PhD Dissertation

Inter national Doctoral School in
Information and Communication Technology

Department of Information Engineering and Comp&&ence
University of Trento

ACTIVE LEARNING METHODS FOR
CLASSIFICATION AND REGRESSIONPROBLEMS

Edoardo Pasolli

Advisor: Prof. Farid Melgani, University of Trento

November 2011






A Chiara






Abstract

In the pattern recognition community, one of thesimeritical problems in the design of supervised
classification and regression systems is givenHhgy dquality and the quantity of the exploited trami
samples (ground-truth). This problem is particwaninportant in such applications in which the pres®f
training sample collection is an expensive and tecoasuming task subject to different sources adrerr
Active learning represents an interesting approgcbposed in the literature to address the problein o
ground-truth collection, in which training samplage selected in an iterative way in order to mirdenthe
number of involved samples and the interventidmuafan users.

In this thesis, new methodologies of active leagrior classification and regression problems arepwsed
and applied in three main application fields, whigte the remote sensing, biomedical, and chemoersetri
fields. In particular, the proposed methodologicahtributions include: i) three strategies for thepport
vector machine (SVM) classification of electrocagitaphic signals; ii) a strategy for SVM classifiica in

the context of remote sensing images; iif) comimnadf spectral and spatial information in the cexit of
active learning for remote sensing image classdifieg iv) exploitation of active learning to solibe
problem of covariate shift, which may occur wheslassifier trained on a portion of the image is hgg to
the rest of the image; moreover, several stratefpesregression problems are proposed to estimate v
biophysical parameters from remote sensing dataapdhemical concentrations from spectroscopicagat
vii) a framework for assisting a human user in tesign of a ground-truth for classifying a giverticgl
remote sensing image.

Experiments conducted on simulated and real dats &e reported and discussed. They all suggest tha
despite their complexity, ground-truth collectiorolplems can be tackled satisfactory by the proposed
approaches.

Keywords
Active learning, classification, electrocardiograpbignals, Gaussian processes, ground-truth, segre,
remote sensing, spectrometric data analysis, stippctor machines.
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1. Introduction and Thesis Overview

Abstract — In this chapter, we describe briefly the generahteat in which the thesis is positioned. In a
second step, the specific problems faced in thewwolg chapters are introduced. Finally, the copesding
proposed solutions and an overview of the thegjamization are given.



Chapter 1 Introduction and Thesis Overwiew

1.1. Context

Automatic recognition, description, classificati@amd grouping of patterns are important problens in
variety of engineering and scientific disciplinascls as statistics, computer-aided diagnosis, magdket
computer vision, biomedicine, and remote sensihgs& problems call for two major questions: 1) vibat
pattern that a machine may know? and 2) what &tt@nm recognition machine? A pattern can be défase
an entity, vaguely defined, which could be a fipgert image, a handwritten cursive word, a humare fa
set of multispectral observations, etc... [1]. In geh, pattern recognition can be seen as a reseaialthat
aims at studying how machines can observe the @mwient, learn to distinguish patterns of interesmf
their background, and make reasonable decisionstdbe categories of the patterns. In this conttd,
general scheme of a pattern recognition systenbeasubdivided in three main steps as synthesiz&tgin
1.1. In the first step, observations from the ptgfsivorld are gathered by means of sensors anceodly
converted into digital format for computer-basedgassing. The pre-processing phase aims at: 1¥iredu
the possible errors derived from the acquisitioagghas they may have a negative influence on tlosvfng
analysis; 2) providing a suitable representatiorthef data/objects to recognize. Finally, the anslpbase
aims at extracting the required information (prajidfoom the considered data. In particular, two mai
problems can be identified in the pattern recognifield, namely classification and regression. phgose
of classification is to assign each input valuene of a given set of classes, while in regresgioblems a
real value is associated with each input.

In the literature, classification and regressi®ksahave been approached from a methodologicat poin
of view in two very well-established ways: 1) thgsrvised approach, in which an input pattern (d$e)np
identified as a member of a predefined class/valnd; 2) the unsupervised approach, in which a sampl
assigned to a natural class/value inferred throsighlarity measures. In the supervised approach, th
mapping from the set of input sample8 7 ¢ (whered is the feature space dimensionality) to a finéeaf
labels y is carried out after inferring a mathematical fime y=f(x) from a training set
L ={(x,,y,)---.(X,,. ¥, )}, i-€., a set oh samples for which the labelaspriori known (labeled data). We note

that for classification problemg /7 {1,...,T} whereT is the number of considered classes, while in the
regression contextassumes a real value. The goodness of the obthinetion is evaluated by how well it
generalizes, i.e., how accurately it performs ow samples, termed as test set, assumed to follevgame
statistical distribution characterizing the tramidata. In the unsupervised approach, no labeled atea
priori available. Therefore, the objective becomes the anpartitioning input samples into groups called
clusters, in such a way that members of the sausteslare as similar as possible and samples fiffenaht
clusters are as dissimilar as possible. Accordintlg availability or not of labeled data heavilynstrains
the kind of classification approach to be takep rnsideration and thus the whole recognition gsec

1.2. Problems

In general, methods based on supervised approdehes shown very promising performances in
many different fields, but they requige priori information about the considered classificatiogression
task, and thus the intervention of human userghénliterature, most of the attention has beenmgioe
improving the accuracy of the classification pracbkyg acting mainly at the following three level3:dhta
representation; 2) discriminant function model; @)dcriterion on the basis of which the discrimihan
functions are optimized [2]. These works are basedn essential assumption that is the samplestosed
train the classifier/regressor are statisticallyresentatives of the classification/regression leralio solve.
However, the process of collection of training sbapis not trivial, because the human interveniin
subject to errors and costs in terms of both tim& money. Therefore, the quality and the quantitguzh
samples are very important, because they have @angstimpact on the performances of the
classifier/regressor.
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Physical Data R Data g Data Analysis
process acquisition 71 preprocessing i analysis products

Fig. 1.1.Flow chart of a general pattern recognition system.

Only in the last few years, in the literature thbes been a growing interest in developing methods
focused on the problem of the construction of thging sample set, also called ground-truth. Irtipalar,
the objective is to develop automatic strategiesemni-automatic procedures based on interactiveegses
with human users.

A first problem in ground-truth collection is givéay the mislabeling issue due to errors in the gsec
of sample labeling. For example, focusing on theate sensing field, ground-truth collection candoae
by following two main approaches: 1) in situ obsgion and 2) photo-interpretation [3]. Each of theas
its own advantages and drawbacks, but both aredutgj errors. In the first case, this may occuabse of
georeferencing problems, while in the second opegtsal mismatching errors by human users are #ia m
source of problems. Since the presence of misldltedéning samples has a direct negative impacthen
classification/regression process, the developmérautomatic techniques for validating the collected
samples is crucial. In the literature still few a@ns for coping with this issue have been prodose
Focusing on classification problems, they are basedwo main approaches. The first one admits the
presence of mislabeled samples, but aims at degignclassifier that is less influenced by thispree [4].
The second one tends to identify and remove théabgked samples from the training set. An earlylkwor
derived from this strategy fok-nearest neighborkiIN) classification suggested first to apply a 3NN
classification over the whole learning set and ttteremove misclassified samples in order to preduoew
learning set on the basis of which a 1NN classifdormed for the classification phase [5]. In,[&] order
to avoid overfitting of noisy samples, the authosgmsed to perform the removal process througtCthé
decision tree classifier. In [7], the suspect samjalre identified and removed from the learningpgaheans
of an ensemble of three classifiers (i.e., C4.9\khnd linear classifiers). In particular, a samplexpected
to be mislabeled if it is misclassified by the enbée of classifiers. In [8], the authors propog@eiminary
filtering procedure. A sample is suspect when rieighbourhood defined by a geometrical graph the
portion of examples of the same class is not digmifly greater than in the entire data set. Sudpect
samples in the training data can be removed obetdd. The filtering training set is then providesiinput
to a 1NN learning algorithm. While typical workscies on cleaning the training data by either disogrdr
correcting mislabeled instances, in [9] the authwopose a different approach. For each trainimgpsa, a
probability vector of class membership is calcudatad thus the confidence on the current labetéslas a
weight during the training phase. The probabiligctor is calculated such that clean samples hahigha
confidence on its current label, while mislabele@®have a low confidence on its current labelahdyh
confidence on its correct label. The probabilitgtdbution over the class labels is calculated gisin
clustering technique based on the expectation maatian algorithm. In [10], the authors presenteariel-
based approach able to filter the mislabeled sanple mislabeled detection issue is viewed as an
optimization problem based on the weighk®tN classifier, a modification of the clas&iIN algorithm that
allows taking into account the similarity betweermgples. In [11], a Bayesian classifier is usedstineate
the probabilities of each sample to belong to thresitlered classes. Then, the value of entropylésiieded
from the probabilities and used to evaluate thécglity of the sample to belong to the classesalynthe
samples with low entropy, but with a wrong predinti are identified as mislabeled samples. In [1#,
mislabeled sample detection issue is viewed agptmiaation problem where it is looked for the bggbset
of learning samples in terms of statistical sepéitatbetween classes. The method supposes thaseda
follow a Gaussian distribution.
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Another problem frequent in real application scasalis represented by the scarcity of available
training samples due to complexity and cost thaaratterize the ground-truth construction process.
Accordingly, this constrains the classificationfieggion process to be carried out with small numioér
training samples, thus leading to weak estimateth®fclassifier/regressor parameters and potentostl
classification/regression performances, in pardiciflclass distributions are overlapped. A possiblution
to this issue consists to exploit the large nundfemlabeled samples that are typically availableeao cost
from the data under analysis. Indeed, the improveroé the classifier/regressor accuracy is obtaibgd
combining automatically labeled and unlabeled sempMethods dealing with this issue are termed
typically as semisupervised methods. Focusing agsdication problems, they are based on two main
principles, termed as inflation and transductiomg@ples. The inflation principle relies on the &def
augmenting the original training set by exploitmget of unlabeled samples, which covers a podidhe
whole set of samples. For this purpose, the lafifefise unlabeled samples need to be beforehandagstl.

In the literature, the most intuitive way to perfoinflation is the so-called self-training stratd@g], which

is based on the following steps: 1) exploit theilabkée training samples to construct an initialssidication
model; 2) generate a first guess of the label ehamlabeled sample to transform it into a semlkbe
sample; 3) inflate the training set; 4) refine wp donvergence of both classifier model and thellabe
estimates, using iteratively the resulting inflatedining set. Another inflation-based method i th
cotraining method, which splits the feature spate fwo different feature subspaces and trainassdier

on each subspace [14]. Initially, the two classsfiare trained only with the training samples. Theach
classifier is used to classify the unlabeled sam@ed subsequently retrained with the training set
augmented with the semilabeled samples for whidin lotassifiers feel most confident. The process is
repeated up to convergence. In this way, eachifitasgasses its knowledge to the other so thay ttam
cooperatively improve their performance. The exgmh-maximization algorithm is one of the most
common techniques for integrating unlabeled sampiethe classification process. In [15], unlabeled
samples are initially classified by means of th@estation-maximization algorithm applied just ore th
original training samples. Then, the resulting $ebdled samples are merged with the original tngjini
samples to update class statistics, and the samptesclassified by the updated statistics. Thizgss,
which assigns full weight to training samples butoanatically gives reduced weight to semilabeled
samples, is repeated until convergence is readheld.6], the inflation principle is exploited to prove
performance of th&NN classifier in terms of computational cost. Urbdal samples are integrated in the
learning process to yield a finer cell partitioniigthe feature space and to significantly increagsenumber

of predefined decision regions. The result is atiradiminution of the classification cost. Thersduction
principle is conceptually completely different frahe inflation one. This is due to two main reasdnsall
available samples and not just part of them coumteibto the learning process; and 2) training and
classification/regression steps are fused intoiquenstep. This last point means that there isxplict and
separate classification/regression step, as conymkmawn. Indeed, the best classification for theolerset

of samples is generated during the training processh principle was pioneered by Vapnik in thetern

of the statistical learning theory for classificatiproblems [17]. In particular, the transductiupport vector
machine (TSVM) proposed in [18] represents a kégremce for this category of semisupervised clessif
The TSVM optimization function is almost similar ttwat of the standard inductive SVM with the diéfece
that it also integrates the data label estimatiablem in order to look for the maximal margin hggane
over both training and all unknown samples. In [1B¢ authors propose a TSVM that exploits a waight
strategy for unlabeled samples based on a timendiepé: criterion and addresses the problem of sirhapt
model selection. In [20], a transductive methogbrisposed for the classification of hyperspectrabdé
formulates the semisupervised classification pmobterough a graph-based representation in which eac
sample spreads its label information to its neigblumtil a global stable state is reached for thelevimage
samples. The authors integrate also spatial cardeitformation in the classification process byame of
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opportune composite kernels. In [21], the labelnesion process is performed within a multiobjeetiv
optimization framework based on genetic algorithimsyhich each chromosome of the evolving poputatio
encodes the label estimates as well as the SVMifikxsparameters for tackling the model selecigsue.
Such a process is guided by the joint minimizatériwo different criteria that express the genegtlon
capability of SVM classifier. The two explored erita are an empirical risk measure and an indiaafttine
classification model sparseness, respectively. idering regression problems, very scarce attentias
been paid to se to semisupervised learning. Ambagavailable methods, one can retain the one based
the cotraining of twdkNN estimators whose tasks during the learning plhasdo provide, for each other,
guesses of the targets of the unlabeled samplgsTRe final prediction is made by averaging thgression
estimates generated by both estimators. In [28]atithors propose a method for SVM regression hiichw
the integration of the unlabeled samples in theession process is controlled through a particlarsw
optimization (PSO) framework. Two different optimion criteria are adopted, which are empirical and
structural expressions of the generalization cdipabf the resulting semisupervised regressioneys

Given the constraints in terms of time and mondated to the acquisition process of training sasple
in the last few years there has been also a growilegest in developing strategies for the semoianattic
selection of the training samples. In the machesring field, the active learning approach represan
interesting solution to face this problem. Conditgra small and suboptimal initial training setwfe
additional samples are selected from a large amofininlabeled data (learning set). These samples ar
labeled by the human expert and then added tadimertg set. The entire process is iterated unsiiogping
criterion is satisfied. The aim of active learniago rank the learning set according to an opperitriterion
that allows to select the most useful samples fmrane the model, thus minimizing the number ofntiraj
samples necessary to maintain discrimination céipabias high as possible. In the last few yediféerent
solutions have been proposed and applied succhyssfuldifferent applications fields. Considering
classification problems, in [24] the authors praptee query by committee method, in which a conamitf
classifiers is used. In particular, the sampleshwitie maximum disagreement between the different
classifiers are selected. In [25] a probabilistitive learning strategy based on SVM designeddiagd data
applications is presented. It queries for a sesashples according to a distribution as determinedhb
current separating hyperplane and an adaptive demée factor. The confidence factor is estimatedfr
local information using th&NN principle. In [26], the active sampling-at-thetimdary method is applied
using orthogonal pillar vectors lying on the demisboundary to learn the classification decisiopémplane
in a multidimensional space. This shows that theppsed strategy can be applied with fewer training
samples, rather than randomly selecting traininta dzear the decision hyperplane. Both perceptron
algorithm and SVM are used to estimate the decibimmndary. In [27], the authors propose the method
called confidence-based active learning, for trajna wide range of classifiers, such as SVM, neural
networks, and Naive Bayesians. The approach sedatigequests annotation only for uncertain samples
i.e., for those samples that cannot be classifigtirwa certain conditional error. Thus, it estismtthe
uncertainty value for each sample according toutput score from a classifier and select only damwith
uncertainty value above a user-defined thresholdlydamic bin width allocation method is proposed to
estimate sample conditional error. In [28], thergt®y-transduction algorithm is proposed. It isddh®n p-
values obtained from a transductive learning praceth a stream-based setting where samples aeevelols
sequentially. When a new example is observed, réffite classifiers are constructed and statistical
information is derived by considering all the pbssilabels for the new sample. Then, statisticirmation
of the two most likely labels for the new sampleised to decide on whether to select the new safipie
utility of the proposed method is shown on bothabyrand multiclass classification problems usingvb&s
classifier. In [29], active learning is applied tee multi-label image classification problem. Thahers
propose a two-dimensional strategy, in which bbthdample and the label dimensions are considéhed.
reason is that the contributions of different Ialtel minimize the classification error are differdne to the
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inherent label correlations. Similarly, the actlearning approach has been studied for regressimigms

by the machine learning and statistics communiti@syhich it is also known asptimal experimental
design After the seminal paper by Cohn et al. [30], ihieh active learning has been applied to two
statistically-based learning architectures, suchmadures of Gaussians and locally weighted regoess
several works have appeared in the last few y&arsinstance, in [31], the authors focus on thébjemnm of
local minima in active learning for neural netwqrlesd two probabilistic solutions are proposed[32],
after introducing the fundamental limits in a miabxnsense of active and passive learning for various
function classes, some strategies based on attre#used partition of the data are presented.38],[
considering linear regression scenarios, a metlsitguhe weighted least-squares learning basechen t
conditional expectation of the generalization eriomproposed. In [34], the authors apply the quayy
committee approach in the regression context. Tam mlea is to train a committee of learners anergu
the labels of the samples where the committeedigtien differ, thus minimizing the variance of tlearner

by training on samples where variance is larges{3b], it is suggested to solve the problems divac
learning and model selection at the same timederaro improve further the generalization perforogarin
[36], a solution to the problem of pool-based actigarning in linear regression is proposed. In,[87e
authors develop a strategy for kernel-based limegression, in which the proposed greedy algorithm
employs a minimum-entropy criterion derived usin@ayesian interpretation of ridge regression. Despi
the promising performance given by the active legrapproach in the regression field, nothing ssamilas
been proposed in the remote sensing literature.

1.3. Thesis Objective, Solutions and Organization

As introduced in the previous subsection, actieerieng approach is a smart solution to the prolém
training sample collection for supervised clasatfien and regression problems. Although in the fast
years several strategies have been proposed litettadure, it still represents a research fieldyadat interest
because of its important implications. For thissma the objective of this thesis is to propose new
methodologies of active learning in different apation fields. In particular, three main fields balveen
considered, namely remote sensing, biomedicalchathometrics.

After this introductive section, the thesis is origad into eigth chapters. In Section 2, the active
learning approach is introduced in the biomedidaldf In particular, we focus on the classificatioh
electrocardiographic signals using SVM classifimatiThree different strategies are described: ligima
sampling, in which the samples of the learningnsete close to the hyperplane between the diffesiaisses
are chosen; 2) posterior probability sampling, imcli posterior probabilities are estimated for ealetss.
Then the samples that maximize the entropy betweeposterior probabilities are selected; and &rygby
committee in which a pool of classifiers is trainmd different features to label the set of learrsagples.
Then, the samples with the maximum disagreememntdast classifiers are chosen. In Section 3, a new
strategy for SVM classification in the context tdssification of remote sensing images is propokeadlies
on the idea of: 1) reformulating the original cifisation problem into a new problem where it iseded to
discriminate between significant and non signiftceamples, according to a concept of significanb&kwis
proper to SVM theory; and 2) constructing the cgpmnding significance space so that to suitablgethe
selection of the samples potentially useful to dyetteal with the original classification problem.hié
strategies proposed in the literature for the rensensing image classification formulate the adéeening
problem in the spectral domain only, in Sectionelpropose to combine spectral and spatial infoonati
order to improve the process of training sampleda®n. In particular, three criteria based on igpat
information are introduced in order to encourage ghlection of samples distant from the samplesadir
composing the current training set. In the firsatglgy, we compute the Euclidean distances in platiad
domain from the training samples, while the second is based on the Parzen window method applied in
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the spatial domain. Finally, the last criterion dohwes the concept of spatial entropy. In Sectionws,
investigate the problem of covariate shift in thenote sensing field. A classifier trained on tnagnsamples
acquired from a region of the image can fail ifdise classify the entire image. Indeed, traininggies
often suffer from a sample selection bias and db represent the variability of spectra that can be
encountered in the entire image. Therefore, to mia classification performance, it is necessargdaptat
the first model to the new data distribution. listBection, we propose to perform adaptation bypsam
new training samples in unknown areas of the im&y&. goal is to select these pixels in an inteilige
fashion that minimizes their number and maximizesirtinformation content. Two strategies based on
uncertainty and clustering of the data space ansidered to perform active selection. In particuthe
breaking ties active sampling strategy is used witlinear discriminant analysis. After presentingthie
previous sections strategies for classificatiorbfEms, in Section 6 the active learning approaalsed in
the regression context. In particular, we focustlom estimation of biophysical parameters from remot
sensing data. Various strategies specific for Gand8rocess (GP) and SVM regression are proposed. F
GP regression, the first two strategies are basethe idea of adding samples that are distant fiioen
current training samples in the kernel space, wihiéethird one uses a pool of regressors in omeetect
the samples with the greater disagreements bettheatifferent regressors. Finally, the last stratexploits
an intrinsic GP regression outcome to pick up tlstndifficult and hence interesting samples to llaber
SVM regression, the method based on the pool afessgrs and two additional strategies based on the
selection of the samples distant from the curreppert vectors are proposed. Similarly, in Secfiothe
active learning approach is used for regressiohlenes in the chemometrics field. In particular, eemsider
the problem of the estimation of chemical conceiuting from spectroscopic data. In this case, tlpgsed
strategies are specifically developed for partast squares regression (PLSR) and SVM regressan.
PLSR, the first method is based on adding sampkgsare distant from the current training samphethe
feature space, while the second one uses a poebagssors. For SVM regression, the method baseideon
pool of regressors and an additional strategy basetthe selection of the samples distant from tippsrt
vectors are proposed. In Section 8, a novel framlefay assisting a human user in the design ofocagul-
truth for classifying a given optical remote segsimage is proposed. It is based on automatic wersiged
procedures of level set segmentation and clusteamgake both spatial and spectral information cbouate
in the ground-truth design. In particular, it alvwdentifying the most significant areas of the gmand
facilitating the manual labeling operation. Theutéag ground-truth is classifier-free and can betHer
improved by making it classifier-driven through active learning process. Finally, general conclusion
the methodological and experimental developmenseyed by the present thesis are drawn in Section 9
This dissertation has been written under the assamphat the reader is familiar with the
methodological aspects related to pattern recagniprocessing. In the opposite case, the references
available at the end of this section may be useddosultation since they provide a valuable arfthestive
introduction to the concepts used in the followsegtions. These latter have been structured in aweay
to make them self-contained avoiding to the reditienecessity to read all the chapters precedmgitie of
interest.
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2. Active Learning Methods for Electrocardiographic Signal
Classification

Abstract — In this chapter, we present three active learningategies for the classification of
electrocardiographic (ECG) signals. Starting fromsanall and suboptimal training set, these learning
strategies select additional beat samples fromrgdaset of unlabeled data. These samples are ldbele
manually, and then added to the training set. There procedure is iterated until constructing adl
training set representative of the considered dfecsdion problem. The proposed methods are based o
support vector machine classification and on themargin sampling; 2) posterior probability; and guery

by committee principles, respectively. To illustr#teir performance, we conducted an experimertalys
based on both simulated data and real ECG sigmal® the MIT-BIH arrhythmia database. In generak th
obtained results show that the proposed strategidsbit a promising capability to select sampleat thre
significant for the classification process, i.eo, boost the accuracy of the classification procedsle
minimizing the number of involved labeled samples.

The work presented in this chapter has been puwaligshthelEEE Trans. Inf. Techn. Biomedol. 14, no. 6,
pp. 14051416, November 2010; Co-author: F. Melgani.
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Chapter 2 Active Learning Methods for ElectrocardiograpBignal Classification

2.1. Introduction

Electrocardiographic (ECG) signals represent a ulisefformation source about the rhythm and
functioning of the heart. For this reason, in thstlyears, there has been a great interest in ajengl
techniques for the automatic analysis of ECG sinéh particular, in the biomedical engineering
community, automatic ECG signal classification hexeived a significant attention because of thetjpa
advantages it offers for the detection and momtpaf cardiac diseases.

In the literature, there are several techniquedirdpavith this issue. Among the most recently
published works, we can find those presented iff]@]. In greater detail, Osowski al. [1] implemented
two classification systems based on the suppotbvesachine (SVM) approach. The first exploits teat
based on high-order statistics, while the secord tise coefficients of Hermite polynomials. For rned
performance, Osowslat al. proposed to combine the two classifiers by medres weighting mechanism,
whose weights are determined according to a leastre estimation method. In [2], an automatic anbeat
segmentation and classification system based omar&dviian approach is proposed. The system carties 0
ECG signal analysis through two processing layerghe first, the ECG signal is segmented into beat
waveforms by means of a robust waveform modelliitg Widden Markov models. In the second, the system
identifies premature ventricular contraction besmg a simple set of rules. In [3], a rule-baseugh-set
decision system is presented for the developmean @fiference engine for disease identificatiomgisime-
domain features. In [4], a patient-adapting heatthdassifier system based on linear discriminasts
proposed. The classification system processescaming recording with a global classifier to prodube
first set of beat annotations. Then, an expertaadis, and if necessary, corrects a fraction ob#as of the
recording. The system then adapts by first trairanigcal classifier using the newly annotated heatsl
combines both local and global classifiers to famadapted classification system. Iredral. [5] presented
an approach for classifying beats of a large databg training a neural network (NN) classifier ngsi
wavelet and timing features. Ina al. found that the fourth scale of a dyadic wavelah$form with a
guadratic spline wavelet together with the pre{fRR-interval ratio is effective for distinguishingprmal
and premature ventricular contraction (PVC) frorhestbeats. In [6], an approach for personalized ECG
heartbeat pattern classification is presented based on block-based NNs, where a 2-D array afufao
component NNs with flexible structures and interoahfigurations is implemented using reconfigurable
digital hardware. Network structure and connecti@ights are optimized using local gradient-basedcte
and evolutionary operators with the rates changisigptively according to their effectiveness in ¢aelier
evolution period. Weret al. [7] proposed GreyART, an adaptive resonance théidybased on the grey
relational grade similarity measure for ECG beassification. The strategy is subdivided in two s@#sa
The first phase is the offline learning phase irclwhan optimal value for the vigilance thresholdl dhe
corresponding cluster centers from the learninglltesare determined. These results are used aal init
settings of the online examining phase in whichE&liG beats that pass the vigilance test are dedsi
real time. For those beats that fail the vigilatest, the classifier online creates new clusters raports
their templates for investigation by an expert[8h the generalization capability of the SVM clidies in
the classification of ECG beats is improved byassification system based on particle swarm opétiua.
For this purpose, the SVM classifier design is med by searching for the best value of the patarse
that tune its function and by looking for the bssbset of features that feed the classifier. keical. [9]
presented a patient-specific classification sydianthe detection of ECG heartbeat patterns. Thegss of
feature extraction uses morphological wavelet fians features and temporal features from the ECi@.da
For the classification step, feedforward and fudgnnected artificial NNs, which are designed foctea
patient by the proposed multidimensional PSO tephi are used. In [10], heartbeat time series are
classified using the SVM. Statistical methods agda analysis techniques are used to extract fegtilom
the signals.
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In general, in order to obtain an efficient andustbECG classification system, it is necessary to
address some important issues in a suitable wag. drhem is the choice of the classifier to addpt.
particular, approaches based on SVM have shown gatential in many different research areas aritién
ECG classification field too [1], [8], [10]. Indegthe SVM classifier has a good generalization baipa
and is less sensitive to the curse of dimensigndlitan traditional classification techniques [11].
Classification systems based on SVM can give esgelperformances, but are supervised. For thisorgas
the performances depend strongly on the qualitycareohtity of the labeled data used to train thesifeer.
Indeed, training (labeled) samples must be reptaSea of the statistical distribution of the daiehe
process of the collection of training samples @yéver complex, i.e., subject to errors and cdstlierms
of both time and money because done manually byahuexperts (cardiologists). To overcome this
problem, it would be necessary to find a way toodeofew training samples, but fundamental for threect
discrimination between the set of considered cladser this reason, in the last few years, theseeleen a
growing interest in developing strategies for thenfi)automatic construction of the set of trairsagples.

In the machine learning field, a recent approaacuged on this topic is the so-called active leaynin
approach. In general, its principle is relativaiple. Starting from a very small and suboptimairing set,
any active learning strategy aims at selectingoimes way additional samples, considered importaoin fa
large amount of unlabeled data (learning set). @lsasnples are labeled by the expert and then dddbéd
training set. The entire procedure is iterated anstopping criterion is satisfied.

In the literature, several active learning methbdse been proposed. Mitet al. [12] presented a
probabilistic active learning strategy based on Suékigned for large data applications. Their stpate
gueries for a set of samples according to a digioh as determined by the current separating njaee
and an adaptive confidence factor. The confideactof is estimated from local information using #e
nearest neighbor principle. In [13], the active phng-at-the-boundary method is applied using aythal
pillar vectors lying on the decision boundary taarle the classification decision hyperplane in a
multidimensional space. This shows that the propasetegy can be applied with fewer training exiasp
rather than randomly selecting training data nbardecision hyperplane. Both perceptron algoritma a
SVM are used to estimate the decision boundaryand Sethi [14] proposed the method called the
confidence-based active learning for training aeménge of classifiers such as SVM, NNs, and Naive
Bayesians. The approach selects and requests @ianaialy for uncertain samples, i.e., for thosenpkes
that cannot be classified within a certain condiioerror. Thus, it estimates the uncertainty vdtwesach
input sample according to its output score fromassifier and select only samples with uncertairgiue
above a user-defined threshold. A dynamic bin wigllbcation method is proposed to estimate sample
conditional error. In [15], the query-by-transdoctialgorithm is proposed. It is basedmwmalues obtained
from a transductive learning procedure in a stréaised setting, where examples are observed segjiyenti
When a new example is observed, different clagsifee constructed and statistical informationasweéd
by considering all the possible labels for the rexample. Then, statistical information of the twosn
likely labels for the new example is used to deddevhether to select the new example. The utilftthe
proposed method is shown on both binary and mastgctlassification problems using SVM as classifier
[16], active learning is applied to the multilabelage classification problem. @it al. proposed a 2-D
strategy in which both the sample and the labeledsions are considered. The reason is that the
contributions of different labels to minimize thiagsification error are different due to the inmeriabel
correlations.

In the current literature, despite the great péaeof the active learning solution, very scarcetion
has been paid for developing methods derived fraisi ery recent learning approach and applied ¢o th
problem of ECG signal classification. Merkwirgt al. [17] proposed an approach for regression modelling
applied to ECG data, which can be used for datgcession and prediction. A sequence of models @ilsm
subsets of the entire data set is trained in dadachieve small computation time and memory corpsiam.
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An active learning approach is used to increasdrtiring subset iteratively to cover the full dymas of
the data set without using all observations foratieial training.

In this chapter, we present different active laagnstrategies for ECG signal classification. Aleé th
proposed strategies are based on iterative proegdmd use SVM to classify the signals. In paricuhree
different strategies are described and comparedndrgin sampling (MS) in which the samples of the
learning set more close to the hyperplanes betweedifferent classes are chosen; 2) posteriorgtitity
sampling (PPS) in which posterior probabilities @sémated for each class. Then the samples thatmza
the entropy between the posterior probabilitiessslected; and 3) query by committee (QBC) in whach
pool of classifiers is trained on different featite label the set of learning samples. Then, therithm
chooses the samples with the maximum disagreenatwebn classifiers.

The remaining part of the chapter is organizedddsviis. The basic mathematical formulation of
SVMs for solving binary and multiclass classificatiproblem is recalled in Section 2.2. In Sectidh,Zhe
three active learning algorithms proposed in thigly are described. Section 2.4. presents thetsesul
obtained on simulated data, while experiments ah ECG data from the MIT-BIH arrhythmia database
[18] are shown in Section 2.5. Finally, conclusians drawn in Section 2.6.

2.2. Support Vector Machine Classification

Let us first consider, for simplicity, a supervideidary classification problem. Let us assume that
training set consists af vectorsx; 0 7% (i = 1, 2, ... , i from thed-dimensional feature spade generated
from a set of morphological/temporal charactersstitthe ECG beat. To each vectpiwe associate a target
y, O0{-1, +1} (e.g., normal and abnormal beats). The linear S\Naddsification approach consists of looking
for a separation between the two classeXiby means of an optimal hyperplane that maximites t
separating margin [11], [19]-[22]. In the nonlinease, which is the most commonly used as dataftee
linearly nonseparable, the two classes are firgtped with a kernel method in a higher dimensioeature
space, i.e.®X) O % (d'>d). The membership decision rule is based on thetiomsigr{f(x)], wheref(x)
represents the discriminant function associatetl thie¢ hyperplane in the transformed space andfisede
as:

f(X) =w /@x) +b'. (2.1)

The optimal hyperplane defined by the weight veetord 7 and the biad O /7 is the one that
minimizes a cost function that expresses a comibimatf two criteria: margin maximization and error
minimization. It is expressed as [11]:

_ Ly L on
P(w,é) =5 +CH g (2.2)
i=1
This cost function minimization is subject to tledwing constraints
y,(wld(x;)+b)=21-¢&, i=1,2,...n (2.3)
and
&=20, i=1,2,...,n (2.4)

where &'s are the slack variables introduced to accounnfinseparable data. The const@mepresents a
regularization parameter that allows to control shape of the discriminant function. The aforenmrad
optimization problem can be reformulated throudtagrange functional, for which the Lagrange muiépd
can be found by means of a dual optimization lezthna quadratic programming solution [11], i.e.,

n 1 n
max > o =2 2,60 Y Y K(Xx)) (2.5)
i=1

ij=1

under the constraints

14



Chapter 2 Active Learning Methods for ElectrocardiograpBignal Classification

Cza;20, fori=1,2,..n (2.6)
and

n

Zai yi :O (27)

i=1

wherea=[a4, as,...,a4] is the vector of Lagrange multipliers atd([[) is a kernel function. The final result

is a discriminant function conveniently expressesd aa function of the data in the original (lower)
dimensional feature spage
f(x)=) a y, KX, ) +b" . (2.8)
s

The setSis a subset of the indices 1, 2, .n ¢orresponding to the nonzero Lagrange multipliess
which define the so-called support vectors (SVd)e kernelK(LI) must satisfy the condition stated in
Mercer’'s theorem so as to correspond to some tipeer product in the transformed (higher) dimensil
feature space(X) [11]. A typical example of such kernels is repmted by the following Gaussian
function:

K(x;,x)= e<p(— yx; - x||2) (2.9)
wherey represents a parameter inversely proportiontdeavidth of the Gaussian kernel.

