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ABSTRACT
Designing optimal soft modular robots is difficult, due to non-trivial
interactions betweenmorphology and controller. Evolutionary algo-
rithms (EAs), combined with physical simulators, represent a valid
tool to overcome this issue. In this work, we investigate algorithmic
solutions to improve the Quality Diversity of co-evolved designs
of Tensegrity Soft Modular Robots (TSMRs) for two robotic tasks,
namely goal reaching and squeezing trough a narrow passage. To
this aim, we use three different EAs, i.e., MAP-Elites and two cus-
tom algorithms: one based on Viability Evolution (ViE) and NEAT
(ViE-NEAT), the other named Double Map MAP-Elites (DM-ME)
and devised to seek diversity while co-evolving robot morpholo-
gies and neural network (NN)-based controllers. In detail, DM-ME
extends MAP-Elites in that it uses two distinct feature maps, refer-
ring to morphologies and controllers respectively, and integrates a
mechanism to automatically define the NN-related feature descrip-
tor. Considering the fitness, in the goal-reaching task ViE-NEAT
outperforms MAP-Elites and results equivalent to DM-ME. Instead,
when considering diversity in terms of “illumination” of the fea-
ture space, DM-ME outperforms the other two algorithms on both
tasks, providing a richer pool of possible robotic designs, whereas
ViE-NEAT shows comparable performance to MAP-Elites on goal
reaching, although it does not exploit any map.

CCS CONCEPTS
• Computing methodologies → Evolutionary robotics; Ge-
netic algorithms.

KEYWORDS
Soft Tensegrity Modular Robots, Co-evolution, NEAT, Viability
Evolution, MAP-Elites, Quality Diversity

1 INTRODUCTION
Soft robots might be one of the key technologies of the future.
Indeed, their robustness and adaptive morphology allow them to
overcome situations and perform tasks in which traditional hard
robots are of limited applicability [18]. For example, they can per-
form locomotion on rough terrains with risking damage [19], or
squeeze through narrow passages [1]. Hence, they can be employed
in the exploration of hard-to-access environments [9], as well as
in the medical field [28]. Recently, researchers have applied the

soft robotic paradigm to modular robotics [29], developing novel
soft modular robots able to explore a larger morpho-functional
space than their rigid counterparts while exhibiting robustness and
mechanical adaptability [8, 18].

Designing soft modular robots is notably difficult due to the
hard-to-model dynamics of soft materials and the non-trivial inter-
actions between morphology and controller [12]. These difficulties,
together with the lack of analytical methods, make evolutionary
algorithms (EAs), coupled with physics simulators, one of the most
promising design tools [10]. Indeed, not only can EAs discover
unconventional high-performing solutions, but they can also pro-
vide a pool of possible designs by "illuminating" the design space
[21]. This latter aspect is especially significant in soft modular
robots, where the influence of the morphology and controller pa-
rameters on the robot performance is hard to predict, thus having
a number of eligible candidates for the physical realization is desir-
able. We should remark however that, although other paradigms
to design soft modular robots exist [11, 13, 15, 20, 26], only a few
involve the use of EAs: notably and extensively the voxel-based one
(VSRs) [2, 24] and the tensegrity soft modular robots (TSMRs) [27],
the latter in a preliminary work with an open-loop controller [4]
and in another work [6] where the Multi-dimensional Archive of
Phenotypic Elites (MAP-Elites) [21] was applied to diversify only
behavioral properties rather than morphological ones.

This work also focuses on TSMRs. More precisely, on the joint
optimization of TSMR morphologies and NN-based controllers,
as the optimization of either morphology only or controller only
via EAs does not leverage the potential synergy between them.
Specifically, we perform the co-optimization using three different
approaches, namely MAP-Elites and two proposed custom EAs:
1) Viability Evolution (ViE) [16] coupled with Neuro-Evolution of
Augmenting Topologies (NEAT) [25], denoted as ViE-NEAT, and
2) a method based on MAP-Elites, dubbed as Double Map MAP-
Elites (DM-ME). The latter makes use of two maps, associated to
an entity-related and a controller-related feature descriptor (FD),
respectively, and includes a dimensionality reduction mechanism
[3] for the automatic definition of the controller-related FD.

We experimentally compare the three approaches on two robotic
tasks: goal reaching and squeezing through a narrow passage. Our
results show that DM-ME outperforms the other two approaches at
illuminating the search space on both tasks. In addition, although
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ViE-NEAT does not keep any map, it achieves very similar perfor-
mance to MAP-Elites on goal reaching (in terms of illumination).

The rest of this paper is structured as follows: Section 2 deals
with the background and related work; Section 3 introduces the
proposed methods, i.e., ViE-NEAT and DM-ME; Section 4 describes
the experimental setup; Section 5 presents the numerical results.
Finally, Section 6 provides the main conclusions of our study.

2 BACKGROUND
This section introduces the TSMRs employed in this work and the
EAs related to the algorithms we have considered. It also introduces
the mechanisms that have been integrated in DM-ME.

