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a b s t r a c t 

Our ability to understand and interact with our environment relies upon conceptual knowledge of the meaning of objects. This process is supported by a distributed 
network of frontal, parietal, and temporal brain regions. Insight into the differential roles of various elements of this system can be inferred from the timing of 
activation, and here we use similarity-based fMRI-MEG fusion to understand when the representational spaces in different elements of the semantic system converge 
with representational spaces in the evolving MEG signal. Participants performed a semantic-typicality judgement of written words drawn from nine different semantic 
categories in separate fMRI and MEG sessions. Results indicate an initial period of congruence between MEG and fMRI informational spaces dominated by the posterior 
inferior temporal gyrus and the ventral temporal cortex between 350 and 450 msec. This is followed by a second period of convergence between 450 and 795 msec 
where MEG and fMRI representational spaces conform in left angular gyrus and precuneus in addition to ventral temporal cortex. Results are consistent with the 
multistage recruitment of the semantic system, initially involving automatic aspects of the representational system and later extending to broader elements of the 
semantic system more strongly associated with internalised cognition. 
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Conceptual representation allows us to understand the meaning of
he objects we perceive and is critical for effective interaction with
he environment and provides many of the necessary building blocks
or higher thought. Functional magnetic resonance imaging (fMRI) re-
earch has identified a distributed network of brain regions that reli-
bly activate more strongly to semantically richer stimuli (e.g. words
ersus pseudowords) or semantically engaging tasks (e.g. semantic ver-
us phonological decision tasks; Binder et al., 2009 ). This general se-
antic processing of word stimuli recruits a left-lateralised cortical net-
ork encompassing several heteromodal associative regions (the angu-

ar gyrus (AG), lateral temporal cortex, ventral temporal cortex, dorso-
edial and ventromedial prefrontal cortex (dm/vmPFC), inferior frontal

yrus (IFG), and the precuneus; Binder et al., 2009 ). 
This network incorporates regions thought to guide and control se-

antic access: the lateral PFC, dmPFC and potentially the posterior mid-
le temporal gyrus (pMTG; Badre et al., 2005 ; Jackson, 2021 ; Lambon-
alph et al., 2017 ; Martin and Chao, 2001 ; Thompson-Schill et al., 1997 ;
agner et al., 2001 ; Whitney et al., 2011 ). Other components of the se-
antic system fall within the default mode network (DMN; Binder et al.,
009 ), a network of functionally coupled regions generally more active
uring rest periods and deactivated during cognition that requires cog-
itive control ( Buckner et al., 2008 ). These regions are candidate com-
onents of the representational system and include the precuneus, the
G, lateral MTG and anterior aspects of the ventral temporal cortex.

n addition to showing a stronger univariate response to semantically
icher stimuli, these brain areas exhibit multivariate sensitivity to the
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emantic content of single words ( Bruffaerts et al., 2013 ; Devereux et al.,
013 ; S.L. S.L. Fairhall and Caramazza, 2013 ; Liuzzi et al., 2020 , 2015 ;
imanova et al., 2014 ). These regions may work in tandem with neu-
al populations outside this network that encode sensory- and modality-
elevant information ( Lambon-Ralph et al., 2017 ; Patterson et al., 2007 ;
yler and Moss, 2001 ), and multiple regions within the brain show se-

ective variation in response amplitude during semantic access to differ-
nt categories of knowledge (e.g. motor-, tool-, person- or place-related
nowledge; Fairhall, 2020 ; Fairhall et al., 2014 ; S.L. Fairhall and Cara-
azza, 2013 ; Fernandino et al., 2015 ; Hauk et al., 2004 ; Noppeney et al.,
006 ; Rabini et al., 2021 ; Ubaldi et al., 2022 ). A remaining area of un-
ertainty is the hierarchical and temporal organisation of the various
lements of the semantic system. 