As described earlier, SVMs are intrinsically binatgssifiers. But the classification of ECG signals
often involves the simultaneous discrimination oimerous information classes. In order to faceifisise, a
number of multiclass classification strategies baradopted [20], [21]. The most popular ones ageotie-
against-all (OAA) and the one-against-one (OAOatsies. The former involves a reduced number of
binary decompositions (and thus of SVMs), which &mvever, more complex. The latter requires atshor
training time, but may incur conflicts between eks due to the nature of the score function used fo
decision. Both strategies generally lead to simiéults in terms of classification accuracy. lis tthapter,
we shall consider the OAO strategy. Briefly, thisiegy is based on the following procedure. et {w;,
w,,..., w1} be the set ofl possible labels (information classes) associat#u ttve ECG beats we desire to
classify First, an ensemble df(T-1)/2(parallel) SVM classifiers is trained. Each clfissiaims at solving a
binary classification problem defined by the disgration between one information clagqi = 1, 2, ... T)
against another information clasg (j = 1, 2, ...,T) (i # j). Then, in the classification phase, in order to
decide which label to assign to each beat, thes eléth the maximum number of votes is chosen.

2.3. Active Learning Methods

Let us consider a training setof ECG data composed initially oflabeled samples. Each sample has
d features and is represented by the vector of fessu=|; O ° = [li1, liz, ..., | (i =1, 2, ...,n)and the
corresponding labsi. y; assumes one dfdiscrete values, whefeis the number of classes. We consider an
additional learning sd#i, composed o unlabeled samples = u; O = U U2 .., 4d (=1, 2, ...,m),
withm>>n.

In order to augment the training detwith a series of examples chosen from the learsety) and
labeled manually by the expert, an active learmilggrithm has the task of choosing them properlthab to
maximize the accuracy of the classification procgise minimizing the number of active learning sdes
to label (i.e., number of interactions with the esth For this purpose, in the remaining part af gection,
we present three different active learning methzmsed on the SVM classifier.

2.3.1. Margin Sampling
MS is a simple active learning algorithm propospdc#ically for classification problems based on
SVM [23]. Considering a simple binary case withelinly separable classes, SVs are the samples of the
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training set. more close to the hyperplane that describes tbisida boundary given by the SVM classifier.
If we consider the (unlabeled) learning ktwe can assume that the samples more close tdettision
boundary are the most interesting samples, be¢hagéhave a larger probability to become SVs inrntée
training set. Therefore, according to MS, the saspb select are the ones characterized by themumi
absolute values of the discriminant function. Thme reasoning is applied in case of nonlinearhaisdye
classes.

The assumptions done in the binary case can beinsgethulticlass classification problem too. Insthi
context, a solution is given in [24] in which a OABVM classifier is adopted. For each sample, the
maximum value among the discriminant functions fest by theT binary classifiers is exploited as a
sample indicator. Then, the samples with the mininiadicator values are selected, manually labetet a
added to the training set.

In this work, we present an alternative solutiosdzhon the OAO SVM classifier, in whidi{T-1)2
binary classifiers are involved. For each samplg = 1, 2, ...,m), we calculate the number of votes of each
classy; O N’ = [Vi1, M2, ..., Vi1]. The classwuax; with the largest number of votegax; is first identified.
Then, considering th&-1 classifiers associated with the clasgax; the minimum absolute value of the
discriminant functiorfyn is calculated. Finally, the samples charactertzgthe minimum values Ofyax
are selected, labeled, and added to the trainingrsease of tie, i.e., several samples have dheesvalue of
Vmax, those with the minimum values @fy; are chosen.

In the following, we describe the different phasaswhich is based the proposed MS method.

1) Initialization
Step 1:Consider the initial training s&t composed of labeled samples df different classes.
Step 2:Consider the learning st composed aofn (m>>n) unlabeled samples.
Step 3:SetNs the number of samples to add at every iteratigdh@fctive learning process.
2) MS active learning process
Step 1:Train a SVM classifier with the training skt while estimating its free parameters by
cross-validation (CV).
Step 2:For each sample, (j = 1, 2, ..., m)of the learning set), compute the maximum number
of votesvyax; and the minimum discriminative function valiyg,; as follows:
a) Calculate the discriminant function valdg®r each binary SVM classifier.
b) Count the number of votes of each chgss
c) ldentify the classovax; with the maximum number of votegax; Let fyn; be the
minimum absolute value of the discriminative funntassociated wittyax .
Step 3:Select and label th¥; samples exhibiting the minimum valueswix; (and, if necessary,
of fuin,j)-
Step 4: Add thé\; selected samples to the traininglseind remove them frotd.
3) Convergence checReturn toPhase 2 if the predefined convergence condition is naisad
(e.g., the total number of samples to add to thieitrg set is not yet reached).

2.3.2. Posterior Probability Sampling

Another active learning strategy (PPS) is the aam®etl on the estimation of the posterior probability
distribution of the classep, = P(y=c, |u) (k=1, 2, ...,T). After training the classifier using the training
samples, the posterior probability of each classtgnated for each sample of the learnindkdh case of
binary classification, we can guess that the bastptes to select are those characterized by posteri
probabilities close to 0.5, since they are thosewhich decision uncertainty is maximum. In mukis$
problems, a more complex selection rule needs tadopted. A solution is given in [25] in which sdagp
that maximize the Kullback-Leibler divergence asdested and added to the training set. This kind of
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selection rule can be used with any classifier ¢fnags in output the estimate of the posterior philities.
SVM is not a probabilistic classification approaaid thus it does not directly yield in output proitiatic
qguantities. However, in the literature, some sohsgi have been proposed to infer posterior prolabili
estimates from discriminant function values proditty SVMs.

In this study, the posterior probabilities are restied using the strategy presented in [26]. Fihst,
multiclass classification problem is decomposed ##veral binary classification problems using @#O
approach. For each couple of clasgas w) (k= 1, 2, ...,T), (t=1, 2, ...,T), (k&t), we estimate the class
probability r,, = P(y =, |u) =1- P(y =, |u) using the following relationship:
_ 1
whereA andB are determined by minimizing the negative logilkeod function using the training samples
and their discriminant function valuégenerated through a CV process. At this pointptioblem is how to
estimate the posterior probabilitigg, = P(y =« |u) (k= 1, 2, ...,T) of the original multiclass problem.

This issue is tackled through the following forniida:

19
mplnEz z (rtk Pk =Tkt Pt )2 (2.11)

k=1 ttzk

Mt (2.10)

under the constraint

.
> pe=1, p 20, k. (2.12)
k=1

Without reporting all the details, it can be dentosted that the optimization problem in (2.11) 48d.2)
has a unique solution and can be solved as a simpbr system [26].

After estimating posterior probabilities for alletlsamples of the active learning &ktan opportune
sample selection strategy has to be adopted. Fomptirpose, we calculate for each sample the vafue
entropyH(u;)

T

Hw)=Y - by, log(p,,) (2.13)

k=1
wherepy; is the posterior probability ab, given sampley;. Then, the samples with the highest values of
entropy are selected. Indeed, high values of epntmmpan that the corresponding samples have been
classified with low confidence, and thus addingnthte the training set could improve the classiflecision
regions in the feature space.
In the following, the different steps of the PPSimoel are summarized.
1) Initialization
Step 1:Consider the initial training s&t composed ofi labeled samples df different classes.
Step 2:Consider the learning set composed ofn unlabeled samples.
Step 3:SetNs the number of samples to add at every iteratiah@fctive learning process.
2) PPS active learning process
Step 1Train a SVM classifier with the training detwhile estimating its free parameters by CV.
Step 2:Classify the learning sét and calculate for each sampig(j = 1, 2, ...,m)the posterior
probability of each clags; (k=1, 2, ...,T).
Step 3:For each sample;, calculate the entropi(u;) associated with the estimated posterior
probabilities.
Step 4:Select and label thid;samples characterized by the maximum values obpyti(u;).
Step 5:Add theN; selected samples to the traininglse@ind remove them frotd.
3) Convergence checReturn toPhase 2if the predefined convergence condition is ndfilfed.
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2.3.3. Query by Committee

The QBC approach selects the learning samples dot@dhe training set using a committee of
classifiers [27]. In particular, the samples witle tmaximum disagreement between the different itilerss
are chosen. In the literature, different implemeates and adaptations of this strategy have beeposed.
In this study, we propose a simple strategy for@sking problems of multiclass active learning.dleé an
integer value greater than one and defining theufeasampling factor. Considering the originalnnag set
L, we construcs training subsetfl_,, L,, ... ,L}, wherelLy (g =1, 2, ...,s) contains only the featurégf = 1,
2, ..., d) that satisfy the conditiof-1) module (s) = g-1The number of samples of each subset is equal to
the original number of samples, but with a numblefeatures reduced by a factar Similarly, from the
original learning seU, s learning subsefJ,, U,, ... ,U} are constructed. At this point, each training stibs
is considered independently from each other and tsérain an ensemble ofparallel SVM classifiers in
which each classifier adopts a different kernekfiom to inject some diversity in the ensemble. réfare,
in total c-s parallel classifiers are used. After the trainpigase, the learning samples are classified to
estimate their labels. In particular;s estimations are obtained for each sample. TheogntH(u) is

calculated for each sample as follows:
T

Hu,)=> -rf, Iog(rfkyj) (2.14)

k=1
whererfy; is the relative frequency of clagg for sampleu;. As done in the PPS method, the samples with
the maximum values of entropy, and thus charaadriby the maximum disagreement between the
classifiers, are selected and added to the traseng
Below, we describe the different phases of the @B&tegy.
1) Initialization
Step 1:Consider the initial training s&t composed of labeled samples df different classes.
Step 2:Consider the learning set composed ofn unlabeled samples.
Step 3:Set the feature sampling facsr
Step 4:Construct the training subseétg(g = 1, 2, ..., spnd the learning subsdig (g =1, 2, ...,
S).
Step 5:Set the number of classifiergo use in the ensemble for each training subset.
Step 6:SetNs the number of samples to add at every iteratich®fctive learning process.
2) QBC active learning process
Step 1:Train thec-sSVM classifiers with the training subseig(g = 1, 2, ...,s), while estimating
their free parameters by CV.
Step 2:Classify the learning subsetly (g = 1, 2, ..., sand calculate for each sample(j = 1, 2,
..., m)the number of occurrences of each class.
Step 3:For each sample, calculate the value of entropi(u;) associated with the occurrences of
the estimated class labels.
Step 4:Select and label thd;samples characterized by the maximum values obpytd(u;).
Step 5:Add theNs selected samples to the traininglseind remove them fromd.
3) Convergence checReturn toPhase 2if the predefined convergence condition is neéisEad.

2.4. Experimentson Smulated Data

2.4.1. Data Set Description

To evaluate the performance of the proposed adteening strategies, we first conducted an
experimental phase based on simulated data in oodbetter illustrate their properties. In partaylwe
considered the well-known chessboard problem, &e2;D multiclass problem with uniformly distribdte
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Fig. 2.1. Example of distribution of the 90 ialttraining samples (ten for each class) chareitey the chessboard classificat

problem.

classes. For such purpose, we generated a 3x3polaedscomposed of nine uniformly distributed classe
The initial training set is shown in Fig. 2.1. Téetire learning sdt) was composed of 27000 samples, i.e.,
3000 samples for each class. The initial trainieig_scontained 90 samples, i.e., 10 samples for eads.cl
The algorithms were run until the number of trajnisamples was equal to 2000, adding the ten most
significant samples at each iteration. For the QB&thod, the factor of feature samplsgnd the number of
parallel classifiec were set both to two. In particular classifiershwinear and radial basis function (RBF)
kernels were used. The entire active learning m®ees run ten times, each with a different initiaining

set so that to yield statistically reliable resuldé each run, the initial training samples wer@sdn in a
completely random way.

Classification performance was evaluated in terfnsverall accuracy (Acc), which is the percentage
of correctly classified samples among all the aber®d samples, independently of the classes tHende
to. For the performance evaluation, a test seB6DQ samples was considered.

A SVM classifier was also trained on the entiren@ag set (i.e., 27000 labeled samples) in order to
have a reference training scenario, called “fuifiing. On the one hand, the classification resoititained
in this way represent an upper bound for the aciesaOn the other, we expect that the lower acgura
bound will be given by the completely random sétecistrategy (R). We recall that the purpose of any
active learning strategy is to converge to thegrerénce of the “full” training scenario faster thime R
method.

2.4.2. Experimental Results

For the “full” classifier, the Acc is equal to 98%. In Fig. 2.2(a), we show the Acc in functiontioé
number of training samples for the three proposgive learning strategies and the random one. il t
three active learning algorithms converge to thél*faccuracy using about 1500 training samplesictvh
represent 5.6% of the entire learning set. We tidg before convergence, the MS method gives #s¢ b
performance.

To better understand the behaviors of the proposttiods, in Fig. 2.2(b)-(c) we show the evolutibn a
each iteration of the CV accuracy and the numb&\&f (#SV). It is interesting to observe that théue of
CV tends to decrease in the first iterations, whigehave an increase of the CV value only wherffecent
number of samples have been added to the traigingrbe decrease of the CV value means that samples
difficult to classify are added to the training.sbwever, these new samples are highly informadine
thus allow improving the generalization performarice., the accuracy on the test samples). A differ
behavior is obtained for the R strategy, for whibe CV value tends to increase from the beginning.
Analogously, we note that in our active learninghmes the #SV value tends to increase faster tiaRt
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Fig. 2.2. Performances achieved on the chessbdasdiftcation problem in terms of (a) Acc, (b) C\Vcaracy, and (c) #SVEact
graph shows the results in function of the numbetraining samples and axaged over ten runs of the algorithm, each w
different initial set. The shaded areas in (a) shiwsvstandard dewian of the Acc over the ten considered runs. Rrdom, MS :
margin sampling, PPS = posterior probability sangpliQBC = query by committee, full = full SVM.

method. At convergence, i.e., for about 1500 trgjnsamples, the #SV value for the active learning
strategies is equal to 1176, which correspondemtimber of SVs for the “full” classifier. Thereégrabout
80% of the samples selected by the active learmiethods are SVs, and hence, are important for the
discrimination among the nine classes. We obsdratthis behavior is not verified for the R methéat,
which the number of SVs tends to increment muctvetoThe fast increment of the number of SVs fer th
active learning strategies shows clearly that #meples added to the training set are really impoffar the
classification process.

The obtained results are shown in greater detdibisle 2.1. In particular, we report the valueshot,
standard deviation associated with the Agg, which is an indication of stability of the metho@V
accuracy and #SV. In bold, we highlight the bestggmance in terms of Acc ang).. for each training set
size.

In Fig. 2.3(a)-(d) we show the samples selectedhay random and the proposed active learning
strategies for a training set size equal to 1000il&\the R method chooses the samples in a corhplete
random way [see Fig. 2.3(a)], the active learnirgghmdologies [see Fig. 3(b)-(d)] tend to selectstwmples
that lie on the boundaries between classes. Inatajs the algorithms focus more on difficult sansphehile
samples that belong to already well-classified @isga almost disregarded.
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TABLE 2.1

Acc AND CV ACCURACIES STANDARD DEVIATION (cacc), AND #SV ACHIEVED

ON THE CHESSBOARDCLASSIFICATION PROBLEM BY THE DIFFERENT
INVESTIGATED LEARNING ALGORITHMS

Meth

#training

od
samples

Acc

Gace

Ccv

#SV

Full

27000 99.68

99.75

1176

Initial

90 91.43

1.87

92.89

81

R

MS

PPS

QBC

96.13

0.73

96.72

150

500 98.91

0.17

73.30

358

97.17

0.39

86.50

344

97.40

0.49

81.90

330

R

MS
PPS
QBC

97.45

0.34

97.64

165

1000 99.48

0.06

70.62

808

99.39

0.09

80.40

743

99.30

0.11

77.51

679

R

MS
PPS

QBC

98.24

0.24

97.95

200

99.68

0.00

90.79

1176

1500 99.72

0.05

88.08

1141

99.68

0.07

91.43
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21



Chapter 2 Active Learning Methods for ElectrocardiograpBignal Classification

2.5. Experimentson Real ECG Data

2.5.1. Data Set Description

In this experimental part, we completed the eadmsessment by considering this time real ECG data,
obtained from the MIT-BIH arrhythmia database [18]. particular, the considered beats refer to the
following six classes: normal sinus rhythm (N),iatpremature beat (A), ventricular premature W&t
right bundle branch block (RB), paced beat (/), Eftdbundle branch block (LB). The beats were el
from the recordings of 20 patients, which corresptmthe following files: 100, 102, 104, 105, 10®,7,
118, 119, 200, 201, 202, 203, 205, 208, 209, 213, 214, 215, and 217. In order to feed the classibn
process, in this work we adopted a subset of thtufes described in [4]. In particular, we used tihie
following kinds of features: 1) ECG morphologicaktures and 2) three ECG temporal features, he., t
QRS complex duration, the RR interval (the timenspatween two consecutive R points representing the
distance between the QRS peaks of the presentrenibps beats), and the RR interval averaged dwer t
ten last beats. In order to extract these featuies, we performed the QRS detection and ECG wave
boundary recognition tasks by means of thecgpuwave software available on
http://www.physionet.org/physiotools/ecgpuwave/sidien, after extracting the three temporal featwke
interest, we normalized to the same periodic letigghduration of the segmented ECG cycles accoriding
the procedure reported in [28]. To this purpose,rtfean beat period was chosen as the normalizextijger
length, which was represented by 300 uniformlyriisted samples. Consequently, the total number of
morphology and temporal features equals 303 fon eaat.

Fig. 2.4. illustrates the distribution of the simnsidered classes drawn by means of 25 samples
randomly selected for each class and the two leestifes according to the Principal Component Aliglys
(PCA) algorithm [29]. From this figure, one can egp that the discrimination task will not be
straightforward due to the apparently strong oyebeatween classes.

In all the following experiments, all the availabtamples were randomly split in two sets,
corresponding to learning and test sets. The detailed numbers of learninigtest beats are reported for
each class in Table 2.1I. In this table, we reploet number of beats of the initial training k€for each class
too. The initial training beats were selected ranigofrom the learning seU. At each iteration, the
algorithms of active learning added the 50 mostvaaht samples up to reaching a total of 4000 tigini
samples. For the QBC technique, the factor of feasamplings was set to 3, while only the RBF kernel
was used to train the classifiers. As done in tkgeements on simulated data, the entire proceda®
repeated ten times, each by choosing the inihittg set in a completely random way in order btam
statistically reliable results.

Similarly to [4], classification performance wasatated in terms of several measures which are: 1)
the Acc; 2) the specificity (Sp), which is the a@my of class N; 3) the sensitivities (Se) of obss8, V,

RB, /, LB, which represent the accuracy of each clayghd average accuracy (AvAcc), which is the
average over the Sp and the five values of Se.

2.5.2. Experimental Results

The results achieved on the real ECG data agrele thitse obtained on the earlier chessboard
classification problem. The “full” classifier is afacterized by values of Acc and AvAcc equal td39%
and 95.58%, respectively. The evolution of the galaof Acc and AvAcc in function of the training sete
is shown in Fig. 2.5(a)-(b). From these plots, vsarve that the proposed active learning methoddog
tend to converge to the results given by the "folbhssifier for a number of training samples egiwahbout
2500, which corresponds to 11.7% of the entireniegrset.

As seen for the simulated data set, we note tleaatkive learning methods are characterized bgbett
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Fig. 2.4. Two-dimensional distribution of the siensidered classes in the subspace fdrimgthe best couple of features obta
with the PCA algorithm. For better visualizationstj@5 samples were randomly selected for each. class

TABLE 2.1l
NUMBERS OFINITIAL TRAINING, LEARNING AND TESTBEATS USED IN THEEXPERIMENTS

Class N A \Y RB / LB Total
Initial training beats 75 50 50 25 25 25 250

L ear ning beats 12338 344 2194 1982 3498 988 21344
Test beats 12337 344 2195 1982 3498 084 21344

CV and #SV trends with respect to the R samplieg [Sig. 2.5(c)-(d)]. In particular, for the firgeps of the
iterative process, we have a decrease of the @hlQ¥ and a faster increment of the #SV.

In Table 2.1Il, the results for specific sizes léttraining set are reported. It is interestingdte that at
convergence the MS and PPS methods give valuescofacies slightly better than the “full” classifie
since active learning aims also at reducing migiladpeisks as it involves significantly smaller nbers of
samples to be labeled. Moreover, these methodsaappere stable with respect to the R strategy,esinc
characterized by smaller values of Acc and AvAemdard deviations.

In terms of Sp and Se (see Table 2.111), the adg@ening strategies appear able to give bettedtses
with respect to the R sampling. Moreover, the aaties at convergence are in some cases bettethtban
“full” classification. In Fig. 2.5(e)-(f), we showhe evolution of the humber of selected samplesthadse
for the atrial premature beat (A) class, which he tmost difficult class to discriminate and thesles
represented in the learning set. At beginning, 20%e training samples are associated with tlasscIWe
note that the percentage of selected samples yshigih with respect to the prior probability of ghtlass,
which is less than 3%. As the training set sizedases, the probability to select randomly a sampthis
class becomes very low, and so the percentagelexfted samples converges to the prior probabilitye
selection of few samples involves a decreasingedfopmance, which is highlighted by the decreasthef
Se. Indeed, for a training set size equal to 288,Se for class A for the R method is equal t&&%.
Focusing on the proposed active learning stratetiiesterative process is able to select a greatetber of
samples, despite their very limited availabilitheTselection of these samples allows obtaining@fszant
increment in terms of Se. For example, in the cdddS strategy and for a training size equal to®@50e
Se for class A is equal to 81.95%. Similar perfanoes are achieved by the other active learning adsth

Another important goal of active learning approaciseto decrease the computational burden incurred
by the classifier, while keeping the classificatiaocuracies the highest possible. For this purpase,
considered for each active learning strategy th@mim number of training samples for which the Asc
less of at most 1% with respect to the Acc of théi™classifier. In Table 2.1V, we report the trang and
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Fig. 2.5. Performancexchieved on the ECG data set by the investigateditepmethods in terms of: (a) Overall accuracyd)A¢b’
average accuracy (AvAcc), (c) crogalidation (CV) accuracy, (d) number of supporttees (#SV), and (e) sensitivity and
number of selected samples both for class A.

test times of the corresponding classifiers. As banseen, active learning strategies are able doces
significantly the computational time to train thHegsifier, together with a decreasing of the mamak for
sample labelling. Analogously, using a smaller namtf training samples leads to a decrease ofrtiefor
classifying unknown samples.
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TABLE 2.11I

Acc, AvAcc AND CV ACCURACIES SP, SE, STANDARD DEVIATIONS (), AND #SV ACHIEVED ON THETESTBEATS BY THEINVESTIGATED

LEARNING ALGORITHMS

NUMBER OF TRAINING SAMPLES, ACC, AND TRAINING AND TEST TIMES FOR THE
INVESTIGATED LEARNING ALGORITHMS

M ethod #training Acc T.raining .Test
samples time[g time[g
Full 21344 98.35 154.0 388.6
R 4000 96.82 14.0 162.8
MS 1200 97.42 3.7 137.8
PPS 1350 97.38 4.8 153.4
QBC 1500 97.50 5.9 170.2

Method #;ﬂgl'g’ Acc | op | AVACE | opne | CV | #SV [ sp y :; —T 5

Full 21344 | 9835 - | 9558 - | 9828 2749 98Pp8 8272 95.8B59| 9956 9854
Initial 250 | 84.79] 1.68] 8346 164 8080 201 8674 76.45 381.92.13] 7568 88.46
R 93.90| 0.22| 8889 009 9173 4ok 9574 70,06 84.35.000 9508 92.14
MS L0001 9691 [ 019 | o216 [ 086 | 7451 799] 0820 | 7253 o101 | 97.73 | 9856 | 9492
PPS 95.49| 059| 89.91] 1.67 7538 80D 9758 7189 88.94.25 9564 88.15
QBC 96.36| 029 91.44] 053 | 74.95| 748 | 97.8d 7294 | 9023 | 97.04] 97.73 9261
R 96.06| 0.13| 9091] 070 9508 801 9756 6956 89.07.200 97.60] 9449
MS Js0o | 9832 | 0.09 | 9535 | 0.8 | 8282 1819 99.058195 | 94.45] 9878 | 99.53 | 98.36
PPS 98.31| 007 | 95.06 | 016 | 83.34| 1829] 99.07 | 80.23 | 9451 | 98.77 | 99.59 | 98.18
OBC 98.07| 0.08| 9444] 033 8308 15{4 9900 7820 93.6855| 99.30] 97.98
R 96.82| 0.13] 92.06] 053 9626 1142 9810 7137 90.60.73| 98.34] 96.23
MS 4000 | 9844 | 003 [ 9567 | 0.14 | 90.81] 2502 99.11 | 8299 | 94.86| 98.74] 99.64 9868
PPS 98.43| 0.06| 9544 010 | 90.53| 2448| 99.10 81.6594.88 | 98.81 | 99.68 | 98.52
QBC 98.25| 0.08| 9495 025 9067 2046 9905 7991 94.38.69| 99.48] 98.24

TABLE 2.1V

2.5.3. Experiments on Unseen Recordings

To conclude the experimental assessment on real B&@&, we considered the remaining 28
recordings from the MIT-BIH arrhythmia database,icihwere not used to train the classifiers. These
recordings, termed as “unseen” recordings, refahéofollowing files: 101, 103, 108, 109, 111, 1123,
114, 115, 116, 117, 121, 122, 123, 124, 207, 219, 220, 221, 222, 223, 228, 230, 231, 232, 233, 2Be
corresponding numbers of beats for each clasisteel in Table 2.V. Such beats are useful to coteple
test of the generalization capabilities of the\actearning strategies.

In Fig. 2.6(a)-(b), we plot the evolution of thelwes of Acc and AvAcc versus the training set size,
while in Table 2.VI we report the results for sifiecsizes of the training set. In general, the gEd active
learning strategies exhibit relatively good genieagion capabilities when tested on beats belonging
recordings completely new. Indeed, significantlyttéxe results both in terms of accuracy and standard
deviation (thus stability) are obtained with respgecthe standard R method. We note that a strongracy
decrease is obtained in this set of experimentspaoed to the results presented in the earlier sedti
which training and test beats were extracted floensame recordings. This can be explained by ttigHat
morphological features are not enough robust talleanonseen recordings. Though more complex, other
kinds of features such as those based on wavetetsgh order statistics could be a good solution to
increment the robustness of the classification ggsec
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TABLE 2.V
NUMBERS OFTESTBEATS IN THE UNSEENRECORDINGS

Class N A \ RB / LB Total
Test beats 45201 1902 2688 3265 - 6069 59125
TABLE 2.VI

Acc AND AVACC ACCURACIES SP, SE, AND STANDARD DEVIATIONS (o)
ACHIEVED ON THETESTBEATS BY THEINVESTIGATED LEARNING ALGORITHMS

Method #starlr?]lgll ;;g Acc 6acc | AVACC | Gavace Sp A v R?; / LB

Full 21344 79.11 - 72.40 - 8248 7419 7180 69|16 - 484,
Initial 250 65.87 1.62 65.91 1.0 66.35 7888 66/00 53.46 -65.08

R 72.91 1.06 65.41 1.08 76.30 7185 61.81 54,00 - 1083.
MS 1000 7732 | 1.36 | 7153 1.08 | 80.23 | 74.32 | 68.86 | 69.78 - 64.45
PPS 76.05 1.13 71.01 0.72 78.5[7 75.28 | 67.21 | 68.59 - 65.39
QBC 76.73 | 0.91 7141 | 070 | 79.84| 75.25| 68.54 68.61 - 64.80
R 76.07 1.07 68.88 0.95 7949 7169 6641 6410 - 6%2.
MS 2500 79.07 | 0.23 | 72.95 0.38 | 82.19| 74.70 7143 | 72.07 - 64.37
PPS 79.00 | 0.13 7259 | 025 | 8225 | 7526 | 71.25| 69.84 - 64.36
QBC 79.00 | 0.15 72.56 0.29] 822 7494 701 7121 - 783.
R 75.18 | 0.86 67.52 0.81 78.76 7121 662 58,27 - 6X52.
MS 4000 78.91| 0.06 ) 72.33 0.20 | 82.18 | 7442 | 70.63 | 70.09 - 64.35
PPS 79.13 | 0.05 71.86 0.32 82.65 74.20 69.58 68.55 - 64.37
QBC 79.02 | 0.06 72.14 0.25 82.69 | 73.85| 69.90| 69.27 - | 64.98
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Fig. 2.6. Performances achieved on the ECG dataysbk investigated learning methods in termsajfAcc and (b) AvAcc.

2.6. Conclusion

In this chapter, three active learning strategoedtie SVM classification of electrocardiogram (ECG
signals have been presented. Starting from a samall suboptimal training set, the strategies haee th
purpose to select from a large unlabeled datahsesdmples more significant for the classificafoocess,
i.e., those able to give high accuracies in terimelassification while minimizing the number of itmang
samples and the computational costs required bygl#ssifier.

The experimental results obtained on simulated r@adl ECG data show good capabilities of the
proposed methods for selecting significant samptegieneral, all the proposed methods are chaiageter
by higher performance in terms of both accuracied stability with respect to a completely random

26



Chapter 2 Active Learning Methods for ElectrocardiograpBignal Classification

selection strategy. Comparing them, the strategedban the MS principle seems the best as it quickl
selects the most informative samples. Another éstiang result is that active learning methods &te &
give accuracies slightly better than the “full” et#fier, confirming their usefulness in reducingslabeling
risks.

While in this research the initial training set wasosen in a random way, we think that a more
sophisticated initialization strategy could furthiemprove the performance of the active learningcpss.
Research is in progress in this direction. Finatlys worth noting that, as shown in the literatua further
increase of the accuracies could be achieved lyrfgehe classifier with other kinds of featureg(gthose
based on wavelets or high order statistics) togetfith or in substitution to the morphological ones
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3. SVM Active Learning Through Significance Space Construction

Abstract — Active learning is showing to be a useful approtcimprove the efficiency of the classification
process for remote sensing images. This chaptesepts a new active learning strategy specifically
developed for support vector machine (SVM) clastifin. It relies on the idea of: 1) reformulatirige
original classification problem into a new problemhere it is needed to discriminate between siganific
and non significant samples, according to a conaéignificance which is proper to SVM theory; &)d
constructing the corresponding significance spacettegt to suitably guide the selection of the sasipl
potentially useful to better deal with the originahssification problem. Experiments were conduaiad
both multispectral and hyperspectral images. Resshibw interesting advantages of the proposed rdétho
terms of convergence speed, stability and sparsenes

The work presented in this chapter has been pddighthelEEE Geosci. Remote Sens. Letol. 8, no. 3,
pp. 431435, May 2011; Co-authors: F. Melgani, Y. Bazi.
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Chapter 3 SVM Active Learning Through Significance Spacen€iuction

3.1. Introduction

In order to obtain an efficient supervised clasatiion system, it is necessary to address progerhe
important issues. One of them is the choice ofdlssifier to adopt. In particular, approaches dase
support vector machines (SVM) have shown greatrpiaien different research areas [1]-[3]. Clagsition
systems based on SVM can give excellent perfornznueat, as for traditional classifiers, they depend
strongly on the quality and quantity of the labetieda used to train the classifier. Indeed, trgrsamples
have to be representative of the statistical ¢hstion of the data. However, the process of cabecof
training samples is not trivial. Indeed, it is merhed by a human expert and thus subject to errors.
Moreover, it is costly in terms of time and monégr these reasons, it is necessary to find a girate
choose few training samples but fundamental forcreect discrimination between the set of congder
classes.

In the last few years, there has been a growirggast in developing strategies for the (semi)autmma
construction of the set of training samples. In tiechine learning field, a recent approach focusethis
topic is the so-called active learning approachrtiiy from a small and suboptimal training setiadnal
samples, considered important, are selected in seayefrom a large amount of unlabeled data (le@rnin
set). These samples are labeled by the expertremdadded to the training set. The entire proceure
iterated until a stopping criterion is satisfied.

In the literature, active learning methods havenbeggplied successfully in different applicationdie
However, few works can be found for the problemeshote sensing image classification. In [4], a rodth
based on the Fisher information matrix is usedotwstruct the training set in the application ofibdrobject
detection. In [5], the authors propose a probalilimethod based on maximum likelihood classififens
learning or adapting classifiers when significahtimges in the spectral signatures between labeldd a
unlabeled data are present. In [6], the methodqseq in [4] is extended to improve the detectiobwied
objects. The method fuses a graph-based semisapdralgorithm with an active learning procedurestas
on a mutual information measure. In [7], the auhdiscuss the margin sampling (MS) algorithm [8], a
state-of-the-art active learning method based enSWM classifier. Additionally, two novel methodeea
proposed and applied to the classification of \egh resolution images.

In this chapter, an alternative method of activeréng for the SVM classification of remote sensing
images is presented.

