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Abstract

After a decade and a half of research in academia and industry, wireless sensor networks

(WSNs) are seen as a key infrastructure able to monitor the environment in which they

are immersed, thanks to their miniaturization, autonomy, and flexibility. Still, outdoor

deployments of WSNs (e.g., in forests) are notoriously difficult to get right, partly due to

the fact that their low-power wireless communication is greatly affected by the character-

istics of the target environment (e.g., temperature, humidity, foliage). In the absence of

quantitative evidence about the target application environments, the asset that drives a

successful and reliable outdoor deployment is the experience gained from previous deploy-

ments, lab-like testbeds, or simulators that however often do not resemble the real-world

environments.

The general goal of this dissertation is to support the principled design and deployment

of WSNs by improving the understanding of how the natural outdoor environment affects

the network stack, and providing tools and modeling techniques to address this impact.

This constitutes the premise for WSNs to be a credible tool for domain experts (e.g.,

biologists) operating in this field. Our own practical need to design and deploy a reliable

WSN system for wildlife monitoring in the mountains near Trento, Italy, pushed our goals

towards a deployment and application oriented perspective, whose ultimate objectives are:

supporting the WSN deployment; informing the selection or design of protocols, to ensure

they are well-suited to the target environment; deriving models to push the envelope of

what can be predicted or simulated beforehand.

To achieve these goals we must start from the first step—assessing quantitatively the

characteristics of the low-power wireless links in-field, i.e., in the environment where

the WSN must be deployed. To this end, we contribute with Trident and Harpoon,

tools for in-field connectivity and routing performance assessment that support principled,

repeatable, automated, and flexible collection of measurements in the target environment

without the need for a tethered infrastructure and without requiring coding from the end

user. Then, using these tools we collect a large set of data traces from six campaigns

across different years, environments and seasons, whose analysis quantified the impact of

the environmental factors on the network stack, focusing primarily on the physical and



routing layers. Finally, we exploit the data traces to create models for both estimating

the link quality at run-time and reproducing realistic network conditions in simulators.

We argue that the tools we expressly designed for gathering in-field empirical traces,

the understanding and quantitative characterization of data traces from real environments,

and the modeling, together significantly advance the state of the art by rendering the

process of designing and deploying a WSN more repeatable and predictable.
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Chapter 1

Introduction

“Begin at the beginning”, the king said, very gravely,

“and go on till you come to the end: then stop.”

Lewis Carroll, Alice in Wonderland

In 1999, researchers working on “Smart Dust” [37] pioneered the concepts of a large

number of resource scarce devices cooperating to achieve a sensing task. Since then, a

whole range of algorithms, protocols and programming abstractions have been developed

for these wireless sensor networks (WSNs), along with several operating systems and

hardware platforms. Moreover, the validity and the performance of the proposed solu-

tions has been extensively tested in laboratories, in simulators and controlled testbeds.

To a large part driven by the functionality and performance demonstrated in research

laboratories, WSNs are nowadays seen as flexible systems able to provide dense and cost-

effective monitoring for application domains that span engineering, scientific, medical

and other disciplines. This has created, from the domain experts, enormous expectations

around this technology, as an enabler of previously impossible scenarios as well as credible

replacement for established solutions.

Motivation. Since the inception of WSNs, many target applications meant that the

network would be deployed in outdoor settings, where temperature, humidity, foliage,

obstacles and other factors are known to affect communication especially in the 2.4 GHz

ISM band [1] that has become a popular choice among researchers and practitioners. In

fact, examples of successful deployments covering a wide range of scenarios from envi-

ronmental monitoring [9, 10, 54, 65, 74, 83], to habitat monitoring [25, 49, 56, 73], from

precision agriculture [43] to the study of tree canopy climate [48, 77] exist. However, these

experiences also clearly demonstrate: (i) how difficult it is to run and manage a WSN in

the real-world rather than in an indoor controlled testbed, (ii) that all too often these

systems fail to provide the expected results once deployed in their outdoor target environ-
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2 CHAPTER 1. INTRODUCTION

ments. This is partly due to the fact that the behavior of their physical communication

layer and, as a consequence, of the entire stack, is greatly affected by the characteristics

of the environment. However, the lack of proper tools for large-scale, in-field connectiv-

ity assessment, and consequently of publicly available traces means that there is limited

quantitative evidence for understanding channel behavior in the target environment.

This lack of understanding prevents the development of channel models realistic enough

to capture the characteristics of the target application environments, which in turn are

needed to predict and estimate link quality at run-time, or reproduce network condi-

tions accurately when simulating the application behavior. As a result, WSN design and

deployment is still mostly an art, based on rules-of-thumb guidelines gleaned from experi-

ence, or lab-like testbeds which have little in common with the real target environments,

especially when these are outdoor.

A concrete application. In this dissertation, we are motivated by a real-world wildlife

monitoring application and WSN deployment [56] we are pursuing in collaboration with

biologists studying the social interactions/contacts among animals, namely, roe deer in

the mountains near Trento, Italy.

The state of the art for these studies is based on GPS collars enabling the tracking of

animal movements [16], interactions among animals being inferred from the intersection

of individual trajectories [34]. Unfortunately, GPS is energy-hungry, hence the sampling

rate is typically very low. This fact, along with inaccuracies due to partial sky views,

introduces uncertainty and approximation in the trajectories, and therefore on the spatial

proximity and interaction among individuals inferred from them. Instead, animal-borne

WSN nodes enable biologists to record directly the interactions among animals. The low-

power wireless radio is used as a proximity sensor, and contacts among animals are inferred

based on the message exchanges among nodes. Nevertheless, to be useful to biologists,

the interactions recorded with this WSN must be correlated to the characteristics of the

environment, as the latter affects message reception. For instance, roe deer, one of the

species under study, dwell in various environments with different vegetation, and their

social interactions must be tracked year-long, across different weather conditions. A

contact between two roe deer at 40 m may be detected in an open field but not in a dense

forest. How do the various environmental factors affect the quality of communication

and as a consequence the performance of contact detection among the WSN nodes? In

our application, the answer to this question affects directly the sensing and therefore the

study of social interactions. However, the answer is of more general interest, given the

many applications exploiting a WSN in an outdoor environment as knowledge about the

effect of the environment on the connectivity may provide insights about the reliability

and lifetime of the WSN.



3

Goals and contributions. The general goal of this dissertation is to

support the principled design and deployment of WSNs by improving the un-

derstanding of how the natural outdoor environment affects the network stack,

and providing tools and modeling techniques to address this impact.

This constitutes the premise for WSNs to be a credible tool for domain experts (e.g.,

biologists) in outdoor environments. For this it is necessary to understand and characterize

quantitatively and empirically the behavior of the WSN in the target environment.

Today, tools enabling the collection of network connectivity measurements in out-

door real-world environments are lacking. Therefore, large realistic network connectivity

datasets are missing in the literature, further limiting the understanding of the behavior

of low-power wireless links and the development of realistic models able to predict (e.g.,

for protocol design) or to reproduce (e.g., for simulation) the behavior of the network

links. Moreover, the lack of quantitative evidence about target environments leaves the

WSN developers in the dark, without specific guidelines to drive their deployments and

tune their systems and protocols.

The main contributions of this dissertation, as depicted in Figure 1.1, can be summa-

rized as:

1. a toolset for in-field connectivity and routing protocol performance assessment that

supports principled, repeatable, automated and flexible collection of measurements

in the target environment, relies only on the WSN nodes without any external in-

frastructure, and does not require any coding by the end user;

2. the analysis of a large set of data traces collected in vivo (i.e., in actual real-

world environments) in which we quantify the impact of the environmental factors,

both in terms of morphology (e.g., vegetation present), as well as daily, seasonal and

yearly variations at the physical, routing and application layer;

3. models based on these traces, with the distinctive goal to:

(a) describing the influence of temperature and humidity on low-power wireless

links for estimating link quality at run-time;

(b) describing the long-term behavior of low-power wireless links collected in-field

for reproducing realistic network conditions in simulators.

The central pillar of this dissertation are the empirical data traces acquired in-field.

These entail in-field experiments, notoriously effort-demanding and time-consuming. Un-

fortunately, state-of-the-art tools (i.e., SCALE [20], SWAT [70], and RadiaLE [5]), require
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Figure 1.1: Dissertation Contributions.

an infrastructure made by powered devices to which the motes are wired for gathering ex-

perimental data — a luxury one can rarely afford in-field. Therefore, the first contribution

of this dissertation is embodied in two tools, Trident and Harpoon, expressly designed

to support principled, repeatable, automated and flexible collection of connectivity mea-

surements and routing protocol performance assessment in the target environment. Unlike

similar tools, Trident and Harpoon do not require any communication infrastructure

besides the WSN nodes. Our tools cover the entire process concerned with in-field connec-

tivity and routing protocol performance assessment, from the design of the experiments

to the download and analysis of the data gathered. Our tools are designed to be easy to

use by domain experts (e.g., the biologists we collaborate with) who can perform their

experiments without any coding effort. Trident is provided in two variants, targeting

TMote Sky motes running TinyOS, and Waspmotes running the standard ZigBee stack,

covering popular platforms in research and industry, respectively. The tool supports the

acquisition of physical layer parameters (e.g., PDR, RSSI , LQI , noise floor), while Har-

poon supports the acquisition of routing layer metrics (e.g., data yield and duty-cycle),

which account for the reliability of communication, along with the overhead and energy

consumption necessary to ensure this reliability in the target environment. Harpoon

supports two routing protocols: the Collection Tree Protocol (CTP), a representative

of commonly employed tree-based routing schemes, and the Opportunistic Routing Pro-

tocol (ORW ), a more recent protocol based on opportunistic routing approach. If the

protocol allows, Harpoon acquires additional parameters to assess the effectiveness of

specific mechanisms (e.g., number of beacons for CTP , number of neighbors for ORW ).

Both tools support the acquisition of environmental parameters (e.g., temperature and

humidity) from on-board sensors.

The second contribution of this dissertation is the analysis of a large set of data

traces collected using Trident and Harpoon. The location of the experiments was

chosen to be representative of the environment where our target wildlife monitoring ap-

plication is going to be deployed, and to cover different vegetation conditions. All the
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experimental sites are on Mount Bondone, near Trento, Italy. In collaboration with the

biologists in our team, we identified three characteristic locations in this area: a meadow

with essentially no trees (open), an evergreen forest with sparse vegetation (spruce),

and a deciduous forest with dense vegetation (beech). The design of the experiments was

informed by the biologists interest in understanding how low-power wireless links and as

a consequence the contact detection are affected by: presence and density of vegetation,

seasonal and daily variations. Our experiments investigated, during six campaigns, across

multiple years, what happens if the same WSN is immersed in different combinations of

the above environmental factors. We quantify the trends emerging at the physical layer

and show that: (i) this influence is mirrored at the routing and application layer, (ii)

the macro-trends across environments allow us to infer the relative trends in reliability,

overhead and energy consumption at the routing layer.

Whilst there are other empirical studies showing that the physical layer is affected by

the environment, our study extends up to the routing layer, which bears a direct impact

on the application performance. To the best of our knowledge, this represents the first

empirical study that characterizes, from a quantitative standpoint, the overall behavior

of a WSN in different environments.

As a third contribution, we build on the above analysis to exploit the set of data

traces to create two models: (i) for estimating the link quality and run-time, and (ii)

for reproducing realistic network conditions in simulators.

First, based on our empirical observations that the link quality of a WSN depends on the

characteristics of the surrounding environment, we focus on two factors: temperature and

humidity. We study the impact of these two factors on the physical layer parameters in

the open field environment as the degradation of the link quality here is not influenced

by any other environmental factors (e.g., obstacles, foliage). We conducted a study on the

impact of temperature on the RSSI and PDR of two hardware platforms, TMote Sky and

Waspmote, and show that the latter is affected by temperature to a much lesser extent

w.r.t. the former. Then, we develop a model describing the influence of temperature

and humidity on the link quality. This helps estimating the link quality at run-time

considering the particular temperature/humidity profile of the target environment and

informing the application layer performance.

Second, based on the observations that the link quality distribution of WSN in link

quality classes (e.g., dead, poor, intermediate, good, perfect) follows a specific pattern

in each of our studied environment, we capture the pattern in a model based on Markov

chain theory. Then we train the model with our experimental traces and integrate it in

mainstream simulators. Using our analytical model, the simulator generates link quality

distributions into classes with similar quality for a specific combination of environment and
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season. The model is key for efficiently reproducing realistic network conditions for large-

scale simulations of long-term behavior of protocols/applications by accounting for the

influence of the environment on the network beforehand. Thus, we contribute at reducing

the gap between simulation and real-world performance of protocols and applications.

Dissertation organization. We argue that the tools, described in Chapter 3, we ex-

pressly designed for gathering in-field empirical traces, the understanding and quantitative

characterization of data traces from real environments, presented in Chapter 4, and the

modeling introduced in Chapter 5, together significantly advance the state of the art by

rendering the process of designing and deploying a WSN more repeatable and predictable.

However, a lot remains to be done and we explore possible future work in Chapter 6.



Chapter 2

Background and Related Work

What’s past is prologue.

William Shakespeare, The Tempest

This chapter presents background on experiences from outdoor real-world WSNs de-

ployments and their related challenges. Software tools developed to measure and analyze

low-power wireless links along with systematic empirical studies on low-power wireless

transmissions are reviewed. Finally, existing models characterizing the behavior of low-

power wireless links are presented.

2.1 Long-lived Real-World Deployments

Taking a closer look at prior long-lived real-world deployments reveals that putting a

functional WSN in place is a non-trivial task. Several research groups have already shared

part of their experience in the WSNs deployment field, e.g., X-sense [9], Permadaq [10],

Koala [54], Luster [65], WildScope [56], LOFAR-agro [43], GreenOrbs [48], WildScope [56],

Great Duck Island [73], Permasense [74], Redwoods [77]. The lessons learned from these

deployments highlight a tremendous gap between “it works in the lab” and “it works in

the real-world” [81]. They also emphasize the need to understand the target environment

and the impact it will have on the operation of the WSN, as well as the need to take

into account the domain knowledge and application requirements to enable successful

long-term outdoor deployments. Moreover, they advocate for the need of deployment-

time tools to guide the deployment, support in-field evaluation of alternatives and ensure

the deployment is up and running before leaving the field. Moreover, there are several

examples, TASK [15], Sensorscope [63], Heathland [79], Vigilnet [80], Marionette [84],

where a protocol developed on a testbed does not work well in the actual deployment.

7
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However, all these real-world reported experiences focus on the WSN performance

in terms of high-level network properties such as end-to-end throughput, data yield and

latency and a characterization of the low-power wireless links and routing protocol per-

formance in these scenarios is largely missing. Moreover, the reports that complemented

these deployments do not aim to characterize the environment where they are deployed

and its variations.

2.2 Tools for In-Field Measurements

The WSN community has recognized the relevance of acquiring information about the

properties of the wireless links in the specific environment and built tools to empirically

experiment with links. SCALE [20], SWAT [70], RadiaLE [5], and IRIS [28] were conceived

for this.

SCALE is built using the EmStar programming model [31] and collects only PDR.

Each node runs a software stack, allowing for sending and receiving probe packets in

round-robin, retrieving packet-statistics and sending them through serial communication.

All nodes are connected to a central PC via serial cables and multiplexors. The PC runs

different processes, one for each node in the experiment, that perform data collection.

Based on the collected data, other processes running on the PC allow for connectivity

assessment through the computation of the PDR for each unidirectional link. Thus, the

network connectivity can be visualized at run-time.

SWAT collects PDR and hardware-based metrics, i.e., RSSI , LQI , noise floor. It

uses the same type of infrastructure as SCALE, nodes being connected through serial

connections or using a back-channel to a central PC. SWAT stores collected data into

a database and provides modules for calculating and visualizing various metrics derived

from statistics.

RadiaLE makes use of bursty and synchronized traffic patterns for physical layer mea-

surements collection. Nodes are connected to a control station via a combination of USB

cables and active USB hubs constituting a USB tree. This tree is used as a reliable

logging/control channel between the nodes and the central PC. RadiaLE supports the

operator to follow the experiment progress in real-time by displaying the network map,

link quality metrics and node status. Moreover, it logs the measurements in a database

and enables the evaluation of Link Quality Estimators (LQEs) that can be configured and

evaluated based on the collected data from a given experiment.

Unfortunately, SCALE, SWAT, and RadiaLE, require a secondary, wired networking

infrastructure for gathering experimental data - a luxury one can rarely afford in real-

world settings.



2.3. EMPIRICAL STUDIES 9

On the other hand, IRIS provides an integrated solution for experiment management

and on site data analysis. It supports the automated experiment installation on nodes,

the management of measurements, i.e., data organization and logging in different formats

(binary, CSV or WiseML format [2]), and customized logging with the help of user-defined

functions for direct manipulation of raw data. Furthermore, the tool allows to control the

experiment flow and the interaction with the deployed WSN. IRIS is equipped with a set

of function templates for data processing and interfaces for visualizing the experiment

data.

Unfortunately, IRIS does not support the configuration of the experiment and neither

generates the code for the experiments, thus the user has to get into code intricacies and

provide the code to be run by IRIS.

In Chapter 3, we present Trident and Harpoon, our tools expressly designed to

simplify the chore of in-field connectivity and routing protocol performance assessment.

These tools rely only on the WSN nodes whose connectivity needs to be ascertained,

without any external infrastructure. They cover the entire workflow concerned with the

experiments which can be configured easily without requiring any coding.

2.3 Empirical Studies

The performance of a WSN deployment is obviously directly affected by the quality of

the links enabling the communication among nodes. In the case of commonly-used IEEE

802.15.4 radios, the link quality is in turn easily affected, as empirically demonstrated,

by environmental factors (i.e, temperature, humidity, rainfall, snow, wind, foliage, ob-

stacles), which cause variations over time and space. Therefore, from a communication

perspective, information about the properties of the low-power wireless links in the specific

environment at hand is crucial to build reliable systems that run on top of 802.15.4.

2.3.1 Metrics

Researchers have identified several low-level metrics to help them understand network

dynamics. The set of basic metrics that were examined by previous empirical studies

to capture the low-power link characteristics are: PDR (Packet Delivery Ratio), RSSI

(Received Signal Strength Indicator), LQI (Link Quality Indicator) and SNR (Signal

to Noise Ratio). PDR is computed as the ratio of packets received over the number

of transmitted packets. It provides an immediate and easy-to-compute indicator of link

quality. In addition to PDR, physical layer information is another direct indicator of

link quality. Most off-the-shelf low-power radio chips provide the RSSI and LQI , both

measured over the first eight symbols (32 bits, 125µs) of the received packet. RSSI
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gray area

Figure 2.1: Connected, transitional and disconnected region example.

measures the RF signal strength of a received packet. Noise floor is the power of the

ambient channel energy, when there are no transmissions, and is useful to indirectly

determine the presence of interference. SNR of a received packet is computed as the

difference between the two RSSI measures (i.e, RSSI and noise floor). LQI is computed

over the 8 bits following the start frame delimiter (SFD) and for the CC2420 radio ranges

from 50 (minimum) to 110 (maximum).

2.3.2 Empirical Studies on Link Properties

A significant body of works is related to the understanding of link dynamics, showing

how their quality fluctuates over time [22, 69, 87] and space [20, 29, 61, 86, 87, 88, 91],

that connectivity is typically asymmetric due to differences in noise floor [22, 88] and

to imperfections in hardware [91] that may cause variations in the power output during

transmissions, and/or antenna orientation [61, 88].

These works demonstrated that the transmission range is not isotropic and is defined

by three regions- connected, transitional, and disconnected, based on the distance of the

receiver from sender and on the PDR, as shown in Figure 2.1. The connected region is

the closest to the sender and its links are of good quality. At the other extreme, the

disconnected region is the farthest from the sender,: it does not contain links usable for

communication. The transitional region, also called the “gray area” is a mix of the two,

and contains links that exhibit a high variance. Each of these regions has an irregular

shape, with bounds changing over time and with specific features [20, 61, 87, 90].

