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Abstract. We propose a fast classifier that is able to predict atrial fib-
rillation inducibility in patient-specific cardiac models. Our classifier is
general and it does not require re-training for new anatomies, fibrosis
patterns, and ablation lines. This is achieved by training the classifier on
a variant of the Heat Kernel Signature (HKS). Here, we introduce the
“fibrotic kernel signature” (FKS), which extends the HKS by incorporat-
ing fibrosis information. The FKS is fast to compute, when compared to
standard cardiac models like the monodomain equation. We tested the
classifier on 9 combinations of ablation lines and fibrosis patterns. We
achieved maximum balanced accuracies with the classifiers ranging from
75.8% to 95.8%, when tested on single points. The classifier is also able
to predict very well the overall inducibility of the model. We think that
our classifier can speed up the calculation of inducibility maps in a way
that is crucial to create better personalized ablation treatments within
the time constraints of the clinical setting.

Keywords: Heat kernel signature · Fibrotic Kernel Signature · Atrial
Fibrillation · Fibrosis · Patient-Specific Modeling

1 Introduction

Fibrosis is one of the main drivers of Atrial Fibrillation (AF), the most common
cardiac arrhythmia [16]. Fibrosis significantly increases tissue heterogeneity and
anisotropy in conduction, which in turn enhance AF inducibility and complexity.
Its distribution in the atria is patient-specific and progresses with AF in a vicious
loop: the more fibrosis is present in the tissue, the more AF events are likely to
occur, which trigger more fibrosis deposition [13].

Ideally, therapeutic approaches to AF as catheter ablation should return the
best outcome when tailored to patient fibrosis distribution, at least as claimed
in recent retrospective and prospective studies [2, 8, 9]. These studies show that,
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thanks to patient-specific in silico models, it is possible to estimate AF in-
ducibility for various ablation scenarios, and then select the best treatment for
the patient. However, testing AF inducibility is costly, both in terms of time and
required computational resources.

The assessment of AF inducibility can be understood as a classification prob-
lem. Given a patient-specific anatomy, fibrosis pattern, and ablation lines, the
objective is determining whether a pacing protocol may lead to a stable AF
event or not [4]. Testing a fixed number of well-distributed, pacing location is
a standard protocol to estimate inducibility [2]. However, the protocol needs to
be repeated when ablation lines are added or a new anatomy is to be tested.
Since the total computational cost can be very high, some authors proposed an
adaptive pacing protocol [1] or surrogate models of AF [14].

In this work, we propose a classifier for AF inducibility that does not require
retraining when ablation lines and fibrosis change. The classifier is based on the
Heat Kernel Signature (HKS) [15], a time series that effectively encodes local
geometrical and topological information of a domain. Along with its variants,
HKS is popular in shape analysis. Mathematically, the HKS is based on the heat
(or diffusion) equation. It may be interpreted as the concentration time course
of a ink drop as it diffuses throughout the domain. Here, we extend the HKS
by incorporating the fibrosis pattern into the diffusion operator. In this way,
once trained, the classifier only requires the HKS, which is cheap to compute
compared to a standard monodomain simulation.

The manuscript is structured as follows: we review the AF modeling frame-
work in Sec. 2.1, which has been used to generate the dataset. In Sec. 2.2 we
present the fibrotic kernel signature, and apply it to the definition of the classi-
fier, in Sec. 2.3. We conclude with results (Sec. 3) and discussion (Sec. 4).