The remaining part of the chapter is organized#dsvs. The proposed method is described in Section
3.2., while Section 3.3. presents the experimartallts. Finally, conclusions are drawn in Sec8ah

3.2. Proposed Method

First, let us focus on a generic binary classiioraproblem. The extension to multiclass problenis w
be described at the end of this Section. Let usidena training set composed initiallyrofabeled samples

L :{xi , yi}i”:1 and an additional learning set composethaeinlabeled sampleld :{xj}?:nmﬂ, withm>>n.

In order to increase the training detvith a series of samples chosen from the learsétd) and labeled
manually by the expert, an active learning algaomithas the task of choosing them properly so that to
maximize the accuracy of the classification proogbfie minimizing the number of learning samples to
label (i.e., number of interactions with the expert

The active learning method developed in this chapeproposed specifically for classification
problems based on SVM. The block diagram of thenogkis shown in Fig. 3.1.

The first step is called significance analysis andsists of detecting the most significant sampies
the initial training seL. This operation is done by training a SVM classiffnamed SVML1 in the block
diagram) on the training sét We define those that the classifier has foundwasport vectors (SVs) as
significant samples, while the remaining samplessanply defined as nonsignificant. We construcew
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Fig. 3.2. lllustration with a toy classification gilem. (a) Original classification space (SVs are circle()) Correspondir
significance space.

set L, in which the samples of the original training &etre relabeled in function of the concept of
significance. Thereford,, is a binary set containing significant and nonigant samples oL. In the
second step, the task is to build a model ablasirichinate the significant samples from the nonsigant
ones. For this purpose, another SVM classifierlddabVM2 in the block diagram) is trained on thevne
training setL,. The model defined by this second classifier sdu® classify the unlabeled samples of the
learning selJ. We define withUs the samples of the learning détclassified as significant. The last step
consists to select randoniys samples from the sél;, whereN; is the number of samples to be added in the
training setL. Successively, the selected samplesare labeled by the expert and then added to #hirig
setL. This entire active learning process is iteratetil @ predefined convergence condition is notsfiatl
(e.g., the total number of samples to add to thieitrg set is not yet reached).

To better understand the proposed method, a tap@eas shown in Fig. 3.2. In Fig. 3.2(a), we show
the training samples with the original labels ané torresponding decision regions obtained aftenitrg
the SVML1 classifier. The SVs, namely the significeamples, are the encircled points. In our metknaa,
define a new problem, in which the labels of tlaning samples are redefined according to the fiogmnice
concept. Such reformulation of the classificationlem requires the training of a second SVM cfassi
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(SVM2) and leads to the identification of a regiminsignificance [green area in Fig. 3.2(b)]. Suehion
represents the portion of the feature space, wticiveys the samples potentially useful to bettat déth
the original classification problem.

SVMs are intrinsically binary classifiers. Howevére classification of remote sensing images often
involves the simultaneous discrimination of sevaradrmation classes. In order to face this issoelticlass
classification strategies can be adopted. In thigkwthe SVM1 classification is performed by meafishe
one-against-one (OAQ) strategy. L@t {w, w,,...,o1} be the set ofl possible classes. First, an ensemble
of T-(T-1)/2(parallel) SVM1 binary classifiers is trained oatal Each classifier aims at solving a binary
classification problem defined by the discriminatlzetween two different classes. Then, in the iflaagon
phase, in order to decide which label assign th sample, the class with the maximum number ofsviste
chosen. In our active learning method, the SVMZsifecation is also implemented through the OAO
strategy. To each SVM1 binary classifier, we asgecian SVM2 binary classifier to determine the
significance region of the corresponding coupl®riinal classes. After training the ensemblergfT-1)/2
SVM2 binary classifiers, we decide that a given gignis globally (in reference to the multiclass lpgem)
significant if the majority of thél-1 binary classifiers associated with the class edgoh by the SVM1
classification agrees on its significance.

3.3. Experiments

3.3.1. Experimental Setup

In order to validate the proposed active learnirgghmd, experiments were conducted on two different
remote sensing data sets. The first data set \pisea multispectral VHR image, acquired by thecmiird
sensor in April 2002. Four spectral bands with atigp resolution of 0.6 m were considered to feee t
classification process. The image refers to a gortif the city of Boumerdes (Algeria), in which fdand
cover types are dominant: water, soil, vegetat@mmg man-made structures. The second data set is a
hyperspectral image and is characterized by 1089aacquired by the Reflective Optics System Inggin
Spectrometer (ROSIS) sensor over a part of theatifyavia (Italy) in July 2002. The spatial resmatis
equal to 1.3 m. Nine classes were considered: wiaters, asphalt, bricks, bitumen, tiles, shadoeadows,
and bare soil.

In all the following experiments, for both datassetll the available samples were split in two ,sets
corresponding to learning and test sets. The detailed numbers of learnidgest samples are reported in
Table 3.1. In this table, we report the number arhples of the initial training sétfor each class too. The
initial training samples were selected randomlynfrthe learning set). For the first data set, the active
learning algorithm was run until the number ofiiag samples was equal to 2991, adding 25 samples a
each iteration. Analogously, for the second data 5@ samples were added at each iteration up @@ 20
samples. The entire active learning process waserutimes, each with a different initial trainiagt so that
to yield statistically reliable results. At eachruhe initial training samples were chosen in egletely
random way.

Classification performance was evaluated in termsaveral measures which are: 1) the overall
accuracy (OA), which is the percentage of correctissified samples among all the considered sanple
independently of the classes they belong to; 2)atherage accuracy (AA), which is the average oker t
classification accuracies obtained for the differdasses; 3) the standard deviatiomsdf OA and AA, in
order to evaluate the stability of the active I@agrmethod; 4) the number of SVs (#SV).

An SVM classifier was also trained on the entirarteng set in order to have a reference-training
scenario, called “full” training. On the one hatite classification results obtained in this wayrespnt an
upper bound for the accuracies. On the other, wedaxhat the lower accuracy bound will be giverthoy
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TABLE 3.1

NUMBERS OFINITIAL TRAINING, LEARNING, AND TEST SAMPLES FOR(a) THE BOUMERDES AND(b) THE PAVIA DATA SETS

@)

Class Water Soil Vegetation M an-made Total
Initial training samples 4 4 4 4 16
L ear ning samples 6000 3380 4499 3978 17857
Test samples 6000 2957 4455 4113 17525
(b)
%] —_
= %) ) = = a
4 I - - - T - A O B -
© = |- < |8 |5 | "6 | s | &]F"
Initial training samples 5 6 5 6 5 6 5 6 6 50
L earning samples 824 820 816 808 808 1260 476 824 82pD 7456
Test samples 65147 6778 8432 1891 6479 41566 2387 2266 5764 11407

completely random selection strategy (R). We rettadt the purpose of any active learning strategtoi
converge to the performance of the “full” trainisgenario faster than the R method. Moreover, tbpgeed
approach is compared to the performances givehdwpthte-of-the-art active learning method basethen
MS approach [8].

3.3.2. Experimental Results

For the “full” classifier, the OA is equal to 95%2and 97.75% for the Boumerdes and Pavia data sets,
respectively. In Fig. 3.3(a)-(d), we show the OAfumction of the number of training samples for the
proposed active learning strategy, the MS, andahdom ones. For the Boumerdes data set, the @dpos
strategy converges to the “full” accuracy using w@bbl00 training samples, which represent 5.6%hef t
entire learning set. Instead, about 2000 sampkesecessary for MS and R methods to converge.teor t
Pavia data set, 700 and 800 samples are requiremrieerge for the proposed and the MS methods
respectively, while the R strategy converges fowenber of training samples greater than 2000. We no
that, before convergence, the proposed method ¢ivebest performance. In particular, for the Boudae
data set, for which the initial accuracies are lthe MS method presents bad performances in tee fir
iterations of the active learning process, while pnoposed strategy is characterized by good atiesran
the first steps too. This can be explained by #et that, when few training samples are availatiie,
inferred decision boundary is precarious and tlkelisimg only on samples which are closest to itthesMS
method does, can be counterproductive. Our methodsato pick up samples not just along the decisio
boundary but also in the surrounding (as shownig 8.2(b)), making it more appropriate to facesthi
problem.

To better understand the behavior of the proposethad, we show in Fig. 3.3. the evolution of the
cross validation (CV) accuracy and the #SV, idadifon the basis of the following definition: “angple is
an SV if it is an SV for at least one binary cléesiof the OAO multiclass architecture”. It is @mesting to
observe that the value of CV tends to decreasbdrfitst iterations, while we have an increasehef €V
value only when a sufficient number of samples Haaen added to the training set. The decreaseed@th
value means that samples difficult to classify added to the training set. However, these new sEsrguie
highly informative and thus allow improving the gealization performance (i.e., the accuracy ontdst
samples). A completely different behavior is ob¢airfor the R strategy, for which the CV value tetals
increase from the beginning. Analogously, we nb&# in our active learning method the #SV valuel$eio
increase faster than the R method. Therefore, ofdbie samples selected by the active learning odedne
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random, MS= margin sampling, Proposed= proposetadefull= full SVM.

SVs and hence are important for the discriminasiotong the classes. For the R method, the numigyof
tends to increment much slower. The fast increroénbe number of SVs for the active learning stygite
shows clearly that the samples added to the tigigat are really important for the classificationgess.
Finally, we observe that the curves of #SV preseriireakpoint after which the proposed method is
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TABLE 3.11
OA, AA, AND CV ACCURACIES STANDARD DEVIATIONS (o), AND #SV
ACHIEVED ON (a) THE BOUMERDES AND(b) THE PAVIA DATA SETS

()

Method gﬂg;g OA | oon | AA | oaa | CV | #SV

Full 17857 | 95.12 - | 9492 -| 9676 2201
Initia 16 | 7400 1019 7566 7.3b 82560 14
R 641 | 9420] 050 9396 058 93.93 147
MS 466 | 94.18] 1.07] 9396 1.1y 7579 357
Proposed | 266 | 94.21] 0.26] 93.98 0.2f 83.95 165
R 866 | 94.62] 033 9440 038 9457 189
MS 716 | 9463 051 944h 04 7168 589
Proposed | 391 | 9474 0.13] 9455 01 7959 267

(b)

Method | 70r@NINg | oa | g | AA | ean | CV | #SV
samples

Full 7456 | 97.75] - | 9477 -| 9862 663
Initial 50 | 92.78] 1.47] 848t 291 8880 39
R 700 | 96.85] 035 9226 128 9613 183
MS 350 | 96.97] 043 9307 00D 8566 232
Proposed | 200 | 97.04] 024 9308 04 8445 134
R 1200 | 9737 0.1d 9365 o0k 9713 245
MS 600 | 97.45 0200 9405 058 8342 382
Proposed | 350 | 97.28] 0.11] 93.68 0.2b 8263 234

characterized by a greater increment of the #S\is Tieans that, after a given point, the MS starts t
oversample along the decision boundary betweeseaddeading to redundant samples, while the prapose
method, being less constrained by the decision denyn samples also away from it [as illustratedrig.
3.2(b)].

The obtained results are shown in greater detailable 3.Il. In particular, we considered for each
method the minimum number of training samples fhiickh we have a decrease of 1% of the OA with
respect to the OA of the “full” classifier. The samnalysis has been done for an OA decrease of W&
report the values of OA and AA, standard deviatiss, andoas) associated with the accuracies, CV
accuracy, and #SV. As can be seen, the proposetkgtris characterized by a better performance with
respect to the MS strategy from different pointwiefv. First, similar values of accuracies (OA &) are
obtained using a minor number of training sampieshis way, we have a reduction of the manual work
sample labeling and a decreasing of the computdtiome necessary to train the classifier. Another
improvement is given by the better values of steshdkeviation associated with the accuracias,(oaa).
Indeed, minor values of standard deviation mean tha proposed method exhibits a greater level of
stability respect to the random selection of theaintraining set. Another interesting result e tdecreasing
of #SV. In general, the reduction of the #SVs israportant task in SVM approaches because spaisenes
permits to simplify the classification model andingrement the generalization capabilities. Moreptee
classification of a generic test sample will requarlower computational burden.

In Fig. 3.4., we report the percentage of seleswuples for the soil and man-made classes of the
Boumerdes data set. The soil class is classified aviery high accuracy (99.19% for the full caseé)ile
the man-made class is more difficult to discrimingB88.69% for the full case). For both classes, the
percentage of samples selected by the R stratagg te the prior probability of the classes. Coreby, for
the active learning strategies (the proposed odel@MS), a completely different behavior comes Bar
the solil class, we observe a fast decrease ofdtoeptage of selected samples, while for the masternbkass
the active learning process tends to select a laugaber of samples. Therefore, for both activenieay
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strategies, the most difficult classes are morepsaanthan others, with a faster increment of theueaxcy
values.

3.4. Conclusion

In this chapter, we have proposed a new activenilegrstrategy specifically developed for SVM
classification. The experimental results obtainedvéiR and hyperspectral images show good capasiliti
of the proposed method for selecting significanih@as. Advantages in terms of convergence speed,
stability, and reduction of the number of SVs haeen empirically evaluated with respect to statdiefart
MS strategy.

The drawbacks of the proposed strategy are aswmslld) in case of overfitting (due for instance to
model selection problems), most of the samples rbec8Vs; and so, most of the learning samples are
detected as significant, thus making the proposgatithm tend to a simple random sample select®ran
increment of the computational cost, given by tha@ning of two stages of SVM classifiers. For the
Boumerdes data set, the MS method required 13Qorperform the entire selection process and acgurac
evaluation, while the proposed strategy consum&dnzi8. Similarly, for the Pavia data set, 60 an8 fin
were necessary for the MS and the proposed meteggectively.

While in this research the initial training set wasosen in a random way, we think that a more
sophisticated initialization strategy could imprabe performance of the active learning procesturther
enhancement could be obtained by combining our odetiith another sampling strategy, such as MS, to
better explore the margin surroundings. Researithpgsogress in these directions.
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4. SVM Active L earning using Spatial Information

Abstract — The performances of supervised approaches for kassification of remote sensing images
depend strongly on the quality of the labeled degad to train the classifier. In this chapter, fhveblem of
the collection of the training samples is facedotigh a new active learning approach. While straegi
available in the literature formulate the activeataing problem in the spectral domain only, we me@ to
combine spectral and spatial information in theateve process of training sample selection. Intmadar,
three criteria based on spatial information areroduced in order to encourage the selection of damp
distant from the samples already composing theerturtraining set. In the first strategy, we compiite
Euclidean distances in the spatial domain from tiiaening samples, while the second one is basethen
Parzen window method applied in the spatial dom&inally, the last criterion involves the concept o
spatial entropy. Experiments on two very high resoh images acquired by QuickBird show the
effectiveness of regularization in spatial domaimd apen challenging perspectives for terrain cargpai
planning.
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4.1. Introduction

In the remote sensing community, two main approsdbe the classification of images have been
proposed: supervised and unsupervised. The supdrmethods have shown promising performances, but
they depend strongly on the quality of the labelath used to train the classifier. Indeed, trairsamples
have to be representative of the statistical distibn of the data. However, the process of trgirsample
collection is not obvious, because it is performeghually by human experts and thus it is charasdrby
errors and costs. The acquisition of training sasglirectly on the field or through the visual ieston of
the images can be performed only on a limited portif the available data given the constraint®ims of
time and money. For this reason, in the last fearydhere has been a growing interest in developing
strategies for the semi-automatic selection oftthming samples. In the machine learning fiel@, #ctive
learning approach represents an interesting salttidace this problem. Considering a small andptimal
initial training set, few additional samples aréested from a large amount of unlabeled data (legreet)
through an iterative process. The aim of activenieg is to rank the learning set according to ppastune
criterion, or a heuristic, that allows to selea thost useful samples to improve the model, thusnnizing
the number of training samples necessary to maimigicrimination capabilities as high as possibiiethe
last few years, different solutions have been psedoand applied successfully in different apploai
fields [1], [2] and for remote sensing problems{[&}].

The active learning strategies proposed in the tersensing field are based on heuristics in the
spectral domain. In [3] the authors present aeggsabased on support vector machines (SVM). Thadegy
gueries for the most ambiguous samples as meadwetheir distance from the current separating
hyperplane as done in the margin sampling (MS) ote{i3]. In [4], the authors propose a solution for
problems of buried object detection. The signatdioesvhich knowledge of the associated labels istmo
relevant in the context of detector design arecsete In [5], the active learning approach is aplin the
context of satellite image retrieval in order taimiize redundancy between the images shown togée In
[6], the authors propose a probabilistic methodgishaximum likelihood and binary hierarchical cléses.
The samples that mostly change the existing beli¢he a posteriori probability distribution function are
selected. The method proposed in [4] is extendgd]jnn which a graph-based semisupervised allgorits
fused with an active learning procedure based omutual information measure. In [8], two methods are
proposed. The first strategy is an extension oM in which sample distribution is consideredider to
avoid oversampling on dense regions. The secondi®imsed on classification disagreement using a
committee of classifiers. In [9], the authors prep@ strategy to label samples grouped with hikeicat
clustering in order to match the data relationstigcovered by the clustering algorithm with thessla
semantics desired by the user. In [10], a new sgmivised classification approach is introducedylirich
unlabeled training samples are selected by meaan attive-selection strategy based on the enwbplye
samples and used to improve the estimation of s aistributions. In [11], different query furaris for
the SVM classification are investigated. In patacuthey are based on the evaluation of two dater
uncertainty and diversity. In [12], the originabkssification problem is reformulated into a newbbem
where it is needed to discriminate between sigaifi@and nonsignificant samples, according to a egnaf
significance which is proper to the SVM theory.

The common denominator of active learning methotteduced up-to-now in the literature is that they
are all formulated in the spectral domain and gtlore the spatial dimension characterizing images t
classify. However, in the remote sensing literatitrbas been demonstrated how the integratiorpettsal
and spatial information is important for solvingplems in different contexts [14]-[29]. For instanm the
field of hyperspectral images, classification peshs are faced in different works by adopting défer
approaches, such as composite kernels [14], mavglwall operators [15], and Markov random field (MRF
regularization [16]. In [17], the authors proposesblve the problem of resolution enhancement girtou
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spectral unmixing and superresolution mapping, hictvspatial and spectral information are fused18j-
[19], spatial information is incorporated into thpectral-based endmember search process, whicthéas
purpose of selecting a collection of pure signasymectra of the materials present in the hypersgesitene.
Similarly to hyperspectral images, several workes @ioposed for very high resolution (VHR) imagesr F
instance, solutions based on morphological opesdffl], textural metrics [21], and composite kesn@R]
are presented for classification problems. Forlstit aperture radar (SAR) images, a specific keme
used by combining both radiometric and texture nmition in a semisupervised strategy for oil-slick
detection [23]. Images acquired at different tincaa be used for change detection problems, as fdone
data acquired by different sensors through MRF$, [BAR images by markovian fusion [25], and optical
images using linear spatial-oriented operators.[26hatural use of spatial information is represénby
image registration techniques. For instance, if] fpatial and spectral information are combinedtfos
purpose. Finally, in [28]-[29], the authors propwosethodologies for the contextual reconstructioclotid-
contamined areas in multitemporal images by oppeitu capturing spatial and spectral correlations
characterizing the considered image.

In this chapter, we investigate how spatial infatioracan be useful in the process of training sampl
collection for classification of remote sensing gea. In particular, we propose to evaluate eaclpleaot
the learning set using two different heuristice finst one spectral and the second one spatitdr Afat, the
two different heuristics are opportunely combinbdotgh the realization of the Pareto front in ortter
consider simultaneously spectral and spatial in&tion. While in terms of spectral criterion we atdpr
its simplicity and effectiveness, the traditionalSMstrategy thought for classification based on SVM
approaches, for the spatial information we progbsee different criteria. The criteria are basedadding
samples that are distant spatially from the samalesady composing the current training set. Inftist
strategy we compute explicitly the Euclidean dis&emin the spatial domain from the training sampidsle
the second one is based on the Parzen window methtdte spatial domain. Finally, the last criterion
involves the concept of spatial entropy. To invgtié the performance of the proposed approachand t
compare the three spatial heuristics, we conduatedexperimental study based on two VHR images
acquired by QuickBird. The obtained results showat tinteresting performances can be achieved.
Advantages in terms of classification accuracy eadsification reliability have been empiricallyadwated
with respect to strategies that do not exploitigbatformation.

The remaining part of the chapter is organizedHsws. In Section 4.2., the strategy of integnatad
spatial and spectral information and the thredivaapatial criteria are described. Section 4r8sents the
data sets used in the experimental analysis andafiesponding results. Finally, conclusions amaar in
Section 4.4..

4.2. Proposed Method

4.2.1. Proposed Active L earning Framewor k
Let us consider a training set composed initiafly éabeled samples& :{xi ,yi}i”:1 and an additional

learning set composed of unlabeled sampleld ={xj}?;’:1, with m>>n. In order to increase the training

setL with a series of samples chosen from the learsgtty and labeled manually by the expert, an active
learning algorithm has the task of choosing thermperly so that to maximize the accuracy of the
classification process while minimizing the numbétearning samples to label (i.e., number of iat&ons
with the expert).

In Fig. 4.1., we show the flow chart of the actigarning strategy proposed in this work. The oldject
is to combine opportunely spectral and spatial rinfition in the active selection process of thening
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Fig. 4.1.Flow chart of the active learning method proposedritegration of spatial and spectral information.

samples. The method is proposed specifically fasgification problems based on SVM. We refer theee
to [30], [31] for more details about SVM. Startifigm the small and suboptimal training &eta multiclass
SVM classifier is trained on this set of samplelse Tlassification model constructed in this waysed to
evaluate the unlabeled samples of the learningJsdh particular, each sample is evaluated using two
different heuristics. The first heuristicrepresents a spectral criterion, while the sedwndisticf, is based
on spatial information. At this point the two diféat heuristicd=[f 1, f;] have to be opportunely combined.
For this purpose, we form the Pareto front, comgasfeall the nondominated samples (solutions).his t
way the combined criterion represents a tradedffiben spectral and spatial information. Finallpnfrthe
sorted sampleds, Ns samples belonging to the Pareto front are seldobedthe learning satl, whereNs is
the number of samples to be added in the trairebg.sSuccessively, the selected samplégare labeled by
the human expert and added to the trainingLséthe entire process is iterated until the totahbar of
samples to add to the training set is reached.

Algorithm 4.1. resumes the proposed active learstrategy.

Algorithm 4.1.: Proposed Active Learning Framework

Inputs:

L: initial training set, composed of n labeled sagspl

U: learning set, composed wf(m>>n) unlabeled samples.

Ns: number of samples to add at every iteration efattive learning process.
Output:

L: final training set.

Repeat

1. Train the SVM classifier with the current traigi setL, while estimating its free parameters by
crossvalidation (CV).

2. Compute the criteriofh based on spectral information for each samp{p= n+1, n+2, ..., n+m)of
the learning se.

3. Analogously to the previous step, compute thiergon f, based on spatial information for each
samplex; (j = n+1, n+2, ..., n+m)

4. Combine spectrdl and spatiaf, criteria by identifying the nhondominated solutioifie samples
are now ranked in the sét.

5. Select the firdhs samples fronts.
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6. Label the selected samplds.

7. Add the labeled samplées; to the training sdt and remove them frotd.

Until the predefined convergence condition is not satisfe.g., the total number of samples to add to
the training set is not yet reached).

In the following, we describe in greater detail timain ingredients of the proposed methodology,
namely spectral and spatial criteria and nondorethaorting.

4.2.2. Spectral Selection Criterion: Margin Sampling

Regarding the spectral criterion, for its simplicitnd effectiveness, we adopt the MS strategy [13],
which has been proposed specifically for clasdificaproblems based on SVM. Considering a simple
binary case with linearly separable classes, supeators (SVs) are the samples of the trainind_sehich
are closest to the hyperplane that describes toeside boundary given by the SVM classifier. If we
consider the unlabeled learning &&t we can assume that the samples that are thestltse decision
boundary are the most interesting samples, beddesehave a larger probability to become SVs when
added to the training set. Therefore, the sam@est®d by MS are the ones showing the minimumlateso
values of the discriminant function. The same raampis applied in case of nonlinearly separaldssts.

The assumptions done in the binary case can beinisethulticlass classification problem too. Insthi
context, a solution is given in [13], in which artA® SVM classifier is adopted. For each sample, the
maximum value among the discriminant functions mtegt by theT binary classifiers is exploited as a
sample indicator, wher€ is the number of different classes. Then, the sesnpith the minimum indicator
values are selected. In this work, we use an @t solution based on the OAO SVM classifier, athihas
shown its effectiveness for active learning protsémthe field of electrocardiographic signal cifisation
[2]. In this context,T-(T-1)2 binary classifiers are involved. For each samp{p= n+1, n+2, ..., n+m) we
calculate the number of votes of each class N™ = [Vi1, iz, .. Vi1]. The classouax; with the largest number
of votesvuax, is first identified. Then, considering tiel classifiers associated with the clasgax; the
minimum absolute value of the discriminant functfgr,; is calculated. Finally, the samples characterized
by the minimum values dfyn,; are selected.

Algorithm 4.2. resumes the spectral criterion basethe MS strategy.

Algorithm 4.2.: Spectral Selection Criterion — Margin Sampling

1. Compute the number of votes of each cla$s N' = [Vi1, V2, ..., V1] for each sample; (j = n+1,
n+2, ..., n+m)of the learning sdt.

2. ldentify the clasawax; with the largest number of votegax .

3. Calculate the minimum absolute value of the rdisaant functionfyn; by considering the-1
classifiers associated with the clasgx .

4. Seftf1(j)=f v j.

In this study, three criteria are proposed to irdgg spatial information in the heuristic. They all
consider the subset of support vectors identifigdhle training process using the training IseWe define
Snas the number of support vectors identified.

4.2.3. Spatial Selection Criteria

4.2.3.1. Spatial Distance from the Closest SV
The first criterion, named Spl in the rest of thegter, consists to calculate for each sample=
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n+1, n+2, ..., n+mjthe spatial Euclidean distances from the suppestorsd; [ R"= [di1, do .. d s

dj; :Hpj - pi” (4.1)
wherep represents the two-dimensional vector contairiregposition of the considered sample in the spatial
domain of the image. After that, the nearest suppeetorsy; is identified and the corresponding distance
duin, is considered for the spatial criterion. In parée, the negative value is adopted in order tovedrthe
maximization problem into a minimization one. Iristtway, we favor the selection of samples placed in

areas of the image not covered by SVs.
Algorithm 4.3. synthetizes the proposed spatigédon based on the distance from the closest SV.

Algorithm 4.3.: Spatial Selection Criterion — Spatial Distance fritwve Closest SV

1. Compute the spatial Euclidean distances fronStindifferent support vectord; [ R = [di, do .
d;sq for each samplg; (j = n+1, n+2, ..., n+m)of the learning say.

2. ldentify the support vectegn,; nearest to the sample.

3. Consider the distand; associated with the support vecsg ;.

4. Seftf,(j)=-dmin,-

4.2.3.2. Parzen Window Method in the Spatial Domain

In the second strategy (Sp2), we apply the Parazedow method in the spatial domain. Such method
represents a standard way to estimate probabilysity functions of random variables [32]. After
calculating the distances from SVs, we do not aersihe nearest SV only as done in the strategy [8p1
we combine opportunely all the distance values. tRim purpose, we use a combination of the disw@nce
where distance values are defined using a kerraatqr. The spatial criteriotiker; for the sample; (j =
n+1, n+2, ..., n+tm)s given by the following formulation

Sn
dKER,j =ZK(dj,i) (4.2)
i=1
whereK([)JJis a Gaussian function, i.e.,
K(d,, )= expl-d? /). (4.3)

Note that the kernel operator is not applied indpectral domain but in the spatial one. The pat@ames
related to the width of the kernel and has to bsenby the user. In this study, we suggest to tset i
empirically as follows

1 m+m
/1:E D dui; - (4.4)

j=n+1
In this way the parametéris adaptive and is modified throughout the itenati according to the distances
observed. One can reasonably expect that it temdt®tome smaller, as the distance valljgs; tend to
decrease through the iterations of the algorithm.
Algorithm 4.4. synthetizes the proposed spatigkedon based on the Parzen window method in the
spatial domain.

Algorithm 4.4.: Spatial Selection Criterion — Parzen Window Methrothe Spatial Domain

1. Compute the spatial Euclidean distances fronStindifferent support vectord; [ R = [di, do
d;sq for each samplg; (j = n+1, n+2, ..., n+m)of the learning sad.

2. ldentify the support vectegn, nearest to the sample.

3. Consider the distand; associated with the support vecsgi ;.

4. Compute the parameteusing (4.4).
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5. Compute the kernel distandgr; using (4.2).
6. Setfg(j):d KER

4.2.3.3. Spatial Entropy Variation
The last strategy (Sp3) proposed involves the qanakspatial entropy. In information theory, for a
discrete random variabewith possible valuegz, % ..., z}, the entropyH(Z) can be written as

\

H(Z)=-> nz)log, plz) (4.5)

k=1
wherep([) denotes the probability function dfandb is the base of the logarithm used. The entropyev&d
maximized whemp() assumes a uniform distribution. In our activarteng problem, in order to have a
spatial distribution statistically significant, vgebdivide (quantize) the entire imagehidifferent regions. In
particular, we consider a valuelogqual to

h=|ysnf (4.6)

and subdivide the image in both the orizontal aedical directions into/h uniform intervals in order to
obtain h rectangles of equal area. At this point, the pbdlty value for each region is computed as the
number of SVs present in that region divided by tthtal number of support vecto8n First, the entropy
value H, is calculated considering the SVs associated thighcurrent training sdt only. Then, for each
samplex; (j = n+1, n+2, ..., n+m)we calculate the corresponding entropy vatijedy supposing that it
would become a SV in the new training set. Conseifiyyeve derive the spatial entropy variatidg;, which
is defined as the difference between the valuentsbpy with and without the insertion of the saenipl the
training set. The purpose is to maximize the spatitropy variation value, or equivalently to miria@ the
negative value of this quantity, in order to distite spatially as most as possible the trainingosesn
Algorithm 4.5. resumes the proposed spatial cdteliased on the spatial entropy variation.

Algorithm 4.5.: Spatial Selection Criterion — Spatial Entropy Vada

1. Compute the parameteusing (4.6) and subdivide the imagéehirectangular regions of equal area.
2. Compute the spatial entroply value by considering the training set L using 4.5

3. Compute the spatial entropy, fbr each samplg (j = n+1, n+2, ..., n+m)of the learning sdt.

4. Compute the spatial entropy variatiop; ¥ H;- Hy.

5. Setfy(j)=-H ;.

4.2.4. Nondominated Sorting

The concept of nondominated sorting arises wheripfeiimeasures of competing objectives (criteria)
have to be simultaneously optimized, a common saeria several practical applications. Optimizing
multiple objectives involves finding a set of opéihsolutions rather than a single one. The seleatioa
solution from this set is not trivial and is usyaliser-dependent. From a mathematical viewpoigereeral
multiobjective optimization problem can be formeléias follows.

Find the vectop” that minimizes the ensemble @fobjective functions (in our cas®,= 2), i.e.,

t(p)=[fi(p). i=12..Q] (4.7)
subject to thd equality constraints, i.e.,

g,(p)=0 j=12..3 (4.8)
and theK inequality constraints, i.e.,

h(p)< 0, k=12,..,K (4.9)

wherep is a solution to the considered optimization proble
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Fig. 4.2.lllustration of a front of nondominated solutions.

Solving a multiobjective optimization problem rali®n an important concept, which is that of
domination. A solutiomp; is said to dominate another solutignf and only if

0 kO{12,...M}, fi(p) < f(p;) O OkO{12,...M} f(p) < fy(p;) (4.10)
This concept leads to the definitionRéreto optimality a solutionp; 0Q (Q is the solution space) is said
to bePareto optimalif and only if there exists no other solutign L2 that dominatesp; . The latter is

said to benondominatedand the set of all hondominated solutions forms Rlageto front of optimal
solutions.

Once the Pareto front has been identified, a sisgltion has to be selected from the set of
nondominated solutions. For this purpose, diffegrategies can be adopted. In this study, we siigge
choose the median solution, in order to maintairadeoff between the different criteria. In casat tit is
necessary to extrabl solutions simultaneously, tid solutions closest to the median one are considered

An example of the Pareto front is given in Fig.,42which the optimization of two criterfa andf, is
involved. The nondominated solutions are drawn wit circles, while the selected (median) solui®n
represented in green. Other dominated solutiondranen with black crosses.

4.3. Experiments

4.3.1. Data Set Description

In order to validate the proposed active learnitmgtegies, experiments were conducted on two
multispectral VHR remote sensing images acquire@ubigkBird with 0.6 m resolution. The data setderef
different types of urban settlements at differewels of complexity. Details of sites and imagesraported
in Table 4.1.

The first data set was acquired in 2002 and ratessportion of the city of Las Vegas (Nevada). The
scene, shown in Fig. 4.3(a), contains regular -aniessed roads and examples of buildings with aimil
heights (about one or two floors) but different dimions, from small residential houses to largensernial
structures. It represents a common American suruldndscape, including small houses and largesroad
which is different from the European style of oltles built with more complex structures.