Electrophysiological studies have also provided insight into the tim-
ng of semantic access processes. Semantic processing has most often
een studied within the context of the n400 potential. Originally iden-
ified as the evoked response to a semantically anomalous word occur-
ing in a sentence ( ‘the man went to the park to walk his tomato’; Ku-
as and Hillyard, 1980) subsequent work has demonstrated the wide
ange of contextually incongruent linguistic and non-linguistic (pictures,
ounds, faces) stimuli that elicit this potential (see Kutas and Feder-
eier, 2011 for a review). While decades of studies of the n400 have
rovided invaluable insight into semantic processing, the processing
nderlying this component remains uncertain, and the n400 likely re-
ects cognitive processes extending beyond semantic processing of the
oncept to recalibration and reorganisation operations elicited by the
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nexpected nature of the oddball stimulus. More recent work employ-
ng multivariate pattern analysis (MVPA) techniques have focussed on
he processing of words in non-anomalous contexts. The meaning of
ords, indexed as the sensitivity to semantic content (object-category),

an be decoded from the emerging MEG responses as early as 200–230
sec after stimulus presentation, both when processing the names of fa-
ous people and places or words drawn from different object categories

 Giari et al., 2020 ; Leonardelli et al., 2019 ). Moreover, the differences
n the neural response to different semantic classes persists and is de-
ectable until 600 msec, consistent with multiple stages of conceptual
rocessing, potentially across multiple brain regions. 

The relationship between the different regions identified in fMRI re-
earch and different temporal components identified in MEG and EEG
tudies remains largely unresolved. While source reconstruction pro-
ides a potential strategy to reconcile findings across electrophysiologi-
al and haemodynamic imaging modalities, source localisation remains
robabilistic with accompanying statistics reflecting the reliability of
he solution across participants, rather than its veracity. At the same
ime, haemodynamic and electrophysiological measures are most sensi-
ive to different properties of neuronal activity ( Logothetis et al., 2001 ;
ichel et al., 2004 ), creating an additional challenge. One relatively

ovel approach to overcome some of these limitations is similarity-based
MRI-MEG fusion ( Cichy et al., 2014 ; Cichy and Oliva, 2020 ). Here, the
bstraction away from the neural measures themselves to the informa-
ional spaces represented in the neural response may better allow rec-
nciliation of disparate methodologies with respect to the direct com-
arison of these neural measures. Representational similarity analysis
RSA) has been widely used to reconcile e findings from different mea-
ures ( Kriegeskorte and Kievit, 2013 ). RSA works by constructing an
nformational space based on similarity/dissimilarity of the neural re-
ponses produced by a range of stimuli or conditions, which can then
e compared to another model similarity-space. The strength of the RSA
pproach is in the generation of an informational space abstracted away
rom the original dependant measure, allowing the comparison of neural
tates across a broad range of measures — across behavioural and neu-
al indices, species and neuroimaging modalities. fMRI-MEG fusion is
n application of this approach that permits comparisons between MEG
nd fMRI, thus allowing the representations present in different brain
egions to be resolved in the evolving MEG response. 

The objective of the present study is to isolate representational
paces present in the MEG response over time to identify convergence
ith representational spaces present in regions of the fMRI-delineated

emantic system. We present words drawn from 9 different semantic
lasses while participants performed a semantic judgments task — in
oth the MEG and fMRI scanners. Gaining understanding of the temporal
equence of recruitment of regions within the representational system
an provide insight into the hierarchical organisation of conceptual pro-
essing. We hypothesise that regions involved in semantic control will
e activated earlier and that regions involved in higher-level semantic
epresentation will have a longer time course than regions involved in
nitial, automatic, conceptual representation. 

. Materials & methods 

This multimodal neuroimaging study consisted of two sessions: one
EG and one fMRI. The experimental paradigm utilised in each of the

wo session was identical, as our goal was to perform RSA across the
wo neuroimaging techniques. 

.1. Participants 

Twenty-three participants (12 male; mean age 25.8 years, SD = 5.4)
artook in this study. All participants were right-handed native Italian
peakers and reported no history of neurological disorders. One partici-
ant was excluded due to MEG artifacts produced by a metallic retainer;
ne did not complete the fMRI session; one subject was excluded due to
2 
xcessive head movements and one subject was excluded from the MEG
tudy but not the fMRI study due to large low frequency artifacts in the
EG recording. 

Due to technical issues with the MR scanner, the order of the MEG
nd fMRI sessions was not fully counterbalanced. Six participants per-
ormed the fMRI session first, while 16 performed the MEG session first.
s this study does not consider differences between fMRI and MEG, this
oes not influence the validity of the reported results. The mean time
etween experimental sessions was 6.7 days. 