The transitional region was analyzed during several empirical studies because links

within this region are considered unreliable [20, 61, 69, 87, 90, 91]. Zuniga and Krish-

namachari [91] quantified the impact of channel multipaths and hardware variance on

unreliable and asymmetric links from the transitional region and provide analytical ex-

pressions for the boundaries of this region. Cerpa et al. [20] performed indoor and outdoor
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measurements using Mica1/Mica2 platforms and different power levels and reported the

width of transitional region to range from 50% to 80% of the transmission range. On the

other hand, Zhao and Govindan [87], while performing measurements with almost the

same settings as of Cerpa et al. [20], reported a smaller width for the transitional region

ranging from 20% to 35% and a range for the percentage of intermediate links from 35%

to 50%. Moreover, Srinivasan et al. [69] claimed that the number of intermediate links

observed with recent platforms, Micaz and TelosB, is lower, from 5% to 60%, than that

observed with old platforms. Mottola et al. [53] refuted this observation while conducting

experiments in road tunnels using TMoteSky platform. Nevertheless, these studies are

based on different network settings in terms of radio type, power, environment and traffic

load but all showed that link quality varies drastically over space.

Studies show that the temporal variations of link quality are due to changes in the

environment, constructive/destructive interference, obstacles and human presence [21, 87,

61, 75]. Cerpa et al. [21] and Zhao and Govindan [87] show that links from disconnected

and connected regions tend to be stable over time, while Srinivasan et al. [69] report on

link burstiness and confirme observations made by Cerpa et. al [22].

Moreover, Cerpa et al. [20, 21] analyzed the asymmetry of low-power links and showed

that links from transitional region tend to be asymmetric and argued that link asymmetry

is not correlated with distance. Srinivasan et al. [69] studied the temporal variation of

link asymmetry and found that very few links are long-term asymmetric. Experiments of

Mottola et. al [53] refuted this and show that link asymmetry tends to persist in their

specific environment.

With few exceptions [20, 53, 69], the above studies were carried out indoor, in con-

trolled environments and present radically different (and sometimes contradicting) results.

In contrast, our experiments presented in Chapter 4, are carried out in-field and outdoor.

Moreover, these works are generally focused on the study of individual links, usually over

short-term variations, to provide guidelines on fine-grained design decisions. In contrast,

we are concerned with characterizing the aggregate behavior of the network. In doing

this, however, we do borrow some commonly-used concepts, definitions, and techniques

from these works, e.g., including the notion of transitional area, the definition of link

classes and asymmetric links.

2.3.3 Impact of the Environment on Low-Power Wireless Networks

Several researchers have shown that outdoor WSNs are affected by meteorological factors,

i.e., temperature, humidity, rain, fog. Thelen et al. [76] described how radio propagation is

favored by high humidity in their potato field deployment and attribute the enhancement

to a change in the reflection coefficient on top of the plant foliage at their deployment
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site. Works of Anastasi et al. [4] and Son et al. [67] suggest that fog and rain may have a

severe impact on the transmission range of WSN nodes, especially w.r.t. packet reception.

A loss of connectivity in their outdoor deployments, with rainfalls from 0.4 to 1.4 mm

and temperature daily variations between 10 and 50◦C, was reported by Sun and Cardell-

Oliver [72]. Similarly, Capsuto et al. [17] reports a drop in signal strength during rain

and snowfall.

Work by Holland et al. [36] concludes that temperature and humidity have no impact

on link quality and data yield while Bannister et al. [7] show that high temperature

negatively affects communication, based on data from a radio survey in the desert and

applied to simulations of localization and data collection. Daily variations in RSSI of

up to 6 dBm were reported by Lin et al. [47]. In particular, Boano et al. [13] quantified

the impact of these conditions on different platforms in an outdoor industrial setting,

showing that light rainfall has a negligible effect on signal strength while heavy rainfall

can disrupt connectivity. Using a controlled experiment, Boano et al. [12] show a decrease

in RSSI as temperature increases and reasons that changes in temperature affect crystal

accuracy that induce frequency shifts, and thermal transceiver noise, that may degrade

performance. More recent work of Wennerström et al. [82] reports a clear degradation

in PDR and average link quality during summer and confirm that daily fluctuations of

ambient temperature have a strong impact on quality of the communication. Motivated

by this study, Boano et al. [18] carry out a systematic set of experiments in controlled

settings analyzing how temperature affects the RSSI in transmitters and receivers of

nodes with CC2420 and CC2520 radios and show that the trend can be captured in a

simple first-order model. Schmidt et al. [64] built “HotBox” and reproduced the setup

from [18]. They reinforced that temperature has a significant influence on communication

quality but reported that heating the receiver produces a larger impact on link quality

rather than heating the sender as Boano et al. [18] showed.

Temporal relationship between RSSI variability and plant canopy development is ob-

served by Rankine et al. [59] in an old growth stand of deciduous forest. In an effort to

understand the causes of losses in a forest deployment, Dong et al. [24] observes periodic

performance variations with links severely degrading during night and recovering during

day. Moreoever, wind movement through vegetation has been observed to increase the

variance of RSSI due to the changes in multi-path propagation as trees sway in the winds.

Hashim and Stavrou [35] show that high wind speeds produces radio signal fading of the

2.4 GHz radio frequency.

All these works, however, simply report the degradation/improvement of the wireless

signal as a consequence of changes in the environmental factors like temperature and

humidity and do not provide a deeper analysis of what the implications are on routing
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protocols and the application when operating a WSN outdoors.

Using the same GreenOrbs deployment as [24], Tong et al. [78] makes one step further

and looks at the routing dynamics analyzing possible causes of CTP parent change events

during several days and their correlation across time and location. Keppitiyagama et

al. [40], investigates the effect of temperature fluctuations on RPL protocol [85], in a

temperature-controlled testbed, and shows that the performance of ContikiRPL suffers

from the short term validity of the ETX [23] predictions under temperature fluctuations.

In Chapter 4 we confirm many of the above mentioned findings. However, in compar-

ison, our work assesses the overall trends induced by the environment in a more holistic

way, by taking into account yearly, seasonal and daily variations. It also explores the effect

of environments with different characteristics (e.g., vegetation). Finnaly, we extend up to

the routing layer, which bears a more direct impact on the application performance, and

the application layer, the one directly relevant to the end user. Moreover, we investigate

if the observed influence of the environment at the physical layer is mirrored at the upper

layers.

2.3.4 Empirical Studies on Data Collection Protocols

Several studies evaluate the performance of data collection protocols [27, 30, 32, 51, 58]

and benchmark the proposed solutions against CTP . Gnawali et al. [32] reports CTP ’s

data yield ranges from 90.5% to 99.9%, a median duty-cycle of 3% across the nodes of a

network in experiments in which the network generates data at 30 packets/minute and

delivers them to the sink.

The performance of ORW protocol was evaluated by Ghadimi et al. [30] in both

simulations and testbed-based experiments. They show that ORW improves duty-cycle

and delays significantly while achieving similar reliability and transmission counts when

compared to CTP . An average decrease in duty-cycle by about 50% and up to 90% for

individual nodes is reported along with a decrease in delay by 30% to 90% depending on

the network density. Moreover, they show that the optimal ORW duty-cycle is at lower

wakeup rates when compared to CTP . At high wakeup rates ORW loses some of its

benefits and both protocols show similar performance in terms of energy and delay.

The testbed evaluation in Puccinelli et al. [58], where Broadcast-free Collection Pro-

tocol is benchmarked against CTP , shows a reduction of the duty-cycle of the same order

of the one achieved by ORW .

When compared the Backpressure Collection Protocol [51] against CTP on a 40-nodes

testbed, a performance by more than 60% in terms of min-max rate and a reduction by

more than 30% in terms of average packet transmissions was observed.

Nevertheless, all previous work on analyzing the behavior of routing protocols has been
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done in simulations and testbeds. The only exception, represented by Gnawali et al. [32],

evaluates CTP ’s performance on a large-scale, long-term deployment, using CTP in an

application that collects power and utilization data for the computing infrastructure of a

building. In contrast, our experiments are carried outdoor. Not only that we investigate

the performance of the data collection protocols but also assess the effectiveness of their

specific mechanisms. Moreover, throughout our study we investigate and evaluate the

coupling between subtle effects at the physical layer and routing layer behavior.

2.4 Models for Characterizing the Behavior of Low-Power Wire-

less Links

Several models cover outdoor and indoor signal propagation characterization, taking into

account the number, delay and power of indoor multipath components. The log-normal

path loss model [60] has been widely use to describe the propagation of radio signals for

low-power wireless networks and small-scale models that estimate signal loss over small

distances and small time intervals [55] have been proposed as well.

Another class of models, on the other hand, estimate the packet delivery function.

These models build functions relating physical layer parameters (e.g., RSSI , SNR) to

PDR. The delivery probability is modeled as a function of interference by Reis et al. [62],

while Kashyap et al. [39] uses curve-fitting of packet reception probability and SNR

to model the packet reception. Woo et al. [86] derives a packet loss model based on

aggregated statistical measures, assuming a Gaussian distribution of PDR for a given

transmitter-receiver distance, which later was refuted by Zuniga and Krishnamachari [91].

They use the log-normal path loss model to derive expressions for the distribution, expec-

tation, and variance of PDR as a function of distance. A set of non-parametric statistical

models for characterizing links and groups of links associated with a particular receiver,

transmitter, radio is developed by Cerpa et. al [21].

Recent efforts provide models for estimating the signal strength as a function of tem-

perature. Bannister et al. [7] quantifies the loss of RSSI due to temperature for Telos-class

nodes, but only for a limited temperature range (i.e., 24 to 65◦C) and for a single radio

chip. Using TempLab [11] testbed infrastructure, Boano et al. [18] captures the impact of

the temperature on the signal strength of transmitters and receivers of two radio chips, i.e.,

CC2420 and CC2520, and show that the decrease in RSSI is consistent among different

platforms. Then, a first order platform model describing the impact of the temperature

on wireless sensor nodes is proposed. Nevertheless, TempLab temperature profiles are

over 0◦C, covering just a segment of the outdoor temperature profiles.

Deployments and empirical studies mentioned in Section 2.1 and Section 2.3 indicated
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a wide chasm between real-world channel behavior and existing radio channel models in

simulators [38]. The latter are often too simplistic, and can hardly capture the complex-

ity of the real-world. To increase the realism of simulations, several models have been

proposed and incorporated into existing simulators. Using a multi level approach involv-

ing hidden Markov models and mixtures of multivariate Bernoullis, Kamthe et al. [38]

proposed to model the long- and short-term scale behavior of links. Zuniga and Krishna-

machari [91] modeled the behavior of wireless links depending on the radio and channel

characteristics for static and low-dynamic environments, while Lee et al. [45] proposed a

statistical model created from noise traces. On the other hand, instead of attempting to

create more precise and realistic radio models for simulators, Boano et al. [14] proposed

to augment existing simulation tools with the playback of realistic interference traces.

In Chapter 5 we assess the impact of the temperature and humidity on the link quality

and propose a model to estimate the link quality at run-time. Moreover, we capture

the pattern of links distribution in link quality classes in a model and integrate it in

mainstream simulators providing more realistic network conditions for simulations.
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Chapter 3

Measuring: Tools

Door meten tot weten.

By measurement to knowledge.

Heike Kamerlingh Onnes

Real-world deployments of WSNs are notoriously difficult to get right, partly due to

the fact that their low-power wireless communication is greatly affected by the character-

istics of the target environment. Communication in the 2.4 GHz ISM band has peculiar

characteristics, that have been studied by many researchers; a summary is provided in

Section 2.3.

Unfortunately, the tools supporting connectivity assessment [5, 20, 70] were conceived

to study the properties of low-power wireless links using an infrastructure made by pow-

ered devices to which the motes are wired, and thus are not directly applicable in most

deployed systems where nodes are only wirelessly connected. Further, they are of limited

use for characterizing any outdoor environment where it is not practical to run wires for

data collection.

This chapter presents Trident and Harpoon, two tools expressly designed to sim-

plify the chore of in-field connectivity assessment and routing performance assessment,

respectively. Our tools rely only on the WSN nodes, without any external infrastructure.

Trident and Harpoon are useful to WSN researchers and practitioners, who may

use them towards any of the aforementioned goals. However, the tools are designed to

be easy to use also for domain experts who do not have a very deep knowledge about

the inner working of the WSN, and definitely do not take part in programming it. The

experiments can be configured easily without requiring coding, and the data collected with

straightforward procedures. Trident and Harpoon cover the entire workflow concerned

with the connectivity and protocol performance assessment experiments.

We originally developed Trident for the popular research-oriented platform consti-

17
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tuted by the TMote Sky motes running TinyOS. However, connectivity assessment is

relevant also to industry-oriented platforms, for which we chose Waspmote devices run-

ning the standard ZigBee stack as a representative. Interestingly, supporting the latter

platform is not simply a matter of porting the code from the former; the fact that the

ZigBee stack is “closed”, unlike the TinyOS one, forced us to find ways to reliably mea-

sure the main metric of PDR, which cannot be derived directly otherwise. Harpoon was

originally supporting only CTP and later incorporating ORW , one of its opportunistic

approach competitors.

The chapter is organized as follows. In Section 3.1 we outline the key requirements

for both tools established by ourselves in designing them. Then, in Section 3.2 and in

Section 3.3, we describe their design and the execution of experiments. Finally, we provide

an overview of each toolset.

3.1 Requirements

In this section, we describe the requirements we set for both our tools. The following

define distinctive traits and the scope of our work.

3.1.1 Type of Data Collected

Metrics. We want to support in-field collection of several metrics typically used to

perform connectivity and routing performance assessment.

Trident provides as the key metric the Packet Delivery Rate (PDR), i.e., the ratio of

packets received over those sent. PDR provides a direct assessment of the ability of a link

to reliably communicate packets. A number of metrics are extracted directly from the

radio chip: Received Signal Strength (RSSI ), Link Quality Indicator (LQI ), and RSSI

noise floor, sampled after sending or receiving a packet. These metrics provide insights

about physical layer parameters influencing PDR, and their correlation with it. Moreover,

noise floor is useful to indirectly determine the presence of interference.

Harpoon provides as key metrics: the delivery rate, i.e., the number of messages

received by the sink/root node over the total number of messages generated by the source

nodes, and the duty-cycle, i.e., the portion of time spent with the radio chip turned on.

The delivery rate provides a direct assessment of the reliability of communication. The

duty-cycle is a proxy for the energy consumed because the radio chip consumes far more

power than the other hardware components. If the protocol under tests allows, we acquire

additional parameters to assess the effectiveness of specific mechanisms: the number of

duplicates dropped before reaching the routing layer, the number of duplicates received

at the routing layer, the number of failed link-layer acknowledgements at every node, the
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number of forwarded messages, the number of acknowledgements received, the number of

times the sending queue was full. These parameters can be recorded for each node in the

network.

Both tools support the acquisition of environmental parameters (e.g., temperature and

humidity) from on-board sensors. These are useful to determine how the environment

affects communication.

Aggregated vs. per-packet samples. The reason for which the connectivity or routing

assessment is performed determines the nature of data gathered. If a long-term obser-

vation is necessary, the amount of data recorded can rapidly become prohibitive for a

resource-constrained platform. Therefore, the tools should support the ability to store

only an aggregate of the metrics collected, computed over a well-defined sequence of

packet exchanges.

On the other hand, recording the individual metrics associated with each packet pro-

vides a fine-grained detail that is necessary in some cases, e.g., when the goal is to ascertain

the time-variant characteristics of links with the resolution necessary to inform the design

of network protocols or when the goal is to analyze snapshots of the logical topology

constructed by the routing protocols.

The choice between aggregated or per-packet samples should therefore be left to the

user, balancing the goals of the assessment against the storage limitations of the platform

at hand.

In Harpoon the aggregation is done either per-network or per-node. The former,

computed over all the nodes, may be a choice when the goal is to assess the overall

behavior of the protocol in the target environment, while, the latter, providing a fine-

grained detail is necessary when the goal is to ascertain the impact of each individual

node on the connectivity graph or the energy consumption of forwarding nodes.

Single packets vs. bursts. Another related dimension is the way the channel is

observed. Connectivity assessment is often performed by sending probe packets with an

inter-message interval (IMI) relatively high (e.g., seconds), representative of several WSN

applications. Nevertheless, some applications (e.g., recording data from accelerometers)

require the transmission of bursts of packets. Moreover, a well-known property of wireless

channel is that the transmission of packets sent with a small-enough IMI [69] is more

reliable. The tool should allow the user to choose whether to use single packets or bursts

of packet probes. Trident supports both single packets and bursts while Harpoon only

single packets.
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3.1.2 Type of Experiments Supported

Interactive vs. batch. Connectivity and routing assessment may be needed for reasons

yielding different requirements as described in Section 3.1.

If the ultimate goal is to support a WSN deployment by helping determine a node

placement enabling communication, this is often achieved by performing tests of short

duration (e.g., few minutes). These are useful to quickly evidence which nodes experience

low PDR values or if there are any network partitions; this information is used by the

operator to relocate nodes and reassess connectivity with another short test. To effectively

support this process, the tool must provide a way to quickly represent the PDR associated

with the WSN links.

On the other hand, connectivity and routing assessment is performed also to char-

acterize the target environment. This requires long-term observations (e.g., days); the

continuous presence of an operator would be impractical. The tool must provide the op-

tion to run automatically a battery of tests, including different settings, defined by the

operator but executed without her involvement.

In our experience, the two methods of operation are often used in conjunction. Indeed,

before starting a long-term batch experiment, a short-term interactive one is performed,

to make sure that all nodes are functioning properly, and that the baseline connectivity

is appropriate to the purpose of the experiment.

Mobile nodes. Mobile WSN applications, e.g., involving nodes placed on humans, an-

imals, robots or vehicles, are becoming increasingly popular. Therefore, the tool should

support experiments where some of the nodes are mobile, to assess the connectivity be-

tween these and the fixed nodes. An interesting possibility, partially explored in one of

our group previously work [19], is to use mobile nodes as a way to perform a prelimi-

nary exploration of the deployment area. As the mobile node moves across the field and

exchanges messages with fixed nodes, it samples the connectivity of a high number of

locations, cumbersome to explore individually only with fixed nodes.

3.1.3 Support to Operators

In-field, wireless interaction with the nodes. In-field operators must interact with

the nodes for various purposes. The primary reason is to retrieve the results of experi-

ments, stored on the nodes taking part in them. Another key operation is the re-tasking

of the nodes with a new set of experiments. The operator may also need to interact

with the nodes for the sake of monitoring the correct execution of the experiment, e.g.,

to retrieve statistics about the experiments performed or the battery level. Other useful

operations are the ability to put selected nodes (or the entire WSN) in stand-by when
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they are not involved in an experiment, and wake them up later on. In principle, some

of these operations can be performed by directly accessing the node; for instance, data

can be downloaded via USB. However, while this operation is trivial in a lab, it becomes

cumbersome when nodes are deployed in-field in a harsh environments, e.g., outdoor in

winter, or in places that are not easily accessible. Therefore, all of the interactions with

the nodes should be performed over-the-air, by leveraging the wireless channel.

Data storage and processing. Connectivity and routing assessment experiments may

generate a huge quantity of data. Handling these as individual files becomes rapidly

impractical. Further, the raw data gathered often needs to be processed in an automated

way to simplify the interpretation. The tools should therefore integrate a database for

storing experimental data, enabling structured access and querying, and the definition of

stored procedures providing a layer of abstraction in data manipulation and interpretation.

3.1.4 Non-functional Requirements

No infrastructure. This is a defining non-functional requirement. In-field experiments

cannot afford the luxury of a secondary network: the experiment execution must rely only

on the WSN nodes under test.

No coding required. Our desire to support domain experts implies that using the tools

should not require writing not even a single line of code. The configuration of experiments

should occur entirely via the user interface; at most, domain experts must learn how to

flash motes with a pre-canned binary before going in-field.

Ease of use. The logistics of in-field experiments makes them effort-demanding and

time-consuming. The situation should not be exacerbated by a complex or cumbersome

interaction with the tools. Simple configuration files or a graphical user interface, pro-

viding intuitive support for all the phases of the experiments, is therefore an obvious

requirement.

Flexibility. The experiment settings, including number of nodes, their nature and role in

the experiment, power and channel settings, number of messages, inter-message interval,

number of test repetitions, etc., should be designed in a way that allows user to combine

them freely, to explore different portions of the parameter space.