To take into account this second situation, a sg&dest area acquired in 2004, shown in Fig. 4.3(c),
was used including a sub-urban scene of Rome Yltalynposed of a more complex urban structure with
buildings showing a variety in heights (from fododrs to twelve), dimensions and shapes including
apartment blocks and towers. In particular, the Bamage has two completely different urban archites
separated by a railway. The area located in theeupight part of the scene was built during the;60s
buildings are very close to each other and havevdmum of five floors, while roads are. The othielesof
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TABLE 4.1
CHARACTERISTICS OF THHMAGES USED FOR THEEXPERIMENTS

Site information Image infor mation
L ocation Dimension Satellite Acquisition date Spatial resolution
[pixels] [m]
Las Vegas (Nevada) 756X723 QuickBird May 10, 2002 6 0.
Rome (ltaly) 1188x973 QuickBird July 19, 2004 0.6

—f |
e

AT

AR TN

o=l

= V]

At 2o

Fig. 4.3. Data sets used for the experiments. Fealk® image for (a) the Las Vegas and (c) the Rdata sets. Grounuluth for (b’
the Las Vegas and (d) the Rome data sets.

the railway was developed during the 80s and 90ifglihgs have a variety of architectures, from &mpant
blocks (eight floors) to towers (twelve floors), ehroads are wider than those on the other sidthef
railroad tracks.

Several different surfaces of interest have beentified, many of which are particular to the sfieci
scene. For the Las Vegas data set, one goal wdistinguish the different uses of the asphalt sufa
which includedRoads(i.e., roads that link different residential hag)selighways(i.e., roads with more than
two lanes) andParking lots An unusual structure within the scene wd3rainage channelocated in the
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upper part of the image. A further discriminatioasMmade betweeResidential houseand Commercial
buildings and betweerBare soil (terrain with no use) an8oil (generally, backyards with no vegetation
cover). Finally, more traditional classes, sucfTiases Short vegetatiomndWaterwere added for a total of
eleven classes of land-use. The areas of shadoe/ weey limited in the scene since the modest height
buildings and relative sun elevation (65.9°).

Due to the dual nature of the architecture of tbenR test case, the selection of the classes was mad
to investigate the potential of discriminating beeém structures with different heights, includiBgildings
(structures with a maximum of 5 floord)partment blockgrectangular structures with a maximum of 8
floors) and Towers (more than 8 floors). As for the previouse casthelo surfaces of interest were
recognized, includingRoads Trees Short vegetationSoil, Bare soiland the peculiaRailway for a total of
nine classes. Differently from the previous casehis scene shadows occupy a larger portion oinlage.

The ground-truths are reported in Fig. 4.3(b) aigd #.3(d) for the Las Vegas and Rome data sets,
respectively. They have been obtained by carefulaliinspection of separate data sources, incluainigl
images, cadastral maps amd situ inspections (for the Rome scene only). An add#ioconsideration
regards objects within shadows that reflect litheliance because the incident illumination is adetl
These surfaces were assigned to one of the comdsyp classes of interest described above. When
classifying images at sub-meter spatial resolutinany of the errors may occur in the boundaries/éen
objects. On the other hand, often it is not posstbl correctly identify an edge. To limit this effewe
defined the two ground-truths by not including bdary areas.

We note that for both data sets several classes hery similar spectral signatures. In order to
differentiate them, we applied on the original imagontextual filters based on mathematical mogahol
[33], which have shown to have desirable propemiben applied to urban VHR classification problems
[15], [20]. In particular, four very common morpbgical filters have been considered: opening (@kiog
(C), opening by reconstruction (OR), and closingdonstruction (CR). For each of these filters,used a
structuring element (SE) whose dimensions increfremad 9 to 25 pixels with steps of 2 pixels, reggtin
9 morphological features. The size of the SEs leas lchosen according to the image resolution.Heok.as
Vegas data set, a square SE has been used intotdé&e into account the major direction of theeahs on
the image, which are 0° and 90°. For the Rome skitabeing characterized by an overall 45° anglden
disposition of the objects, a diamond-shaped SE been used insteasd. This shape allows a better
reconstruction of the borders of the objects indage of O and C features. The process of recatistnufor
OR and CR operators has been performed using d ¢$8pixel diameter) SE. The entire process of
morphological filtering increases the dimensiowadt the data sets from 4 to 40 features.

4.3.2. Experimental Setup

In all the following experiments, for both datassetll the available samples were split in two ,sets
corresponding to learning sdtand test set. The detailed numbers of learningtestdssamples are reported
in Table 4.1l. The initial training samples werdes¢ed randomly from the learning &t For the first data
set, starting from 55 samples, i.e., 5 sampleglpss, the active learning algorithm was run uhgl number
of traning samples was equal to 7995, adding 2(pkeamat each iteration. Analogously, for the secdaiz
set, starting from 36 samples, i.e., 4 sample &mheclass, 20 samples were added at each itergida
11996 samples. The entire active learning process mun ten times, each time with a different ihitia
training set to yield statistically reliable resulAt each run, the initial training samples welhesen in a
completely random way.

Classification performances were evaluated in tesfreeveral measures: 1) the overall accuracy (OA),
which is the percentage of correctly classified glashamong all the considered samples, indeperydeht!
the classes they belong to; 2) the Kappa statj84¢, 3) the classification accuracies obtained tioe
different classes; 4) the average accuracy (AA)iciwhis the average over the classification accesaci
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TABLE 4.11

NUMBER OFINITIAL TRAINING, LEARNING, AND TEST SAMPLES FOR(A) THE LAS VEGAS AND (B) THE ROME DATA SETS

@)

Class # learning samples # test samples

|| Bar e soil 4276 48908
Commercial buildings 1831 20938
Drainage channel 1149 13138
[ | Highway's 2851 32594
Parking lots 2269 25939
Residential houses 7044 80546
Roads 6130 70088

Short vegetation 1803 20611
Sail 1480 16918

Trees 1049 11989

Water 118 1354
Total 30000 343023

(b)
Class # learning samples # test samples

Apartment blocks 7081 102735
Bare sail 5241 76031
Buildings 11688 169568
Railway 1036 15024
Roads 10545 152992

Short vegetation 4489 65128
Sail 971 14086

Tower 3089 44827

Trees 5860 85020
Total 50000 725411

obtained for the different classes; 5) the standardations §) of OA, Kappa and AA, in order to evaluate
the stability of the active learning method.

An SVM classifier was also trained on the entirarteng set in order to have a reference-training
scenario, called “full” training. On one hand, tblassification results obtained in this way repnésan
upper bound for the accuracies. On the other haadxpect that the lower accuracy bound will beegitsy
the completely random selection strategy (R). Wealfdhat the purpose of any active learning styaie to
converge to the performance of the “full” trainiscenario faster than the R method. Moreover, tbpgsed
strategy for spectral-spatial information integvatiis compared to the performances given by the MS
method based on spectral information only.

4.3.3. Experimental Results

Considering the Las Vegas data set, the OA for“tull’ classifier is equal to 95.47%. In Fig.
4.4(a),(c),(e) we show the results in terms of Bappa, and AA in function of the number of training
samples for the proposed active learning stratetliesMS, and the random ones. First, it is evidhent the
active selection of the training samples allowsdaster convergence to the “full” accuracy withpect to
the random strategy. Comparing the different ad@agning strategies, we note that the integratibthe
spatial information is useful in the process oinireg sample collection. In particular, the strag¢sgoased on
the criteria Spl and Sp2 converge to the “full”wecy using about 5000 training samples, whichasgmt
about 17% of the entire learning set. Instead, 860600 and 7000 samples are necessary for the dwetho
based on the criterion Sp3 and the spectral infoomaonly, respectively. Moreover, we note thatfope
convergence, the proposed strategies give an iraprent with respect to the traditional MS criteridhis
means that similar values of accuracies can banguatausing a minor quantity of training samplesjolih
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Fig. 4.4.Performances achieved on (a), (c), (e) the Las ¥ega (b), (d), (f) the Rome data sets in termsapf(p) OA, (c), (c
Kappa, (e), (f) AA. Each graph shows the resultfuimction of the numberfdraining samples and averaged over ten runse
algorithm, each with a different initial set. Theaded areas show the standard deviation over itheotesidered runs. R random

MS = margin sampling, Sp1-Sp3 = spatial criterioi,= full SVM.

implies a reduction of the manual work for samg@beling and a decreasing of the computational time

necessary to train the classifier.
The obtained results are shown in greater detalfahle 4.llI(a). In particular, we considered the
performances obtained after 50 and 100 iteratidribeviterative process, which corresponds to 183%

50



Chapter 4 SVM Active Learning using Spatial Information

TABLE 4.1
OA, KAPPA, AA, CLASS ACCURACIES AND STANDARD DEVIATIONS (6) ACHIEVED ON (A) THE LAS VEGAS AND (B) THE ROME DATA SETS

(@
N MS | MS | MS MS | MS | MS
M ethod Full Initial R MS +Spl +Sp2 +Sp3 R MS +Spl +Sp2 +Sp3
Araining | 55000 55 1035 2035
samples
OA 0547 | 58.98| 8489 8309 89.78B 9025 8883 8718 5490. 92.13| 92.61] 91.21
Gon - 574 | 056 | 040| 024 025 040 042 089 019 0019035
Kappa 0947 | 0533 0823 0860 0880 0.886 0.870 0850 8908 0.908| 0.914] 0.897
O ApPA - 0.060 | 0.007| 0.005 0002 0002 0004 0005 0.010.0010] 0.001| 0.003
AA 93.35 | 59.33| 79.22] 83.15 84.86 8537 83pp8 8200 5586. 88.39| 88.93] 87.46
Gan - 410 | 147 | 080| 038 042  0.7¢ 1.00 147 027 0p8061
Bare soil 99.53 | 65.74| 98.09 9830 99.3p 99.41 99/10 9837 4597. 98.39 | 98.42| 98.36
Cg&‘{gﬁ:g'sa' 98.22 | 72.86| 88.95 93.36 94.00 94.61 938 91110 525%. 96.31| 96.85| 95.38
'?:Lz:r?ge 0943 | 5861| 91.82 96.42 97.14 97.78 96[p4 95,03 4897. 98.18 | 98.53| 97.29

Highways 97.22 4550 86.68  90.77 93.77/ 9423 9185 90|65 8593. 96.06 | 96.55| 94.34

Parkinglots | 86.73 52.67 63.14) 66.1] 68.96 69.83 672 64/83 6873. 76.77| 78.04] 75.03

Rf‘o‘fgga‘ 97.76 | 61.27| 91.25 9411 96.41 96.83 95/59 9321 319%. 97.38 | 97.54| 96.66
Roads 96.26 | 59.98| 87.99 91.00 91.64 92.37 90/s7 8956 8892. 93.61| 94.27| 9259
Short 91.06 | 60.03| 7556 8152 83.72 83.96 8257 7921 9183. 86.49| 87.03| 85.35

vegetation
Soil 88.26 | 42.66| 5159 57.31 57.6f 5871 5682 5882 2369. 69.15| 70.37| 68.02
Trees 82.39 | 55.96| 62.03 66.74 69.49 70.00 6880 6548 0770. 74.13| 74.78| 73.18
Water 90.03 | 77.32| 7433 7899 8121 8137 81381 75,70 7082. 85.81| 85.85| 85.88

(b)
N MS | MS | MS MS | MS | MS
M ethod Full Initial R MS +Sp1 +5p2 +5p3 R MS +Sp1 +5p2 +5p3
#raining ) 5000 | 36 2016 4016
samples
OA 88.80 | 40.49| 7591 77.77 7896 7973 770 78,54 5080. 82.30| 83.03] 81.04
Gon - 450 | 027 | 050| 019 021 0.4 038 042 008  0/090.24
K appa 0.868 | 0.322| o0.713] 0.735 0.758 0.762 0.739 0./44 6807 0.792| 0.800| 0.777
O APPA - 0.043 | 0.003] 0.006) 0002 0002 0005 0004 0.005.0010| 0.001| 0.002
AA 88.74 | 4550| 7289 7547 765p 77.28 7546 76,50 8078. 80.47 | 81.21] 79.25
Gan - 298 | 076 | 064| 031] 030 0.5 076 039 010  0J090.25
Apbal‘:)tcr‘k“s”t 82.18 | 15.97| 59.90| 6338 6500 6582 63[16 64,69 3%8. 71.04| 71.98| 68.92
Bare soil 9582 | 75.86| 91.93 91.73 9394 94.05 9348 9285 8192. 95.26 | 95.41| 94.67

Buildings 88.00 | 24.02| 73.88 75.8] 75.63 76.7 73Pp2 7588 8679. 79.71| 80.94| 77.90

Railway 96.61 | 78.59| 91.02 90.1% 93.12 9344 927 92|99 6491. 9450 | 94.85| 93.55

Roads 92.82 57.20 89.21 89.14 92.04 92.42 91.83 89/86 6688. 92.54 92.63 91.93
Shor.t 87.70 42.72 70.42 75.51 72.64 74.28 71.66 74(87 6279. 77.69 79.22 76.25
vegetation
Soail 88.45 51.36 57.99 66.53 65.68 66.39 64,67 65\64 4472. 73.07 73.70 71.79
Tower 74.18 24.07 34.11 39.04 40.3p 41.44 39.09 43/38 8147. 48.67 50.34 47.26
Trees 92.89 39.73 87.57 87.84 90.34 90.94 89.67 88/35 0488. 91.71 91.79 90.97
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Fig. 4.5. Maps for the Las Vegas data set in taffa) set of initial training samples, (b) cri@mibased on the discriminant function
value (MS) and (c) relative histogram, (d) criterlzased on the spatial distance from the closegiSp¥) and (e) relative histogram,
(f) combined criterion (MS+Sp1), (g) criterion bdsen the Parzen window method in the spatial doraath (h) relative histogram,
(i) combined criterion (MS+Sp2), (j) criterion basen the spatial entropy variation (Sp3) and (Ktree histogram, (I) combined
criterion (MS+Sp3).
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2035 samples used to train the classifier, respagtiWe report the values of OA, Kappa, AA, standda
deviations associated with the accuracies,(ckapra, @ndoaa), and class accuracies. As it can be seen, the
proposed strategies are characterized by a battfarmance with respect to the MS criterion frorfiedtent
point of views. First, better values of accurad@#\, Kappa, AA, class accuracies) are obtainedgutie
same number of training samples. Then, better gabfiestandard deviations associated with the acimga
are verified. Indeed, smaller values of standardadien mean that the proposed strategies exhifieater
level of stability with respect to the random sétac of the initial training set.

To better understand the proposed strategies, @f $eaps are depicted in Fig. 4.5. In Fig. 4.5(&) w
report the grey-level representation of the rensetesing image with an example of training samplelse
particular, for such analysis we considered thiginiraining set that gives the value of OA molese to the
mean value obtained at the first iteration, i.quad to 58.98 as reported in Table 4.1ll. The fragrsamples
are depicted with circles colored with the corregfing class colors. In Fig. 4.5(b) we report theproathe
discriminant function value, which is given for baamplg of the image by the minimum absolute value of
the discriminant functiofi,y; obtained by training the classifier on the consgdeset of training samples. In
this map SVs are highlighted with white circles.eTorrespondence between the discriminant function
value and the color is given in Fig. 4.5(c), in @fhihe histogram of the map is reported. In padiguor
completeness, the histogram is not refered to tmsidered single map only, but has been obtained by
averaging the results on the ten different expertmmens. It is evident how many samples are astatia
with very low values of discriminant function, whi@re depicted in dark blue, and therefore areeglac
the proximity of the boundary between differentsskes. This map corresponds to the map associated wi
the MS criterion, in which the samples more clas¢he boundary are selected. Similarly, we repothe
other figures the maps associated with the spatfarmation. In particular, the map and the relativ
histogram associated with the criterion based ersphatial distance from the closest SV (Sp1) aoevehn
Fig. 4.5(d),(e), respectively. It appears how dade samples are placed in area of the image nvetred by
SVs. In Fig. 4.5(f) we illustrate the final map ained by combining the spectral MS and the sp&tl
criteria. Again, we show with dark blue color ttaples to select, i.e., in this case the sampliesigi@g to
the set of nondominated solutions. Similarly, ig.F.5(g),(h) we report the map and the relatigtagram
associated with the criterion based on the Parazedow method in the spatial domain (Sp2). The niegb t
combines the MS and the Sp2 criteria is depictdeign4.5(i). We note that this map appears sindahat
represented in Fig. 4.5(f). This justifys similaerfprmances of the two different criteria as ddmagi
previously. Finally, the maps and the histograratesl to the Sp3 strategy, in which the maximizatibthe
spatial entropy variation is desired, are illugtdain Fig. 4.5(j)-(1).

The analysis of the discriminant function valueoat us to conduct further considerations on the
different compared strategies. In particular, tleriminant function value represents an infornmatielated
to the reliability of the class estimation giventhg classification process. Considering the Fig(b),(c), in
which the map of the discriminant function and takative histogram associated with the initialrirag set
are depicted, we highlighted previously how mosthef samples have been characterized by low values
discriminant function. This means that they havenbestimated with poor levels of confidence. Tlsigeat
is confirmed by the fact that very few training $des have been used to construct the classificatiatel.
We note that the histogram has approximately a mooroos decreasing. In Fig. 4.6(a),(b), we illugtridie
map of the discriminant function and the relativstdgram using the “full” training set. In this easn
which a high number of training samples has beamsidered, the samples are characterized by high
discriminant function values and thus high confickeriThe histogram is completely different with respto
that shown in Fig. 4.5(c). We have not a monotorde@easing, but a peak placed in correspondenae of
relatively high discriminant function value. In erdto perform a more detailed analysis, we consider
measures which are the following: 1) the mean valuthe discriminant function calculated on theirent
map and 2) the standard deviation of the discrimtifanction value normalized with respect to the
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Fig. 4.6. Maps for the Las Vegas data set in tafhfa) discriminant function value and (b) relathistogram for the full SVM.

corresponding mean value. In Fig. 4.7(a),(b), wsorethe results in function of the number of thain
samples for the proposed active learning strategiesMS, and the random ones in terms of disciamtin
function mean value and normalized discriminantcfiom standard deviation, respectively. For a bette
visualization, we show the results until 200 itenas$ of the iterative process. Considering thaahttaining
set, which corresponds to the starting point ofdineves, it is confirmed that the discriminant ftime has a
low mean value and a high standard deviation. htiquéar, a high value of standard deviation implteat
the confidence map tends to be not homogenoussome samples are classified with low reliabityd
other ones with high confidence. This result is desirable, because the classification processstémd
classifiy the samples with different levels of abllity. Instead, using the “full” training set, weave an
increment of the mean value and a substantial deareof the standard deviation value, which comes f
a confidence map more homogeneous. This scenails te the “ideal” case, in which all the samples a
classified with high reliability. This situation volves a confidence map approximately homogenous an
with high values of discriminant function. Consiidegrthe different selection strategies, we noté #udive
learning methods are able to increment the dispamti function mean value faster than the random
selection. Moreover, a faster convergence to thédl”“fesult has been obtained using the two progose
strategies that combine the MS criterion with tipd 8nd Sp2 criteria. These two heuristics allowousave
quicker decrements of the standard deviation valse, which have been verified since the firstaitiens.
Adopting the MS criterion only, an improvement withspect to the random strategy has been obtaimgd o
when about 1500 samples have been added to thengaet. These results show how the integraticthef
spatial information in the active learning procedlsws us to obtain better performance not in teohs
accuracy only, but also in terms of classificati@hability, which can be estimated by analyzing th
discriminant function map. The mean and standardatlen values are summarized in Table 4.1V(a), in
which the results obtained after 50 and 100 iteratiof the iterative process are reported.

Concerning the Rome data set, the results confienobservations done for the Las Vegas one. The
graphs with the accuracies in function of the nundddraining samples are illustrated in Fig. 4 )@, (f).
For the “full” classifier the OA is equal to 88.88lso for this set of experiments, the proposedvact
learning strategies give a faster convergence ® “thll accuracy” and better performances before
convergence with respect to the random and the MtBads. The criteria Sp1 and Sp2 allow to convérge
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Fig. 4.7. Results achieved on (a), (c) the Las Vegas(b), (d) thdRome data sets in terms of (a), (b) mean value safridhinan
function, (c), (d) standard deviation of discrimihdunction. Each graph shows the results in fumctof the number of thaing
samples and averaged over ten runs of the algaritaoh with a different initial set. R = random, M$nargin sampling, Sp$p3 =
spatial criterion, full = full SVM.

the “full” accuracy using about 9000 training saemplwhile about 11000 samples are necessary for the
methods based on the criterion Sp3 and the spéatoamation only. The results obtained after 186@ 200
iterations of the active learning process, whichregpond to 2016 and 4016 training samples resmbgti
are summarized in Table 4.111(b).

In terms of discriminant function value, the resuit function of the number of training samplesilunt
190 iterations of the iterative process are shawig. 4.7(b),(d). The criteria Sp1 and Sp2 confilm best
performance both in terms of mean value increaaimdy standard deviation value decreasing. In pdaticu
the mean and standard deviation values obtained B30 and 200 iterations are reported in TabM(@)!

4.4. Conclusion

In this chapter, the active learning approach heenbconsidered to solve the problem of training
sample collection for classification of remote segsmages. While the active learning strategiesspnted
in the literature work in the spectral domain onlye have proposed to combine spectral and spatial
information in the iterative process of active samgelection. For this purpose, we introduced tlliEferent
criteria in the spatial domain in order to favoe thelection of samples distant from the samplesadir
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TABLE 4.1V
MEAN VALUE AND STANDARD DEVIATION OF THE DISCRIMINANT FUNCTION ACHIEVED ON
(A) THELAS VEGAS AND (B) THE ROME DATA SETS

(a)

" MS MS MS MS MS MS
Method Full | Initial R MS +Spl | +Sp2 | +Sp3 R MS +Spl | +Sp2 | +Sp3
#training 30000 55 1035 2035
samples
yaleﬁg 1.03 | 046 | 102 123 107 107 11p 102 111  1[05.051 1.08
Standqrd 0.06 0.45 0.25 0.25 0.16 0.17 0.2p 0.22 0.18 016 .150[ 0.16
deviation
(b)
. MS MS MS MS MS MS
Method Full Initial R MS +Sp1 | +Sp2 | +Sp3 R MS +Sp1l | +Sp2 | +Sp3
Araning | 55000 | 36 2016 4016
samples
yaleﬁ‘; 1.38 0.40 1.00| 134 141 1.44 1.29 1.09  1.37 187 421 1.47
Star_1dz_ird 0.33 0.59 0.42 0.44 0.35 0.35 0.3B 0.40 0.38 033 .320f 0.35
deviation

composing the current training set. The three risitare based on Euclidean distances, Parzen window
method, and entropy variation, respectively.

In order to validate the proposed approach, we wcted experiments on two VHR images acquired
by Quickbird. The obtained results show good cdjpi@si of the proposed approach for the selectibn o
significant samples. In particular, advantageseims of classification accuracy and classificatigiability
have been empirically evaluated with respect tatatries that do not exploit spatial informationefidfore,
the integration of spatial information has showmrtiwp for reducing the manual sample labeling warll o
decrease the computational time necessary tottrainlassifier.

The main drawback of the proposed approach is septed by an increment of the computational cost,
given by the calculation of further measures ireottd take into account the spatial contribution.

While in this work we considered, for its simpliciand effectiveness, the state-of-the-art MS sisate
as spectral heuristic, the proposed approach can general applied in conjunction with any traaial
active learning method that exploits the samplabénspectral domain.
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5. Using Active L ear ning to Adapt Remote Sensing | mage Classifiers

Abstract — The validity of training samples collected in fieldmpaigns is crucial for the success of land use
classification models. However, such samples dtdfer from a sample selection bias and do notasgnt
the variability of spectra that can be encounteiedhe entire image. Therefore, to maximize clasgibn
performance, one must perform adaptation of tret firodel to the new data distribution. In this deapwe
propose to perform adaptation by sampling new tregrexamples in unknown areas of the image. Ouf goa
is to select these pixels in an intelligent fashiwat minimizes their number and maximizes thdorimation
content. Two strategies based on uncertainty andteting of the data space are considered to perfor
active selection. Experiments on urban and agricaltimages show the great potential of the proplose
strategy to perform model adaptation.

The work presented in this chapter has been pw@dish theRemote Sens. Envirgrvol. 115, no. 9, pp.
22322242, September 2011; Co-authors: D. Tuia, W. Jergm
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5.1. Introduction

Today, the access to remote sensing images hasmdn easier by the availability of images sensed
by commercial satellites with short revisit perio&nsors such as QuickBird or World-View Il pravid
imagery at very high geometrical resolution, thusviging an unprecedented detail in the scenesrithest
and allowing fine reconstruction of urban objeatstsas buildings. However, such a fine resoluteadt to
the increase of variability of the classes to be&cted. For mid-resolution problem such as land use
classification, sub-meter resolution comes witbrgfrintraclass variability caused by geometricalpprties
of the objects, changes in illumination and detdédsected only at the higher resolution (e.g., cleiys on
buildings).

Even if they are able to treat well-defined clasatfon tasks, the majority of current classifioati
methods relies on supervision and may fail if tla¢adused to build the model (the training set) raoe
representative of the true distribution generatimg classes. Note that when dealing with remotsisgn
image classification, a user is often confrontetihwarge archives of digital information to be diied and
that the spatial extent of such images makes thinititen of exhaustive training sets a difficult catime-
consuming task. In this sense, providing exhaugfreeind truth for large remote sensing imagestesnofot
possible. As a consequence, the labeled informatioy covers a part of the true variability of tbass
distribution. Moreover, a user can afford only f@myround surveys and can rely on previous studiesit
the ground cover. This is even more critical whelaping a model to a multitemporal sequence, where
differences in illumination and reflectance can m#ie adaptation of a model fail [1].

These constraints result in the user not havingettomomic and temporal resources to label theeentir
area or being confronted to a new classificaticgk tacluding a previously unconsidered and contiguo
region in a second moment only. In both caseshwns then focus on subsections of the images,derdo
retrieve a coherent training set representing thsses to be described and then apply the modainelot
from the sub-image to the entire scene.

This field of investigation is primordial for ren@sensing data analysis and has been considered for
mid-resolution optical data as signature extendioithe pioneering paper by Fleming et al. [2], &hehors
studied the effect of clustering the data to actdon data multimodality in Gaussian classifiersug
considering the issue of non-stationary data adiresgmage. This principle has been applied iniapfibns
for Landsat imagery [3]-[6]. In [7], the approactoposed in [2] was successfully extended to hypeatsal
data, thus showing the interest of considering rhadaptation to unsampled areas for this type aigeny.

However, in recent methodological research thigeishas been overlooked by the focus put on the
classification of local regions and by claimingtthide new algorithms proposed were powerful enaiagh
generalize to unseen areas. A common assumptisucim developments became that data are homogeneous
throughout the image, i.e. class statistics rernamstant over the image. This seems unrealistpecslly
when the training set only covers small subsetthefscene. In recent years, emphasis has beemput o
optimizing the classifiers for situations where tinaining set is minimal [8]-[11], but the probleof
adaptation to slightly varying test distributionashbeen considered only rarely in recent literatigiag
spectral data. By this, we mean that a shift betvtbe distribution of the training set and the wmsta has
occurred, leading thus to an incompatibility of timedel optimized for the first set of observatiamsen
they are used to describe the unseen pixels. Imtdwhine learning community, the problem, also kmas
covariate shift [12], has been considered fromedht perspectives: by weighting the observations
according to the position of the training sampléthwespect to the support of the test ones [113]] pr by
adding regularizers on the test data distributiids].[Covariate shift is being considered nowadayseveral
applications, covering brain computer interfaced] [dr genomic sequence analysis [17]. In remotesiagn
literature, the field is relatively young: in [18he samples in the new image are used to assesdads
parameters in the expectation maximization algoritin [1], a classifier built on an image is updahtesing

60



Chapter 5 Using Active Learning to Adapt Remote Sensingdm&lassifiers

the unlabeled data distribution of another scenanirhyperspectral image classification problem[18],

this idea is further developed with an iterativegadure adapting a training set to shifted imatfesmodel
discards contradictory old training samples and uise distribution of the new image to adapt thelehdo
the new conditions. Finally, in [20], matching bgtfirst order statistics in a projected spaceudisd under
the name of kernel mean matching: the model is dpgtied to a series of images for cloud detection.

A strategy to learn the data set shift is to sanaglditional pixels from the unknown distribution to
check if they are consistent with the model obt@ifrem training set generated by partial sampliimg.
particular, when dealing with very high resolutiamagery, the problem of finding pixels lying in thhifted
areas can be a difficult task. In this chapter,pnapose a simple, yet effective way to correctaining set
for its application to a new area where a datalsiét may have occurred. We propose to use actigies
to learn the shift and sample the areas in whiehcthssifier would become suboptimal, since theyob
contain any labeled instance. These methods aretmé¢lme remote sensing community [21]-[24], butythe
are rapidly gaining interest in this community [8Y], as they allow one to build an optimal traigiset
with a minimum of queries (or labeled pixels).

Although appealing, the use of active learning d&dapting a classifier to new data must be done
carefully. Traditional supervised active learnirigasithms focus on discrepancies near the classifio
boundary, resulting in new contradictory areas thay appear in the unseen distribution (the newgeha
However, such contradictions may happen far froms¢hboundaries, for instance if a new class has
appeared. In this case, an active learning alguoritisks failure and can lead to slower convergehes
random sampling that may find these regions by chan

In this chapter, we study the effectiveness of gisictive learning to detect a data set shift anghaye
particular attention to the problem of the appeeganf new classes that may not have been obsenvbe i
initial training set. To illustrate the proposedagtgy, the breaking ties (BT) active sampling psgd in
[28] is used with a linear discriminant analysi®@), which is a classifier widely used in real apptions
and also strongly prone to fail in case of covariahift. Exploration of the data distribution thgbu
clustering is also used to cope with common situmati where one or several classes would not haae be
observed in the training set, but appear in the seshe image. The proposed approach is testetivon
urban and two agricultural remote sensing imagégrathe relevance of completing an existing trgjraet
with smartly selected pixels can be appreciated.

The remainder of the chapter is organized as faldBection 5.2. presents the problem of covariate
shift and the proposed correction based on acti@eing. Section 5.3. details the data and thepsftthe
experiments discussed in Section 5.4. Sectioncdricludes the chapter.

5.2. Covariate Shift and Active Learning

This section briefly exposes the problem of cowvarighift and converts it to a sampling problem.
Active learning is then proposed as an alternativdill the covariate shift gap. Finally, the prebi of
exploration is considered and a cluster-based $tauis proposed to comply with the emergence a¥,ne
unexpected, classes.

5.2.1. The Problem of Covariate Shift

Covariate shift is a common problem for any sta@gtmodel aiming at classifying a series of pixel
vectorsx into a series of land use clasgesThe common assumption that the data are indepéraael
identically distributed (iid) usually does not hdtat real applications, since the data distributip(x) used
for training the model only partially represents thue data distribution, that is represented leytést data
distributionp(x). Nonetheless, it is a common assumption for nmechearning algorithms to consider that
test data follow the same joint probability distition as the training data, i.p(y[X)p:(x), wherey is the
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Fig. 5.1. Data set shift problem: (a) the traingag (in color) is well suited to describe the uelad data (in black); (b) if iy thes
training data to a larger amount of test data,atvedlable training points become suboptimal witbpect to the true labeling of 1
larger test set, shown in (c) subfigure and cooeding to the labeling of the ROSIS image reportethe bottom lefpart of Fig
5.4; (d) a classifier such as LDA is thus pronddib at classifying the test data. The data closidhie one of the ROSIS age
presented in the left part of Fig. 5.4.

class label ang(y[x) is their conditional distribution. However, thasethe risk that the new test data follow
a slightly different distributionps(X)~py(X). This situation is known asovariate shiftand can result in a
model that is optimal for a part of the data, betdimes sub-optimal if applied to the entire ima&gg. 5.1.
illustrates this phenomenon: a model trained oa datning from a part of a satellite image (the région

of Fig. 5.4.) can optimally describe the distriloatiof this sub-image, represented by the blackse
Fig. 5.1(a). When this same training set is usedecribe the class distribution in the entire ienfigack
crosses of Fig. 5.1(b)], the model fails becauseesareas of the feature space are not coveredipy th
training set. Some of these areas were not présdhe subset image, and represent the shift beitres
subset and the entire scene. Such a shift is defatdifferences in geometry that were not takéo atcount
in the first place or to reflectances of the olgettat were not covered by the available trainiety ¥/hen
using LDA on this data, the true class membersfgpewn in Fig. 5.1(c)] are not correctly represednie
the outcome of the model [illustrated in Fig. 5)L(the model built without adaptation models pgat the
interface between classes, thus resulting in aoitapt decrease in the classification performance.
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Fig. 5.2. Uncertainty-based activeataing algorithm general flowchart: (left) given imecomplete training set, (center) the unlab
candidates are ranked according to a spebéigristic (represented by the gray tones attribtaettie unlabeled pixels); (right) 1
candidates maximizing the heuristic are labeledaattkd to the training set.
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Fig. 5.3. Clustebased active learning algorithm general flowch@eft) given an incomplete training set, (centdm® unlabele
candidates are ranked according to the heurist{& 2§ (in the computation, only the numerator is répay; (right) the candidat
maximizing the heuristic are labeled and addetiéaraining set, allowing the discovery of a thitass.

5.2.2. Active Learningto Correct Data Set Shift

Since the training and test distributions come fritvd same image, illumination conditions do not
change and it is rather unlikely to find complestditions between the two feature spaces: in e cthe
shift is to be found in missing parts of the traaddistribution [see Fig. 5.1(a)-(b)]. Adapting ttiassifier
trained on the subset to the entire image can be ¢ken as efficiently finding the uncovered amaas
sample useful pixels to classify them.

This is a typical setting for active learning algfums [29], which are algorithms aiming at finding
efficient training sets to solve classification Ipiems. For this particular problem, active learmesgults in a
search for pixels enhancing the adaptation of thdahto the rest of the image, i.e., refining tlesatiption
of the boundaries between classes.

Active learning algorithms can be briefly summadizas follows (see Fig. 5.2): starting with a

n

suboptimal training set composed mpixels S={xi , yi}izl, an active learning algorithm exploits a ranking
criterion, or heuristic, to rank all thia unlabeled pixeldJ ={xj}?::“+l in order to select the most informative

and add them t& By so doing, the model is forced to focus on Gotig areas and to improve its
generalization capabilities.

