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ABSTRACT: Background: Parkinsonian fea-
tures have been described in patients harboring vari-
ants in nuclear genes encoding for proteins involved
in mitochondrial DNA maintenance, such as TWNK.
Objectives: The aim was to screen for TWNK variants
in an Italian cohort of Parkinson’s disease (PD) patients
and to assess the occurrence of parkinsonism in patients
presenting with TWNK-related autosomal dominant pro-
gressive external ophthalmoplegia (TWNK-adPEO).
Methods: Genomic DNA of 263 consecutively col-
lected PD patients who underwent diagnostic genetic
testing was analyzed with a targeted custom gene
panel including TWNK, as well as genes causative of
monogenic PD. Genetic and clinical data of
18 TWNK-adPEO patients with parkinsonism were ret-
rospectively analyzed.
Results: Six of 263 PD patients (2%), presenting
either with isolated PD (n = 4) or in combination with
bilateral ptosis (n = 2), carried TWNK likely pathogenic
variants. Among 18 TWNK-adPEO patients, 5 (28%)
had parkinsonism.
Conclusions: We show candidate TWNK variants
occurring in PD without PEO. This finding will require
further confirmatory studies. © 2022 Fondazione
IRCCS Ca’ Granda Ospedale Maggiore Policlinico.
Movement Disorders published by Wiley Periodicals
LLC on behalf of International Parkinson Movement
Disorder Society.
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Pathogenesis of Parkinson’s disease (PD) has long
been associated with mitochondrial dysfunction.1

Dopaminergic neurons of the substantia nigra pars
compacta seem to be particularly vulnerable to mito-
chondrial damage.2 Although sequencing of mitochon-
drial DNA (mtDNA) failed to reveal pathogenic
mutations associated with PD, population-specific com-
mon variants defining mtDNA haplogroups have been
implicated as possible risk factors.3 In addition, age-
related accumulation of somatic mtDNA deletions in
the substantia nigra has been reported to occur more
significantly in PD patients than in age-matched con-
trols.4,5 Moreover, the regulation of mtDNA copy
number seems to be affected in PD, leading to a relative
mtDNA depletion.6,7
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Pathogenic variants in nuclear genes encoding for pro-
teins primarily involved in mtDNA maintenance, such
as POLG, TWNK, MPV17, OPA1, DGUOK, or
SLC25A46,8-13 have been described in patients with mito-
chondrial syndromes featuring parkinsonian signs as part
of their complex phenotypic manifestation.14 Among
these genes, TWNK encodes for the mitochondrial twin-
kle helicase, which is essential for mtDNA replication.15

Pathogenic variants in TWNK have been associated with
different phenotypes, ranging from autosomal dominant
progressive external ophthalmoplegia16 (adPEO) to rare
autosomal recessive syndromes, such as mtDNA deple-
tion syndrome, Perrault syndrome, infantile-onset spi-
nocerebellar ataxia, mitochondrial recessive ataxia
syndrome, and sensory ataxia neuropathy dysarthria
and ophthalmoplegia.17-21 Thus far, 10 TWNK-adPEO
patients also presenting with parkinsonism have been
reported in the literature.9,22-27

We here explore the frequency of TWNK variants in
an Italian cohort of PD patients and describe the associ-
ated clinical and neuroradiological phenotypes
(TWNK-PD). In addition, we reassess clinical and
genetic data from a cohort of adPEO-carrying TWNK
pathogenic variants and manifesting parkinsonism
(TWNK-adPEO-P) and compare the clinical and genetic
findings of TWNK-PD and TWNK-adPEO-P. Finally,
we evaluate the defects of mtDNA maintenance in
either blood or muscle biopsies (when available) associ-
ated with detected TWNK variants.

Patients and Methods

We included in the study 263 patients with a diagnosis
of PD made by a movement disorder specialist and
referred for genetic testing for diagnosis at the IRCCS
Foundation Ca’ Granda Ospedale Maggiore Policlinico
(Milan, Italy) or at IRCCS Mondino Foundation (Pavia,
Italy). Data were consecutively collected from 2017 to
2021. Patients with adPEO were evaluated at the Mito-
chondrial Diseases Center of the IRCCS Institute of Neu-
rological Sciences (Bologna, Italy). Of 302 adPEO, data
from 18 carrying TWNK variants were retrospectively
analyzed. The Ethics Committees of the IRCCS Founda-
tion Ca’ Granda Ospedale Maggiore Policlinico,
Mondino Foundation, and Institute of Neurological Sci-
ences (Comitato Etico Interaziendale Bologna-Imola,
CE-BI 13036) approved the study, and all patients pro-
vided written informed consent to study participation.

