with 𝑃𝑟, the space of discontinuous piecewise polynomial functions of degree 𝑟, if 𝑘 = 3. When using the
lowest order Whitney elements on a simplicial complex, −

1 𝛬
𝑘( ), with 𝑘 = 0, 1, 2, 3, the degrees of freedom are supported on the

vertices (V), edges (E), faces (F) and tetrahedra (T) of the mesh respectively. It is well known (see e.g. [15]) that given an orientation
to edges, faces and tetrahedra of the mesh, the matrices describing the differential operators d ∶ −

1 𝛬
𝑘( ) → −

1 𝛬
𝑘+1( ) in terms of

the degrees of freedom are the transposed of the matrices of the boundary operators 𝜕 ∶ 𝑘+1( ,Z) → 𝑘( ,Z) being 𝑘( ,Z) the
group of 𝑘-chains in  . Fig. 1 represents the de Rham’s complex as in [16]. It summarizes these facts in both the continuous and
the discrete case, with 𝑘 denoting the cohomology groups for 𝑘 ∈ {0, 1, 2}.

Since the boundary of an edge consists in two vertices, and any face belongs to the boundary of one or two tetrahedra, from
the point of view of graph theory we observe that: (i) the matrix associated with the gradient is the transposed of the all-nodes
incidence matrix of a directed and connected graph having a node for each vertex and an arc for each (oriented) edge of the mesh;
(ii) the matrix associated with the divergence operator is an incidence matrix of a directed and connected graph having a node for
each tetrahedra plus an additional node associated with the exterior of the domain, and an arc for each face. These facts have been
used in different contexts as tree-cotree gauge (see [2,17–19]), construction of bases of the space of divergence-free Raviart–Thomas
finite elements (see [11,20,21]) or the construction of discrete potentials (see [13,22]).

These two properties hold true also for 𝑟 > 0 when using weights as degrees of freedom for 𝑢 ∈ −
𝑟+1𝛬

𝑘( ) and a particular
ealizations of the moments (see e.g. [14])

𝑢 ↦ ∫𝑆
Tr𝑆 (𝑢) ∧ 𝜂, 𝜂 ∈ 𝑟−(dim𝑆−𝑘)𝛬

dim𝑆−𝑘(𝑆) ,

eing 𝑆 any subsimplex of the mesh and Tr𝑆 the trace operator on 𝑆. The key point is to use Bernstein polynomials to identify a
basis of 𝑟−(dim𝑆−𝑘)𝛬dim𝑆−𝑘(𝑆), following the approach in [23] (see also [24] where Bernstein polynomials are used to express a set
of basis of −

𝑟+1𝛬
𝑘( )).

If the boundary of the domain is connected, we provide a basis of 𝑅𝑇 0
𝑟+1 by selecting some elements of a cardinal basis of 𝑁𝑟+1

and computing their curls. More precisely these are the elements corresponding to the moments in a belted tree (a spanning tree if
the domain is simply connected) of the graph associated with the gradient operator.

When 𝑟 = 0, the use of a spanning tree of the graph associated with the gradient operator to identify a maximal set of linearly
independent columns for the curl has been first proposed in a simply connected polyhedral domain 𝛺 without cavities (see [11,25])
and extended to domains with an arbitrary topology in [21]. In R2, the kernel of the curl operator reduces to constant functions,
and a basis of 𝑅𝑇 0

𝑟+1, when 𝑟 ≥ 0, can be obtained by computing the curl of a nodal basis of the space of continuous piecewise
polynomial finite elements (see [26]).

Since PDEs have boundary condition we analyze how the construction has to be modified in order to take it into account. In
this case we limit the analysis to simply connected computational domains.

This paper is organized as follows in Section 2 we introduce the notation concerning polynomial differential forms and the basic
2

definitions for graphs. In Section 3 we precise the two families of degrees of freedom that will be considered in the sequel by relying



Results in Applied Mathematics 23 (2024) 100469A.A. Rodríguez et al.
on the notation for finite element exterior calculus. In Section 4 we first recall the dimension of the space 𝑅𝑇 0
𝑟+1 taking into account

the homology of the domain 𝛺. Then we construct a basis of the range of the curl operator, that is suitably completed to obtain
the desired basis when the boundary of 𝛺 is not simply connected. Section 5 contains the construction of a basis of the space of
divergence free finite element functions with zero trace on 𝜕𝛺 in the case of simply connected domains and some heuristics for the
general case. Few conclusions are given in Section 6.

2. Notation and basic tools

We introduce the notation concerning polynomial differential forms and some basic definitions for graphs. Note that, depending
on the notion, we will be working on either the whole simplicial mesh  or on the single element 𝑇 of  .

2.1. Simplices and barycentric coordinates

Let 𝑗, 𝑙, 𝑚, 𝑛 be integers such that 0 ≤ 𝑙 − 𝑗 ≤ 𝑛 − 𝑚. By 𝛴(𝑗 ∶ 𝑙, 𝑚 ∶ 𝑛) we denote the set of increasing maps from {𝑗,… , 𝑙} to
{𝑚,… , 𝑛}, that is

𝛴(𝑗 ∶ 𝑙, 𝑚 ∶ 𝑛) = {𝜎 ∶ {𝑗,… , 𝑙} ⟶ {𝑚,… , 𝑛} ∶ 𝜎(𝑗) < 𝜎(𝑗 + 1) < ⋯ < 𝜎(𝑙)}.

We use multi-index notation and consider the sets

(𝑑 + 1, 𝑟) ∶= {𝜶 = (𝛼0,… , 𝛼𝑑 ) ∈ N𝑑+1 ∶ |𝜶| = 𝑟}

being |𝜶| =
∑𝑑

𝑖=0 𝛼𝑖. The sum of multi-indexes of the same length is defined in the natural way.
Let 𝑇 ∈ R3 be an 3-simplex with vertices 𝑥0, 𝑥1, 𝑥2, 𝑥3 in general position. We let 𝛥(𝑇 ) denote all the subsimplices, or faces, of 𝑇 ,

while 𝛥𝑘(𝑇 ) is the set of subsimplices of 𝑇 of dimension 𝑘, for any selected value of 𝑘 between 0 and 3. For each 𝜎 ∈ 𝛴(𝑗 ∶ 𝑙, 0 ∶ 3),
we let 𝑓𝜎 be the (oriented) closed convex hull of the vertices 𝑥𝜎(𝑗),… , 𝑥𝜎(𝑙) which we henceforth denote by 𝑓𝜎 = [𝑥𝜎(𝑗),… , 𝑥𝜎(𝑙)].
There is a one-to-one correspondence between 𝛥𝑘(𝑇 ) and 𝛴(0 ∶ 𝑘, 0 ∶ 3).

Let 𝑘 be the set of indices 𝓁 such that 𝑠𝓁 ∈ 𝛥𝑘( ). By assigning an integer number 𝑎𝓁 to each simplex 𝑠𝓁 , we can define the
𝑘-chain 𝑐 =

∑

𝓁∈𝑘
𝑎𝓁 𝑠𝓁 , i.e. a formal weighted sum of 𝑘-simplices 𝑠𝓁 in  . We denote by

𝑘( ) ∶=

{

∑

𝓁∈𝑘

𝑎𝓁𝑠𝓁 ∶ 𝑠𝓁 ∈ 𝛥𝑘( ) and 𝑎𝓁 ∈ Z

}

The boundary operator 𝜕𝑘 takes a 𝑘-simplex 𝑠 and returns the sum of all its (𝑘 − 1)-faces 𝑓 with coefficient 1 or −1 depending of
whether the orientation of the (𝑘− 1)-face 𝑓 matches or not with the orientation induced by that of the simplex 𝑠 on 𝑓 . The notion
of boundary can be extended to a 𝑘-chain 𝑐 by linearity, namely 𝜕𝑘𝑐 = 𝜕𝑘(

∑

𝓁∈𝑘
𝑎𝓁 𝑠𝓁) =

∑

𝓁∈𝑘
𝑎𝓁 𝜕𝑘(𝑠𝓁). Note that 𝜕𝑘 is linear

mapping from 𝑘( ) to 𝑘−1( ) and we have

𝜕0 𝜕1 𝜕2 𝜕3
0 ⟵ 0( ) ⟵ 1( ) ⟵ 2( ) ⟵ 3( )

From the property 𝜕𝑘𝜕𝑘+1 = 0, it follows that Im 𝜕𝑘+1 ⊂ Ker 𝜕𝑘. The homology spaces 𝑘( ;Z) are defined as the quotient spaces

𝑘( ;Z) = Ker 𝜕𝑘∕Im 𝜕𝑘+1, 𝛽𝑘 ∶= dim𝑘( ,Z), 𝑘 = 0, 1, 2.

Let 𝑟(𝑇 ) denote the space of polynomials in 𝑛 variables of degree at most 𝑟. In the following, 𝜆𝑇 ,0, 𝜆𝑇 ,1,… , 𝜆𝑇 ,𝑛 are the barycentric
coordinate functions with respect to 𝑇 . Each function 𝜆𝑇 ,𝑖 ∈ 1(𝑇 ) is determined by the equations 𝜆𝑇 ,𝑖(𝑥𝑗 ) = 𝛿𝑖,𝑗 , 0 ≤ 𝑖, 𝑗 ≤ 𝑛, being
𝛿.,. the Kronecker’s symbol. All together, the functions 𝜆𝑇 ,𝑖 form a basis of 1(𝑇 ), are non-negative on 𝑇 , and sum to 1 identically
on 𝑇 . To make for the higher order 𝑟 ≥ 1, we introduce the Bernstein basis of the space 𝑟(𝑇 ): it consists of all monomials of degree
𝑟 in the variables 𝜆𝑇 ,𝑖. We have

𝑟(𝑇 ) = span{𝜆𝜶𝑇 ∶ 𝜶 ∈ (𝑛 + 1, 𝑟)}, 𝜆𝜶𝑇 ∶= 𝜆𝛼0𝑇 ,0𝜆
𝛼1
𝑇 ,1 … 𝜆𝛼𝑛𝑇 ,𝑛.

Whenever a fixed simplex 𝑇 is understood, we may simplify the notation by writing

𝜆𝑖 ≡ 𝜆𝑇 ,𝑖, 𝜆𝜶 ≡ 𝜆𝜶𝑇 .

2.2. Polynomial differential forms

We denote by 𝛬𝑘(𝑇 ) the space of differential 𝑘-forms over 𝑇 with smooth bounded coefficients. For 𝑘 = 0, the set 𝛬0(𝑇 ) = 𝐶∞(𝑇 )
is the space of smooth functions over 𝑇 with uniformly bounded derivatives of all orders. Furthermore, 𝛬𝑘(𝑇 ) ≠ {0} for 0 ≤ 𝑘 ≤ 𝑛.
We recall the exterior product 𝜔 ∧ 𝜂 ∈ 𝛬𝑘+𝑙(𝑇 ) for 𝜔 ∈ 𝛬𝑘(𝑇 ) and 𝜂 ∈ 𝛬𝑙(𝑇 ). Let d ∶ 𝛬𝑘(𝑇 ) → 𝛬𝑘+1(𝑇 ) denote the exterior derivative
3

operator.
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We write d𝜆0, d𝜆1,… , d𝜆𝑛 ∈ 𝛬1(𝑇 ) for the exterior derivatives of the barycentric coordinate functions. Clearly

d𝜆0 + d𝜆1 +⋯ + d𝜆𝑛 = 0,

on 𝑇 since ∑𝑛
𝑖=0 𝜆𝑖 = 1. If 𝜎 ∈ 𝛴(𝑗 ∶ 𝑙, 𝑚 ∶ 𝑛), we set d𝜆𝜎 ∶= d𝜆𝜎(𝑗) ∧⋯ ∧ d𝜆𝜎(𝑙).