In this study, the breaking ties heuristic proposef8] is used: for each candidate, the two highe
posterior class probabilities are subtracted, fogrhe ranking criterion that is exploited by thgogithm

7 =argminfnaxely; =alx;)- max oly; =i, &y

where y’; is the class prediction for the pixgl , « 0N corresponds to one among tRepossible classes
andw’ = argmaxaﬂN{p(y; = w|X; )} is the most probable class for pixel
After ranking, the pixels minimizing (5.1) are théaken from theU set, labeled by the user, and

finally added to the current training sét= {SD f(BT}. This heuristic uses the following intuition: thwre a
pixel shows a similar posterior probability betwedbe two most probable classes, the more it is rtaice

63



Chapter 5 Using Active Learning to Adapt Remote Sensingdm&lassifiers

and thus capable of providing useful informatioadiled to the training set. In previous experimdesBT
approach has shown to be capable of providing geofibrmance with remote sensing data [30].

5.2.3. On the Need of an Exploration-Focused Heuristic

Using active queries to learn data sets seems p@ahpg solution for the classification of remote
sensing data. However, the use of such models meusandled with care, since it relies on the qualitthe
initial training set (in our case, the availablbdbed pixels in the subimage). If these pixels dbaover the
entire distribution of the classes (which is readd@ in a covariate shift setting), there is als® possibility
that a class will be ignored in the available tirggnset. Consider again Fig. 5.2: in the centrat,ghere is a
cluster of pixels in the bottom left part of thestdibution. A traditional active learning algorithrsince it
focuses on the uncertainty in the vicinity of thHassification boundary only, will never check oreth
uncertainty of this region, since it is relatedhe data structure and not the current model usicgyt As a
consequence, this cluster will never be samplesuay an active algorithm. This may be problemétibis
cluster corresponds to a new, unknown class. Agpestrying to constrain traditional heuristic taka
them explore the feature space have been propogadi]i[24], but they focus on the classificatiooundary
and thus will also falil in this context.

Another view can be gained by using general datsteting, as in [32],[33]: to cover the entire data
distribution, we proceed to a pre-clustering of timage in a given number of clusters to decide hdret
there are some unexplored areas of the image. &gnitr these results, this process is not intetndedeate
the initial training set, since a fair amount dbéted data are already available. Therefore, thesvkedge
about the availability of labeled samples can lus direct sampling. We use a cost function awétbe
presently available training samples, in the sefi$@4]. After clustering of the image kclusters using, for
instance k-means, pixels are iteratively chosen from thetelug with a probability proportional to the
following heuristic

plc) 0 ——— (5.2)
J
J_Z:;“ +1
wheren; is the size of the cluster ahds the number of labeled pixels already presetihéncluster. In this
way we sample from large cluster with no labelexe|s, where we suppose the new classes to lie. This
cluster-based strategy is summarized in Fig. 5ferAan iteration of this procedure, traditionakiae
learning can be used to refine the classificatiomnolaries defined.

5.3. Data and Experimental Setup
This section presents the data set considered eradsdthe setup of the experiments performed in
Section 5.4.

5.3.1. Data Sets

Two urban data sets at metric spatial resolutiore lieen considered.

The first data set is a 1.3 m resolution imagehefdity of Pavia (ltaly), shown on the left sideFog.
5.4. The image was taken by the airborne ROSISed3@ [35]. The image is 1400x512 pixels and has a
spectral resolution from 0.43 to 0.86é1 divided into 102 spectral bands. The proposedagmh has been
tested on a 5-class problem, namely, Buildings,dRp&Vater, Vegetation and Shadows. These classes of
interest have been included in a labeled datafs28@009 samples extracted by visual inspection.

The second case study considers a 2.4 m resolutiage of a suburb of the city of Zurich
(Switzerland), shown on the right side of Fig. S#ie image has been acquired by the sensor onutuk-Q
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l

ROSIS, Pavia QuickBird, Zurich

Fig. 5.4. Top row: considered urban datasets. Aneaked by ‘A’ and ‘B’ (respectively ‘E’ and ‘F’) arthe training areas of the
experiments shown in Section 5.4. ‘C’ and ‘D’ (respeely ‘G’) areas are only used for graphics ofuarseen area. Bottom row:
available ground truth pixels.

Bird satellite and is a 329x347 pixel image withrfgpectral bands in the visible and near-infraredions
of the spectrum. A total of 43398 pixels have bledeled by visual inspection on the image with elghd
use classes have been selected for analysis (R&aldeCommercial, Vegetation, Soil, Mixed
soil/vegetation, Roads, Pools, Parkings). Note seaeral classes have very similar spectral sigestand,
in order to differentiate them, contextual filtersing mathematical morphology [36] with perbandripe
and closing filters using spherical structure elets®f 3 and 5 pixels diameter have been addeldetaata
set. This increases the dimensionality of the datdrom 4 to 20 features. These filters have Istemvn to
have desirable properties when applied to urban ¥ldBsification problems [37], [38].

In addition, two agricultural data sets at mediyrati&l resolution have been considered.

The third data set called Flightline C1 is a 12dsmmultispectral image taken over Tippecanoe
County, IN by the M7 scanner in June 1966 [8]. Timage is 949x220 pixels and contains 10 classes,
mainly crop types. A ground survey of 70847 pixeds been used.

The fourth data set is the classical 220-bands A¥liage taken over Indiana's Indian Pine test site
in June 1992. The image is 145x145 pixels, contaihsnajor crop types classes (with more than 100
labeled samples), and a total of 10172 labeledsiXdis image is a classical benchmark to valigadelel
accuracy and constitutes a very challenging ciaasibn problem because of the strong mixture & th
classes' signatures and unbalanced number of thipgtels per class. Before training the classifiave
removed 20 noisy bands covering the region of walteorption and reduced the dimensionality to @ufea
with principal component analysis (accounting fOr9%% of data variance) to ensure correct estimation
the covariance matrix. As for the Zurich image, pmmlogical opening and closing bands have beendadde
to the extracted features. This is justified by fiduet that the image has been taken shortly afeartgtion of
the crops, thus showing class signatures thatrafact, mixtures between soil and crops. Thereforerder
to achieve correct detection, contextual informatiwust be added.
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Fig. 5.5. Considered agricultural datasets andaai ground truth pixels. Areas marked by ‘H’ dhdre the training areas of the
experiments shown in Section 5.4.

5.3.2. Experimental Setup

Experiments on urban areas use four training aesa) providing areas with increasing complexity in
landcover.

A. This area covers all the classes present ifPthea image. The shifts that need to be detectatidy
learning process are related to sampling in incetepportions of the distribution. This first stepncbe
considered as a classical active learning problem.

B. This area of the Pavia image lacks the classeWht this example, we aim at discovering a major
class (water covers a large part of the rest ofittege) for a relatively easy classification prableThis
experiment should reveal an inadequacy of tradili@ctive learning since random sampling has aemigh
probability of finding this new class simply by cite.

E. This area of the Zurich image accounts for nobshe classes except Water which for this image is
a very marginal class. The aim of this experimenbiassess whether the cluster-based strateggjideal to
find small classes.

F. This experiment is the most complex for urbagmaar The ‘F’ area of the Zurich image lacks two
classes (Water and Bare Soil), one being majortladther marginal. In this case we want to asdess
ability of the proposed approach to update the intmdene with several new classes having diffefeDEs
in the new image.

Regarding agricultural areas, we concentrate on piablem of discovering new classes. Two
experiments with increasing complexity have beeafopmed.

H. In this setting, the model is trained with agnd truth covering a small part of the image with
reduced ground truth. Both major and marginal elssare missing. In particular, a major class is not
reported in the initial ground survey (‘Oats,’ ilué in Fig. 5.5), thus implying very poor perfornecarof the
model without samples from the new distribution.

I. This experiment is designed to test the algor#thproposed to discover classes with strongly
overlapping spectra. As it has been mentioned abibveimage was taken shortly after the crops were
planted, so that each signature is not pure, raghemnxture between soil and crop, resulting in regip
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overlapping classes. In this setting, three claasesinknown to the first model, ‘Soybean-cleawheat’
and ‘Grass/pasture-mowed.” By the strong degremirfure of the classes of this image with the unkino
classes, this problem seems not to be suiteddadatd active learning algorithms.

For all experiments, 1) first the LDA classifieraptimized using 1000 pixels from the Pavia image
(300 for the Zurich image, 300 for the Tippecanaade, and 300 for the Indian Pines image) from the
training sub-area and tested on the available grdruth in the same area. This experiment assekses
performance of the model for the subarea the trgisamples are drawn from. Afterwards, four expenits
are added as follows: 2) direct classificationh#f entire image with the same training data; 3sifecation
of the entire image using 1600 (1000, 600, and RBO&Is randomly selected from the whole image; 4)
starting with the 1000 (300, 300, and 300) pixdlshe model locally optimal, sample 600 (700, 3a6d
2000) pixels randomly; and 5) with the same inisiat, actively sample 600 (700, 300, and 2000)Ipixe
Finally, 6) active sampling of 600 (700, 300, arid@) pixels is applied after the clustering-basatai
selection.

For active learning, BT active learning is implerszhin MATLAB. Thirty (70, 30, and 100) iterations
with 20 (10, 10, and 20) samples per iteration Hzaen carried out. The differences in number oélgiyper
iteration and in the number of iterations are dexdaby the different resolutions of the images bypdhe
differences in complexity between the data setgesssely. Ten independent runs have been conduoted
study stability of the solution with respect toti@lization. Performance was evaluated in terms\arall
accuracy (OA), Kappa statistic and standard denati

5.4. Results and Discussion

This section presents and discusses the experihrestdts obtained by the proposed method on both
the urban and the agricultural data sets.

5.4.1. Urban Data

The first rows of Table 5.1 report the performamdahe different strategies considered for the ®avi
data set by considering the patch ‘A’ as initigiting area. When trained solely on the patch 1A
performs perfectly when classifying that patch (@822%), but fails on the entire image, where aefse
of about 12% in accuracy is observed (to 87.23%kglassifier trained on 1600 pixels randomly selécte
from the entire image can improve this result bypragimately 2% as does a random-based strategy
sampling from the 1000 initial samples. On the cmyt selecting the new pixels with active learniegds
to an increase in performance of about 5% relatoveéhe base classifier and 3% with respect to the
experiment using 1600 random pixels. This appraaeithes the best accuracy observed at 93.03% and
0.906 in terms of Kappa statistic. This is becabsesampling is focused on the boundaries betwkeasseas
where the shifts among distributions are more Viteloccur. The curves of Fig. 5.6(a) show perfaroeaof
the proposed methods as a function of the numbeéraofing samples. We note that the active learning
process is faster to converge than it is the randelaction process. In particular, 40 additive dampre
sufficient for the standard BT method to reachvhieie of accuracy obtained by adding 600 randonpssn
to the initial training set. Comparing orange aneleg curves, which are related to active sampliitly and
without clustering-based initialization respectivelve observe that the clustering strategy is rseful for
this particular scenario. In fact, all the clasaes already included in the initial training seadaso the
initialization step tends to select samples thatrast really important for better discriminatingg thifferent
classes. In any case, a good improvement with cespéhe random selection is preserved.

The results of the second experiment, in whichpdieh ‘B’ has been used to select the initial tregn
set, are presented in the second part of Tabld3&dause water pixels are not present in this pagshults
show a strong decrease of LDA performance wheriegpt the entire image (from 85.81% to 67.27%).
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TABLE 5.1
OA AND KAPPA FOR THEPAVIA DATASET. ITERATIVE STRATEGIES AREGIVEN AT CONVERGENCE
IN BoLD, BESTRESULTS AMONG THEEXPERIMENTS FOR THETRAINING AREA

Training Prediction #train Sampling OA Kappa
patch area Base | Added strategy n c m ¢
A* 1000 - - 98.42 0.12 0.965 0.003
All image 1000 - - 87.23 0.70 0.827 0.009
A All image 1600 - - 89.81 0.25 0.864 0.003
All image 1000 600 RS 89.31 0.26 0.857 0.003
All image 1000 600 BT 93.03 0.20 0.906 0.003
All image 1000 600 Cluster + BT 92.97 0.17 0.905 0.002
B* 1000 - - 85.81 0.74 0.767 0.012
All image 1000 - - 67.27 0.30 0.572 0.007
B All image 1600 - - 89.78 0.28 0.8643 0.004
All image 1000 600 RS 88.83 0.46 0.850 0.006
All image 1000 600 BT 91.98 0.25 0.892 0.003
All image 1000 600 Cluster + BT 91.8¢ 0.2( 0.891 8.00

* Not comparable with the results of the other rpdifferent test sets.
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Fig. 5.6. Learning curves for the Pavia datasetwtan using image patch ‘A’ for trainirget; b) when using image patch ‘B’
training. c) Single runs composing the BT activeré@gy curve (green curve in panel b).
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Fig. 5.7. Classification maps for the Pavia datafetgions ‘C’ and ‘D’ obtained when training LDAing pixels from regions (left)
‘A’ and (right) ‘B,” Top row illustrates the uppewohnd, where 1600 pixels randomly selected fronethitee image. The middle row
shows the experiment using the 1000 pixels onlg Bottom row illustrates the results obtained bgitagl to these 1000 pixels 600
actively selected pixels from the rest of the image

Sampling randomly from the entire image solves pinablem, since the water class is well represeintéiae
rest of the image and it is relatively easy to findarbitrary sampling. Again, the active learnaigorithm
outperforms the others by 2%—-3% by focusing onuheertain areas, resulting in an accuracy of 91.98%
and 0.892 in Kappa. Regarding the curves in F&(b%, the active learning strategy is slower tHandthers
to converge. The green curve in Fig. 5.6(b) is ewerse than random selection in the first iteratiofhis
can be explained by the plots of Fig. 5.1. If thetev class is not found no area of uncertainty bélpresent
for the class water and as a consequence suclssawith never be sampled (unless by chance). Tinglesi
runs generating the green curve in Fig. 5.6(b)sai@vn in Fig. 5.6(c). The steep increase in acgufac
each run corresponds to the iteration where thenegddss is discovered. Applying the active leagrafter
the clustering-based initialization, we have a femtvergence to optimal results avoiding overfiffims
illustrated by the orange curve in Fig. 5.6(b)tHis case, 180 additive samples are necessaryceedxhe
value of accuracy associated with the random setect

These observations are confirmed by the maps showrg. 5.7, in which a decrease of noisy
classification patterns is obtained using the actearning strategy. Active strategies avoid samgpin
already solved areas and thus reduce noisy cleetsifin results induced by sampling outliers.

Results obtained for the Zurich data set confirendbnsiderations given for the Pavia image. Fohn bot
patch ‘E’ and ‘F’ as initial training areas, actilearning outperforms by about 5% the random sielect
method as described in Table 5.11. Once again kbks 1 Fig. 5.8. highlight the necessity of perfiing the
initial selection with the clustering based strgteghen classes are missing in the initial trainggy. In
particular, while this aspect is not crucial foe thatch ‘E,’ in which a single marginal class i¢ peesent
initially, it becomes fundamental for the patch’ ‘®hich lacks two classes, one major and the other
marginal. Starting from the patch ‘E,” both straésgneed 100 additional samples to reach the random
sampling accuracy. For patch ‘F’ only 80 instead2®0 samples are needed with clustering initidbrat
relative to the traditional BT method. In the gragtrig. 5.9, we report the number of iterationsessary to
discover the classes missing in patch "F” in threeperiments performed. For the class Bare Swilvs in
Fig. 5.9(a), the initialization process is abldital it at the first iteration for all the ten runsnsidered. An
identical behavior is obtained for the class Wee Fig. 5.9(b)], although the number of pixelshi$ class
is very limited. A high probability of detection igerified for the random selection in the Bare Swite,
given the fact that it is easy to find this clagschance, while poor performance is obtained fassWater.
Finally, the traditional active sampling fails footh cases, where 30 iterations are needed towdispixels
of these classes in some runs. The final maps reataior the Zurich image for the different proposed
solutions are shown in Fig. 5.10.
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TABLE 5.11
OA AND KAPPA FOR THEZURICH DATASET. ITERATIVE STRATEGIES AREGIVEN AT CONVERGENCE
IN BoLD, BESTRESULTS AMONG THEEXPERIMENTS FOR THETRAINING AREA

Training Prediction #train Sampling OA Kappa
patch area Base | Added strategy n c m ¢
E* 300 - - 92.25 0.521 0.902 0.006
All image 300 - - 68.62 2.60 0.614 0.029
E All image 1000 - - 79.48 1.23 0.743 0.014
All image 300 700 RS 80.19 1.19 0.751L 0.014
All image 300 700 BT 85.07] 0.58 0.809 0.007
All image 300 700 Cluster + BT 85.35 0.68 0.813 0.008
F* 300 - - 83.62 1.24 0.785 0.016
All image 300 - - 67.54 1.03 0.596 0.012
= All image 1000 - - 78.87 1.49 0.736 0.017
All image 300 700 RS 80.08 1.24 0.750D 0.014
All image 300 700 BT 85.25 0.67 0.812 0.008
All image 300 700 Cluster + BT 85.25 0.67 0.812 0.008
* Not comparable with the results of the other rpdifferent test sets.
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Fig. 5.10. Classification maps for the Zurich datasf the region ‘G’ obtained when training LDA ngipixels from regions (left)
‘E’ and (right) ‘F’. Top row illustrates the uppbound, classifying 1000 pixels randomly selecteanfithe entire image. The middle
row shows the experiment using the 300 pixels ofihe bottom row illustrates the results obtainedabging to these 300 pixels
700 actively selected pixels from the rest of thage.

5.4.2. Agricultural Data

Results obtained for the agricultural data setsilarstrated in Table 5.1I1 and corresponding Figs.
5.11-5.13.

At convergence, the results for the Tippecanoe @r{agining patch ‘H) show an improvement with
respect to random sampling by approximately 2% @0@ in terms of accuracy and Kappa respectively,
which is less spectacular than in the previous ex@ats. However, the learning rates show a strong
divergence between the random and the active categsng from iteration 3, when 360 samples aedus
for training (left side of Fig. 5.11). The similaehavior in the first two iterations is observeddgse the
initial training set obviates most of the classesl ahen all the strategies perform well. Once the
classification problem has become clearer, the@btiarning strategies can make difference, as shothe
figure. This behavior was already encountered arudithented in [24]. As for the classification map§ig.
5.12, the active learning strategy returns a masrdble description of the class ‘Rye’ (in redhose
confusion with the class ‘Soil’ (in pink) is strdggliminished.

The last experiment considers the Indian Pines ém&gr this complex data set, consisting classes
showing strongly mixed signatures, the same behagdn the urban data set is observed (right gidgg.
5.11): the traditional active learning strategy slawt converge efficiently in the first iteratioasd is
outperformed by random sampling. This again is tu¢he incapability of this strategy to discovemne
classes in highly overlapping problems. On the reopt the proposed strategy considering pre-clumger
performs efficiently, learns the global structusedficiently as random sampling and outperformaftéer
200 queries, reaching at convergence results high8b in accuracy and 0.04 in Kappa. The clasific
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TABLE 5.111

OA AND KAPPA FOR THE(TOP) TIPPECANOE AND(BOTTOM) INDIAN PINES DATASETS. I TERATIVE STRATEGIES AREGIVEN AT
CONVERGENCE IN BOLD, BESTRESULTS AMONG THEEXPERIMENTS FOR THETRAINING AREA

Training Prediction #train Sampling OA Kappa
patch area Base | Added strategy n c m ¢
H* 300 - - 99.26 0.20 0.988 0.003
All image 300 - - 82.78 1.48 0.800 0.021
H All image 600 - - 96.06 0.74 0.951 0.009
All image 300 300 RS 96.04 0.53 0.951L 0.006
All image 300 300 BT 97.62 0.72 0.970 0.009
All image 300 300 Cluster + BT 97.79 0.33 0.972 0.004
I* 300 - - 72.52 2.21 0.671 0.026
All image 300 - - 43.70 0.80 0.365 0.009
| All image 2300 - - 71.25 0.66 0.673 0.007
All image 300 2000 RS 71.74 044 0.679 0.005
All image 300 2000 BT 74.37 0.71 0.709 0.008
All image 300 2000 Cluster + BT | 74.69 1.07 0.713 0.012
* Not comparable with the results of the other rpdifferent test sets.
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e 3000 from H + 300 with Random sampling 045 il mmman Random 2300
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Fig. 5.11. Learning curves for the agriculturaladats. (a) Tippecanoe; (b) Indian Pines.
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Fig. 5.12. Classificaton maps for the Tippecanoe cset using training information coming from the ‘&fea after 10 iteratior
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300 + 1200 Active 1500 Random on all image
Fig. 5.13. Classification maps for the Indian Pidetaset using training information coming from tharea after 60 iterations.

maps obtained by this strategy, illustrated in FHdL3, show a more homogeneous result that the one
obtained by random sampling.

5.5. Conclusion

In this chapter, we have proposed a simple, bugctffe way to use active learning to solve the
problem of data set shift, which may occur whenaagifier trained on a portion of the image is &apko
the rest of the image. The experimental resultainbt on hyperspectral and VHR data sets demoastrat
good capability of the proposed method for selgctixels that allow rapid convergence to an optimal
solution. Moreover, the use of a clustering-basgecsion strategy allows us to discover new clagsease
they have been omitted in the initial training s®dch strategies for optimal sampling guaranteeasige
extension and can be extended to a large varietgppfications dealing with spectral data, as inds
dependent on the image characteristics of the &atare research will explore these kinds of ajgpiins.
An example could be the classification of electrdezzgraphic signals, that has recently been tackid@9]
using active learning techniques, but without cdesing issues related to covariate shift.
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6. Active Learning Methods for Biophysical Parameter Estimation

Abstract — In this chapter, we face the problem of collectirsgning samples for regression problems under
an active learning perspective. In particular, weoose various active learning strategies spedifjca
developed for regression approaches based on Gaugwmiocesses (GP) and support vector machines
(SVMs). For GP regression, the first two strategies based on the idea of adding samples that estart
from the current training samples in the kernel@pawhile the third one uses a pool of regressorsrder

to select the samples with the greater disagreesnbatween the different regressors. Finally, th&t la
strategy exploits an intrinsic GP regression outeotn pick up the most difficult and hence interggti
samples to label. For SVM regression, the methagkethaon the pool of regressors and two additional
strategies based on the selection of the sampsandifrom the current support vectors are propoSéte
experimental results obtained on real data sets\stiat the proposed strategies exhibit a good caipalo
select samples that are significant for the regmsprocess, thus opening the way to the activenieg
approach for remote sensing regression problems.

The work presented in this chapter has been sttt EEE Trans. Geosci. Remote Se@o-authors: F.
Melgani, N. Alajlan, Y. Bazi.
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6.1. Introduction

Among the most challenging problems faced by thmote sensing community, one can find the
estimation of biophysical parameters from remotessg data. This issue spans different application
domains such as estimation of biomass concentratiforest areas [1], assessment of 0zone condiemira
in the atmosphere [2], and analysis of water qudlir monitoring oceans and coastal areas through
estimation of chlorophyll concentration [3].

From a methodological point of view, this probleancbe viewed as an inverse modelling issue in
which it is necessary to define a model that relétte acquired observations to the parameter efdést. The
estimation of the model can be done by adoptingeisiged regression techniques, which require the
availability of a set of training samples. By tramg samples, we mean pairs of radiances acquireithdoy
sensor and measurements of the biophysical paratoetstimate. In the literature, two main apprescaf
regression have been proposed. The first one igdbasm parametric models (e.g., polynomial and
exponential models), in which it is necessary tiinege the values of a predefined set of parametdrs
second one makes use of nonparametric models, wleishnd completely from data. In general, becatise o
the strong nonlinearity between the acquired radianand the biophysical parameters to estimate,
nonparametric methods have been preferred to p#ianmenes despite their greater computational
complexity [4]. In particular, different approachkave been proposed, such as artificial neural orisv
(ANNSs) [2], [5], [6], support vector machines (SVMS8], [7]-[9], and Gaussian processes (GPs) [10].

In the aforementioned works, the regression procesione by assuming that the training set is
composed of a sufficient number of samples in otdaybtain reliable and accurate estimations. Hawrev
from a practical point of view, the process of eoling training samples is not trivial, becauseghmmeter
measurements associated with the acquired radidrasesto be performed manually by human experts and
thus are subject to errors and costs in termsnoé tand money. For this reason, the number of dlaila
training samples is typically limited and performaga can be consequently affected due to data gcakci
solution to this problem is given by semisupervisggproaches, in which the unlabeled samples are
exploited during the design of the regression madelder to compensate the deficit in labeled demBy
unlabeled samples, we mean samples whose radiahoesvare known, but for which the corresponding
biophysical parameter values are unknown. Such lesmgxhibit the advantage that they are available a
zero cost from the data under analysis. In thealitee, few works have been proposed for regression
problems in general [11] and in the remote senBabd too [12], [13].

In the data classification context, a solutionhte problem of training sample collection is giventhe
active learning approach. Starting from a smalhing set, additional samples are selected frorargel
amount of unlabeled data. These samples are labelaedally and added to the training set. The psot®es
iterated until a stopping criterion is reached. i¥etlearning strategies have been applied sucdbs#fu
different fields [14], [15] and for remote sensipgpblems too, such as segmentation [16], deteafon
buried objects [17], [18], classification of hypeestral images [19], [20], and classification ofywédigh
spatial resolution images [21], [22]. Similarlygetlctive learning approach has been studied foessipn
problems by the machine learning and statistics noonities, in which it is also known asgptimal
experimental desigmfter the seminal paper by Cohn et al. [23], ihieh active learning has been applied
to two statistically-based learning architectureach as mixtures of Gaussians and locally weighted
regression, several works have appeared in théeasyears. For instance, in [24], the authors $oon the
problem of local minima in active learning for nalunetworks, and two probabilistic solutions areparsed.

In [25], after introducing the fundamental limits a minimax sense of active and passive learnimg fo
various function classes, some strategies baseal toge-structured partition of the data are presenn
[26], considering linear regression scenarios, thatkusing the weighted least-squares learningdoase
the conditional expectation of the generalizatiomreis proposed. In [27], the authors apply therguby
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committee approach in the regression context. Tam dea is to train a committee of learners aneryu
the labels of the samples where the committeedigtien differ, thus minimizing the variance of tlearner

by training on samples where variance is larges{28], it is suggested to solve the problems divac
learning and model selection at the same timederailo improve further the generalization perforogrin
[29], a solution to the problem of pool-based acti®arning in linear regression is proposed. In,[8te
authors develop a strategy for kernel-based limegression, in which the proposed greedy algorithm
employs a minimum-entropy criterion derived usinBayesian interpretation of ridge regression. Diespi
the promising performance given by the active legrapproach in the regression field, nothing samilas
been proposed in the remote sensing literature.

The objective of this chapter is to introduce teéva learning approach for regression problems for
the estimation of biophysical parameters from rengginsing data. In particular, we propose diffeaetive
learning strategies specifically developed for tstate-of-the-art regression approaches, namely [&Rs
and SVMs [32]. For GP regression, the first twohoes are based on adding samples that are distemt f
the current training samples in the kernel spadsglewthe third one uses a pool of regressors irerotd
select the samples with the greater disagreememigebn the different regressors. Finally, the sasttegy
exploits an intrinsic GP regression outcome to pigk the most difficult samples, and thus the most
interesting ones. For SVM regression, the methagkedbeon the pool of regressors and two additional
strategies based on the selection of the samp#tantifrom the current support vectors are propobed
order to assess the proposed strategies, we ceadaictexperimental study based on simulated ahdaea
sets. The obtained experimental results show tit@tdsting performances can be achieved.

The remaining part of the chapter is organizedddieviis. In Section 6.2, the basic mathematical
formulation of GPs and SVMs are recalled. In Sect®3, the active learning strategies proposed for
regression problems are described. Section 6.2meshe data sets used in the experimental agaysi
the related results. Finally, conclusions are draw®ection 6.5.

6.2. Gaussian Process and Support Vector Machine Regression

6.2.1. Gaussian Process Regression

Let us consider a set of labeled samples{x;,y}",, where x; =[x,....xy ]J0¢ represents a
vector ofd remote observations and/or processed featuresyand] is the associated target value, i.e., the
in situ measurement of the biophysical parameter of isteleet us aggregate ak;’s (i=1,...n) into a
feature matrixX and all y;’s (i=1,...n) into a target vectoy so thatL ={X,y}. The goal is to infer from the
set of labeled samplésthe function f ([ so thaty = f (x).

The underlying idea of the GP regression can beriesl in different ways. One of them consists in
formulating the Bayesian estimation problem disedtl the function space (the so-called functionespa
view). To understand such a formulation, let ustfassume that the observed valyes the function to
model are the sum of a latent functioand a noise componentwhere

f ~GP(0,K(X, X)) (6.1)
£~N(0,071) (6.2)
where GP(I), ‘~', N(JJ and! stand for Gaussian Process, “follows”, normalritistion and identity matrix,

respectively. Equation (6.1) means that a GP igrasd over the latent functidni.e., this last is a collection
of random variables, any finite number of whichldal a joint Gaussian distribution with me&nand

covariance matrixK(X,X). This matrix is built by means of a covariancerfiet) function k(x,x')
computed on all the training sample pairs. EquatoB) states that a Gaussian distribution withmi&and
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varianceo? is supposed for the entries of the noise vectoith each entry drawn independently from the
others. Accordingly, we have
p(f | X)=N(0,K(X, X)) (6.3)
p(e)=N(0.071) (6.4)
where p([)] stands for a probability density function.

Because of the statistical independence betweertatéet functionf and the noise componegitwe
can write

py (Z) = pf (Z) U ps (Z) (65)
where ‘L’ is the convolution operator and consequently
ply | X)=N(0,K(X, X)+a21). (6.6)

Equation (6.6) means that the noisy observatyomse also modeled with a GP.
Now, let us focus the attention on the inferencacess. The best statistical estimation of the dutpu
value f. associated with an unknown sample and given the set of labeled samglas

f. IX,y,x. ~E{f. |X,y,x*}:J‘ . p(f. | X,y x. )df. . (6.7)
It is clear that, for finding the output value esdte, we need the knowledge of the predictive itigion
p(f* |X,y,x*). For this purpose, we will first consider the fodistribution of the known observatiogs

and the desired function value . Owing to the marginalization property of GPs, wa& write the following

_ K(X,X)+o?l k.
p(y, f. |X,x*)—N(O,{ K k(X*'X*)D. (6.8)

expression:

The vectork. denotes the covariance values between the trasangplesX and the samplex. whose
prediction is desired. Since the joint distributmiry and f. is Gaussian, it can be shown that the conditional
(or predictive) distribution is also Gaussian askes the following expression

p(f. 1X,y.x.)=N(x,0?) (6.9)
where

o =kT[K (X, X)+ a2 [y (6.10)

o2 =k(x.,x. )~k [K (X, X)+ 0?1 | k.. (6.12)

These are the key equations in the GP regressitimooheTwo important information can be retrieveanfr
them: 1) the meant. , which represents the best output-value estin@téhke considered sample according

to (6.7) and depends on the covariance maK(>K,X), the kernel distances between training and test

samplesk., the noise variancer?, and the training observations and 2) the variances?, which
expresses a confidence measure associated by thed tndhe output estimate.
A central role in the GP regression model is plalygdhe covariance functioh(x,x') as it embeds the

geometrical structure of the training samples. Tloit, it is possible to define our prior knowledgbout
the smoothness of the output functicfr([)]. A typical choice for the covariance function Fetsquared
exponential function:
12
X =X
kee(x,X') = 02 ex;{—%}k* : (6.12)
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The two hyperparameters? andl are called process (signal) variance and lengtte scespectively.

The tuning of the hyperparameters, better knowmadel selection issue, is a critical problem since
has a direct impact on the prediction accuracy.dafe deal with this issue in different ways. In tivsrk,
we adopt the Bayesian model selection, which foatesl the model selection issue within a Bayesian
framework. It relies on the idea to maximize thstpdor probability distribution defined over thector of

parameter® =[o?,07%,1]

o(0]X,y)= ply |p>(<y, ?Z([)p(e) _ (6.13)

Often, the evaluation of the denominator in (6.is3nalytically intractable. As a solution, one nmagort to
the maximum-likelihood estimation procedure. It sigts in the maximization of the marginal likeliltbo
(evidence), i.e., the integral of the likelihooohéis the prior

ply1X,0)= [ plyIf.X,0)Cp(f | X, 0)df (6.14)

with the marginalization over the latent functibrnder a GP regression modeling, both the priar the
likelihood follow Gaussian distributions. After serpalculations, it is possible to show that therwayginal
likelihood can be written as

log p(y | X,8) = —%yT K (x, x)+ 021y +

—%Iog‘K(X,X)+a§I

+ : (6.15)

- g log(277)

Equation (6.15) is the sum of three terms. The igsthe only that involves the target observatiansl
represents the capability of the model to fit thiéad The second one is the model complexity penattyjie
the third term is a normalization constant. Maxiatian of the marginal likelihood leads automatigadl the
best trade-off between model complexity and dadtaMoreover, no validation procedure with indepemde
samples is needed. From an implementation viewpthiig maximization problem can easily be solvedaby
gradient-based search routine. For more detailsetee the reader to [31].