All participants gave written informed consent, and all procedures
ere approved by the Ethics Committee of the University of Trento. 

.2. Stimuli 

Stimuli consisted of written words (in Italian; 3–10 letters) from nine
emantic categories: Body parts, Tools, Furniture, Materials & Substances,

lora, Mammals, Birds, Food, Fruits & Vegetables. 32 exemplars were se-
ected for each category (a total of 288 stimuli; see supplemental ma-
erials table S1 for a complete list). One-way ANOVA indicated no sig-
ificant difference between categories in word length ( F < 1) nor in log
ord-frequency ( F < 1; Lyding et al., 2015 ). 

.3. Procedure 

MEG and fMRI sessions employed identical experimental paradigms.
ach session was composed of six runs, and each run consisted of 18
locks of 8 stimuli from each category. Thus, each run presented two
locks of the same category. Blocks were 14 s each and were separated
y a 6 s rest period (total time per run was 7.8 min). Block order was
seudo-randomised within runs so that each half of the session con-
ained blocks for each of the nine categories. In total, 864 trials were
ollected: 96 for each category, and each stimulus was presented three
imes in the experiment. 

Stimuli were presented against a grey background. Blocks were pre-
eded by a blue fixation cross of 4 s, followed by a cue (the name of the
ategory) for 1 s in black font, followed by a black fixation cross of 1 s.
rials consisted of a stimulus (word) presented in black for 300 msec,
ollowed by a fixation cross which remained on the screen until the end
f the trial. Trials were jittered, and the inter-trial intervals ranged ran-
omly for 2250–2850 msec (mean: 2525 msec, uniform distribution).
n each trial, participants rated the typicality of the exemplar within

ts semantic category (e.g., rating the typicality of “apple ” or “coconut ”
s a fruit) on a scale from 1 (very typical) to 4 (not typical). Participants
esponded bimanually (two buttons for each hand). 

Before both experimental sessions, participants practised a short
orm of the experiment (two blocks), employing stimuli not used in the
ain experiment. 

.4. MEG data acquisition 

Electromagnetic brain activity was recorded at the centre for
ind/Brain Sciences of the University of Trento. The MEG system is

omposed of 306 channels (204 planar gradiometers, 102 magnetome-
ers) from Elekta-Neuromag Ltd., Helsinki, Finland, and is placed in
 magnetically shielded room (AK3B, Vakuumschmelze, Hanau, Ger-
any). Prior to the session, the individual head shape of each partic-

pant was measured using a Polhemus FASTRAK 3D digitiser (Polhe-
us, Vermont, USA). The procedure involved the acquisition of three
ducial points (nasion, both preauricular sites) and the positioning of
ve coils (one each on the left and right mastoids, and three on the

orehead). Head movements were controlled before each run of the ex-
eriment by inducing a non-invasive current through the five coils. Data
as acquired with a sampling rate of 1000 Hz, and hardware filters were
djusted to bandpass the MEG signal in the frequency range of 0.01–
30 Hz. 
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Presentation was controlled using Psychtoolbox ( Brainard, 1997 ).
ach image was back-projected with a VPixx PROPixx projector at the
entre of a translucent screen placed 120 cm from the eyes of the par-
icipant. Refresh rate of the screen was 120 frames per second. Timing
as verified via a photodiode. 

.5. MEG data preprocessing and analysis 

Offline data was visually inspected to identify noisy channels, prior
o application of the MaxMove function of the Elekta Maxfilter software
http://imaging.mrc-cbu.cam.ac.uk/meg/Maxfilter). For each subject, a
eference run was identified as the one that minimised the distance in
ead position between runs. All other runs were realigned to this head
osition through the temporal signal space separation method (TSSS;
aulu & Simola, 2006) as implemented in MaxFilter software. 