For 𝑘 > 0 any element 𝜔 of 𝛬𝑘(𝑇 ) can be written as

𝜔 =
∑

𝜎∈𝛴(0∶𝑘−1,1∶𝑛)
𝑎𝜎d𝜆𝜎 ,

where 𝑎𝜎 ∈ 𝐶∞(𝑇 ). Taking 𝑎𝜎 ∈ 𝑟(𝑇 ) we obtain the space 𝑟𝛬𝑘(𝑇 ) of polynomial differential 𝑘-forms of polynomial degree at most
𝑟. Moreover 𝑟𝛬0(𝑇 ) coincides with 𝑟(𝑇 ).

For 𝑘 > 0,

0𝛬
𝑘(𝑇 ) = span{d𝜆𝜎 ∶ 𝜎 ∈ 𝛴(0 ∶ 𝑘 − 1, 1 ∶ 𝑛)}.

Furthermore, if 0 < 𝑘 < 𝑛, we can write

𝑟𝛬
𝑘(𝑇 ) = span{𝜆𝜶d𝜆𝜎 ∶ 𝜎 ∈ 𝛴(0 ∶ 𝑘 − 1, 1 ∶ 𝑛) and 𝜶 ∈ (𝑛 + 1, 𝑟)}.

The set

𝑟𝛬
𝑘(𝑇 ) ∶= {𝜆𝜶 d𝜆𝜎 ∶ 𝜎 ∈ 𝛴(0 ∶ 𝑘 − 1, 1 ∶ 𝑛) and 𝜶 ∈ (𝑛 + 1, 𝑟)} (1)

s a basis of 𝑟𝛬𝑘(𝑇 ).
For 𝑘 = 0

𝑟𝛬
0(𝑇 ) ∶= {𝜆𝜶 ∶ 𝜶 ∈ (𝑛 + 1, 𝑟)}

s a basis of 𝑟𝛬0(𝑇 ) while for 𝑘 = 𝑛

𝑟𝛬
𝑛(𝑇 ) ∶= {𝜆𝜶d𝜆1 ∧⋯ ∧ d𝜆𝑛 ∶ 𝜶 ∈ (𝑛 + 1, 𝑟)}

s a basis of 𝑟𝛬𝑛(𝑇 ).
A particular set of polynomial differential 𝑘-forms of polynomial degree 1 are the Whitney’s differential forms. They are associated

ith the 𝑘-simplices 𝑓 of 𝑇 . If 𝑘 = 𝑛 then 𝑓 = 𝑇 and the Whitney’s differential form 𝑤𝑇 is the volume form, of polynomial degree 0.

efinition 1. Let 𝑘 ≥ 0 and 𝑓 ∈ 𝛥𝑘(𝑇 ). The Whitney’s differential form 𝑤𝑓 associated with the subsimplex 𝑓 is defined as follows:

• if 𝑘 = 0 then 𝑓 is a vertex of 𝑇 , namely, 𝑓 = [𝑥𝑖] for 𝑖 = 0,… , 𝑛, and 𝑤𝑓 = 𝑤[𝑥𝑖] = 𝜆𝑖;
• if 𝑘 > 0 then 𝑓 = 𝑓𝜎 for a 𝜎 ∈ 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛) and

𝑤𝑓𝜎 =
𝑘
∑

𝑖=0
(−1)𝑖𝜆𝜎(𝑖)d𝑤𝑓𝜎⧵[𝑥𝜎(𝑖)]

being 𝑓𝜎 ⧵ [𝑥𝜎(𝑖)] ∈ 𝛥𝑘−1(𝑇 ) the oriented (𝑘 − 1)-face of 𝑇 with the vertices of 𝑓𝜎 except 𝑥𝜎(𝑖).

We can write 𝑓𝜎 ⧵ [𝑥𝜎(𝑖)] = [𝑥𝜎(0),… , 𝑥𝜎(𝑖),… , 𝑥𝜎(𝑘)], where the widehat means that the underlying term is omitted from the list.
For each 𝜎 ∈ 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛) it holds that

d𝑤𝑓𝜎 = (𝑘 + 1)! d𝜆𝜎 = (𝑘 + 1)! d𝜆𝜎(0) ∧⋯ ∧ d𝜆𝜎(𝑘).

In fact, when 𝑘 = 1 one has 𝑤𝑓𝜎 = 𝜆𝜎(0)d𝜆𝜎(1) − 𝜆𝜎(1)d𝜆𝜎(0) and

d𝑤𝑓𝜎 = d𝜆𝜎(0) ∧ d𝜆𝜎(1) − d𝜆𝜎(1) ∧ d𝜆𝜎(0) = 2 d𝜆𝜎(0) ∧ d𝜆𝜎(1).

For 𝑘 > 1, by induction we obtain

d𝑤𝑓𝜎 = d

( 𝑘
∑

𝑖=0
(−1)𝑖𝜆𝜎(𝑖)d𝑤𝑓𝜎⧵[𝑥𝜎(𝑖)]

)

=
𝑘
∑

𝑖=0
(−1)𝑖d𝜆𝜎(𝑖) ∧ d𝑤𝑓𝜎⧵[𝑥𝜎(𝑖)]

=
𝑘
∑

𝑖=0
(−1)𝑖d𝜆𝜎(𝑖) ∧

(

𝑘! d𝜆𝜎(0) ∧⋯ ∧ d̂𝜆𝜎(𝑖) ∧⋯ ∧ d𝜆𝜎(𝑘)
)

= 𝑘!
𝑘
∑

𝑖=0
d𝜆𝜎(0) ∧⋯ ∧ d𝜆𝜎(𝑘) = 𝑘! (𝑘 + 1) d𝜆𝜎(0) ∧⋯ ∧ d𝜆𝜎(𝑘).

Then

𝑤𝑓𝜎 =
𝑘
∑

(−1)𝑖𝜆𝜎(𝑖)d𝑤𝑓𝜎⧵[𝑥𝜎(𝑖)] = 𝑘!
𝑘
∑

(−1)𝑖𝜆𝜎(𝑖) d𝜆𝜎(0) ∧⋯ ∧ d̂𝜆𝜎(𝑖) ∧⋯ ∧ d𝜆𝜎(𝑘).
4
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In finite element exterior calculus, the space of Whitney’s differential 𝑘-forms on 𝑇 is denoted by

−
1 𝛬

𝑘(𝑇 ) ∶= span{𝑤𝑓 ∶ 𝑓 ∈ 𝛥𝑘(𝑇 )}.

Since there is a one to one correspondence between 𝛥𝑘(𝑇 ) and 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛) we can also write

−
1 𝛬

𝑘(𝑇 ) ∶= span{𝑤𝑓𝜎 ∶ 𝜎 ∈ 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛)}.

Definition 2. Whitney’s differential 𝑘-forms of polynomial degree 𝑟 + 1 are the elements of the space

−
𝑟+1𝛬

𝑘(𝑇 ) ∶= span{𝜆𝜶𝑤𝑓𝜎 ∶ 𝜎 ∈ 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛) and 𝜶 ∈ (𝑛 + 1, 𝑟)}.

For 𝑘 > 0, the space −
𝑟+1𝛬

𝑘(𝑇 ) ⊊ 𝑟+1𝛬𝑘(𝑇 ).
For 𝑘 = 0

−
𝑟+1𝛬

0(𝑇 ) = span{𝜆𝜶𝜆𝑖 ∶ 𝑖 ∈ {0,… , 𝑛} and 𝜶 ∈ (𝑛 + 1, 𝑟)}

= span{𝜆�̃� ∶ �̃� ∈ (𝑛 + 1, 𝑟 + 1)} = 𝑟+1𝛬
0(𝑇 ).

For 𝑘 = 𝑛

−
𝑟+1𝛬

𝑛(𝑇 ) = span{𝜆𝜶d𝜆1 ∧⋯ ∧ d𝜆𝑛 ∶ 𝜶 ∈ (𝑛 + 1, 𝑟)} = 𝑟𝛬
𝑛(𝑇 ).

Remark 3. It is worth noting that, in the 𝑛-simplex 𝑇 with vertices 𝑥0, 𝑥1,… , 𝑥𝑛, the elements belonging to the set

{𝜆𝜶𝑤𝑓𝜎 ∶ 𝜎 ∈ 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛), 𝜶 ∈ (𝑛 + 1, 𝑟)}

are not linearly independent. As an example, for 𝑛 = 2, if 𝑘 = 1, and 𝑟 = 1, it can be verified that

𝜆0𝑤[𝑥1 ,𝑥2] − 𝜆1𝑤[𝑥0 ,𝑥2] + 𝜆2𝑤[𝑥0 ,𝑥1] = 0. (2)

Given 𝜎 ∈ 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛) we set

𝜎 (𝑛 + 1, 𝑟) ∶= {𝜶 ∈ (𝑛 + 1, 𝑟) ∶ 𝛼𝑖 = 0 ∀ 𝑖 < 𝜎(0)}.

When 𝑘 = 0 then 𝑓𝜎 is a vertex of 𝑇 , namely, 𝑓𝜎 = [𝑥𝑗 ] being 𝜎(0) = 𝑗. In this case, to be clearer, we will sometimes use the
notation [𝑥𝑗 ](𝑛 + 1, 𝑟) instead of 𝜎 (𝑛 + 1, 𝑟).

A basis of −
𝑟+1𝛬

𝑘(𝑇 ) is

−
𝑟+1𝛬

𝑘(𝑇 ) = {𝜆𝜶𝑤𝑓𝜎 ∶ 𝜎 ∈ 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛) and 𝜶 ∈ 𝜎 (𝑛 + 1, 𝑟)}.

For 𝑛 = 2, 𝑘 = 1 and 𝑟 = 1, the 8 elements of −
2 𝛬

1(𝑇 ), with 𝑇 = [𝑥0, 𝑥1, 𝑥2], are

𝜆𝑖 𝑤[𝑥0 ,𝑥1] = 𝜆𝑖 ( 𝜆0d𝜆1 − 𝜆1d𝜆0 ), 𝑖 = 0, 1, 2,
𝜆𝑖 𝑤[𝑥0 ,𝑥2] = 𝜆𝑖 ( 𝜆0d𝜆2 − 𝜆2d𝜆0 ), 𝑖 = 0, 1, 2,
𝜆𝑖 𝑤[𝑥1 ,𝑥2] = 𝜆𝑖 ( 𝜆1d𝜆2 − 𝜆2d𝜆1 ), 𝑖 = 1, 2 .

The condition 𝜶 ∈ 𝜎 (3, 1) prevents 𝜆0𝑤[𝑥1 ,𝑥2] from being in the set −
2 𝛬

1(𝑇 ).

2.3. Graphs

We now introduce some basic definitions and results of graph theory that will be used in the sequel (they can be found, for
instance, in [27]).

A graph  = ( ,) consists of two sets: a finite set  = {n𝑖}𝑛𝑖=1 of nodes and a finite set  = {a𝑗}𝑚𝑗=1 of arcs. Each arc is
identified with a pair of nodes. The two end nodes defining an arc need not be distinct. If the arc a𝑗 has the two end points equal to
the same node n𝑖 then it is called a self-loop at node n𝑖. If the arcs of  are identified with ordered pairs of nodes, then  is called
a directed or an oriented graph. Otherwise  is called an undirected or a non-oriented graph. The following definitions concern
both directed and undirected graphs.

A walk is a finite alternating sequence of nodes and arcs n𝑖0 , a𝑗1 , n𝑖1 , a𝑗2 , n𝑖2 ,… , n𝑖𝐾−1
, a𝑗𝐾 , n𝑖𝐾 , such that, for 𝑘 ∈ {1,… , 𝐾}, the

arc a𝑗𝑘 is identified with the pair of nodes n𝑖𝑘−1 , n𝑖𝑘 . This walk is usually called a n𝑖0 − n𝑖𝐾 walk with n𝑖0 and n𝑖𝐾 referred to as the
end or terminal nodes of this walk. A walk is open if its end nodes, n𝑖0 , n𝑖𝐾 are distinct; otherwise it is closed. A walk is a trail if
all its arcs are distinct. An open trail is a path if all its nodes are distinct. A closed trail is a circuit if all its nodes except the end
nodes are distinct. A graph is said to be acyclic if it has no circuits.

