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ABSTRACT: We prove regularity results for minimizers of the integral functional [ f(z,u, Du)dz
under non-standard growth conditions of p(z)-type, i.e.

L7 2P@ < f(z,5,2) < L(1+ |2[P@)

under sharp assumptions on the continuous function p(z) > 1.

1 Introduction

The aim of this paper is the study of the regularity properties of local minimizers of integral
functionals of the type

Flu, Q) = / f(@, u(z), Du())dz | (11)

where {2 is a bounded open set of R”, f: 2 x R x R® — R is a Carathéodory function and
u € T/Vlf)cl(ﬂ, R). The regularity theory for minimizers was successfully carried out under the

assumption of p-growth
L7zfP < f(@,5,2) SLA+2P),  p>1

and under natural assumptions of convexity or quasiconvexity of f (see for example [G],
[Ev], [AF1], [AF2]). At the end of the eighties some articles considering the more flexible

(p, q)-growth
L’1|z|p§f(a:,s,z) < L1+ (2|9, qg>p>1

were published, after the pioneering work of Marcellini (see [M1] - [M3], and [ELM] with the
references therein). Despite the considerable number of publications devoted to the issue, for
this type of functionals a general theory is still lacking. A borderline case between standard
and non-standard growth is the so called p(z)-growth

L7 < f(2,5,2) < L(1+ |#7®) (1.2)

a prominent model functional being:

/ |DulP® dz . (1.3)
Q

Such types of energies owe their importance to the fact that several models (also non varia-
tional) coming from Mathematical Physics are built using a variable growth exponent. For
instance, Rajagopal and Ruzi¢ka (for more details see [RR], [R1], [R2], [D], [AM3] and [AM4])
elaborated a model for electrorheological fluids, which are special non-Newtonian fluids char-
acterized by their ability to change very quickly their mechanical properties in presence of
an electromagnetic field E(z). Later, a model for fluids showing a similar dependence on the



temperature was elaborated by Zhikov ([z2]). In a different setting, (see [21]) the differential
system modelling the so called “thermistor problem” includes equations like

—div(p(z)|DuP'*~2Du) = 0.

On the other hand, functionals like the one in (??) have been studied also from a functional
spaces theorical point of view since they motivate the introduction of certain related function
spaces with interesting features (see, for instance, [ER1], [ER2], [F]).

For such functionals a regularity theory was recently developed ([AF2], [z1], [FZ], [CM], [AM1],
[AM2], [MM]) obtaining some optimal regularity results for local minimizers of integrals
functionals of the type

Fol(u, Q) :=/Qf(x,Du(x))dx

with the Lagrangian f(z, z) satisfying a p(z) growth assumption as in (?7).
In this article we extend the results in [AM1] to more general functionals of the type in (?7),
including model examples like:

/ a(z, u(z))| DulP® de (1.4)
Q

and, more generally:
| ale,u@)f(@ Dw do (15)
Q

where f(z,z) is asin (??) and a(z,u) is a continuous function of its arguments. Qur results
can be shortly summarized as follows: if the exponent p(x) has modulus of continuity ws,
satisfying the following assumption:

. 1
1121210 w1 (R)log (E) =A, (1.6)
then u € C22 (Q) where a = a()) is such that:
}1\11)1%] a(A)=1.
Clearly, if
. 1y
élglowl(R) log (E) =0, (1.7

it turns out that u € Cloo’f(Q) for each a < 1. Moreover if both p(z) and a(x,u) are
Holder continuous, then Du is Hélder continuous too. It is worth stressing that the previous
results are optimal, in the sense that if the condition (??) fails for each A, then, as shown
by mean of a counterexample by Zhikov, (see [Z1]), local minimizers fail to be, in general,
locally Holder continuous. In this respect our result is therefore sharp. In a second step,
assuming higher regularity both on p(z) and a(z,u) (i.e.: Holder continuity) we prove the
Holder continuity of the gradient Du itself. Since the Holder continuity of the gradient is
the maximal regularity expected even when p(z) is constant (compare [U]) also this result
is the best possible.

Finally, let us comment on some technical aspects of the paper. We are dealing with very
general convex Lagrangians of the type f(z,u,Du). Indeed our functionals will be of the
type:

/|Du|”(‘”) +g(z,u, Du) dx (1.8)
where g is only a convex (with respect to the variable z) Carathéodory function such that:

0 < g(a,u,2) < (1+|2/P*).



In particular such functions are not C? and fail to be even differentiable at each point.
Therefore, such Lagrangians f are convex but fail to be smooth and depend explicitly on the
variable u € R; so when proving our results we have to adopt a refined freezing, variational
argument based on the Ekeland variational principle and combine it with the arguments
developed in the paper [AM1]. This is due to the fact that, in order to overcome the lack of
smoothness of the function f, an involved approximation procedure is required. In turn this
leads to consider a sequence of approximating functionals whose (approximating) minimizers
do converge to a certain limit function. For such minimizers, uniform regularity estimates
are found. Now, since the functional we consider is not, in general, convex (due to the u
dependence of the function f) uniqueness of minimizers, and therefore the convergence of the
approximating minimizers to the original minimizer, is not a priori guaranteed. To overcome
this obstruction, the above mentioned Ekeland principle turns out to be the appropriate
tool, ensuring that the constructed approximating minimizers converge to the original one.
The regularity of the original minimizer is then obtained passing to the limit the uniform
estimates found for the approximating ones. We like to remark that such a technique has
been successfully adopted for functionals with standard p-growth in the paper [CFP] (see also
[cP], [FH]), and its application in our setting arises a certain number of technical problems,
especially when dealing with the estimates.
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2 Notation and statements

In the sequel Q will denote an open bounded domain in R” and B(z, R) the open ball
{y € R* : |z —y| < R}. If u is an integrable function defined on B(z, R), we will set

1
U)g,R = u(z)dz = / u(z)dz ,
@an=f  w@de = [ u

where w,, is the Lebesgue measure of B(0,1). We shall also adopt the convention of writing
Bpg and (u) g instead of B(z, R) and (u),,r respectively, when the center will not be relevant
or it is clear from the context; moreover, unless otherwise stated, all balls considered will
have the same center. Finally the letter ¢ will freely denote a constant, not necessarily the
same in any two occurrences, while only the relevant dependences will be highlighted.