Decoupling from hardware platform. The tools should work on standard nodes

without modifications of hardware. Nevertheless, as there are many WSN platforms

available, supporting a new one in the tool should be simplified by its software architecture,

by confining platform-specific details in well-identified components.

Decoupling from protocol. The tools should support an easy integration of a new rout-

ing protocol by confining protocol-specific instrumentation in well-defined components.
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Figure 3.1: Sample Trident experiment showing two rounds, staggered transmissions using

single-packet and burst probes, and per-round synchronization.

3.2 Trident

Trident is the expressly designed tool to simplify the chore of in-field connectivity

assessment. The tool inherits all the requirements described in Section 3.1.

Next we present the design of Trident. We begin with a description of the execution of

connectivity assessment experiments, then provide an overview of the Trident toolset.

3.2.1 Experiments Execution

Definitions. An entire Trident experimental campaign is defined as a sequence of

rounds, as shown in Figure 3.1. Each round has its own configuration parameters, detailed

next, including whether it used single-packet probes or burst probes, i.e., multiple packets

transmitted in rapid sequence. The time between the beginning of two consecutive probes

from the same node is the inter-probe interval (IPI). For burst probes, we also define the

inter-message interval (IMI) as the time between two messages belonging to the same

burst. Both IPI and IMI are configurable on a per-round basis.

Probing the links. Connectivity is assessed by probing the communication links with

packet transmissions and evaluating the received packets and their properties. Therefore,

Trident experiments must define precisely when each node transmits and listens.

All nodes behave the same: transmit a probe, pause for the IPI duration, repeate this

process a configurable number of times. In between transmissions, nodes can be configured

to listen for packets from other nodes. Trident does not duty-cycle the radio during

the experiments, ensuring that no packets are lost due to the radio state. Moreover, to

avoid collisions among simultaneously transmitted packets, which can confound the link

evaluations, Trident ensures that only one sender transmits at any given time.
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This is achieved by having nodes begin their probe sequence in a staggered way based

on their node identifiers. Specifically, the transmit time for the i-th probe of node n is

defined as

tn,i = tstart + nTIPI + iNTIPI

where tstart is the start time of the round, TIPI is the value of the IPI, n is the node

identifier, and N is the overall number of nodes. n and N are setup statically during the

experiment design phase.

Staggering transmissions by assigning each nodes its transmit slot, requires the nodes

to be time-synchronized. In Trident this is achieved at the beginning of each round,

as shown in Figure 3.1. This synchronization allows the system to compensate for clock

drift during a long running experimental campaign.

Master node. Time synchronization is initiated by a special node, called the master.

The latter acts in general as a coordinator towards the rest of the WSN nodes, as well

as the “access point”, enabling the operator to change the configuration of experiments.

The master has the same binary code of the other nodes; its special role is determined by

its identifier, n = 0.

The parameters describing the round configuration are also disseminated by the mas-

ter node during synchronization at the beginning of each round. The option to change

parameters in each round allows the interleaving of rounds with different power levels, or

interleaving single-packet and bursty rounds, as shown in Figure 3.1.

This choice has multiple consequences. First, only the master node is aware of the

experimental campaign, and therefore is the only one affected by changes to the latter.

As the master can receive an entire experimental campaign configuration over-the-air,

physical access to nodes is not required to change or initiate a campaign. Second, prior to

starting a long-running campaign, the operators can interactively run a number of small

experiments, each time uploading the round description to the master, instructing the

master to initiate the round, then collecting the results. After analysis, another short

experiment can be carried out, or the long-running experiment can be initiated. This is

all possible because the nodes are experiment-agnostic and the master can be controlled

over-the-air.

Per-round configuration parameters. Table 3.1 shows the per-round configuration

parameters available in Trident, communicated by the master before starting a round.

We already mentioned some of them, e.g., the overall number of nodes, the role (sender

or listener), the type of probe, the values of IPI and IMI. Additional parameters include

the radio channel, transmission power, overall number of probes transmitted per node,

and number of packets per burst. The logging method must also be defined, choosing

between storing information about every packet, or only the average over the entire round,
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Table 3.1: Trident per-round configuration parameters.

Parameter

# number of nodes (N)

list of senders

list of listeners

transmit power

probing channel

control channel

# number of probes per sender

single-packet probe

inter-probe interval (IPI)

inter-message interval (IMI)

aggregate logging

number of repetitions

based on the needs of the experiment and the available storage. Finally, rounds and/or

entire experiments can be repeated a configurable number of times, to increase statistical

relevance.

As for metrics, not shown in the table, PDR, RSSI , and (if available) LQI are collected

by default. If the platform allows, sender and receiver can acquire per-packet environmen-

tal conditions such as noise floor, temperature, and humidity. These values are recorded

according to the per-round logging policy.

Interacting with the nodes under experiment. Changing the per-round configura-

tion parameters is not the only option to interact in-field with nodes. Table 3.2 describes

the commands available to the operator. As already mentioned, the operator can upload

the description of an entire campaign configuration on the master, which then uses it to

orchestrate the various rounds with the appropriate per-round configuration. However,

the operator can also start and stop the execution of the experiment; these commands

are propagated network-wide, with a mechanism similar to the one used to mark the

start of a single round. Alternatively, the master node can be used to start and stop the

experiments, e.g., using the on-board user button.

The master node can instruct all nodes to automatically enter a sleep state upon the

end of an entire experimental campaign, allowing them to save their remaining battery

power. In TinyOS, nodes in this state use the default low-power listening (LPL) MAC

with a long sleep interval, currently set to 1 s. By duty-cycling the radio, nodes save

battery power, but can be woken up later, e.g., to initiate over-the-air data download
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Table 3.2: In-field commands.

Command Target Description

upload master load a campaign configuration

start network start the execution of an experiment

stop network stop the execution of an experiment

poll 1-hop query battery level

sleep 1-hop place nodes in low-power listening

wake-up 1-hop remove nodes from low-power listening

download(n) node download logs from selected node

erase(n) node erase flash of selected node

sniff operator toggle packet sniffing

or to start a new experimental campaign. Alternately, the operator can also put to (or

wake-up from) sleep a subset of the nodes, and query for their battery level.

Other commands enable the operator to download the experiment logs from a selected

node, and to erase its flash memory after successful data transfer is verified. Finally,

passive packet sniffing can be activated on the node managed by the operator, enabling

the latter to ascertain whether all nodes properly started the experiment.

3.2.2 Toolset Overview

Figure 3.2 depicts the main structure of Trident. WSN nodes, the subject of the exper-

iment, are programmed with a platform-specific mote-level runtime that is experiment-

agnostic; its behavior is established by the operator without requiring any coding.

This configuration is performed through the GUI of a dedicated component, the exper-

iment planner, which resides on the operator’s laptop. The experiment planner essentially

enables the operator to quickly and easily define the various details of the experiment, by

properly setting the values for the parameters in Table 3.1. This step does not need to be

performed in-field, as the planner enables only the definition and storage of experiments.

The actual upload of experiments to the master, and from there to the rest of the

in-field
assistant

WSN

database 

experiment
planner

operator's laptop
configuration commands

reports scripts

data

Figure 3.2: The Trident toolset.
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WSN, is instead supported by the in-field assistant, which also enables the execution of

the other commands in Table 3.2. Communication with the WSN is enabled by a mote

acting as a gateway, connected to the USB port of the operator’s laptop.

The in-field assistant provides also a simple visualization of the connectivity map built

from available collected traces. An example is shown in Figure 3.3, visualizing the quality

of the inbound links for node 0 according to a intuitive green/yellow/red color-coding,

whose semantics in terms of PDR is configurable.

This feature is particularly useful when Trident is used for a short-term assessment,

as it quickly informs the operator about areas with connectivity problems, whose nodes

can then be re-arranged. A similar visualization is provided also for mobile nodes; once

the in-field assistant is fed with a sequence of locations, it can ”replay” the maps, showing

to the operator how connectivity evolved due to mobility.

Finally, the database and associated plotting scripts simplify the storage of the col-

lected data and its offline analysis. The database contains generic and customizable

stored procedures for data manipulation. The set of pre-canned scripts allows the user

to quickly plot trends derived from data collected, e.g., currently including network-wide

PDR, spatial and temporal variations of the metrics, correlation of PDR with RSSI and

LQI .

3.2.3 Platform-specific Details

Trident currently supports two hardware platforms: TMote Sky and Waspmote. The

former directly integrates the CC2420 radio chip, while the latter relies on an exten-

sion module for radio communications, in our case the XBee S2 integrating the ZigBee-

Figure 3.3: The “results view” of the Trident in-field assistant, showing one-hop inbound

connectivity and PDR for node 0.
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compliant EM250 system-on-chip. Both transceivers implement the 2.4 GHz IEEE 802.15.4

physical layer.

The software architecture of Trident confines the differences mostly in the platform-

specific runtime installed on motes, although a few changes are needed also to parts of

the in-field assistant handling communication with the WSN and parsing the logs for

visualization. We refer to these platform-specific portions of the software as the backend,

and summarize the differences in Table 3.3. The Waspmote variant provides less features

than the TMote Sky counterpart, as TinyOS allows low-level access to the radio chip

while Waspmote provides only the high-level interface of the ZigBee application support

sublayer (APS). These trade-offs are discussed in the rest of the section, along with other

implementation details.

Available metrics. The two platforms provide different metrics. TinyOS records RSSI

and LQI for each received message, while the XBee radio module reports only RSSI .

Moreover, unlike ZigBee, the low-level API available to TinyOS applications allows re-

questing RSSI when the channel is idle to measure the noise floor.

The temperature and humidity sensor of TMote Sky provides important information

for our studies of the environmental effects on connectivity. In principle, the same holds

for Waspmote, given the wide range of sensors available for this platform. However, we

have not yet implemented support for them in Trident, although this does not pose any

particular technical problem.

Experiment execution. On both platforms the experiment configuration is installed in

the non-volatile storage of the master node. The TMote Sky backend supports uploading

the configuration wirelessly or via USB, and stores it in a dedicated flash partition, while

the Waspmote backend relies on a configuration file on the SD card.

Table 3.3: Platform support in Trident.

hardware TMote Sky Waspmote + XBee

software TinyOS Arduino

PHY layer 802.15.4 (2.4 GHz) 802.15.4 (2.4 GHz)

radio chip CC2420 EM250

TX power −25 . . . 0 dBm −8 . . . 2 dBm

metrics RSSI, LQI, noise RSSI

burst probes yes no

storage flash chip, 1 MB microSD, 2 GB

aggregate logging per round, on motes on operator’s laptop

sensors temperature, humidity —
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As described in Section 3.2.1, the network is time-synchronized at the beginning of each

round to avoid collisions among probes. The backends implement different techniques.

In the case of TMote Sky, dissemination relies on a TDMA scheme where each node has

its own time slots to repropagate commands, in a way similar to the mechanism outlined

for probe transmission in Section 3.2.1. The common time reference needed for both the

TDMA dissemination phase and to calculate tstart is established with TinyOS packet-level

time synchronization service [50], yielding sub-millisecond precision.

As ZigBee does not provide such a synchronization service, we rely on the standard

multi-hop broadcast feature, basically a network flooding. However, based on the Zig-

Bee Pro feature set [89], broadcast packets are always sent 3 times in a row, increasing

reliability at the expense of energy consumption. These broadcast packets are separated

by a 500 ms interval plus a random delay between 0 and 40 ms. Therefore, in the worst

case where the start synchronization message is received only upon third attempt, the

time synchronization error goes slightly above 1 s per hop.

To secure a collision-free transmission schedule the IPI should be set long enough

to compensate for these synchronization errors and also for the time drift of the nodes.

On TMote Sky the synchronization error is negligible; the typical time drift of 100 ppm

results in two nodes drifting apart by 36 ms in half an hour. Therefore the use of 250 ms

time slots during 30-minute rounds can be considered safe, counting also the time needed

for internal processing of the received packets. Instead, on Waspmote the second-per-hop

error should be compensated; we achieve this by using 3 s time slots.

Moreover, transmission of probes as one-hop broadcast requires an additional second,

again due to the triple transmission performed by the ZigBee network layer. Therefore, it

is impossible to send bursts of packets with Waspmote; on TMote Sky, bursts are instead

supported with a configurable IMI, set to 20 ms by default.

Another implication of ZigBee compliance is that nodes must join the wireless PAN

(personal area network) before sending application data. A multi-hop ZigBee network is

built around its coordinator with the standard join procedure, including channel scanning

and handshaking, one hop at a time. This process requires up to minutes, depending on

the network diameter. In case the channel is changed in between rounds, this affects the

minimum interval between them, as the network topology must be rebuilt from scratch.

Determining the link-level PDR. In principle, the value of PDR can be obtained

straightforwardly, since the number of transmitted and received packets is known for each

link. However, Waspmote introduce additional complexity due to the triple transmission

of broadcast packets mandated by the ZigBee network layer. As shown in Figure 3.4,

since duplicates are automatically filtered at the receiver, the link-level PDR cannot be

determined by simply counting the delivered packets at the application layer. Consider
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Figure 3.4: ZigBee transmits each broadcast packet three times.

two hypothetical experiment runs, one where each probe sent is always received upon

first attempt, and one where it is received always upon the third attempt. The link-level

PDR would be a meager 33% in the second case, yet the application-level PDR (the only

directly measurable) would be 100% in both cases, providing a false representation of the

quality of the wireless link.

Nevertheless, we can infer the number of failed attempts by looking at the packet ar-

rival time, based on the fact that the three broadcast transmissions in ZigBee are spaced

relatively far apart (500 ms). It is therefore possible to determine, upon receiving a broad-

cast packet, whether this was the first, second, or third transmission. We confirmed this

experimentally: Figure 3.5 shows the distribution of the packet arrival interval (modulo

the nominal IPI) measured at the application level for an intermediate-quality link. For

a perfect link, all packets would be received with the same IPI, 15 s in this case; however,

this is not the case when packets are lost. Consider an application-level packet i, received

on first attempt. If the previous packet, i − 1, was received only on second or third at-

tempt, the IPI between the two packets is smaller than 15 s. A similar reasoning holds in

case the next packet i+ 1 is not received upon first attempt, yielding an IPI greater than

15 s. Clearly, the histograms to the left and right of the central one in Figure 3.5 can be

generated also by intermediate combinations, e.g., if i is received upon second attempt

and i+ 1 upon third, the IPI will be around 14.5 s.

Packet loss can be inferred by comparing the application-level packet arrival times-
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Figure 3.5: Distribution of packet arrival time.
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tamps (e.g., R1 and R2 in Figure 3.4), provided there is at least one packet in the received

sequence known to have arrived upon first attempt. This can be stated certainly when at

least one pair of packets (not necessarily consecutive) has either the minimum or maximum

possible recorded arrival interval (modulo the IPI), i.e., placed leftmost or rightmost on

the histogram of Figure 3.5. Indeed, this means that the one of the packets was delivered

on first attempt and the other on last, as in the case of R1 and R2.

In principle, it may happen that no such IPI is recorded during the whole test. In

practice, this is unlikely to happen for intermediate-quality links. However, one can still

infer the characteristics of the link based on the application-level PDR. If the latter is very

good, one can assume that the majority of the packets were received on the first attempt

and base the analysis on this fact. For very bad links, it may be impossible to measure the

actual PDR precisely when there are just few packets received from the whole sequence.

Storing the experiment data. Due to the storage limitations of TMote Sky, per-probe

logging can be replaced by storing per-round averages of the recorded values, computed on

the nodes themselves. Waspmote does not have strict storage capacity limitation; full logs

are always stored and the log analysis performed on the operator’s laptop. However, we

plan to implement on-board log processing also on Waspmote, to reduce the downloading

time of large logs.

3.3 Harpoon

Harpoon is the expressly designed tool to simplify the chore of in-field routing perfor-

mance assessment. Currently, Harpoon supports two routing protocols: CTP (Collec-

tion Tree Protocol) [33], arguably the de-facto protocol for data collection applications,

and ORW (Opportunistic Routing Protocol) [41], a more recent opportunistic approach

and competitor. Harpoon collects common metrics and parameters for both protocols,

as specified in Section 3.1.1 and a set of protocol-specific ones. For CTP , we acquire the

parent in the tree at every node at the time of sending a message, along with the total

number of parent changes observed throughout the experiment. For ORW , we acquire

the first neighbor, the number of dummy messages and the number of neighbors for each

node.

Similarly to Trident, the tool supports interactive vs batch experiments and sup-

porting a new routing protocol in the tool is simplified by its software architecture. The

set of options to interact in-field with the nodes is much reduced in comparison with

Trident, changing the per-round configuration parameters and downloading the data

traces are the only options available to the operator.

Next we describe the design of Harpoon. First we give a description of the execution
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of routing experiments, then provide an overview of the Harpoon toolset.

3.3.1 Experiments Execution

As in Trident, an entire experimental campaign with Harpoon is defined as a set of

rounds, each with its own configuration parameters. Each round has its own configuration

parameters, detailed next. The time between two consecutive messages from the same

source node is the inter-probe interval (IPI).

Probing the network. Routing performance is assessed by having a set of nodes acting

as sources sending messages towards a sink node. We instrumented the routing protocols

implementation to provide our test application with the necessary hooks to gather the

statistics and parameters mentioned in Section 3.1.1. We embed this information withing

the application messages and report them to the sink. Unlike the connectivity assessment,

transmissions are not centrally scheduled, the generation of messages being randomly

scattered over time, as in most data collection applications [49]. During the experiment,

Harpoon duty cycles the radio of the source nodes. We adopt the CTP default setting

of having the sink node always on.

Sink node. The parameters describing the round configuration are disseminated by the

sink node at the beginning of each round. This node is the equivalent of the master

node from Trident. The sink receives an entire experimental campaign configuration

via USB connection from operator’s laptop and dissemination to the WSN nodes is done

using broadcast communication. This way, physical access to the nodes is not required

in order to change or initiate an experimental campaign. Not only that it acts like a

coordinator of the network, but the sink node also acts as an ”aggregator”, the data

traces being stored in its local memory.

Per-round configuration parameters. Table 3.4 shows the per-round configuration

parameters available in Harpoon, communicated by the sink before starting a round.

These are: the overall number of nodes (N), the transmission power and radio channel,

Table 3.4: Harpoon per-round configuration parameters.

Parameter

# of nodes (N)

transmission power

probing channel

inter-probe interval (IPI)

round duration (RD)

wake-up interval (WI)
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the inter-probe interval (IPI), the round duration (RD) and the wake-up interval (WI).

Rounds and/or entire experiments can be repeated a configurable number of times, to

increase the statistical relevance.

As for metrics, not shown in the table, delivery rate, duty-cycle and parameters men-

tioned in Section 3.1.1 are collected by default. If the hardware platform allows, source

nodes can acquire per-packet environmental conditions and battery level. These values

are recorded according to per-packet or per-node logging policy.

3.3.2 Toolset Overview

Figure 3.6 shows the main structure of Harpoon. WSN nodes, the subject of the exper-

iment, are programmed with Harpoon application, the main component of the toolset.

When compiled for the sink, a node whose role is determined by its identifier, n = 0,

it adds an extra behavior than for a normal node, to broadcast the round configuration

parameters and to store the messages received from the other nodes of the network. The

configuration is performed through a file in which the operator can quickly and easily

define the experiment, by properly setting the values for the parameters in Table 3.4.

This operation does not need to be performed in-field.

The actual upload of the experiment to the sink is done via a USB connection and

from there to the rest of the WSN nodes. The sink node is used to start and stop the

experiments using the on-board user button.
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Figure 3.6: The Harpoon toolset.
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TestManager is the component responsible for rounds management. At node level, the

component generates messages with a pre-defined application period, IPI, for the length

of the round duration. Moreover, the component is responsible for gathering routing

statistics, the duty cycle metric and environmental data from specialized components and

embedding them in specific fields of message to be forwarded to the routing layer. When

the round duration expires, TestManager stops and passes the flow back to Harpoon.

The RoutingInfo component collects metrics, common and specific parameters from

the routing protocols and provides an interface to Harpoon to retrieve these information.

As mentioned before, CTP and ORW are the two protocols supported by our tool. Thus,

we instrumented their implementation to provide Harpoon with the necessary hooks to

gather the metrics and parameters.