2.1 Tensegrity soft modular robots
The term tensegrity has been coined by the architect R. Buckminster
Fuller [7] and denotes a structure that maintains its mechanical
integrity through the pre-stretching of some elements constantly
in tension (known as strings or cables) connected in a network
with other elements constantly under compression (called rods
or struts). Several kinds of tensegrity structures exist: this work
focuses on the icosahedron tensegrity, which consists of 6 rods
connected by 24 pre-stretched cables. This particular structure
has been chosen due to its properties: the ability to deform in all
directions; the symmetry; the small number of rods and cables;
the possibility to carry a payload in the inner volume [27]. The
last point is particularly important since it allows to equip the
structure with a servomotor, which enables structural contractions,
and different kinds of sensors.

The termmodular denotes robots composed of a variable number
of building blocks. In this work, the icosahedron tensegrity has been
used as a module. In detail, the nodes of the icosahedron draft eight
triangular faces, which are exploited to link the modules together
by connecting the triangles’ vertices. In the experiments, we take in
consideration only linear chains of modules, both for simplicity and
feasibility of a future hardware implementation. The appearance
of a TSMR in the simulation framework that we have used (see
Section 4.1) is shown in Figure 1.

The term soft refers to the fact that these robots are not rigid.
Indeed, they are able to deform their structure by contracting and
expanding their modules.

2.2 Neuro-evolution of augmenting topologies
NEAT [25] is a well-known neuro-evolutionary algorithm capable
of evolving both topology and weights of artificial neural networks
(NNs). It exploits an advanced genetic encoding based on the his-
torical marking mechanism. In practice, each topological feature
is marked with a number that allows to match homologous genes
while performing crossover; in this way different genotypes can be
aligned and crossed over. Moreover, the initialization of the popu-
lation is addressed through a complexification process: the initial
population consists of minimal networks, which are gradually made
more complex as the search progresses. In this way the evolution
will focus on the most promising parts of a very high-dimensional
search space. Diversity and innovations are preserved through spe-
ciation: the population is split into species by means of a clustering
method that groups individuals by similarity and the competition

is limited to individuals within each species. It is also worth men-
tioning the mechanism known as species-elitism, which preserves
a certain number of species (the best ones) from extinction due to
stagnation, i.e., no improvement for long time. In this work, we
used the NEAT implementation provided by NEAT-Python1.

2.3 Diversity-driven evolutionary algorithms
Among the various EAs proposed in the literature for seeking di-
versity (either explicitly or implicitly) the following two have been
taken into account here: Viability Evolution (“ViE”) [16, 17], which
is characterized by a good balance between exploitation and explo-
ration, and MAP-Elites [21], which is focused on “illuminating” the
search space.

ViE is an evolutionary paradigm based on the elimination of
unviable individuals. In detail, ViE makes use of viability boundaries
that discriminate between viable individuals, which satisfy specific
requirements, and unviable ones, not satisfying them. The bound-
aries in question are dynamic: at the beginning they are set so as
to include all the individuals belonging to the population; then,
they are progressively shrunk either towards the optimal values or
towards target values that correspond to some constraints. In this
work we used ViE to evolve a population of TSMR morphologies;
since there are no specific constraints in this case, the viability
boundary represents a limit on the worst fitness.

MAP-Elites is a Quality Diversity (QD) algorithm, i.e., an algo-
rithm that aims at generating a large collection (archive) of diverse
and high-performing solutions (see [22, 23] for more details on QD).
In particular, it aims at discovering the best-performing solution
of each cell of a user-defined feature space, which is a lower di-
mensional space with respect to the original search space. In order
to be added to the archive, a solution is first projected onto the
feature space, producing a feature descriptor; if the corresponding
cell is empty or contains an individual with worse performance, the
solution is added to the archive (replacing the occupant, if present),
otherwise it is discarded. In this work we used MAP-Elites to evolve
morphology-controller pairs.

2.4 MAP-Elites with multiple maps
Multiple feature maps have already been employed in previous
research, although for the evolution of a single entity. For example,
in [23], two MAP-Elites archives are employed for the evolution
of the controller of a wheeled robot in a maze navigation task.
The two FDs used there are the endpoint of the simulation and
the main orientation of the robot for each fifth of the simulation;
thus, they are two behavioral properties of the evolved controller.
Multiple archives are used also in [5] (although with a different
QD algorithm), but even there the FDs represent only behavioral
features. Instead, the DM-ME algorithm introduced here is devised
for the evolution of two entities: a generic entity (in our case, a
TSMR morphology) and its related controller (a NN). Hence, the
FDs of the two archives refer to distinct objects.