The Carathéodory function f : 2 x R x R* — R will be supposed to satisfy a growth
condition of the following type:

LYa®) < f(w,u,2) < L1+ |2P@) (2.1)

forallz € Q,u € R z € R*, where p: Q — (1,+00) is a continuous function and L > 1.
Next, we will set

F(u, A) :=/Af(x,u($),Du(:L'))da:

for all u € WL () and for all A C Q.
With this type of non-standard growth, we adopt the following notion of local minimizer
and local Q-minimizer:

Definition 2.1. We say that a function u € I/V]})’CI(Q) is a local minimizer of the functional
F if |Du(z)|P® € LL (Q) and

loc

/ f(@,u(z), Du(z))dr < f(z,u(@) + o(z), Du(z) + Dy(x))dx

spt ¢

for all p € WOI’I(Q) with compact support in Q.



Definition 2.2. We say that a functionu € I/Vllo’cl(Q) is a local Q-minimizer of the functional
F with Q > 1 if for all v € T/V]icl (Q) we have

F(u, K) <QF(v,K) ,
where we set K =: spt(u — v) CC Q.

We shall consider the following growth, ellipticity and continuity conditions:

L2 + |2)P@2 < f(z,u,2) < L(p? + |2?)P@/2 (2.2)
[f(z0, uo,20 + Dp(x)) — f(20,u0, 20)]dz
@ (2.3)
> 17 [+ faol + De (@) Do) P o
Q1
for some 0 < p <1, for all 20 € R", ug € R, 29 € Q, p € C§°(Q1) , where @1 = (0,1)",
|f(.Z'7U,Z) - f(.CL'(),u7Z)|
(2.4)

< Lun(fo - ma) [ (42 +1P)" 7"+ (2 + 22) "] 1+ HogGu +12)]

forall z € R”, u € R, z and 2o € Q, where L > 1. Here w; : Rt — RY is a nondecreasing
continuous function, vanishing at zero, which represents the modulus of continuity of p :

Ip(z) — p()| < wi(lz —yl)-
We will always assume that w; satisfies the following condition:
. 1
lim sup w1 (R) log (—) < +00;
R—0 R

thus in particular, without loss of generality, we may assume that
wi(R) < L|logR| ™! (2.5)

for all R < 1.
We shall also consider the following continuity condition with respect to u :

|f(@,u,2) = f(x,u0,2)| < Lwa(ju = uo|) (u* + |2[)P/2 . (2.6)

As usual, without loss of generality, we shall suppose that wsy is a concave, bounded and,
hence, subadditive function.

Remark. Following [FFM] it is possible to prove that a functional satisfying the previous
assumptions can be written in the form (??), with g described as in the introduction.

No differentiability is assumed on f with respect to  or with respect to z.
Since all our results are local in nature, without loss of generality we shall suppose that

l<m<p@E)<y Vzel,

and
/ |Du(@) P ds < +0o . 2.7)
Q

This is the main result we want to prove:



Theorem 2.3. Letu € I/VI})’CI(Q) be a local minimizer of the functional (?7), where f is a
continuous function satisfying (77), (7?), (7?) and (?7). Moreover suppose that

}%iglo w1 (R) log (}%) +w2(R)=0. (2.8)

Then u € C2%(Q), for all 0 < o < 1.

loc

After the proof of the previous results we shall make some remarks leading to the following
more precise statement:

Theorem 2.4. Letu € I/Vlt’cl(Q) be a local minimizer of the functional (27), where f is a
continuous function satisfying (27), (27), (2?) and (??) and let A < +o0o. Then there exists
a function:

a:RtY = (0,1), lim a(X) =1
A—=0
such that if
1
Ilaiglo w1(R) log (E) +wa(R) <A, (2.9)

then u € 2N ().

loc
Clearly, theorem ?7? is a then a consequence of theorem ?7?, taking A = 0.
In the case when both the functions f and p(z) are smoother, we recover the classical C1:*
regularity of local minimizers:

Theorem 2.5. Let u € W'ltcl (Q) be a local minimizer of the functional (27?), where f is a
continuous function satisfying (?7), (2?), (??) and (??). Moreover suppose that wi(R) +
wa(R) < LR® for some 0 < a < 1 and for all R < 1. Suppose also that f is of class C* with
respect to the variable z in Q x R x (R™ \ {0}), with D%f satisfying

L2 + [2]2)P@=D/2\2 < D2f(2,u, 2)A © A < L(p? + |2[2)P@)=2/2| ]2

for all A € R™. Then Du is locally Hélder continuous in Q.

3 Preliminary results

Before proving our main theorems, we need some preliminary results and establish some basic
notation. In the following we shall consider varying balls, always having the same center
when not differently specified. Moreover by ¢ (or similar symbols) we denote a constant,
that may vary from line to line, while only the important connections will be highlighted.
If Byr CC Q) we shall set:

p=p(R) = rgllp(x) , p2=pa(R) = fgaxp(m) . (3.1)

Of course, the previous functions also depend on the center of the ball considered.
The following is a higher integrability result which is due, in its original version, to Zhikov,
and which we adapt to functionals of type (?7?).