The duty-cycle is collected and computed using the DCEvaluator component. For

this, Harpoon reuses the duty cycle measurement component provided with the ORW

implementation [42]. Environmental conditions and battery voltage are collected using

the Sensors component.

Finally, a set of pre-canned scripts allows the user to quickly parse the logs and gen-

erate an output results file for offline analysis, which contains a summary of per-round

configuration parameters and the per-node and per-network collected metrics and statis-

tics. The set of plotting scripts allows the user to quickly plot trends derived from data

collected; e.g., currently including network delivery rate and average network duty-cycle

in time, individual nodes duty-cycle in time, network and individual nodes retransmissions

in time.

As a final note, it is worth noting that, to integrate ORW protocol into our tool, we

solved two of its major bugs. First, we had to patch ORW to accept broadcast messages

and therefore to accept the configuration message to ensure the same starting procedure

for all tested protocols. Second, an ORW node stops sending data after 255 packets have

been sent if the receiver and sender are only one-hop away. Therefore, we had to patch

ORW in order to support experiments with nodes sending more than 255 packets.

3.4 Summary

In this chapter we presented Trident and Harpoon, tools that enable principled, re-

peatable, automated and flexible connectivity and routing protocol performance measure-

ments, among low-power wireless devices immersed in real-world environments. Unlike

similar tools in the literature, Trident and Harpoon do not require any communication

infrastructure besides the WSN nodes. Moreover, they are designed to be easy to use for

domain experts, which can perform their experiments without coding. Our tools support
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several configuration parameters and metrics, enabling the investigation of many aspects

of low-power wireless communication and routing protocols.

During the years we continuously modify our tools based on lessons we learn from in-

field experience in our deployments and experimental campaigns. Trident has already

been used in-field by domain experts (e.g., biologists) without technical knowledge about

WSNs in the Ecuador forest [19].

The experimental campaigns we describe in the next chapter were all performed using

Trident and Harpoon.



Chapter 4

Understanding: Data Traces

What if Christmas, does not come from a store?

What if Christmas...perhaps...means a little bit more.

Dr. Seuss, How the Grinch Stole Christmas!

The performance of a WSN deployment is obviously directly affected by the quality

of the links enabling communication among nodes. In the case of commonly-used IEEE

802.15.4 radios, the link quality is in turn easily affected by a variety of environmental

factors, which cause variations over time and space. This is a well-known fact that has

been studied extensively in the context of protocol design for WSNs. For instance, a

number of techniques exist for estimating the quality of links and determining their best

use in MAC and routing protocols [6, 26]. These techniques are themselves based on

the findings of studies that empirically determined key properties of low-power wireless

communication, as we show in Section 2.3.

The goal of supporting the efficient design of network protocols has led the research

community to focus primarily on the study of small-scale, short-term variations of the

individual links, as this is what matters for determining, say, forwarding decisions in

a routing protocol. Further, the need to analyze in detail these variations has led to

experimental setups constituted mostly by highly controlled lab settings. Nevertheless, the

few exceptions in the literature [13, 19, 24, 53, 78, 82] show that real-world environments

may yield quite different link properties.

In this dissertation, we take a different look at the problem of assessing link quality,

motivated by deployment and application issues rather than protocol design. Specifically:

1. we focus on the large-scale changes of the overall network, as induced by different

environmental conditions. Therefore, we characterize the aggregate constituted by

the entire network, rather than the individual links.

35
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2. we assess the above in vivo (i.e., in an actual real-world environment) in contrast to

the in vitro (i.e., in labs or controlled setups) experiences reported in the literature.

The original motivation for the work described here stems from the wildlife monitor-

ing application presented in Chapter 1. As already mentioned, to be useful to biologists,

the interactions recorded by our WSN must be correlated to the characteristics of the

environment. We were asking ourselves how do the various environmental factors affect

the quality of communication? A similar question recently surfaced for GPS-based track-

ing [16], where it has been shown that the environment significantly affects the precision

of GPS data, and post-processing is necessary to avoid biasing the scientific observations.

In our application, the answer to this question affects directly the reliability of sensing

interactions among animals. However, the answer is of more general interest, given the

many applications exploiting a WSN in an outdoor environment. In this context, knowl-

edge about the effect of the environment on communication provides insights about the

reliability and lifetime of the WSN.

This chapter reports about the experimental campaigns through which we investigated

these issues. Their design was informed by the biologists in our team, interested in

determining how low-power wireless links are affected by:

• Presence and density of vegetation: we selected habitat components of a heteroge-

neous landscape (e.g., mountain range of roe deer): two types of forest, beech (dense

vegetation, deciduous) and spruce (sparser vegetation, evergreen), as well as open

field.

• Seasonal variations: experiments in summer and winter.

• Daily variations: experiments span the 24 hours.

The above entail in-field experiments, notoriously effort-demanding and time-consuming.

Chapter 3 describes Trident and Harpoon, the tools we used in our in-field campaigns,

expressly designed to simplify the in-field assessment of connectivity and protocol perfor-

mance.

In a nutshell, our experiments investigate what happens if the same WSN is “im-

mersed” in different combinations of the above environmental factors. The experiment

execution is the same across the various test environments. We describe the details of our

experimental setup in Section 4.1.

The questions we answer are, for instance: What changes between operating a given

WSN in an open field vs. in a forest, during winter vs. summer, or during day vs. night?

Some qualitative answers can be derived from existing results, especially if one focuses

separately on the impact of each environmental parameter (e.g., foliage, temperature, hu-

midity, snow). Nevertheless, our aim in this chapter is to quantify the extent of changes,

based on the combined effect of the various parameters in different, real outdoor environ-
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ments. To this end, we rely on the metric of packet delivery rate (PDR), i.e., the ratio of

packets received on a link over those sent. However, we aggregate and analyze the PDR

in different ways and against several combinations of environmental factors to elicit our

findings. Nevertheless, we also consider the received signal strength (RSSI ) and the link

quality indicator (LQI ) as a number of approaches to evaluate the quality of network links

rely on these two physical layer parameters. These are reported in Section 4.2, where we

discuss the impact of the environment on the physical layer. In Section 4.3 we show how

this impact is mirrored at the routing layer, for two routing protocols, namely CTP and

ORW . Finally, in Section 4.4 we show how the impact is mirrored at the application

layer—the one directly relevant to the end users using our application.

4.1 Experimental Setup

4.1.1 Time and Location of Experiments

Findings reported in this chapter were gathered in six experimental campaigns, described

in Table 4.1. The first and second campaigns including only physical layer (phy) experi-

ments, were performed during the winter and late spring of 2011. A third, fourth and fifth

campaign was performed in the summer of 2012 and winter of 2013, to validate the find-

ings at phy in a different time period, and explore the impact on the routing (rtn) and

application (app) layer. The sixth campaign was performed during the summer of 2014,

to explore the impact of the environment on two different routing protocols, namely CTP

and ORW . As the weather environment conditions in late spring and summer campaigns

were very similar, hereafter we refer to both as “summer”, for simplicity.

The location of the experiments was chosen to be representative of the environment

where our target WSN application is going to be deployed, and to cover different con-

ditions of vegetation. All experimental sites are on Mount Bondone, near Trento, Italy.

Upon suggestion of the biologists on our team, we identified three locations in this area:

Table 4.1: Campaigns.

Nr. Season Time Environment Topology Layer

1 Winter February 21-March 27, 2011 open, spruce, beech cross phy

2 Summer May 24-May 31, 2011 open, spruce, beech cross phy

3 Summer July 11-August 4, 2012 open, spruce, beech cross extended app

4 Summer July 9-August 9, 2012 open, spruce grid phy, rtn

5 Winter March 1-April 18, 2013 open, spruce, beech grid phy, rtn

6 Summer August 15-September 18, 2014 open grid small rtn
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Figure 4.1: Experimental sites on Mount Bondone.

open is a wide meadow with essentially no trees, while spruce and beech are forests

characterized by the corresponding tree type. spruce is an evergreen forest with sparse

vegetation while beech is a deciduous forest with dense vegetation. Pictures from our

deployment sites, in winter and summer, are shown in Figure 4.1. Due to some logistical

issues, we performed the sixth campaign on an open field on a different site, in Pergine,

Italy.

4.1.2 Hardware Platform

TMote Sky [57] nodes, equipped with the ChipCon 2420 radio chip compliant with IEEE

802.15.4, and on-board omnidirectional antenna, were used for the phy and rtn exper-

iments. These are popular choices that allowed us to reuse experience from previous

uses of Trident in our studies [19] and to compare with experiments reported in the

literature. Instead, for the app experiments, the hardware used is custom-made for our

application, integrating a GPS unit and a GSM/GPRS modem [56]. However, at its

core is similar to TMote Sky, from which it differs in two respects. First, we use the TI

MSP430F2618 MCU instead of MSP430F1611. The former provides a larger program

memory (116 kB vs. 48 kB) and is better suited to our software architecture, which must

manage many hardware components and their complex application functionality. Second,

it uses a 2-Mbit FRAM (Ferromagnetic RAM) memory chip instead of the commonly used

Flash memory. FRAM consumes less power than Flash, and offers faster write access and

higher limits on write-erase cycles. As in TMote Sky nodes, our node supports low-power

wireless communication via a CC2420 transceiver and on-board inverted-F microstrip

antenna.

Across all campaigns, each node was placed in an IP65 water-proof box with a trans-

parent cover, containing the D-size Lithium batteries powering the node, as shown in

Figure 4.2(a).
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(a) Box with node. (b) Node in open. (c) Node in forest.

Figure 4.2: WSN nodes in the field.

4.1.3 Node Placement

The main topologies of our WSN deployments, shown in Figure 4.3, consist of 8 nodes

arranged in a cross and 16 nodes distributed in a grid. The cross, similar to [19],

represents a good trade-off between deployment effort and coverage of different link dis-

tances, in our case ranging from 7 m to 64 m. The grid yields a rich set of links at

distances varying from 10.2 m to 60 m, and since the grid contains twice the nodes of the

cross, as shown in Figure 4.4, it has more statistical relevance. It is worth noting that

since the cross was our initial choice, the analysis presented in Section 4.2 is done using

the cross and then we use the grid to confirm the trends.

In open, nodes were attached to 3-meter tall wooden poles, planted vertically in the

ground. In the two forests, nodes were lashed to trees. Boxes were latched onto the

poles and trunks of the trees with elastic ropes at 1.7 m from the ground, as depicted

in Figure 4.2(b) and Figure 4.2(c). We selected the three sites to have a similar terrain

inclination. Care was taken to ensure the same vertical mounting (i.e., the same antenna

orientation) for all nodes while placing them in the boxes.

(a) cross. (b) grid.

Figure 4.3: Network topologies for experiments.
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Figure 4.4: Distribution of link distances.

4.2 Physical Layer

The objective of the experiments described here is to understand if and how the envi-

ronmental conditions, both in terms of morphology (e.g., vegetation present) as well as

daily, seasonal and yearly variations, affect the low-power wireless links of a WSN, from

the standpoint of the physical layer. The experiments we report about were performed

during our first and second campaign using the cross topology. In Section 4.2.9, we

report about experiments performed one year later, during campaign four and five, with

a different topology, namely the grid.

4.2.1 Experiment Execution

The in-field assessment of connectivity is performed using Trident. Our experiment is

composed of 30 minute rounds, in which each node of the network sends 215 packets with

IPI equal to 8 s, at a rate of 1 packet/s. All nodes were configured both as listeners

and receivers. No MAC protocol was used, given our goal of characterizing physical

connectivity. Table 4.2 summarizes the per-round configuration parameters we used in

Trident for our cross campaigns.

Each node aggregated PDR, RSSI , LQI and noise floor values. Moreover, nodes

acquired temperature and humidity from the SensirionSHT11 [3] on-board sensors, so as

to accurately monitor the conditions experienced by the network. Rounds were executed

one after another without intervention for 2 days, after which they were stopped and

data traces downloaded from the flash memory of the nodes. Moreover, we interleaved

rounds at -1 dBm (power 27, hereafter “high power”) with rounds at -8 dBm (power 14,

hereafter “low power”). We used channel 18 in all cases. Overall, the results of 96 rounds

of 30 minutes were collected in each environment (i.e., open, spruce, beech), for each

season (i.e., winter, summer).
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Table 4.2: Values for per-round configuration parameters for phy experiments using the cross.

Parameter Value Parameter Value

# of nodes (N) 8 # of probes per sender 215

list of senders 0 . . . 7 single-packet probe yes

list of listeners 0 . . . 7 inter-probe interval 8 s

transmit power 27(−1 dBm), 14(−8 dBm) inter-message interval N/A

probing channel 18 aggregate logging yes

4.2.2 Network-wide Packet Delivery Rate

We begin our analysis with the roughest indicator of link quality, and yet the most in-

tuitive and directly informative: the packet delivery rate PDR (i.e., the ratio of packets

received over those sent) computed over the entire set of links. Despite its simplicity,

this provides an immediate and easy-to-compute macro-indicator telling us how the same

network behaves, once immersed in different environments.

Figure 4.5 shows the results of our experiments with the cross topology during the

first and second campaign. A few trends are clearly identifiable. First, the quality of

communication decreases as we progress from open to spruce to beech- i.e., as the

quantity of trees and foliage increases. The trend is more marked during the summer at

both powers: going from open to spruce, and from spruce to beech shows differences

in PDR of the order of 15-20%. Second, the seasonal variation (summer vs. winter) also

includes dramatic changes in link quality. These can be as high as 30%, as in the case of

spruce at high power, but in any case winter is always consistently worse. Third, the

two observations above, combined, yield an interesting outcome, namely, during winter

the differences in PDR between the two forests, spruce and beech, are negligible. As

we discuss later, this is not true for other parameters related to link quality. However,

through the macroscopic lens provided by the network-wide average PDR, it appears like
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Figure 4.5: Network-wide average PDR, for all combinations of site (open, spruce, beech),

season (summer vs. winter) and power (high vs. low).
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the combination of snow and vegetation yields the same effect regardless of the density

of the latter. In this respects, it should be pointed out that, although during winter the

foliage is not present in beech (deciduous) while it is in spruce (evergreen), the density

of trees and branches is still much higher in the former. Finally, all of the trends above

hold both for high and low power although, quite obviously, the PDR values are lower in

the latter case.

We dissect further the environment impact on the phy layer, with tools more sophis-

ticated than the average PDR.

4.2.3 Transitional Region

Several studies [29, 87, 69, 91] have classified low-power wireless links in three distinct

reception regions—connected, transitional, and disconnected—based on the distance of

the receiver from the sender and on the PDR. The connected region is the closest to

the sender: its links are of good quality, and often stable and symmetric. At the other

extreme, the disconnected region is the farthest from the sender: it does not contain

links practically usable for communication. The transitional region (also referred to as

“gray area”) is a mix of the two, and contains links that exhibit a high variance in packet

reception rate, as well as asymmetric links. Unfortunately, the transitional region often

spans a large fraction of the communication range. The beginning of the transitional

region and its span determine how challenging it is to ensure reliable communication in a

WSN deployment.

Figure 4.6 shows the transitional areas for open, spruce, and beech, in different sea-

sons and with different power settings, as described in Section 4.2.1. Several observations

can be made.

open provides the situation most favorable to communication. The transitional area

begins (i.e., the connected area ends) much farther than in the forest deployments, for

all combinations of seasons and power settings. The presence of vegetation appears to

impair communication, by reducing the span of the connected area, and increasing the

transitional one.

Seasonal variations are also evident. Indeed, the presence of snow on the ground and

on tree branches during winter has a detrimental effect to communication. In open, the

transitional area begins closer to the sender at both powers, although the phenomenon

is more marked when using low power. Similar considerations hold for the two forests,

although the impact on communication of seasonal variations is less dramatic w.r.t. the

one of vegetation. In comparison to open, however, the transitional area not only starts

earlier, but is also wider.

The two forests are similar in terms of beginning and span of the transitional region.
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Differences are more marked in summer, when the denser and broader leaves in beech

yield a smaller connected region, and a wider transitional one.
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(a) Summer, high power.
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(b) Winter, high power.
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(c) Summer, low power.
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(d) Winter, low power.

Figure 4.6: Transitional areas in open (left), spruce (center), and beech (right).
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4.2.4 Received Signal Strength Indicator and Link Quality Indicator

Even if PDR is considered the most direct metric for link quality, physical layer parame-

ters, like RSSI and LQI , are a direct measurement of the wireless channel quality when a

packet is received and therefore are used to compute receiver-side link quality estimators.

Thus, one should expect some level of correlation between physical information and link

quality.

To explore this we aggregated all the packet traces collected on the cross and plot

the average and standard deviation of PDR values with the same RSSI and LQI for each

environment, season, and power.

A simple visual inspection of Figure 4.7 shows that we can identify two thresholds:

below the lower threshold is the disconnected area, with PDR consistently low and less

than 10%, while above the higher threshold is the connected area, with the PDR consis-

tently high and above 90%. In between the two thresholds there is a gray area of many

different PDR, with no clear correlation with RSSI . Based on this, there are a couple of

observations we can make. Independent of the environment and season, the threshold for

receiving packets is approximately -93 dBm, which is very close to the sensitivity thresh-

old of the CC2420 radio, according to the data sheet. On the other hand, the higher

threshold, is dependent on the environment. One can see that for open, both in summer

and winter, this is within a 2 dBm range of -85 to -83 dBm while for spruce is within a

3 dBm range of -83 to -80 dBm and for beech is within a 6 dBm range of -83 to -77 dBm.

Moreover, the same behavior as in the case of PDR transitional region can be observed.

Thus, during winter the two forests look comparable having the same RSSI thresholds

for PDR to become stable and ≥ 90%, around -80 dBm. During summer the difference

between the two forests is more marked, the presence of leaves in beech has a detrimental

effect on the RSSI threshold for achieving a consistently high PDR, which goes as high as

-77 dBm, while in spruce is around the value of -80 dBm. One can see that the distance

between the two thresholds is wider as we progress from open to spruce and beech. In

open the PDR goes from 0% to 100% within 10 dBm while in the forests within 15 to

20 dBm.

Similar considerations hold for LQI vs. PDR. In Figure 4.8, one can easily see that

winter “flattens” the LQI -PDR curve. The presence of snow on the ground and on the

branches during winter increases the standard deviation. One can easily identify the

presence of two thresholds and see that the distance between the two increases as we

progress from open to spruce and beech. Moroever, in open the average standard

deviation of PDR is smaller than in the two forests, suggesting a better correlation of

LQI and PDR. From this perspective, the two forests look comparable during winter,

with beech having a higher variance than spruce.
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(a) Summer, high power.
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(b) Winter, high power.
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(c) Summer, low power.
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(d) Winter, low power.

Figure 4.7: RSSI vs. PDR in open (left), spruce (center), and beech (right).

4.2.5 Link Classification

Looking at the transitional area allows one to grasp quickly the extent of communication

range, but does not yield insights on the fraction of links characterized by a given quality.

We provide this “view” in two ways. The first is to compute the cumulative distribution
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(a) Summer, high power.
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(b) Winter, high power.
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(c) Summer, low power.
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(d) Winter, low power.

Figure 4.8: LQI vs. PDR in open (left), spruce (center), and beech (right).

function (CDF) of the links w.r.t. their PDR, as shown in Figure 4.10. The other is to

adopt the classification used in [69]. Figure 4.9 shows five classes defined based on the

PDR values: dead (PDR = 0%), poor (PDR < 10%), intermediate (10% ≤ PDR ≤ 90%),

good (90% < PDR < 100%) or perfect (PDR = 100%).

Figure 4.10 shows clearly the relative performance of the three environments. As we
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DEAD POOR INTERMEDIATE GOOD PERFECT

0% 10% 90% 100%Packet Delivery Ratio

Figure 4.9: Link classification.

progress from open, to spruce, and finally to beech, the CDF “shifts” upwards, due to

an increasing fraction of bad (i.e., dead, poor, intermediate) links. This can be seen in

Figure 4.11, where especially the number of dead links increases noticeably as we go from
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Figure 4.10: Cumulative distribution function of PDR in open (left), spruce (center), and

beech (right).
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open to beech and, dually, the sum of good and perfect links decreases.

Figure 4.11(a) also shows that winter has a negative impact on open. During summer,

at high power, 83% of all links are good or perfect, but only 71% during winter. Further,

the number of perfect links drops abruptly from 48% to 25%. This is consistent with our

previous considerations about the transitional area “moving” closer to the sender during

winter. On the other hand, the impact is much less marked at low power, although the

number of dead links doubles.

