
"This Sounds Unclear": Evaluating ChatGPT Capability in
Translating End-User Prompts into Ready-to-Deploy Python Code

Margherita Andrao
Università di Trento

Fondazione Bruno Kessler
Trento, Italy

Diego Morra
Politecnico di Milano

Milan, Italy

Teresa Paccosi
Università di Trento

Fondazione Bruno Kessler
Trento, Italy

Maristella Matera
Politecnico di Milano

Milan, Italy

Barbara Treccani
Università di Trento

Trento, Italy

Massimo Zancanaro
Università di Trento

Fondazione Bruno Kessler
Trento, Italy

ABSTRACT
In this paper, we present a study aimed at evaluating how ChatGPT-
4 understands end-users’ natural language instructions to express
automation rules for smart home applications and how it translates
them into Python code ready to be deployed. Our study used 34
natural language instructions written by end users who were asked
to automate scenarios presented as visual animations. The results
show that ChatGPT-4 can produce coherent and effective code even
if the instructions present ambiguities or unclear elements, under-
standing natural language instructions and autonomously resolving
94% of them. However, the generated code still contains numerous
ambiguities that could potentially affect safety and security aspects.
Nevertheless, when appropriately prompted, ChatGPT-4 can subse-
quently identify those ambiguities. This prompts a discussion about
prospective interaction paradigms that may significantly improve
the immediate usability of the generated code.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI); HCI design and evaluation methods; User studies;

KEYWORDS
End-user development (EUD), Large languagemodels (LLMs), ChatGPT-
4, Task-automation systems

ACM Reference Format:
Margherita Andrao, DiegoMorra, Teresa Paccosi, MaristellaMatera, Barbara
Treccani, and Massimo Zancanaro. 2024. "This Sounds Unclear": Evaluating
ChatGPT Capability in Translating End-User Prompts into Ready-to-Deploy
Python Code. In International Conference on Advanced Visual Interfaces 2024
(AVI 2024), June 03–07, 2024, Arenzano, Genoa, Italy. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3656650.3656693

This work is licensed under a Creative Commons Attribution-NoDerivs International
4.0 License.

AVI 2024, June 03–07, 2024, Arenzano, Genoa, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1764-2/24/06
https://doi.org/10.1145/3656650.3656693

1 INTRODUCTION
AI-assisted code generator capabilities by Large Language Models
(LLMs) are paving the way for new possibilities in the future of soft-
ware development. While platforms such as Stack Overflow have
previously offered entry-level dedicated support to those with at
least some programming knowledge, the capability of models such
as ChatGPT-4, CoPilot, and other specialized LLMs to generate code
from natural language prompts is becoming increasingly pervasive
among both beginner and expert programmers [11]. However, the
existing literature still assumes that prompts are produced by ex-
perts in software development who can clearly and unambiguously
articulate the requirements. Nevertheless, End-User Development
(EUD), especially in the field of home automation, is one of the
domains where this advancement has the potential to establish new
standards. While the availability of user-friendly interfaces for com-
mercial microcontrollers and sensors for the domotic Internet of
Things (IoT) increases yearly, specific programming skills are still
required to orchestrate and customize their operations. Research
in EUD has proposed several approaches to facilitate naive users
in defining those operations themselves, even without the need to
acquire technical skills. Using trigger-action rules has proven an
effective approach [7]. Enabling the creation of ready-to-deploy
trigger-action rules from user-generated unconstrained natural lan-
guage (NL) may significantly democratize the creation of home
automation systems. However, there is still a need to explore the
capability of LLMs to interpret instructions from naive users and
generate ready-to-use code. The ability to interpret incorrect or
ambiguous prompts that may not adhere to the structured format
typical of trigger-action rules is crucial. This is especially important
considering potential applications that aim to bridge non-expert
user needs with rule-based systems.

This paper contributes to the ongoing discussion by presenting
a study that explores how ChatGPT-4 understands ambiguous re-
quests provided by end users and how it identifies and corrects
ambiguities in the generated code.