Genetic Analysis
PD patients underwent either next-generation

sequencing of a targeted panel of 19 genes associated to
PD and parkinsonism (Table S1), which included

POLG, TWNK, OPA1, and SLC25A46 (Haloplex
Technology, Agilent, Santa Clara, CA, United States),
or whole exome sequencing (WES) with subsequent
analysis of the same virtual gene panel (Twist Core
Exome Kit, Twist Biosciences, San Francisco, CA,
United States). Exon rearrangements were assessed
through Multiplex Ligation Probe Amplification (MS-
MLPA) using Salsa MLPA Probemix P051-D2 or P052
Parkinson (MRC-Holland, Amsterdam, Netherlands)
following manufacturer’s instructions. All TWNK-
adPEO-P patients had been diagnosed through WES
and subsequent analysis of the same virtual gene panel
used for the PD cohort. Further information is available
in Appendix S1.

Results
Genetic Results

Monoallelic variants of TWNK were detected in 6 of
263 (2%) patients with PD (162 men, 62%; 85 with
positive family history for PD, 32%; mean age at onset
51.35 � 13.03 years) (Table 1; Fig. 1; Table S3 in
Appendix S1). The TWNK variants identified in PD
were searched in in-house exomes of Italian non-PD
subjects (n = 2529) and in two databases, Network for
Italian Genomes (n = 1492) and NIG—Exomes from
Italy (n = 1686). None of the variants were present in
any databases, except for the p.G540R that was found
in the heterozygous state in a pediatric patient with
neurodevelopmental syndrome (one of 5707,
0.0001752). None of the TWNK-PD and TWNK-
adPEO-P patients carried additional pathogenic vari-
ants or genomic rearrangements in other autosomal
dominant or autosomal recessive PD-related genes. The
variant identified in patient 4 was detected also in the
mother who had also developed PD. To obtain support
for the functional relevance of the TWNK variants
identified in PD patients, we performed molecular
modeling. Our in silico analysis predicted that all the
identified variants could have negative effects on twin-
kle activity (see Appendix S1, Fig. S3).

Clinical Features
Clinical features are summarized in Table S3,

Appendix S1. Two TWNK-PD patients also manifested
ptosis without clinical and video-oculographic limita-
tions of gaze. Interestingly, the mother of patient 4 was
affected by ptosis and developed PD at age 60 years
(see Appendix S1). Of 18 TWNK-adPEO patients,
5 (28%) also presented with parkinsonism. A more
exhaustive clinical description of all TWNK-PD and
TWNK-adPEO-P cases reported here is available in
Appendix S1. Mean age at onset of parkinsonism was
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significantly younger in TWNK-PD than in TWNK-
adPEO-P patients (52.7 vs. 73.6 years, P = 0.0018).
Two TWNK-adPEO-P patients were treated with levo-
dopa (L-dopa) without a clear benefit. Other neurologi-
cal features like postural tremor, head tremor, and
apraxia appeared to be more frequent in TWNK-
adPEO-P patients but without reaching statistical
significance.

mtDNA Deletions and Copy Number
Quantitative analysis of mtDNA copy number

between TWNK-PD patients and age- and sex-matched
controls showed no differences (Appendix S1 in
Fig. S1). In skeletal muscle biopsies, mtDNA amount
and 7sDNA were comparable among groups, whereas
quantifiable mtDNA deletions were detected only in a
subgroup of TWNK-adPEO patients (Appendix S1,
Fig. S2). COX negative fibers in muscle biopsies of
patients 7 and 10 were 2.3% and 0.9%, respectively.

Discussion

Our study focused on the role of TWNK in patients
from two cohorts: (1) a PD cohort of patients who con-
secutively underwent genetic testing, including TWNK;
and (2) a retrospective adPEO cohort known to carry a
heterozygous TWNK pathogenic variant and presenting
parkinsonism. Interestingly, carriers of a TWNK variant
were not rare among our cohort of PD patients (6 of
263, 2%). The screening in non-PD subjects indicates that
these variants are not common in the Italian population.
Most relevantly, TWNK variants were also found in PD
patients lacking ptosis, a hallmark of twinkle -related
myopathy, suggesting that the diagnostic screening of this
gene should be considered also in PD patients without
other signs suggestive of a mitochondrial disease.