Theorem 3.1. Let O be an open subset of Q, let u € W= (O) be a local minimizer of the

loc

functional (27) with f: O x R x R* — R satisfying (??7) and (??). Moreover suppose that
/ | Du(@)P@ds < M,
o

for some constant M. Then, there exist two positive constants cg,d depending on y1,%s, L, M1,
such that, if Bg CC O, then

1/(1+9)
<][ | Du() P+ d:c) <co ][ |Du(z) " dz + co - (3.2)
Br

Br/a



Proof. First step: let R/2 <t < s < R <1, andlet n € C(Bg) be a cut-off function
such that 0 < n < 1, n = 0 outside B;, n = 1 on By, |Dn| < 2(s —t)~1. Moreover we
set p(z) = n(x)(u(z) — (u)r) and let g = u — p. We remark that g = u on 0B, while on
B; we have g = (u)g, consequently Dg = 0 on B;. Hence, using the fact that u is a local
minimizer, we may write

| Du(z) [P®) de
B

< L/B f(z,u(z), Du(z))dx

<L | f(z,9(x), Dyg(z))dx
B,

<I? / (1+|Dg(@)) da
B

s

< LQL 5 [(1 —n(z))|Du(z)| + |u(z) — (u)RHDn(w)”p(w)dm Lz

p(z)
< é/ \Du(a;)|p<w>dx+a/
B,\B: B,

ul@) = We ™ L
1
c/ |Du(w)|p(w)dw+67/ lu(z) — (u)r[P@dz + ¢,
B.\B, s — P> /gy

s—t

IN

where ¢ = L2271 ¢ = [22?7271 ¢ = [?|Bg|. Now adding the quantity (i.e.: “filling the
hole”)
¢ [ |Du(z)|P®ds
B:

to the first and the last term of the previous chain of inequalities and dividing by ¢ + 1, we
get

.1 _

| Du(z)P@ds < 0, / \Du(@)PDds + d——— / lu(z) — () rP@dz + d

B, B, |s —t2 /g,
where 2921 123
¢ ~ 2472— _
b=t <1, d=EET G- _LiBel
é+1 L22v-1 41 L227-1 41
Now we can apply [G], lemma 6.1 with the choices
Z@t) = [ |Du(x)|P@dx,

B

A=d [ ju@) - aP@de, B=d, C=0, a=p, f=0, p=7%,
Br



obtaining

/BR/2 |Du(z)|P@dz < ¢ [(R/Q)”J

< CRpl —Pp2 /
>~ B

S Cwal (8R)

() — (u) ") da + J]
Br
_ p(z)
u) = @a"

p(z)
dx + cR"

Bgr

< cexp(8L) /

Br
o
Br

u(@) — (u)r
R

where in the fourth inequality we used (??) and c¢ is a constant depending only on ~;,vs, L.

According to the previous facts, we find that

][ |Du(z) [P dz < ¢ ][ BL — e
Br/2 Br

Second step: we fix ¥ = min {\/RTH’ 71} and we take R < Ry/16 where Ry is small enough
to have w1 (8Rg) < ¥ — 1. It is easy to see that

p(z)
dr + cR"

p(z)
dx + cR" ,

dr +c. (3.3)

15@5192Sn_+1‘

n n

From the standard Sobolev-Poincaré inequality for a ball with ¢ =2 > 1, ¢ = p2Y e get

p1’
Jo
e ] [d)=tn
Br
9
(][ |Du(:v)|%1dx>
Br

<l+c (][ |Du(:v)|%1dx>
Br
(p2—p1)9

®
P —(pa—p1)9n P1
<l+c (/ 1+ |Du(:1:)|”(z))dw) B <][ |Du(x)|ﬂda:>
BR BR

< (M) (]i |Du(a:)|%ldw)19 +e,

p(z)

u(z) — (Wr

(P2 —p1)d

where in the third inequality we use the fact that & < ”ST“”) < p(z) and in the last one we
—(p2—p1)9n

use again the fact that, by (??), R~ =1 is bounded. So, by the second step

][ u(z) — (u)r
Br

R
Third step: from (??) and (??) we obtain

9
][ |Du(w)|p(’“)dm§c(][ |Du(m)|¥dm) te.
Bpr/2 Br

p(z) o) 9
dz <c¢ (][ |Du(m)|de) +ec. (3.4)
Br




Let us observe that the previous reverse Holder estimate follows only for those radii R <
R /16, so we recall the version of the Gehring lemma that can be found, for instance, in [S]
and we can finish the proof. The desired dependence of the constant follows again looking
at the statement in [s]. O

Corollary 3.2 (Caccioppoli inequality). Suppose that the function u € W (Q) is a

loc
local minimizer of the functional (7?), with f satisfying (??) and (??), and let Bg CC Q.

Then
][ | Du(z) [P dx < ¢ ][ 8L — e
Br/2 Br

where ¢ depends only on v1,v2, L.

dr + c,

Proof. It follows from the first step of the previous proof, formula (?7?). O

Before going on, we need to prove some propositions. In the following we shall consider balls
Bpr CC Q and points ¢ € {2 such that:

u € WHP(E0)(Bp).

This is a technical assumption that will be always satisfied when applying the propositions
below in the next section.