Two nodes n𝑖, n𝑖′ are said to be connected in a graph  if there exists a n𝑖 − n𝑖′ path in . A graph  is connected if there
exists a path between every pair of nodes in .

Finally we recall the definition of a spanning tree in a graph  = ( ,).

Definition 4. A tree in a graph  = ( ,) is a connected acyclic subgraph of . A spanning tree  is a tree in  containing all
its nodes.
5
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It is worth noting that if  is a spanning tree of  = ( ,), then  = ( ,) with  ⊆ . Moreover  has exactly 𝑛 − 1 arcs.
If  is not connected, then it has not spanning trees. We recall also the definition of the all-nodes incidence matrix of a directed
graph.

Definition 5. The all-nodes incidence matrix 𝑀𝑒 ∈ Z𝑛×𝑚 of a directed graph  = ( ,), with 𝑛 nodes  = {n𝑖}𝑛𝑖=1, 𝑚 arcs
 = {a𝑗}𝑚𝑗=1 and with no self-loop, is the matrix with entries

[𝑀𝑒]𝑖,𝑗 =

⎧

⎪

⎨

⎪

⎩

1 if a𝑗 is incident on n𝑖 and oriented away from it,
−1 if a𝑗 is incident on n𝑖 and oriented toward it,
0 if a𝑗 is not incident on n𝑖 .

3. Weights and moments

We recall the two families of degrees of freedom that will be considered in the sequel by relying on the FEEC form.

3.1. Small simplices and weights

The concepts of small simplices and weights for polynomial differential forms in −
𝑟+1𝛬

𝑘(𝑇 ), were born in [4,5], for any order
𝑘 and any polynomial degree 𝑟 ≥ 0, to solve the difficulty raised in [28]: ‘‘The main problem with such forms is the interpretation
of DoFs’’ in geometrical terms. We recall these concepts here below with a notation adapted to the isomorphism we want to state
between these new DoFs, the weights, and the classical ones, moments, introduced in [14,29].

In the 𝑛-simplex 𝑇 with vertices 𝑥0, 𝑥1,… , 𝑥𝑛 the principal lattice of order 𝑟 + 1 (𝑟 ≥ 0) in 𝑇 is the set of points defined by their
barycentric coordinates with respect to the vertices of 𝑇 as follows

𝑆𝑟+1(𝑇 ) =
{

𝑥 ∈ 𝑇 ∶ 𝜆𝑖(𝑥) ∈
{

0, 1
𝑟 + 1

,… , 𝑟
𝑟 + 1

, 1
}

for each 𝑖 ∈ {0,… , 𝑛}
}

.

To each multi-index 𝜶 ∈ (𝑛 + 1, 𝑟) we associate an affine function, 𝜏𝜶 ∶ 𝑇 ⟶ 𝑇 , such that 𝜏𝜶(𝜆𝑖(𝑥)) =
𝜆𝑖(𝑥)+𝛼𝑖

𝑟+1 . If 𝑓𝜎 is a face of 𝑇
hen

𝜏𝜶(𝑓𝜎) ∶= {𝜏𝜶(𝑥) ∶ 𝑥 ∈ 𝑓𝜎}.

efinition 6. The small 𝑘-simplexes of order 𝑟 in 𝑇 are the elements of the set

𝑆𝑘
𝑟 (𝑇 ) = {𝜏𝜶(𝑓𝜎 ) ∶ 𝑓𝜎 ∈ 𝛥𝑘(𝑇 ) and 𝜶 ∈ (𝑛 + 1, 𝑟)}

= {𝜏𝜶(𝑓𝜎 ) ∶ 𝜎 ∈ 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛) and 𝜶 ∈ (𝑛 + 1, 𝑟)}.

For 𝑘 > 0, they are 1∕(𝑟 + 1)-homothetic to 𝑘-faces of 𝑇 , with vertices in 𝑆𝑟+1(𝑇 ). For 𝑘 = 0, we have 𝑆0
𝑟 (𝑇 ) = 𝑆𝑟+1(𝑇 ).

For 𝑘 > 0 there is a one-to-one correspondence between the elements of 𝑆𝑘
𝑟 (𝑇 ) and the couples (𝜎,𝜶) with 𝜎 ∈ 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛)

nd 𝜶 ∈ (𝑛 + 1, 𝑟). In fact, if 𝜶, 𝜶′ ∈ (𝑛 + 1, 𝑟) and 𝜶 ≠ 𝜶′ then 𝜏𝜶(𝑇 ) ∩ 𝜏𝜶′ (𝑇 ) is either empty or an element of 𝑆0
𝑟 (𝑇 ).

The weight of 𝜔 ∈ 𝛬𝑘(𝑇 ) on a 𝑘-simplex 𝑠 contained in 𝑇 is denoted by ∫𝑠 𝜔. If 𝑘 = 0, for 𝜔 ∈ 𝐶∞(𝑇 ) and 𝑠 ∈ 𝑇 we have
𝑠 𝜔 = 𝜔(𝑠).

In particular we are interested in the following set of weights.

efinition 7. Let 𝜔 ∈ 𝛬𝑘(𝑇 ), 𝜎 ∈ 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛) and 𝜶 ∈ (𝑛 + 1, 𝑟).

𝑊𝜎,𝜶(𝜔) ∶= ∫𝜏𝜶 (𝑓𝜎 )
𝜔. (3)

The weights of Definition 7 are determinant in −
𝑟+1𝛬

𝑘(𝑇 ), namely, if 𝜔 ∈ −
𝑟+1𝛬

𝑘(𝑇 ) and ∫𝑠 𝜔 = 0 for all 𝑠 ∈ 𝑆𝑘
𝑟 (𝑇 ) then 𝜔 = 0

see [30] for a proof). However, for 0 < 𝑘 < 𝑛, the cardinality of the set of weights {𝑊𝜎,𝜶(𝜔) ∶ 𝜎 ∈ 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛), 𝜶 ∈ (𝑛 + 1, 𝑟)}
s greater than the dimension of −

𝑟+1𝛬
𝑘(𝑇 ). Hence in the sequel we often consider the following set of weights:

𝑊 𝑘 ∶= {𝑊𝜎,𝜶(𝜔) ∶ 𝜎 ∈ 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛), 𝜶 ∈ 𝜎 (𝑛 + 1, 𝑟)}. (4)

It is worth noting that 𝑊 𝑘 is determinant (see [31]) and its cardinality coincides with the dimension of −
𝑟+1𝛬

𝑘(𝑇 ).

Remark 8. Only one of the three representations for the small node shared by the three gray small triangles in Fig. 2 verifies the
condition 𝛼𝑖 = 0 for all 𝑖 < 𝜎(0) required to support a weight of the set defined in (4). The first representation fails the condition
(in the up-left gray small triangle, 𝛼0 ≠ 0 with 0 < 𝜎(0) = 1), the second satisfies it (in the up-right gray small triangle, 𝛼1 ≠ 0 with
1 > 𝜎(0) = 0), the third fails too (in the bottom-center gray small triangle, 𝛼 ≠ 0 with 0 < 𝜎(0) = 2).
6

0



Results in Applied Mathematics 23 (2024) 100469A.A. Rodríguez et al.
Fig. 2. Points of the principal lattice for −
4 𝛬

0(𝑇 ), where 𝑇 is a 2-simplex. The node with barycentric coordinates
(

1
4
, 1
4
, 2
4

)

in 𝑇 is shared by the three grey
small triangles and it has different representations, as small node. Indeed, this point can be 𝜏𝜶 (𝑓𝜎 ) with, 𝜶 = (1, 0, 2), 𝑓𝜎 = 𝑥1 in the top-left gray small triangle,
𝜶 = (0, 1, 2), 𝑓𝜎 = 𝑥0 in the top-right gray small triangle, and 𝜶 = (1, 1, 1), 𝑓𝜎 = 𝑥2 in the bottom-center gray small triangle, respectively.

3.2. Moments associated with a basis of polynomial differential forms

Let 𝜔 be a differential 𝑘-form defined on 𝑇 ⊂ R𝑛. For each 𝑑-face 𝑓𝜁 of 𝑇 , with 𝜁 ∈ 𝛴(0 ∶ 𝑑, 0 ∶ 𝑛) and 𝑘 ≤ 𝑑 ≤ 𝑛, the moments
of 𝜔 in 𝑓𝜁 of degree 𝑟 − (𝑑 − 𝑘) are

𝑀𝜁,𝜂(𝜔) ∶= ∫𝑓𝜁
Tr𝑓𝜁𝜔 ∧ 𝜂, ∀ 𝜂 ∈ 𝑟−(𝑑−𝑘)𝛬

𝑑−𝑘(𝑓𝜁 ) , (5)

where Tr𝑓𝜁 is the trace operator on 𝑓𝜁 .
It is well known that these moments are determinant in −

𝑟+1𝛬
𝑘(𝑇 ). Taking 𝜂 in a basis of each space 𝑟−(𝑑−𝑘)𝛬𝑑−𝑘(𝑓𝜁 ), one obtains

a determinant set of moments with cardinality equal to the dimension of −
𝑟+1𝛬

𝑘(𝑇 ) (see [14,30], for two different proofs).
The goal of the present work is to point out an isomorphism between moments and weights which is consistent in a sense

specified in the next sections with the exterior derivative operator. To do that, we will consider a particular basis of the space
𝑟−(𝑑−𝑘)𝛬𝑑−𝑘(𝑓𝜁 ) in (5).

• If 𝑑 = 𝑘 we adopt the Bernstein’s basis of the space 𝑟(𝑓𝜁 ), namely

𝑟𝛬
0(𝑓𝜁 ) = {𝜆𝜷𝑓𝜁 ∶ 𝜷 ∈ (𝑑 + 1, 𝑟)},

where 𝜆𝜷𝑓𝜁 = 𝜆𝛽0𝑓𝜁 ,0 … 𝜆𝛽𝑑𝑓𝜁 ,𝑑 = 𝜆𝛽0𝑇 ,𝜁 (0) … 𝜆𝛽𝑑𝑇 ,𝜁 (𝑑).

• If 𝑑 > 𝑘 we rely on the basis indicated in (1), namely,

𝑟−(𝑑−𝑘)𝛬𝑑−𝑘(𝑓𝜁 ) = {𝜆𝜷𝑓𝜁 (d𝜆𝑓𝜁 )𝜌 ∶ 𝜌 ∈ 𝛴(0 ∶ 𝑑 − (𝑘 + 1), 1 ∶ 𝑑),
𝜷 ∈ (𝑑 + 1, 𝑟 − (𝑑 − 𝑘))}.

Here
(d𝜆𝑓𝜁 )𝜌 = d𝜆𝑓𝜁 ,𝜌(0) ∧⋯ ∧ d𝜆𝑓𝜁 ,𝜌(𝑑−(𝑘+1))

= d𝜆𝑇 ,𝜁 (𝜌(0)) ∧⋯ ∧ d𝜆𝑇 ,𝜁 (𝜌(𝑑−(𝑘+1))).