2.5 Automatic feature descriptor definition
The selection of the FD is a critical factor for MAP-Elites. A mech-
anism to define it in an automatic way has been introduced in
1https://github.com/CodeReclaimers/neat-python

https://github.com/CodeReclaimers/neat-python
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[3]. In practice, the FD is obtained by applying a Dimensionality
Reduction (DR) algorithm, i.e., the Principal Component Analysis
(PCA), on the sensory data extracted during the evaluation of the
individual; the DR’s output vector represents the FD that is used
for the insertion in the archive. Nevertheless, the FD in question
consists of continuous values, which is acceptable for an unstruc-
tured archive, such as the one used in [3], but not for MAP-Elites.
Hence, an additional processing step to discretize the feature values
is required. Basically, a first discretization to determine the cells
boundaries is performed at the beginning of the evolution using
the values retrieved by the PCA for the initial population. Then, the
boundaries are recomputed every time the PCA is fitted to data or
a value outside the current boundaries is returned. It is worth also
mentioning that the PCA is scale-sensitive; hence, the sensory data
are not directly provided as input to the PCA, but is standardized
first by removing the mean and dividing by the standard devia-
tion. As regards the standardizer, it is fitted to data every time the
fitting is done for the PCA. In conclusion, the only information
that is required is the size of the FD (i.e., the number of cells per
dimension).

3 PROPOSED METHODS
We present now the algorithmic details of the proposed methods,
i.e., ViE-NEAT and Double Map MAP-Elites (DM-ME).

3.1 ViE-NEAT
ViE-NEAT consists in the parallel evolution of two populations, a
population of entities (morphologies) and one of NN-based con-
trollers. The former is evolved using ViE, the latter using NEAT.
The only interaction between the two populations happens at the
evaluation time: in detail, at each generation the individuals be-
longing to the two populations are randomly paired for evaluation.
In principle pairing should be one-to-one. However, since in the
NEAT implementation used here the population is not fixed in size,
it may happen that an individual from one population is paired
with two individuals from the other, due to the bigger size of the
other population at play. The pseudocode is shown in Algorithm 1.

3.2 Double Map MAP-Elites (DM-ME)
DM-ME deals with individuals represented by an <entity-NN> pair:
the entity encoding depends on the domain of application, whereas
NEAT’s genetic encoding is used for NNs.

Algorithm 1 ViE-NEAT

1: procedure main():
2: 𝑃𝑉𝑖𝐸 ← initViEPopulation() ⊲ entity pop.
3: 𝑃𝑁𝐸𝐴𝑇 ← initNEATPopulation() ⊲ NN pop.
4: for 𝑡 = 1→ 𝑇 do
5: evaluate(𝑃𝑉𝑖𝐸 , 𝑃𝑁𝐸𝐴𝑇 ) ⊲ random pairing used
6: 𝑃𝑉𝑖𝐸 ← runOneGeneration(𝑃𝑉𝑖𝐸 )
7: 𝑃𝑁𝐸𝐴𝑇 ← runOneGeneration(𝑃𝑁𝐸𝐴𝑇 )

The functioning of DM-ME is illustrated in Algorithm 2. At the
beginning, the archives are initialized with a large number of ran-
domly generated <entity-NN> pairs, exploiting the corresponding

Algorithm 2 Double Map Map-Elites (DM-ME)

1: procedure main(𝑛𝑢𝑚𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 , 𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝑆𝑖𝑧𝑒):
2: 𝐴𝐸 ← ∅ ⊲ entity archive
3: 𝐴𝑁𝑁 ← ∅ ⊲ NN archive
4: 𝑃𝐶𝐴← initPCA(𝑎𝑟𝑐ℎ𝑖𝑣𝑒𝑆𝑖𝑧𝑒)
5: 𝑋 ← generateRandomSolutions(𝑛𝑢𝑚𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠)
6: evaluate(𝑋 ) ⊲ get fitness and sensory data
7: addAllToMap(𝐴𝐸 , 𝑋 )
8: addToNNMap(𝐴𝑁𝑁 , 𝑃𝐶𝐴, 𝑋 )
9: for 𝑡 = 1→ 𝑇 do
10: 𝑋 ← randomSelection(𝐴𝐸 , 𝐴𝑁𝑁 )
11: 𝑋 ← randomVariation(𝑋 )
12: evaluate(𝑋 )
13: addAllToMap(𝐴𝐸 , 𝑋 )
14: addToNNMap(𝐴𝑁𝑁 , 𝑃𝐶𝐴, 𝑋 )
15: procedure addAllToMap(𝐴, 𝑋 ):
16: for 𝑥 ∈ 𝑋 do
17: addToMap(𝐴, 𝑥 )
18: procedure addToNNMap(𝐴𝑁𝑁 , 𝑃𝐶𝐴, 𝑋 ):
19: 𝑆𝐷𝑋 ← getSensoryData(𝑋 )
20: if 𝑃𝐶𝐴.notFitted() then
21: 𝑃𝐶𝐴.fit(𝑆𝐷𝑋 )
22: else if 𝑖𝑠𝐹𝑖𝑡𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒 then
23: 𝑆𝐷𝐴 ← getSensoryData(𝐴𝑁𝑁 )
24: 𝑃𝐶𝐴.fit(𝑆𝐷𝐴)
25: reInsert(𝐴𝑁𝑁 , 𝑃𝐶𝐴)
26: 𝑃𝐶𝐴.transform(𝑋 , 𝑆𝐷𝑋 ) ⊲ compute NN FD
27: if outOfBounds(𝑋 ) then
28: 𝑃𝐶𝐴.reComputeBounds(𝐴𝑁𝑁 , 𝑋 )
29: reInsert(𝐴𝑁𝑁 , 𝑃𝐶𝐴)
30: 𝑃𝐶𝐴.transform(𝑋 , 𝑆𝐷𝑋 )
31: addAllToMap(𝐴𝑁𝑁 , 𝑋 )