Proposition 3.3. Let g(z) : R* — R be a function of class C? satisfying (??) and (2?)
(when f does not depend on (x,u)) with constant p(x) = p(xo), o € Q, 71 < p(xg) < 7o,
L replaced by 8L and pu > 0. Let u € W'P(#0)(Bg), Br C Q and let & € u+ WP (Q)
be a minimizer of the functional

H(w, Br) :=/ g(Dw(w))dw+190/

|Dw — Dvg|dz := Go + 190/ |Dw — Duvg|dx
Br Br

Br

in the Dirichlet class u + Wa*" (Bg), where 9o > 0 and vy € u+ Wo**) (Bg) is a fived
function. Then for all 8 > 0 and for all Ag > 0 we have

[, 1ps@rear <e(Z)" [ @+ D3Py s
B, R Br

_p(zg) 1 PIESOO))_BI
ey / \Du(z) — Dis(z)|dz + cR™p a2t | -
Br Ao

+ c[Ag]P(0)8 / (1 + [Du(@)[""))da ,
Br

where ¢ = ¢(y1,72,n) is independent of vo, U, u and R.
Proof. Let v € W2(20)(Bpg) be a local minimizer of the functional w — [5,, 9(Dw(x))dz

in the Dirichlet class u + W, (20)(Bp). We remark that the function g(z) satisfies the
assumptions of [AM1], theorem 3.2 with constant p(z) = p(zo) and v < p(xo) < 72, so
comparing v and ¥ in Br we have

/ (1% + |Dv(x)|2)p(wo)/2dx <c (ﬁ)"/ (12 + |Dﬁ($)|2)p(w0)/2d$ ’
B R Br

P

where ¢ = ¢(y1,72,n). Now, arguing in a standard way (see again [AM1], [CFP]), it is easy
to see that

| @+ Do)y 2o

B,

<c(£) /B (42 + | D) [2)7) 2da (3.5)
R

+c/ (12 + |Do(2))? + | Do(z)|?)*@)~2/2| Di(x) — Du(z)|*de
Br



and that (since in our case we are assuming p > 0):

Go(?) — Go(v) > ¢t /B (u? + |Do(z)? + |Dv(m)|2)(”(””°)*2)/2|D17(m) — Du(z)|?dx . (3.6)

Again we remark that ¢ depends only on L,~1,72. On the other hand, using the minimality
of ¥ and triangular inequality in the second estimate, we deduce

Go(?) — Go(v)
< H@B) — H(w) + Yo / \D3(z) — Do(x)|ds

Br

+190/B |\ Do(z) —Du(a:)|d:c—190/B \Do(z) — Du(a)|da

R

< /BR \Du(z) — Do(a)|ds + /BR {«90 [Aio] B} {|Dv(z) — Du(2)|[Ao)*} do

_pzg) [ 1 Iigig{?l
< 190/ |Du(z) — Do(z)|dz + cR™0g 70T [—]
Br Ao

+el4aP@? [ (14 |Dufa) o)) do
Br

for all 8 > 0 and all Ag > 0. Connecting the last inequality to (??) and (??) we get the
thesis. O

The previous result, as the following one, are technical preliminaries that will be needed
later. Now, our next task is to derive a “non smooth” version of the previous proposition.
Let us start with a simple smoothing result.

Lemma 3.4. Let h(z) : R* — R be a continuous function satisfying (??) and (?7) with
constant p(x) = p(xg), 11 < p(xo) < 2 and let (Gp)men be a sequence of continuous

functions defined by:
Y
szzz/ y)hlz+=)dy,
@)= [ eh ()

where ¢ : B(0,1) — [0,1] is a positive and symmetric mollifier. Then for any m € N the
function Gy, satisfies (7?) and (??) with L replaced by 8"2L and p® replaced by p”® + 5.

Proof. It follows easily from [FF]. O

Proposition 3.5. Let h(z) : R® — R be a continuous function satisfying (2?) and (??) with

constant p(z) = p(zo), 11 < p(x0) < Y25 for all u € WHPE)(Q) let vy € u + Wol’p(wo)(BR)
be a minimizer of the functional

Hw,Br) = [ h(Dw(z))dz +190/ \Dw — Duolds
Br Br

in the Dirichlet class u + Wol’p(wo)(BR), where 99 > 0. Then for all 3 > 0 and all Ag > 0
we have

/ IDvo(w)lp(“)dwsC(%)" / (42 + | Do (2)[2)P=0) 2 dgs
B

P R

p(=0)B
1

p(zg) p(zg)—1
wato [ |Dute) - Dun(alde + cRrao 5 [ 1]
Br 0

+ [ Ag]P=0)8 / (1 + [Du(z)P@))da |

Br



where ¢ = ¢(y1,72,n) is independent of v, u and R.

Proof. The proof of this proposition can be obtained following a standard approximation
argument. We confine ourselves to sketch it. We define v,, € u+I/V01 p(@0) (BRr) as the unique
minimizer of the functional

Hm(w, Br) == /

G (Dw(z))dz + 190/ |Dw — Duvg|dz
Br

Br

in the Dirichlet class u + WO1 p(@0) (Br). Using a standard coercivity argument and the strict
convexity of the functional , it turns out that, up to subsequences, v,, weakly converges
to u in W1P(#0) (Bg) and the estimate stated follows passing to the limit the corresponding
ones of Proposition 3.3, valid, uniformly, for each v,,. O

Finally, we recall the main result from [FZ]:

Theorem 3.6. There exists an exponent v = y(n,p(x), L) € (0,1) such that any local
minimizer of the functional (77?) is in C%.

From now on, since we are going to prove local regularity results, we shall assume that our
minimizer u is globally Hélder continuous, that is:

lu(z) —u(y)| < [ulylz —y[” (3.7)

for all z,y € Q.