Similar considerations hold for spruce, in Figure 4.11(b), although the sum of good

and perfect links is smaller than in open, as already mentioned. However, the sum of

intermediate, good, and perfect links accounts for 63% in winter and 82% in summer,

respectively 40% and 66% with low power.

In beech, shown in Figure 4.11(c), communication at high power in winter is better
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(c) beech.

Figure 4.11: Seasonal variations, at high power (left) and low power (right).
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than in summer, with 44% links being good or perfect during winter compared to 28%

during summer, when more intermediate links are also present. The reason for this

behavior is the fact that, during winter, foliage is not present in beech, and therefore,

despite the presence of snow on the dense tree branches, communication is less impaired.

A similar trend, albeit less marked, is shown at low power, with many links moving from

good to perfect.

The difference between the two forests is less marked in winter: snow reduces the link

quality in both spruce and beech, but in the latter this fact is partially compensated

by the absence of foliage. On the other hand, beech is worse in the summer, due to the

presence of denser and broader leaves.

Now, let us turn our attention to Figure 4.7 and Figure 4.8, which plots RSSI and

LQI vs. PDR. During summer, in open field a link with an average RSSI above -

85 dBm can be safely considered a perfect link but links with an average RSSI between

-90 dBm and -85 dBm are hardly distinguishable between poor, intermediate and good.

More, LQI presents a saturation that makes it uncapable to distinguish between good and

perfect links. On the other hand, in comparison with the RSSI , LQI shows a smoother

decay that enables a better classification of poor, intermediate and good links. Hence,

the observations related to these figures confirm that the RSSI and LQI alone cannot

accurately classify the entire spectrum of link qualities independently but based on them

one can easily identify the range of intermediate links and this can be used as a crude

measure of the transitional region.

4.2.6 Day vs. Night

We now turn our attention to variations induced by the interleaving of night and day,

which affects environmental parameters such as temperature and humidity, which in turn

affect link quality. An example is provided by Figure 4.12, showing the PDR between
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Figure 4.12: An example of day vs. night variations: the PDR of link 2→ 6 and 6→ 2 in open,

during summer, at low power. The node distance is 39 m.
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node 2 and 6. The link is perfect at night, but its PDR drops significantly (as low as

40%, going from perfect to intermediate) during the day. To analyze in more detail this

phenomenon for the entire network, unlike Section 4.2.5 we focus only on the charts

showing link classification, due to the fact that these better highlight how links “move”

across classes when changing from day to night. Figure 4.13 shows the results of our

analysis.

In open, variations are very limited during summer, especially at high power. At low

power, instead, the number of good and perfect links is higher during the night (66% vs.

54%), as several links move from intermediate to good. During winter, at high power, a

significant fraction (10%) of links move from good to perfect when changing from day to

night. This trend is even more marked at low power; the number of perfect links doubles

and the intermediate links decrease.

In spruce, during summer the number of dead, poor, and intermediate links remains

basically unaltered, but perfect links increase by almost 15%. Similar trends are observed

at low power, although less dramatic. Interestingly, however, in this case some links

move from poor to dead, and others from intermediate to good and perfect. In a sense,

the transition from day to night has the effect of “polarizing” the network into dead and

perfect links, although overall the variations are somewhat limited. Similar considerations,

albeit with more marked variations, hold for winter at high power. At low power, instead,

the network is dominated by a significant fraction (60%) of dead links during both day

and night, although the shift towards perfect links can still be observed.

As for beech, the denser vegetation and broader foliage has the effect of “damping”

the daily variations, introducing different trends. During summer, at high power, there

is a polarization effect similar to spruce. However, while there is an evident (almost

20%) decrease in intermediate links, there is also a decrease in dead and perfect links.

The net effect is that it is the fraction of poor and good links that increases significantly,

instead of dead and perfect as in spruce. On the other hand, at low power the change

from day to night induces almost no variation, due to the thick foliage that “protects” the

links from environmental variations. During winter, thanks to the absence of foliage we

observe a polarization towards dead and perfect links as in spruce, although variations

are smaller. Finally, at low power the trends we observed in the other cases are reversed:

the number of intermediate links doubles, while perfect links are reduced by almost two

thirds. We conjecture that this is an effect of the dense branches with snow, creating

different “micro-ambients” for communication, although this aspect requires further, finer-

grained investigation.
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(a) open, summer.
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(b) open, winter.
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(c) spruce, summer.
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(d) spruce, winter.
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(e) beech, summer.
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Figure 4.13: Day vs. night variations, at high power (left) and low power (right).
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Table 4.3: Percentage of asymmetric links on cross

high power low power

site summer winter summer winter

open N/A N/A 9.61% 1.92%

spruce 3.84% N/A 5.76% N/A

beech N/A 1.92% 1.92% 1.92%

4.2.7 Link Asymmetry

We continue our analysis by concisely reporting about the presence of asymmetric links,

as these are known to complicate the design of network stacks for WSNs. We follow the

commonly accepted rule to consider a link between node i and j asymmetric if |PDRij −
PDRji| > 40% [69].

Table 4.3 shows the data from our experiments, where we observed a small number

of asymmetric links. These are of course more common at low power, but even in the

worst case (open, during summer, at low power) they account for less than 10% of the

overall number of bidirectional links. Also, during summer at low power, the number

of asymmetric links decreases when going through open, spruce, and beech: in other

words, it follows the opposite trend of the network-wide PDR, as discussed in Section 4.2.2.

The presence of asymmetric links is independent of the day/night variations we discussed

in Section 4.2.6. Given that there is no interference and the environment is relatively

uniform (i.e., the placement of nodes does not bear a big influence, as reported for instance

in [53]), we conjecture this trend may be ascribed to different noise floor at different nodes,

or to miscalibrated hardware, as suggested by some authors [91].

4.2.8 Link Transitions

We conclude our analysis by reporting about the dynamics of links in our environments as

the frequency of link quality changes can have serious adverse effects on existing routing

protocols, causing losses in the data or longer periods of disconnection while topology

adjust, as we further elaborate in Section 4.3. Moreover, this might inform about the

effort needed to accurately estimate the link quality and maintain the topology in different

environments. For this we look at the total number of link transitions between classes, as

we defined them in Section 4.2.5.

Table 4.4 shows the data from our experiments. The first important observation

is that the links are more stable in open, in the absence of vegetation, than in the

forests, independent of the season. The second observation is that summer creates more

transitions than winter in all environments, and their number increases as we progress

from open to spruce and beech with the presence of vegetation and the increase of its
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Table 4.4: Transitions on cross

high power low power

site summer winter summer winter

open 279 221 352 316

spruce 528 336 546 387

beech 594 345 647 412

density.

4.2.9 Confirming Observations at Physical Layer

In this section, we investigate whether the results at the phy layer obtained using a cross

topology during the first and second campaign, in 2011, hold in experiments performed

at a different time, 2013, and with a different setup, a grid topology.

Experimental setup. These experiments are part of our fourth and fifth campaign,

as in Table 4.1, and were performed during summer and winter. Due to some logistical

issues, during summer, we performed the tests only in open and spruce. The site for

beech and spruce was the same, while the one for open was different but with the same

characteristics as the one in Section 4.1, which meanwhile had become a private property.

We also used a different topology this time, namely the grid of 16 nodes from Fig-

ure 4.3(b). The nodes used are the same as in Section 4.1, in terms of hardware, packaging

and setup. The only difference was that, to maintain rounds of 30 minutes with an in-

creased number of nodes, we configured each node to transmit 115 packets per round.

This allowed us to verify that the trends observed in the previous experiments on cross

held also in the new experiments. Table 4.5 summarizes the per-round configuration pa-

rameters we used in Trident for our experiments. Each node aggregated PDR, RSSI ,

LQI and noise floor over the 30-minute round. Rounds were executed one after the other

without intervention for 2 days, after which they were stopped for one hour (at 9 AM)

to download the data from the flash and replace the batteries. A total of 330 30 minutes

experiments were run in each environment.

During the fourth and fifth campaign we used two sources of meteorological data be-

sides the information collected using the on-board sensors. First, a meteo station [71]

located 200 m from open which provides temperature, relative humidity and precipita-

tion measurements. Each of these values were sampled every 15 minutes. Second, two

LASCAR EL-USB-2+ [44] temperature, relative humidity data loggers with readings from

0 to 100%RH and -35 to +80◦C. Each of these values were sampled every 5 minutes. Thus,

the data loggers provide measurements with a higher temporal resolution than available
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Table 4.5: Values for per-round configuration parameters for phy experiments using the grid.

Parameter Value Parameter Value

# of nodes (N) 16 # of probes per sender 115

list of senders 0 . . . 15 single-packet probe yes

list of listeners 0 . . . 15 inter-probe interval 16 s

transmit power 27(−1 dBm), 14(−8 dBm) inter-message interval N/A

probing channel 18 aggregate logging yes

from the meteo station and since they are collocated with our WSNs, the measurements

accurately reflect the meteorological conditions experienced by the network.
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Network-wide Packet Delivery Rate. When we went back to the field, the first

question we wanted to answer was: To what extent the trends we observed in the previous

campaigns remained the same? The experiments we report about in this section were

performed one year later, with a different topology and, in the case of open, in a different

albeit similar site. We clearly hoped for close-enough results, but what we distilled from

the analysis of the experimental data went beyond our expectations.

Indeed, during summer, as Figure 4.14(a) shows, the difference in network-wide PDR,

for all the combinations of environments we tested, remains within 2–3%. During winter,

at high power the difference in network-wide PDR is within 10% in the forests and 12%

in the open, while at low power, it remains within 5–6% in the forest and 10.5% in the

open. As Figure 4.15(a) shows, the biggest difference in network wide PDR is in open,

more at low power, in the environment in which the links are more affected by night

and day variations. Two considerations are worth making. First, although the WSN

topologies we used are different (cross vs. grid), we chose the node distances in the

latter to approximate the ones in the former, as shown in Figure 4.4 from Section 4.1.3.

Second, and most important, the difference in network-wide PDR across the two sets of

experiments is so small that it suggests that, when one looks at the aggregate link quality

of the entire network, indeed the impact of the environment on a WSN deployment is

relatively stable, on a seasonal scale. Moreover, looking at the meteorological data from

the meteo station, we observed that in winter 2013, when we run the grid campaign it

did snow during the last 2.5 days out of the whole week we run the experiments while

during the previous winter campaign it snowed for an entire day during the experiments,

as it can be seen in Figure 4.16, which might impaired the communication.

In general, the WSN behavior in the one year apart campaigns is very similar. For

example, Figure 4.17 shows the PDR variation in the summer campaign, confirming over
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Figure 4.14: Network-wide average PDR in summer: comparison of the experiments in Sec-

tion 4.2.2 and 4.2.9, performed one year apart and with different topologies.
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Figure 4.15: Network-wide average PDR in winter: comparison of the experiments in Sec-

tion 4.2.2 and 4.2.9, performed one year apart and with different topologies.

the longer 7-day period the observations in Section 4.2.6, i.e., daily variations in open

affect the WSN only marginally at high power, but significantly at low power. Next we

focus our attention on comparing the results from winter campaigns as this is the season

in which we collected data traces from all three environments.

Link classification. Before analyzing into details each environment, it is worth making

some observations from looking at the fraction of links characterized by a given quality:

open is still better than spruce and beech at both powers and the two forests are still

comparable during winter after one year and using a grid topology.

Figure 4.18 shows the difference between the performance of the three environments
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Figure 4.16: Meteorological conditions: temperature and humidity (left) and precipitation

(right).
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on cross and grid winter campaigns. Looking at the link distribution in classes, one

can see that the difference in network-wide PDR between the two winter campaigns is not

due to the links jumping between extreme classes, but from one class to the adjacent one,

up or down. For example, when the network-wide PDR at high power in open increased

with 11% between the years is because the links became stronger moving from dead to

poor and from good to perfect.

In open, at high power, of all links 72.62% are good and perfect still less than during

summer grid 83.64% (trend confirmed) and very close to the 71% of winter cross. If we

look at the number of perfect and good links, we observe more good than perfect links,

with a difference between the two classes of 8% compared to the 11% difference computed

for the cross winter campaign. At low power, of all links, 49.45% are good and perfect,

less than during the grid summer (i.e., 57%), and their sum is higher than the total

number of dead and poor links.

In spruce, at both powers, the sum of good and perfect links is lower than in open

(i.e., 35% and 22%). Moreover, as in previous cross winter campaign, the number of

intermediate links is higher than in open, which confirms that as we move from one

environment to another we see more intermediate links. Looking at links distribution in

classes in both forests we see that they are still comparable in winter, due to the absence

of leaves in beech. Also, in beech, the sum of good and perfect links at high power is

48.33% and at low power is 25.71% with a difference of only 6.5% between the two winter

campaigns.

Dav vs. night. We now turn our attention to variations induced by night and day, and

investigate if our trends still hold, for the winter campaigns.

In open, at both powers, trends from the previous winter campaign are confirmed:

the number of intermediate links decreases during night and number of good and perfect

links increases. At high power, from day to night, the sum of good and perfect links
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Figure 4.17: Daily variations in open, at high and low power. The sudden drop to zero corre-

sponds to the 1-hour period in which, every two days, we downloaded the data from the flash

of the nodes, and replaced their batteries.
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(b) spruce.
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(c) beech.

Figure 4.18: Winter link classification, at high power (left) and low power (right).

increases by 8.75%, while at low power the number of perfect links increases by 1.7%.

This is also supported by the fact that the average PDR during nighttime is higher than

during daytime.

In spruce, at high power, during night, the number of dead links and the number of

good links increases, and the number of intermediate links decreases by 14%, the network

being polarized towards dead and good/perfect links. At low power, the shift of links is

also from intermediate towards dead or good/perfect.

In beech, at high power, during night, we see the same polarization effect as in the

spruce, towards dead and perfect and a decrease in the number of intermediate links

which we could not see during winter 2011 (when the number of intermediate links in-

creased during night). One explanation of this inversed trend can be that during winter

cross campaign, in beech it started snowing during the first night of the experiments
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(c) beech.

Figure 4.19: Day vs night variations, at high power (left) and low power (right).

which might have increased the number of the intermediate links. At low power, the net-

work is polarized towards poor and perfect but the variations are quite small in comparison

with the variations observed in winter cross campaign when the number of intermediate

links almost doubled and the number of perfect links reduced by almost two thirds.

Link asymmetry. As in our previous campaign, we observed a small number of asym-

metric links in contrast with some reported studies. They are more common at low power,

as can be seen in Table 4.6 but even in the worst case scenario of open low power, they ac-

count for less than 8% all number of bidirectional links and less than during summer (i.e.,

10%). Also, the number of asymmetric links decreases when going from open to forests,

following an opposite trend of the network-wide PDR and, as discussed in Section 4.2.7

the the presence of asymmetric links is independent of day/night variations.

Link transitions. As Table 4.7, the observations on links dynamics hold for the grid
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high power low power

site summer winter summer winter

open N/A 3.75% 10% 7.91%

spruce 3.57% 2.5% 7.14% 6.25%

beech N/A 2.91% N/A 6.66%

Table 4.6: Asymmetrics links on grid

high power low power

site summer winter summer winter

open 3134 2444 3864 2940

spruce 5428 3505 5980 4386

beech N/A 3664 N/A 4782

Table 4.7: Transitions on grid

campaigns. Thus, summer induces more link transitions than winter in all the environ-

ments and as we progress from open to the forests the number of transitions increases,

as the presence of the vegetation increases.

4.3 Routing Layer

In this section, we investigate whether the trends we discussed in Section 4.2 bear an

impact on the routing layer. To this end, we consider two routing protocols. The first

is the Collection Tree Protocol (CTP) [33], a representative of commonly employed tree-

based routing schemes. The second is the Opportunistic Routing Protocol (ORW ), a

more recent opportunistic routing approach.

At a high-level, the behavior of the CTP protocol is characterized by two core ele-

ments: a routing metric used by every node to select a parent node in the tree and a set

of reliability mechanisms to improve the fraction of messages correctly delivered to the

root of the tree. The version of CTP we used leverages the expected transmission count

(ETX) [23] as a basis for its routing metric. This metric is computed based on beacons

broadcasted by every node. In CTP , nodes select their parent in the tree by minimizing

the end-to-end ETX, i.e., the number of retransmissions required to deliver a message to

the root, possibly across multiple hops. Reliability is mainly achieved by using randomly-

scattered retransmissions and link-layer acknowledgements. In CTP , the latter is entirely

implemented in software, instead of using CC2420 hardware-level acknowledgements, to

retain better control of retransmission timeouts.

On the other hand, ORW uses a completely different approach to build routes to the

root. ORW uses the expected duty cycle (EDC) [41] as routing metric, which estimates

the expected duty cycle needed to reach the root. Compared to CTP , ORW aims at

reducing the duty cycle and not the number of retransmissions. In ORW , nodes which

want to transmit a packet will just send the packet, until any of the candidates wakes

up, with its own EDC and a predefined threshold for it for the next hop. Any node that

wakes up first and has a lower EDC value than the predefined EDC threshold, receives the

packet, acknowledges the receive and forwards the packet following the same procedure.
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Table 4.8: Per-round configuration parameters and their values for grid topology campaigns.

Parameter Value

number of nodes (N) 16

transmission power 27 (-1 dBm), 14 (-8 dBm)

probing channel 18

inter-probe interval (IPI) 30 s

round duration (RD) 30 minutes

wake-up interval(WI) default BoX-MAC

4.3.1 Periodic Data Collection with CTP

Findings reported in this section were gathered during the fourth and fifth experimental

campaign, as described in Table 4.1, Section 4.1.1, using Harpoon, our tool for rout-

ing performance assessment. Networks were deployed on the same sites as for the phy

experiments presented in Section 4.2.9.

4.3.1.1 Test Execution

We used the 16 nodes grid topology as in Section 4.2.9, as we wanted i) to have enough

nodes to build the topology from, and ii) to have a uniform node placement to avoid

biasing the tree construction. We first deployed it in spruce and beech, where node

placement was constrained by distances between trees, and then reproduced it in open

with the same distances. As we already mentioned, this yielded a rich set of links at

distances varying from 10.2 m to 63 m. The nodes are the same as in Section 4.1, in

terms of hardware, packaging, and setup.

We ran experiments using Harpoon on this topology. Nodes were configured with the

standard settings for CTP and BoX-MAC [52]. Nodes acted as sources sending messages

towards the sink (node 0) every 30 s. Unlike the phy tests, transmissions in Harpoon

are not centrally scheduled. We used a packet size of 105 B, including a 94 B payload,

representative of many WSN applications. As before, experiments were divided in 30-

minute rounds, performed by interleaving high power and low power settings. Table 4.8

summarizes the per-round configuration parameters we used in Harpoon during our

experiments. The collection tree was reset before each round, therefore, we ignore the

first few minutes of data to account for the tree building phase. A total of 330 30-

minutes experiments were run in each environment. Unfortunately, during summer, when

analyzing the data we discovered that a few nodes (2, 4, 6, 14) malfunctioned, and removed

them from the data set. During winter campaign all nodes were properly functioning.
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4.3.1.2 Impact of Environment on CTP

We looked at three metrics to assess the impact of environment-induced differences in

connectivity on the operation of CTP : 1. delivery rate, i.e., fraction of messages received

at the sink over those collectively sent by the sources; 2. number of CTP beacons sent;

3. number of tree parent changes occurred. The first metric measures the reliability

of communication, while the other two measure the overhead necessary to ensure such

reliability.

Figure 4.20 shows that during summer, the trends in delivery rate are very different

in open and spruce. The former remains stable at 100%, except during the central

day hours, where the delivery rate drops as low as 96% for low power. On the contrary,

in spruce the range of variation in delivery rate is less dramatic, with drops limited to

98.5%, even for low power. However, variations are much more frequent, and yield perfect

reliability only for very short periods and only at high power. We argue that this behavior

is induced by the environment. In open, the absence of vegetation yields better and more

stable links. Specifically, i) the link quality of the network in spruce is lower than in

open (Figure 4.14) and, ii) in spruce there are many bad links, while in open there are

a majority of good and perfect links (Figure 4.13(a) and 4.13(c)). On the other hand,

in spruce the negative effect induced by the vegetation is partially compensated by the

fact that the latter “protects” links from environmental changes. In other words, links

are worse on average, but subject to less abrupt variations.