sensory data to fit the PCA. Then, until the desired number of
generations has been reached, a batch of elites is sampled from
the two maps, half from each of them. Next, the individuals are
mutated as follows: with equal probability, either only the entity
is mutated, only the NN is mutated, or both of them are mutated.
The mutation of the entity is domain-dependent, whereas the NNs
are mutated according to NEAT’s mutation operator (crossover is
not used). After mutation, the individuals are evaluated and added
to the archives based on the respective FDs. In this regard, each
of the two archives is an independent MAP-Elites map, and the
addToMap() archive insertion procedure is handled accordingly: an
individual (an <entity-NN> pair) is added to an archive if the corre-
sponding cell is empty or occupied by a worse individual, hence,
it may be added to one map, but not to the other, depending on
the fitness of the currently stored individuals. The peculiarity lies
in the fact that a FD related to the entity is used for the first map,
whereas a FD related to the NN is employed for the second one.
As shown in [23], the use of multiple adequate FDs (in the form
of multiple maps for MAP-Elites) leads to better results, especially
in difficult domains, since different perspectives are taken into ac-
count. As for our DM-ME, the two FDs employed are obtained in
different ways. In particular, the entity is projected as usual on a



Zardini et al.

Table 1: Main parameters for all the experiments.

Goal Reaching Squeezing
# Runs 10 10

Run’s budget 45000 evaluations 45000 evaluations
# Targets 4 2
Distance 45 cm 60 cm
Bearing 90° l, 45° l, 45° r, 90° r 5° l, 5° r

# Simulation seeds 2 2
Simulation time 40 s 40 s

user-defined feature space, in order to obtain the corresponding
FD. Instead, for the NN, the mechanism described in Section 2.5 is
used. More specifically, the PCA is fitted using the sensory data of
the individuals contained in the NN archive with a frequency that
decreases exponentially, as in [3]; obviously, at every fitting, it is
necessary to re-compute the FDs of the individuals that are already
in the archive and re-insert them, which is done also when the
space is discretized between two PCA updates due to the presence
of values outside the current cells boundaries.

4 EXPERIMENTAL SETUP
This section presents the details of our experimental setup.

4.1 Implementation details
Apart from NEAT, for which we used the existing NEAT-Python
library, the other EAs involved in the experimentation were imple-
mented from scratch in Python, and coupled with a custom TSMR
simulation framework developed in C++, named Tensoft. The latter
is based on the NASA Tensegrity Robotics Toolkit2, a collection of
tools for modeling and simulating tensegrity robots, built on the
top of the Bullet Physics3 engine. Our source code is available at:
https://github.com/lis-epfl/Tensoft-G21.

4.2 Tasks
TSMRs have only recently become a subject of study, as demon-
strated by [14]; hence, apart for locomotion [4], their capabilities are
still largely unknown. Here, we investigate two tasks that are fairly
more complex than plain locomotion: goal reaching and squeezing.

Goal reaching consists in having the robot moving towards a
target placed somewhere in the environment. While this is a typical
task in robotics research, modular soft structures have been barely
taken into account in this regard. In practice, the objective consists
in finding a controller able to drive the associated morphology to-
wards different targets, based on the sensory information provided,
i.e., distance and bearing to the target. In detail, distance and bear-
ing are computed with respect to the position and the direction of
the front face of the head module, respectively. An example of final
situation of the task in Tensoft is shown in Figure 1 (left).

Squeezing consists in having the robot shrinking through a re-
stricted aperture that is narrower than the robot size in terms of
width and/or height. Due to the high degree of complexity, this task
has not been addressed extensively in previous research. In this
work, squeezing has been dealt with as an advanced form of goal
2https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim
3https://github.com/bulletphysics/bullet3/archive/2.88.tar.gz

Table 2: Parameter setting employed for ViE-NEAT.

ViE
Population size (init.) 48

# Mutants 48

NEAT
Population size 54
Individual elitism 3
Species elitism 2

Compatibility threshold 2.85

Table 3: Parameter setting for MAP-Elites and DM-ME.

MAP-Elites DM-ME
# Initial solutions 1080 1080

Batch size 24 24
Archive(s) size [9, 10, 9, 10] [9, 10] [9,10]
PCA updates [0, 50, 150, 350, 750, 1550]

Trajectory sampling 1 s 1 s

reaching, by positioning the target beyond an aperture narrower
than the maximum robot width. At the beginning of the simulation,
the robot is enclosed by four walls, and it has to pass through the
aperture to reach the target. In this case the sensory information
provided includes distance and bearing to the target, distance and
bearing with respect to the center of the entrance of the aperture
(computed analogously to the ones referred to the target), and the
presence of obstacles in front of the head module within a cer-
tain range (set to 10 cm in our experiments). An example of final
situation of the task in Tensoft is shown in Figure 1 (right).

