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A B S T R A C T

This article proposes different modelling approaches which exploit electricity market data to nowcast industrial
production. Our models include linear, mixed-data sampling (MIDAS), Markov-Switching (MS) and MS-
MIDAS regressions. Comparisons against autoregressive approaches and other commonly used macroeconomic
predictors show that electricity market data combined with an MS model significantly improve nowcasting
performance, especially during turbulent economic states, such as those generated by the recent COVID-19
pandemic. The most promising results are provided by an MS model which identifies two volatility regimes.
These results confirm that electricity market data provide timely and easy-to-access information for nowcasting
macroeconomic variables, especially when it is most valuable, i.e. during times of crisis and uncertainty.
1. Introduction

Most macroeconomic variables are released at monthly or quarterly
intervals and with a significant delay, which typically goes from a
month (e.g. Gross Domestic Product, GDP) to 40–45 days (e.g. indus-
trial production index, IPI), and often further revised after release.
This creates a substantial window of uncertainty for policy-makers and
economic agents, particularly during periods of crisis, such as those
created by the recent coronavirus (COVID-19) pandemic. In order to
address this issue, researchers proposed several real-time indicators
of economic activity, which are available in a more timely manner.
This information has been used to develop so-called nowcasting ap-
proaches (e.g. Banbura et al., 2011; Andreou et al., 2013; Onorante
and Raftery, 2016; Ravazzolo and Vespignani, 2020; Baumeister et al.,
2022; Barbaglia et al., 2022). Recently, this literature has thrived in
response to the need of tracking in real-time the various impacts of
COVID-19. Several indicators were developed for this purpose, such
as electricity consumption (Fezzi and Fanghella, 2020, 2021), con-
sumers’ transactions (Sheridan et al., 2020; Carvalho et al., 2021),
mobile phone records (Goolsbee and Syverson, 2021), labour market
trends (Forsythe et al., 2020; Kong and Prinz, 2020), or combinations
of different information (Chetty et al., 2020; Foroni et al., 2020; Lewis
et al., 2020).
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This paper contributes to this growing literature by proposing and
testing the forecasting performance of a set of models employing elec-
tricity market data for forecasting the seasonally and calendar adjusted
IPI. IPI is a monthly indicator measuring the real output of the manufac-
turing, mining, electric and gas industries. It is commonly used to gauge
the health of an economic system (Martínez-García et al., 2015), it is
one of the most widely analysed macroeconomic variables (Heij et al.,
2011; Schreiber and Soldatenkova, 2016; Chiu et al., 2017; Günay,
2018), and is a crucial input for forecasting the short-term evolution
of GDP (Golinelli and Parigi, 2007; Baumeister and Guérin, 2021).
Additionally, IPI is particularly difficult to forecast, since it reacts
immediately to economic shocks and it is affected by both seasonal and
cyclical variation (Bodo et al., 2000; Bruno and Lupi, 2004; Dendramis
et al., 2020).

IPI forecasting methods proposed in the literature include lin-
ear regressions (Marchetti and Parigi, 2000; Franses and Van Dijk,
2005; Heij et al., 2011), neural networks (Heravi et al., 2004), singu-
lar spectrum analysis (Hassani et al., 2009, 2019), Markov-switching
(MS) models (Billio et al., 2012), mixed-data sampling (MIDAS) mod-
els (Clements and Galvão, 2008) and vector autoregressive models (Bas-
setti et al., 2014; Schreiber and Soldatenkova, 2016; Chiu et al.,
2017).
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Our approach recognises that most economic activities (including
industrial production) require electricity as an input that is difficult
to substitute away from, at least in the short-run. Indeed, electricity
consumption (which, following the energy economics literature, we
refer to as “load”), decreases significantly during weekends and public
holidays, when many businesses are shut down (Fezzi and Bunn, 2010).
Furthermore, information on load is publicly available in real time for
almost all countries across the globe, since electricity is traded on an
hourly or half-hourly basis in most developed economies. This feature
makes our methodology widely applicable to different countries and
contexts.

Here we compare different IPI forecasting models augmented with
electricity market data against an AutoRegressive (AR) approach, which
is commonly used as a benchmark (Heravi et al., 2004; Franses and
Van Dijk, 2005), and a series of models employing other nowcasting
predictors such as oil price, a stock market index, a business confidence
indicator, and production expectations. Our baseline model specifica-
tion is a simple linear regression using electricity consumption and its
various determinants as explanatory variables, which we then enrich
by introducing, in turn, a Markov-switching process (Hamilton, 1989)
and a Mixed-Data Sampling specification. We then combine these two
methodologies in an MS-MIDAS model.

We apply our approach to the Italian IPI and electricity data, and
assess the robustness of our findings by extending the investigation to
two other European countries: Spain and Germany. Our results can be
briefly summarised as follows. First, most of our models which include
electricity market information outperform the different benchmarks.
Second, the most promising results are provided by the MS model
which identifies two regimes of different volatility. In our application,
the high volatility periods include both the 2008–2009 global financial
crisis and the more recent recession triggered by the COVID-19 pan-
demic. It is during these turbulent periods that electricity market data
give an edge to our approaches, which significantly outperform both
the autoregressive specifications and the models using other predictors.
On the other hand, during low volatility phases a simple AR model
is not inferior to our proposed specifications. These results confirm
that, in times of crisis, electricity data can provide crucial information
for nowcasting macroeconomic indicators (Fezzi and Fanghella, 2020,
2021).