6.2.2. Support Vector Machine Regression
The e-insensitive SVM regression technique is basedhenidea to find an estimatfa(x) of the true
and unknown relationshipy = f(x) between the vector of observatiorsand the desired biophysical

parametery from the given set of training samplesuch that: 1)f(x) has, at most; deviation from the

desired targetg (i=1,...,n)and 2) it is as smooth as possible. This is ugyetformed by mapping the data
from the originald-dimensional feature space to a higher dimensioreadsformed feature space, i.e.,
o(x)00%(d'>d), to increase the linearity of the function andcaadingly, to approximate it by the
following linear model

f(x)=w [(x)+b. (6.16)
The optimal linear function in the higher dimensibtransformed feature space is the one that magisna
cost function, which expresses a combination of twiteria: Euclidean norm minimization and error
minimization. The cost function is defined as

n
(@)=’ +cXfg +&) (617)
i=1
subject to the following constraints
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Vi ~ (@ (x; ) +b)< e+ ¢
(@op(x,)+b)-y, <e+& , i=1,2,...,n (6.18)
&.& 20

where &, ’s and & ’s are the slack variables that are introducecctmant for samples that do not lie in the

e-deviation tube. Consta@ represents a regularization parameter that altowmg the trade-off between
the complexity of the functiorf(x) and the tolerance of deviations larger thaihe formulation of the

error function is equivalent to dealing with #sensitive loss functiomg typically defined as

0 if|o]<e

&, = : (6.19)
¢ ||d-¢ otherwise

whered represents the deviation with respect to the ddgimrget. This means that the differences between

the targets and the estimated values are toleiagtde thec-tube (error smallest thas), while a linear

penalty is assigned to estimates lying outside-tingensitive tube.

The reformulation of the aforementioned optimizatmroblem through a Lagrange functional into a
dual optimization problem leads to a solution tisaa function of the data conveniently expressethan
original dimensional feature space as

fA(x)=Z(ai —a; )((xi X)+b (6.20)
s
wherek(CI) is a kernel function defined as
k(x;,x) = {P(x; ) 0p(x)) (6.21)
andSis the subset of indicegs=1,2,...,n) corresponding to the nonzero Lagrange multipliers or a; ’s.

The Lagrange multipliers weight each training sargadcording to its importance in determining a sofu
The training samples associated to nonzero wemgtgtscalled support vectors (SVs). 3nmargin support
vectors that lie on theinsensitive tube and nonmargin support vectorsdbaespond to errors coexist. The
kernel k(] should be chosen such that it satisfies the cmdimposed by the Mercer's theorem. A

common example of nonlinear kernel that fulfils BEr's condition is the Gaussian kernel function.

6.3. Proposed Active L earning Methods

Let us consider a training set composed initiafiyy dabeled samples ={xi : yi}i“:l and an additional

mm
j=n+1 ’

learning set composed of unlabeled sampleld :{xj} with m>>n. In order to increase the training

setL with a series of samples chosen from the learsgtgy and labeled manually by the expert, an active
learning algorithm has the task of choosing thewperly so as to minimize the error of the regressio
process while minimizing the number of learning phes to label.

In Fig. 6.1, we show the generic flow chart of #ive learning approach for regression problems
proposed in this chapter. Starting from the iniald small training sdt, the unlabeled samples of the
learning setU are evaluated and sorted using an opportune ioritdr. In particular, we suppose for
convention that the criterion has to be minimized. At this point, from the sdreampledJ,, the firstNg
samples are selected, whe¥eis the number of samples to be added in the hgisietL. Finally, the
selected sampldd’s are labeled by the human expert and added tardiéng set L. The entire process is
iterated until the predefined convergence condiigogatisfied (e.g., the total number of samplesdd to the
training set is reached, or the accuracy improvemeanan independent calibration/validation set aber
last iterations becomes insignificant).

Algorithm 6.1. summarizes the active learning apphofor regression problems.
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L: Current training set
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L: Final training set

Fig. 6.1.Flow chart of the proposed active learning apprdachegression problems.

Algorithm 6.1.: Active Learning Approach

Inputs:

L: initial training set, composed oflabeled samples.

U: learning set, composed wf(m>>n) unlabeled samples.

Ns: number of samples to add at each iteration ofthtize learning process.

Output:
L: final training set.

Repeat

1. Considering the current training detevaluate each sampie (j = n+1, n+2, ...

learning sel using the criteriot.
2. Sort the learning sét in function of the criteriom in order to obtain the sék.
3. Select the firshs samples fronts.

, h+m of the
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4. Label the selected samplds.
5. Add the labeled samplés; to the training sdt and remove them frotd.
Until the predefined convergence condition is not satsf

In the next subsections, we present the differetive learning strategies proposed in this
chapter. First, we focus on solutions for GP regjogsand then we consider SVM regression.

6.3.1. Active Learning Strategiesfor GP Regression

6.3.1.1. Distance from the Closest Training Sample
The first strategy, named TRd in the rest of theepaconsists to calculate for each samplg= n+1,

n+2, ..., n+m)the kernel distances (covariance similarités)/R' = [d;1, d,, . d;s] from the samples; (i
=1, 2, ..., njalready composing the current training set:
dj; =Keelx; ;) (6.22)

where kSE(xj,xi) is the squared exponential function defined iMZp The distance values are thus

calculated by means of the same kernel operatar mséhe GP regressor.

After that, the closest training samgigy; is identified and the corresponding distance valyg; is
considered as criterion. In this way, we selectpdamplaced in areas of the kernel space not cdveye
training samples and avoid to choose samples simildose already present in the current traisiety

Algorithm 6.2. encodes the proposed strategy basdte distance from the closest training sample.

Algorithm 6.2.: GP Active Learning based on Distance from the Gib$eaining Sample

1. Compute the kernel distanags] R" = [d;1, d,, .. d ] from then different training samples for each
samplex; (j = n+1, n+2, ..., n+m)of the learning sey.

2. ldentify the training samplgn; closest to the sample.

3. Consider the distance valdgn; associated with the training samplg ;.

4. Seth(j)=dmn.

6.3.1.2. Weighted Distance from the Training Samples
In the second method (TRwd), after calculatingdistances from the training samples, we do not only
consider the closest training sample as done irstila@egy TRd, but we weigh opportunely all thdatise

values. The criterion of selection for the samgldj = n+1, n+2, ..., n+m)is given by the following
formulation:
n
PR :szE(Xj 1Xi) (6.23)
i=1

The farther the considered sample with respedtedriaining samples, the smaller the value of tmetion
hrruwe Therefore, the samples characterized by the leakeies ofhrygare selected.

Algorithm 6.3. summarizes the proposed method basethe weighted distance from the training
samples.

Algorithm 6.3.: GP Active Learning based on Weighted Distance filoenTraining Samples

1. Compute the kernel distanad1 R" = [d;1, d 2, .. d;s] from then different training samples for each
samplex; (j = n+1, n+2, ..., n+m)of the learning sdy.

2. Compute the weighted distaregq,jusing (6.23).

3. Seth(j)=hrrwa;
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6.3.1.3. Variance on Predictions

The third strategy (VoP) is based on the measukaidnce on the predictions defined in (6.11).sThi
value expresses a confidence measure associatéioe byodel to the output and therefore provides an
information on the reliability of the estimatiorhe selection criterion for the sample(j = n+1, n+2, ...,
n+m) is given by:

Nop, =02(x,) (6.24)
where af(xj) is the variance measure defined in (6.11). Thectfan hy.r tends to zero when the

confidences on the estimations are high. Since @grel to enrich the current training set with nevd a
difficult samples, we choose the samples with tieagr values dfiop.
Algorithm 6.4. resumes the proposed strategy bardte value of variance on predictions.

Algorithm 6.4.: GP Active Learning based on Variance on Predictions

1. Compute the value of variance on predictigg; using (6.11) for each sampte(j = n+1, n+2, ...,
n+m) of the learning sad.
2. Se'lh(j):-h\/op’j.

6.3.1.4. Pool of Regressors

The last technique (PoR) is based on a pool ofessgrs constructed by bagging. Considering the
original training set, ns training subsets are constructed by randomly ahgas percentagps of samples
from L. Each training subset is considered independdmndiyy each other and used to train a different
regressor. In this way parallel regressors are designed. In particuter target valugu; , is predicted for

each sample; (j = n+1, n+2, ..., n+tm)and for each regressor (k=1, 2, ..., §). Thereforen different
estimations are obtained for each sample. Fintilg,different estimations are combined opporturisly
calculating the variance value on them:

1S _
heor =n_Z(/'[j,k i (6.25)
s k=1
where
ol
A =n—k2uj,k : (6.26)
s k=1

The samples characterized by the greater disagréerbetween the different regressors, i.e. thetgrea
values of variance, are selected. Indeed, a higgigdéement means that the corresponding samplackas
estimated with high uncertainty, and thus addingoitthe training set could be useful to improve the
regression process.

Algorithm 6.5. summarizes the proposed methodolmged on the pool of regressors.

Algorithm 6.5.: GP Active Learning based on Pool of Regressors

1. Constructng different training subsets, (g=1, 2, ..., g by randomly selecting a percentgueof
samples front..

2. Predict the target value of each sampl§ = n+1, n+2, ..., n+m)of the learning set) for each
regressory (k=1, 2, ..., 9.

3. Compute the variance on the predictibag jgiven by the different regressors using (6.25).

4. Seth(j) = -hpor;
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6.3.2. Active Learning Strategiesfor SVM Regression

6.3.2.1. Distance from the Closest Support Vector

The first strategy (SVd) proposed for the SVM regren is very similar to the TRd strategy presented
previously for GP regression. However, while fordlRe calculate the distances with respect to aithitng
samples, in this case we consider only the traisargples identified as SVs after the regressanitrgionL.
This is motivated by the fact that while for GP nexgsion all training samples contribute to desctime
regression model, for SVM only the SVs are necgdsadefine the regression function.

Algorithm 6.6. describes the proposed strategydasehe distance from the closest SV.

Algorithm 6.6.: SVM Active Learning based on Distance from the €ksSupport Vector

1. Identify theSnsupport vectors of the regressor on the traingtg..s

2. Compute the kernel distanags’] R"= [di1, d> .. dsq] from the Sndifferent support vectors for
each samplg; (j = n+1, n+2, ..., n+m)of the learning sdd.

3. ldentify the support vecten,; closest to the sample.

4. Consider the distance valdgy; associated with the support vecsgg ;.

5. Seth(j)=dwn .

6.3.2.2. Distance from the Support Vectors

The second method (SVd2) is based as the previnasoa the distance values from the support
vectors. However, more complex sorting and seledicategies are performed in order to take intmait
the sample distribution in the feature space. Fissteach sampl; ( = n+1, n+2, ..., n+m)the index
suin,j Of the closest support vector is identified arel¢brresponding distance valdigy is calculated. Then,
for each samplg; (j = n+1, n+2, ..., n+m)we define asﬁj the absolute value of the Lagrange multiplier

associated with the closest support vector. Wellrgicat the Lagrange multipliers weigh each tragnin
sample according to its importance in determinirsplaition. The most important training samplesthose
for which the corresponding Lagrange multipliers er absolute terms equal to the regularizatioaupater
C. At this point, the samples of the learning Jedire ordered first in function of the valmﬁ and then in

function of the distance valudyy;. The final selection is obtained from this sorsad after including an

additional selection constraint. In particulartiit new sample to select shares the same cloggsorsu

vector with a sample already selected at thattimrait is discarded. In this way, we limit thelesgion of

similar and redundant samples and select sampdathdied as most as possible over the featureespac
Algorithm 6.7. encodes the proposed method basddeodistance from the SVs.

Algorithm 6.7.: SVM Active Learning based on Distance from the Swppectors

1. Identify theSnsupport vectors of the regressor on the traingtg..s

2. Compute the kernel distanags] R"= [di1, d> .. dsq] from the Sndifferent support vectors for
each samplg; (j = n+1, n+2, ..., n+m)of the learning sdy.

3. Identify the support vecten, closest to the sample.

4. Consider the distance valdgy; associated with the support vecsgp ;.

5. Consider the absolute valiiq of the Lagrange multiplier associated with thepgupvectorsy ;.

6. Sethy(j)=- @ , ho(j)= dwn-

7. Select first in function o, and then in function olfi,, but if the new sample to select shares the
same closest support vector with a sample alreelégted at that iteration, it is discarded.
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6.3.2.3. Pool of Regressors
The last strategy (PoR) is identical to that presgpreviously for GP regression. We refer the eead
to Section 6.3.1.4. for more details.

6.4. Experiments

6.4.1. Data Set Description and Experimental Setup

In order to validate the proposed active learnimghods, we have conducted an experimental study on
simulated and real data sets.

The first data set refers to multispectral datd Hiaulates the spectral behavior of the chlorophyl
concentration in subsurface case | + case |l (@mehcoastal) waters, through the first eight chinf# 2-
618 nm) of the multispectral Medium Resolution ImmagSpectrometer (MERIS) satellite sensor. These
channels are the most useful for sea color appitatand, in particular, for the analysis of chjagll
concentration. We refer the reader to [5] for aendetailed description on the simulation procedutepted
to generate these data. The range of variationeothlorophyll concentration is from 0.02 to 54 m8/

The second data set is the SeaWiFS Bio-optical rklgn Mini-Workshop (SeaBAM) [33] one. It
represents real measurements of chlorophyll coreté, mostly in case | (open) waters, aroundUt®.
and Europe related to five different Sea-viewingdé/Field-of-view Sensor (SeaWiFS) wavelengths (412,
443, 490, 510, and 555 nm). The chlorophyll cormegioin values span an interval between 0.02 and932.
mg/m3.

The radiance values related to both MERIS and SéaBAta sets were converted to the logarithmic
domain. A statistical motivation of this preprodagsstep is that biooptical quantities are assuihoge
normally distributed [34].

In all the following experiments, for both datassetll the available samples were split in two ,sets
corresponding to learning ddtand test set. In particular, for the MERIS data 5800 and 4000 samples we
considered for learning and test sets, respectiviahalogously, 460 and 459 samples were used for th
SeaBAM data set. The initial training samples wsetected randomly from the learning &&t For the
MERIS data set, starting from 50 samples, the ad@arning algorithms were run until all the leagi
samples were included in the training set, addidg&mples at each iteration. Similarly, for the EB&d
data set, 25 samples were added at each iteratistatiing from 60 samples.

GP and SVM regressors were also trained on thesdeairning set (i.e., all the 1000 and 460 tranin
samples for the MERIS and the SeaBAM data setgeotisely) in order to have a reference-training
scenario, called "full" training. On one hand, tlegression results obtained in this way represdotvar
bound for the errors. On the other hand, we exipexttthe upper error bound will be given by thed@am
sample selection strategy (Ran). We recall thaptirpose of any active learning strategy is to eoge to
the performance of the "full" training scenariotéaghan the Ran method.

Regression performances were evaluated in termsamMmeasures: 1) the mean squared error (MSE)
and 2) the squared correlation coefficient (R2)

MSE=;1 t (9 -y ) (6.27)
2(9. - )7/)(34 - V)

R2 = = (6.28)

\/Zt: (9| - §)2 il (Yi - 37)2

i=1 i

wheret is the number of test samples.
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Fig. 6.2. Performances achieved on the MERIS datbos&P regression in terms of (a) MSE, (b) MS3&nslard deviation, (c) R
and (d) R2 standard deviation.

Concerning the parameter setting, in the case ofggRession, we considered a squared exponential
covariance function. The hyperparameters were tusedy the Bayesian model selection method. Thgenoi
variance, the length scale, and the signal variameee varied in the ranges [0.0001, 1], [0.01, Hbid
[0.001, 10], respectively. For the SVM regressie, adopted a Gaussian kernel. This choice is ntetiva
by the good prediction accuracy and the limited potational complexity associated to this kernele Th
regularization and kernel width parameters weredusmpirically at each iteration by cross validatiGV)
in the ranges [2, 2°] and [2", 2], respectively. Regarding the PoR approach, fah®P and SVM
regression, the number of training subsgnd the percentagr of samples selected randomly framvere
set empirically to 5 and 0.8, respectively. In ortbeassess the influence of these parameterseviermed
an empirical analysis which showed a scarce seitgitif POR to them.

The entire active learning process was run for @aethod ten times, each time with a different ahiti
training set to yield statistically reliable resulAt each run, the initial training samples wehesen in a
completely random way. Moreover, in order to tak&iaccount possible intrinsic variation of results
because of the CV procedure, we ran ten times @FSatM regressors on the entire learning set, eaoh t
by randomly reordering the samples.

Note that, for Figs. 6.2-6.6 that will be introddde the next subsection, each graph shows thétsesu
in function of the number of interactions. All riésuare averaged over ten runs of the approactuesGP
regression, acronyms are as follows: Ran = randd®a, = distance from the closest training samplekd R
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Fig. 6.3. Performances achieved on the SeaBAM dattosGP regression in terms of (a) MSE, (b) M&hdard deviation, (dR2,
and (d) R2 standard deviation.

= kernel distance from the training samples, VolRarance on predictions, PoR = pool of regresdats=
full GP. For SVM regression, they are: Ran = randSwd = distance from the closest support vectog2s
= distance from the support vectors, PoR = pookgfessors, full = full SVM.

6.4.2. Experimental Results

Considering the GP regression and the MERIS ddtatse performances for the “full” regressor in
terms of MSE and R2 are equal to 0.086 and 0.%&perctively. In Figs. 6.2(a)-(d), we show the ressiun
function of the number of training samples for greposed active learning strategies and the ranuiten
First, we note that in general the active selectibthe training samples allows a faster convergeocthe
“full” result with respect to the random stratedpath in terms of accuracies and standard deviatjand
thus stability). The active selection allows to werge to the “full” result using about 300 trainisgmples,
which represent 30% of the entire learning setebud, the entire set of training samples is necg$sathe
Ran method to converge. Moreover, before convemesitthe proposed active learning strategies give
improvement with respect to the Ran one. In padicuthe VoP and PoR methods exhibit the best
performances. This means that similar values ofirmotes can be obtained using a minor quantity of
training samples, which implies a reduction of thmanual labeling work and a decreasing of the
computational time necessary to train the regre$§ernote how for the TRkd method an anomalous feak
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TABLE 6.1
MSE, R2,AND STANDARD DEVIATIONS () ACHIEVED FOR THEGP REGRESSION ON
(A) THEMERIS AND (B) THE SEABAM DATA SETS

()

M ethod # training samples M SE OMsE R2 OR2
Full 1000 0.086 0.000 0.991 0.000
Initial 50 1.638 0.869 0.849 0.070
Ran 0.585 0.406 0.938 0.045
TRd 0.247 0.049 0.974 0.005
TRwd 150 0.378 0.105 0.961 0.010
VoP 0.184 0.054 0.980 0.006
PoR 0.201 0.051 0.978 0.005
Ran 0.237 0.084 0.975 0.008
TRd 0.121 0.012 0.987 0.001
TRwd 300 0.212 0.177 0.977 0.018
VoP 0.095 0.005 0.990 0.000
PoR 0.097 0.005 0.989 0.000
(b)
Method # training samples M SE OMsE R2 ORo
Full 460 1.536 0.000 0.806 0.000
Initial 60 5.221 2.968 0.526 0.215
Ran 2.972 1.038 0.682 0.069
TRd 2.073 0.113 0.754 0.009
TRwd 160 2.210 0.074 0.745 0.007
VoP 1.818 0.029 0.784 0.003
PoR 1.753 0.047 0.787 0.005
Ran 2.062 0.687 0.753 0.066
TRd 1.632 0.028 0.793 0.004
TRwd 310 1.601 0.010 0.800 0.001
VoP 1.573 0.003 0.803 0.000
PoR 1.557 0.005 0.805 0.000

verified around 250 training samples. This is dua bad estimation of the hyperparameters by tlyedan
model selection method in one run of the experiment

The obtained results are shown in greater detailable 6.I(a). In particular, we considered the
performances obtained after 3 and 6 iterationsefiterative process, which corresponds to 15030t
samples used to train the regressor, respectiVédyreport the values of MSE, R2, and standard tewus
associated with the accuraciegsds orz). The best results are highlighted in bold ford.i’can be seen, the
proposed strategies are characterized by bettésrpgmces with respect to the Ran method from diffe
points of view. First, better values of accuraces obtained using the same number of training kmp
Then, better values of standard deviations assatiaith the accuracies are verified. Indeed, mivaues
of standard deviation mean that the proposed giemtexhibit a greater level of stability with respto the
random selection of the initial training set.

Concerning the SeaBAM data set, the results cortfiemobservations drawn for the MERIS one. The
graphs with the accuracies in function of the nundfdraining samples are illustrated in Fig. 6)3@). For
the “full” regressor the performances in terms odfand R2 are equal to 1.536 and 0.806, respectivel
Also for this set of experiments, the proposedvadiarning strategies give a faster convergendeetdtull
accuracy” and better performances before conveggith respect to the Ran method. In particulag, th
methods VoP and PoR confirm the best results.igncdsse, they converge to the “full” accuracy usibgut
310 training samples. The results obtained aften® 11 iterations of the active learning procedsclv
correspond to 160 and 310 training samples resedgtiare summarized in Table 6.1(b).

The effectiveness of the active learning approaciso confirmed for the SVM regression. The graphs
with the accuracies for the MERIS data set are shiowig. 6.4(a)-(d). In this case, the performanokthe
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Fig. 6.4. Performanseachieved on the MERIS data set for SVM regressiearms of (a) MSE, (b) MSE standard deviation,R2
and (d) R2 standard deviation.

“full” regressor are equal to 0.916 and 0.913 it of MSE and R2, respectively. The method SVd, in

which the samples more distant from the current 8\ésselected, exhibits poor performances, whieh ar

very similar to those obtained by the Ran selecfiastead, good improvements are verified using3¥td2

and the PoR strategies. In these two cases, thegmnce to the “full” results is obtained usingath400

training samples. The results corresponding toar&D300 training samples are detailed in Tabl€&].1
Finally, in Fig. 6.5(a)-(d) we show the resultsngsthe SVM regression for the SeaBAM data set, for

which the “full” accuracies correspond to 1.305 @n8i34 in terms of MSE and R2, respectively. Wesnot

that small accuracy variations are observed atergence. This is due to the CV procedure, which imag

to different best parameters for the different rutepending on the order of the samples. As foME&RIS

data set, bad performances are obtained for the s®dtkgy, while very good results are achievecttier

SVvd2 and PoR ones, for which the convergence ifiegusing about 150 training samples. On an ay&ra

it is noteworthy that at convergence the SVd2 apid miethods give values of accuracies slightly béftizn

the “full” regressor. This can be explained by Wey the SVM model selection is carried out. Indesed¢an

be seen in the figure, in the case all the 460 &zsrgre collected, the CV procedure applied todifferent

strategies does not reproduce the “full” accuragesthe training sets accumulated at the lasititar result

with different sample ordering. The results obtdinsing 160 and 310 training samples are illustréte

Table 6.1I(b).
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Fig. 6.5. Performances achieved on the SeaBAM a#tios SVM regression in terms of (a) MSE, (b) MS&ndard deviation, Xc
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TABLE 6.11
MSE,R2,AND STANDARD DEVIATIONS (6) ACHIEVED FOR THESVM REGRESSION ON
(A) THEMERIS AND (B) THE SEABAM DATA SETS

(a)
Method # training samples M SE OMSE R2 OR2 CV #SV

Full 1000 0.916 0.000 0.913 0.000 2.41 240

Initial 50 5.936 1.256 0.434 0.095 9.43 38.8
Ran 3.725 0.949 0.631 0.093 6.32 87.6

svd 150 3.880 1.122 0.629 0.112 9.07 92.6

sSvd2 2.303 0.537 0.758 0.048 13.22 97.2
PoR 2.583 0.625 0.795 0.066 15.57 118.3
Ran 2.301 0.419 0.786 0.046 3.72 129.6
svd 300 1.967 0.817 0.797 0.079 8.65 130.8
Svd2 1.207 0.173 0.875 0.021 7.94 165.9
PoR 0.983 0.031 0.902 0.004 8.98 184.7
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(b)
Method # training samples M SE OMSE R2 OR2 CV #SV
Full 460 1.305 0.294 0.834 0.032 3.48 156.6
Initial 60 4.214 0.828 0.513 0.089 6.44 30.7
Ran 3.314 1.762 0.642 0.140 3.47 68.3
Svd 160 3.589 0.919 0.591 0.104 8.58 65.7
sSvd2 1.463 0.373 0.816 0.029 7.49 97.1
PoR 1.267 0.050 0.836 0.006 10.3 105.3
Ran 1.667 1.084 0.789 0.111 3.31 1114
Svd 310 2.550 1.107 0.698 0.120 4.35 88.9
Svd2 1.477 0.639 0.814 0.073 5.27 147.2
PoR 1.256 0.002 0.839 0.001 5.24 141.4
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Fig. 6.6. Performances achieved for SVM regreseinfa), (c) the MERIS and (b), (d) the SeaBAMadsgts in terms of (a), (b) (
accuracy and (c), (d) #SV.

To better understand the behaviours of the actimening strategies proposed for SVM regression, we
show in Fig. 6.6(a)-(d) the evolution at each iteraof the CV accuracy and the number of SVs (#&W)
(@), (c) the MERIS and (b), (d) the SeaBAM data setpectively. It is interesting to observe theg value
of CV tends to increase in the first iterations,ileytwe have a decrease of the CV value only when a
sufficient number of samples have been added tar#lirging set. The increase of the CV value mehas t
samples difficult to estimate are added to theningi set. However, these new samples are highly
informative and thus allow improving the generaiima performance (i.e., the accuracy on the tasipses).
A completely different behavior is obtained for tRan strategy, for which the CV value tends to elase
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from the beginning. Analogously, we note that ie t8vVd2 and PoR methods the #SV value tends to
increase faster than the Ran method. The fastriremmeof the #SV for the active learning strategiesws
clearly that the samples added to the traininguseteally important for the regression procese. dlttained
results in terms of CV and #SV are detailed in €ahll(a),(b). Finally, we note that similar obsaions
cannot be done for the GP regression, for whichhyygerparameters have not been estimated by CV
technique, but using the Bayesian model selectiethod. Moreover, while for SVM regression only the
SVs describe the regression function, for GP regpasall training samples contribute to define the
regression model.

6.5. Conclusion

In this chapter, the active learning approach reenbintroduced to deal with the problem of training
sample collection for regression problems relatethe estimation of biophysical parameters fromatem
sensing data. Starting from an initial training, set iterative process selects from an unlabel¢al skt the
samples more significant for the regression prqcess those able to give small prediction erratsile
minimizing the number of training samples and tlwnputational costs required by the regressor. In
particular, we have proposed several strategiesifiadly developed for two state-of-the-art regies
approaches, namely GP and SVM. For GP regressierfjrst two methods (TRd and TRkd) are based on
adding samples that are distant from the currexmitrg samples in the kernel space, while the tbimd
(PoR) uses a pool of regressors in order to séhecsamples with the greater disagreements betiheen
regressors of the pool. Finally, the last strat@{yP) exploits an intrinsic GP regression outcomeitk up
the most difficult samples. For SVM regression, itinethod based on the pool of regressors (PoR)vand t
additional strategies (SVd and SVd2) based on e¢lexson of the samples distant from the curreppsut
vectors are proposed.

The experimental results obtained on simulated MERhd real SeaBAM data sets show good
capabilities of the proposed strategies for saigatignificant samples. In general, the proposethous are
characterized by higher performances in terms ¢ lacuracy and stability with respect to a conghjet
random selection strategy. Comparing them, the ineshodologies seem PoR and VoP for GP regression
and SVd2 and PoR for SVM regression.

In this chapter, though we focused on GP and SVifession, the active selection of the training
samples could be used in combination with otheestped regression approaches. Moreover, whil@ig t
work the initial training set was chosen in a randeay, a more sophisticated initialization strategyld be
envisioned in order to improve further the perfonees of the active learning approach.

6.6. Acknowledgment
The authors would like to thank Prof. G. Corsinn{irsity of Pavia, Italy) and the SeaBAM group
for providing the data used in the experiments.

6.7. References cited in Chapter 6

[1] D. G. Goodenough, A. S. Bhogall, H. Chen, and AkDYComparison on methods for estimation of Kyoto
protocol products of forests from multitemporal Haat,” inProc. IGARSSSidney, AUS, Jul. 2001, vol. 2, pp.
764-767.

[2] D. Del Frate, A. Ortenzi, S. Casadio, and C. Zehtgplication of neural algorithms for a real-tinestimation of
ozone profiles from GOME measurement&EE Trans. Geosci. Remote Senal. 40, no. 10, pp. 2263-2270,
Oct. 2002.

[3] L. Bruzzone and F. Melgani, “Robust multiple estionasystems for the analysis of biophysical paransefrom
remotely sensed datdEEE Trans. Geosci. Remote Semsl. 43, no. 1, pp. 159-174, Jan. 2005.

94



Chapter 6 Active Learning Methods for Biophysical Parame&stimation

[4] D.S. Kimes, Y. Knyazikhin, J. L. Privette, A. Abfelgasim, and F.Gao, “Inversion methods for plasidhased
models,”"Remote Sens. Revol.18, no.2—-4, pp.381-439, Sep. 2000.

[5] P. Cipollini, G. Corsini, M. Diani, and R. Grasstretrieval of sea water optically active parametémm
hyperspectral data by means of generalized ra@isistfunction neural networks|EEE Trans. Geosci. Remote
Sens.vol. 39, no. 7, pp. 1508-1524, Jul. 2001.

[6] D. D’Alimonte and G. Zibordi, “Phytoplankton deteimation in an optically complex coastal region gsia
multilayer perceptron neural networdEEE Trans. Geosci. Remote Sen®l. 41, no. 12, pp. 2861-2868, Dec.
2003.

[71 H. Zhan, P. Shi, and C. Chen, “Retrieval of oceartilorophyll concentration using support vector hiaes,”
IEEE Trans. Geosci. Remote Sensl. 41, no. 12, pp. 2947-2951, Dec. 2003.

[8] G. Camps-Valls, L. Bruzzone, J. L. Rojo-Alvarez,dak. Melgani, “Robust support vector regression for
biophysical variable estimation from remotely sehsaages,”IEEE Geosci. Remote Sens. Letbl. 3, no.3, pp.
339-343, Jul. 2006.

[9] D. Tuia, J. Verrelst, L. Alonso, F. Pérez-Cruz, @adCamps-Valls, “Multioutput support vector regries for
remote sensing biophysical parameter estimatittEE Geosci. Remote Sens. Latbl. 8, no.4, pp. 804-808, Jul.
2011.

[10]L. Pasolli, F. Melgani, and E. Blanzieri, “Gaussianocess regression for estimating chlorophyll emtiation in
subsurface waters from remote sensing ddBEPE Geosci. Remote Sens. Leibl. 7, no.3, pp. 464-468, Jul.
2010.

[11]Z.-H. Zhou and M. Li, “Semi-supervised regressiathveo-training,” inProc. Int. Joint Con. Artif. Intel].2005,
pp. 908-913.

[12]Y. Bazi and F. Melgani, “Semisupervised PSO-SVMresgion for biophysical parameter estimatiolEEE
Trans. Geosci. Remote Senal. 45, no. 6, pp. 1887-1895, Jun. 2007.

[13]Y. Bazi and F. Melgani, “Semisupervised Gaussiamcgss regression for biophysical parameter estimAtin
Proc. IGARSSHonolulu, HI, Jul. 2010, vol. 1, pp. 4248-4251.

[14]P. Mitra, C. A. Murthy, and S. K. Pal, “A probalsiiic active support vector learning algorithnEEE Trans.
Pattern Anal. Mach. Intellvol. 26, no. 3, pp. 413-418, Mar. 2004.

[15]E. Pasolli and F. Melgani, “Active learning methddselectocardiographic signal classificatioffEE Trans. Inf.
Technol. Biomedyvol. 14, no. 6, pp. 1405-1416, Nov. 2010.

[16]P. Mitra, B. Uma Shankar, and S. Pal, “Segmentatfomultispectral remote sensing images using acdivport
vector machines,Pattern Recogn. Leftvol. 25, no. 9, pp. 1067-1074, Jul. 2004.

[17]Y. Zhang, X. Liao, and L. Carin, “Detection of bedi targets via active selection of labeled dataliegtion to
sensing subsurface UXOEEE Trans. Geosci. Remote Sensl. 42, no. 11, pp. 2535-2543, Nov. 2004.

[18]Q. Liu, X. Liao, and L. Carin, “Detection of unempled ordnance via efficient semisupervised andvecti
learning,”|IEEE Trans. Geosci. Remote Sensl. 46, no. 9, pp. 2558-2567, Sep. 2008.

[19]S. Rajan, J. Ghosh, and M. M. Crawford, “An actizarning approach to hyperspectral data classifiogdt|IEEE
Trans. Geosci. Remote Senal. 46, no. 4, pp. 1231-1242, Apr. 2008.

[20]J. Li, J. Bioucas-Dias, and A. Plaza, “Semisupedibyperspectral image segmentation using multiablogistic
regression with active learningEEE Trans. Geosci. Remote Sensl. 48, no. 11, pp. 4085-4098, Nov. 2010.

[21]D. Tuia, F. Ratle, F. Pacifici, M. F. Kanevski, ad J. Emery, “Active learning methods for remoensing
image classification,/[EEE Trans. Geosci. Remote Sensl. 47, no. 7, pp. 2218-2232, Jul. 2009.

[22]E. Pasolli, F. Melgani, and Y. Bazi, “Support veactmachine active learning through significance spac
construction,lEEE Geosci. Remote Sens. Letbl. 8, no. 3, pp. 431-435, May 2011.

[23]D. Cohn, Z. Ghahramani, and M. Jordan, “Active hé@ag with statistical modelsJ. Artif. Intell. Res.vol. 4, pp.
129-145, Mar. 1996.

[24]K. Fukumizu, “Statistical active learning in mudtyler perceptrons[EEE Trans. Neural Netwvol. 11, no. 1, pp.
17-26, Jan. 2000.