2 RELATEDWORKS
EUD investigates how naive users and non-professional develop-
ers can be enabled to create, modify, or extend software systems
using a range of methods, techniques, and tools [3, 8]. Cloud-based

https://doi.org/10.1145/3656650.3656693
https://creativecommons.org/licenses/by-nd/4.0/
https://creativecommons.org/licenses/by-nd/4.0/
https://doi.org/10.1145/3656650.3656693
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3656650.3656693&domain=pdf&date_stamp=2024-06-03


AVI 2024, June 03–07, 2024, Arenzano, Genoa, Italy Andrao, et al.

platforms, such as IFTTT1, assist users in the definition of trigger-
action rules for task-automation systems [5]. Research has explored
the effectiveness of composition paradigms, including innovative
visual paradigms and conversational-based approaches, broaden-
ing the scope of user interaction with smart-home technologies
[2, 6, 10]. Recent works have turned attention to the influence of
LLMs in this domain, emphasizing that interacting with ChatGPT
can be challenging for end users who are not expert programmers
due to NL ambiguities that hinder code generation [10, 13].

The quality and reliability of code generated by LLMs are increas-
ing [9, 14, 15]. Some works highlighted ChatGPT’s outperforming
ability in generating and solving code problems in comparison to
other models [1, 12]. Less has been done to assess how the interpre-
tation of user prompts affects the output of reliable and functional
code ready for deployment [13]. Further investigation is required
to explore the reliability, cleanliness, and security of the code gener-
ated from inadequate or incomplete prompts. Especially in the EUD
of IoT systems, where non-expert users are tasked with program-
ming systems, security is crucial and makes these considerations
particularly relevant. [4].

3 THE STUDY
Our study aimed to explore ChatGPT-42 capability to accurately
generate correct code from trigger-action rules for home automa-
tion described by users using NL. Additionally, we aimed to examine
how ChatGPT-4 assists users in recognizing ambiguities and de-
tecting potential errors to create clearer, more accurate, and safer
trigger-action rules.

Participants: Sixteen (16) participants, eight females and eight
males, aged between 24 and 60 (M = 32.81; SD = 11.44) were in-
volved in the study. Two had no prior experience with programming
languages or home automation tools; six had minimal experience
with smart home environments but no programming experience.
The remaining eight (M = 4; F = 4) were expert programmers. Five
of them had experience with smart home environments. All par-
ticipants were native Italian speakers, and the instructions were
produced in Italian.

Methods and procedure. Participants were exposed to 12 sce-
narios of smart home automation presented as silent video (to avoid
language bias), and they were asked to write the rules to imple-
ment that automation. Each video lasted around 15 seconds and
represented a combination of one state (e.g., "it’s daytime"), one
event (e.g., "the temperature rises"), and one action (e.g., "open the
windows"). The initial segment of each video portrayed the smart
home’s response when the state is false (e.g., it’s night, the temper-
ature rises, and no action occurs), followed by the representation
when the state is true. Each session was individual, and each partic-
ipant had to write the instructions in natural language to explain
to an "intelligent system" how to implement that automation.

Data analysis. In total, 199 instructions were collected (some
participants wrote multiple independent/alternative rules to define
the same scenario). Two researchers independently coded the 199
instructions as: (i) non-ambiguous if the instruction provided clear
references to conditions and actions or ambiguous if the instruction

1https://ifttt.com/
2the latest available version at the study time in November 2023

contained unclear structure, terminology, or details that cast doubt
on the outcome due to subjective interpretation and as (ii) complete
if the instruction included all the elements (state, event, action)
presented in the scenario, or incomplete if one or more elements
were left implicit.

Only the 34 instructions evaluated as ambiguous and complete
by both researchers were considered for further analyses. For each
rule, we provided ChatGPT-4 with the instructions, the list of sen-
sors and smart devices involved in the scenario (the context) and
"questioned" it asking to: (i) Generate Python code ready to deploy
(the prompt was: "Given the following rule and the following context,
make a Python code ready to be deployed. Just output the code without
any further comments."); (ii) Identify errors and ambiguities in the
rule written by the user (the prompt was: "Given the following rule
and the context, identify if there are possible ambiguities or errors in
the way the instructions were written.").