4 Proof of theorems 2.3 and 2.4.

We give the proof of theorem 2.3, the proof of theorem 2.4 being just a straightforward
consequence of the arguments developed for the first one.

Setting of the quantities.

We start the proof of the main theorems by fixing some important quantities. We start
applying theorem ?? in order to get an exponent § of higher integrability. Obviously we
can replace at will the exponent § with smaller constants; so we choose ¢ such that § <
min{y; — 1, %}, where « is the Holder continuity exponent coming from theorem 3.6.
Therefore the exponent § will depend upon the quantities 1,72, L, M1, where (see (?7?))

My = L2 /Q (1+ | Du(@)[2)P@)2dg . (4.1)

In the following we shall work with balls Bg CGC 2 such that 16R < Ry < 1 where Ry =
Ro(n,v1,7v2, My, L) is small enough to have wy (8Rp) < §/4, and we shall keep the notations
introduced in (??) about p; and p,. This choice implies that

po(1+8/4) < p()(1 +6/4+wi(8R)) < p()(1+8)  inBun, (42)

and also that
p(x) >m >6+1>1+6/4. (4.3)

Finally we set

Pm = max p(z) .
Ro

With such a choice, (??) and the higher integrability result given by theorem ?? allow us to

10



say that:

/ |Du(z)|Pmdx < / | Du(z)|P@ 49 dg + cRE
Bro/a Brg/4

1446
< cR} ( ]{3 (| Du(z)|P®) + 1)dz) (4.4)

1+46
< cRy™ (/B (| Du(z)[P™®) + 1)dw> < M.
Ro

In the last inequality, we use the previous (??) and the fact that Ry = Ro(n,v1,72, M1, L)
(since it is determined only after §) to deduce that the constant M, depends only on
L,v1,%2, |||Du|p(f”)||L1(Q); we may suppose, without loss of generality, that Ms > M;.

Let B(x.,4R) = B4r CC Bp, /4 be not necessarily concentric with Bg,; from now on, when
not differently specified, all the balls considered, except Bg,, will have the same center z..
Therefore, adapting the notation to this case:

p1 =pi(R):=_min p(z), p2=p2(R):=_max p(z).
B(zc,4R) B(zc,4R)

Freezing.

We first remark that by theorem ?? and by (??) we get that u € W1 »P2(1+3/4) (Byp).
Let zo € Byg such that p(xzg) = p2(R). For any x € Byg, z € R we set

h(z) = f(:UOJ (U)Raz) )
go(’w,BR) ::/

h(Dw(zx))dz = f(zo, (u)r, Dw(z))dz . (4.5)
Bgr Br

Let v be the local minimizer of Gy in the Dirichlet class u + Wol ’I(BR). We observe that
the function h(z) := f(xo, (v)g, 2) satisfies the assumption of [AM1], lemma 3.1 with p = pa,
1 < p2 < 2. So, by the minimality of v, it follows that there exist two constants ¢ and
€ € (0,6/4) both depending on 71,72, L and independent of R and v, such that

1/(1+s)
( ][ |Dv(x)|p2(1+5)dx> gcj[ |Do(z)|P>dz+c ( ][ | Du(z)[P>(1+9/9) g
Bgr Bgr Bar

7

> 1/(1446/4)

/ |Dv(z)|P?dz < ¢ (1 + |Du(z)|P?) dz.
Br

Br

Since u is a local minimizer of the functional (??), we obtain

Go(u) < Go(v) + f(z,v(z), Dv(z))dx — f(z,u(z), Dv(z))dx

Br Br

+ : f(z,u(z), Dv(z))dz — : f(zo,u(z), Dv(z))dz

+ f(@o, u(@), Du(z))dr — ; f(@o, (W) r, Do(z))dx
+ f(@o, (u) R, Du(z))dz — ; (@0, u(x), Du(z))dz

+ [ f(wo,u(z), Du(z))dx — [  f(z,u(z), Du(z))dz
Br Br

=Go(W)+I+IT+IIT+IV+V.

11



Bounds for the quantities I,1I,....V.

First of all we estimate I

T<L [ wnlufe) = @) + Do)y s

<L [ wlofe) — u@D2 +1Do@PY s+ L [ en(lo(e) —ula))ds = A+ B
Br Br

Let r = pa(1+¢) € (p2,p2(1+43/4)) the higher integrability exponent given by [CFP], lemma
!

T

2.7. Using Holder inequality with exponents > and (;,%) = T_TPZ and the fact that ws is
bounded, we deduce that

’ I T (o) - @))de]

r—pP2
r

A<c [/BR(;R + |Dv(w)\2)5dx]

<o | f anjolo) - u))de|

r—Pr2

+c</BR |Dv(m)|rdx> ’ [/BRwﬁqv(z)—u(x)Ddx] " —c+D,

where ¢ = ¢(y1, 72, L,n). Using the concavity of ws we estimate:

C =cR" []{BR wa(Jv(z) — u(x)|)dw] - <cws§ (éR(W(z’) — u(w)|)dw) R,

where we set 0 = P2 = ;+-. Further using (?7?), (??), (??), by theorem ?? and arguing
as before, we obtain

o7t
D < R [][ |\ Do()[Pdz + ( ][ |Du(:c)|”2(1+6/4)d:c) ]
Br Bar

x [wg (]én lo(z) — u(w)|d$>]

SC[/ (1+|Du(a:)|”2)dx+R"][ <1+|Du($)|p(z)(1+6/4+w1(8R))d$)
Bpr

Bar

x [wg (]iR o(z) — u(a:)|d;c)]
(145/4+w1 (8R))