The remainder of the paper is organised as follows. Section 2
describes the data. Section 3 provides an overview of the different
linear, nonlinear and mixed-frequency models that we consider for
forecasting industrial production. Section 4 shows the results of our
empirical study. Section 5 presents several extensions of our analysis.
Section 6 concludes.

2. Data

Our data covers the period from January 2006 to December 2021.
We downloaded our dependent variable, the latest release of IPI, from
Eurostat, which publishes this information with roughly 40 days of
delay.1 For instance, the industrial production in January is available
round the 10th of March of the same year. Electricity load data comes
rom the public platform of the European Network of Transmission
ystem Operators for Electricity (ENTSO-E), where data is published
n an hourly basis.2 As mentioned in the introduction, our main case
tudy is Italy, an important player in the European Union’s industrial
roduction landscape, accounting for 16% of the total output. Italy’s
ower market is relatively young, having commenced operations in

1 https://ec.europa.eu/eurostat/cache/metadata/en/sts_esms.htm#
imeliness_punct1638197521702.

2 https://transparency.entsoe.eu/.
2

2004. It primarily relies on two key sources to satisfy its annual demand
of approximately 300 TWh (IEA, 2023): natural gas (about 50%),
and renewables (40%). We construct our main explanatory variable
by eliminating all weekends, in order to focus on the days in which
most economic activity is carried out, and summing up the hourly
information at the weekly level. In addition, we retain only the first
four weeks to adjust for calendar effects (that is, the variation caused
by months having a different number of working days).

Fig. 1 presents the time series of Italian IPI and load. The top panel
displays the unadjusted IPI, which is characterised by strong seasonal
patterns, with a noticeable dip in August, due to the summer holidays,
and a smaller one in December, due to the winter festivities. The
central panel shows the IPI after the seasonal and calendar adjustments
performed by Eurostat.3 This helps to highlight the slow but consistent
fall in production following the global financial crisis in 2008 and 2009,
and the V-shaped dramatic impact of the COVID-19 pandemic in 2020.
As in Marchetti and Parigi (2000) and Bradley and Jansen (2004), we
concentrate on this seasonal and calendar adjusted production index,
which is significantly harder to forecast. Finally, the bottom panel of
Fig. 1 presents the weekly average of hourly load. Seasonal effects are
also visible in this time series, driven by both human activities (such
as industrial production) and weather.

Temperature is by far the most important weather variable affecting
load, with demand peaking during both winters and summers in order
to satisfy heating and cooling needs (Behmiri et al., 2023; Chang
et al., 2016). We represent temperature for the entire country as the
mean between the average daily temperature of the two most populous
Italian cities, Milan and Rome, retrieved from the National Oceanic
and Atmospheric Administration.4 Fig. 2 shows that the relationship
etween temperature and load is non-linear and V-shaped. Following
he energy economics literature (Møller, 2017; Ahmed et al., 2018;
urmaz et al., 2020; Fezzi and Fanghella, 2021), we address this issue
y calculating heating degree days (HDD) and cooling degree days
CDD) as the absolute difference with respect to 64 ◦F (about 18 ◦C),
hich is the value of temperature for which demand is at its minimum,
efined by visually inspecting the scatter plot in Fig. 2. CDD/HDD
epresent temperature when electricity is used for cooling/heating. We
alculate both variables on a daily basis and then aggregate them at
he weekly and monthly levels.

Finally, in line with the IPI forecasting literature (Franses and
an Dijk, 2005; Heravi et al., 2004; Heij et al., 2011; Schreiber and
oldatenkova, 2016; Chiu et al., 2017), we treat our series as non-
tationary and, therefore, develop all our models on the first dif-
erences. This choice is confirmed by the Augmented Dickey–Fuller
est (Dickey and Fuller, 1979) which does not reject the null hypothesis
f a unit root on the levels. For example, the test with intercept, trend
nd 5 lags generates a statistic of 1.88 with a corresponding 𝑝-value of
.63. The same test strongly rejects the null on the first differences (test
tatistic −7.08, 𝑝-value < 0.01). Such results remain consistent with
ifferent test specifications.

. Methodology

In this section, we first describe the different models considered
n our analysis and then illustrate how we compare their forecasting
erformances.

3 The statistical procedure for producing seasonal and calendar ad-
usted figures is illustrated by Eurostat in the metadata for industrial
roduction: https://ec.europa.eu/eurostat/cache/metadata/en/sts_esms.htm#
tat_process1651761756762. Each country is encouraged to provide Eurostat
ith seasonal and calendar adjusted figures. In case a country provides
nly unadjusted figures, Eurostat calculates the adjusted figure using the
RAMO/SEATS method in JDemetra+ software (Maravall et al., 2015).