After maxfiltering, data was imported into Fieldtrip
 Oostenveld et al., 2011 ) and was low-pass filtered at 70 Hz and
ltered for line noise removal, then down-sampled to 200 Hz, after
hich, each trial’s timing was corrected according to the photodiode’s

nformation. Data was then cut into epochs of 1.1 s (0.1 s pre- and
 s post-stimulus). Trials were visually inspected to discard trials that
eviated from general variance. About 5.6% of trials were removed
rom the analysis. All trials were baseline corrected using the baseline
indow (from − 0.1 to 0 s), trial onsets were jittered to minimise
nticipatory effects. 

To consider the different measurement units of magnetometer [T]
nd gradiometer [T/m] sensors, the magnetometer data was multiplied
y a factor of 17, corresponding to their distance in mm from the gra-
iometers. 

.6. fMRI data acquisition 

Data were acquired at the centre for Mind/Brain Sciences, with
 Prisma 3T scanner (Siemens AG, Erlangen, Germany) and using
 64-channel head coil. Visual stimuli (written words) were pre-
ented through a mirror system connected to a 42 ″ LCD monitor (MR-
ompatible, Nordic NeuroLab) positioned at the back of the magnet
ore. Functional images were acquired using echo planar (EPI) T2 ∗ -
eighted scans. Acquisition parameters were: repetition time (TR) of
 s, an echo time (TE) of 28 ms, a flip angle of 75°, a field of view (FoV)
f 100 mm, and a matrix size of 100 ×100. Total functional acquisition
onsisted of 1440 vol, for the six experimental runs. Each of 78 axial
lices (which covered the whole brain) had a thickness of 2 mm and gap
f 2 mm, AC/PC aligned. High-resolution (1 × 1 × 1 × mm) T1-weighted
PRAGE sequences were also collected (sagittal slice orientation, cen-

ric phase encoding, image matrix = 288 × 288, FoV = 288 mm, 208
lices with 1-mm thickness, TR = 2290 msec, TE = 2.74 msec, inversion
ime (TI) = 950 msec, 12° flip angle). 

.7. fMRI data preprocessing and analysis 

Analysis was performed in SPM12 ( http://www.fil.ion.ucl.ac.uk/
pm/software/spm12/ ). The first four volumes of each run were dis-
arded. All subsequent images were corrected for head movement. All
mages were normalised to the forward field obtained from segmenta-
ion, resampled to a 2 mm isotropic voxel size, and spatially smoothed
sing an isotropic Gaussian kernel of 5 mm FWHM. 

Univariate analysis was performed at the level of each voxel. Data
ere high-pass filtered at 128 s and pre-whitened by means of an au-

oregressive model AR(1). Subject-specific beta weights were derived
hrough a general linear model (GLM). For each subject, the data were
est-fitted at every voxel using a combination of effects of interest (the
ine categories). These were delta functions representing the onset of
ach of the experimental conditions, convolved with the SPM12 haemo-
ynamic response function. The six motion regressors were included as
ariables of no interest. 
3 
. Multivariate analysis 

.1. Within-imaging-modality classification 

All multivariate analysis was performed using the CoSMoMVPA tool-
ox for Matlab ( Oosterhof et al., 2016 ). 

MEG data was classified using a correlation-based classifier to clas-
ify each category-pair based on the amplitude values of the 306 MEG
ensors over each timepoint using a 25 msec sliding window. MEG tri-
ls were divided into 12 chunks, and classification was performed across
uns using a leave-one-out cross-validation approach. To account for dif-
ering numbers of trials in each condition (following artefact rejection),
 balanced number of trials was selected for each classification step,
nd this was repeated until each trial had been represented four times.
his process was repeated 36 times for each pair-wise category compar-

son and the results averaged for each subject. Group-level analysis was
erformed using a one-sample t -test at each time-point after subtracting
hance accuracy (0.5). 

Localised patterns of information in fMRI data were obtained us-
ng the searchlight method ( Kriegeskorte et al., 2006 ). For each sub-
ect, for each voxel v, we extracted category-specific beta patterns in
 sphere centred at v with a radius of 4 voxels and mean centred by
ubtracting the mean of each voxel from each sample within that voxel
 Diedrichsen and Kriegeskorte, 2017 ). A correlation-based classifier was
sed to classify each pair of categories (36 categories). Classification was
erformed across runs using a standard leave-one-out cross-validation
pproach. Resulting pair-wise classification accuracies were then aver-
ged, yielding a single brain map for each subject. For second-level anal-
sis, brain maps for each subject were entered into a one-sample t -test
fter subtracting chance accuracy (0.5). 