<ol [ a+ipura s+ |(f arpuopene) ]

x [wg (ﬁR lo(z) — u(a:)|dx)]

w1 (8R)
< c[/ (1 + |Du(z)P?)dz + BT854 (/
Br Bar

x /Bma + |Du(w)|p2)dx] [wg (]{?R lo(z) — u(x)|dw)]
<c (1 + [Du(z)|P?)dz| |ws lv(z) —u(z)ldz ) | ,
/. J[s(£, )

12

1
1+5/4:|

w1 (8R)

T+874
1+ |Du(x)|p(z))dx>



w1 (8R)

since R-™1%5/4 is bounded (argue as in the first step of theorem ??). Moreover ¢ depends
only on L, 71,72, M1. On the other hand, again using the boundedness and the concavity of
w2

B < ¢R™w3 (]{3 |v(z) — u(:c)|da:> ,

where again, ¢ = ¢(v1,72,m, L).
Combining the previous facts and using Poincaré inequality we have

I<c [/Bma + |Du(a:)|”2)dx] S (]{BR lo(z) — u(a:)|dw)

<l 1Dl 5,5 (B f, 1D0(a) = Duto)lis )

[ 1/p2
< ¢[|1+ |Dul] ’22,,2(34R)wg (sz ]{BR |Dv(z) — Du(w)|P2dx> ]

1/p2
< cllt + [Dulll oz (g, @3 (sz ]i 1+ |Du(m)|P2)dm) ]
| R

[ 1/p2
< clll + [ Dulll oz (g, @5 (sz ][BR(l + |Du(a:)|1’(w)(1+6))d$> ] ,

where in the last inequality we used (??). By theorem 3.6, u € C%(Q); we set [u], to be
the Hélder constant of u in € and recall that, by our choice, it follows that § < 2~ . We
set m = v+ 0 — § and we remark that 0 < m < 1. So first using theorem 7?7 and then
Caccioppoli inequality we get

1/p2
(R” ][ 1+ |Du($)|p(z)(1+6))dx) ]
Br

ik (]in(l + |Du(x)|p(w))dx) (1+5)/p2]

P2 (146)/p2
R<][ (1+ )d) ]
Bsr
[u]me” (14+9)\ 1/p2
][ 14 gy
Ban Rp2

= cw][(R” + [u]?f(l'“s)Rm [1+7+75*1*5])1/p2]

wy

w(z) — (u)ar
R

< cwi (R™).
So, finally

T < cws(R™) / (1 + [Du(z)P*)dz ,
Bur

where ¢ = ¢(y1, 72, L, n, M1).
Now we proceed estimating the remaining terms starting by I11. We can use (?7) and (?7?)
and again the fact that u is Holder continuous (see (?7)):

1171 < L/B wa(Ju(z) — (u)r|) (N2 + |Dv(m)|2)p(z)/2 d

< CWQ(RV)/ (1+ |Du(@)”) dz .

Br

13



In a similar way we get the estimate of IV :
2 2\P(z)/2
IV <L [ w(u(@) - (wkrl) (b* + [Du(@)*) dx
Br

< cwz(m)/ (1+ | Du(@)|") dz .

Br

We stress that the constants (denoted by ¢) found in the previous inequalities depend on
(v1,72,n, L, M) also via [u], (see again theorem 3.6).

To get the estimates of IT and V' we can argue exactly as in [AM1] but using (??) and our
higher integrability theorem ??. We obtain

IT < ey (R) log (%) | Iu@pds + ca @,
Bar

1
V < cwon(R)log (E) / |\Du(z)|P2dz + e (R)R™ |
Bar

where the constant ¢ now depends also upon M,.
Collect}ng the previous bounds and summing up we get (keeping into account that ws(R?) <
cw§ (R™)):

I+II+III+IV+V<ec [wl(R) log (%) + wg(Rﬁ*))] /B (1 + |Du(z)|P?)dz . (4.10)

Applying Ekeland variational principle.
We set for simplicity

F(R) = (R)log () + 5 (R™).

The assumption (?7?) allows us to say that

lim F(R) =0.
R—0

Now, by the minimality of v, from (??) and (??), we obtain

Go(u) < inf  Go+ H(R),
ut+Wy' (Br)

where we set

H(R) := cF(R) /B (1+ | Du(z)[P*)dz .

Now we are in a position to apply [Ek], theorem 1. Let V = u + W' (Bgr) equipped with

the distance
pa—1

d(wy,wy) := H 3R "% / |Dwi () — Dws(z)|dz .
Br

It is easy to see that the functional Gy is lower semicontinuous with respect to the topology
induced by the distance d. Then by [Ek], theorem 1 it follows that there exists vg € u +
W' (Bg) such that

p2—1

(4) /B |Du(z) — Dug(z)|dz < [H(R)]éR" P2

(i7) Go(vo) < Go(u) ,
pa—1
con S . H(R)] »2
(447) vo is a local minimizer of the functional w — Go(w) + T |Dw — Duvg|dz .
Br

14



By the minimality of vy we have that for every ¢ € Wy*?*(Bg) :

H]__E,f)] o /BR |Dug(z) + Do(x) — Dvg(z)|dz

Go(vo, Br) < Go(vo + ¢, Br) + [

1
< Golvo + ¢, Br) + — / |Duo() + Dep(a)|" da
2L Br

1
+—= |Dug (z)|P?dz + cH(R) ,
oL g,

Using growth assumptions (??) it follows in a simple way that
/ Do ()P dz < ¢ / |Duo(2) + Dep(x)|P=de + c(H(R) + R")
Br Br
with ¢ = ¢(y1,72,n, L). This means that vg is a Q-minimizer of the functional
H(R
w (|Dw|p2 + HR) + 1) de
B R

where Q = Q(71,72,n,L) > 1. Observe that the dependence upon M; and M, is incorpo-
rated in H(R). Then it is easy to see that (see[G], theorem 6.7) there exists an exponent of
higher integrability s € (p2,p2(1 + d/4)) and a constant ¢ > 0 such that