With these choices of basis we obtain the following moments for 𝜔 ∈ 𝛬𝑘(𝑇 ):
for each 𝜁 ∈ 𝛴(0 ∶ 𝑘, 0 ∶ 𝑛), and 𝜷 ∈ (𝑘 + 1, 𝑟)

𝑀𝜁,∅,𝜷 (𝜔) ∶= ∫𝑓𝜁
Tr𝑓𝜁𝜔 ∧ 𝜆𝜷𝑓𝜁 ; (6)

for each 𝑑 > 𝑘, 𝜁 ∈ 𝛴(0 ∶ 𝑑, 0 ∶ 𝑛), 𝜌 ∈ 𝛴(0 ∶ 𝑑 − (𝑘 + 1), 1 ∶ 𝑑) and 𝜷 ∈ (𝑑 + 1, 𝑟 − (𝑑 − 𝑘))

𝑀𝜁,𝜌,𝜷 (𝜔) ∶= ∫𝑓𝜁
Tr𝑓𝜁𝜔 ∧ 𝜆𝜷𝑓𝜁 (d𝜆𝑓𝜁 )𝜌. (7)

We use the notation ‘‘𝜌 = ∅’’ when 𝑑 = 𝑘 since 𝛴(0 ∶ 𝑑−(𝑘+1), 1 ∶ 𝑑) has not been defined for 𝑑 = 𝑘. We thus have the following
set of moments for 𝜔 ∈ −

𝑟+1𝛬
𝑘(𝑇 ):

𝑀𝑘 ∶= {𝑀𝜁,𝜌,𝜷 (𝜔) ∶ 𝜁 ∈ 𝛴(0 ∶ 𝑑, 0 ∶ 𝑛), 𝜌 ∈ 𝛴(0 ∶ 𝑑 − (𝑘 + 1), 1 ∶ 𝑑),
and 𝜷 ∈ (𝑑 + 1, 𝑟 − (𝑑 − 𝑘)) with 𝑘 ≤ 𝑑 ≤ 𝑛}.

(8)

Remark 9. If 𝜔 ∈ 𝛬0(𝑇 ), then

• when 𝑑 = 𝑘 = 0, then 𝜁 ∈ 𝛴(0 ∶ 0, 0 ∶ 𝑛), so 𝑓𝜁 = [𝑥𝑗 ] for some 𝑗 ∈ {0,… , 𝑛}; moreover (1, 𝑟) has a unique element, hence
𝜷 = (𝑟) and we have

𝑀 (𝜔) = 𝜔(𝑥 ),
7
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• when 𝑑 > 0, then 𝜁 ∈ 𝛴(0 ∶ 𝑑, 0 ∶ 𝑛), 𝜌 ∈ 𝛴(0 ∶ 𝑑 − 1, 1 ∶ 𝑑) and 𝜷 ∈ (𝑑 + 1, 𝑟 − 𝑑). It is worth noting that 𝛴(0 ∶ 𝑑 − 1, 1 ∶ 𝑑)
has a unique element and (d𝜆𝑓𝜁 )𝜌 = d𝜆𝜁 (1) ∧⋯ ∧ d𝜆𝜁 (𝑑), namely

𝑀𝜁,𝜌,𝜷 (𝜔) = ∫𝑓𝜁
Tr𝑓𝜁𝜔 ∧ 𝜆𝜷𝑓𝜁 (d𝜆𝜁 (1) ∧⋯ ∧ d𝜆𝜁 (𝑑)).

. A basis of the space of divergence-free finite elements

.1. The dimension

The de Rham diagram in terms of functional spaces and corresponding conforming finite element spaces reads

0 ↪ 𝐻1(𝛺) ⟶ 𝐻(curl;𝛺) ⟶ 𝐻(div;𝛺) ⟶ 𝐿2(𝛺)
grad curl div

0 ↪ 𝐿𝑟+1( ) ⟶ 𝑁𝑟+1( ) ⟶ 𝑅𝑇𝑟+1( ) ⟶ 𝑃𝑟( )

where ↪ is the inclusion. Our aim is to construct a basis in 𝑅𝑇𝑟+1( ) of Ker(div).
In terms of forms, the de Rham diagram reads

0 ↪ 𝛬0(𝛺) ⟶ 𝛬1(𝛺) ⟶ 𝛬2(𝛺) ⟶ 𝛬3(𝛺)
d0 d1 d2

0 ↪ −
𝑟+1𝛬

0( ) ⟶ −
𝑟+1𝛬

1( ) ⟶ −
𝑟+1𝛬

2( ) ⟶ −
𝑟+1𝛬

3( )

The differential operators grad, curl, and div correspond to d0, d1, and d2 respectively. The spaces −
𝑟+1𝛬

𝑘( ) for 𝑘 ∈ {0, 1, 2, 3} are
paces of ‘‘trimmed’’ polynomial differential 𝑘-forms.

The cohomology spaces 𝑘(𝛺) are defined as

𝑘(𝛺) = Ker d𝑘∕Im d𝑘−1, 𝛽𝑘 ∶= dim𝑘(𝛺), 𝑘 = 1, 2; 𝛽0 = dim(Ker d0).

f 𝛺 is connected, then 𝛽0 = 1. In −
𝑟+1𝛬

𝑘( ) one obtains

dim
(

Ker d𝑘
)

= 𝛽𝑘 + dim
(

Im d𝑘−1
)

.

By the rank theorem, we have

dim
(

Im d𝑘−1
)

= dim
(

−
𝑟+1𝛬

𝑘−1( )
)

− dim
(

Ker d𝑘−1
)

.

By relying on recursivity,

dim
(

Ker d1
)

= 𝛽1 + dim
(

Im d0
)

= 𝛽1 + dim
(

−
𝑟+1𝛬

0( )
)

− dim
(

Ker d0
)

= 𝛽1 + dim
(

−
𝑟+1𝛬

0( )
)

− 𝛽0.

It thus holds

dim
(

Ker d2
)

= dim
(

−
𝑟+1𝛬

1( )
)

− dim
(

−
𝑟+1𝛬

0( )
)

+ 𝛽2 − 𝛽1 + 𝛽0.

We are interested in the case 𝑘 = 2 that in terms of functional spaces reads

dim (Ker div) = 𝛽2 + dim (Im curl)
= dim

(

𝑁𝑟+1( )
)

− dim
(

𝐿𝑟+1( )
)

+ 𝛽2 − 𝛽1 + 𝛽0.

We will start by constructing a basis of Im(curl).

4.2. Construction of a basis of 𝑅𝑇𝑟+1( ) ∩ Im(curl)

A classical approach for the low order finite element spaces (𝑟 = 0) uses the graph defined by vertices and edges of the mesh. It
is based in the construction of a spanning tree, if 𝛽1 = 0 (see, [11]) or a belted tree, if 𝛽1 ≠ 0, of this graph (see, [12,13]). In the
sequel we will study how to extend this approach to high order finite element spaces (𝑟 > 0).

If 𝛽1 = 0, the extension is natural once one has a set {𝐷𝑜𝐹 𝑘
𝑗 }𝑗∈𝑘 , 𝑘 ∈ {0, 1} of unisolvent degrees of freedom in −

𝑟+1𝛬
𝑘( ) with

the following property:

Property 1. For each 𝑗 ∈ 1 there exist exactly two elements 𝑖𝑛𝑖(𝑗), 𝑒𝑛𝑑(𝑗) ∈ 0 such that

1 0 0 − 0
8

𝐷𝑜𝐹𝑗 (d0𝜔) = 𝐷𝑜𝐹𝑒𝑛𝑑(𝑗)(𝜔) −𝐷𝑜𝐹𝑖𝑛𝑖(𝑗)(𝜔), ∀𝜔 ∈ 𝑟+1𝛬 ( ).
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Let {𝜔𝑘
𝑗 }𝑗∈𝑘 be the cardinal basis of −

𝑟+1𝛬
𝑘( ) for a set of degrees of freedom verifying Property 1. For the construction of such

a basis see, e.g., [32].
If 𝜙 ∈ −

𝑟+1𝛬
0( ) then 𝜙 =

∑

𝑖∈0 𝐷𝑜𝐹 0
𝑖 (𝜙)𝜔

0
𝑖 and d0𝜙 ∈ −

𝑟+1𝛬
1( ). We thus have

d0𝜙 =
∑

𝑗∈1

𝐷𝑜𝐹 1
𝑗 (d0𝜙)𝜔

1
𝑗 =

∑

𝑗∈1

(

𝐷𝑜𝐹 0
𝑒𝑛𝑑(𝑗)(𝜙) −𝐷𝑜𝐹 0

𝑖𝑛𝑖(𝑗)(𝜙)
)

𝜔1
𝑗 .

This means that the matrix of the operator d0 ∶ −
𝑟+1𝛬

0( ) ⟶ −
𝑟+1𝛬

1( ), when using these bases, is the transpose of the all
nodes incidence matrix of an oriented graph 𝑟+1 = (𝑟+1,𝑟+1) where each degree of freedom 𝐷𝑜𝐹 0

𝑖 of (−
𝑟+1𝛬

0( ))∗ corresponds
ith a node of the graph and each degree of freedom 𝐷𝑜𝐹 1

𝑗 of (−
𝑟+1𝛬

1( ))∗ corresponds with an arc of the graph. We thus have,
ard(𝑟+1) = dim(−

𝑟+1𝛬
0( )) and card(𝑟+1) = dim(−

𝑟+1𝛬
1( )). The arc 𝐷𝑜𝐹 1

𝑗 goes from the node 𝐷𝑜𝐹 0
𝑖𝑛𝑖(𝑗) to the node 𝐷𝑜𝐹 0

𝑒𝑛𝑑(𝑗) if
nd only if 𝐷𝑜𝐹 1

𝑗 (d𝜔) = 𝐷𝑜𝐹 0
𝑒𝑛𝑑(𝑗)(𝜔) −𝐷𝑜𝐹 0

𝑖𝑛𝑖(𝑗)(𝜔) for any 𝜔 ∈ −
𝑟+1𝛬

0( ).
We are interested in two different families of degrees of freedom that satisfy Property 1: weights, {𝑊 𝑘

𝑗 }𝑗∈𝑘 , and moments,
𝑀𝑘

𝑗 }𝑗∈𝑘 .
In the low order case (𝑟 = 0) weights and moments coincide and it is natural to identify the graph 1 with the graph defined

y vertices and edges of the mesh. Indeed, natural degrees of freedom for −
1 𝛬

𝑘( ) are the values on the vertices of the mesh for
= 0 and the circulation along the (oriented) edges of the mesh for 𝑘 = 1.

In the high order case (𝑟 > 0) the situation is similar when using weights. In fact, it is natural to identify the graph 𝑟+1 with
he graph defined by the small vertices and those small edges chosen to obtain a unisolvent set of degrees of freedom. Also in this
ase there is a one to one correspondence between weights and geometrical (small) objects.

In the case of moments the geometrical realization of the graph 𝑟+1 is more abstract because the degrees of freedom can be
ssociated with geometrical objects of any dimension. For this reason it is useful to rely on the canonical isomorphism between
eights and moments described in [33] that preserves the matrix of the d0 operator. In other words, with this isomorphism it turns
ut that the graphs of weights and moments coincide.

We recall that the graph 1 allows to organize the set of indices in such a way that it is easy to identify the degrees of freedom
hat correspond with the kernel of the operator d1. In the following we will show that the graph 𝑟+1 can be used similarly for
> 0.