.2. MEG-fMRI integration through representational similarity analysis 

Cross-modality RSA was based on the construction of 9 × 9 represen-
ational dissimilarity matrices (RDMs) containing the pairwise distance
alue between different categories. This was calculated for multiple spa-
ial localisations within the fMRI data and multiple temporal windows
or the MEG data. 

MEG-RDM. For each subject, trials from each category were averaged
nd mean-centred by removing the mean within each category. At each
ime point, we calculated dissimilarity of pattern vectors (1-r Pearsons ) be-
ween condition pairs across the 306 sensors. To increase signal-to-noise
nd power, we averaged the RDMs in a time window of 50 msec, start-
ng from 200 msec until 800 msec. Results were then averaged across
ubjects resulting in 12 MEG RDMs, one for each 50 msec of activity. 

fMRI-RDM. Localised patterns of information were obtained using
he searchlight method ( Kriegeskorte et al., 2006 ). For each subject,
or each voxel v, we extracted and mean-centred category-specific beta
atterns in a sphere centred at v with a radius of 4 voxels. For each
air of conditions, the pairwise dissimilarity between pattern vectors
as calculated (1-r Pearsons ). This procedure resulted in one fMRI-RDM

or each voxel in the brain. 
To relate space and time, we compared fMRI RDMs with MEG RDMs.

or 50 msec time-windows, running from 200 to 800 msec post-stimulus
nset, we computed the similarity between its relevant MEG-RDM and
he fMRI-RDMs of each voxel. This produced a brain map of the conver-
ence of representational similarity spaces at each time window. 

.3. Statistics 

Statistical analysis of MEG MVPA was performed by first identifying
imepoints where classification accuracy was significantly above chance
sing a one-sample t -test. The probability of observing temporally con-
iguous significant timepoints under the null hypothesis was then deter-
ined via a permutations test. Specifically, for each participant, ten null
istributions were created by randomly shuffling the condition labels of

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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Fig. 1. Multivariate pattern classification of object-category for MEG data. 
Shown is the average (above chance) classification accuracy across the nine 
object-categories. Data were processed over a moving time window of ± 20 msec. 
Asterisks indicate significant above-chance classification using an initial p-value 
of 0.05 and correcting for multiple comparisons using the extent of the temporal 
cluster and permutation testing. 
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Fig. 2. Multivariate pattern classification of object-category for fMRI data. 
Searchlight analysis showing greater-than-chance average pair-wise classifica- 
tion between the nine object-categories. Initial voxel-wise threshold = p < .001, 
p < .05 cluster-corrected for multiple comparisons. 
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Table 1 

Significance, extent and location of multivariate pattern classification accuracy 
of object-category for fMRI data. For large clusters, local maxima ( > 20 mm 

apart) are listed separately. 

cluster peak 

p (FWE-corr) voxels T x y z 

left AG < 0.001 14,572 10.09 − 36 − 70 42 
precuneus 8.53 − 8 − 58 22 
left VTC 7.62 − 38 − 32 − 22 
left OFC < 0.001 14,572 8.16 − 26 − 40 − 12 
vmPFC 6.42 − 2 54 − 10 
left IFG < 0.001 2011 7.97 − 38 36 16 
left SFS 6.16 − 12 20 40 
right VTC 0.021 464 6.01 28 − 34 − 16 
right AG < 0.001 1226 5.93 40 − 62 36 

Abbreviations. AG: angular gyrus; VTC: ventrotemporal cortex; OFC: or- 
bitofrontal cortex; vmPFC: ventromedial PFC; IFG: inferior frontal gyrus; SFS: 
superior frontal sulcus. 
ach block. One such null distribution was then randomly selected for
ach participant, a one-tailed one-sample t -test performed at each time-
oint ( p < .05), and the largest temporal cluster in each permutation was
dentified. This was repeated 10,000 times to determine the probability
nder the null of a temporal cluster of a given size across the whole
ime-window of interest (200–800 msec). The reported temporal cluster
n Fig. 1 exceeded this extent-threshold. 