Figure 1: Example of final situation for goal reaching (left)
and squeezing (right). The cyan cylinder depicts the target.

4.3 Encoding
The TSMR morphology encoding includes global properties, affect-
ing the entire robot, and local ones, specific to each module. In
detail, the global genes are the number of modules and the stiffness,
which determines the degree of deformability of the modules. In-
stead, the local ones include only the number 𝜌 , which identifies
the triangular face that is connected to the next module in the chain.
This influences not only the weight balance, but also how the robot
moves since the servomotor acts always on the same pair of faces.
The allowed mutations include: the addition of a new module in
a random position; the deletion of a random module in the chain;
the change of the robot stiffness; the change of the connection face
to the next module (local mutation).

As concerns the controllers, the encoding and the allowed muta-
tions are defined by NEAT. In particular, the TSMR controller has
been implemented as a feed-forward NN that at each timestep of the
simulation takes as input the sensory information provided for the
considered task and produces as output the actuation parameters,

https://github.com/lis-epfl/Tensoft-G21
https://github.com/NASA-Tensegrity-Robotics-Toolkit/NTRTsim
https://github.com/bulletphysics/bullet3/archive/2.88.tar.gz
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i.e., the frequency 𝑓 and phase 𝜙 of a sinusoidal signal that controls
contraction/expansion for all modules.

4.4 Algorithm and task configurations
Three different approaches have been applied to both the goal
reaching and squeezing tasks:
• co-evolution of morphology, evolved through ViE, and controller,
evolved through NEAT (i.e., using ViE-NEAT);
• evolution of morphology-controller pairs through MAP-Elites;
• evolution of morphology-controller pairs using DM-ME.
The main parameters for all the experiments, common to the three
approaches, are reported for each task in Table 1. For a fair compar-
ison, the budget, limited by the computational resources available,
has been defined for all algorithms in terms of total number of
solution evaluations.

Each solution is evaluated against different targets placed at
different orientations and, since the simulations are noisy, for each
target multiple simulations are run, with different seeds for the
actuation noise. All the simulations contribute to the fitness of the
individual, to be minimized, which is computed for both tasks as:

𝑑𝑡 =
1
𝑁𝑠

𝑁𝑠∑︁
𝑠=1

𝑑𝑡𝑠 𝑡 ∈ {1, ... , 𝑁𝑡 }

𝑓 =
1
𝑁𝑡

𝑁𝑡∑︁
𝑡=1

𝑑𝑡 +
1
2
× ( max

𝑡=1...𝑁𝑡

𝑑𝑡 −
1
𝑁𝑡

𝑁𝑡∑︁
𝑡=1

𝑑𝑡 ) (1)

where 𝑁𝑠 is the number of simulation seeds, 𝑁𝑡 is the number of
targets, 𝑑𝑡𝑠 is the final distance of the individual from the 𝑡-th target
using the 𝑠-th seed, and 𝑓 is the resulting fitness.

In practice, first the average final distance across simulation
seeds is calculated for each target. Then, the fitness of the individ-
ual is computed as the mean value of the average distances plus
a penalty equal to half of the difference between the worst (maxi-
mum) and the mean average distance across targets. Actually, in the
squeezing experiments 𝑑𝑡𝑠 represents the final distance with any
potential bonus already deducted: if the robot succeeds in crossing
the entrance of the aperture by at least 4 cm, a fixed bonus of 4 cm
is deducted from the final distance. In this way, the individuals
capable of entering the aperture are favored by evolution.

As concerns the squeezing experiments, we set the wall’s width
to 16.67 cm, its height to 12 cm, and the aperture width to 8 cm. In
particular, the wall’s width, which corresponds to the length of the
aperture, is set to 1.5 times the length of a TSMR module. Instead,
the width of the aperture is set to 72% of a module’s width (note
that the width of a module is equal to its length, i.e., about 11 cm).

A brief description of the approach-specific configurations, which
are common to the two tasks, is provided in the following para-
graphs. Indeed, only the number of controller input nodes is task-
dependent (2 for goal reaching, 5 for squeezing, see Section 4.2).

ViE-NEAT. The parameter configuration of the ViE-NEAT ap-
proach is shown in Table 2. This configuration is characterized
by elitism at both individual and species level, a one-to-one (on
average) morphology-controller pairing for evaluation (a slightly
larger NEAT population is required to compensate for the presence
of elite individuals), and a relatively low threshold for speciation.

