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The design of simple feed networks is of great interest in synthesizing monopulse 

radar array antennas in order to reduce the complexity of the antenna 

architecture, the costs as well as the occupied physical space (e.g., on aircrafts). 

Sub-arraying techniques have been proposed to properly address such a task. In 

this letter, starting from the formulation of the sub-arraying problem in terms of a 

combinatorial one, the final compromise solution is obtained by looking for the 

minimum cost path inside a binary tree graph through an Ant Colony Optimizer. 

 

Introduction: The synthesis of the optimal compromises between sum and 

difference patterns in monopulse radar arrays has been widely studied in the 

literature. Various methods based on the sub-arraying strategy [1] have been 

proposed to reduce both the complexity of the feeding network and the costs, 

thus obtaining cheap and compact antenna devices suitable for mobile 

applications. The synthesis problem is recast as the optimization of the sub-array 

configuration and of the sub-array weights to afford a compromise difference 

pattern that satisfies a set of user-defined constraints for a given optimal sum 

mode. Several approaches based on simulated annealing [2][3], genetic 

algorithms [4], and differential evolution [5] have been proposed to deal with the 

non-linearity of the synthesis problem and to avoid the ill-conditioning of the 

system-matrix-based approach described in [1]. Recently, an excitation matching 

approach has been proposed [6] where the array optimization has been 

reformulated into a combinatorial problem by exploiting the relationships between 

the optimal and independent sum and difference excitations. Since the set of 



admissible solutions can be properly reduced by considering only contiguous 

partitions, the solution space has been represented by means of a non-complete 

binary tree. To look for the best compromise solution (i.e., the minimum cost 

path), an ad-hoc local search strategy, called border element method (BEM), has 

been implemented. Nevertheless, since the combinatorial optimization deals with 

a non-convex functional, the BEM can get stuck into local minima. In order to 

overcome this drawback, the ant colony optimizer (ACO) [7] is considered in this 

work because of its “hill climbing” properties and since, unlike other evolutionary-

based optimizers, it fully exploits the graph representation of the solution space. 

Inspired by the foraging behavior of ant colonies, where the ants look for the 

shortest path between the food sources and the nest, the ACO was proposed by 

Dorigo et al. [7] as a viable approach to stochastic combinatorial optimization. 

 

Ant colony optimization for monopulse array antenna synthesis: Let us consider a 

linear uniform array with MN 2= , M,...,m ±±= 1 , radiating elements spaced by 

d . With reference to the sub-arraying strategy [1], the optimal sum pattern is 

given by a set of symmetric real excitations { }M,...,m;A mm
opt 1=== −αα , while 

the coefficients of the compromise difference pattern are defined as 

{ }M,...,m;bbB mm 1=−== −  where qqcmm wb
m

δα= . Moreover, { }Q,...,q;wW q 1==  

is the set of sub-array weights, qcm
δ  is the Kronecher delta, and 

[ ]{ }M,...,m;Q,cC m 11 =∈=  defines the sub-array memberships of the array 

elements. According to the excitation matching approach proposed in [6], let us 

consider the following matching function 
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where { }M,...,m;B mm
opt 1=−== −ββ  is the set of reference/optimal difference 

excitations, 
m

m
mg α

β= , and ( )Cwq , Q,...,q 1= , is given by the weighted (with 

weights 2
mα ) arithmetic mean of the optimal gains mg  of the elements belonging 

to the q -th sub-array [6]. Accordingly, the definition of the best compromise 

difference pattern close as much as possible to the optimal one is obtained by 

determining the unknown aggregation array C . Towards this end, the solution 

space is represented in an effective fashion by means of a non-complete binary 

tree [6] of depth M-1. Each path from the root to a leaf codes an admissible sub-

array configuration. A sketch of the solution tree when 5=M  and 3=Q  is shown 

in Fig. 1, 6=U  being the number of admissible solutions. Unlike [6], where the 

BEM is used to minimize (1), the ACO is adopted here to avoid the local minima 

problem. Each ant ( )ia , I,...,i 1= , is a collection of M  integer values that codes a 

trial aggregation vector ( )iC  filled in while the ant is moving throughout the binary 

tree, from the root towards the leafs, as schematically depicted in Fig. 1. At the 

first iteration ( 0=k , k being the iteration index), the branches of the tree have the 

same probability of being explored. At each node, the probability of choosing a 

path is given by k
h,

k
h,

k
h,bk

h,bp
21 ττ

τ

+
= , 21,b = ; 11 −= M,...,h . At the end of each iteration, 

the pheromone level k
h,bτ  is updated as follows 
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where ( ) ( ) ( )( )i
k

i
k

i
k W,CΨ=Ψ  is the fitness value of the i -th ant at the k -th iteration 

and H  is a positive constant. Afterwards, the evaporation operation is applied 

( ) 11 1 ++ −← k
h,b

k
h,b τρτ                                                    (3) 



( ]10,∈ρ . The procedure is iterated until a maximum number of iterations, K , or 

when a fixed threshold on the percentage of ants going through a path is 

reached. 

 

Numerical assessment: Let us consider a 100 -elements array ( 50=M ) with 

2
λ=d . The optimal sum and difference coefficients have been set to those of a 

Dolph-Chebyshev sum pattern with dBSLL 25−=  [8] and of a Zolotarev 

difference pattern with dBSLL 30−= , respectively. 6=Q  sub-arrays are 

considered in the compromise synthesis. As far as the BEM is concerned, a 

uniform aggregation BEMC0  has been used at the initialization ( 0=k ), while the 

following setup has been adopted for the ACO: 1000=I , 500=K , 10.H = , and 

010.=ρ . Moreover, the initial values of the pheromone on each branch have 

been fixed to 500 .h,b =τ , 21,b = ; 11 −= M,...,h .  

Figure 2 shows the behaviors of the minimization algorithms versus the iteration 

number k. As it can be noticed, the BEM gets stuck after 5=BEMK  iterations 

reaching a convergence fitness value equal to 210961 −×=Ψ .BEM
opt . On the other 

hand, the ACO outperforms the BEM in matching the optimal difference pattern 

by achieving a better compromise solution with 210701 −×=Ψ .ACO
opt  thanks to its 

effectiveness in sampling the 6102×≅U  paths of the solution tree. For 

completeness, the compromise difference beams obtained by the BEM and the 

ACO as well as the optimal difference pattern are shown in Fig. 3. It is worth 

notice that, although the ACO optimization is aimed at the best matching with the 

optimal difference pattern and not to minimize the SLL, the SLL value 

synthesized with the ACO is below of more than dB3  to that of the BEM. 

 



Conclusion: In this paper, the ACO is used for graph searching instead of BEM to 

properly address the local minima problem and to fully exploit the tree-structured 

representation of the solution space. Preliminary results have been reported to 

assess the effectiveness of the proposed ACO-based excitation matching 

approach in dealing with the compromise synthesis problem. 
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Figure captions: 
 
Fig. 1 - Non-complete binary solution-tree and ANT solutions. 
 
Fig. 2 - Plots of the matching cost function Ψ  versus the iteration index: ACO 

(best and mean values) and the BEM. 
 
Fig. 3 - Reference optimum and compromise difference patterns obtained with 
              the ACO and the BEM ( 50=M  and 6=Q ). 
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Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