Results. The 34 Python code snippets generated by ChatGPT-
4 were analyzed by two independent researchers to evaluate the
correctness, resulting in an accuracy rate of 94%. Only two of the
generated codes were deemed incorrect. The first one lacked a
condition explicitly stated in the prompt, while the second one
overlooked an adverb that establishes the need for a time interval
for the rule to be correctly executed. When prompted to identify
ambiguities in the 34 natural language instructions, ChatGPT-4 de-
tected 237 ambiguities in total, from a minimum of 3 to a maximum
of 10 for each instruction (M = 6.97, SD = 1.45). Two researchers
independently coded the descriptions of ambiguities and then ex-
amined if and how ChatGPT-4 had autonomously solved these
ambiguities in the respective ready-to-deploy Python code snippet.
Four main themes emerged from the ambiguities’ descriptions.

Theme 1: Ambiguities related to the outcome of the rule
and its variables (83 instances). Eleven (11) ambiguities involved
uncertainties regarding the end of the action ("The rule specifies
’after 7 PM’ but does not indicate until when this rule applies."). Nine
(9) involved ambiguities related to temporal aspects as the rule did
not clearly state the sequence/simultaneity of occurrences to trigger
the action and two (2) involved suggestions for additional sensors
or devices that, if integrated, can ensure the needed outcome. Other
39 involved possible ambiguities in error handling ("The rule does
not account for what should happen if the door fails to open or close."),
and specifically, in handling possible or imaginary conflicts, false
negatives or positive triggers, or possible safety hazards. Finally, 22
described possible undesirable outcomes (e.g., automatically turning
on a fireplace based on temperature and motion) associated with
potentially harmful outcomes for safety, security risks, damages,
and high/unusual energy consumption. Looking at the Python code
snippets, 13 of these ambiguities were fully resolved by ChatGPT-4,
four (4) were partially solved, and 66 were not addressed in the
generated code.

Theme 2: Ambiguities related to the language (55 instances).
Twenty-one (21) ambiguities involved word usage in formulating
instructions ("The rule mentions activating an evacuation plan but
does not provide details on what the plan entails."), with some words
being overly specific, others being too generic or unconventional.
Twenty-four (24) were related to the use of generic expressions,
employing words instead of defining specific values ("The rule does
not specify what constitutes ’day.’ Is it based on specific hours?") In

https://ifttt.com/


"This Sounds Unclear": Evaluating ChatGPT Capability in Translating End-User Prompts AVI 2024, June 03–07, 2024, Arenzano, Genoa, Italy

Figure 1: Distribution of solved ambiguities by theme (above)
and identification code (below).

only one (1) instance, the ambiguity was related to an ambiguous
typo in a rule. In three (3) cases, the ambiguity was related to
the use of conjunctions, particularly the expression "and/or". In
three (3), the ambiguity was related to a rule composed of multiple
sentences while, in other three (3), it was related to the language
used in general ("If the smart home system’s programming interface
is in English or another language, the rule should be translated and
formatted according to the system’s requirements."). In this group,
31 ambiguities were fully resolved in the code, three (3) were only
partially resolved, and 21 had not been addressed.

Theme 3: Ambiguities related to the necessity of content
extension (55 instances). This included: 30 cases of suggestions on
specifying alternative states/conditions to avoid ambiguities; nine
(9) cases of determining when/how often to monitor the state; six
(6) cases for providing details of the action ("The rule does not specify
how much the curtains should close."), and 10 cases concerning the
need of confirmation/alert feedback ("The rule does not include any
provisions for alerting the occupants of the home that the window
will be closed. This could be important for awareness and safety.").
Of these ambiguities, 14 were fully resolved in the generated code,
four (4) partially, while 37 were not addressed.

Theme 4: Ambiguities related to the system’s functioning
(44 instances). This related to: 27 suggestions/comments on sen-
sor localization and integration within a broader system; 17 ac-
curacy/sensitivities of sensors that can lead to false positives or
negatives triggers ("It mentions a movement sensor, but movement
sensors can sometimes give false positives or false negatives."). Of
these instances, 19 ambiguities were fully resolved, one (1) was
partially resolved, and 24 were not addressed.