2 Methods

2.1 Cardiac atrial modeling

The monodomain equation is the most common model in simulating atrial fib-
rillation (AF). It reads as follows:

χ
(

Cm
∂V

∂t
+ Iion(V, z)− Istim(x, t)

)

= div(G∇V ), (1)

where V (x, t) is the transmembrane voltage as a function of the spatial position
x ∈ Ω, Ω̄ being the active tissue of the atrial domain, and the time t ≥ 0. The
other parameters are: χ, the surface-to-volume ratio; Cm, the membrane capac-
itance; Istim(x, t) is the stimulation current; and G, the monodomain electric
conductivity. The nonlinear term f(V, z) encompasses all ion currents flowing
through the cellular membrane, which are numerous for physiological models.
Here, we consider the Courtemanche-Ramirez-Nattel model [3]. Fibrosis is mod-
eled by reducing the intra-cellular conductivity in the cross-fiber direction, which
in turn affects the tensor G. Specifically, we encode the presence of fibrosis by
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reducing the cross-fiber conductivity in G. See [5] for the parameter values and
for the numerical method to solve the monodomain equation (1).

AF is a self-sustained, chaotic activation of the atria. There are several ways
for triggering it in the atrial model. A clinically feasible approach consists in a
train of stimuli delivered at some specific location, with a decreasing interval
between each stimulus. We define the inducibility function I : Ω → {0, 1} as
follows: I(y) = 1 if the stimulation protocol delivered at y successfully induced
AF, and zero otherwise. We check whether AF is induced or not in the model
by checking whether the integral over Ω and a window of time of the currents
(diffusion, stimulus, and ionic) is non-zero.

We consider 9 different models of atrial fibrillation on a fixed geometry with:
3 different fibrotic patterns (moderate - 50%, severe case 1 - 70% and severe case
2 - 70%), and 3 ablations (no ablation, PVI, and PVI + BOX ablation). For each
case, we run 100 pacing locations [4]. In total, the dataset has 900 simulations of
inducibility that we will use to assess the accuracy of the proposed methodology.

2.2 Fibrotic kernel signature on the atria

Simulating AF at human scale is computationally expensive. Therefore, we are
interested in learning the classifier I from a sparse set of simulations. In this
work, we use the heat kernel signature (HKS) [15], which is a technique to
characterize points in geometries, and can be used for segmentation and shape
matching among other applications. This point descriptor is based on the heat
diffusion process on a given shape that captures concisely the intrinsic informa-
tion from a geometry, up to isometry in an efficient, stable and multi-scaled way.
The HKS is also invariant to rotations and translations.

The HKS can be computed efficiently using the heat kernel kt(x,y), which
represents evolution of the temperature over time t at point y when the initial
temperature is a Dirac delta δx(y) applied at point x. Then, the HKS is a vector
defined as hks(x)i = kti(x,x), for a finite number of time steps ti > 0. These
time steps are computed in a logarithmic progression and the signature is later
normalized. Intuitively, the HKS represents how the temperature evolves over
time in a point after applying an impulse at t = 0 at that location.

Instead of solving the diffusion equation, the HKS can be effectively cal-
culated as a sum involving the eigenfunctions φi(x) and eigenvalues λi of the
Laplace operator on the shape on interest:

kt(x,y) =
+∞
∑

i=0

e−λitφi(x)φi(y) (2)

Here, we introduce the fibrotic kernel signature (FKS) by incorporating infor-
mation regarding the fibrotic pattern in the signature. Inspired by the diffusion
operator of the monodomain equation (1), we first consider the elliptic oper-
ator Lu := − div(σf (x)∇u) with homogeneous Neumann boundary condition,
for σf ∈ L∞(Ω) and u ∈ H1(Ω), that similarly to the Laplace operator has a
countable spectrum of eigenvalues and eigenfunctions [12]. We remark that now
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the spectrum depends on the fibrosis pattern. Then, we use Eq. (2) to compute
the FKS. The function σf (x) is 1 where there is healthy tissue and 0.5 where
there is fibrotic tissue.