[25]R. Castro, R. Willett, and R. Nowak, “Faster raitesegression via active learning®dv. Neural Inf. Process.
Syst, vol. 18, pp. 179-186, 2006.

[26]M. Sugiyama, “Active learning in approximately lare regression based on conditional expectation of
generalization error,The Journal of Machine Learning Researebl. 7, pp. 141-166, Jan. 2006.

95



Chapter 6 Active Learning Methods for Biophysical Parame&stimation

[27]R. Burbidge, J. J. Rowland, and R. D. King, “Actilearning for regression based on query by comsitte
Intelligent Data Engineering and Automated Learnipg. 209-218, 2007.

[28]M. Sugiyama and N. Rubens, “A batch ensemble apgprda active learning with model selectiorijeural
Networks vol. 21, no. 9, pp. 1278-1286, Nov. 2008.

[29]M. Sugiyama and S. Nakajima, “Pool-based activenieg in approximate linear regressioifach. Learn, vol.
75, no. 3, pp. 249-274, Jan. 2009.

[30]J. Paisley, X. Liao, and L. Carin, “Active learniagd basis selection for kernel-based linear mo@deBayesian
perspective,IEEE Trans. Signal Processol. 58, no. 5, pp. 2686—2700, May 2010.

[31]C. E. Rasmussen and C. K. I. Willian@aussian Process for Machine Learnir@ambridge, MA: MIT Press,
2006.

[32]V. Vapnik, Statistical Learning Theor\New York: Wiley, 1998.

[33]J. E. O'Reilly and S. Maritorena, “SeaBAM evaluatidata set,”The SeaWiFS Bio-Optical Algorithm Mini-
Workshop  (SeaBAM) 1997, Santa Barbara, CA: Univ. California. [Oelin Available:
http://seabass.gsfc.nasa.gov/seabam.

[34]J. W. Campbell, “The lognormal distribution as ad®lofor the bio-optical variability in the seal” Geophys. Res.
vol. 100, no. C7, pp. 13237-13254, 1995.

96



7. Active Learning for Spectroscopic Data Regression

Abstract — In this chapter, we introduce an active learningpagach for the estimation of chemical
concentrations from spectroscopic data. Its maijective is to opportunely collect training sampiesuch

a way to minimize the error of the regression psscehile minimizing the number of training samptes
use, and thus to reduce the costs related to #irityg sample collection. In particular, we propadiéferent
active learning strategies specifically developed regression approaches based on partial leastaseg!
regression (PLSR) and support vector machine (S\Rdj. PLSR, the first method is based on adding
samples that are distant from the current traingagnples in the feature space, while the secondiseg a
pool of regressors in order to select the sampléb the greater disagreements between the different
regressors of the pool. For SVM, the method basethe pool of regressors and an additional strategy
based on the selection of the samples distant fhensupport vectors are proposed. Experimentalltesun
three different real data sets are reported anduksed.

The work presented in this chapter has been suddrtitt). Chemometr,. Co-authors: F. Douak, F. Melgani,
N. Alajlan, Y. Bazi, N. Benoudjit.
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7.1. Introduction

Spectroscopy is an important technology for pro@unztlysis and quality control in different chemical
fields. For example, it has been applied succdgsfupharmaceutical [1], [2], food [3] and textiledustries
[4]. Chemical analysis by spectroscopy resultsr@sing since it allows a fast acquisition of ay@number
of spectral data, which can be analyzed in ordeyi¢tdl accurate estimations of the concentratiorthef
chemical component of interest in a given product.

From a methodological point of view, the problemcohcentration estimation can be viewed as an
inverse modelling issue in which it is necessarglééine a model that relates the acquired obsematio
the concentration of interest. The estimation efrtfodel is typically done by adopting supervisegtassion
techniques, which require the availability of aaktraining samples. By training samples, we mgains of
spectral data acquired by the spectrometer and urerasnts of the concentration to estimate. In the
literature, two main approaches of regression hmen proposed. The first one is based on linearpd
appreciated for their simplicity, such as multipileear regression, principal component regressiod a
partial least squares regression (PLSR) [5]. Therst approach makes use of nonlinear models. Tieey a
characterized by greater computational compleXtyt, they can give better performances when a strong
nonlinearity between the acquired spectral datata@doncentrations to estimate is present. Indbigext,
two state-of-the-art methods are radial basis fanstneural network (RBFN) and support vector maehi
(SVM) [6], [7].

In general, the regression process is done by asguhat the training set is composed by a suificie
number of samples in order to obtain a reliable eh@athd accurate estimations. However, from a pralcti
point of view, the process of collection of traigirsamples is not trivial, because the concentration
measurements associated with the acquired spdeatahave to be performed by human experts ancatieus
subject to costs in terms of time and money. F@ thason, the number of available training samfes
typically limited and performances can be affeatedsequently due to training sample scarcity.

A solution to the problem of training sample cdileo is given by the active learning approach.
Starting from a small training set, additional séespare selected from a large amount of unlabetgd. d
These samples are labeled by the expert and addkd training set. The process is iterated urgtopping
criterion is reached. In particular, active leagnistrategies have been applied successfully in the
classification context [8] in different fields [§]-1]. Similarly, the active learning approach hag studied
for regression problems by the machine learning statistics communities, in which it is also knoas
optimal experimental desigifter the seminal paper by Cohn et al. [12], inieh active learning has been
applied to two statistically-based learning arddtitees, such as mixtures of Gaussians and locadlgived
regression, several works have appeared in théeasyears. For instance, in [13], the authors $oon the
problem of local minima in active learning for nalunetworks, and two probabilistic solutions aregarsed.

In [14], after introducing the fundamental limitls a minimax sense of active and passive learnimg fo
various function classes, some strategies baseal toge-structured partition of the data are presenn
[15], considering linear regression scenarios, thatkusing the weighted least-squares learningdoase
the conditional expectation of the generalizatiomreis proposed. In [16], the authors apply therguby
committee approach in the regression context. Thm mlea is to train a committee of learners aneryu
the labels of the samples where the committeedigtien differ, thus minimizing the variance of tlearner

by training on samples where variance is larges{1V], it is suggested to solve the problems divac
learning and model selection at the same timederaro improve further the generalization perforogrin
[18], a solution to the problem of pool-based ati®arning in linear regression is proposed. In,[1i%e
authors develop a strategy for kernel-based limegression, in which the proposed greedy algorithm
employs a minimum-entropy criterion derived usin@ayesian interpretation of ridge regression. Despi
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the promising performance given by the active legrapproach in the regression context, nothinglarm
has been proposed in the chemometrics literature.

The objective of this chapter is to introduce tlgva learning approach for regression problems for
the estimation of concentrations from spectroscdpi@. In particular, we propose different actiearhing
strategies specifically developed for two statehaf-art regression approaches, namely PLSR and $éM.
PLSR, the first method is based on adding sampltsare distant from the current training samphethée
feature space, while the second one uses a paebogssors in order to select the samples witlgtaater
disagreements between the different regressorsS¥it, the method based on the pool of regressatsaan
additional strategy based on the selection of #mmpdes distant from the current support vectors are
proposed. To illustrate the capabilities of thepmsed strategies, we conducted an experimenta} baskd
on three different real data sets: 1) a diesel datafor estimating the cetane number by nearyedra
spectroscopy; 2) an orange juice data set whereimigared reflectance spectroscopy is used tonedé the
saccharose concentration; 3) a Tecator data sahéoestimation of fat content in meat by mid-inéch
spectroscopy. The obtained results show that istiegeperformances can be achieved.

The remaining part of the chapter is organized aiewis. In Section 7.2 the basic mathematical
formulations of PLSR are recalled, while for SVR reéer the reader to subsection 6.2.2. In Secti8nthe
active learning strategies proposed for regresgioblems are described. Section 7.4 presents tlaesdts
used in the experimental analysis and the relasualts. Finally, conclusions are drawn in Sectidn 7

7.2. Partial Least Squares Regression

Let us consider a set of labeled samples {x;,y;}",, where x; =[x,,...,xy ]J0¢ represents a
vector ofd spectral acquisitions and/or processed featurésyanl [l is the associated target value, i.e., the
measurement of the concentration value of intetextus aggregate aK;’'s (i=1,...,n) into a feature matrix
Xand all'y;’s (i=1,...,n) into a target vectoy so thatL = {X ,y} . The goal is to infer from the set of labeled

sampled. the function f ([ so thaty = f (x).

The PLSR aims at finding a linear regression mdagelprojecting data to a new space [20]. In
particular, it tries to find the multidimensionalrettion in the spaceX that explains the maximum
multidimensional variance direction in the spgc@he user has to supply the numbef latent factors in
the regression. If it equals the rank of the ma¥ixhe method yields simply the least squares rsgres
estimates.

After centering the inpuX andy, the following steps are performed for each lafaatork (k=1,...,I}

Step 1 find the weight vectorw, by maximizing the covariance between the lineanlmoation

X,4W, andy under the constraint thav,w, =1. This corresponds to find the unit vector

w, that maximizesw, X,_,y,.;. i.e., the scaled covariance betwe¥p, andy,_,

N
W, :%_ (7.1)
ka—ly k—l“
Step 2 find the factor score, as the projection oK,_, on w,, so that the-residualsE

Sincew,w, = 1 the solution is
t, =X ,W, . (7.3)
Step 3 regressX,_, ont, to find the loading®)
X,y =t py +E. (7.4)
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The least square solution is given by

P = Xyt tity (7.5)
Step 4 regressy,_, ont, tofind g,, so that thg-residuald~
Yia =00y + Ry (7.6)
The solution is given by
Ok =Yieat /ity (7.7)

Step 5 subtractt,p, from X,_, in order to obtainX, . Similarly, y, is obtained by subtracting

t gy fromy, .
After the computation of the latent factors, thenimaX is deflated by subtracting.q, from X. In this
way, the model refers to the residuals after previdimensiork instead of relating to the variablXs

themselves
E =Xyt - 1Py (7.8)
F=Yiq -ty (7.9)
ReplacingX,_, andy,_, by the residual& andF and increasing of one, we obtain
X, =E (7.10)
Yia =F (7.11)
k=k+1. (7.12)
The regression coefficienksare given by
b=w(P'W)™q (7.13)

whereW = (w, [w, |..]w,), P=(p; [P |--Ip)), o = (th, 0. .a 1) -
Finally, the prediction of a generic sample is given by
y =x'Db. (7.14)

7.3. Proposed Active L earning Methods

Let us consider a training set composed initiafiy dabeled samples ={xi : yi}i“:l and an additional

n+m
j=n+1’

learning set composed of unlabeled sampleld ={x]-} with m>>n. In order to increase the training

setL with a series of samples chosen from the learsgtgy and labeled manually by the expert, an active
learning algorithm has the task of choosing thewperly so as to minimize the error of the regressio
process while minimizing the number of learning phawn to label, and thus to reduce the costs retattite
training sample collection.

In Fig. 7.1, we show the generic flow chart of #ive learning approach for regression problems
proposed in this chapter. Starting from the iniiald small training sdt, the unlabeled samples of the
learning setU are evaluated and sorted using an opportune ioritdér. In particular, we suppose for
convention that the criterion has to be minimized. At this point, from the sdreampledJ,, the firstNg
samples are selected, whe¥eis the number of samples to be added in the hgisietL. Finally, the
selected sampldd’s are labeled by the human expert and added tardiéng set L. The entire process is
iterated until the predefined convergence condiigogatisfied (e.g., the total number of sampleadd to the
training set is reached, or the accuracy improvemeanan independent calibration/validation set aber
last iterations becomes insignificant).

Algorithm 7.1. summarizes the active learning apphofor regression problems.
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L: Current training set
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Convergence ?

Yes

L: Final training set

Fig. 7.1.Flow chart of the proposed active learning apprdachegression problems.

Algorithm 7.1.: Active Learning Approach

Inputs:

L: initial training set, composed aflabeled samples.

U: learning set, composed wf(m>>n) unlabeled samples.

Ns: number of samples to add at each iteration ohttiee learning process.

Output:
L: final training set.

Repeat

1. Considering the current training detevaluate each sample (j = n+1, n+2, ..., n+n) of the
learning selJ using the criteriot.

2. Sort the learning sét in function of the criteriot in order to obtain the sék.

3. Select the firdhs samples fronts.
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4. Label the selected samplds.
5. Add the labeled samplés; to the training sdt and remove them frotd.
Until the predefined convergence condition is not satsf

In the next subsections, we present the differetive learning strategies proposed in this
chapter. First, we focus on solutions for PLSR tath we consider SVM regression.

7.3.1. Active Learning Strategiesfor PLSR

7.3.1.1. Distance from the Closest Training Sample
The first strategy, named TRd in the rest of thaptér, consists to calculate for each samplg =

n+1, n+2, ..., n+m)the Euclidean distancey 0 R" = [d;1, d, . d,] in the feature domain from the
samples; (i= 1, 2, ..., n)already composing the current training set:
dj; =[x, =] (7.15)

After that, the closest training sampi@n; is identified and the corresponding distance valyg; is
considered as criterion. In this way, we selectasplaced in areas of the feature space not edvay
training samples and avoid to choose samples sitildnose already present in the current traisiety

Algorithm 7.2. synthesizes the proposed strategsethbaon the distance from the closest training
sample.

Algorithm 7.2.: PLSR Active Learning based on Distance from thes€b Training Sample

1. Compute the Euclidean distancks R' = [d;, d, .. d ] from then different training samples for
each samplg; (j = n+1, n+2, ..., n+m)of the learning sdy.

2. ldentify the training samplg; closest to the sample.

3. Consider the distance valdgn,; associated with the training samplg ;.

4. Seth(j)=-dm-

7.3.1.2. Pool of Regressors

The second strategy (PoR) is based on a pool ofssgrs. Considering the original training lsens
training subsets are constructed by sampling the spectral domain. Each training subset issiciered
independently from each other and used to traiiffereint regressor. In this waw, parallel regressors are
designed. In particular, the target value, is predicted for each samptg(j = n+1, n+2, ..., n+m)and for

each regressay, (k=1, 2, ..., §). Thereforens different estimations are obtained for each sanfiteally,
the different estimations are combined opportubglgalculating the variance value on them:

Npor ) =ni2(/"j,k —Hj )2 (7.16)

s k=1
where

e
i =D Hik (7.17)

s k=1
The samples characterized by the greater disagraerbetween the different regressors, i.e. thetgrea
values of variance, are selected. Indeed, a higgigdeement means that the corresponding samplackas
estimated with high uncertainty, and thus addingoitthe training set could be useful to improve the
regression process.
Algorithm 7.3. summarizes the proposed methodolmged on the pool of regressors.
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Algorithm 7.3.: PLSR Active Learning based on Pool of Regressors

1. Construcng different training subsets, (9=1, 2, ..., §) by sampling the spectral domain.

2. Predict the target value of each sampl§ = n+1, n+2, ..., n+m)of the learning set) for each
regressory (k=1, 2, ..., 9.

3. Compute the variance on the predictibag jgiven by the different regressors using (7.15).

4. Seth(j) = -hpor;

7.3.2. Active Learning Strategiesfor SVYM Regression

7.3.2.1. Distance from the Support Vectors

The second method (SVd) proposed for SVM regressiagimilar to TRd presented previously for
PLSR. However, while for TRd we calculate the dists with respect to all training samples, in t@se
we consider only the training samples identifiedS&s after the regressor training bnThis is motivated
by the fact that while for PLSR all training sangpleontribute to describe the regression modelSié
only the SVs are necessary to define the regre$srartion. Moreover, more complex sorting and S#bec
strategies are performed in order to take into @etthe sample distribution in the feature spaaest,For
each samplg; (j = n+1, n+2, ..., n+m)the indexsyn; of the closest support vector is identified anel th
corresponding distance valdg; is calculated. Then, for each samg|g(j = n+1, n+2, ..., n+m)we

define as[fj the absolute value of the Lagrange multiplier esged with the closest support vector. We

recall that the Lagrange multipliers weigh eaclnirg sample according to its importance in deteing

the final solution. The most important training $d@s are those for which the corresponding Lagrange
multipliers are in absolute terms equal to the laggation paramete€. At this point, the samples of the
learning setJ are ordered first in function of the valufziej and then in function of the distance vatlig ;.

The final selection is obtained from this sorted aker including an additional selection consttaim
particular, if the new sample to select sharesstiiee closest support vector with a sample alrealdgted
at that iteration, it is discarded. In this way, lirait the selection of similar and redundant saesphnd
select samples distributed as most as possibletbedeature space.

Algorithm 7.4. synthesizes the proposed methoddaseghe distance from the SVs.

Algorithm 7.4.: SVM Active Learning based on Distance from the Suppectors

1. Identify theSnsupport vectors of the regressor on the traingtg s

2. Compute the Euclidean distancks” R"= [dj1, d2, .. Os] from theSndifferent support vectors
for each samplg (j = n+1, n+2, ..., n+m)of the learning sav.

3. ldentify the support vecten,; closest to the sample.

4. Consider the distance valdgy; associated with the support vecsgp ;.

5. Consider the absolute valﬁq of the Lagrange multiplier associated with theggupvectorsy ;.

6. Seihl(j)=- 5] ) h2(j)=- dN”NJ'

7. Select first in function ofi; and then in function dlfi;, but if the new sample to select shares the
same closest support vector with a sample alregldgted at that iteration, it is discarded.

7.3.2.2. Pool of Regressors
The first strategy (PoR) is identical to that preéed previously for PLSR. We refer the reader to
Section 7.3.1.2. for more details.
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TABLE 7.1
DATASET INFORMATION AND EXPERIMENTAL SETUP FOR THEDIFFERENTDATA SETS

Dataset infor mation Experimental setup
# learning #test #initial training  # samples added
Name # features ) :
samples samples samples at each iteration
Diesdl 401 133 112 33 20
Orangejuice 700 149 67 49 20
Tecator 100 172 43 32 20

7.4. EXperiments

7.4.1. Data Set Description and Experimental Setup

In order to validate the proposed active learnimghods, we have conducted an experimental study on
three real data sets.

The first data set refers to multispectral acqiisg of diesel fuels [21]. It was built by the Sowest
Research Institute in order to develop instrum@nmato evaluate fuel on battle fields. Along withet
spectral acquisitions, different properties areilakée, such as boiling point at 50% recovery, oeta
number, density, freezing temperature, total ar@m®saviscosity. The data set contains only summefst
and outliers were removed. In our experiments, aresider one of the most difficult prediction tagkghis
data set, i.e., the prediction of the cetane nunabahe fuel. All spectra range from 750 to 1550,nm
discretized into 401 wavelength values. The datamatains 20 high leverage spectra, shown in Fi2(a),
and 225 low leverage spectra, the latter beingraggzhinto two subsets labeled a and b. As suggéstéhe
providers of the data, we have built a learningvgigh the high leverage spectra and subset a ofaive
leverage spectra (thus yielding 133 spectra). Ese det is made of the low leverage spectra ofesubs
(gathering 112 spectra).

The second data set deals with the problem of mdterg sugar (saccharose) concentration in orange
juice samples by near-infrared reflectance spewobms [22]. The acquisitions consist of 700 spectral
variables representing the absorbance (log 1/Rljffsrent wavelengths between 1100 and 2500 nm. The
absorbance is defined as log (1/R), where R idighéreflected by the sample surface. In this céesarning
and test sets contain 149 and 67 samples, resplgctin Fig. 7.2(b), we show the near-infrared $gzeof
the orange juice learning set.

The last data set deals with the determinatiorheffat content in meat samples analyzed by near-
infrared transmittance spectroscopy [23]. Each $amspntains finely chopped pure meat with different
moisture, fat and protein contents. Those contemisasured in percent, are determined by analytic
chemistry. The spectra, acquired by the Tecatoatet Food and Feed Analyzer, records light trattante
through the meat samples at 100 wavelengths iratige between 850 and 1050 nm. The correspondihg 10
spectral variables are the absorbance defined byntkasured transmittance values. The spectra are
normalized according to the standard normal vaganethod, i.e., mean equal to zero and variancel égu
one. For this data set, learning and test setsaitodf72 and 43 spectra, respectively. The neaayiaf
spectra of the Tecator learning set is depictdeldn7.2(c).

In all the following experiments, for all data setise initial training samples required by the \aeti
learning process were selected randomly from thenieg setU. For the diesel data set, starting from 33
samples, the active learning algorithms were ruii alhthe learning samples were added to theningj set,
adding 20 samples at each iteration. Similarlys@tples were added at each iteration by startomg #9
and 32 samples for the orange juice and Tecatars#ds, respectively. The details of the experialesgtup
on the different data sets are summarized in Tallerhe entire active learning process was rurtitaas,
each time with a different initial training set yeeld statistically reliable results. At each ruhe initial
training samples were chosen in a completely randasn
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Fig. 7.2. Spectra of (a) the diesel, (b) the orgnge, and (c) the Tecator data sets.

PLSR and SVM regressors were also trained on tlieedrarning set in order to have a reference-
training scenario, called "full" training. On thaehand, the regression results obtained in thysreresent
a lower bound for the errors. On the other handeweect that the upper error bound will be giventhsy
completely random selection strategy. We recalt the purpose of any active learning strategy is to
converge to the performance of the "full" trainsggnario faster than the random selection method.
Regression performances were evaluated on thesé¢stin terms of the standard error of estimate
(EST)

t
EST= T (5 - v.)° (7.18)
i=1
wheret is the number of test samples.

Concerning the parameter setting, in the case &RRlthe optimal number of latent variables was
estimated by cross validation in the range [1, Fof. SVM, we adopted a Gaussian kernel. This chisice
motivated by the generally good prediction accurassociated to this kernel. The regularization lkerdel
width parameters were tuned empirically throughssrealidation in the ranges$22°] and [2'!, 27,

respectively.
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Fig. 7.3. Performances achieved on the diesel sittdor (a), (b) PLSR and (c), (d) SVM in terms af, ((c) EST, (b), (d) EST
standard deviation.

7.4.2. Experimental Results

Figs. 7.3-7.5 report the results obtained for tiesel, orange juice, and Tecator data sets, régpbgt
by evolving the active learning process. In paficuthe graphs refer to (a), (b) PLSR and (c),¥M in
terms of (a), (c) EST and (b), (d) EST standardai®n (oes7). First, we note that at the starting points poor
performances were obtained, both in terms of ESTratatedoest. This result can be expected because of
the small number of training samples used to ttheregressors, which has also a direct impacthen t
regression model quality as shown by the strongalaity in terms ofoest Of the prediction errors. Another
expected result is given by the improvement of grenbnces when additional samples are insertedein th
training set. This results in graphs with an appnately monotonous decreasing behavior of EST aid
which tend to converge to the results yielded kg ‘flall” regressors, for which the entire learniagt is
exploited to train the model. Although such dedraass verified for both active and random selattiwe
note that in general the active methods allow #&efasonvergence to the “full” result with respectthe
random strategy, both in terms of EST andr. In particular, the improvements in termsogkr indicate
greater levels of stability in defining the regieasmodel. While for the random selection the enset of
learning samples is necessary to converge forxgléments, in some cases the active learning psoce
allows to converge completely using just a sub$dhe learning set. Moreover, before convergenke, t
proposed active learning strategies give in gen@maimprovement with respect to the random ones Thi
means that similar values of prediction errors lbarobtained using a minor quantity of training skesp
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Fig. 7.4. Performances achieved on the orange data set for (a), (b) PLSR and (c), (d) SVM in temf (a), (c) EST, (b), (d) EST
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which implies a reduction of the expert work andeareasing of the computational time necessarsato t
the regressor. Among the proposed strategies, #thamh PoR based on the pool of regressors yields in
general better results with respect to those bagetthe distances in the feature space betweerethlagld
unlabeled samples. This is verified for both PLSR VM.

The obtained results are shown in greater detallaible 7.1l(a)-(c), for the diesel, orange juicada
Tecator data sets, respectively. In particular,camesidered the performances obtained when 40 additi
samples are inserted in the training set. Therefoueber of training samples equal to 73, 89, & ar
considered for the different data sets, respegtiwle report the values of EST and the correspanelisr.
The best results are highlighted in bold font. Mwer, for PLSR we indicate the number of optima&tié
variables estimated automatically by cross valagthile for SVM we show the number of supporttees
identified in the training process. The proposadtsgies are characterized by better performandds w
respect to the random method from different poaitsiew. First, better values of accuracies arenioietd
using the same number of training samples. Thetterbealues of standard deviations associated thigh
prediction errors are verified.
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7.5. Conclusion

In this chapter, we have introduced the activenliegrapproach to face the problem of training sampl
collection for regression problems related to then@ation of chemical concentrations from spectopsc
data. Starting from a small and suboptimal trairéeg an iterative process selects from a set latbeted
data the samples considered more significant ferrdgression process, i.e., those able to givelamal
prediction errors while minimizing the number dditing samples and thus the expert efforts andsdost
collecting the final training set. In particularevhave proposed some strategies specifically dpedldor
two state-of-the-art regression approaches, naRleBR and SVM. For PLSR, the first method is based o
adding samples that are distant from the curramitrg samples in the feature space, while therskone
uses a pool of regressors in order to select timplss with the greater disagreements between fferatit
regressors. For SVM, the method based on the doagressors and an additional strategy based ®n th
selection of the samples distant from the curreppert vectors are proposed.

The experimental results on three different reah dsets show good capabilities of the proposed
strategies for selecting significant samples. Inegal, the proposed methods are characterized dhehi
performances in terms of both accuracy and stahilith respect to a completely random selectioatsgy.
Comparing them, the best active strategy appearerie based on the pool of regressors for both RiR
SVM. It is however the most computational demandiimge it needs the training of different regresgor
build the pool.
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TABLE 7.11
EST,STANDARD DEVIATION (6), # LATENT VARIABLES, AND # SUPPORTVECTORSACHIEVED FORPLSRAND SVM ON

(a)
PLSR SVM
#trainin # latent # support
Method sampl&g EST OEST variables EST OEST vec?grs
Full 133 2.0222 0.0000 7.0 2.4171 0.0000 110.0
Initial 33 2.4651 0.1766 4.4 2.7478 0.0968 31.6
Ran 2.2835 0.0982 4.8 2.5296 0.0648 65.5
TRd/SVd 73 2.2528 0.0911 4.9 2.4768 0.0543 66.2
PoR 2.2118 0.0937 55 2.4393 0.0262 68.0
(b)
PL SR SVM
#trainin # latent # support
Method simpleﬁg EST OesT variables EST OesT vecr':grs
Full 149 5.1688 0.0000 13.0 7.3729 0.0000 142.0
Initial 49 6.4987 1.1063 9.8 9.0254 1.5838 47.7
Ran 5.9608 0.5542 10.6 8.2810 0.5606 89.0
TRd/SVd 89 5.6693 0.3593 11.6 8.3395 0.7867 89.0
PoR 5.6495 0.3431 13.3 8.1491 0.5995 88.7
(c)
PLSR SVM
#trainin # latent # support
Method sampl&g EST OEST variables EST OEST vecft)grs
Full 172 2.1377 0.0000 10.0 0.6214 0.0000 151.0
Initial 32 2.8436 1.0167 4.5 2.1485 0.4972 30.0
Ran 2.3443 0.4118 9.6 0.9646 0.1968 65.6
TRd/SVd 72 2.1351 0.1519 9.6 0.9649 0.2059 66.6
PoR 2.1572 0.1186 8.2 0.9133 0.1271 65.8

Though we focused on PLSR and SVM in this chayter,active selection of the training samples
could be used in combination with other supervigggiession approaches. Moreover, while in this vibek
initial training set was chosen in a random way,raneophisticated initialization strategies could be
envisioned in order to further improve the perfonges of the active learning process.
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8. A Framework for Computer-Aided Ground-Truth Collection for
Optical Image Classification

Abstract — Ground-truth design is a tricky problem and alsdical since it has a direct impact on most of
the subsequent image processing and analysis dtepbkis chapter, a novel framework for assisting a
human user in the design of a ground-truth for sifying a given optical remote sensing image igppsed.

It is based on automatic unsupervised procedurelevadl set segmentation and clustering to make both
spatial and spectral information contribute in theund-truth design. In particular, it allows idefying the
most significant areas of the image and facilitgtime manual labeling operation. The resulting grdu
truth is classifier-free and can be further imprdvgy making it classifier-driven through an actlearning
process. Experimental results on very high spatiablution and hyperspectral images show the usessl
and effectiveness of the proposed approach.
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8.1. Introduction

In the remote sensing field, one of the most chglleg problems is represented by the classification
images to create and update land-cover maps fiereiit applications related to the monitoring @ &arth
at local and global scales. From a methodologioaitpf view, the classification process has bemed in
the literature through two main approaches: unsiges and supervised. In general, supervised msthod
have shown very promising performances, but theire a priori information about the considered
classification task, and thus the intervention wihlan users. In the literature, most of the attentias been
given on improving the accuracy of the classifisatprocess by acting mainly at the following thieeels:
1) data rapresentation; 2) discriminant functiordeipand 3) criterion on the basis of which theediminant
functions are optimized [1]. These works are base@n essential assumption that is the samplestosed
train the classifier are statistically representsi of the classification problem to solve. Howeuie
process of collection of training samples is nividt, because the human intervention is subjeetrtors and
costs in terms of both time and money. Therefdre, duality and the quantity of such samples arg ver
important, because they have a strong impact opghfermances of the classifier.

Only in the last few years, in the literature thbes been a growing interest in developing methods
focused on the problem of the construction of taging sample set, also called ground-truth. Irtipalar,
the objective is to develop automatic strategiesemni-automatic procedures based on interactiveegses
with human users.

A first problem in ground-truth collection is givéay the mislabeling issue due to errors in the gsec
of sample labeling. Ground-truth collection can dmne by following two main approaches: 1) in situ
observation and 2) photo-interpretation [2]. Ea€lthem has its own advantages and drawbacks, tibt bo
are subject to errors. In the first case, this meguo because of georeferencing problems, whilehen t
second one, spectral mismatching errors by humers ase the main source of problems. Since theepces
of mislabeled training samples has a direct negathpact on the classification process, the devetoprof
automatic techniques for validating the collectathgles is crucial. In the literature still few sidns for
coping with this issue have been proposed [3]-]Bley are based on two main approaches. The fiest on
admits the presence of mislabeled samples, but airdssigning a classifier that is less influenbgdhis
presence. The second one tends to identify anduethe mislabeled samples from the training set.

Another problem frequent in real application scasalis represented by the scarcity of available
training samples due to complexity and cost thaaratterize the ground-truth construction process.
Accordingly, this constrains the classification ¢ggss to be carried out with small numbers of tragni
samples, thus leading to weak estimates of theifirsparameters and potentially high classifimaterror
rates, in particular if class distributions are isgped. A possible solution to this issue congistexploit
the large number of unlabeled samples that aredlpiavailable at zero cost from the image undaiysis.
Indeed, the improvement of the classifier accurscybtained by combining automatically labeled and
unlabeled samples. Methods dealing with this issre termed as semisupervised methods, which are
investigated in some recent works [6]-[9]. They based either on inflation or transduction princplEhe
inflation principle relies on the idea of augmeaqtiine original training set by exploiting a setunfiabeled
samples, which covers a portion of the whole imagelassify. For this purpose, the labels of thialbeled
samples need to be beforehand estimated. The tretieal principle is conceptually completely diffate
from the inflation one. This is due to two maingeias: 1) all samples of the image and not just gaitt
contribute to the learning process and 2) traiaing classification steps are fused into a unigeje. st

Focusing on the photointerpretation approach, anoom procedure to design the ground-truth
consists: 1) to select randomly single pixels odéfine regions of interest (ROIs) and then 2atwel them.
However, this approach depends strongly on therégpeof the human users and tends to select sample
that are redundant for the process of classifioatior these reasons, there has been a growingsnta
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developing strategies for the semi-automatic sieleaif training samples in order to minimize thener
of interactions with the human user and maintagh lierformance in terms of between-class discrititina
In this context, active learning represents arr@sting solution. Starting from a small und subogtiinitial
training set, it consists to select few additioseinples from a large amount of unlabeled datar(ieguset)
through an iterative process. The aim of activeniieg is to rank the learning set according to ppastune
criterion that allows to select the most useful gia® to improve the model. In the last few yeaiffeidnt
solutions have been proposed and applied succlegssfudifferent research areas [10], [11] and iffetent
remote sensing application fields, such as deteatioburied objects [12], classification of hyperspal
images [13], [14], and classification of very higpatial resolution images [15], [16]. Finally, aetilearning
approach has been proposed very recently to adlgsification models to new images [17]. Despite th
promising performances obtained, active learningho@s present some drawbacks critical in real
applications: 1) the iterative process on whiclytage based on is time-consuming, limiting posties to
interact in real-time with the human user; 2) thailability of an initial training set is supposaad can
strongly influence the performance of the iterataative learning process; 3) the pixel-based lageis
awkward and difficult, since selected samples @&mecplly placed on spatial boundaries betweenrdifte
classes.

The objective of this chapter is to propose an vatige framework for the design of the ground-truth
that approaches this problem from a novel pointiev with respect to what the literature preseftse
proposed approach is (almost) completely autonsettccomprehensive since it aims at assisting theahu
user from the first to the last steps of the desigd in which active learning is just part of thenhiework.
From a methodological point of view, the proposé&ategy includes unsupervised procedures based on
segmentation and clustering methods. In this wath bpatial and spectral information are considarate
process of ground-truth design. For this purposseva method of segmentation based on level settsas
introduced. To investigate the performance of treppsed approach, we conducted an experimentaf stud
based on two real images. In particular, we comsdlgery high resolution (VHR) and hyperspectrahgss
acquired by the IKONOS and the ROSIS sensors, ctigply. The obtained results show promising
capabilities of the proposed framework in termgra@iund-truth design.

The remaining part of the chapter is organized#svis. In the next section, we present the progose
ground-truth design approach. Section 8.3. discussgerimental results obtained on two real remote
sensing data sets. Finally, conclusions are drav8ettion 8.4.