(/

BRr/2

p2/s
\Duo(2)|’dz| < c][ | Duo(2)|Pdz + ¢ (1 + H(R)> .
Br R

On the other hand from the growth assumption (??) and from property (i4) deduced by
[EK], theorem 1 we have that

= / |Duo ()| dz < Go(wo) < Go(u) < L / (1+|Du(z)[") dz
Bgr B

! R

Br/2

SO

Pz/s
|Dv0(:c)|sda:) <e ]{B (1+ |Du()[")dz (4.11)

Comparison and conclusion.

Now we apply proposition 3.5 to the function h(z) := f(xo,(u)r,2), which satisfies the
assumptions with constant p(z) = p2 and v; < pa < 72, and to the functional

w > Go(w) + [H(R)] " / |Dw — Duvg|dz .
Rn Br

We choose Ag = F/(R) in proposition 3.5; by property (i) we have for every g > 0

/ IDw@ds <e(g)" / i+ IDw@P) ¥ do + {F (R / (U |Du(@)")da

we[ R g &

<e(f) /B (1* + |Du(2)|*) % dz + cH(R) + cH(R)[F(R)] "%

+ c[F(R)]”ﬂ/ (1+ |Du(z)|P*)dx .

Br

15



We choose 5 > 0 such that

-1 -1 -1 -1
712 p22 <ﬂ<P2 <72 )
Y2 D2 D2 it

Combining the previous facts, we easily get

/B D@ < (&) ]

(1 +|Du(x)*) % da + c[F(R)}*° / (1 + [Du(z)[)dz

R Bsr
(4.12)
with ¢ = ¢(v1,72,n, L, M1, M5). Now we use (?7?) obtaining
/ |\ Du(z)|P2dz < ¢ / | Duo(2)[P*dz + ¢ / | Du(z) — Do (x)|Pdz
B, B, B,
P\" 8
<c[(8)"+r@p] [ 1Duz)pds 413
(%) I, (13)

+cR" + c/ |Du(z) — Duo(x)|P?dz .
Bryo

In order to complete the proof, we have to estimate of the last term in the previous formula.
We are going to do this by (??), (??), (??) and theorem ??. We choose 6 € (0, 1) such that
0/s + 1 — 60 = 1/ps; then, recalling that s € (pa2,p2(1 + §/4)), we have that
/ |Du(x) — Dvo(z)|P*dx
Bgr/2

ép2

cR" (]{91”2 | Du(z) — Do (:U)|sd:v> ’ (]éR/Z \Du(z) — DUo(:L‘)|d;z;) (1=0)p2

P2 9p2

cR"[H(R)iR—i]uo>p2[(][BR/2 |Du(m)|sd$> T (]ém |DUO($)|de> : ]

cRM[H(R)]1—?) [( ]{3 y |Du(w)|”2(1+6/4)d;v) s + ( ]i 4R(1 + |Du(m)|p2)da:) 9]

IA

IA

IA

IA

cR™[H(R)|*~9 l(][ 1+ |Du(w)|p(w)(1+6/4+w1(8R)))d$)
Bry2

+ (]ima + |Du(w)|p2)dm) 9]

9(14+8/4+w1 (8R))
1¥6/4

IA

T ——— [(]é 1+ |Du($)|p(z))dw> + (]é 1+ |Du($)|p2)dx)9‘|

IA

e(My)R™[H(R) %

Rl (ﬁRu + |Du(m)|p2)dw> "y (]ému + |Du(w)|”2)da:) 9]

/]
(L) ( [ a+ |Du<a:)|"2)d:c) (H(R)

X

IA

IA

c[F(R)1% (1 + [Du(z)|”)dx
Bur
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In the previous estimate the constant depends on (v1,72,n, L, M1, M) while we remark that

_p8e1(BR) . . . .
we used (??) to bound R~ " 1+5/4 < ¢. We can now insert this estimate in (?7) and get

/B P |Du(z)[P2dz < ¢ [(%)" +[F(R)]O + [F(R)]”B] /B |Du(z)|P2dz + cR™ .

4R
We set W(R) := [F(R)]"~% + [F(R)]P*#; from our assumptions it is clear that
lim W(R) =0 .
R—0
Summing up we get

/Bp D)@z <c[(£)"+ W) / | Du(e)|P*Pdz + cR"

Bar

where ¢ depends only on 7y, 72, n, L, My, M. At this point the conclusion come arguing as
in the last part of the proof of [AM1], proposition 3.1; so fixing 0 < 7 < n, by [AM1], lemma
3.2 if we take R; > 0 depending only on 71,72, L, M1, Ma,w1,ws, 7, such that W(R) < &g
whenever 0 < R < 16RR1, we may conclude that

[ 1Du@P s < Oty
BP
whenever 0 < p < R, a fact that we may assume without loss of generality. On the other
hand v1 < pa(p); so that
|Du(@)[" dz < e(My)p""
BP
for any 0 < p < R;. At this point the thesis of the theorem follows from an integral

characterization of Holder continuous functions due to Campanato (see [G], chapter 2, section
3) together with a standard covering argument. O