4
 https://www.ncei.noaa.gov.

https://ec.europa.eu/eurostat/cache/metadata/en/sts_esms.htm#timeliness_punct1638197521702
https://ec.europa.eu/eurostat/cache/metadata/en/sts_esms.htm#timeliness_punct1638197521702
https://transparency.entsoe.eu/
https://ec.europa.eu/eurostat/cache/metadata/en/sts_esms.htm#stat_process1651761756762
https://ec.europa.eu/eurostat/cache/metadata/en/sts_esms.htm#stat_process1651761756762
https://www.ncei.noaa.gov
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Fig. 1. Italian IPI and load time series. Notes: IPI in the second panel is seasonally and calendar adjusted by Eurostat using the TRAMO/SEATS method in the JDemetra+
software (Maravall et al., 2015). The bottom panel shows the load series, including only workdays.
3.1. Autoregressive benchmark

In line with previous research, we chose a simple AR model as
the benchmark (Hassani et al., 2009; Heravi et al., 2004). The AR
models assume that the value of a given variable depends on one or
more of its past values, plus a stochastic error term that is assumed
to be independent and identically distributed (𝑖𝑖𝑑). Indicating with 𝑦𝑡,
𝑡 = 1,… , 𝑇 the sequence of IPI first differences, the AR(p) process can
be written as:

𝑦 = 𝜙 + 𝜙 𝑦 +⋯ + 𝜙 𝑦 + 𝑒 , (1)
3

𝑡 0 1 𝑡−1 𝑝 𝑡−𝑝 𝑡
where 𝑒𝑡, 𝑡 = 1,… , 𝑇 is the white noise error term and 𝜙0,… , 𝜙𝑝 are the
autoregressive parameters that we estimate via Ordinary Least Squares
(OLS). While we tested different values of 𝑝, 𝑝 = 1 provides the best
performance and, therefore, we choose an AR(1) as our benchmark.5

5 In real applications, the lagged IPI would not be available at the end of
the current month, for the reasons discussed at the beginning of Section 2.
However, we also estimate an AR(2) with null first-lag coefficient, and it
slightly underperforms the AR(1), so we decided to present the results of the
AR(1) to give a slight advantage to the benchmark and to make our results
more generalisable to other contexts.
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Fig. 2. Load vs. temperature data. Notes: The solid line is computed using a Lowess smoother (Cleveland, 1981), with a smoother span of 2
3
.

3.2. Linear load model

This approach assumes that IPI can be defined as a linear function
of short term-adjusted load, i.e. load once the short-term drivers that
do not depend on production have been controlled for. We control for
such drivers, (i.e. seasonal, calendar, and temperature effects), because
unadjusted load would not qualify as a good predictor. As the main
determinants of load we include HDD, CDD, quarterly fixed-effects
(𝛽𝑄, 𝑄 = 1,… , 4), and August and December fixed effects (𝛽𝑀 ,𝑀 =
8, 12). Following Bulligan et al. (2010), the last two variables capture
the effect of the typical periods of low activity in the Italian economy,
due to the summer and Christmas vacations to account for the seasonal-
ity pattern in the Italian IPI series. In addition, we control for calendar
effects by using only the first twenty working days for each month.
Indicating with 𝑥𝑡 the first differences of the load, we write the linear
model as: 𝑥𝑡 = 𝛽𝑄,𝑡+𝛽𝑀,𝑡+𝛽1𝐻𝐷𝐷𝑡+𝛽2𝐶𝐷𝐷𝑡+𝑢𝑡, where HDD and CDD
are also in first differences and 𝑢𝑡 are the changes in load which are not
caused by changes in temperature, seasonality, or months’ length and,
therefore, can be used to nowcast sudden changes in IPI. Assuming a
linear relationship between 𝑦𝑡 and 𝑢𝑡, we estimate the following linear
load model (LLM):

𝑦𝑡 = 𝛾0 + 𝛾1𝑢𝑡 + 𝑒𝑡 = 𝛾0 + 𝛾1[𝑥𝑡 − 𝛽𝑄,𝑡 − 𝛽𝑀,𝑡 − 𝛽1𝐻𝐷𝐷𝑡 − 𝛽2𝐶𝐷𝐷𝑡] + 𝑒𝑡
= 𝛾0 + 𝛾1𝑥𝑡 − 𝜃𝑄,𝑡 − 𝜃𝑀,𝑡 − 𝜃1𝐻𝐷𝐷𝑡 − 𝜃2𝐶𝐷𝐷𝑡 + 𝑒𝑡,

(2)

where 𝑒𝑡, 𝑡 = 1,… , 𝑇 is a white noise error term and 𝛾0, 𝛾1, 𝜃𝑄,𝑡, 𝜃𝑀,𝑡, 𝜃1,
and 𝜃2 are the parameters we estimate with OLS. We also consider a
specification of (2) which imposes 𝜃1 = 𝜃2, which, in effect, assumes the
impacts of HDD and CDD to be the same. We refer to this specification
as LLM-TDD, where TDD stands for Total Degree Days, that is the
sum of HDD and CDD. Finally we also tried adding AR terms to these
specifications, obtaining models that we indicate respectively with the
acronyms AR-LLM and AR-TDD.
4