Before this study, parkinsonism cases associated with
TWNK variants without ptosis, PEO, or any other sign
of myopathy have not been reported9,22-27 (Appendix S1,
Table S1). Our findings suggest that TWNK variants
could be related to a clinical picture indistinguishable
from idiopathic PD with good response to L-dopa and
development of L-dopa complications (motor fluctuations
and dyskinesias), only occasionally featuring ptosis.
Parkinsonism was relatively frequent in the TWNK-

adPEO group (5 of 18, 28%). In line with previous
reports, the phenotype of TWNK-adPEO-P was char-
acterized by a complex association of neurological and
nonneurological signs suggestive of an underlying
mitochondrial syndrome (Appendix S1, Tables S3 and
S4). Compared to TWNK-PD subjects, TWNK-
adPEO-P patients showed a later onset of parkinsonian
features (on average in the seventh decade of life) and,
when assessed, a poorer response to L-dopa due to the
development of adverse effects. In these patients, the
cause of parkinsonian features was accompanied by
the frequent co-occurrence of cardiovascular risk fac-
tors or magnetic resonance imaging evidence of vascu-
lar encephalopathy. In fact, I123 ioflupane scintigraphy
(DaTSCAN) was repeatedly negative in a TWNK-
adPEO-P patient, challenging the hypothesis of
nigrostriatal degeneration as causative of parkinsonian
features. These observations suggest that the atypical
parkinsonian syndrome of TWNK-adPEO seems a dis-
tinct phenotype compared to that of TWNK-PD. A
possible confounding factor is the different age of the
two cohorts, having the PD group an earlier age of
onset. TWNK-PD patients did not show any muscular
involvement or complained of muscular symptoms;
thus, electromyography (EMG) and muscle biopsy
were not performed. Of note, mtDNA copy number
abnormalities were not observed in this group
(Appendix S1, Fig. S1). On the contrary, among
TWNK-adPEO-P patients, 3 of 5 patients showed

FIG. 1. Distribution of TWNK variants in patients with parkinsonism. TWNK variants here reported (bold) are in the upper part of the figure
(black = TWNK-PD patients; gray = TWNK-adPEO-P). Variants related to previously reported TWNK-adPEO-P patients are in the lower part (see refer-
ences 9 and 22–27). MTS, mitochondrial targeting sequence (1–42); primase-like domain (43–348); linker region (349–383); helicase domain (384–632),
H1 (409–422), H1a (439–446), H2 (512–517), H3 (535–558), and H4 (569–587); CTR, C-terminal region (633–684). adPEO, autosomal dominant progres-
sive external ophthalmoplegia. [Color figure can be viewed at wileyonlinelibrary.com]
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clinical and/or EMG signs of myopathic involvement
(Appendix S1, Table S3), and 2 patients had a muscle
biopsy typical of mitochondrial myopathy
(Appendix S1, Table S3). However, quantification of
mtDNA deletions, as well as of mtDNA copy number
or DNA 7S performed on muscle biopsy, failed to
reveal differences with controls (Appendix S1, Fig. S2),
probably due to the rare COX negative fibers in their
muscle biopsy, confirming that myopathy in these
patients is frequently very mild or even subclinical.
Among TWNK-PD patients, 4 carried a pathogenic or
likely pathogenic variant, whereas the remaining 2 car-
ried variants formally classified as variants of
unknown significance with likely pathogenic effect
according to the American College of Medical Genetics
guidelines (see Supplementary Methods in
Appendix S1; Table 1). The co-segregation of the
p.G540R variant with PD in the family of patient
4 further supports its likely pathogenic role. However,
more evidence is needed to prove the role of these var-
iants in the pathogenesis of PD, especially those identi-
fied in “pure” PD. Indeed, the lack of family history
and functional demonstration of the impact on
mtDNA raises caution in assigning a definitive associa-
tion with PD. The distribution of the variants across
the twinkle protein showed the involvement of all
functional domains, without any clustering (Fig. 1).
Although TWNK variants are more frequent in the N-
terminal domain and linker region of the protein, we
failed to demonstrate any evidence of clear genotype–
phenotype correlations.
PD is a complex multifactorial disease, in which sev-

eral predisposing genetic factors could interplay to pro-
mote the development of the disease. To our
knowledge, the presence of other genetic contributors
to the development of parkinsonian features in patients
with mitochondrial syndromes, such as variants in PD-
related genes, has not been ruled out to date. In our
series of TWNK-PD and TWNK-adPEO-P patients, the
co-occurrence of possibly causative variants in classical
PD genes has been excluded, strengthening the likely
pathogenic role of TWNK in contributing to
PD. However, the development of parkinsonism in
patients carrying variants in TWNK, as well as in other
mtDNA maintenance genes, remains somehow enig-
matic. Not all carriers eventually develop parkinsonism,
denoting an incomplete penetrance of this trait. This
incomplete knowledge has relevant implications on
genetic counseling related to PD risk in families carry-
ing TWNK variants.
In summary, we described the presence of TWNK

variants in patients with PD or parkinsonism, with or
without signs of myopathy. Our findings strengthen the
relation between the TWNK gene and PD. Screening in
larger PD populations, segregation analysis in

additional familial cases, and functional studies are
needed to confirm these interesting new observations.
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