Statistical analysis of fMRI MVPA utilised an initial voxel-wise
hreshold of p < .001 and corrected for multiple comparisons at the clus-
er level via random field theory ( Worsley et al., 1996 ). 

MEG-informed RSA of fMRI data involved corrections both over vox-
ls and over time windows. Contiguous clustering in this context can
ccur both over space and time. Corrections for multiple comparisons
tilised an initial voxel-wise p < .001 and 100-voxel extent threshold and
ultiple-comparison correction determined by the extent of spatiotem-
oral clusters. For each participant, 20 null distribution MEG RSAs were
reated in an identical manner to the veridical analysis, except that the
lock category labels were randomly mislabelled. One such mislabelled
ime-series was randomly selected for each participant, the MEG-fMRI
SA was performed for each participant, and a group-level GLM per-

ormed. This process was repeated 1000 times, and the maximum con-
iguous cluster across space and time for each permutation computed,
hich allowed determination of the probability of a cluster in the veridi-

al analysis exceeding this space-time extent threshold under the null
ypothesis. 

. Results 

.1. Behavioural 

Reaction Times (RTs) did not significantly differ as a function of
odality (MEG/fMRI), nor was there an interaction between imaging
odality and category (F-values < 1). RTs did show a main effect of

ategory F (3.02,57.30) = 8.90, p < .001, Greenhouse-Geisser corrected. The
astest responses were made for food items (mean = 937 msec) and the
lowest responses for tool items (mean = 1019 msec). Mean reaction
imes for each category and imaging modality are provided in supple-
ental materials, table S2. 

.2. Category classification - MEG 

We initially considered each neuroimaging modality separately and
nvestigated if it is possible to discriminate semantic categories. The
verage overall classification performance (collapsed across category
4 
airs) for MEG data is shown in Fig. 1 . An initial temporal cluster span-
ing from 275 to 295 msec did not survive correction for multiple com-
arison. This was followed by an extended temporal cluster spanning
rom 320 msec to the end of the analysed time window ( p ≤ .0001, cor-
ected). 

.3. Category classification – fMRI 

For fMRI, the average overall classification performance (collapsed
cross category pairs) is shown in Fig. 2 . It revealed sensitivity to seman-
ic category in the AG, precuneus/posterior cingulate, orbitofrontal cor-
ex (OFC), IFG, superior frontal sulcus (SFG), posterior middle/inferior
emporal gyrus (pMTG/ITG), ventral temporal cortex (VTC; compris-
ng fusiform, parahippocampal, and perirhinal cortex), as detailed in
able 1 . 

.4. MEG-fMRI integration through representational similarity analysis 

We used RSA to compare neural representational similarity between
EG and fMRI. Fig. 3 shows clusters corrected for multiple comparisons

cross the volume. Table 2 indicates which clusters survived multiple-
omparison correction both across the volume and the 12 time-windows.

Representational spaces align between MEG and fMRI firstly in the
50–395 time-window, where object-category representation present in
he MEG converge with representational spaces in the pITG. The pITG
luster persisted in the 400–445 time window, creating a contiguous
patiotemporal cluster that survived corrections for multiple compar-
sons across both the volume and number of time windows ( p = .025,
orrected). In the 400–445 time window, the pITG cluster was observed
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Fig. 3. Whole-brain MEG-fMRI RSA searchlight analysis. Shown are the locations of localised patterns of category representation that conform to the MEG repre- 
sentational space at each time window. Significant voxels are shown with an initial voxel-wise threshold of p < .001, which survived cluster-extent corrections for 
multiple comparisons across both the brain volume and time windows. See table 2 cluster location and extent. No significant clusters were evident in the time 
windows between 200 and 345 msec. 

Table 2 

Cluster peak coordinates and number of voxels for the whole brain MEG-fMRI RSA searchlight analysis shown in figure 3. Contiguous temporal clusters are indicated 
with grey shading and survived corrections for multiple comparisons over both the brain volume and the 12 time-windows. 