3.3. Markov-switching model

In this approach we allow the parameters in (2) to change accord-
ing to a latent regime variable. We expect this variable to be able
to separate ‘‘low- volatility’’ (normal and/or expansion periods) from
‘‘high-volatility’’ observations (crisis and/or recession periods). Simi-
larly to Clements and Krolzig (1998), we assume that the coefficients
and the standard deviation of the error term 𝑒𝑡 change across regimes.
The resulting Markov-switching model (MS) can be written as:

𝑦𝑡 = 𝛾0(𝑠𝑡)+𝛾1(𝑠𝑡)𝑥𝑡−𝜃𝑄,𝑡(𝑠𝑡)−𝜃𝑀,𝑡(𝑠𝑡)−𝜃1(𝑠𝑡)𝐻𝐷𝐷𝑡−𝜃2(𝑠𝑡)𝐶𝐷𝐷𝑡+𝜎(𝑠𝑡)𝑒𝑡,

(3)

where all the parameters depend on the regime switching process 𝑠𝑡,
𝑡 = 1,… , 𝑇 which is a 𝑚-states ergodic and aperiodic Markov-chain
process. Since our framework recognises that industrial production is
a function of load changes that do not depend on either seasonality
or temperature effects, we let not only the parameter of load, but
also those of temperature and seasonality to vary in each regime.
We specify this model with two possible regimes, each representing a
different state of the economy: expansion/low-volatility vs. crisis/high-
volatility.6 This latent process takes integer values and has transition
probabilities P(𝑠𝑡 = 𝑗|𝑠𝑡−1 = 𝑖) = 𝑝𝑖𝑗 , with 𝑖, 𝑗 ∈ {1, 2}. In our
applications, we assume that the initial values, (𝑦−𝑝+1,… , 𝑦0), and 𝑠0
are known. For estimation, we assume that the error terms are nor-
mally distributed and we estimate this model via maximum likelihood
using the expectation–maximisation algorithm provided by the MSwM
package (Sanchez-Espigares and Lopez-Moreno, 2021) for R (R Core

6 Assuming more than two regimes increases proportionally the number of
parameters to estimate, thus raising issues of overparametrisation. We tried to
estimate a model with three regimes and the inference procedure had serious
convergence issues.
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Team, 2021). The algorithm first assigns a value to the latent variable,
by randomly allocating each observation to one of the two regimes,
effectively dividing our estimation sample in two sub-samples. After
this step, the starting values for each regime are estimated via OLS and
then the EM algorithm proceeds to iteratively maximise the likelihood
following the approach illustrated by Perlin (2015). However, since
the likelihood of this model is not globally concave, the algorithm
can converge to a local rather than a global maximum. In order to
address this issue, at each step of our forecasting comparison we run 30
estimates of model (3) with different starting values, and then select,
at each step, the model which provides the highest likelihood. We
choose the number of runs in order to make sure that our results were
stable and reproducible, while maintaining a reasonable requirement
of computational power.7

3.4. MIDAS model

Mixed-frequency models take advantage of the fact that the ex-
planatory variables are released at much higher frequency than IPI.
Electricity demand and temperature are, in fact, available on a daily or
even hourly basis. Clearly, including such high-frequency information
would require estimating too many parameters. However, we can still
test if using weekly demand and temperature data (rather than monthly
ones) leads to an improvement in forecasting performance. Follow-
ing Foroni et al. (2015), in our context we can write the unrestricted
MIDAS model as:

𝜔(𝐿)𝑦𝑡 = 𝛾0 + 𝛾1(𝐿) 𝑥𝑡 + 𝜃1(𝐿) 𝐻𝐷𝐷𝑡 + 𝜃2(𝐿) 𝐶𝐷𝐷𝑡 + 𝜃𝑄,𝑡 + 𝜃𝑀,𝑡 + 𝑒𝑡, (4)

where 𝑡 indicates the weekly time periods, 𝐿 is the lag operator, 𝜔(𝐿)
is the aggregation scheme equal to 1+𝐿+𝐿2+𝐿3, 𝛾1(𝐿) = 𝛾1,0+ 𝛾1,1𝐿+
𝛾1,2𝐿+𝛾1,3𝐿, 𝜃1(𝐿) = 𝜃1,0+𝜃1,1𝐿+𝜃1,2𝐿+𝜃1,3𝐿, 𝜃2(𝐿) = 𝜃2,0+𝜃2,1𝐿+𝜃2,2𝐿+
𝜃2,3𝐿, and all other symbols are defined as previously. This specification
corresponds to (2) with 4 weekly load and temperature variables and
6 seasonal fixed effects, for a total of 18 parameters, which drop to
14 in the restricted version (MIDAS-TDD) where HDD and CDD have
symmetric effects.

Finally, our last specification combines the MIDAS and the MS
frameworks in an MS-MIDAS model with two regimes, as in Guérin and
Marcellino (2013). We also consider an MS-MIDAS-TDD version.