Figure 4.21 shows instead the number of beacons as a function of time. Two obser-

vations can be made. First, this number is higher—almost double—for spruce than in

open. Second, the variation over time in the former appears to be somewhat regular and

independent of environmental variations (e.g., due to night and day), which are instead

more visible in open.

These observations can be explained with arguments similar to those for delivery rate.

Indeed, CTP must frequently update the link quality information in spruce simply

because links are more brittle; we verified this hypothesis in our data sets from phy

layer experiments on grid, where spruce experiences many changes across link classes

as shown in Table 4.7 of Section 4.2.9. This yields an increased energy expenditure for

the control traffic required to maintain essentially the same (good) level of reliability of

open. In the latter, links are more stable; therefore, less updates are required, triggered

to a greater degree by variations in the environment (e.g., day/night patterns).

These considerations are confirmed by looking at parent changes, shown in Figure 4.22

for high power only. Overall, the number of (average) parent changes we observed is

exactly double—48 in spruce vs. 24 in open, due to the more challenging environment.

However, nodes obviously experience different variations, due to the quality of their links.
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Figure 4.20: Delivery ratio for CTP in open (left) and spruce (right) during summer.
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Figure 4.21: CTP beacons in open and spruce, high (left) and low (right) power during

summer.
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Daily patterns are less relevant here because the overall number of changes is smaller than

in the case of beacons.

We ran the same experiments with Harpoon and CTP during winter. In order to

compare against the summer campaign, we use the data collected during 7 days and

do not take into consideration nodes 2,4,6,14 (which malfunctioned during the summer

campaign). We can only compare open and spruce as we did not run CTP experiments

in beech during summer.

Figure 4.23 shows the trends in delivery rate during winter. In open, at both powers,

the delivery rate drops during the hot hours of the day, to 97.77% at high power and

92.88% at low power. Compared with summer CTP campaign, the delivery rate is lower

now. This could be explained by the lower link quality in open winter although links are

a bit more stable, as shown in the transitions Table 4.7.

On the other hand, in spruce, the rate drops are less dramatic than in the open but

the delivery rate is still lower than during summer. In fact the PDR in spruce during

winter is lower than during summer and the links are exposed to less abrupt variations in

temperature and humidity than the ones in the open, with the exception of the 4th day

when it snowed during the experiments.

If we look at the number of beacons, see Figure 4.24, in open and spruce we observe

the same trend as during summer, there is a positive correlation of the number of beacons

with the day-night cycles in the open and in the forest the number of beacons is somewhat

independent of the day and night variation. Moreover, the number of beacons used by

the control traffic in the forest is higher than in the open, almost 1.4 times higher (an

explanation can be in the correlation with the number of transitions which is still higher

in the evergreen spruce than in the open field even during winter, as in Table 4.7).

If we compare the number of average parent changes in open and spruce two ob-

servations can be made: during winter the number is smaller than in summer in both

environments (24 in open summer compared to 18 in winter and 48 in spruce summer

compared to 31 in winter). Again, this can be explained with arguments similar to those

above. Indeed, during winter spruce has more stable links than during summer.

4.3.2 Periodic Data Collection with CTP and ORW

When we started our investigations, CTP was arguably the most used protocol for data

collection applications for the past ten years. Given that ORW is a more recent protocol,

it has not been used as widely as CTP and it has not been thoroughly investigated either

in outdoor real-world scenarios. Considering the current situation we asked ourselves:

i) how does the environment impact the operation of ORW , and ii) which data collection

protocol is better in terms of reliability and in terms of energy consumption of the network.
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Figure 4.23: Delivery ratio for CTP in open (left) and spruce (right) during winter.

 100

 300

 500

 700

12 00 12 00 12 00 12 00 12 00 12 00 12 00

Be
ac

on
s

Time

OPEN
SPRUCE  100

 300

 500

 700

12 00 12 00 12 00 12 00 12 00 12 00 12 00

Be
ac

on
s

Time

OPEN
SPRUCE

Figure 4.24: CTP beacons in open and spruce, high (left) and low (right) power during winter.

4.3.2.1 Test Execution

To answer the above questions we performed an in-field experimental comparison, im-

mersing two networks running Harpoon, with CTP and ORW , using the same setup

for both protocols. These experiments are part of our sixth campaign, as shown in the

campaigns Table 4.1. Due to the reduced number of TMote Sky nodes we had at the time

of the experiments, we needed to cut out the uppermost and the leftmost edges of the

grid from Figure 4.3(b) and thus used a grid small topology of 9 nodes, still yielding

a rich set of links with lengths from 13 to 55 m. Experiments were run in an open field,

on a different site, in Pergine, Italy, but having the same characteristics as the ones on



66 CHAPTER 4. UNDERSTANDING: DATA TRACES

Mount Bondone.

We configured Harpoon with the same per-round configuration parameters as in our

previous CTP campaigns, see Table 4.8, using 9 nodes and two different non-overlapping

channels for the protocols, i.e., channel 18 for CTP and 26 for ORW .

We focused on two key metrics to assess the impact of the environment on the two

protocols: reliability and energy consumption. Reliability is evaluated through the delivery

rate while the energy consumption through the average duty-cycle in the network. The

two are related, as the latter is a measure of the effort to maintain the reliability. Both

metrics are collected and computed using Harpoon.

For a fair comparison between the two protocols, we skip the first three minutes when

measuring duty-cycle, as CTP shows a high duty-cycle during this initial period due to

its link probing.

4.3.2.2 Confirming Observations on CTP

When we went back to the open field, the first question we wanted to answer was: To

what extent trends that we observed in the previous CTP campaigns remained the same?

The experiments we report about in this section were performed one year later, with a

sparser topology, and in a different albeit similar site.

Indeed, during summer, as Figure 4.25 shows, the difference in average delivery ratio,

remains within 3% at high power and 10% at low power. Two considerations are worth

making. First, the environmental conditions were different during the two summers, with

the one of sixth campaign on grid small being much more humid. Second, and most

important, although the WSN topologies we used were the same, a grid, their density was

different. Indeed, the grid of summer 2012 had 16 nodes and CTP might had benefit

from a greater density than grid small topology. As in the case of the physical layer,

the difference in the delivery ratio across the two sets of CTP experiments is so small, that

it suggests that, when one looks at the aggregate delivery ratio of the network, indeed the

impact of the environment on a WSN deployment is relatively stable, on a seasonal scale.

More, as in our previous experiments, CTP showed spikes of reduced reliability, going as

low as 80% at low power during the hottest hours of the day. These spikes grow to 72%

during the hours when the humidity exceeds 75%, as depicted in Figure 4.26.

4.3.2.3 Impact of Environment on CTP and ORW

Next, we compare the performance of CTP and ORW in our scenario using the grid small

topology. Table 4.9 summarizes our results in terms of reliability. With all settings, ORW

is more reliable than CTP , and maintains a reliability above 99.66% independent of the
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Figure 4.25: Delivery ratio for CTP on grid (4th campaign) and grid small (6th campaign).

power in contrast with CTP , which as the power decreases leads to a reliability of 85.58%.

On the other hand, this yields an increased energy expenditure for the ORW required

to maintain the almost perfect level of reliability. As depicted in Table 4.10, CTP and

ORW have different energy trade offs. The average duty-cycle of the two networks shows

that CTP is more energy efficient than ORW with an average of 4.5% in comparison with

6%, which is consistent with the literature [41, 30] when using the default settings for

BoX-MAC protocol. Table 4.11 shows that, on average, CTP produces twice the number

of retransmissions of ORW , accounting for between 1.92% to nearly 2.65% at low power,

while ORW retransmits on average 1.13%, independent of the power.

We now analyze the effect of the environment, with temperature and humidity vari-

ations as shown in Figure 4.28, on the performance of both protocols. To highlight the

impact of the temperature and humidity on our outdoor WSNs, we focus on a set of
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Figure 4.26: CTP and ORW delivery ratio on grid small.
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Table 4.9: Delivery rate statistics

Power Delivery rate

CTP ORW

avg std avg std

High power 96.52 0.29 99.95 0.01

Low power 85.58 0.17 99.66 0.03

Table 4.10: Duty cycle statistics

Power Duty-cycle

CTP ORW

avg std avg std

High power 4.45 0.03 5.85 0.02

Lowe power 4.65 0.04 5.78 0.02

experiments run during daytime, from 10:00AM to 5:30PM, on September 14, as during

nighttime, both protocols show a high reliability over 99.2%. On close inspection, in Fig-

ure 4.27, one can observe that during the hottest hours of the experiments, the reliability

of CTP decreases as low as 95%, in contrast with ORW which does not deliver under

99.63%. Our experiments bring further evidence that CTP has a decrease in reliability,

to 87%, when the humidity increases over 40%, during the 5PM experiment. On a closer

inspection the decrease in reliability can be explained by looking at the number of packets

lost and failed ACKs at the node level. Figure 4.29 clearly shows an increase of these two

with the increase of the temperature. Moreover, Figure 4.30 shows an inverse relationship

of the two parameters with the humidity.

In terms of duty-cycle, the behavior of the two protocols does not show relevant changes

between experiments with different powers. Figure 4.31 shows that ORW duty-cycle

is higher when compared to CTP , having a rather stable value around 6% with few

oscillations which we ascribe to node failures in the network. On the other hand, CTP

maintains a low and stable duty-cycle of 4.5% in the “comfort zone” of a high reliability

(over 95%) while, in the worst case scenario, when temperature and humidity affect the

links or the network gets partitioned, CTP increases the duty-cycle up to 6% as ORW .

Next, our results show, see Figure 4.32, that CTP exhibits a higher count of retrans-

missions than ORW , and the number of retransmissions is positively correlated with the

temperature. Additionally, ORW achieves the same count of retransmissions, 1.13 on

average, independent of the environmental conditions and the power of the experiments.

Table 4.11: Retransmissions count statistics

Power Retransmissions count

CTP ORW

avg std avg std

High power 1.92 0.02 1.13 0

Low power 2.65 0.04 1.13 0
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Figure 4.27: Delivery ratio for CTP and ORW .
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Figure 4.28: Environmental conditions during the experiments.

The low count of retransmissions can be explained by the mechanisms implemented in

ORW , when upon receiving a single ACK, the sender concludes that a single forwarder

has been selected and does not initiate further retransmissions. The outliers observed

during the CTP experiments can be explained by having nodes that lost the connectivity

and rejoined the network later plus the fact that the protocol uses a very aggressive policy,

retransmitting a packet up to 32 times, by default.

Finally, we report on the number of Layer 2 duplicates generated by the ORW network

and the impact of the node failures throughout the course of the experiments as our

results refute the ones reported by [41]. We report these numbers in two cases: wf

(with failures) and wof (without failures). Table 4.12 shows that for increased node
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failure rates, denoted by High power-wf and Low power-wf, in which the number of

possible forwarders is reduced, the number of duplicates is smaller than in the absence

of node failures. Moreover, the standard deviation shows that the number of duplicates
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Figure 4.29: CTP ACK fails and lost packets variations with temperature, at node 5 (left) and

node 6 (right).
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Figure 4.30: CTP ACK fails and lost packets variations with humidity, at node 5 (left) and

node 6 (right).
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Figure 4.31: Duty cycle of CTP and ORW .
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Figure 4.32: Retransmissions of CTP and ORW .

across all our experiments is stable around the average. For the high power experiments,

ORW generates almost 13000 duplicates which translates into 3 duplicates per packet on

each network node, while at low power, 2.5 duplicatesare generated per packet and the

reduction can be correlated with the reduction of the transmission range.
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Table 4.12: ORW L2 duplicates

Power Duplicates

min max avg std

High power-wf 7054 15232 11982 187

High power-wof 10648 15232 12862 79

Low power-wf 3698 12566 9228 139

Low power-wof 8441 12566 10621 63

4.4 Application Layer

In this section, we investigate whether the trends we discussed in Section 4.2 bear an

impact at the application layer. We consider our wildlife monitoring application that, as

mentioned in Chapter 1, motivated our study. Here nodes are animal-borne, and therefore

mobile.

The goal is to detect contacts among animals, viz. the mobile nodes they carry. Nodes

determine whether they are in proximity of others through periodic beaconing. Time is

discretized into epochs, of length 60 s in our case, which determine the temporal resolution

of contact detection. Each node sends a beacon at the epoch start and then listens for

beacons from other nodes. A contact begins at a node upon receiving the first beacon,

and ends when a beacon from the same node is not received within a given, user-defined

time interval. In our case, the latter is equal to the epoch length; missing a single beacon

causes the corresponding contact to be closed. We consider a contact detected when

recorded by at least one of the two nodes involved.

4.4.1 Test Execution

These tests were executed during our third campaign, as in Table 4.1. We deployed our

application in the same sites described in Section 4.2, with the exception of open which

is the same as in Section 4.3. In the experiments we describe here, we wanted to assess

the bias induced by the environment, therefore the application is run in a static topology,

without the bias and complexity induced by mobility. We used the same cross topology

described in Section 4.1.3, see Figure 4.3(a). However, in this case we “stretched” it to ob-

tain bigger distances, as this was required to test the application functionality, which was

our primary goal when performing the experiments. This resulted in a cross extended

topology with link distances up to 93 m, about 30% longer than in previous experiments.

The hardware we used is the one custom-made for our application, as described in
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Section 4.1.2. The tests were performed only with high power. As in Section 4.3, we

execute the real application: nodes are therefore not synchronized and collisions may

occur.

4.4.2 Impact of Environment on the Application Layer

Figure 4.33 shows, for each environment, the number of detected and missed contacts.

The chart is built by discretizing time into 1-minute intervals (i.e., the epoch duration).

We count, for each pair of nodes, whether in a given interval they are part of a contact

(detected) or not (missed). The chart confirms the overall trends we reported in previ-

ous sections. The percentage of missed contact is lowest in open and higher in the two

forests, with spruce better than beech. However, while the trend is the same (open

is better than spruce, which is better than beech), the performance difference between

environments is quite different w.r.t. the physical layer. In Figure 4.5(a), the PDR de-

crease in going from one environment to the other was 15-20%. Here, the difference in

missed contacts between open and spruce is about 10%, while the one between spruce

and beech is about 40%.

The reason is that the two experiments measure different things in different setups. In

Section 4.2 we analyzed the (aggregate) PDR, measuring directly packet transmission in

a controlled scenario where collisions are absent. Here, we look at application data (with

its own semantics, only partially related to packet transmission) in a much less controlled

scenario. As a concrete example: missing a single packet causes a very small difference in

the aggregate PDR, but it may determine a contact as closed in the application considered.

In other words, and similarly to what we already mentioned in Section 4.3 about our

data collection experiments, the observations about the physical layer in Section 4.2 in

general cannot not be directly translated in quantitative terms to the application layer.
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Figure 4.33: The effect of environment on contact detection.
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However, there is clearly a relationship between the two, and knowledge of the quantitative

tradeoffs in the former should inform design (if not prediction) of the latter, as we discuss

in the next chapter.

4.5 Summary

In this chapter we presented an experimental study on the impact of environmental factors

on outdoor WSN deployments. Motivated by a real-world application, we investigated,

during six campaigns, the difference emerging when “immersing” the same WSN in dif-

ferent environments, characterized by varying degrees of vegetation, as well as seasonal

and daily variations. We quantified the trends emerging at physical layer and show that:

(i) this influence is mirrored at the routing and application layer, (ii) the macro-trends

across environments allow to infer the relative trends in reliability, overhead and energy

consumption at the routing layer. Whilst there are other empirical studies showing that

the physical layer is affected by the environment, our study is the first that extends up

to the routing layer, which bears a more direct impact on the application performance,

and the application layer, the one directly relevant to the end user. To the best of our

knowledge, this represents the first empirical study that characterizes, from a quantitative

standpoint, the overall behavior of a WSN in different environments.

The observations we made in this chapter can directly inform deployment decisions,

and possibly application- or network-level strategies, from a qualitative point of view.

In the next chapter, we build on this analysis and exploit the set of data traces to

create models to better estimate the performance of a WSN in its target deployment

scenario.



Chapter 5

Estimating and Reproducing:

Models

Essentially, all models are wrong,

but some are useful.

George E. P. Box

Our experimental campaigns and data traces analysis in Chapter 4 show that the

link quality of a WSN depends on the characteristics of the surrounding environment.

In this chapter we build on this analysis and exploit the set of data traces to create

two models with distinct goals: (i) estimating the link quality at run-time, and (ii) for

reproducing realistic network conditions in simulators. First, in Section 5.1, based on

our empirical evidence that the environmental factors have a strong impact on the low-

power wireless links, we focus on two factors: temperature and humidity. We study the

impact of these two factors on the physical layer parameters in the open field environment

and then conduct a study on the impact of temperature and humidity on the RSSI and

PDR of TMote Sky and Waspmote platform in controlled settings. Then, we develop a

model describing the influence of temperature and humidity on the link quality that helps

estimating the link quality at run-time considering the particular temperature/humidity

profile of the target environment. Second, in Section 5.2, based on the observations that

the link quality distribution of WSN in link quality classes (i.e., dead, poor, intermediate,

good, perfect) follows a specific pattern in each of our studied environment, we capture the

pattern in a model. Then we train the model with our experimental traces and integrate

it in mainstream simulators. The model is key for efficiently reproducing realistic network

conditions for large-scale simulations of long-term behavior of protocols/applications by

accounting for the influence of the environment on the network beforehand.

75
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5.1 Estimating the Impact of Environmental Parameters

Our analysis in Section 4.2.6 shows variations induced by the interleaving of day and

night, which affect parameters such as temperature and humidity, which in turn affect link

quality. Our goal is to model and estimate the impact of these factors on the performance

of the WSNs. As in the forests is very difficult to separate the effects on link quality of

the environmental parameters factors (e.g., temperature and humidity) from the effects of

vegetation (e.g, tree trunks, foliage), we fix the environment to the open field. Since our

open field deployment sites are at a remote location in the mountains, our data traces

were collected in an interference-free environment. Here we measured the hardware-based

link quality metrics, namely RSSI , noise floor and LQI , and the PDR, during the phy

layer open field campaigns from Table 4.1, with a focus on correlations between link

measurements and temperature and humidity, for the TMote Sky platform.

One year later, we extended our study to a second hardware platform, namely Waspmote,

and analyzed the behavior of the two (i.e., TMote Sky and Waspmote) under the same

environmental conditions, albeit using a small-scale setup in an open field during winter.

As our outdoor experiments were performed on a relatively short range of temperature and

humidity, we conducted experiments with both platforms, in a sauna environment that

allowed us to test and control a wide range of temperature and humidity in a fine-grained

way.

During our outdoor experiments, apart from acquiring temperature and humidity from

on-board sensors reflecting the conditions directly experienced by the nodes in the box,

we used two other sources of meteorological data. First, a meteo station [71] located

200 m from open, which provides temperature, relative humidity and precipitation mea-

surements. Each of these values were sampled every 15 minutes. Second, two LAS-CAR

EL-USB-2+ [44] temperature, relative humidity and dew point data loggers with readings

from 0 to 100%RH and -35 to +80◦C. Each of these values are sampled every 5 minutes.

Thus, the data loggers provide measurements with higher temporal resolution than the

available meteo station, and since they are collocated with our sensor networks, the mea-

surements accurately reflect the meteorological conditions experienced by our networks.

5.1.1 Experimental Setup

Open field experiments with TMote Sky platform. Data traces were collected

during the first and second campaign during summer and winter using the 8 nodes cross

topology and during the fourth and fifth campaign using the 16 nodes grid topology.

The experimental setup is described in Section 4.1. The in-field collection was performed

using Trident, and the aggregates of the link metrics and environmental parameters
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over 30 minute rounds were collected during 2 days experiments on cross and 7 days on

grid. 250,314 data points were collected overall.