Let us consider a spanning tree 𝑟+1 = (𝑟+1,𝑆 ,𝑟+1,𝑆 ) of this graph 𝑟+1. Then we have that card(𝑟+1,𝑆 ) = card(𝑟+1,𝑆 ) − 1 =
im

(

−
𝑟+1𝛬

0( )
)

− 1; the arcs in 𝑟+1,𝐶 = 𝑟+1 ⧵ 𝑟+1,𝑆 belong to the cotree and card(𝑟+1,𝐶 ) = card(𝑟+1) − card(𝑟+1,𝑆 ) =

im
(

−
𝑟+1𝛬

1( )
)

− dim
(

−
𝑟+1𝛬

0( )
)

+ 1. A spanning tree of the graph 𝑟+1 can be constructed as explained in [34] for weights.
hen, its construction can be done also for moments, by relying on the canonical isomorphism defined in [33].

roposition 1. Let {𝐷𝑜𝐹 1
𝑗 }𝑗∈1 be a set of unisolvent dofs in 𝑁𝑟+1( ) and {𝐷𝑜𝐹 0

𝑗 }𝑗∈1 a set of unisolvent dofs in 𝐿𝑟+1( ) verifying
roperty 1. If the associated graph 𝑟+1 = (𝑟+1,𝑟+1) is connected, let 𝑟+1 = (𝑟+1,𝑟+1,𝑆 ) be a spanning tree of 𝑟+1. Let
𝑆
1 ∶= {𝑗 ∈ 1 ∶ 𝐷𝑜𝐹 1

𝑗 ∈ 𝑟+1,𝑆} and  𝐶
1 = 1 ⧵  𝑆

1 . Let {𝜔𝑗}𝑗∈1 be the cardinal basis for the set {𝐷𝑜𝐹 1
𝑗 }𝑗∈1 of degrees of freedom of

𝑟+1( ). If 𝛽1 = 0 then the set {curl𝜔𝑗}𝑗∈ 𝐶
1
is linearly independent. If, in addition, 𝛽2 = 0 then it is a basis of 𝑅𝑇𝑟+1( ) ∩𝐻(div0;𝛺).

roof. First we will prove that if ∑𝑗∈ 𝐶
1
𝑐𝑗curl𝜔𝑗 = 0 and 𝛽1 = 0 then the coefficient 𝑐𝑗 = 0 for all 𝑗 ∈  𝐶

1 . We have

0 =
∑

𝑗∈ 𝐶
1

𝑐𝑗curl𝜔𝑗 = curl
⎛

⎜

⎜

⎝

∑

𝑗∈ 𝐶
1

𝑐𝑗𝜔𝑗

⎞

⎟

⎟

⎠

𝛽1=0
⟹

∑

𝑗∈ 𝐶
1

𝑐𝑗𝜔𝑗 = grad𝜙 (9)

or some 𝜙 ∈ 𝐿𝑟+1( ). To conclude the proof, we will show that in fact grad𝜙 = 0; since {𝜔𝑗}𝑗∈1 is a basis of 𝑁𝑟+1( ) this imply
hat 𝑐𝑗 = 0 for all 𝑗 ∈  𝐶

1 .
Since {𝜔𝑗}𝑗∈1 is the cardinal basis of 𝑁𝑟+1( ) for the set of degrees of freedom {𝐷𝑜𝐹 1

𝑗 }𝑗∈1 , then 𝐷𝑜𝐹 1
𝑗′ (𝜔𝑗 ) = 𝛿𝑗,𝑗′ for all

𝑗, 𝑗′ ∈ 1. Moreover,  𝑆
1 ∩  𝐶

1 = ∅, hence we have

𝐷𝑜𝐹 1
𝑗′ (grad𝜙) = 𝐷𝑜𝐹 1

𝑗′

⎛

⎜

⎜

⎝

∑

𝑗∈ 𝐶
1

𝑐𝑗𝜔𝑗

⎞

⎟

⎟

⎠

=
∑

𝑗∈ 𝐶
1

𝑐𝑗𝐷𝑜𝐹 1
𝑗′ (𝜔𝑗 ) =

∑

𝑗∈ 𝐶
1

𝑐𝑗𝛿𝑗,𝑗′ = 0 for each 𝑗′ ∈  𝑆
1 .

Using Property 1 it follows that

0 = 𝐷𝑜𝐹 1
𝑗′ (grad𝜙) = 𝐷𝑜𝐹 0

𝑒𝑛𝑑(𝑗′)(𝜙) −𝐷𝑜𝐹 0
𝑖𝑛𝑖(𝑗′)(𝜙) for each 𝑗′ ∈  𝑆

1 .

Since  is a spanning tree of  which is connected, it follows that there exists 𝑐 ∈ R such that 𝐷𝑜𝐹 0
𝑖 (𝜙) = 𝑐 for all 𝑖 ∈ 0. Then

in fact 𝐷𝑜𝐹 1
𝑗 (grad𝜙) = 𝐷𝑜𝐹 0

𝑒𝑛𝑑(𝑗)(𝜙) −𝐷𝑜𝐹 0
𝑖𝑛𝑖(𝑗)(𝜙) = 0 for all 𝑗 ∈ 1 and grad𝜙 = 0 because {𝐷𝑜𝐹 1

𝑗 }𝑗∈1 is a set of unisolvent dofs in
𝑁𝑟+1( ).

Therefore 𝐷𝑜𝐹 1
𝑗 (grad𝜙) = 0 for all 𝑗 ∈ 1 and then grad𝜙 = 0 because this set of degrees of freedom is unisolvent. Recalling

that grad𝜙 =
∑

𝐶 𝑐 𝜔 it follows that 𝑐 = 0 for all 𝑗 ∈  𝐶 because {𝜔 } is a basis of − 𝛬1( ). □
9

𝑗∈1 𝑗 𝑗 𝑗 1 𝑗 𝑗∈1 𝑟+1
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i

∮

b

T

If 𝛽1 ≠ 0, namely, if 𝛺 is not simply connected, there exist curl free functions that are not gradients and the implication in (9)
s not true.

A polynomial differential form 𝜔 ∈ −
𝑟+1𝛬

1( ) is exact, namely, 𝜔 = d0𝜑 for some 𝜑 ∈ −
𝑟+1𝛬

0( ), if and only if d1𝜔 = 0 and
𝛾 𝜔 = 0 for any 1-chain 𝛾 =

∑

𝑒∈𝐸 𝑎𝑒𝑒 with 𝑎𝑒 ∈ Z of oriented edges of the mesh  such that 𝜕1𝛾 =
∑

𝑒∈𝐸 𝑎𝑒𝜕1𝑒 = 0.
In terms of weights, we get

∮𝛾
𝜔 =

∑

𝑒∈supp(𝛾)
𝑎𝑒 ∫𝑒

𝜔 =
∑

𝑒∈supp(𝛾)
𝑎𝑒

∑

𝜶∈(2,𝑟)
∫𝜏𝜶 (𝑒)

𝜔 =
∑

𝑒∈supp(𝛾)
𝑎𝑒

∑

𝜶∈(2,𝑟)
𝑊𝑒,𝜶(𝜔)

eing supp(𝛾) = {𝑒 ∈ 𝐸 ∶ 𝑎𝑒 ≠ 0}.
In terms of moments, we first recall that

1 =

( 𝑛
∑

𝑖=0
𝜆𝑖

)𝑟

=
∑

𝜶∈(𝑛+1,𝑟)

𝑟!
𝜶!

𝜆𝜶 𝜶! ∶= 𝛼0!⋯ 𝛼𝑛!.

hen

∮𝛾
𝜔 =

∑

𝑒∈supp(𝛾)
𝑎𝑒 ∫𝑒

𝜔 =
∑

𝑒∈supp(𝛾)
𝑎𝑒

∑

𝜶∈(2,𝑟)
∫𝑒

𝜔 ∧ 𝑟!
𝜶!

𝜆𝜶

= 𝑟!
∑

𝑒∈supp(𝛾)
𝑎𝑒

∑

𝜶∈(2,𝑟)
∫𝑒

𝜔 ∧ 1
𝜶!

𝜆𝜶 = 𝑟!
∑

𝑒∈supp(𝛾)
𝑎𝑒

∑

𝜶∈(2,𝑟)
𝑀𝑒,∅,𝜶(𝜔)

where the last term is the sum of moments (5) for 𝜔 ∈ −
𝑟+1𝛬

1( ) in 𝑓𝜁 = 𝑒, with 𝑑 = 𝑘 = 1 and 𝜂 = 1
𝜶!𝜆

𝜶 .
Our aim is to extend to the high order case the notion of belted tree (see e.g. [12,18,35]).
We start by recalling the definition of belted tree for the graph 1 given by vertices and edges of the mesh  .
To this end we assume to know a set of 𝛽1 polygonal loops in  , {𝜎𝑙}

𝛽1
𝑙=1, mutually disjoint and without self-intersection,

representing a basis of 1( ;Z). Each loop 𝜎𝑙 can be written as 𝜎𝑙 =
∑

𝑒∈𝐸 𝜎𝑙,𝑒𝑒 with 𝜎𝑙,𝑒 ∈ {−1, 0, 1}. For each 𝑙 = {1,… , 𝛽1},
select one edge 𝑒∗𝑙 belonging to 𝜎𝑙. The set ∪𝛽1

𝑙=1
(

supp(𝜎𝑙) ⧵ {𝑒∗𝑙 }
)

is therefore a tree and it is possible to construct a spanning tree
1 = (1,1,𝑆 ) of the graph 1 = (1,1) such that all the edges of each 𝜎𝑙 ⧵ {𝑒∗𝑙 } belong to this spanning tree, while the edges
{𝑒∗𝑙 }

𝛽1
𝑙=1 belong to the cotree. The subgraph 1 = (1,1,𝑆 ∪ {𝑒∗𝑙 }

𝛽1
𝑙=1) is called belted tree of the graph 1.

We are doing an abuse of notation since the arcs in the graph 1 are in fact degrees of freedom. So, instead of 𝑒 we should
write 𝑊𝑒(𝜔) or 𝑀𝑒(𝜔), being 𝑊𝑒(𝜔) = 𝑀𝑒(𝜔) = ∫𝑒 𝜔 and the loop in 1 should be in reality 𝜎𝑙 =

∑

𝑒∈𝐸 𝜎𝑙,𝑒𝑊𝑒(⋅) =
∑

𝑒∈𝐸 𝜎𝑙,𝑒𝑀𝑒(⋅).
When we are in the graph 𝑟+1 the corresponding loops read 𝑊𝑙 =

∑

𝑒∈𝐸 𝜎𝑙,𝑒
∑

𝛼∈(2,𝑟) 𝑊𝑒,𝛼(⋅) or 𝑀𝑙 =
∑

𝑒∈𝐸 𝜎𝑙,𝑒
∑

𝛼∈(2,𝑟) 𝑀𝑒,∅,𝛼(⋅)
(we use 𝑙 when it is not necessary to specify the type of degrees of freedom). The coefficients 𝜎𝑙,𝑒 are those of the geometrical
loop 𝜎𝑙 while the multi-indices 𝜶 take care of the higher polynomial degree. Moreover when using weights one has 𝑊𝑙 (𝜔) =
∑

𝑒∈𝐸 𝜎𝑙,𝑒
∑

𝛼∈(2,𝑟) 𝑊𝑒,𝛼(𝜔) = ∮𝜎𝑙 𝜔 and when using moments 𝑀𝑙 (𝜔) =
∑

𝑒∈𝐸 𝜎𝑙,𝑒
∑

𝛼∈(2,𝑟) 𝑀𝑒,∅,𝛼(𝜔) =
1
𝑟! ∮𝜎𝑙 𝜔.

The definition of a belted tree of the graph 𝑟+1 for any 𝑟 ≥ 0 is a straightforward extension of that done in the geometrical
graph (the one defined by the vertices and edges of the mesh).

The arcs of 𝑙 are identified by a couple 𝜖 = (𝑒, 𝛼) with 𝑒 ∈ 𝐸 and 𝛼 ∈ (2, 𝑟) and the support of 𝑙 is supp(𝑙) ∶= {𝜖 = (𝑒, 𝛼) ∶ 𝜎𝑒,𝑙 ≠
0}. For each 𝑙 = {1,… , 𝛽1}, select one arc (for weights, one small edge) 𝜖∗𝑙 ∈ supp(𝑙). The set ∪𝛽1

𝑙=1
(

supp(𝑙) ⧵ {𝜖∗𝑙 }
)

is therefore a tree
and it is possible to construct a spanning tree 𝑟+1 = (𝑟+1,𝑟+1,𝑆 ) of the graph 𝑟+1 = (𝑟+1,𝑟+1) such that all the arcs of each
supp(𝑙)⧵ {𝜖∗𝑙 } belong to this spanning tree, while the arcs {𝜖∗𝑙 }

𝛽1
𝑙=1 belong to the cotree. The subgraph 𝑟+1 = (𝑟+1,𝑟+1,𝑆 ∪{𝜖∗𝑙 }

𝛽1
𝑙=1)

is called belted tree of the graph 𝑟+1. It is worth noting that supp(𝑙) ⊂ 𝑟+1,𝑆 ∪ {𝜖∗𝑙 }
𝛽1
𝑙=1 for all 𝑙 ∈ {1,… , 𝑙}.