3.5. Alternative predictors

Different IPI predictors have been proposed in the literature, in-
cluding oil price (Schreiber and Soldatenkova, 2016), stock market
indexes (Heij et al., 2011; Schreiber and Soldatenkova, 2016), business
and consumer confidence indicators (Bruno and Lupi, 2004; Heij et al.,
2011; Costantini, 2013), and production expectations (Bruno and Lupi,
2004; Lemmens et al., 2005). In order to compare the nowcasting
performance of electricity market data against these other real-time
indicators, we also estimate our models using the above-mentioned
predictors. For each predictor, we estimate both linear specifications
and Markov-switching ones. We retrieved information on the European
Brent oil spot price from the US Energy Information Administration,8
the FTSE-MIB stock market index from the Wall Street Journal,9 and
the business confidence indicator and the production expectations, both
seasonally adjusted, are provided by Eurostat.10

7 With 30 runs, estimating all our models with load requires about 50 h
sing a 2.40 GHz Intel i5 processor with 16 GB of RAM.

8 https://www.eia.gov/dnav/pet/pet_pri_spt_s1_m.htm.
9 https://www.wsj.com/market-data/quotes/index/IT/MTAA/I945/

istorical-prices.
10
5

https://ec.europa.eu/eurostat/data/database.
Table 1
Forecasting performance.

Overall Calm Turbulent
01/2014–12/2021 01/2014–02/2020 03/2020–12/2020

01/2021–12/2021

MAE RMSE MAE RMSE MAE RMSE

Linear

AR(1) 2.20 5.92 1.06 1.31 11.99 17.94
AR(1)-LLM 2.26 5.66 1.23 1.61 11.05 16.89
AR(1)-TDD 2.25 5.68 1.21 1.51 11.17 17.04
LLM 2.13 5.06* 1.27 1.67 9.55** 14.90*
LLM-TDD 2.14 5.11* 1.25 1.57 9.78** 15.15*
MIDAS 2.18 5.11 1.31 1.65 9.74** 15.07*
MIDAS-TDD 2.21 5.18* 1.31 1.60 9.95** 15.34*

MS

AR(1) 2.21 6.14 0.96* 1.21** 12.65 18.69
AR(1)-LLM 1.94 4.30 1.19 1.54 8.44 12.54
AR(1)-TDD 2.33 5.66 1.14 1.47 12.54 16.99
MS 2.62 6.36 1.37 1.88 13.42 18.91
MS-TDD 2.02 4.26 1.37 1.78 7.60 12.13
MS-MIDAS 3.36 7.77 1.68 2.36 17.79 23.06
MS-MIDAS-TDD 3.03 6.46 1.73 2.31 14.17 18.83

Notes: In the table above we show the Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) for the whole forecasting window and the “calm”, and the
“turbulent” periods. In bold we highlight the best performing model. Stars indicate
that the one-sided DM test (Diebold and Mariano, 2002) is significant at the 10% (*)
or 5% (**) significance level.

3.6. Forecasting evaluation

For all our models, we perform one-step ahead forecasts with a
recursive forecasting window, i.e. the estimation window increases by
one month at each step so that the prediction for each month exploits
all the information available at that time. The interval that we use
to compare the forecasting performance is the last eight years, which
corresponds to half of our overall sample. We divide the forecasting
sample between a “calm” and a “turbulent” period. The turbulent
period includes the months of economic crisis, which in our sample
corresponds to those following the COVID-19 outbreak, i.e. from March
to December 2020. The remaining of the forecasting sample is classified
as the calm period. We note that this distinction does not serve as an
input for the identification of the regimes in the MS models, but is
simply used to compare the forecasting performance of our models in
two different states of the economy.

As most of the energy (Wang et al., 2022; Lehna et al., 2022) and
IPI (Hassani et al., 2009; Bulligan et al., 2010) forecasting literature,
we evaluate the performance of our models in terms of Mean Absolute
Error (MAE) and Root Mean Squared Error (RMSE), defined as:

𝑀𝐴𝐸 =
∑

𝑡 |𝑦𝑡 − 𝑦𝑡|
𝑇

, 𝑅𝑀𝑆𝐸 =

√

∑

𝑖(𝑦𝑡 − 𝑦𝑡)2

𝑇
,

where 𝑦 is the observed IPI at time 𝑡 = 1,… , 𝑇 , and 𝑦𝑡 is its value as
predicted by our models.

4. Results

In this section we report in detail the results for the Italian IPI,
whereas an extension to other countries is presented in the next section.
Table 1 summarises the forecasting performance of our models on the
whole 2014–2021 testing sample, distinguishing between the calm and
turbulent periods.11 The table shows how electricity demand provides
important information for IPI predictions. In the top half of the table

11 Estimating at different points in time can lead the Markov-switching
model to allocate periods to either low- or high-volatility regimes in different
ways.

https://www.eia.gov/dnav/pet/pet_pri_spt_s1_m.htm
https://www.wsj.com/market-data/quotes/index/IT/MTAA/I945/historical-prices
https://www.wsj.com/market-data/quotes/index/IT/MTAA/I945/historical-prices
https://ec.europa.eu/eurostat/data/database
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Fig. 3. Markov-switching regimes. Notes: The first two panels show the first differences of IPI and load between 2006 and 2021 (solid line). The grey bands identify the periods
of high-volatility, according to the probabilities of being in the high-volatility regime shown in the bottom panel.
we show the forecasting performance, in terms of MAE and RMSE,
of our linear models, whereas in the bottom half we present the
performance of the Markov-switching specifications. Considering the
entire sample, in the first two columns, all the static linear models
that include electricity market information significantly outperform the
AR(1) benchmark. Columns 3 to 6 show that this superior performance
is concentrated during the turbulent months, and that in the calm
period all the approaches are not significantly different from each
other. The models that combine the AR component with electricity
market data (AR(1)-LLM and AR(1)-TDD) do not perform better than
the simpler AR(1).