If an individual from one population is paired with two individ-
uals from the other (due to the bigger size of the other population
at play), the fitness of that individual is computed as:

𝑓 =
1
𝑁𝑝

𝑁𝑝∑︁
𝑝=1

𝑓𝑝 +
1
2
× ( max

𝑝=1...𝑁𝑝

𝑓𝑝 −
1
𝑁𝑝

𝑁𝑝∑︁
𝑝=1

𝑓𝑝 ) (2)

where 𝑁𝑝 is the number of paired individuals belonging to the
other population, 𝑓𝑝 is the fitness obtained with the 𝑝-th paired
individual, according to Eq. (1), and 𝑓 is the resulting fitness. Since
the controllers are not associated to a fixedmorphology, the number
of output nodes, which is morphology-dependent, is set to two times
the maximum allowed number of modules, i.e., 20 (2 × 10), and
only the required number of outputs is considered at the evaluation
time (the same holds for the MAP-Elites and DM-ME experiments).

MAP-Elites and DM-ME. The configuration used for each of the
two algorithms is reported in Table 3; the only difference lies in the
archive(s) size. The mutation of individuals (morphology-controller
pairs) in MAP-Elites is performed as in DM-ME (see Section 3).

As regards the feature descriptors, the FD used for MAP-Elites
corresponds to the concatenation of the FDs employed in the two
archives of DM-ME, i.e., the morphology-related and the controller-
related FDs (see the archives size in Table 3). As a consequence,
the archive filled by MAP-Elites has a higher number of cells than
the ones explored by DM-ME (8100 cells vs 90 cells × 2 archives).
Nevertheless, a comparison with equal number of cells would re-
quire using different FDs for the two algorithms, which would make
the comparison unfair. Moreover, DM-ME has been specifically de-
signed to reduce the total number of cells and thus to increase the
selective pressure (with equal FDs) w.r.t. the original MAP-Elites.

In detail, the morphology-related FD is represented by the num-
ber of modules and the module stiffness; instead, the controller-
related FD is provided by the PCA, exploiting the trajectory of the
head module as sensory data. Since each morphology-controller
pair is simulated with multiple targets, the sensory data vector are
defined as the concatenation of the various trajectories: 320 ele-
ments in the case of goal reaching (4 targets × 40 s × 2 coordinates),
and 160 elements in the case of squeezing (2 targets instead of 4). In
addition, since a solution is simulated multiple times with different
seeds, the average trajectory across seeds is taken as representa-
tive for each target. Actually, the size of the controller-related FD
has been chosen so that the number of cells is the same for the
morphology-related and the controller-related feature space.

5 RESULTS
In the following, we present the results achieved in the goal reaching
and squeezing experiments. We must remark that the fitness trends,
the heatmaps and the statistics shown here have been computed
after applying the following transformation to the fitness values
obtained throughout the evolution:

𝑓𝑠 = 𝑑𝑖𝑛𝑖𝑡 − 𝑓 (3)

where 𝑑𝑖𝑛𝑖𝑡 is the initial distance from the target (45 cm for goal
reaching and 60 cm for squeezing, see Table 1), 𝑓 is the fitness of
the individual measured according to Eq. (1) or (2) during the evo-
lutionary process, and 𝑓𝑠 is the fitness used for plots and statistics
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computation. In this way, the minimization problem is presented
as a maximization one, to facilitate the analysis in terms of QD.
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Figure 2: Best fitness (mean ± std. dev. across 10 runs) over
evaluations for the goal reaching task. In particular, the
trends shown are related to: the morphology population for
ViE-NEAT; the one and only archive for MAP-Elites (ME);
the morphology archive for DM-ME. The fitness values (to
be maximized) shown here have been obtained through Eq.
(3).
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Figure 3: Best fitness (mean ± std. dev. across 10 runs) over
evaluations for the squeezing task. In particular, the trends
shown are related to: the morphology population for VIE-
NEAT; the one and only archive for MAP-Elites (ME); the
morphology archive for DM-ME. The fitness values (to be
maximized) shown here have been obtained through Eq. (3).

All the experiments have been executed using a High Perfor-
mance Computing (HPC) infrastructure. In detail, for each run, one
node with 2 Intel Broadwell processors running at 2.6 GHz, with 14
cores each (28 cores in total), and 16/32 GB of RAM has been used.

Goal reaching. Figure 2 shows the best fitness trend (mean ±
std. dev. across 10 runs) for ViE-NEAT, MAP-Elites and DM-ME. In
detail, ViE-NEAT and DM-ME exhibit an almost equivalent perfor-
mance on average, whereas MAP-Elites turns out to be worse. The
descriptive statistics of the best fitness across runs are reported in

Table 4: Descriptive statistics of the best fitness across 10
runs for the goal reaching task (up);Wilcoxon rank-sum test
(𝛼 = 0.05) applied to the distributions of best fitness (bottom).

Algorithm Mean Std Min Max Median
ViE-NEAT 26.21 3.22 21.76 30.79 26.08
MAP-Elites 22.16 4.13 15.40 29.14 21.50
DM-ME 25.76 4.93 20.66 39.36 24.22

Algorithms p-value
ViE-NEAT MAP-Elites 0.034293
ViE-NEAT DM-ME 0.545350
MAP-Elites DM-ME 0.082099

Table 5: Descriptive statistics of the best fitness across 10
runs for the squeezing task (up); Wilcoxon rank-sum test
(𝛼 = 0.05) applied to the distributions of best fitness (bottom).