Time Window 

Region 350–395 400–445 450–495 500–545 550–595 600–645 650–695 700–745 750–795 

VTC − 32 − 24 − 22 − 26 − 36 − 16 − 28 − 36 − 16 − 26 − 36 − 14 − 28 − 38 − 14 
[201] [286] [100] [441] [105] 

pITG − 52 − 56 − 12 − 48 − 62 − 8 
[254] [283] 

AG − 32 − 74 34 − 32 − 76 40 
[557] [856] 

Precuneus − 8 − 46 24 6 − 46 30 
[768] [130] 

Abbreviations. VTC: ventrotemporal cortex; pITG: posterior inferior temporal gyrus; AG: angular gyrus; IFG: inferior frontal gyrus; OFC: orbitofrontal cortex; pSTS: 
posterior superior temporal sulcus; MFG: middle frontal gyrus. 
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o be accompanied by MEG/fMRI representational convergence in the
TC, which formed a congruous spatial temporal cluster that extended

o the 500–545 msec time window ( p = .019, corrected). Subsequent
EG/fMRI representational convergence was observed after 650 msec:

gain in the VTC, from 650 to 745 msec ( p = .021, corrected), in the left
ngular gyrus from 650 to 745 msec ( p ≤ .001, corrected) and in the
recuneus from 700 to 795 msec ( p = .004, corrected). 

. Discussion 

In this work, we used similarity-based fMRI-MEG fusion to gain in-
ight into the temporal properties of components of the brain’s semantic
ystem. Within-imaging-modality-classification analysis revealed sen-
itivity to semantic object-category emerging around 320 msec post-
timulus in the MEG data, while fMRI data indicated widespread sen-
itivity to object-category across multiple brain regions associated with
he semantic system. Similarity-based fMRI-MEG fusion indicated multi-
hase processing across elements of the semantic system. Positive evi-
ence for convergent semantic spaces between MEG and fMRI emerged
rst in left pITG and VTC around 350–450 msec after stimulus onset.
his was followed by shared MEG/fMRI representational spaces after
50 msec that extended beyond VTC to incorporate the precuneus and
he left angular gyrus. Broadly, this is consistent with early involvement
f a subset of regions associated with conceptual representation, fol-
owed by more widespread representation across the semantic system,
ncorporating elements within the default mode network. 

.1. Early representational system – 350–545 msec 

Representational spaces converged between localised spatial pat-
erns in the pITG and VTC and the MEG trace in the 350–545 msec time
eriod. Sections of the pITG corresponding to the peak of the present
tudy have been shown not only to contain cross-modal (word/picture)
5 
epresentations of semantic object-categories but convergence between
he neural and semantic distances between categories ( S.L. Fairhall and
aramazza, 2013 ), providing stringent evidence for the representation
f conceptual knowledge in this region. While pITG and VTC regions
re more posterior than the anterior aspect of ventral temporal cortex
ost strongly associated with semantic dementia, a form of primary
rogressive aphasia that leads to deficits in semantic knowledge, neu-
al degeneration associated with semantic dementia also encompasses
oth the pITG and VTC ( Hodges et al., 1992 ; Rosen et al., 2002 ). These
egions may be functionally associated with those more anterior tem-
oral regions that have long been implicated as part of a multimodal
ub linking together conceptual knowledge distributed across the cor-
ex ( Lambon-Ralph et al., 2017 ; Patterson et al., 2007 ). 

It is notable that of the distributed set of regions showing multivari-
te sensitivity to object-category during semantic typicality judgments,
t is only in regions corresponding to the VTC and pITG that contain
ategorical representational patterns that are also present when seman-
ic access is incidental (i.e. when participants perform a phonetic judge-
ent on the word stimulus ( Liuzzi et al., 2021 ). The automatic nature of

epresentational access in these regions is consistent with the primacy of
epresentational fMRI/MEG convergence in these regions in the present
tudy. Collectively, these results suggest that automatic and relatively
arly semantic representation may occur within left VTC and pITG, po-
entially providing a first draft of the semantic information that is con-
ained in the stimulus that is further elaborated at subsequent stages to
llow performance of the typicality task. 