To compute the FKS, we use the first 100 eigenvalues, ordered by magnitude.
Since the operator L is symmetric, eigenvalues are real. It is also possible to
show that the first eigenvalue is zero, and the others are positive. To solve the
eigenproblem we use the Finite Element Method with linear Lagrange elements
on a hexahedral mesh with ≈ 700 000 nodes. We implemented the solver in
DOLFINx interface and SLEPc library on Python. We set the SLEPc solver for a
generalized non-Hermitian case. We use the same normalization of the signature
per fibrotic pattern. We compute the normalization and time steps for the base
case without ablation and also apply it to the cases with the same fibrotic pattern
with ablation. We represent the ablation by setting σf (x) = 0.001 in the ablation
lines, effectively creating a barrier for the heat.
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Fig. 1. Fibrotic kernel signature for moderate fibrosis case and three ablation patterns:
no ablation, pulmonary vein isolation and PVI + BOX ablation. The no ablation case
is taken as reference model for time-scaling and signature normalisation.
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Fig. 2. Fibrotic kernel signature over time for 20 randomly selected points for 9 different
cases. The red curves represent points where AF was induced and the blue curves are
points where AF was not inducible. The non-ablation case is taken as reference model
for time-scaling and signature normalisation. The abscissa represents the time vector,
that is the input of the classifier.

2.3 Prediction of atrial fibrillation

Once we have computed the FKS for all the cases, we can use our dataset of
900 simulations and associate the signature at those locations to its inducibility.
Then, we will train machine learning classifiers to learn to distinguish between
signatures associated with inducible cases and signatures where AF was not
induced. Concretely, we try to approximate the inducibility function I(y) ≈
f
(

fks(y)
)

depending on the fibrotic kernel signature at a given location y. Here
f(·) represents some machine learning classifier. Once the classfier has been
trained, we can predict the inducibility function without running simulations on
a particular case. To assess the performance of this method, we perform leave-
one-out cross-validation by case. We train with the simulations of 8 out of 9
cases, totalling up to 800 data points and test with 100 simulations of the unseen
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case. We consider three classifiers: the k-neighbours classifier, random forest, and
gradient boosting classifier as implemented in scikit-learn [10]. To assess how
much the classifier is actually learning, we propose a näıve alternative, which we
call “majority voting”. Since the dataset is evaluated at the same locations for all
9 cases, we take a majority vote of the labels at a given location for the 8 cases
to predict the label of the remaining case. For example, at a given location,
if 5 out 8 models were inducible, we predict this point as inducible for the
excluded case. This näıve classifier allows to determine whether the our method
is just predicting based on the location of the point or is learning additional
information. We use 2 metrics to evaluate the performance of these methods:
balanced accuracy and the overall inducibility, which is computed as the fraction
of points are predicted as inducible. This last metric is the most important to
determine whether a proposed ablation treatment is effective or not.

3 Results

The computation of the FKS for each case took approximately 10 minutes on
a modern workstation. Running one simulation for testing inducibility took an
hour on a single GPU node at Swiss National Supercomputing Centre (CSCS).
Disregarding the hardware differences, this represents a speed-up of 600 if we
predict the inducibility of one case based on 100 simulations, discounting the
simulations needed for training.

In Figure 1 we show the FKS for one fibrotic pattern at 3 different time steps
and for the base case, the PVI and PVI + BOX ablation cases. We see that
the PVI ablation affects conductivity in the periphery of the pulmonary veins,
acting as barrier for heat propagation towards the rest of the atria, allowing heat
accumulation on regions where base case presents lower temperatures. When
adding the BOX ablation extends this accumulation of temperature in the roof
of the left atrium.

Different examples of the FKS over time are shown in Figure 2 for the 20
randomly selected locations which correspond across the 9 cases considered. We
note that locations that are not inducible tend to have a higher signature than
the inducible points. We also observe that the application of the ablation patterns
tend to modify the signatures, especially towards the end of time.