Overall, ChatGPT-4 was able to fully resolve 28% of the ambigui-
ties above and to partially resolve 5% of them, while 67% were not
addressed (see Fig 1). The analysis reveals ChatGPT-4’s proficiency

in resolving ambiguities related to the second theme language, suc-
cessfully addressing 31 out of 55 cases. This is frequently attributed
to its skill in interpreting incorrect verbal aspects or unconventional
temporal and grammatical structures. However, ChatGPT-4 shows
less expertise in dealing with ambiguities associated with the first
theme outcome, as it replicated the same ambiguities found in the
prompt in approximately 66 out of 80 cases. Notably, ChatGPT-4
tends to overlook two specific categories: error handling and am-
biguities that might lead to unintended effects. Additionally, there
were instances in each theme where ChatGPT-4 only partially re-
solved ambiguities. For example, in a case involving feedback to
house occupants, the code included code debugging-level warn-
ing messages but not direct messages to the occupants. Another
case involved the figurative interpretation of values, like defining
"darkness" in a sentence. ChatGPT-4 identified the ambiguity but
inadequately addressed it in the generated code. The code incorpo-
rated a logic to read data from the light sensor as a trigger, but it
did not give the user a structure to set a threshold for the sensor
data, offering only boolean true/false options for action triggering.

4 DISCUSSION AND CONCLUSION
The results provide evidence of the potential of LLMs, such as
ChatGPT-4, in understanding NL instructions and translating them
into functional code. Despite the ambiguities in the formulation,
as well as the simplicity of the prompts and the context provided,
ChatGPT-4 was able to consistently generate syntactically accurate
and complete Python code. Furthermore, ChatGPT-4 could also
detect many ambiguities in the users’ expressions. Nevertheless,
it fails, if not directly prompted, to properly recognize 67% of the
ambiguities. Although these fails do not directly impact the gen-
erated code’s correctness, they can bring to undesired effects or
security issues. In our scenario, these aspects are even worse since
our users would not be able to control the Python code and spot the
issues. From our results, we can argue that an effective interaction
for novice users should not rely on a direct code generation but
it should involve ChatGPT-4 in initially identifying ambiguities,
followed by iterative resolution processes that employ negotiation
to ensure the accurate generation of code. We acknowledge some
limitations in our study, starting from the limited number of partic-
ipants that can affect the generalizability of the emerged themes.
Additionally, ChatGPT-4 ability to address ambiguities could be
mitigated by future model releases, emphasizing the importance
of continuing research in this area. Nevertheless, we believe that
this first study on automatically generated code from end users’
natural language requests may help in future research such as
on the design of effective interaction paradigms that facilitate the
negotiation process to mitigate the ambiguities. This will require
an extended research-through-design approach that addresses the
multiple aspects emerging from the study outlined in this paper.

ACKNOWLEDGMENTS
This research received partial support from the PNRR project FAIR-
Future AI Research (PE00000013), under the NRRP MUR program
funded by the NextGenerationEU.



AVI 2024, June 03–07, 2024, Arenzano, Genoa, Italy Andrao, et al.

REFERENCES
[1] Imtiaz Ahmed, Ayon Roy, Mashrafi Kajol, Uzma Hasan, Partha Protim Datta, and

Md Rokonuzzaman Reza. 2023. ChatGPT vs. Bard: a comparative study. Authorea
Preprints (2023).

[2] Margherita Andrao, Fabrizio Balducci, Bernardo Breve, Federica Cena, Giuseppe
Desolda, Vincenzo Deufemia, Cristina Gena, Maristella Matera, Andrea Mattioli,
Fabio Paternò, et al. 2023. Understanding Concepts, Methods and Tools for End-
User Control of Automations in Ecosystems of Smart Objects and Services. In
International Symposium on End User Development. Springer, 104–124.