8.2. Proposed Framework

The flow chart of the proposed ground-truth degigmework is illustrated in Fig. 8.1. It is compdse
of different steps that can be summarized by Atgari8.1

Algorithm 8.1.: Proposed Ground-Truth Design Framework

Inputs:
X: original remote sensing image.

Output:
Ground-truth map.

1. SegmenX by means of the hierarchical level set segmemtagigorithm in order to obtain the
segmented imagk..

2. Select from the segmented imageéhe most representative segmefits

3. Label the selected segmests

4. Sub-sample the labeled segme3i{sn order to obtain the classifier-free ground+trut

Repeat
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5. In case a classifier-driven ground-truth is kiapply active learning.
Until the predefined convergence condition is not satsf

X: Xs S Sq

: : s
Original Segmented Selected Labeled
image Ll o image Segment segments Segment segments
—» > >
segmentation selection labeling
Human user
Active P Segment
l learning l sampling |
Classifier-driven T l Classifier-free
ground-truth Human user ground-truth

Fig. 8.1.Flow chart of the proposed ground-truth assistesiigteframework.

In the next subsections, we describe each stepre detail.

8.2.1. Level Set Segmentation

Given a remote sensing imaygethe aim is to generate a corresponding segmensgXs. We solve
this issue of segmentation by means of a new ateinethod because methodologies currently prodased
the literature typically present two main drawbackshigh computational burden; and 2) high numtfer
free parameters to set.

A well-known segmentation model is the one proposgdviumford and Shah [18] which aims at
finding a contourC in order to segmenX into nonoverlapping regions. The related energytional is
given by

FY(1,C)= [ X =1 dxdy+ A [|01*dxdy+ £4C] (8.1)
Q Q\C
whereQ is the image domainC| is the length of the conto®@, and1 andu are positive parameters. The
minimization of the Mumford-Shah function results an optimal contour that segments the imZgén
addition to an imagé formed from smooth regions within each of the awied components in the image
domain separated by the optimal contGur

The minimization of the aforementioned functiordifficult in practice as it is a nhonconvex problem.
A possible solution is to consider the case whieeithagd in the functional (8.1) is a piecewise constant
function [19]. In this case, the energy functioisagiven by

FYS(C,c,,c,)= I |X = c|* dxdy+ I|X —¢,|“dxdy+ £4C| (8.2)
inside(C) outsidd C)
and the related minimization problem is given dioies:
min F“(C,c,,c,). (8.3)
(Cv%cz)

The functional (8.2) is known as the piecewise tamsMumford-Shah segmentation model or simply the
Chan-Vese model [19]. We call the first two termg8.2) the global fitting energy, whereas the tasmh is

a regularizing term that depends on the lengtthefdurve. The parametercontrols the tradeoff between
the goodness of fit and length of the cueThe two constants; andc, approximate the image in the
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segments insid€) and outsidet), respectively. For a fixed conto, the optimal values for these
parameters are given by the averag¥ of/er the regions insid€} and outsidet), respectively.

The minimization of the functional (8.2) can be fpened within a level set framework. The
framework introduced by Osher and Sethian becarpepalar tool in the field of image processing and
computer vision [20]. The main idea behind the leset formulation is to represent the cufwéy the zero
level set of a Lipchitz functiog : Q - O such that

C=0w={(x y)0Q:¢x y)=0}

insid{C)=w={(x y)0Q:¢dx y)>0 . (8.4)

outsidéC) =Q\w= {(x, y)D Q: ¢(x, y) < O}
The level set function is typically defined as #igned distance function of spatial points definad? to the
curve C. By replacing the unknown variab@ in (8.2) by the level set functio, the energy functional
becomes [19]

F¥(@cic,) =X ~cf Hlgx y))dxdy

Q

+[[X = ¢,[* (L= H (gl y))dxdy. (8.5)

Q

+u[ 0 (elx y)) D el y)xdy

whereH(z) is the Heaviside step function, i.el(z)=1if z=0 andH(z)=0 if otherwise.dy(z) is the Dirac
delta functiondy(z)=(d/dz)H(z) In practice, these functions are replaced by fiwwing regularized

versions:
H,(z)= %[1+ 7_21 arctarE%D (8.6)
5.(2)=S-H.(2). ®7)

The main advantage of such transformation is ti@ntinimization of the functional (8.5) with respéxthe
level set functiorp can be handled more easily than the minimizatiothe functional (8.2) with respect to
C. In addition the splitting and merging of the c&iman be carried out by simply moving up and dolen t
level set functions. To optimizeFV(4,c.,c,) with respect ta as well ac; andc,, the two-step alternating
approach proposed in [19] is iterated until coneerg is reached.

In a first stepg is kept fixed and the functional is minimized witspect tac; andc,. The optimal
values for these parameters are given by

(o) [ X(e y)H (el y)ixay .

[ Hex y))dxdy

gy o = oy -
T Al oy |

This simply means that andc, are the averages ¥fin ¢ >0 and ¢ < 0, respectively.

In a second stepg; andc, are, in turn, kept fixed and the energy functiasahinimized with respect
to ¢. The associated Euler-Lagrange equation is giyehd following partial differential equation:

do [ U 2 2
— =9, v — [— (X - +(X-cC . 8.10
2 o] enf 2 |-+ ) 810
The solution of such evolution equationgins made using finite differences. We refer thedegao [19] for
the detailed numerical implementation. The segntiemtgrocedure is summarized in Algorithm 8.2
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Algorithm 8.2.: Chan-Vese Algorithm

1. Setk=0 and initializep, with ¢* defined as the distance function from an initiaive C.

Repeat

2. Forg=¢", computecf and c'z‘ as the averages ¥fin ¢ >0 and ¢ < 0, respectively.

3. Computes*** by solving the following:
oF S

¢k+l:¢k _Ata—(¢k_l1cg:_(lcl2<)- (811)
Y
wheredt is the time step.

4. Reinitializeg locally to the signed distance function to theveur
Until the predefined convergence condition is not sadsf

The formulation described above is of binary typd ¢hus can be used only for connected problems,
such as change detection problems [21]. The mamergeform is the multiphase segmentation for wtdch
solution could be the multiphase level set implemmiéon. This last is unfortunately computationally
onerous. As an alternative, in this work, we pr@pashierarchical binary implementation, summaribagd
Algorithm 8.3

Algorithm 8.3.: Hierarchical Level Set Segmentation

Input:
X: original remote sensing image.

Output:
Xs: segmented image.

1. Run the binary level set algorithm on the ordjiimageX by settingu= u; in order to obtain a root
segmentation maj¥’s.

2. Within each segment &f ;, run again the algorithm on (masketipy setting this time:= u, (with
12 < uy to capture finer segments). The final result $#gmented imagks.

An example of hierarchical level set segmentatiesult is shown in Fig. 8.2. In Fig. 8.2(a), we
highlight in red a segment detected at the fiestation of the segmentation process, for whichadlpm of
undersegmentation can be observed. In particut@r,segment is large and includes different thematic
classes, such as trees and grass. After the sextepdof the hierarchical segmentation, the segrisent
subdivided in several smaller segments (see F&fbB, which are less affected by the undersegntienta
problem.

8.2.2. Segment Selection

In the second step of the framework, the task isdtect from the segmented imaye in an
unsupervised way thi,, most representative segme®swhere#, is the desired number of interactions
with the human user, i.e., the number of segmeniaiel. For this purpose, three strategies arpgsed.

The first ground-truth design strategy (Design-Rngists to select the segments in a completely
random way, but excluding a priori the small segimemth a number of pixels less than a threshg|d
fixed by the human user in order to reduce the shpasegmentation noise. THgy is set according to the
image resolution and the expected minimum objeet isi the considered image.

The second strategy (Design-M) selects the segnohatacterized by the maximum sizes in terms of
number of pixels. In this way, big and homogenemress in the image are favored.

For the last strategy (Design-MC), we first représeach segment through its mean vector in the
feature space. Then, just the segments with seaterthar,, are exploited and subdivided#p, different
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Fig. 8.2.Example of hierarchical level set segmentation.hEsggment detected at the first iteration (a) ggrsnted another tir

(b).

groups through a clustering method. In the liteatgeveral clustering techniques have been prdg@zg.
In this work, in order to limit drastically the cquitational burden, we will opt for the simpkemeans
algorithm withK equal to the number of segment to select, #g-,Finally, from each cluster the segment
with the maximum size is selected. In this way, sggments and exhibiting diversity in the featusendin
are selected.

We note that all the proposed strategies selecseafgenents in a single iteration, thus minimizing th
computational time, and do not require any iniz@tion phase.

Algorithm 8.4. resumes the three different strategif segment selection proposed in this chapter.

Algorithm 8.4.. Segment Selection

Input:
Xs: segmented image.

Output:
S selected segments.

1. Exclude the segments with a number of pixels tlean the threshold.

Repeat

[2. Design-R] Choose one segment in a completelgiom way.

[2. Design-M] Choose the segment with the greager. s

Until a number of segments equakigis selected.

[2. Design-MC] Cluster the segmentstp groups with thék-means algorithm, setting=#...
[3. Design-MC] Choose the segment with the gresiter from each cluster.

8.2.3. Segment L abeling and Sampling

After selecting segments in an automatic and unrsigaal way, in the successive step the human user
has to interact with the system in order to lalbel selected segments. We observe that in the @dpos
framework the base element is not representedrgyespixels, but by segments. In this way the pseca
labeling is facilitated with respect to the pixelded approach, in particular when pixels are ldocaie
spatial boundaries between different classes.

Finally, the labeled segmerfss may be sub-sampled in order to reduce the nunftearoples to train
the classifier. For instance, if one desires toeh@awnumber of training samples equaltowheret;, > #,
we may extract randomly from each segment a nuwibgixels proportional to its size.
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(© (d)

Fig. 8.3. Data sets used for the experiments. (& Raage for the Jeddah and (b) Fateder image for the Pavia data sets. Tes
for (c) the Jeddah and (d) the Pavia data sets.

TABLE 8.1
CHARACTERISTICS OF THHMAGES USED FOR THEEXPERIMENTS

Siteinformation Image infor mation
L ocation Dnn_enson Sensor Acquisition date Spatial resolution
[pixelg] [m]
Jeddah (Saudi Arabia) 600x450 IKONOS July, 2004 1.0
Pavia (Italy) 600x450 ROSIS July, 2002 1.3

8.3. Experimental Results

8.3.1. Data Set Description and Experimental Setup

In order to validate the proposed ground-truthglesiamework, we conducted an experimental phase
based on two real remote sensing images (Table 8.1)

The first data set represents a multispectral ViaiRge acquired by the IKONOS sensor in July 2004
(Fig. 8.3(a)). The image has three spectral baiitflsaxspatial resolution of 1 m and refers to diparof the
city of Jeddah (Saudi Arabia), in which eight lasmber types are dominant: two typesAsiphalf Bare soil
Grass two types oRoofs Trees andWater.
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TABLE 8.1l
NUMBER OF TESTSAMPLES FOR(a) THE JEDDAH AND (b) THE PAvVIA DATA SETS

@

Class # test samples
Asphalt 1 512
Asphalt 2 1280
Bare soil 320
Grass 2048
Roofs 1 256
Roofs2 1280
Trees 2048
Water 2048
Total 9792
(b)
Class # test samples
Asphalt 4372
Bare soil 3840
Bitumen 7277
Bricks 2140
M eadows 1029
Shadow 1766
Tiles 1064
Trees 2768
Water 12997
Total 37253

The second data set is a hyperspectral image ¢barad by 102 bands and acquired by the Reflective
Optics System Imaging Spectrometer (ROSIS) senger @ part of the city of Pavia (ltaly) in July 200
(Fig. 8.3(b)). The spatial resolution is equal t8 fn. Nine classes were considered, nam&bahalt Bare
soil, Bitumen Bricks, MeadowsShadowTiles, Trees Water.

Both images have a dimension equal to 600x450 giXéle proposed framework was executed on the
whole image composed of 270,000 pixels. The grdumtis generated by the different strategies weea u
to train a supervised classifier based on suppmmtor machines (SVMs) [23], which has shown esfigcia
effective for the classification of remote sensimages [24], [25]. Performances were evaluated @steset
composed of 9,792 and 37,253 samples for the Jealddlthe Pavia data sets, respectively. The availab
respective ground-truth maps are illustrated in Big(c) and Fig. 8.3(d), while the detailed nunsbefrtest
samples are reported in Table 8.Il. The performarmaparisons were done in terms of several measures
which are: 1) the overall accuracy (OA), whichhe percentage of correctly classified samples anating
the considered samples, independently of the dads®y belong to; 2) the Kappa statistic [26]; 33 t
average accuracy (AA), which is the average overdlassification accuracies obtained for the dsffer
classes; 4) the standard deviationy ¢f OA, Kappa index, and AA, obtained by runniren ttimes all
experiments, in order to evaluate stability of #pproaches; 5) the probability of detection of ttiematic
classes (PD) in order to evaluate the automatgsatietection capabilities of the proposed appro@Ehis
defined as the ratio of the number of detectedseaso the total number of classes.

For the sake of comparison, we considered the timadi ground-truth generation by photo-
interpretation. In particular, ten ground-truthsnsisting of square ROIs were generated by ten rdifte
photo-interpreters so that to account for variaperience levels. In this case, all availabless#dasvere a
priori included in the ground-truth, and according?D=100%. Finally, additional ground-truths were
collected by following pixel-based approaches:€el@ation of pixels in a completely random way (Rik-2)
clustering of pixels in #int groups and random siid& of one pixel from each cluster (Pix-RC); 8)extion
of pixels by active learning (Pix-AL). In particulawe adopted the state-of-the-art margin sampling

119



Chapter 8 A Framework for Computer-Aided Ground-Truth Catien for Optical Image Classification

(@ ' (b)

Fig. 8.4. Segmented images obtained using therblacal level set segmentation algorithm for (& #eddah andj the Pavia da
sets.

algorithm [27], which has shown good performancethe remote sensing field [28]. Also, in this Gaalé
classes were a priori included in the initial tragnset (PD=100%).

8.3.2. Experimental Results

Considering the Jeddah data set, the result dfilrarchical level set segmentation algorithm agapli
on the first principal component of the image iswh in Fig. 8.4(a), in which each segment is regmesd
with an arbitrary color. The segmentation resufiesgys in general satisfactory, although the algoritends
to oversegment the image. We note that, in ourestifi.e., in ground-truth collection), oversegnagian is
preferred to undersegmentation, because we dasiralt pixels of a each segment belong to the sdass.

The first set of experiments has the purpose ttuat@how the process of segmentation is helpful fo
incrementing classification performance withoutreasing the#,; with the human user. Results obtained
with #, equal to 8 are shown in Fig. 8.5(a),(c),(e) andig8.lll(a). In particular, the best performanees
highlighted in bold font. For the pixel-based ammoes (Pix-R, Pix-RC, Pix-AL), th&, coincides with the
number of selected samples. In this situation, pagr performances in terms of OA, Kappa index AAd
were obtained. By contrast, additional samples lmamxtracted with zero labeling cost from the geléc
segments by the proposed methods (Design-R, D&sjgbesign-MC). From Fig. 8.5(a),(c),(e), it is dea
how an increment of the number of extracted samf@ads to improve performance, with a saturation
behavior when too many samples are extracted flarh segment. This means that further samples @re no
necessary since they are redundant with the pedeéady selected. In general, the Design-MC styateg
presents the best performances, both in termsafracy and stability. An additional consideraticrides
from the comparison between the Design-MC and tBdsRelection methods. In particular, the proposed
method gives better performances in terms of OAp&aindex and stability. Poor values of stabilitythie
ROIs case suggest how this approach depends strénogh user’'s experience. Therefore, an automatic
procedure of segment selection can be particulalpful for users that are not very familiar wigmote
sensing images.

In the second part of experiments we evaluate hesopnances of the different approaches vary in
function of the#,. The results are reported in Fig. 8.6(a),(c),(e aable 8.11(b), in which the number of
samples extracted from each segment for the segtmembased approaches was set to 25. The proposed
Design-MC strategy confirms the best performancéh wespect to the other methods. Moreover, an
additional consideration on the clustering proaessbe done. We note that for Pix-R and Pix-RQesgias
very similar performances were obtained. This satggéhat applying the clustering procedure befbee t
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Fig. 8.5. Performances achieved on (a), (c), (@)J#ddah and (b), (d), (f) the Pavia data setsring of (a), (b) OA, (c), (d) K@=
(e), (f) AA. Each graph shows the results in function of theae number of samples per segment. All resultsnageaged over ti
runs of the approaches. Design-R = random segnieasign-M = maximum size segments, Desl@-= maximum size segmel
after clustering, ROIs = regions of interest, Pix-Random pixels, Pix-RC = random pixels after clusigriPixAL = pixels witr
active learning.

sample selection process does not improve the aciesrobtained by the classification process. &ustan
improvement of the performances is experimentadyified for the proposed Design-MC strategy with
respect to the Design-M one. Therefore, the climjenlgorithm appears fundamental in the step of
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Fig. 8.6. Performances achieved on (a), (€) the Jeddah and (b), (d), (f) the Pavia detsis terms of (a), (b) OA, (c), (d) Kap
(e), (f) AA. Each graph shows the results in fumetdf the number of interactionéll results are averaged over ten runs o
approaches. Design-R = random segments, Design-Maxinmm size segments, Desijfe = maximum size segments a
clustering, ROIs = regions of interest, Pix-R = randaixels, Pix-RC = random pixels after clusterings-RL = pixels with activi
learning.

automatic segment selection in order to select satgnand consequently samples that better span the
feature space.
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Fig. 8.7.Performances achieved on (a) the Jeddah and (lahia data sets in terms of class detection pilityalEach grap!
shows the results in function of the number of rixtéons. All results are averaged over ten runthefapproaches. Desigh=
random segments, Design-M = maximum size segmBesignMC = maximum size segments after clustering, ROlsgfons o
interest, Pix-R = random pixels, Pix-RC = random madter clustering, Pix-AL = pixels with active taiang.

To evaluate the capabilities of the proposed greseto detect automatically the different classes
present in the image, we show in Fig. 8.7(a) thesctetection probability (PD) in function of thewber of
interactions#,. It is interesting to observe that the proposedifileMC method presents the best detection
capabilities with respect to the other strategiée.note also that for ROIs and Pix-AL approachkslasses
are always detected since they are manually debgete human user.

To conclude the discussion on the Jeddah datanseshow in Fig. 8.8(a)-(g) some examples of
ground-truths obtained by the different methodspdrticular, (a)-(c) the segments, (d) the regiang (e)-

(g) the pixels selected by the Design-R, Desigriasign-MC, ROIs, Pix-R, Pix-RC, and Pix-AL strateg)i

are respectively represented. In particular, fahestrategy, we considered the run that gives #heevof

OA closest to the mean OA reported in Table 8)Iftly a#, equal to 32. We note visually how, once the
cost of the labeling process (i.e., the numbemtdéractions#y,) is fixed, the proposed strategies allow to
increment considerably the portion of the map ceddry training samples. Among the proposed methods,
the Design-R and Design-M ones select segmentsidielp to seven different thematic classes, white th
class Roof 1, which is a small class in this datais excluded. A better covering of the imagebsined
using the Design-MS strategy, for which all eiglaisses are selected.

Similar experiments were conducted on the Pavia dat. First, we show in Fig. 8.4(b) the result of
the segmentation algorithm. Also in this case thtaioed segmented map is acceptable, although some
regions of the image are oversegmented.

The results of the first part of the experimenswhich we fixed the number of interactiofis to 9
(i.e., the number of classes) and varied the numbsamples extracted from the segments, are suizedar
in Fig. 8.5(b),(d),() and Table 8.IV(a). Also fahis data set, we observe an improvement of the
performances for the proposed strategies when timber of samples extracted from the segments is
incremented. In particular, the Design-MC methodficms the best accuracies among the proposed ones.
However, we note that ROIs selections and Pix-AlLthme present similar or better performances, in
particular in terms of AA. This can be explainedtbg fact that for such strategies we forced mayubaé
inclusion of regions or pixels belonging to all riregtic classes. Instead, the proposed methods select
segments in a completely automatic way, thus withrisk of not detecting some classes when the aumb
of interactiong#,, is very limited as in this case.
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()

Fig. 8.8. Example of (a)-(c) segments, (d) regiand (e)-(g) pixels selected to build the groundh for the Jeddah data set.
Design-R = random segments, (b) Design-M = maximize segments, (c) Desig€ = maximum size segments after clustel
(d) ROIs = regions of interest, () Pix-R = randomefs, (f) Pix-RC = random pixels after clustering), Pix-AL = pixels with activ

learning.
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)

Fig. 8.9. Example of (a)-(c) segments, (d) regiand (e)-(g) pixels selected to build the groundkirior the Paviadata set. (:
Design-R = random segments, (b) Design-M = maximizeé segments, (¢) Design-MC = maximum ssegments after clusteri
(d) ROIs = regions of interest, (e) Pix-R = randome(s, (f) Pix-RC = random pixels after clustering) Pix-AL = pixels with activ

learning
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TABLE 8.111
OA, KAPPA INDEX, AA, STANDARD DEVIATION (o), AND PD ACHIEVED ON THEJEDDAH DATA SET (ALL EXPRESSED IN%0]).

(@

M ethod o # Z”;ﬂ:fer OA | 6oa | Kappa | okapa | AA | oan | PD
Desgn-R 4954 | 1780| 386| 221] 3560 1146 550
Design-M 9 7136 | 3.86| 658| 44| 5584 245 | 750

Design-MC 7551 | 242 | 704 | 29 | 6027 | 492| 875
ROIs 8 9 6264 | 695| 560| 80| 6046 | 9.00 | 100
Pix-R 3412 | 936 183| 125] 2388 78 575

Pix-RC 1 3047 | 495| 145| 63| 2233 44 66.3

Pix-AL 3779 | 12.92| 287| 137 3848 1243 100

(b)

Method H#oo # ’gﬂ:fer OA | 6oa | Kappa | okapa | AA | oan | PD
Desgn-R 7786 | 236 733| 28| 6396 49 83.8
Design-M 25 7975 | 174 | 756 | 20 | 6884| 182 | 875

Design-MC 7952 | 141 | 754 | 17 | 7212 | 428| 913
ROIs 32 25 7556 | 451 | 709| 53| 7345 | 7.1 | 100
Pix-R 6247 | 1055| 546| 124] 4818 878 850

Pix-RC 1 6008 | 941| 510| 119 4226 959 838

Pix-AL 6153 | 14.04| 540| 169 5588 1444 100

TABLE 8.1V
OA, KAPPA INDEX, AA, STANDARD DEVIATION (), AND PD ACHIEVED ON THEPAVIA DATA SET (ALL EXPRESSED IN%]).

(@

Method Hint # sien;ﬁl]:tper OA Gon Kappa | 6kappa AA Oaa PD
Design-R 4149 | 2255| 327| 219] 3650 93D 567
Design-M 4 5475 | 390 | 443 | 50 | 3829 | 505 | 556

Design-MC 6506 | 856 | 567 | 10.3 | 4650| 619] 733
ROls 9 4 6462 | 11.35| 566 | 130 | 5497 | 11.78| 100
Pix-R 1971 | 1611] 103] 163 2110 821 589

Pix-RC 1 2175 | 13.16] 106| 124] 1978 756 644

Pix-AL 6048 | 851 | 514 103] 5207 1194 100

(b)

M ethod o # ’gﬂ:fer OA | 6oa | Kappa | okapa | AA | oan | PD
Desgn-R 7836 | 510 731| 62| 6620 53 92.2
Design-M 9 8621 | 214 | 828 | 27 | 7542 | 2.86 | 100

Design-MC 8586 | 327 | 824| 41| 7361 508 889
ROIs 36 9 69.14 | 748| 617| 94| 6223 924 100
Pix-R 6833 | 1349] 621| 139 6171 656 867

Pix-RC 1 6020 | 18.68] 545| 104] 614h 931 933

Pix-AL 5824 | 17.48| 50.7| 17.9] 5520 1247 100

The results obtained in the second part of the raxpats, in which we incremented the number of
interactions#,,, are shown in Fig. 8.6(b),(d),(f) and Table 8.IM(For such analysis, we considered a
number of samples extracted from each segment egud. The proposed strategies exhibit better
performances with respect to the other ones. Itiqodar, the Seg-MC method gives in general thet bes
accuracies, although similar or better performararesverified using the Seg-M, in particular whée t
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number of interactions;, is small. This result can be better understooduglyzing Fig. 8.7(b), in which
we show the number of detected classes in funciahe #,,. For small values of,, the Seg-M method
exhibits better detection capabilities with resgedhe Seg-MC one.

Finally, in Fig. 8.9(a)-(g) we show some exampleground-truths obtained by the different strategie
Also in this case, for each strategy, we considéredun that gives the value of OA closest torttean OA
reported in Table 8.11I(b) for &, equal to 36.

8.4. Conclusion

In this chapter, we have proposed an innovativedmsork for the assisted design of the ground-truth
for remote sensing image classification problenist,Rhe original image is segmented using a nethod
of segmentation based on level sets. Then, sigmfisegments are selected by unsupervised prosedure
based on clustering, and form the ground-truthrditenan user labeling. In this way, both spatiadl an
spectral information are considered in the proadésground-truth design. The proposed approach éshib
some advantages: 1) it is performed in a singhatitn, thus reducing waiting time for the humaeru®)
the labeling process is based on segments, thigatany the human user intervention; 3) grounathr
initialization from the human user is no more regdj 4) the generated ground-truth is classifieefit can
be further improved by making it classifier-drivigmough an active learning process.

In order to validate the proposed approach, we wcted experiments on VHR and hyperspectral
images acquired by the IKONOS and the ROSIS sensgsgectively. The obtained results show promising
capabilities of the proposed approach in termsrofiigd-truth design. In particular, advantages imgeof
classification accuracy have been empirically eatsd with respect to strategies in which grounthare
collected by defining ROIs or by following pixel4ed approaches.

The main drawback of the proposed framework is rgiog the necessity to set a priori some free
parameters. In particular, the segmentation algoritequires to fix the parametersand,, which allow to
control the tradeoff between the goodness of fit iemgth of the curve. In all the experiments pnése in
this work, we fixed them empirically to 0.2 and B.0respectively. Another important parameter is
represented by the desired number of interactiattsthe human usef;.. In general, it has to be contained
as most as possible in order to minimize the alated to the human intervention.
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9. Conclusions

Abstract — In this chapter we report general conclusions o timethodological and experimental
developments conveyed by the present thesis. @tlerris referred to the previous single chaptersniore
detailed discussions about the different proposethots.
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In this thesis, the active learning approach hanhievestigated to address the problem of training
sample collection for classification and regresgaoblems. Several methodological aspects and ehieal
solutions have been proposed and validated expetathe in different application fields, such as @m
sensing, biomedical, and chemometrics. In the fiotlg, we will briefly summarize the conclusions wra
for each of the presented strategies. We refercthder to the single chapters for more details.

In Section 2, the active learning approach has hbe@oduced in the biomedical field for the
classification of electrocardiographic (ECG) signalhree strategies based on support vector machine
(SVM) classification have been presented, namelggmasampling (MS), posterior probability, and quer
by committee. The experimental results obtainediptulated and real ECG data show good capabiliies
the proposed methods for selecting training samjpegeneral, all the proposed methods are charaete
by higher performance in terms of both accuracied stability with respect to a completely random
selection strategy. Comparing them, the strategpedban the MS principle seems the best as it quickl
selects the most informative samples. Another @stigng result is that active learning methods ée to
give accuracies slightly better than the “full” s$#fier, confirming their usefulness in reducinglabeling
risks. While in this research the initial trainisgt was chosen in a random way, we think that aemor
sophisticated initialization strategy could furttmprove the performance of the active learningpss.

In Section 3, we have proposed a new strategy fiqadhi developed for SVM classification of remote
sensing images. The experimental results obtainegeoy high resolution (VHR) and hyperspectral iemg
show good capabilities of the proposed methodrimgdeof training sample selection. Advantages imseof
convergence speed, stability, and reduction ofntlmaber of support vectors (SVs) have been emplyical
evaluated with respect to the state-of-the-art Mi&tegy. The proposed strategy exhibits two main
drawbacks. First, in case of overfitting (due flastance to model selection problems), most of émepées
become SVs; and so, most of the learning sampkesiaetected as significant, thus making the proposed
algorithm tend to a simple random sample select®etond, an increment of the computational cost is
verified, given by the training of two stages of M\tlassifiers. Also for this method, we think thae
active learning process could be further improveidgia more elaborated initialization strategy.

While the active learning strategies present inréfmote sensing literature work in the spectral @iom
only, in Section 4 we have proposed to combinetspleand spatial information. For this purpose, veee
introduced three different criteria in the spatiamain in order to favor the selection of sampistadt from
the samples already composing the current traiseigThe three criteria are based on Euclideaardiss,
Parzen window method, and entropy variation, respgyg. Experiments on two VHR images show the
proposed approach exhibits advantages in termfassification accuracy and classification relidapilivith
respect to strategies that do not exploit spatifdrimation. The main drawback of the proposed nekiko
represented by an increment of the computatiorst] given by the calculation of further measureeriter
to take into account the spatial contribution. Whih this work we considered the state-of-the-a® M
strategy as spectral heuristic, for its simpliatyd effectiveness, the proposed approach can beneral
applied in conjunction with any traditional actilearning method that exploits the samples in trectpl
domain.

In Section 5, we have proposed a way to use atgaming to solve the problem of covariate shift,
which may occur when a classifier trained on aiporof the image is applied to the rest of the imabhe
experimental results obtained on hyperspectral ¥R data sets demonstrate good capability of the
proposed method for selecting samples that allgidreonvergence to an optimal solution. Moreovie, t
use of a clustering-based selection strategy allssm® discover new classes in case they have draéted
in the initial training set. Such strategies fottio@l sampling guarantee signature extension amdbea
extended to a large variety of applications dealiitlp spectral data, as it is not dependent onirtregye
characteristics of the data. An example could kecthssification of ECG signals.
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After focusing on classification problems in theeyipus chapters, in Section 6 the active learning
approach has been applied in the regression cawtéixé estimation of biophysical parameters fremaote
sensing data. Different strategies for Gaussiarcd3 (GP) and SVM regression have been proposed. Fo
GP regression, the first two methods are basedddim@ samples that are distant from the curreimitg@
samples in the kernel space, while the third omss aspool of regressors in order to select the kesmyth
the greater disagreements between the regresstnge pbol. Finally, the last strategy exploits atrinsic
GP regression outcome to pick up the most diffisalnples. For SVM regression, the method basetieon t
pool of regressors and two additional strategisgth@n the selection of the samples distant francthrent
support vectors are proposed. The experimentaltsesitained on simulated MERIS and real SeaBAM dat
sets show good capabilities of the proposed siedeir selecting significant samples. In genetiad
proposed methods are characterized by higher peafwres in terms of both accuracy and stability with
respect to a completely random selection stratd@dpugh in this work we focused on GP and SVM
regression, the active selection of the trainingas could be used in combination with other sviped
regression approaches. Moreover, while the initialning set was chosen in a random way, a more
sophisticated initialization strategy could be smmed in order to improve further the active |&agn
approach.

Similarly to the previous chapter, in Section 7 #Hwive learning has been applied for regression
problems, but in this case to estimate the chensicatentrations from spectroscopic data. Someesfiest
for partial least squares regression (PLSR) and S¥dfession have been proposed. For PLSR, the first
method is based on adding samples that are distantthe current training samples in the featuracep
while the second one is based on the pool of regres For SVM, the method based on the pool of
regressors and an additional strategy based oselbetion of the samples distant from the curreppert
vectors are presented. The experimental resulteree different real data sets show higher perfaoesa of
the proposed strategies in terms of both accuradystability with respect to a completely randoneston
strategy. Comparing them, the best active strasgpears the one based on the pool of regressobmfior
PLSR and SVM. It is however the most computatiareinanding since it needs the training of different
regressors to build the pool.

Finally, in Section 8 we have proposed a frameworkthe assisted design of the ground-truth for
remote sensing image classification problems. [Fitat original image is segmented using a method of
segmentation based on level sets. Then, signifeeginents are selected by unsupervised procedases b
on clustering, and form the ground-truth after honuger labeling. In this way, both spatial and spéc
information are considered in the process of grewuith design. The proposed approach exhibits some
advantages. First, it is performed in a singleatien, thus reducing waiting time for the humanruse
Second, the labeling process is based on segntboss facilitating the human user intervention. @hir
ground-truth initialization from the human usemis more required. Fourth, the generated ground-tigit
classifier-free and it can be further improved bgking it classifier-driven through an active leai
process. The experimental results on VHR and hpgetsal images show promising capabilities of the
proposed approach in terms of ground-truth deslignparticular, advantages in terms of classifigatio
accuracy have been empirically evaluated with resfgestrategies in which ground-truths are codiddby
defining regions of interest or by following pixe&sed approaches. The main drawback of the proposed
framework is given by the necessity to set a préarine free parameters. In particular, the segmentat
algorithm requires to fix the parameters that acantine tradeoff between the goodness of fit andtlerof
the curve. Another important parameter is represehy the desired number of interactions with thenén
user. In general, it has to be contained as mogbssible in order to minimize the cost relateth®® human
intervention.

To conclude, the contributions provided in thissibehave been focused on the development of active
learning methodologies to address the problemadrfittrg sample collection for classification andresgion
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problems. Such contributions have been criticaliplgzed considering the state-of-the-art of thates
research topics, and have been compared with refer@pproaches by means of in-depth testing
experiments. The results turned out to be satfactand confirmed that the research reported is th
dissertation have made interesting contributiorthédfaced methodological issues.
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