The results regarding the prediction of AF are summarized in Figures 3
and 4. When we analyze the balanced accuracy of our method for different levels
of training data in Figure 3, we see that in general random forest tends to
perform better in all cases. We achieve maximum balanced accuracies with the
classifiers ranging from 75.8% for the severe fibrosis - case 1, to 95.8% in the
case moderate fibrosis + PVI + BOX. The majority voting classifier tends to
show a similar performance than the classifiers based on the FKS. However, for
some cases, the FKS classifiers have higher or lower accuracy than the majority
voting classifier, indicating that the FKS classifiers are not simply memorizing
the location of the training points and matching it the test cases.
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Fig. 3. Balanced accuracies for 9 different cases. We show in the solid lines the per-
formance of 3 different machine learning classifiers as the training data increases. The
dashed line represents a baseline naive classifier based on the inducibility of the other
8 cases.

Regarding the predictions of overall inducibility, we see bigger differences
in Figure 4. First, we note that the ablation lines applied to the models have a
marked effect on the inducibility. Applying PVI reduces the inducibility between
11 to 14 percentage points and applying PVI + BOX reduces the inducibility
between 16 to 19 percentage points. The majority voting classifier, as expected,
tends to predict a similar level of inducibility independent of the treatment
applied to the case. For all cases, it predicts between 40 and 43% inducibility. The
random forest classifier based on the FKS trained with 800 points can detect the
changes in inducibility much better. The errors range between 1 to 6 percentage
points inducibility. Also, the trend that the base case is more inducible than
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Fig. 4. Inducibility prediction for 9 cases from the FKS trained with 800 points from
other cases, compared to the majority naive classifier. The FKS classifier shows better
performance for most cases.

PVI and even more inducible than PVI + BOX is also correctly predicted by
the FKS-based classifier.

4 Discussion

In this work, we present the fibrotic kernel signature, an efficient way to predict
the inducibility of AF without running a computer simulation. We achieve this
by creating a descriptor of the fibrotic substrate and the anatomy, here named
“fibrotic kernel signature” (FKS). The FKS can be computed for all the points
in the model at a fraction of the cost than running the simulations required for
computing the inducibility for a case. We think that speeding up the calculation
of inducibility maps is crucial to create better personalized ablation treatments
within the time constraints of the clinical setting [2, 1]. FKS prediction does not
require high-performance computing facilities: a desktop computer is sufficient.

When combined the FKS with simple machine learning algorithms, we see
that we can predict the point-wise inducibility with good accuracy and the global
inducibility with excellent accuracy. In Figure 3 we observe that the accuracies
tend to increase as more data is available. We expect that the performance
would be improved as we train the classifier with more cases. Our method al-
lows to take advantage of all the simulations that we could run for different
patients in order the improve the predictions with the FKS. We remark that no
mapping between different anatomies is required when evaluating the classifier
since the geometrical information flows into the FKS, on which the classifier de-
pends. Importantly, the FKS is easily extendable thus to include the local fiber
direction, just by redefining the elliptic operator. For instance, the fiber direc-
tion and fibrosis, combined in the conductivity tensor, can be estimated from
electroanatomical mapping system data, as recently proposed [7, 6, 11].
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Our study has some limitations. First, we only tested our method in a single
geometry. Although the different patterns of fibrosis and ablation effectively
change the geometry for the monodomain equation and the FKS, we still need
to verify whether our method generalizes to other patient anatomies. Another
limitation is that the FKS does not consider the fiber orientation and the cell
type distribution. We conducted preliminary studies including the fibers, but
there was no improvement in the results. Finally, we use a mesh resolution of
0.4 mm, which we know affects the inducibility [4], when compared to finer
meshes. This will affect to time to solve the eigenproblem required by the FKS,
but given that we are currently using only modest hardware, we could manage
the larger models. On the other hand, our current mesh resolution is in line
or already finer than those from other studies [2, 1]. We also did not account
for uncertainty in the fibrosis pattern, which is known to be highly affected by
the threshold strategy. Ideally, uncertainty could be introduced into our FKS
definition to compute a mean FKS with associated covariance; this information
then could be used in the classification problem.

In summary, we propose a novel method to predict atrial fibrillation without
running simulations. We believe that the fibrotic kernel signature combined with
machine learning techniques will enable faster and better planning of ablation
treatments in atrial fibrillation patients.
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