Let  𝐵
1 ∶= {𝑗 ∈ 1 ∶ 𝐷𝑜𝐹 1

𝑗 ∈ 𝑟+1,𝑆 ∪ {𝜖∗𝑙 }} and  𝐶𝐵
1 = 1 ⧵  𝐵

1 . If {𝜔𝑗}𝑗∈1 is the cardinal basis for the set {𝐷𝑜𝐹 1
𝑗 }𝑗∈1 then

𝐷𝑜𝐹 1
𝑖 (𝜔𝑗 ) = 0 if 𝑖 ∈  𝐵

1 and 𝑗 ∈  𝐶𝐵
1 . Hence, 𝑙(𝜔𝑗 ) = 0 for all 𝑗 ∈  𝐶𝐵

1 .
Moreover we recall that 𝑟+1,𝐵𝐶 = 𝑟+1 ⧵ (𝑟+1,𝑆 ∪ {𝜖∗𝑙 }

𝛽1
𝑙=1) and thus card(𝑟+1,𝐵𝐶 ) = card(𝑟+1) − card(𝑟+1,𝑆 ) − 𝛽1 =

dim(−
𝑟+1𝛬

1( )) − dim(−
𝑟+1𝛬

0( )) + 1 − 𝛽1.

Proposition 2. Let {𝜔𝑗}𝑗∈1 be the cardinal basis of 𝑁𝑟+1( ) for either weights {𝑊 1
𝑗 }𝑗∈1 or moments {𝑀

1
𝑗 }𝑗∈1 . The set {curl𝜔𝑗}𝑗∈ 𝐶𝐵

1
is linearly independent and its cardinality coincides with the dimension of 𝑅𝑇𝑟+1( )∩ Im(curl), thus it is a basis for the latter space. If 𝛽2 = 0
then it is a basis of 𝑅𝑇𝑟+1( ) ∩𝐻(div0;𝛺).

Proof. We will proceed as in the proof of Proposition 1.
If ∑𝑗∈ 𝐶𝐵

1
𝑐𝑗curl𝜔𝑗 = 0 then clearly curl

(

∑

𝑗∈ 𝐶𝐵
1

𝑐𝑗 𝜔𝑗

)

= 0 and, by Poincaré duality, ∮𝛾
(

∑

𝑗∈ 𝐶𝐵
1

𝑐𝑗 𝜔𝑗

)

= 0 for all 𝛾 that is the
boundary of a 2-chain of  .

Moreover from the definition of  𝐶𝐵
1 and taking again into account that 𝜔𝑗 is the cardinal basis for the degrees of freedom,

{𝐷𝑜𝐹 1
𝑗 }𝑗∈ 1 , it is clear that for 𝑙 ∈ {1,… , 𝛽1}. For weights we have

∮𝜎𝑙

∑

𝐶𝐵

𝑐𝑗 𝜔𝑗 =
∑

𝐶𝐵

𝑐𝑗 ∮𝜎𝑙
𝜔𝑗 =

∑

𝐶𝐵

𝑐𝑗𝑊𝑙 (𝜔𝑗 ) = 0
10

𝑗∈1 𝑗∈1 𝑗∈1
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and similarly for moments we obtain

∮𝜎𝑙

∑

𝑗∈ 𝐶𝐵
1

𝑐𝑗 𝜔𝑗 =
∑

𝑗∈ 𝐶𝐵
1

𝑐𝑗 ∮𝜎𝑙
𝜔𝑗 = 𝑟!

∑

𝑗∈ 𝐶𝐵
1

𝑐𝑗𝑀𝑙 (𝜔𝑗 ) = 0.

In conclusion ∮𝛾
∑

𝑗∈ 𝐶𝐵
1

𝑐𝑗 𝜔𝑗 = 0 for any 1-chain 𝛾 of  with 𝜕𝛾 = 0. Then Poincaré duality yields ∑

𝑗∈ 𝐶𝐵
1

𝑐𝑗 𝜔𝑗 = grad𝜙 for
some 𝜙 ∈ 𝐿𝑟+1( ). Then, the proof ends by the same mathematical steps done to prove Proposition 1. □

If 𝛽2 = 0, then card(𝐶𝐵) is the dimension of 𝑅𝑇𝑟+1( )∩𝐻(div0;𝛺) and the ‘‘recipe’’ to construct a basis of 𝑅𝑇𝑟+1( )∩𝐻(div0;𝛺)
is given in Algorithm 1.

Algorithm 1 (case 𝛽2 = 0)

1. Select a basis {𝜈𝑗}𝑗∈1 of 𝑁𝑟+1( ).
2. Select a set {𝐷𝑜𝐹 1

𝑗 }𝑗∈1 of unisolvent dofs in 𝑁𝑟+1( ) and a set {𝐷𝑜𝐹 0
𝑗 }𝑗∈1 of

unisolvent dofs in 𝐿𝑟+1( ) verifying Property 1.
3. Construct the cardinal basis {𝜔𝑗}𝑗∈1 for the set {𝐷𝑜𝐹 1

𝑗 }𝑗∈1 in terms of the
basis {𝜈𝑗}𝑗∈1 .

4. Construct the associated graph 𝑟+1 = (𝑟+1,𝑟+1).
5. Construct a belted spanning tree 𝑟+1 = (𝑟+1,𝑟+1,𝐵).
6. Compute curl𝜔𝑗 , for each index 𝑗 associated with an arc not in 𝑟+1,𝐵 .

Note that if 𝛽1 = 0 then 𝑟+1 is in fact a spanning tree of the graph 𝑟+1.
The complexity of Algorithm 1 is given by the cost of the inversion, at point 3., of the Vandermonde matrix, to compute the

cardinal basis, and the construction, at point 5., of the belted spanning tree. The fact of working with barycentric coordinates makes
any computation independent from the current tetrahedron. Therefore, concerning the Vandermonde matrix, its inversion is done
only once since this matrix has the same entries in any tetrahedron of the mesh. For the construction of the belted spanning tree, the
high order enrichment inside each element does not depend on the element, it is done by the same procedure in all the tetrahedra.
An analysis of this construction can be found in [34].

4.3. Making for a basis of 𝑅𝑇𝑟+1( ) ∩𝐻(div0;𝛺) when 𝛽2 ≠ 0

If 𝛽2 ≠ 0 then the space of divergence-free Raviart–Thomas finite elements that are not the curl of Nédélec finite elements is non
trivial and has dimension 𝛽2. So we have to add, for each 𝑛 = 1,… , 𝛽2, one solution 𝐳ℎ,𝑛 ∈ 𝑅𝑇𝑟+1( ) of

{

div 𝐳ℎ,𝑛 = 0 in 𝛺
∫(𝜕𝛺)𝓁

𝐳ℎ,𝑛 ⋅ 𝐧𝛺 = 𝛿𝑛,𝓁 𝓁 = 1… , 𝛽2 ,
(10)

where (𝜕𝛺)𝓁 , for 𝓁 ∈ {0, 1,… , 𝛽2} are the connected components of 𝜕𝛺 being (𝜕𝛺)0 the external one. Each one of these problems
has solution and it is unique up to a curl.

For any choice of 𝐳ℎ,𝑛 the set {𝐳ℎ,𝑛}
𝛽2
𝑛=1 is linearly independent. In fact, if ∑𝛽2

𝑛=1 𝑐𝑛𝐳ℎ,𝑛 = 0 then for any 𝓁 ∈ {1,… , 𝛽2} one has
0 = ∫(𝜕𝛺)𝓁

(

∑𝛽2
𝑛=1 𝑐𝑛𝐳ℎ,𝑛

)

⋅ 𝐧𝛺 =
∑𝛽2

𝑛=1 𝑐𝑛 ∫(𝜕𝛺)𝓁
𝐳ℎ,𝑛 ⋅ 𝐧𝛺 =

∑𝛽2
𝑛=1 𝑐𝑛𝛿𝑛,𝓁 = 𝑐𝓁 .

Proposition 3. Let {𝜔𝑗}𝑗∈1 be the cardinal basis of𝑁𝑟+1( ) for either weights {𝑊 1
𝑗 }𝑗∈1 or moments {𝑀

1
𝑗 }𝑗∈1 . For each 𝑛 ∈ {1,… , 𝛽2},

let 𝐳ℎ,𝑛 be a solution of (10). The set {curl𝜔𝑗}𝑗∈ 𝐶𝐵
1

∪ {𝐳ℎ,𝑛}
𝛽2
𝑛=1 is a basis of 𝑅𝑇𝑟+1( ) ∩𝐻(div0;𝛺).

Proof. First we notice that the cardinality of the set {curl𝜔𝑗}𝑗∈ 𝐶𝐵
1

∪{𝐳ℎ,𝑛}
𝛽2
𝑛=1 is equal to dim(−

𝑟+1𝛬
1( ))−dim(−

𝑟+1𝛬
0( ))+1−𝛽1+𝛽2.

It remains to prove that the set {curl𝜔𝑗}𝑗∈ 𝐶𝐵
1

∪ {𝐳ℎ,𝑛}
𝛽2
𝑛=1 is linearly independent. If ∑𝑗∈ 𝐶𝐵

1
𝑐𝑗curl𝜔𝑗 +

∑𝛽2
𝑛=1 𝑐𝑛𝐳ℎ,𝑛 = 0 then, by

Stokes’ theorem

0 = ∫(𝜕𝛺)𝓁

⎛

⎜

⎜

⎝

∑

𝑗∈ 𝐶𝐵
1

𝑐𝑗curl𝜔𝑗 +
𝛽2
∑

𝑛=1
𝑐𝑛𝐳ℎ,𝑛

⎞

⎟

⎟

⎠

⋅ 𝐧𝛺 = ∫(𝜕𝛺)𝓁

( 𝛽2
∑

𝑛=1
𝑐𝑛𝐳ℎ,𝑛

)

⋅ 𝐧𝛺 = 𝑐𝓁

for all 𝓁 ∈ {1,… , 𝛽2}. Thus ∑𝑗∈ 𝐶𝐵
1

𝑐𝑗curl𝜔𝑗 = 0. In Proposition 2 we have proved that the set {curl𝜔𝑗}𝑗∈ 𝐶𝐵
1

is linearly independent
so, also the coefficients 𝑐𝑗 are equal to zero. □

It is possible to consider solutions of Problem (10) in 𝑅𝑇1( ) ⊂ 𝑅𝑇𝑟+1( ). This case has been studied in [13] Section 5 where it is
proposed a very efficient algorithm for the computation of the solution. The algorithm uses the dual mesh of  . It is an elimination
procedure that follows the arcs of a spanning tree of the graph defined by the dual vertices (the barycenters of the elements) and
the dual edges (one associated to each face of the mesh). This algorithm has been extended to the case 𝑟 > 0 in [6] relying on the
11

use of the weights as degrees of freedom for both 𝑅𝑇𝑟+1( ) and 𝑃𝑟( ). It follows the arcs of a spanning tree of the graph with nodes
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Fig. 3. Example of spanning tree in the (dual) graph, namely a selection of acyclic paths made of arcs, visiting all the nodes of the (dual) graph (𝑟 = 1, left
and 𝑟 = 2, right).
Source: Taken from [36].

Fig. 4. A graphical summary of the structure of the basis of 𝑅𝑇 0
𝑟+1 and its construction (in the case 𝛽2(𝛺) = 0). Here, 𝐾∗ =

◦
𝐽 1,𝐶𝐵 and 𝐾 = 1,𝐶𝐵 , with or without

the footindex 𝐵 (standing for belted), depending on 𝛽1(𝛺).

the barycenters of the small elements and arcs associated to the small faces chosen to obtain a unisolvent set of degrees of freedom
for 𝑅𝑇𝑟+1( ) (see Fig. 3).