Open field experiments with different platforms. The data traces were gathered in

an experimental campaign performed during the winter (March 9 - March 11) of 2014. A

single link between two nodes communicating at 0 dBm and placed at 40 m apart in an

open field was observed for a 2-day period. The same setup was used for a link between

a pair of TMote Sky and Waspmote nodes. The two links were observed in exactly the

same conditions, by placing the two pairs of nodes side-by-side on different channels (i.e,

26 and 17). All nodes were configured using Trident, and experiments were divided in

30 minute rounds like in our previous campaigns. All the raw packets were collected, for

both platforms, along with the per-round statistics. Overall, the results of 96 rounds of

30 minute and 138,240 data points were collected.

Controlled experiments in sauna. Using a sauna environment and a setup with two

pairs of two TMote Sky and Waspmote nodes at 3 m apart communicating at 0 dBm,

we were able to study the impact of temperature on RSSI and noise floor in a very

fine-grained way. During the experiments, we exposed the link to four cycles. During

the first cycle, the environment was dry with a humidity of 32%RH, and with a constant

temperature of 24◦C. Then, during the second cycle, we slowly increased the temperature

in an almost linear fashion up to 55◦C, followed by a third cycle with an increase in

humidity to 70%RH. In the fourth cycle we tried to keep the temperature constant and

vary the humidity up and down with 5 to 15%RH. The collection of connectivity traces

was performed using Trident, and our experimental campaign was composed of four

60 minute rounds, corresponding to the four cycles described above, in which each node

sent 7200 packets at a data rate of 1 packet every 250 ms. Low power (-8 dBm) and

channel 26 and 17 were used. Each node collected all the packets and temperature and

humidity were sampled every minute. Overall, the results of 4 rounds of 60 minute were

collected, and a total of 288,000 data points were collected.

5.1.2 Observations

The objective of the experiments described above is to understand if and how the envi-

ronmental conditions, both in terms of temperature and humidity, affect the low-power

wireless links of a WSN, from the standpoint of the physical layer.

5.1.2.1 Impact of Temperature on Link Quality

RSSI and noise floor. We begin our analysis with one of the most common indicator

of link quality: RSSI . Figure 5.1 shows the results from our 7 days experiment on grid
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Figure 5.1: RSSI and temperature relation.

topology, for a link of 40 m, at power -1 dBm, during summer and winter, using the

same pair of nodes. For both seasons, it is clearly visible that the relationship between

RSSI and temperature can be approximated as a linear function, our observations being

in accordance with [18]. Using linear regression analysis we observe that all 240 links

of the grid topology follow the same linear trend over the entire experiments duration.

Table 5.1 shows the complete statistics (minimum, maximum, average and standard devi-

ation values) of the slopes for the linear RSSI -temperature function, for both seasons and

powers. Based on this, there are a couple of observations we can make. Independent of

the season and power, there is a negative correlation between the RSSI and temperature,

given the negative sign of the slope. Also, links at high power show smaller slopes than

the links at low power. This is intuitive as high power links also succeed to maintain

higher PDR values as shown in Section 4.2.2, having more energy to compensate for the

negative effect of temperature. Moreover, the decrease of the RSSI with temperature is

faster in summer than during winter, suggesting that during winter the link is “helped”

by other factors (i.e., humidity).

We now turn our attention to the traces collected in the open field during winter

for the two platforms, and investigate if the correlation between RSSI and temperature

holds across platforms. An example of how the RSSI of the two considered links vary over

time, and the corresponding temperature variation (computed as combined temperature

of sender and receiver as in [18]) inside the plastic boxes holding the motes, can be seen

Season Power min max avg stddev

Summer High power (-1 dBm) -0.062 -0.19 -0.124 0.038

Summer Low power (-8 dBm) -0.072 -0.23 -0.157 0.052

Winter High power (-1 dBm) -0.012 -0.17 -0.11 0.041

Winter Low power (-8 dBm) -0.03 -0.21 -0.13 0.043

Table 5.1: RSSI-temperature linear function slopes on grid.
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Figure 5.2: RSSI and PDR of TMote Sky and Waspmote links over a 2-day time period.

in Figure 5.2. This shows a degradation of 13 dBm in RSSI for the TMote Sky, see

Figure 5.2(a), for a temperature increase of 40◦C in the box (with a mere 11◦C increase

outside it). This is enough to turn a perfect link (PDR =100%) into a dead one (PDR

= 0%). On the other hand, Figure 5.2(b) shows that, for Waspmote, temperature is also

negatively correlated with RSSI , but to a much lesser extent w.r.t. TMote Sky, showing a

degradation of 2 dBm and allowing the PDR to remain at 100%. Although both platforms
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Figure 5.3: TMote Sky RSSI-temperature relation in sauna.

are based on radio chip compliant with IEEE 802.15.4, their behavior is very different.

These sharp differences reassert that case-by-case quantitative assessment and analysis

with support tools (e.g., Trident) is key.

Moreover, the trend observed in our open field deployments showing that the RSSI

decreases approximatively linear with the temperature holds for our controlled setup in

sauna. Figure 5.3 shows the relation between RSSI and temperature and the stddev

RSSI for each temperature point. A 30◦C temperature increase in the sauna caused a

12 dBm decrease in RSSI of Node0 and 14 dBm for Node1, respectively. Using linear

regression analysis we observed a steeper decrease of RSSI with the temperature than

in the outdoor open field, with a slope of -0.44. The data collected during the sauna

experiments allowed us to further investigate the importance of the temperature parameter

and how it correlates with the RSSI . To measure the correlation, we used Spearman’s rank

correlation [68], computed as a score between -1 and +1 where 0 indicates no correlation

at all. It measures how well two variables monotonically increase/decrease in relation to

one another. It does this by computing the linear dependence of the ranked variables

as opposed to the variables values themselves. Using Spearman’s rank correlation, we

computed a strong negative correlation between the two variables of -0.85, by taking into

consideration the RSSI values and the temperature measured at a fixed humidity value.

On the other hand, looking at the RSSI relation with the temperature for the Wasp-

mote platform, we observed a different behavior. Figure 5.4 shows clearly that there are

steps of 1 dBm in the relationship between RSSI and temperature that correspond, in

our environment, to an increase of 7◦C in temperature.

Our experiments in the outdoor open field and the sauna controlled setup have clearly

shown that: the RSSI decreases with an increase in the temperature; the decrease is not

consistent in the same environment across seasons; and that the decrease is not consistent

among the two platforms studied. Which again means that: in-field traces are needed
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and our Trident tool supports this step.

Also in the case of noise floor, higher temperature decrease the noise floor and the

relationship with the temperature is approximately linear. This effect was reported also

by [7, 18] and explained by Bannister [7] to be due to the losses in the signal ampli-

fier. Unlike for RSSI we observed similar slopes among different nodes, but with a less

pronounced decrease compared to RSSI . The average computed slope is -0.057 with a

standard deviation of 0.008.

LQI. Using the same methdology as for RSSI , we analyze the relation between LQI and

temperature.

Figure 5.5 and Figure 5.6 illustrate the impact of the temperature on LQI of the

same set of representative links from the grid topology, during summer and winter. The

LQI decreases with the increase in the temperature for both seasons, but it is only during

summer when the LQI decreases in an approximately linear fashion with the temperature,

during winter visible non-linearities can be observed. Even more, during summer, across

the slopes of the linear functions describing the LQI -temperature relation are different

among good, perfect and intermediate quality links, as defined in Section 4.2.5, with the

latter exhibiting bigger slope values, on average -0.7, compared to -0.12 for the former, see

Table 5.2. LQI small variation for high quality links, even exposed to 40◦C fluctuations

in temperature, confirms the observations from [?, 69].
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Figure 5.4: Waspmote RSSI-temperature relation in sauna.

Power Link quality min max avg stddev

High power (-1 dBm) Good/perfect -0.02 -0.10 -0.07 0.003

High power (-1 dBm) Intermediate -0.23 -0.41 -0.33 0.017

Low power (-8 dBm) Good/perfect -0.05 -0.18 -0.12 0.016

Low power (-8 dBm) Intermediate -0.52 -0.76 -0.70 0.021

Table 5.2: LQI-temperature linear function slopes on summer grid.
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Furthermore, if we look at the single link of 40 m between the two nodes measured at

0 dBm, for the TMote Sky platform, Figure 5.7 shows that, a 40◦C temperature increase

in the box causes an excursion in LQI from a very high value (i.e., 106) to a very low

one (i.e., 62). As the XBee radio module does not report the LQI , insights about LQI

variations with the temperature for the Waspmote platform cannot be presented.

Our experiments in the sauna controlled setup confirm that for high quality links, LQI

variation with the temperature is very low, as can be seen in Figure 5.8. The bidirectional

link experiences a very small degradation of LQI , from 108 to 106, for a temperature

excursion of 30◦C.

PDR. We continue our analysis with the roughest indicator of link quality, yet the most

directly informative: the PDR. We already shown two examples of representative links

from our open field campaigns, one of 39 m from the open field summer at low power,

in Figure 4.12, and another of 40 m from open winter at high power, in Figure 5.2(a).

For both links the PDR is perfect during night and drops significantly, as low as 40% and

5% respectively, during the hot hours of the day.

In accordance with our previous analysis, we next look at how PDR related with the

temperature. Figure 5.9 depicts the impact of the temperature on PDR, for a represen-

tative link of 40 m, during winter and summer, at low power, in the open field. During

both seasons in open field, we observe three regions: constant the PDR of the link does

not change with the changes in the temperature; linear regression the PDR decreases in

an approximately linear fashion with the temperature and the decrease starts at the same
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Figure 5.5: Relationship between LQI and temperature during summer.



5.1. ESTIMATING THE IMPACT OF ENVIRONMENTAL PARAMETERS 83

 60

 70

 80

 90

 100

 110

-10 -5  0  5  10  15  20  25  30  35

LQ
I

Temperature (C)

f(x) = -0.02x + 105.38

 60

 70

 80

 90

 100

 110

-10 -5  0  5  10  15  20  25  30  35

LQ
I

Temperature (C)

f(x) = -0.23x + 102.26

(a) good quality links.

 60

 70

 80

 90

 100

 110

-10 -5  0  5  10  15  20  25  30  35  40

LQ
I

Temperature (C)

f(x) = -0.15x + 97.88

 60

 70

 80

 90

 100

 110

-10 -5  0  5  10  15  20

LQ
I

Temperature (C)

f(x) = -0.87x + 93.19

(b) intermediate quality links

Figure 5.6: Relationship between LQI and temperature during winter.
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Figure 5.8: LQI -temperature in sauna.
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point with the decrease in RSSI ; no relation: we cannot define a linear function anymore.

Using the 240 links of the grid topology we identified the two temperature thresholds

that define the linear regression region: Tstart = 15 − 18◦C and Tend = 25 − 28◦C. It is

worth noting that, for the low power links, while running the linear regression analysis

we identified the slopes of the PDR-temperature relation to approximate the ones of the

RSSI -temperature.

In the sauna controlled setup, even if the link had a RSSI decrease of 15 dBm, from

-45 dBm to -60 dBm and the LQI varied, the link was perfect, delivering 100% of the

packets.

Figure 5.9: PDR-temperature variations during winter(left) and summer (right).

5.1.2.2 Impact of Humidity on Link Quality

We now turn our attention to the variations of link quality induced by humidity. We begin

by looking at the link in Figure 5.2 from Section 5.1.2.1, which shows a degradation of

PDR and RSSI with the increase of temperature corresponding to a decrease of humidity.

Looking only at Figure 5.2(a) and Figure 5.2(d) one might say that there is a strong

positive correlation between link quality and humidity. But, this is likely explained by

the fact that we measure the relative humidity which is directly dependent on temperature

and these two parameters correlate to a high degree. Therefore, in order to decouple the

impact of the two parameters, temperature and humidity, we use the data from the sauna

experiments. As during our experiments in the sauna we could not produce the same

linear behavior for humidity as for temperature, we run the analysis separately for the

first and the last two hours of experiments respectively, shown in Figure 5.10. Here we see

a positive correlation of the RSSI with the humidity to a threshold, identified at 42%RH,

after which humidity starts to negatively affect the RSSI . The outliers in the interval 26

to 42% humidity correspond to the round of the experiment when the temperature was

increasing and humidity decreasing, thus the impact of the two factors keeping the RSSI

at an almost constant value. Moreover, two other observations are worth mentioning: the
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Figure 5.10: RSSI -humidity in sauna.

increase of the RSSI with the humidity has a much higher slope than the decrease of

RSSI with humidity, in both cases the differences between the minimum and maximum

humidity value is 17%, but from 25% to 40%RH the RSSI increases with 10 dBm, while

for an increase in humidity from 42% to 62%RH the RSSI has a decreasing step of only

5 dBm.

Similarly as for temperature, we look at the RSSI and humidity value for specific

temperature values and observe a Spearman correlation of +0.67 for humidity values lower

than 42% and -0.33 for higher values. In fact, this might explain the milder decrease of

RSSI with the temperature in winter, when the humidity helps the RSSI .

5.1.3 Models

In this section we assess to which extent the first-order model proposed by Boano et

al. [18] matches the real-world data traces we collected during our open field campaigns

in summer and winter and propose a model to estimate the link quality at run-time

considering the particular temperature/humidity profile of the target environment.

5.1.3.1 Existing Model of the Effect of Temperature on Link Quality

The first-order model proposed by Boano et al. [18] computes the effect of temperature

on the signal to noise ratio, taking into consideration the effect of the temperature on

the signal strength of the transmitted power, received power and noise floor, using the

following equation:

SNR = Pt − PL− Pn−α∆Tt − (β − γ)∆Tr − 10log
(

1− ∆Tr

Tr
)

denoting PL as the path loss between a transmitter-receiver pair, Pt as the transmis-
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sion power, and Pn as the noise floor at the receiver. α, β, γ are the slopes, with units

dB/K, of the linear trends observed, platform dependent, and obtained through empirical

study on the TempLab testbed [11] with values: α = 0.065, β = 0.088 and γ = 0.037.

Tt and Tr are the temperature in Kelvin at the transmitter and receiver.

First, the accuracy of the proposed model depends on identifying the right values of

the parameters that are considered platform dependent. Authors proposed a set of values

for the slopes α, β, γ computed in their testbed. Our empirical studies show that not only

that the values of the slopes are platform dependent but also that their values depend on

the season, therefore we cannot use the same values for both seasons.

Second, we tested the accuracy of the model by feeding the model with the data traces

collected from our open field experiments, using the slopes for TMote Sky, computed by

the authors. We started with the simple computation of the attenuation of the signal

in our environment for the link used as example in Section 5.1.2.1. In the real-world,

the link was exposed to a difference in temperature of 40◦C and had an attenuation of

6 dBm. Using the proposed model, the computed attenuation for the link is 4.64 dBm.

This translates in an underestimation of the attenuation of the signal of 22.66%. As

a next step, we fed the model with all the data traces collected from the open field

and computed the deviation of the model generated values with respect to the in-field

measured values, for each of the 240 links in the grid topology, see Table 5.4. During

summer the model underestimates the attenuation of the signal by 12.6% on average and

a stddev of 3.1%. During winter the model underestimates the attenuation of the signal

with 19.3% on average and a stddev of 4.5%. Translated in RSSI values, the differences

between the estimated attenuation values and the real attenuation experienced in-field by

the link correspond to a difference between a perfect and a dead link.

5.1.3.2 A Model of the Effect of Temperature and Humidity on Link Quality

We build on top of our empirical observations and propose a model for low-power wireless

links. Our goal is to develop a simple model to estimate the attenuation of the link quality

under environmental settings with temperature and humidity variations. As shown in

our empirical experiments, temperature has a high impact on the RSSI and a lower

impact on the noise floor, decreasing both of them and the decrease can be approximated

with a linear function. Humidity has proven to have an impact on the RSSI and noise

floor, increasing both of them to the extent of empirically determined 42%RH, in our

environments.

We focus on modeling the estimation of attenuation of the signal for TMote Sky plat-

form as the observations from Section 5.1.2 showed different behaviors among platforms

and because the Waspmote platform does not allow the collection of noise floor measure-
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ments.

Modeling approach. The value of the attenuation represents the difference of the RSSI

and the noise floor. Therefore, in our model, we can convert the values into an indicator

computed by subtracting the noise floor from the RSSI and defined it as a function of

temperature and humidity of the target environment as follows:

RSSIAttenuation =

{
(α− β)∆T − (γ − θ)∆H if H < 42%

(α− β)∆T + (γ − θ)∆H if H >= 42%

Parameters ∆T and ∆H characterize the environment in which the network is de-

ployed. ∆T represents the difference between the maximum and minimum temperature,

same as ∆Tr in Boano et al. model [18], while ∆H represents the difference between the

maximum and minimum humidity, to which the network is exposed. In case the humidity

of the environment is under 42% the formula can be used with the sign −, the humidity

compensating for the attenuation induced by the temperature. In case the humidity of

the environment exceeds 42% the formula can be used with the sign +, the increased value

of humidity helping the increase of the attenuation. Parameters α and γ are the slopes of

the RSSI -temperature and RSSI -humidity linear function, while, β and θ are the slopes

of the linear trends observed noise floor with respect to temperature and humidity. As

we already shown, these parameters and platform dependent and their values must be

computed using in-field data traces. Nevertheless, using the model with both signs can

give an upper and lower bound of the attenuation in the target environment.

Evaluation of the model. To evaluate the performance of our approach, we used the

model to estimate the attenuation of the signal for each link from our open field grid

topology, during summer and winter. We have the temperature and humidity values to

which the network was exposed and the in-field computed slopes (i.e., α, γ, β, θ) for the

linear functions of RSSI and noise floor with respect to temperature and humidity for

each link. Then, we compared these results against the in-field measured ground truth and

against the first-order model presented in Section 5.1.3.1. Table 5.3 shows a comparison

between the estimated values using our model and the real values for the attenuation, in

terms of minimum, maximum, average values, for both seasons and powers, high (HP)

and low (LP). Table 5.4 shows the comparison for the model in Section 5.1.3.1 using the

slopes α = 0.065, β = 0.088 and γ = 0.037.

Our results show that the accuracy we obtain with our approach is significantly supe-

rior to existing approaches [18] and reiterates the fact that the most accurate estimates

are obtained using in-field data traces from the target environments.
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Season Power min max avg

Summer HP (-1dBm) 2.5% 4.2% 3.5%

Summer LP (-8dBm) 2.9% 4.8% 4.1%

Winter HP (-1dBm) 3.3% 4.5% 3.9%

Winter LP (-8dBm) 3.8% 5.1% 4.3%

Table 5.3: Our proposed model.

Season Power min max avg

Summer HP (-1dBm) 5.1% 7.3% 6.5%

Summer LP (-8dBm) 9.2% 14.5% 12.6%

Winter HP (-1dBm) 5.8% 8.1% 7.2%

Winter LP (-8dBm) 15.05% 22.87% 19.3%

Table 5.4: Boano et. al [18] model.

5.2 Reproducing Realistic Network Conditions

WSNs protocols and applications are often evaluated through simulations that make sim-

plified assumptions about the link layer. As demonstrated by several empirical studies,

presented in Section 2.3.2, the real characteristics of low-power wireless links differ greatly

from those used in nowadays models. Moreover, low-power wireless links are often mod-

eled in the abstract, using very general models that often do not capture the characteristics

of target application environments and do not provide the ability to tailor the model to

the target environment. Thus, the significant differences between the models used in sim-

ulators and the real behavior leads to erroneous performance evaluation of upper-layer

protocols (routing layer and above). To alter this, we must improve our simulators by in-

corporating models that would help reproducing realistic network conditions and realistic

link layer characteristics.

Based on the observations in Section 4.2.5 that the link quality distribution of WSN in

link quality classes (e.g., dead, poor, intermediate, good, perfect) follows a specific pattern

in each of our studied environment, across years, seasons and topologies, our approach is

to explore using probabilistic models to recreate behavior that is representative of what

is observed in our outdoor real-world network. Thus, we capture the pattern in a model

that we train with our experimental data traces, collected during the campaigns presented

in Chapter 4, and integrate it in mainstream simulators. Using this model, the simulator

can generate link quality distributions into classes and their variations across classes with

similar quality for a specific combination of environment and season. To evaluate our

approach and model we reproduce “synthetically” our summer and winter experiments on

the grid topology in the simulator. Then, we assess the connectivity characteristics of the

simulated network and links, running Trident with the same configuration parameters

as in our in-field experiments. We compute the link quality distributions in classes and

the number of transitions and compare against the in-field distributions and transitions.

