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Abstract

The availability of powerful GPUs and the consequent development of deep
neural networks, have brought remarkable results in videogame levels genera-
tion, image-to-image translation , video-to-video translation, image inpainting
and video generation. Nonetheless, in conditional or constrained settings,
unconditioned generative models still suffer because they have little to none
control over the generated output. This leads to problems in some scenarios,
such as structured objects generation or multimedia manipulation. In the
manner, unconstrained GANs fail to generate objects that must satisfy hard
constraints (e.g., molecules must be chemically valid or game levels must be
playable). In the latter, the manipulation of complex scenes is a challenging
and unsolved task, since these scenes are composed of objects and background
of different classes. In this thesis , we focus on these two scenarios and
propose different techniques to improve deep generative models. First, we
introduce Constrained Adversarial Networks (CANs), an extension of GANs
in which the constraints are embedded into the model during training. Then
we focus on developing novel deep learning models to alter complex urban
scenes. In particular, we aim to alter the scene by: i) studying how to better
leverage the semantic and instance segmentation to model its content and
structure; ii) modifying, inserting and/or removing specific object instances
coherently to its semantic; iii) generating coherent and realistic videos where
users can alter the object’s position.
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Chapter 1

Introduction

1.1 Conditional Deep Generative Models

In recent years, the availability of more powerful GPUs and deep neural
networks have allowed deep generative models to show promising results
in image-to-image translation [47, 70, 71], video-to-video translation [130],
image inpainting [110, 143, 144], and video generation [85]. Nonetheless,
unconditioned generative models have little to no control over the generated
output. This leads to problems in some scenarios, such as structured object
generation. In this case, Generative Adversarial Networks (GANs) [31] alone
struggle to generate objects that have to satisfy hard constraints, like drug
molecules generation, in which all molecules must be chemically valid. Another
example is game levels generation, where we need to ensure that the generated
levels are playable. The issue is that these requirements are usually difficult to
acquire from examples alone, especially if the data are noisy. Existing works
rely either on ad-hoc architectures [18] or use post-processing techniques that
affect the inference time [117, 127]. For example, works based on probabilistic
circuits [88, 57] generate structured objects but their inference grows linearly
with the size of the circuits. As can be imagined, this could lead to problems
if the constraints are complex. Other approaches based on reinforcement
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CHAPTER 1. INTRODUCTION

learning [18, 42] have tackled the problem of efficient sampling by incorporating
a constrained learning component into the training procedure, and discarding
the constrained part during the inference. Thus, in order to solve these tasks,
it is necessary to develop a model that encodes constraints without affecting
the time and the complexity of the sampling procedure.

Another task where unconstrained or unconditioned generative model
struggle is multimedia manipulation. Multimedia manipulation refers to the
process of changing the content or the style of videos and images with respect
to the user needs. The possibility of changing the aspect of a scene is relevant
for a large number of real-world applications including data augmentation
[105], photo editing [68], and Augmented Reality (AR) [28]. Nonetheless, the
manipulation of complex scenes is a challenging and unsolved task, since these
scenes are indeed composed of objects and background of different classes.
Moreover, these objects can be cluttered, occluded, or can appear during a
sequence (in case of video sequence), making it difficult to apply conventional
manipulation techniques.

In image editing, existing works focus either on removing or inserting an
object. Song et al. [110] insert new objects by asking the user to draw precise
segmentation pixels, while Hong et al. [40] only requires a bounding box,
which is simpler compared to drawing segmentation pixels but lacks control.
Instead, Lee et al. in [62] learn to place an object in plausible locations and
with plausible shapes. The task of object removal has been addressed by
image inpainting models that reconstruct the image from contextual pixels
[144, 143]. Thus, the choice is between models that insert objects in controlled
settings and models that inpaint corrupted areas. Our goal is exploring a
novel framework in order to unify these two tasks.