Proof of theorem 2.4. The proof of this theorem can be achieved following remark 3.3
from [AM1] observing that, fixed the Holder continuity exponent «, in order to apply the
iteration lemma as proposition 3.1 from [AM1], the assumption (??) is only used to establish
that, for a constant A = A(n,p(x),L,a) > 0 it follows there exists Ry = Ry (n,p(x), L, a)
such that:

1
}13310 w1(R)log (E) +w2(R) < A,

that is exactly (??). O

5 Proof of theorem 2.5.
Let f be as in the assumptions of the theorem. For any u € W2(%0)(B(z,., R)), the problem
min {/ f(zo, (u) g, Dw)dx : w € u + W()l’p(wO)(B(mc, R))} (5.1)
B(z.,R)

has a unique solution that we will denote with v. Using [Ma], estimates (2.4) and (2.5), we
can easily obtain

£ Ipeie) - (Do pelds = f
B(wmp) B(:cc,p)

s[ sup [ Do(z) — Doly)
z,yEB(zc,p)

p(zo)

dx

][ (Dv(z) — Du(y)) dy
B(zc,p)

. (5.2)
]p( )
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[ p B p(zo)
< c(—) sup |Dv|]
R Bry2

Bp(zo)
< (ﬁ) £ a+IDo@pes,
R B(zc,R)

(5.3)

where p < R/2, ¢ > 0,0 < # < 1 and both ¢ and 8 depend only on %, y2, L. We consider the
ball B(z.,4R) CC Bg,4; from now on, when not differently specified, all the balls considered

will have the same center z.. We set p2 := maxg,—p(z) = p2(R) . Let 7 = Q(%fﬂ), where we

fix
£ :=min 1 _ﬁma
= 13 .

We recall that we have already defined the quantities ¢ and M (we did in the proof of
theorem 2.3). Arguing as in the previous section we get that there exists Ry and a constant
¢, both only dependent on L, 1,72, a and |||Du|p(w)||L1(Q), such that, whenever 0 < R < Ry,
we obtain

/ |Du(z) PP de < ¢cR™7 . (5.4)
Br

Let now R be such that 4R < Ry, take z9 € Byg such that p(xg) = p2 and let vu+ €
W, P?(Bg) be the solution of the previous problem (??) . Working in a standard way and
recalling the definitions of the function h(z) and of the functional Gy given in (??), we get

Go(u) — Go(v)

- /B (Dh(Dv(z)), Du(z) — Dv(z))dz  [= 0]
+ /B dac/0 (1 = t)D?*h(tDu(z) + (1 — t)Dv(z))(Du(x) — Dv(z)) ® (Du(zx) — Dv(zx))dt

> 1// dx /1(1 —t)(u? + |[tDu(z) + (1 — t)Do(z)|?)P2=2/2| Du(z) — Do (x)|*dt
Br 0

> c_l/ (u? + |Du(:t:)|2 + |Dv(:c)|2)(”2_2)/2|Du(a:) - Dv(a:)|2dx .
Br
(5.5)

We remark (see [SZ]) that the second integral in the first equality may have a singularity
when
tDu(z) + (1 —t)Dv(z) =0, (5.6)

but this may happen at most for one value of . On the other hand D?h(p) is a positive
defined form for p # 0, so it is not difficult to see that this identity is also valid in the
exceptional case in which (?7?) is satisfied for a certain ty. For example one can erase an
interval (tg —¢,to +¢) from the integration domain, get the result of the integral and then let
€ — 0. So estimates (??) are also valid in the case of functions f of class C? with respect to
the variable z in the domain  x R x (R™ \ {0}), while all the other estimates in this section
are still valid without differentiability assumptions on f; hence we can prove theorem 77
without approximation arguments.

Arguing as in the previous section, we get

Go(u) < Go(v) + ¢ | g [R™] + wi(R) log (%)] /B (1+ |Du()[")dz

4R
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Now, using the assumptions and by the previous definition of £, we get

/ (1 + [Du(@)[? + | Dv(2) *)P*~2/2| Du(z) — Dv(z)Pde < cRM/ (1+ |Du(z)|”)dz -

R Busr
On the other hand, it is not difficult to get the following estimate:
/ \Du(z) — Do(x)P*Pdy < RO / (1+ | Du(z)[P*)dz ; (5.7)
Br Bar

in the case p > 2, the previous inequality is obvious, while in the case p < 2 we can rapidly
deduce it by Holder inequality (see [AM1], pag.138), the minimality of v and the bounds for
f

Finally, we recall that we choose 4R < R; and so we can use (?7), (??), (??), the minimality
of v and the fact that the map R — ps(R) is nondecreasing, to get

/ \Du — (Du),[P*de < / |Du — (Do), |P*da

P P

<cp" ][ |Dv — (Dv),|P?dx + c/ |Du(z) — Du(z)|P*dz
B

o R
p Bp2(R)

< c(—) p" ][ (14 | DulP*))dz
R Br

+ cRo / (1+ |Du(a)["*)dz
Bar

p Bp2(R) p Bp2(R) p n ¢

< cp"PRPT £ cR¥R"T .

IA

Now we choose p = 2 R'"™? with § = (af)/(n + B). If we write again the last term only with
p, we get that the exponent of the two term of the sum are equal and so by the previous
choice of 7, they are equal to n+ A with A = (a€f)/2(n + S + af); from the choice of a, 3, &
we eagsily get that A > Xy > 0 for some A\g dependent only on L,~;,72. From the previous
chain of inequalities, again by the integral characterization of Holder continuous functions
due to Campanato and the usual covering argument, we get that Du is Holder continuous.
This finishes the proof. O
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