Algorithm Mean Std Min Max Median
ViE-NEAT 24.88 5.63 18.81 35.94 22.75
MAP-Elites 22.63 2.74 18.60 26.05 22.63
DM-ME 24.16 4.07 18.99 31.00 23.49

Algorithms p-value
ViE-NEAT MAP-Elites 0.496292
ViE-NEAT DM-ME 0.820596
MAP-Elites DM-ME 0.496292

Table 6: Descriptive statistics of theQD score of themorphol-
ogy archives generated in the goal reaching (up) and squeez-
ing (bottom) experiments.

Algorithm Mean Std Min Max Median
ViE-NEAT 535.61 59.21 461.81 641.67 524.60
MAP-Elites 552.27 35.41 519.24 642.73 544.26
DM-ME 656.08 35.05 589.36 707.55 655.60

Algorithm Mean Std Min Max Median
ViE-NEAT 1196.26 60.05 1099.57 1291.28 1203.39
MAP-Elites 1293.25 15.30 1264.05 1314.11 1296.67
DM-ME 1322.52 14.60 1296.39 1341.12 1324.52

Table 7: Wilcoxon rank-sum test (𝛼 = 0.05) applied to the
QD score of the morphology archives generated in the goal
reaching (GR) and squeezing (SQ) experiments.

Algorithms p-value (GR) p-value (SQ)
ViE-NEAT MAP-Elites 0.325751 0.000881
ViE-NEAT DM-ME 0.000881 0.000157
MAP-Elites DM-ME 0.000507 0.002497

Table 4 (up) for each algorithm. It can be seen that both ViE-NEAT
and DM-ME obtain a higher mean best fitness value than MAP-
Elites. It is also worth highlighting that the best individual across
all the goal reaching experiments has been discovered by DM-ME4.
Both the equivalence of ViE-NEAT and DM-ME and the superiority
of ViE-NEAT with respect to MAP-Elites are statistically significant,
see the results of the Wilcoxon rank-sum test in Table 4 (bottom).

4The videos of the best individuals are available at https://tinyurl.com/ynaav7ek.

https://tinyurl.com/ynaav7ek
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The table also shows that in this case DM-ME does not statistically
outperform MAP-Elites.

The other evaluation metric we are interested in evaluating
here is the illumination of the feature space(s). With reference to
Figure 4 (left column, first three rows), which provides a heatmap
representation of the archives, or archive projections, generated
in five runs of the goal reaching experiments, it can be noted that
DM-ME appears to perform better in terms of morphology archives
produced (although the difference is not so pronounced), whereas
ViE-NEAT shows almost equivalent performance to MAP-Elites.
As regards the controller archives, it is worth remembering that
each cell corresponds to a different trajectory according to the
PCA and, since not all trajectories can lead to good results, it is
reasonable to find also bad performing individuals inside them. In
addition, the coverage of the controller archives is influenced by
the re-discretization of the features space. Hence, it is reasonable
to focus on the morphology archives. The difference in terms of
illumination capability between the three algorithms is confirmed
by the statistics computed on the QD score (i.e, the sum of the fitness
of the individuals in the archive [22]) of the morphology archives.
All the ten runs per algorithm have been taken into account for the
computation of these statistics, see Table 6 (up). Both the superiority
of DM-ME on the other two methods and the equivalence between
ViE-NEAT and MAP-Elites in terms of QD score are statistically
significant, see the results of the Wilcoxon rank-sum test in Table 7.

An inverse analysis has been also performed on MAP-Elites and
DM-ME. The double archives generated by DM-ME have been pro-
jected onto single ones, and then compared with the single archives
produced by MAP-Elites. This requires to re-simulate the individ-
uals contained in the morphology archives of DM-ME in order to
collect their trajectories and compute the controller-related FDs.
Specifically, the PCA and the cell boundaries used for the projection
(i.e., the final ones) are potentially different from the ones used for
the evaluation of the considered individuals during the evolution.
Hence, if the reconstructed single archives were projected back
onto separate morphology-controller ones, the controller archives
would be potentially different from the original ones. The results of
the double-to-single projection show that most of the individuals
contained in the controller archives generated by DM-ME tend to be
concentrated in a small number of cells in the morphological feature
space, typically with a medium-high number of modules and very
low stiffness. This is reasonable, since those morphological proper-
ties allow a greater variety of mid-performing behaviors. Instead,
as expected, the single archives generated by MAP-Elites show a
higher coverage of the 4-dimensional feature space, especially in
the region of medium-low stiffness. The heatmap representation of
the single archives can be found in the Supplementary Material.

Concerning the execution time, MAP-Elites (154.3 ± 9.22 hours)
and DM-ME (145.4± 10.76 hours) turn out to be considerably more
expensive than ViE-NEAT (94.3± 13.15 hours). It is worth mention-
ing however that both MAP-Elites and DM-ME present an overhead
due to the need for collecting the sensory data (trajectories), which
is written by the simulator into temporary files.