Moving to the bottom half of the table, columns 1–2 show that,
depending on the indicator, the model with the best overall forecast-
ing performance is either the AR(1)-LLM or the MS-TDD. However,
columns 5–6 show that the forecasting performance of MS-TDD is
clearly superior during the turbulent period. In addition, we note that,
in general, our most complex models (in terms of parameter numbers)
do not seem to perform particularly well. For example, all MS-MIDAS
present MAE and RMSE that are higher than those provided by the
AR(1). Our interpretation of this result is that our monthly data does
not contain enough information to generate precise parameter esti-
mates of such complex specifications. For example, our entire sample
includes 192 monthly observations and the MS-MIDAS includes 38
parameters, which appear to be too many. By the same token, the
standard version of each model is always outperformed by its TDD
counterpart. In other words, assuming the impact of HDD and CDD
to be the same and, thereby, reducing the number of parameters
constitutes an advantage, at least in our case-study.

In Table 2 we show the MS-TDD estimates over our entire sam-
ple (2006–2021). The two regimes identified by this model are in-
deed clearly distinct, with the load-related parameters are all non-
significantly different from zero during the low- volatility regime, while
they become significantly different during the high-volatility one. Signs
are as expected from Eq. (2), with the parameter of load being positive
and the parameter of degree days being negative. Finally, the standard
deviation of the error term of the high volatility regime is more than
two times the one of the low-volatility one.

We display the two regimes in Fig. 3, where the grey bands repre-
sent the periods in which the system is in its high-volatility regime,
i.e. when the smoothed probability (displayed in the bottom panel)
6

Table 2
MS-TDD estimation results.

Regime 1 Regime 2
(Low volatility) (High volatility)

Intercept 0.03 0.28 2.14 2.93
Load 0.03 0.08 5.24*** 0.51
TDD 0.00 0.00 −0.03** 0.01
Spring −0.13 0.36 4.30 3.75
Summer −0.48 0.51 −22.35*** 4.85
Winter −0.02 0.35 −7.68** 3.61
August 0.76 1.09 48.44*** 6.37
December 0.06 0.59 8.90** 4.04

R2 0.01 0.89
Std. deviation 1.55 4.07

Log-likelihood: −393.71

Notes: In the table above, we expressed load in terms of GWh. Stars indicate
significance as follows: * 10%, ** 5%, *** 1%.

of that regime is higher than 0.5. The model identifies a few months
during the 2008–2009 great financial crisis and the first wave of
COVID-19 as high-volatility regimes, reassuring us on its ability to
detect the most important periods of crisis that the economic system
experienced in the last decade. Analogously to the linear specification,
we also test a MS model in which HDD and CDD are constrained to
have symmetric effects (MS-TDD), and several combinations with an
AR component.

We further investigate the relative performance of our models
through a series of fluctuation tests, proposed by Giacomini and Rossi
(2010). This test measures the relative performance of two series of
out-of-sample forecasts, computing a statistic analogous to the DM
statistic over a rolling window. In this way, the test allows us to
monitor how the relative performance of our approaches vary along the
forecasting sample. We set the rolling window to 10% of the forecasting
sample, that is roughly 10 months. Fig. 4 compares our best model
(MS-TDD) against the AR(1) and the MS-AR(1) models. For positive
values of the statistic, our model outperforms the benchmarks, and vice
versa. The plot shows that the forecasting performance of our approach
dramatically improves from the onset of the COVID-19 pandemic and
confirms that such improvement remains significant during the entire
high-volatility period.
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Fig. 4. Fluctuation test — MS-TDD relative to AR(1). Notes: In the figures above, we show the value of the test statistic (solid lines) along our forecasting sample. In the top
panel, the benchmark model is the linear AR(1), whereas in the bottom panel it is the MS-AR(1). When the lines lie above the zero, they indicate that our model is performing
better than the benchmark, and vice versa. The dotted lines are the asymptotic critical values for the statistic at 5% and 10% significance level, as provided by Giacomini and
Rossi (2010).
Fig. 5. Actual and forecasted IPI. Notes: Comparison of actual IPI first differences against AR(1), LLM-TDD, and MS-TDD forecasts.
Finally, Fig. 5 provides a visual comparison amongst the forecasts
generated by three selected models: (1) our benchmark model, i.e. the
AR(1); (2) the linear model using electricity market data (LLM-TDD)
and (3) our best performing model (the MS-TDD). During calm periods,
all models generate similar results. On the other hand, the performance
of the AR(1) significantly deteriorates during turbulent periods, and
in particular during the first half of 2020, when industrial produc-
tion significantly dropped in response to the COVID-19 pandemic and
related lockdown measures. Load-based models appear to perform
7