[3] Carmelo Ardito, Maria F. Costabile, Giuseppe Desolda, Marco Manca, Maristella
Matera, Fabio Paternò, and Carmen Santoro. 2019. Improving Tools that Allow
End Users to Configure Smart Environments. In End-User Development, Alessio
Malizia, Stefano Valtolina, Anders Morch, Alan Serrano, and Andrew Stratton
(Eds.). Springer International Publishing, Cham, 244–248.

[4] Bernardo Breve, Giuseppe Desolda, Francesco Greco, and Vincenzo Deufemia.
2023. Democratizing Cybersecurity in Smart Environments: Investigating the
Mental Models of Novices and Experts. In International Symposium on End User
Development. Springer, 145–161.

[5] Miguel Coronado and Carlos A. Iglesias. 2016. Task Automation Services:
Automation for the Masses. IEEE Internet Computing 20, 1 (2016), 52–58.
https://doi.org/10.1109/MIC.2015.73

[6] Giuseppe Desolda, Carmelo Ardito, and Maristella Matera. 2017. Empowering
end users to customize their smart environments: model, composition paradigms,
and domain-specific tools. ACM Transactions on Computer-Human Interaction
(TOCHI) 24, 2 (2017), 1–52.

[7] Giuseppe Ghiani, Marco Manca, Fabio Paternò, and Carmen Santoro. 2017. Per-
sonalization of context-dependent applications through trigger-action rules. ACM

Transactions on Computer-Human Interaction (TOCHI) 24, 2 (2017), 1–33.
[8] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. 2006. End-User

Development: An Emerging Paradigm. Springer Netherlands, Dordrecht, 1–8.
https://doi.org/10.1007/1-4020-5386-X_1

[9] Yue Liu, Thanh Le-Cong, Ratnadira Widyasari, Chakkrit Tantithamthavorn, Li
Li, Xuan-Bach D. Le, and David Lo. 2023. Refining ChatGPT-Generated Code:
Characterizing and Mitigating Code Quality Issues. arXiv:2307.12596 [cs.SE]

[10] Alberto Monge Roffarello and Luigi De Russis. 2023. Defining Trigger-Action
Rules via Voice: A Novel Approach for End-User Development in the IoT. In
International Symposium on End User Development. Springer, 65–83.

[11] Shuyin Ouyang, Jie M Zhang, Mark Harman, and Meng Wang. 2023. LLM is
Like a Box of Chocolates: the Non-determinism of ChatGPT in Code Generation.
arXiv preprint arXiv:2308.02828 (2023).

[12] Stephen R. Piccolo, Paul Denny, Andrew Luxton-Reilly, Samuel H. Payne, and
Perry G. Ridge. 2023. Evaluating a large languagemodel’s ability to solve program-
ming exercises from an introductory bioinformatics course. PLOS Computational
Biology 19, 9 (09 2023), 1–16. https://doi.org/10.1371/journal.pcbi.1011511

[13] Gian Luca Scoccia. 2023. Exploring Early Adopters’ Perceptions of ChatGPT
as a Code Generation Tool. In 2023 38th IEEE/ACM International Conference on
Automated Software Engineering Workshops (ASEW). 88–93. https://doi.org/10.
1109/ASEW60602.2023.00016

[14] Burak Yetiştiren, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. 2023. Evaluating
the Code Quality of AI-Assisted Code Generation Tools: An Empirical Study on
GitHub Copilot, Amazon CodeWhisperer, and ChatGPT. arXiv:2304.10778 [cs.SE]

[15] Li Zhong and Zilong Wang. 2023. Can ChatGPT replace StackOverflow? A
Study on Robustness and Reliability of Large Language Model Code Generation.
arXiv:2308.10335 [cs.CL]

https://doi.org/10.1109/MIC.2015.73
https://doi.org/10.1007/1-4020-5386-X_1
https://arxiv.org/abs/2307.12596
https://doi.org/10.1371/journal.pcbi.1011511
https://doi.org/10.1109/ASEW60602.2023.00016
https://doi.org/10.1109/ASEW60602.2023.00016
https://arxiv.org/abs/2304.10778
https://arxiv.org/abs/2308.10335

	Abstract
	1 Introduction
	2 Related works
	3 The Study
	4 Discussion and conclusion
	Acknowledgments
	References