In this regards, we prove that the model is key for efficiently reproducing realistic network

conditions for simulations of long-term behavior of protocols/applications by accounting

for the influence of the environment on the network beforehand.
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5.2.1 Goals

In this section, we present the issues that need to be addressed when modeling link quality

distribution patterns and the variations across classes. We use PDR to characterize the

link quality and exploit it to get insights on the fraction of links characterized by a given

quality. In this respect, we use the same link classification as in Section 4.2.5. Considering

all 30-minute rounds of our experiments, we show in Table 5.5 the link quality distributions

for day and night in open field on the grid topology. The table clearly shows that the

fraction of dead and poor links is quite stable between night and day in both seasons,

while several links move from intermediate to good during summer and from good to

perfect during winter. Moreover, we showed in Section 4.2.9 that the patterns are almost

the same across different years and topologies, cross and grid, with a small percentage

of links migrating from one class to the adjacent one from one year to another.

A closer look at our experimental data, see Figure 5.2 shows long term dynamics with

rounds of nearly constant PDR of the links which persist during the night or during the

day. Moreover, in Section 4.2.8 we showed in Table 4.4 that the summer creates more

transitions between link quality classes than winter and that their number increases as

we progress from open to spruce and beech with the presence of vegetation and the

increase of its density. During summer, in 24 hours, a link experiences on average 3

transitions, while during winter it experiences 5 transitions.

In order to realistically simulate the behavior of the links, a model that is flexible

enough to replicate the observed link quality distributions in classes is required. Moreover,

the parameters of the model should be estimated from the available data traces.

5.2.2 Theoretical Model

The core idea of our model is to capture and describe the probability for the link quality

distribution in classes to transit from a state (i.e., link quality distribution in classes

during a 30 minute round) to another. For this we propose to model network’s transitions

from one state to another using a hidden Markov model (HMM).

The theoretical details of our model are described next. We denote a set of states :

Table 5.5: Day vs. night PDR distributions example.

Season Time DEAD POOR INT GOOD PERFECT

Summer Day 9.52% 19.05% 16.67% 14.29% 40.48%

Summer Night 7.14% 19.05% 7.14% 28.57% 38.10%

Winter Day 23.21% 12.50% 19.64% 21.43% 23.21%

Winter Night 19.64% 14.29% 14.29% 12.50% 39.29%
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{s1, s2, ..., sn}. The process moves from one state to another generating sequences of

states: {si1, si2, ..., sik, ...}. The Markov chain property, the probability of each subse-

quent state depends only on what was the previous state is: P (sik | si1, si2, ..., sik) =

P (sik | sik−1). The states are not visible but each state randomly generates one of M

observations (or visible states): {v1, v2, ..., vm}.
To define our hidden Markov model the following probabilities have to be specified:

• matrix of transition probabilities A = (aij), aij = P (si| sj);

• matrix of observation (emission) probabilities B = (bi (vm)), bi(vm) = P (vm| si);

• and a vector of initial probabilities π = (πi), πi = P (si).

In the end, the behavior of our model is going to be represented by: M = (A,B, π).

In Figure 5.11 we represent a hidden Markov model with two states:

• two states : s1 and s2, which correspond to two different rounds from the open

summer day link quality distribution in classes;

• five observations, which correspond to our link quality classes (dead, poor, interme-

diate, good, perfect);

• transition probabilities : P (‘s1‘| ‘s1‘) = 0.3, P (‘s2‘| ‘s1‘) = 0.7, P (‘s1‘| ‘s2‘) = 0.2,

P (‘s2‘| ‘s1‘) = 0.8

• observation probabilities : P (‘dead‘| ‘s1‘) = 0.09, P (‘poor‘| ‘s1‘) = 0.09, P (‘intermediate‘| ‘s1‘) =

0.16, P (‘good‘| ‘s1‘) = 0.15, P (‘perfect‘| ‘s1‘) = 0.41 and P (‘dead‘| ‘s2‘) = 0.07,

P (‘poor‘| ′s2‘) = 0.19, P (‘intermediate‘| ‘s2‘) = 0.07, P (‘good‘| ‘s2‘) = 0.29,

P (‘perfect‘| ‘s2‘) = 0.38

• initial probabilities : P (‘s1‘) = 0.4, P (‘s2‘) = 0.6.

Figure 5.11: Example of two states.
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Estimate model parameters. Next we show how to estimate model parameters from

our data traces. We formulate our problem as follows: given some training observation

sequences O = o1 o2...ok (i.e., data traces from our 30-minute rounds of experiments)

and a general structure of a hidden Markov model (number of hidden and visible states),

determine the model parameters M = (A,B, π) that best fit the training data.

O = o1 o2...ok denotes a sequence of observations ok ∈ v1, ..., vm.

Estimation of the parameters of a hidden Markov model has most often been performed

using maximum likelihood estimation [46], so we follow the Baum-Welch algorithm [8] to

efficiently derived the the local maximum likelihood. This is an iterative expectation-

maximization algorithm to find the local maximum of P (O| M), using an expectation

step and a maximization one. Each iteration of Baum-Welch is guaranteed to increase

the log-likelihood of the data.

We start by denoting:

aij = P (si| sj)=
expected number of transitions from state sj to state si

expected number of transitions out of state sj

bi(vm) = P (vm| si)=
expected number of time observation vm occurs in state si

expected number of times in state si

πi = P (si) = expected frequency in state si at time k = 1.

Expectation step. The Baum-Welch algorithm starts by defining the variable ξk(i, j)

as the probability of being in state si at time k and in state sj at time k + 1, given the

observation sequence o1 o2 ... ok.

ξk(i, j) = P (qk = si, qk+1 = sj | o1 o2 ... ok).

ξk(i, j) =
P (qk = si, qk+1 = sj, o1 o2 ... ok)

P (o1 o2 ... ok)

ξk(i, j) =
P (qk = si, o1 o2 ... ok)aijbj(ok+1)P (ok+2 ...ok| qk+1 = sj)

P (o1 o2 ... ok)

ξk(i, j)=
αk(i)bj(ok+1)βk+1(j)∑

i

∑
j αk(i)bj(ok+1)βk+1(j)

Following the algorithm, we define the variable γk(i) as the probability of being in state

si at time k, given the observation sequence o1 o2 ... ok:
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γk(i)=P(qk = si| o1 o2...ok)

γk(i)=
P (qk = si, o1 o2...ok)

P (o1 o2...ok)

Thus, having defined:

ξk(i, j) = P (qk = si, qk+1 = sj | o1 o2 ... ok) and γk(i)=P(qk = si| o1 o2...ok)

From here, the next step is to compute:

• expected number of transitions from state si to state sj:
∑

k ξk(i, j)

• expected number of transitions out of state si:
∑

k γk(i)

• expected number of times observation vm occurs in state si:
∑

k γk(i), k is such that

ok = vm

• expected frequency in state si at time k = 1: γ1(i).

Maximization step. Having γ and ξ, one can define update rules as follows:

aij = P (si| sj)=
expected number of transitions from state sj to state si

expected number of transitions out of state sj
=

∑
k ξk(i, j)∑
k γk(i)

bi(vm) = P (vm| si)=
expected number of time observation vm occurs in state si

expected number of times in state si
=

∑
k ξk(i, j)∑

k,ok=vm
γk(i)

πi = P (si) = (expected frequency in state si at time k = 1) = γ1(i)

Having the estimated model paramteres as described above, in order to generate a trace

from our model, one can generate a state sequence using the transition probabilities.

5.2.3 Evaluation of the Model

We first incorporated our model for the generation of realistic link traces in COOJA [92]

simulation environment, a simulator for the Contiki sensor node operating system. We

have created a library of models that we trained with links quality distributions in classes

from our three studied environments: open, spruce, beech, for summer and winter.

Proper handling of the files with the pre-computed models for a specific environment

enables the simulator to generate links with different reception rates and sequences of
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link distributions from the experimental data for a specific combination of environment-

season.

Methodology. To validate the accuracy of our approach we “synthetically” reproduced

our summer and winter campaigns in the simulator and run Trident to assess the con-

nectivity characteristics of the network. We used the trained models and simulated a

network of 240 links on the same grid topology (i.e., same link distances) as the one

used in our in-field campaigns, shown in Figure 4.3. Then, we assessed the connectivity

characteristics of the simulated network using our Trident tool with the same per-round

configuration parameters as in-field, see Table 4.2 in Chapter 4. For each link, we sam-

pled sequences of 30 minute rounds, for a total number of 330 rounds equivalent to 7 days

of in-field experiments. Following the same methodology as for the in-field data traces,

from the simulated sequences, we computed the overall PDR, the link distribution in link

quality classes and the number of transitions. Then, we compared against the in-field

data traces statistics, at both high power (HP) and low power (LP). It is worth noting

that when sampling state sequences from the model, there is a possibility that the overall

proportion of time a links stays in a particular state is different from the in-field trace.

Results. Table 5.6 shows a comparison between the empirical traces and the simulated

traces from the model, for each environment and season, at high power (HP) and low

power (LP), in terms of overall PDR (%). Due to logistical issues, for beech forest we

did not run any outdoor experiments with the grid during summer (N/A).

In the case of simulated traces we also report the ± StdDev for 100 repetitions. Using

our models, the worst case differences in overall PDR between the empirical traces and the

model traces are 12.7% and 10.2%, considering the StdDev, in spruce and beech, where

the number of intermediate links is higher. Nevertheless, looking at the simulated traces

we observe the same trend as in the empirical traces, that the quality of communication

decreases as we progress from open to spruce to beech- i.e., as the quantity of trees

and foliage increases. It is worth noting that the PDR interval for the intermediate

links being very large, from 10% to 90%, for environments with a high percentage of

intermediate links, like spruce and beech, the standard deviation from the empirical

traces is expected to be higher than in the open.

Table 5.7 and Table 5.8 show a comparison between the empirical and simulated

traces from the model, in terms of link distribution in link quality classes, in our three

environments, during summer and winter, night and day, at low power. We chose to report

the results of the simulations at low power as the number of transitions is bigger than

at high power, as shown in Section 4.2.8. The average difference between the simulated

distribution of links and the empirical distribution of links in both seasons, during summer

and night, is less than 1.2%, whereas the average standard deviation of the simulated
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Table 5.6: Comparison between empirical traces and simulated traces: overall PDR (%).

Season Power OPEN SPRUCE BEECH

Empirical

trace

Model

trace

Empirical

trace

Model

trace

Empirical

trace

Model

trace

Summer HP 87.58 89.10 (1.7) 70.51 72.40 (4.3) N/A N/A

LP 68.95 67.50 (3.1) 45.29 48.30 (3.9) N/A N/A

Winter HP 80.05 75.56 (3.2) 50.60 42.60 (4.7) 47.5 42.5 (5.2)

LP 68.5 65.3 (2.9) 33 27.05 (4.1) 31.4 28.60 (4.7)

traces is 2.13%. The worst case difference in the distribution of links is 5.66% in open

field. Nevertheless, our model has very close approximation on the percentages of links

in each class. Even if the the worst case difference might seem high it is important to

mention that our model is not meant to be an exact replica of the environment but an

approximation to it.

Moreover, as our goal was not only to model the distribution in link quality classes but

also the variations across classes, we computed the number of transitions from one class

to another for the simulated traces and show the differences with respect to the empirical

traces in Table 5.9. The maximum difference between the empirical and simulated traces

from model is less than 4% in terms of average number of transitions over 100 simulations.

We also used the Kolmogorov-Smirnov (K-S) test to compare the CDFs of the empirical

Table 5.7: Comparison between empirical and simulated traces: summer and winter day link

classification.

Season Class OPEN SPRUCE BEECH

Empirical

trace

Model

trace

Empirical

trace

Model

trace

Empirical

trace

Model

trace

Summer DEAD 9 10 (1.4) 29 30 (1.0) N/A N/A

POOR 19 17 (2.8) 10 8 (2.1) N/A N/A

INT 16 14 (4.2) 26 29 (3.2) N/A N/A

GOOD 15 17 (1.8) 33 31 (1.8) N/A N/A

PERFECT 41 42 (1.6) 2 2 (1.1) N/A N/A

Winter DEAD 23 25 (3.2) 60 52 (0.8) 57 57 (1.8)

POOR 12 14 (3.6) 0 2 (0.6) 2 1 (0.4)

INT 19 16 (1.9) 20 24 (3.4) 9 10 (3.4)

GOOD 21 20 (2.4) 13 15 (1.5) 5 7 (1.2)

PERFECT 23 25 (1.7) 7 7 (0.8) 27 26 (0.3)
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and simulated traces. For the number of links in our topology (i.e., 240) and a confidence

interval of 5% the K-S table [66] has a threshold value of 0.087. In our case, the model

passed the K-S test with 0.07 (<0.087), hence both CDFs can be considered similar.

Model limitations. Our proposed model is a purely data-driven approach and the model

is built using empirical data traces from a small scale deployment of 240 links, with lengths

ranging from 10 m to 60 m. However, using our model is possible to simulate large-scale

networks that have links of the same lengths as ours and with the same distribution of

link lengths.

We are aware that, the interval for the intermediate links is too wide (i.e, 10% ≤
PDR ≤ 90%) and affects the results of the overall PDR computed when using our models.

Nevertheless, the value of our proposed model is not in the results per-se, which are site

specific, but in the data-driven methodology we developed that exploits real data traces

to create models that are incorporated in simulators. Moreover, our model can be used

for simulations of protocols by accounting for the influence of the environment on the

network beforehand.

5.3 Summary

In this chapter we built on the analysis and exploit the set of data traces collected during

our campaigns to create two models with the distinctive goal to: (i) describe the influ-

Table 5.8: Comparison between empirical and simulated traces: summer and winter night link

classification.

Season Class OPEN SPRUCE BEECH

Empirical

trace

Model

trace

Empirical

trace

Model

trace

Empirical

trace

Model

trace

Summer DEAD 7 8 (1.1) 33 34 (1.1) N/A N/A

POOR 19 18 (2.4) 5 4 (0.2) N/A N/A

INT 7 8 (3.8) 21 18 (4.6) N/A N/A

GOOD 29 30 (1.7) 31 33 (1.1) N/A N/A

PERFECT 38 36 (1.1) 10 11 (1.3) N/A N/A

Winter DEAD 19 17 (2.9) 60 56 (1.7) 54 52 (1.4)

POOR 14 15 (3.2) 0 2 (0.6) 6 5 (0.6)

INT 14 13 (1.1) 6 8 (2.5) 18 20 (2.6)

GOOD 12 14 (2.0) 17 16 (1.2) 10 11 (1.1)

PERFECT 39 41 (1.0) 17 18 (0.7) 12 12 (0.4)



96 CHAPTER 5. ESTIMATING AND REPRODUCING: MODELS

Table 5.9: Comparison between empirical traces and simulated traces: number of transitions.

Season Power OPEN SPRUCE BEECH

Empirical

trace

Model

trace

Empirical

trace

Model

trace

Empirical

trace

Model

trace

Summer HP 3134 3254 (147) 5428 5601 (261) N/A N/A

LP 3864 3710 (187) 5980 6189 (275) N/A N/A

Winter HP 2444 2502 (103) 3505 3391 (255) 3664 3536 (273)

LP 2940 2835 (236) 4386 4557 (309) 4782 4595 (301)

ence of the temperature and humidity on low-power wireless links, and (ii) describe the

long-term behavior of low-power wireless links collected in-field. The first model helps

estimating the link quality at run-time considering the particular temperature/humidity

profile of the target environment. The second model is key for efficiently reproducing

realistic network conditions for large-scale simulations of long-term behavior of protocol-

s/applications. Thus, we contribute at reducing the gap between simulation and real-world

performane of protocols and applications.



Chapter 6

Conclusions and Outlook

Phil: Do you know what day is today?

Rita: No, what?

Phil: Today is tomorrow. It happened!

Groundhog Day

In this dissertation, we argued that it is possible to enable the principled design and

deployment of WSNs by improving the understanding of how the natural outdoor en-

vironment affects the network stack, and providing tools and modeling techniques to

address this impact. To support our argument, we built two tools, Trident and Har-

poon, for in-field connectivity and routing protocol performance assessment that support

principled, repeatable, automated, and flexible collection of measurements in the target

environment, rely only on the WSN nodes without any external infrastructure and do

not require any coding by the end user. Using these tools we collected in vivo a large

set of data traces from sites that cover different vegetation conditions, during winter

and summer, and we analyzed the data traces and quantified the trends emerging

at physical, routing and application layer. This represents the first empirical study that

characterizes, from a quantitative standpoint, the overall behavior of a WSN immersed

in different outdoor real-world environments. Then, we built on the analysis to exploit

the set of data traces to create two models: for estimating the link quality at run-time,

and for reproducing realistic network conditions in simulators. The first model, helps

estimating the link quality considering the particular temperature/humidity profile of the

target environment. The second model is key for efficiently reproducing realistic network

conditions for large-scale simulations of long-term behavior of protocols/applications by

accounting for the influence of the environment on the network.

The contributions of this dissertation can be applied today to aid the design and

deployment of WSNs. The tools and the quantitative assessment of the characteristics
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of low-power wireless links and protocol performance in-field, are key for: supporting the

WSN deployment, by characterizing the target environment and determining where to

place the motes to ensure communication among them; informing the selection of routing

protocols and tuning of their parameters, to ensure they are well-suited to the target

environment; informing application-level strategies from a qualitative point of view and

tuning of parameters, to ensure the reliability of the application—the one directly relevant

for the end user (e.g., biologists).

Beyond what we can do today, our contributions are key for informing protocol design

improvements and methods to overcome the effect of the environmental conditions. We

already have the model describing the long-term behavior of low-power wireless links in-

corporated in mainstream simulators. This enables performance tests of newly designed

protocols under realistic conditions without the need for expensive in-field experimenta-

tion. Nevertheless, in-field performance assessment is also supported by using our tools.

Further, as we showed in Chapter 4 and Chapter 5, as new hardware platforms and pro-

tocols are developed, it is important to understand to what extent they are affected by

environmental factors. To this end, our tools and methodologies can be used in quanti-

fying this impact and enable meaningful comparison of their performance in the target

environments.

The experiments we described in this dissertation required significant effort, as they had

to be replicated in different outdoor sites, often in harsh conditions. Nevertheless, the set

of data traces can be extended with other experiments to confirm (or refute) our obser-

vations and to validate the proposed models. Other seasonal variations (i.e., autumn and

spring) and environmental conditions (i.e., rain and fog) could unveil additional trends

and observations. In this respect, supporting the in-field tests without infrastructure,

are an invaluable asset that greatly simplifies the experimental work. Moreover, all the

collected data traces constitute a step towards populating a large repository of real-world

connectivity and routing traces, missing today from the literature. This would provide

valuable information to system and application developers, as well as a unique opportunity

for the research community at large to study and exploit large real-world datasets.

Another line of research is to use our tools and methodologies for developing models

for other environments. To this end, our model for estimating the link-quality at run-time

focuses on temperature and humidity as factors determining the link quality. While this

is true in open fields, environments for which we tailored our model, several factors other

than temperature and humidity determine the link quality in forests (i.e, foliage, tree

trunks). We already reported significant differences between link quality and protocol

performance in open w.r.t. to forests where the heterogeneous vegetation creates micro-

climates that amplify the complexity. We already have the tools and the methodologies



to collect data traces from new target environments. Moreover, our model for estimating

link quality can be used as a baseline for a new model that can be build by adding new

parameters that factor in the complexity of the new environments.

A more ambitious line of research is to use the observations we made in this disserta-

tion as the quantitative stepping stone enabling the prediction of routing and application

performance. In other words, to define a methodology that, given the combination of

environmental conditions relevant to the application, yields a good estimate of its perfor-

mance, based on the principled execution and analysis of in-field tests. We already have

the tools (e.g., Trident and Harpoon) supporting the first step of the methodology.

However, models are required to link the results at the physical layer to the routing and

application layer.

Until that time comes, we argue that the tools we expressly designed for gathering in-

field empirical traces, the understanding and quantitative characterization of data traces

from real environments, and our models, together significantly advance the state of the

art by rendering the process of designing and deploying a WSN more repeatable and

predictable.
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[92] F. Österlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt. Cross-level sensor

network simulation with cooja. In Proc. of the Int. Workshop on Practical Issues in

Building Sensor Network Applications, 2006.