better, in particular the MS-TDD. At first, this model does not react
promptly to the onset of COVID-19, and fails to nowcast the sudden
IPI drop in March 2020. However, in the following months it behaves
remarkably well, outperforming both the LLM-TDD and the benchmark.
Recalling Table 2, by the end of our sample this model has “learned”
to distinguish two distinct regimes and to exploit electricity markets’
information to nowcast IPI during high-volatility phases. On these
grounds, we expect that this model will perform even better in the event
of future economic crises.
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Fig. 6. Actual and forecasted IPI. Notes: The panels above show the fluctuation test statistic (solid line) for the MS models using the alternative predictors, with our MS-TDD
model as the benchmark. The solid lines represent the test statistics and are above zero when the MS-TDD model outperforms the alternative one whereas the opposite holds
below zero. The dotted lines are the asymptotic critical values for the statistic at 5% and 10% significance level, as provided by Giacomini and Rossi (2010).
Table 3
Forecasting performance of alternative predictors.

Overall Calm Turbulent
01/2014–12/2021 01/2014–02/2020 03/2020–12/2020

01/2021–12/2021

MAE RMSE MAE RMSE MAE RMSE

Linear

LOAD 2.13 5.06 1.27 1.67 9.55 14.90
OIL 2.07 5.07 1.14 1.39 10.10 15.19*
STOCK 2.09 5.25 1.10 1.36 10.63** 15.77*
BCI 2.18 5.74 1.12 1.37 11.30* 17.33
PROD 2.14 5.31 1.12 1.35 10.96*** 15.98*

MS

LOAD 2.02 4.26 1.37 1.78 7.60 12.13
OIL 2.05 5.05* 1.10 1.37 10.25* 15.11*
STOCK 2.33 6.67 1.09 1.37 12.97 20.27
BCI 2.78 8.51 1.14 1.45 16.84* 26.03
PROD 2.55 7.19 1.21 1.56 14.12 21.81

Notes: In the table above, we also show the results of DM tests (Diebold and
Mariano, 2002) of alternative predictors. Stars indicate that the model is significantly
outperformed by our best load model, as follows: * 10%, ** 5%, *** 1%.

5. Extensions

In this section we present the results of three extensions of our
analysis. First, we compare electricity consumption to the other now-
casting predictors commonly used in the literature, introduced in Sec-
tion 3.5. Second, we generalise our finding to two other European
countries (Germany and Spain) and, finally, we evaluate alternative
specifications for temperature and seasonality effects.

5.1. Comparing against alternative predictors

To compare load against other commonly used nowcasting indica-
tors, we estimate all our models using oil price, stock market index,
business confidence indicator and production expectations. Table 3
summarises the results for the best-performing models using these
new predictors. The top half of the table illustrates the results for
8

Table 4
Forecasting performance of load models in the three countries.

Overall Calm Turbulent
01/2014–12/2021 01/2014–02/2020 03/2020–12/2020

01/2021–12/2021

MAE RMSE MAE RMSE MAE RMSE

Italy

AR(1) 2.20 5.92 1.06 1.31 11.99 17.94
LLM 2.13 5.06* 1.27 1.67 9.55** 14.90*
TDD 2.14 5.11* 1.25 1.57 9.78** 15.15*
MS 2.62 6.36 1.37 1.88 13.42 18.91
MS-TDD 2.02 4.26 1.37 1.78 7.60 12.13

Germany

AR(1) 1.64 3.33 1.07 1.40 6.48 9.47
LLM 1.60 2.85* 1.17 1.44 5.32* 7.75*
TDD 1.59 2.84* 1.17 1.43 5.27* 7.75*
MS 1.64 2.53* 1.29 1.67 4.65* 6.13**
MS-TDD 1.63 2.69* 1.24 1.61 4.98 6.85*

Spain

AR(1) 1.57 3.91 0.81 1.06 8.10 11.70
LLM 1.45 3.08 0.86 1.09 6.51 9.00
TDD 1.45 3.09 0.85 1.07 6.55 9.04
MS 1.36 2.92 0.84 1.14 5.80 8.41
MS-TDD 1.29 2.63* 0.81 1.07 5.47 7.53*

Notes: In the table above, bold figures indicate that the row model outperforms the AR
benchmark. Stars indicate that the alternative predictor is significantly better according
to the DM test (Diebold and Mariano, 2002), as follows: * 10%, ** 5%, *** 1%.

the linear specifications. It shows that, when considering the whole
sample, either oil price or load are the best predictor, according to
whether MAE or RMSE is used to evaluate the forecasting performance
(columns 1–2). However, when focusing on the turbulent period, we
observe that load performs significantly better than all other predictors.
The bottom half of the table presents the MS version of the models.
While the performance of most nowcasting indicators does not seem to
change considerably (and in some cases even deteriorates), the one of
load significantly improves. This leads to forecasting errors which are
significantly smaller than those provided by the other approaches.



Energy Economics 126 (2023) 107006G. Galdi et al.

s
t
a
p
C

5

n
c
i
o
h
h
a
g
n

o
c
p
c
t
s

5

t
T
d
L
r
s
m
s
M
r

6

e
t
a
i

Table 5
Forecasting performance of alternative specifications.