In Fig. 4, we summarizes the situation. Due to the property that d1d0 = 0, we cannot construct a divergence-free basis of 𝑅𝑇 0
𝑟+1

starting from the curl of a basis of 𝑁𝑟+1 because they are not linear independent. However, the spanning (eventually belted) tree for
the gradient of function 𝐿𝑟+1 allows to identify the set (associated with the corresponding co-tree) of indices 𝐾∗ =

◦
𝐽 1,𝐶𝐵 of columns

in 𝐺⊤ that will provide a part of this basis, once we apply on them the curl operator (see Proposition 4). If 𝛽2(𝛺) ≠ 0, the basis
has to be completed by hands, by adding the generators of 2 (see Proposition 6), namely the solution of problem (10), for each
𝑙 = 1,… , 𝛽2(𝛺) + 1.

5. On the construction of a basis of 𝑹𝑻𝒓+𝟏 ∩𝑯𝟎(div𝟎;𝜴)

In the following we denote 𝐻0(div0;𝛺) the space of divergence free fields 𝐳 such that Tr𝜕𝛺𝐳 = 𝐳 ⋅ 𝐧𝛺 = 0. Similarly we set
𝐻0(curl0;𝛺) the space of curl free fields 𝐮 such that Tr𝜕𝛺𝐮 = 𝐧𝛺 × 𝐮 × 𝐧𝛺 = 𝟎.

If 𝐳 ∈ 𝑅𝑇𝑟+1∩𝐻(div0;𝛺) and Tr𝜕𝛺𝐳 = 0 then 𝐳 = curl𝐮 for some 𝐮 ∈ 𝐻∗(curl;𝛺) = {𝐮 ∈ 𝐻(curl;𝛺) ∶ curl𝐮 ⋅𝐧𝛺 = 0 in 𝜕𝛺} = {𝐮 ∈
𝐻(curl;𝛺) ∶ curl𝜏 (𝐧𝛺 × 𝐮× 𝐧𝛺) = 0 on 𝜕𝛺}, being curl𝜏 (𝐧𝛺 × 𝐮× 𝐧𝛺) the tangential curl of the trace of 𝐮. So our aim is to construct
a basis of curl(𝑁𝑟+1 ∩𝐻∗(curl;𝛺)). Clearly 𝐻0(curl;𝛺) ⊂ 𝐻∗(curl;𝛺). First we will construct a basis of curl(𝑁𝑟+1 ∩𝐻0(curl;𝛺)) and
then we will complete it to obtain the desired basis.
12
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d

d

P
i

P

T

In the following, for both Lagrange and Nédélec elements we distinguish boundary and internal degrees of freedom. The boundary
egrees of freedom are ‘‘supported’’ by subsimplices completely contained on 𝜕𝛺. The internal degrees of freedom are those that

are not boundary degree of freedom. We set
◦
 1 = 1 ⧵  𝜕

1 where  𝜕
1 denotes the set of indices corresponding to Nédélec internal

egrees of freedom. Similarly
◦
 0 = 0 ⧵  𝜕

0 with  𝜕
0 the set of indices corresponding to Lagrange internal degrees of freedom.

By the rank theorem

dim
(

curl(𝑁𝑟+1 ∩𝐻0(curl;𝛺))
)

= dim(𝑁𝑟+1 ∩𝐻0(curl;𝛺)) − dim(𝑁𝑟+1 ∩𝐻0(curl
0;𝛺)).

We recall that 𝑁𝑟+1 ∩𝐻0(curl
0;𝛺) = grad(𝐿𝑟+1 ∩𝐻1

∗ (𝛺)) being

𝐻1
∗ (𝛺) =

{

𝜙 ∈ 𝐻1(𝛺) ∶ 𝜙
|(𝜕𝛺)𝑛 is constant ∀ 𝑛 ∈ {1,… , 𝛽2(𝛺)}

}

.

The dimension of 𝐿𝑟+1 ∩𝐻1
∗ (𝛺) is equal to the dimension of 𝐿𝑟+1 ∩𝐻1

0 (𝛺) plus the number of connected components of 𝜕𝛺 namely,
𝛽2(𝛺) + 1. Moreover dim

(

grad(𝐿𝑟+1 ∩𝐻1
∗ (𝛺))

)

= dim(𝐿𝑟+1 ∩𝐻1
∗ (𝛺)) − 1 (with the −1 since constants have zero gradient), hence

dim
(

curl(𝑁𝑟+1 ∩𝐻0(curl;𝛺))
)

= dim(𝑁𝑟+1 ∩𝐻0(curl;𝛺)) − dim(𝐿𝑟+1 ∩𝐻1
0 (𝛺)) − 𝛽2(𝛺).

We obtain

dim
(

curl(𝑁𝑟+1 ∩𝐻0(curl;𝛺))
)

= card
◦
 1 − card

◦
 0 − 𝛽2(𝛺).

To construct a basis of 𝑅𝑇𝑟+1∩curl(𝐻0(curl;𝛺)) = curl(𝑁𝑟+1∩𝐻0(curl;𝛺)) the idea is to contract to a single node the nodes of the
graph 𝑟+1 that correspond to Lagrange degrees of freedom supported in the same connected component of the 𝜕𝛺. The incidence

matrix of the new graph
◦
𝑟+1 = (

◦

 𝑟+1,
◦
𝑟+1) is computed by replacing all the rows of the incidence matrix of 𝑟+1 related to

Lagrange degrees of freedom supported on a connected component of 𝜕𝛺 with a single row equal to their sum, and removing the
columns with all the entries equal to zero that are those of the contracted arcs. The number of arcs in

◦
𝑟+1 is equal to the number

of internal Nédélec degrees of freedom, namely card(
◦
 1) while the number of nodes in

◦
𝑟+1 is equal to the number of internal

Lagrange degrees of freedom plus the number of connected components of 𝜕𝛺, namely card(
◦
 0) + 𝛽2(𝛺) + 1.

Let
◦
𝑟+1 = (

◦

 𝑟+1,𝑆 ,
◦
𝑟+1,𝑆 ) be a spanning tree of

◦
𝑟+1. We denote

◦
 1,𝑆 ∶= {𝑗 ∈

◦
 1 ∶ 𝐷𝑜𝐹 1

𝑗 ∈
◦
𝑟+1,𝑆}

and
◦
 1,𝐶 =

◦
 1⧵

◦
 1,𝑆 . We recall that, being

◦
𝑟+1 a spanning tree of

◦
𝑟+1, it holds that card(

◦
 1,𝑆 ) = card(

◦

 𝑟+1,𝑆 )−1 = card(
◦
 0)+𝛽2(𝛺).

roposition 4. Let {𝜔𝑗}𝑗∈1 be the cardinal basis of 𝑁𝑟+1( ) for either weights {𝑊 1
𝑗 }𝑗∈1 or moments {𝑀

1
𝑗 }𝑗∈1 . The set {curl𝜔𝑗}𝑗∈

◦
 1,𝐶

s a basis of curl(𝑁𝑟+1 ∩𝐻0(curl;𝛺)).

roof. First we notice that

card(
◦
 1,𝐶 ) = card

◦
 1 − card(

◦
 1,𝑆 )

= card
◦
 1 − (card

◦
 0 + 𝛽2(𝛺)) = dim

(

curl(𝑁𝑟+1 ∩𝐻0(curl;𝛺))
)

.

hen we prove that the set {curl𝜔𝑗}𝑗∈
◦
 1,𝐶

is linearly independent, namely, if ∑

𝑗∈
◦
 1,𝐶

𝑐𝑗curl𝜔𝑗 = 0 then the coefficient 𝑐𝑗 = 0 for

all 𝑗 ∈
◦
 1,𝐶 . The arcs of the graph

◦
𝑟+1 are the internal degrees of freedom of 𝑁𝑟+1 hence we have that Tr𝜕𝛺

(

∑

𝑗∈
◦
 1,𝐶

𝑐𝑗𝜔𝑗

)

= 0.
Then, if

0 =
∑

𝑗∈
◦
 1,𝐶

𝑐𝑗curl𝜔𝑗 = curl

⎛

⎜

⎜

⎜

⎝

∑

𝑗∈
◦
 1,𝐶

𝑐𝑗𝜔𝑗

⎞

⎟

⎟

⎟

⎠

it holds that ∑

𝑗∈
◦
 1,𝐶

𝑐𝑗𝜔𝑗 = grad𝜙 for some 𝜙 ∈ 𝐿𝑟+1( ). Now the proof follows as that for Proposition 1. □

If 𝛽1(𝛺) = 0 then 𝐻∗(curl;𝛺) = 𝐻0(curl;𝛺). We thus have the following.

Corollary 10. If 𝛽1(𝛺) = 0, the set {curl𝜔𝑗}𝑗∈
◦
 1,𝐶

is a basis of 𝑅𝑇𝑟+1 ∩𝐻0(div
0;𝛺)).

If 𝛽1(𝛺) ≠ 0 this basis has to be completed with 𝛽1(𝛺) elements that are the curl of functions that are in 𝑁𝑟+1 ∩ (𝐻∗(curl;𝛺) ⧵
𝐻0(curl;𝛺)). We do not know an efficient algorithm based on graphs to construct these functions. Methods using other strategies
can be found in [37–39] or [40]. For the sake of completeness in the sequel we provide some insights on these functions. It is worth
noting that these finite element functions could be chosen of polynomial degree lower than 𝑟+1, in particular of polynomial degree
one.
13
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Fig. 5. A visualization of the subspaces we consider in 𝐻∗(curl;𝛺). All the functions in the rectangle are in 𝐻(curl0;𝛺)) = ∇𝐻1(𝛺) ⊕ 1(𝛺). Here,
∇𝐻1

∗ (𝛺) ⊂ ∇𝐻1(𝛺), moreover ∇𝐻1
∗ (𝛺) ⊂ 𝐻0(curl;𝛺) ∩ 𝐻(curl0;𝛺) since the elements of ∇𝐻1

∗ (𝛺) are gradients, with a constant value on each connected
component of 𝜕𝛺.

The first step to understand the nature of these functions is to characterize the subspace of functions in 𝐻∗(curl;𝛺) that are
not in 𝐻0(curl;𝛺) (see Fig. 5). It is clear that 𝐻(curl0;𝛺) ⊂ 𝐻∗(curl;𝛺) but the functions of 𝐻(curl0;𝛺) do not contribute to the
construction of a basis of curl(𝑁𝑟+1 ∩𝐻∗(curl;𝛺)). So we are interested in functions of 𝐻∗(curl;𝛺) ⧵ [𝐻0(curl;𝛺) ∪𝐻(curl0;𝛺)].

For the sake of simplicity in the following we assume 𝛽2(𝛺) = 0.
Let 𝐷 be a hexahedron in R3 such that 𝛺 is strongly contained in 𝐷. Let us denote 𝛺′ = 𝐷 ⧵ 𝛺 (the domain 𝛺′ is connected

when 𝛽2(𝛺) = 0). If 𝛽1(𝛺) ≠ 0 there exist 1-chains lying on 𝜕𝛺 such that they are the boundary of 2-chains of  but they are not the
boundary of any surface contained in 𝛺′. The maximum number of 1-chains with this property, that are homologically independent
on 𝜕𝛺, is equal to 𝛽1(𝛺). For the construction see [40,41]. For each 1-chain 𝛾 of this type, there exist functions 𝝆 ∈ 𝐻(curl0;𝛺′)
such that ∮𝛾 𝝆 = 1 and Tr𝜕𝛺(𝝆) ∈ Tr𝜕𝛺

(

𝑁𝑟+1( )
)

(see e.g. [40]). It is worth noting that the trace on 𝜕𝛺 of 𝝆 ∈ 𝐻(curl0;𝛺′) is not
zero since ∮𝛾 𝝆 = 1 and 𝛾 lies on 𝜕𝛺.