The pITG cluster extends into the pMTG, a region implicated in se-
antic control operations ( Jackson, 2021 ; Lambon-Ralph et al., 2017 ).
hile pMTG is more active during tasks that require making weak,

nfrequent, semantic associations ( Davey et al., 2016 ), and TMS to
MTG interferes with performance on such demanding semantic tasks
 Whitney et al., 2011 ), this region responds selectively for specific se-
antic classes such as ‘tools’ ( Chao et al., 1999 ; Noppeney et al., 2006 ),
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hows sensitivity to other object categories when tools are not included
n the category set ( S L Fairhall and Caramazza, 2013 ) and it is uncertain
hether this activation reflects representational or control processes in

he present study. 

.2. Late representational system – 650–800 msec 

In the 650 to 800 msec time period, convergence between fMRI and
EG representational spaces was present not only in VTC but extended

o the left angular gyrus, precuneus. The angular gyrus and precuneus
re key components of the default mode network and are implicated
n a range of higher-order internalised cognition extending beyond se-
antic processing to include theory of mind, remembering the past and

magining the future ( Buckner and DiNicola, 2019 ; Spreng et al., 2009 ).
ithin the context of the current task, these regions may play a role in

laborating upon representations accessed in pITG and VTC to facilitate
he semantic typicality judgement of the exemplar within its category.
his is consistent with the role of the angular gyrus in thematic links
etween object-concepts (mouse, cheese; Schwartz et al., 2011 ) and the
ole of the precuneus in linking together concepts drawn from differ-
nt object domains when presented in sentences ( Rabini et al., 2021 ).
oreover, the time course of activation in the precuneus is also consis-

ent with fMRI indices of the rapidity with which information can be
xtracted about famous individuals from the rapid serial presentation
f their faces ( Ubaldi and Fairhall, 2021 ). 

These results should be considered within the context of the current
xperimental paradigm. This typicality task required lexical access to
he word stimuli, retrieval of the associated conceptual representation
nd comparison of the exemplar to the category in general to allow typi-
ality assessment. Due to the arbitrary and symbolic nature of alphabetic
anguages, it is unlikely that lexical access would differ as a function
f semantic category. In this way, the first sensitivity to semantic class,
hat occurring between 350 and 545 msec, may reflect the automatic re-
rieval of the semantic representation associated with word presentation
o skilled reading and would generalise across experiments employing
ord stimuli. On the other hand, if the further elaboration of concep-

ual representations necessary for the typicality judgement is driving
ater components in the precuneus and left angular gyrus, this aspect of
he results may not generalise to tasks that do not share such demands.
dditionally, the precise time course of representational activation may
e influenced by the paradigm. Specifically, the predictability of the se-
antic category of the upcoming stimuli within each blocked and the

epetition of stimuli (at total of 3 times over the entire experiment) may
ave facilitated stimulus processing, resulting in relatively shorter ac-
ess latencies compared to other experimental paradigms. 

While these results provide broad insight into earlier and later stages
f conceptual representation, this likely represents only a partial picture
f the temporal properties of conceptual access. With the potential ex-
eption of the pMTG, the current results are blind to the time course
f semantic control processes such as those taking place in the IFG,
hich shows sensitivity to semantic category in the fMRI MVPA analy-

is ( Fig. 2 ) and is known to be recruited when semantic judgements are
nown to be required ( Zhang et al., 2021 ). One clear possibility is that
EG fMRI convergence is present in this region in the investigate time-

eriod but is below the resolution of the current study. Likewise, more
ubtle shared representational spaces may be present at time points ear-
ier than the 350 msec, where previous MEG work has shown sensitivity
o semantic content ( Giari et al., 2020 ; Leonardelli et al., 2019 ) as have
hronometric TMS studies ( Teige et al., 2018 ), as well as at other cortical
ites and time periods. 

In this work, we employed RSA to align neural representational
paces between MEG and fMRI to gain insight into the temporal process-
ng hierarchy of the brain’s semantic system. Consistent with a role in
utomatic processing, we saw the MEG and fMRI representational spaces
ligned first in the pITG and VTC around the 350–450 msec time win-
ow. This was followed by later representational convergence after 650
6 
sec that extended to the precuneus and angular gyrus, default mode
egions broadly associated with internalised cognitive processes weakly
ssociated with cognition involving interaction with the environment.
ollectively, these results are consistent with a multistage conceptual
rocessing of word stimuli, initially involving automatic aspects of the
epresentational system and later extending to elements of the semantic
ystem more strongly associated with internalised cognitive states. 
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