Overall Calm Turbulent
01/2014–12/2021 01/2014–02/2020 03/2020–12/2020

01/2021–12/2021

MAE RMSE MAE RMSE MAE RMSE

AR(1) 2.20 5.20 1.06 1.31 11.99 17.94
Linear

LLM-𝑇 2 2.15 5.15 1.25 1.55 9.92 15.30
LLM-SINCOS 2.16 5.28 1.16 1.44 10.77 15.81
LLM-SINCOS-TDD 2.15 5.31 1.16 1.41 10.71 15.94

MS
MS-𝑇 2 2.29 4.70 1.28 1.68 10.96 13.70
MS-SINCOS 2.52 6.00 1.16 1.50 14.25 18.05
MS-SINCOS-TDD 4.35 12.61 1.12 1.39 32.17 38.85

Notes: We here show the Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) for the models estimated as
robustness checks, computed for the whole forecasting window and the “calm”, and the “turbulent” periods.
Fig. 6 compares the best performing model (MS-TDD) against the
ame specification using each alternative predictor by means of fluc-
uation tests. We observe that, during the calm period, all predictors
chieve comparable results, yet the MS-TDD outperforms all alternative
redictors at the 5% significance level during the entire year of the
OVID-19 crisis.

.2. Extension to other countries

We also implement our analysis in two other European countries,
amely Germany and Spain, in order to test the validity of our results in
ontexts that are different from the Italian one. Germany has the largest
ndustrial production in the European Union (almost two times the one
f Italy) and a power system in which coal (38%) and renewables (35%)
ave similar generation shares (IEA, 2020). On the other hand, Spain
as a relatively smaller industrial production (half of the Italian one)
nd a generation mix which includes renewables (38%) and natural
as (33%) in almost equal parts, but also a relevant contribution from
uclear plants (22%, IEA, 2021).

Table 4 shows that the MS-TDD outperforms the benchmark and the
ther specifications also for these countries (columns 1–2), with this
onclusion driven by the superior performance during the turbulent
eriod (columns 5–6). It is worth noting that the results for these
ountries are somewhat stronger than those from Italy, with the DM
ests being significant when considering both the whole forecasting
ample (column 2) and only the turbulent period (column 6).

.3. Further robustness tests

We also employed a few different specifications in order to further
est the robustness of our results. Those models are summarised in
able 5. Regarding the treatment of temperature, we replaced degree
ays with a quadratic function of the first differences of temperature:
LM-T2. We also tried to reduce the number of seasonal parameters by
eplacing the seasonal fixed effects with a sinusoidal function including
ine and cosine with period one year (LLM-SINCOS). For all these
odels we considered both the linear and the MS specifications. As

hown in the table, these approaches underperformed in terms of both
AE and RMSE with respect to the corresponding models presented in

est of the manuscript. Further information is available upon request.

. Conclusions

We developed and compared the performance of a set of models
mploying electricity consumption, temperature, and seasonal effects
o nowcast IPI. Including this information provides predictions which
re superior to those of a series of alternative specifications, which
9

nclude autoregressive models and alternative predictors, especially
during the recent COVID-19 pandemic. To the extent that future crises
resemble in nature the ones included in our sample (e.g., COVID-19,
global financial crisis, sovereign debt crisis), our approach is likely
to provide more accurate forecasts with respect to commonly used
approaches. These results are of particular relevance to policy-makers
and economic agents, since periods of crisis are those characterised by
the most economic uncertainty.

Specifically, our comparison points towards the MS model aug-
mented with electricity consumption and total degree days as the
best performing model. This specification identifies two regimes, one
associated to low-volatility periods and one associated to high-volatility
ones. In our sample, the model autonomously identifies this second
regime with several months during the global financial crisis in 2008–
2009 and during the more recent COVID-19 pandemic. Electricity load
information is relevant for predictions only during such volatile states,
while it does not contain any significant information during the calmer
months. These results confirm that electricity market outcomes provide
crucial information for nowcasting macroeconomic variables in times of
crisis (Fezzi and Fanghella, 2020, 2021).

Future research could investigate whether the use of more geo-
graphically refined data improves the forecasting performance of our
model or provides insights into regional heterogeneity. In addition, our
single-equation approach could be extended to multivariate settings. In
particular, since IPI is one of the main variables included in dynamic
macroeconomic models (Clements and Galvão, 2008; Kuzin et al., 2011;
Cross et al., 2021), including in such methods an additional equation
representing electricity market outcomes seems a promising strategy for
boosting their forecasting (and nowcasting) performance. Such systems
could be set up as Markov-switching VAR models, possibly with mixed-
frequency data (Schorfheide and Song, 2015). Moreover, interactions
among both real and energy markets from different countries could
be accounted for by estimating a mixed-frequency Bayesian Markov-
switching model (Casarin et al., 2018) in order to study how shocks
propagate amongst different economies. In general, electricity market
outcomes appear to provide easy-to-access, timely and relevant infor-
mation for improving how we understand and forecast some of the most
important macroeconomic indicators.
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