Squeezing. Figure 3 shows the best fitness trend (mean ± std.
dev. across 10 runs) for the three algorithms. The black dashed line
represents the fitness limit corresponding to a robot entering the

aperture in a single simulation. By looking at the plot, it turns out
that the three algorithms discover well-performing solutions. In
this case, the best individual has been discovered by ViE-NEAT,
and again both ViE-NEAT and DM-ME obtain a higher mean best
fitness value than MAP-Elites, see the descriptive statistics reported
in Table 5 (up). On the other hand, the three algorithms result
statistically equivalent, see the results of the Wilcoxon rank-sum
test provided in Table 5 (bottom). Nevertheless, by looking at the
behavior of the best individuals5, it turns out that the best individual
evolved by DM-ME is the only one, among the best individuals
obtained by all algorithms, that is able to pass through the aperture
and reach the target if the simulation is allowed to continue beyond
the 40 s used in the evolutionary process. This also demonstrates
that the task is achievable.

As concerns the illumination of the search space, Figure 4 (right
column) provides a heatmap representation of the archives, or
archive projections, generated in five runs of the squeezing exper-
iments. As in the case of goal reaching, we focus the analysis on
the morphology archives. In this case, some runs of ViE-NEAT are
unable to fill all the cells of the grid. Except for that, the archives
generated appear to be very similar, especially the ones produced
by MAP-Elites and DM-ME. Nevertheless, by looking at the sta-
tistics of the QD score of the archives generated in the ten runs,
reported in Table 6 (bottom), it turns out that DM-ME outperforms
MAP-Elites, which in turn outperforms ViE-NEAT. Table 7 provides
the statistical evidence based on the Wilcoxon rank-sum test.

The heatmap representation of the single archives, the ones
generated by MAP-Elites and the ones resulting from the projection
of the double archives produced by DM-ME, can be found in the
Supplementary Material. The observations made for goal reaching,
as concerns this inverse analysis, hold also for squeezing.

As in goal reaching, the execution time ofMAP-Elites (103.3±5.87
hours) and DM-ME (94.9± 12.23 hours) turns out to be higher than
that of ViE-NEAT (70.9 ± 6.07 hours). The lower execution time
with respect to goal reaching is mainly due to the number of targets
considered for each individual, which in this case is 2 instead of 4
(see Table 1). However, a single simulation of the squeezing task
tends to require a little more time than one of the goal reaching
task, due to the interactions between the robot and the walls.

6 CONCLUSIONS
In this work we have addressed the joint optimization of morphol-
ogy and controller of TSMRs. In detail, we have considered three
different evolutionary approaches, i.e., MAP-Elites, ViE-NEAT, and
DM-ME, with the last two being algorithms proposed here for co-
evolving morphologies and controllers. In order to compare the
three algorithms, we have conducted an experimental campaign on
two robotic tasks: goal reaching and squeezing. As concerns goal
reaching, ViE-NEAT outperforms MAP-Elites and results equiva-
lent to DM-ME in terms of best fitness. As regards squeezing, the
three algorithms achieve similar results in terms of quality of dis-
covered solutions. Moreover, DM-ME outperforms the other two
approaches in terms of illumination/exploration of the feature space
(measured with QD score) in both tasks. The higher total fitness of
the resulting archive implies a higher number of well-performing

5The videos of the best individuals are available at https://tinyurl.com/y3e9neej.

https://tinyurl.com/y3e9neej
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(d) MAP-Elites, morphology archive (projection), squeezing
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(h) MAP-Elites, controller archive (projection), squeezing
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Figure 4: Archives generated by five runs of each experiment configuration. The first row shows the archives generated by
ViE-NEAT, obtained by projecting on the morphology feature space the individuals discovered throughout the evolution (the
reconstruction of the controller archives would require modifying the algorithm since ViE-NEAT does not include the PCA).
The second and third row show the morphology-related archives generated by MAP-Elites (i.e., the projection from the result-
ing single archive) and DM-ME, respectively. The fourth and fifth row display the corresponding controller-related archives.
In all cases, the fitness values (to be maximized) shown here have been obtained through Eq. (3).

candidates for the physical realization. Notably, ViE-NEAT achieves
very similar performance to MAP-Elites in terms of illumination
of the search space in the goal reaching task, although it does not
exploit any map. Future work includes testing other configurations
of DM-ME and co-evolution, other robotic tasks, and more complex
TSMR structures.
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Figure 5: Single archives for the goal reaching task. In detail, the first two rows show the single archives generated by the 10
runs of MAP-Elites, whereas the other two show the projection of the double archives produced by Double Map MAP-Elites
(DM-ME) onto a single one.
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Figure 6: Single archives for the squeezing task. In detail, the first two rows show the single archives generated by the 10
runs of MAP-Elites, whereas the other two show the projection of the double archives produced by Double Map MAP-Elites
(DM-ME) onto a single one.
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