It is possible to construct a finite element extension of this trace in 𝑁𝑟+1( ), namely a function �̃� ∈ 𝑁𝑟+1( ) such that
Tr𝜕𝛺(�̃�) = Tr𝜕𝛺(𝝆). Clearly �̃� ∈ 𝐻∗(curl;𝛺) because curl �̃� ⋅ 𝐧𝜕𝛺 = curl𝜏 (𝑇 𝑟𝜕𝛺(�̃�)) = curl𝜏 (𝑇 𝑟𝜕𝛺(𝝆)) = curl𝝆 ⋅ 𝐧𝜕𝛺 = 0. However
�̃� ∉ 𝐻0(curl;𝛺) since Tr𝜕𝛺(𝝆) ≠ 0, and curl�̃� ≠ 0 because otherwise the function

𝐑 =
{

�̃� in 𝛺
𝝆 in 𝛺′

would belong to 𝐻(curl0, 𝐷) hence it would be a gradient. This is not possible because ∮𝛾 𝝆 ≠ 0. Hence �̃� ∈ 𝑁𝑟+1( ) ∩
[

𝐻∗(curl;𝛺) ⧵
(

𝐻0(curl;𝛺) ∪𝐻(curl0;𝛺)
) ]

.
This construction has to be done for each element of a set {𝛾𝑙}

𝛽1(𝛺)
𝑙=1 of 1-cycles homologically independent on 𝜕𝛺 and

homologically trivial in 𝛺. We will denote 𝝆𝛾𝑙 the function on 𝐻(curl0;𝛺′) with ∮𝛾𝑛 𝜌𝛾𝑙 = 1𝛿𝑛,𝑙. The following heuristic resume
this construction:

Heuristic reasoning to build a basis of the space curl(𝑁𝑟+1( ) ∩𝐻∗(curl;𝛺)).

1. Construct a basis {curl𝜔𝑗}𝑗∈
◦
 1,𝐶

of curl(𝑁𝑟+1( ) ∩𝐻0(curl;𝛺)) using a cotree of the

graph
◦
𝑟+1.

2. Compute a set {𝛾𝑙}
𝛽1(𝛺)
𝑙=1 of 1-cycles homologically independent on 𝜕𝛺 and

homologically trivial in 𝛺. These cycles generate 1(𝛺′).
3. For each 𝑙 ∈ {1,… , 𝛽1(𝛺)}

(i) compute the traces Tr𝜕𝛺 𝝆𝛾𝑙 ;
(ii) compute an extension 𝝆𝛾𝑙 ∶= ext(Tr 𝝆𝛾𝑙 ) to 𝑁𝑟+1( ) of the traces in (i).

4. The set {curl𝜔𝑗}𝑗∈
◦
 1,𝐶

∪ {curl𝝆𝛾𝑙}
𝛽1(𝛺)
𝑙=1 is a basis of curl(𝑁𝑟+1( ) ∩𝐻∗(curl;𝛺)).

6. Conclusions

We have constructed a basis of the finite element space 𝑅𝑇𝑟+1 ∩ 𝐻(div0;𝛺) using the tree-cotree technique that is well-known
when 𝑟 = 0. We have extended the technique to the case 𝑟 > 0 without any restriction on the homology of the computational domain.
14

The algorithm can be applied to the two families of degrees of freedom used in this framework: weights and moments.
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The key point in the extension of the graph techniques to high order finite elements is the visualization of the graph associated
ith the degrees of freedom that the use of weights provides.

We have also considered the case of functions with zero trace, namely the space 𝑅𝑇𝑟+1∩𝐻0(div
0;𝛺). Also in this case we propose

an algorithm based on the tree-cotree decomposition of a suitable graph to construct a basis when 𝛽1(𝛺) = 0. When 𝛽1 ≠ 0 to have
a basis it is necessary to complete the set obtained using the tree-cotree decomposition with 𝛽1 functions associated to 1-cycles on
𝜕𝛺 that do not bound any surface contained in R3 ⧵𝛺, the complementary of 𝛺.

In the future we will work to design an efficient algorithm to compute a basis of 𝑅𝑇𝑟+1 ∩𝐻0(div
0;𝛺) without any restriction on

the homology of the computational domain.
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Appendix A

For the sake of completeness, we report here, in terms of the new notation, the proof of Proposition 2.1, presented in [42], that
the graph 𝑟+1 is connected. This is a fundamental property for all the propositions stated in the previous sections.

Proposition 5. Let us set 𝑑𝑁 = dim𝑁𝑟+1 and 𝑑𝐿 = dim𝐿𝑟+1. If we denote 𝐺 ∈ R𝑑𝑁×𝑑𝐿 the matrix that computes, from the moments of
ℎ, the moments of grad𝜑ℎ then 𝐺⊤ is the all-nodes incidence matrix of a directed graph 𝐺 with a node for each Lagrange moment and
n arc for each Nédélec moment: 𝐺 = (𝑀𝐿,𝑀𝑁 ). This graph is connected.

roof. We have proven in [33] that the matrix 𝐺 ∈ R𝑑𝑁×𝑑𝐿 has two elements different from zero, one equal 1 and one equal −1,
n each row hence 𝐺⊤ is the all-nodes incidence matrix of a directed graph 𝐺 = (𝑀𝐿,𝑀𝑁 ). To prove that it is connected we
ecompose it in edge, face and tetrahedron subgraphs (see Fig. 6).

For all 𝑒 ∈ 𝐸, 𝑒 = (𝑒,𝑒) denotes the subgraph of 𝐺 = (𝑀𝐿,𝑀𝑁 ) with nodes 𝑒 = {𝑀𝐿
𝑒,∅,𝜷′

∶ 𝜷′ ∈ (2, 𝑟 − 1)} and arcs
𝑒 = {𝑀𝑁

𝑒,∅,𝜶 ∶ 𝜶 ∈ (2, 𝑟) with 𝛼0 ≠ 0 ≠ 𝛼1}. It is easy to check that all the nodes of 𝑒 are connected with the node 𝑀𝐿
𝑒,∅,(𝑟−1,0).

n fact if 𝜷′ = (𝛽′0, 𝛽
′
1) with 𝛽′1 ≠ 0 then the arc 𝑀𝑁

𝑒,∅,𝜶 with 𝜶 = (𝛽′0 + 1, 𝛽′1) belongs to 𝑒 and connects the node 𝑀𝐿
𝑒,∅,(𝛽′0 ,𝛽

′
1)

with the
ode 𝑀𝐿

𝑒,∅,(𝛽′0+1,𝛽
′
1−1)

. Hence it is possible to construct a path with 𝛽′1 arcs connecting 𝑀𝐿
𝑒,∅,(𝛽′0 ,𝛽

′
1)

with 𝑀𝐿
𝑒,∅,(𝛽′0+𝛽

′
1 ,0)

= 𝑀𝐿
𝑒,∅,(𝑟−1,0).

Analogously, for all 𝑓𝜁 = 𝑓 ∈ 𝐹 , 𝑓 = (𝑓 ,𝑓 ) denotes the subgraph of 𝐺 = (𝑀𝐿,𝑀𝑁 ), with nodes 𝑓 = {𝑀𝐿
𝜁,𝜌,𝜸′ ∶ 𝜸′ ∈

(3, 𝑟 − 2), 𝜁 ∈ 𝛴(0 ∶ 𝑑, 0 ∶ 𝑛), 𝜌 ∈ 𝛴(0 ∶ 𝑑 − 2, 1 ∶ 𝑑)} and arcs 𝑓 = ∪2
𝑖=1{𝑀

𝑁
𝜁,𝜌,𝜷 ∶ 𝜷 ∈ (3, 𝑟 − 1) with 𝛽𝑙 ≠ 0 if 𝑙 ≠ 𝑖, 𝜁 ∈ 𝛴(0 ∶

, 0 ∶ 𝑛), 𝜌 ∈ 𝛴(0 ∶ 𝑑 − 2, 1 ∶ 𝑑)}. If 𝛾 ′2 ≠ 0, taking 𝜷 such that 𝜸′ = 𝜷 − 𝑒0, the arc 𝑀𝑁
𝜁,𝜌,𝜷 ∈ 𝑓 , with 𝛽1 ≠ 0 connects the node

𝐿
𝜁,𝜌,(𝛾′0 ,𝛾

′
1 ,𝛾

′
2)

with the node 𝑀𝐿
𝜁,𝜌,(𝛾′0+1,𝛾

′
1 ,𝛾

′
2−1)

. On the other hand if 𝛾 ′1 ≠ 0, taking 𝜷 such that 𝜸′ = 𝜷 − 𝑒0, the arc 𝑀𝑁
𝜁,𝜌,𝜷 ∈ 𝑓 with

2 ≠ 0, connects the node 𝑀𝐿
𝜁,𝜌,(𝛾′0 ,𝛾

′
1 ,𝛾

′
2)

with the node 𝑀𝐿
𝜁,𝜌,(𝛾′0+1,𝛾

′
1−1,𝛾

′
2)

. Hence, if 𝛾 ′1 + 𝛾 ′2 ≠ 0, it is possible to construct a path with
′
1 + 𝛾 ′2 arcs connecting 𝑀𝐿

𝜁,𝜌,(𝛾′0 ,𝛾
′
1 ,𝛾

′
2)

with 𝑀𝐿
𝜁,𝜌,(𝛾′0+𝛾

′
1+𝛾

′
2 ,0,0)

.
Finally for all 𝑓𝜁 = 𝑡 ∈ 𝑇 , 𝑡 = (𝑡,𝑡) denotes the subgraph of 𝐺 = (𝑀𝐿,𝑀𝑁 ), with nodes 𝑡 = {𝑀𝐿

𝜁,𝜌,𝜹′
∶ 𝜹′ ∈ (4, 𝑟−3), 𝜁 ∈

0 ∶ 𝑛, 0 ∶ 𝑛), 𝜌 ∈ 𝛴(0 ∶ 𝑛 − 2, 1 ∶ 𝑛)} and arcs 𝑡 = ∪1≤𝑖<𝑗≤3{𝑀𝑁
𝜁,𝜌,𝜸 ∶ 𝜸 ∈ (4, 𝑟 − 2) with 𝛾𝑙 ≠ 0 if 𝑙 ∉ {𝑖, 𝑗}}. Proceeding as for edges

nd faces it is easy to check that 𝑡 is connected.
We consider also the subgraph ∗𝑒 = ( ∗

𝑒 ,
∗
𝑒 ) with nodes  ∗

𝑒 = 𝑒 ∪1
𝑖=0 𝑀

𝐿
𝐯𝑚𝑒 (𝑖) ,∅,𝜶

′ and arcs 𝑒 = {𝑀𝑁
𝑒,∅,𝜶 ∶ 𝜶 ∈ (2, 𝑟)}. We can

connect 𝑀𝐿
𝐯𝑚𝑒 (0) ,∅,𝜶

′ with a node of 𝑒 while the second one 𝑀𝐿
𝐯𝑚𝑒(1) ,∅,𝜶

′ connects with a node of 𝑒 hence ∗𝑒 is connected. For each
∈ 𝐸, ∗𝑒 is a path connecting the Lagrange moments associated with the vertices of the mesh in 𝛥0(𝑒). Hence if 𝛺 is connected the
raph ∪𝑒∈𝐸∗𝑒 is connected.

To conclude the proof we notice that we have an arc of 𝐺 = (𝑀𝐿,𝑀𝑁 ) that connects a node of 𝑓 with a node of 𝑓−[𝑣𝑚𝑓 (2)]

nd an arc that connects a node of 𝑡 with a node of 𝑡−[𝑣𝑚𝑡 (3)]. Since each node of 𝐺 belongs to a subgraph of the type ∗𝑒 or 𝑓
𝐺

15

r 𝑡 this prove that  is connected. □
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Fig. 6. On the top an example of edge subgraph ∗
𝑒 . On the bottom, in blue, an example of face subgraph 𝑓 ; in red and green the three subgraphs of the

dges on the boundary of 𝑓 , in black, other arcs of the graph that are not on any face or edge subgraph.
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