Extending image manipulation models to videos has proved to be a chal-
lenging task. Video generation models have the additional task to model

2



1.1. CONDITIONAL DEEP GENERATIVE MODELS

the time dimension, and provide motion and temporal consistency of edited
objects. Initial attempts in video generation with deep generative models were
based on generative adversarial networks (GANs). Videos can be generated
starting from random noise [119, 96] in an unconditional setting or condi-
tioned with other type of data such as images or semantic maps [85]. In the
former users have usually little control on latent vector and it is challenging to
modify some part of the scene. Indeed, it is difficult from a user perspective
to change the content of the video or the position of some objects by only
altering latent codes. In this direction, Wang et al. [130] have proposed a
video-to-video translation model that takes as input a sequence of semantic
maps or sketches and translate them to a video. Later, Pan et al. in [85] have
proposed a conditional generation model that takes as input the first frame
along its semantic representation and generates a sequence conditioned on it.
However, the former requires the user to draw a sequence of sketches, which
can be difficult and problematic in terms of motion consistency. In the latter,
the user has little to no control on the motion of the scene. And, especially,
on the objects in the scene.

In this thesis, we investigate how we can put humans in the loop and how
we can improve the object interactions in the model. In general, three main
topics are discussed in this thesis:

• Constrained generation. We propose a novel extension of GANs in
which the constraints are embedded into the model during training.

• Image manipulation. Inspired by [40, 110, 131], we propose a model
able to insert and remove objects in the scene, coherently with the rest
of the objects in a single pass.

• Controlled video generation. Following the work of [85] on video gen-
eration and Casas et al. [5] on object interactions, we aim at developing

3



CHAPTER 1. INTRODUCTION

a framework where the user can control the motion of objects through
mouse clicks. Moreover, the adoption of a Graph Neural Network (GCN)
will model object interactions in the video.

1.1.1 Contributions

In Chapter 2, we tackle the problem of structured objects generation by
introducing Constrained Adversarial Networks (CANs). CANs extend uncon-
strained GANs by introducing the embedded constraints into the generator.
During the training, the generator is penalized whenever it outputs invalid
structures. The penalty term is implemented using the semantic loss (SL)
[139], which turns constraints into a differentiable loss function implemented
as an arithmetic circuit. In contrast to other generative models, CANs support
efficient inference of valid structures and allows to turn on and off the learned
constraints at inference time. Moreover, we show how CANs can handle
complex constraints that would be intractable to encode with propositional
logic.

In Chapter 3, we propose a new deep learning method in the field of
image manipulation. Inspired by works on image inpainting [110] and object
insertion [40, 62], the proposed method leverages semantic segmentation to
model the content and structure of the image, and learns the best shape and
location of the object to insert. Our model gives the user the possibility to
either draw an object or to let the network decide its shape and position inside
the missing area. In this case, the generation of a new object is done using a
Variational Auto Encoder (VAE) [54]. Then we use a one-stage architecture
to insert the encoded object instances and inpaint the remaining part of the
missing image using segmentation guidance. Our experiments on urban scenes
datasets show that our proposed approach successfully addresses the problem
of image inpaiting and object insertion/removal.

4



1.1. CONDITIONAL DEEP GENERATIVE MODELS

In Chapter 4 we continue to tackle the problem of multimedia manipulation
but in the video generation scenario. Inspired by works on video generation
[85, 103] and objects interaction in urban scenarios [5], we present a novel
framework that generates video sequences with object motion guidance. This
framework is composed of two main parts: (i) a Graph Neural Network that
models the interactions between the objects in the scene and learn a distribu-
tion in order to sample new object trajectories, and (ii) a Deep Generative
Model based on [85, 107] that takes as input an image, its corresponding
segmentation map and the trajectories generated by the GNN and generates a
video sequence conditioned on the trajectories. Given the conditioned nature
of the framework, the user will have the possibility to decide the trajectories
of some of the objects, while the GNN will take care of the other ones.

1.1.2 Outline

This thesis is organized in three chapters. In Chapter 2 we observe that Gen-
erative Adversarial Networks (GANs) [31] struggle in generating objects that
satisfy hard structural constraint. Here, we propose Constrained Adversarial
Networks (CANs), an extension of GANs in which the constraints are em-
bedded into the model during training. In Chapter 3 we focus on controlling
the manipulation of images of challenging scenarios, such as urban scenes.
Indeed, urban scenes usually contain multiple semantics and objects, which
can be frequently cluttered or ambiguous, thus hampering the performance
of standard manipulation models. Here, we propose a novel deep learning
model to alter a scene by removing a user specified portion of the image
and coherently inserting a new object (e.g., a car or a pedestrian) in that
scene. Chapter 4 analyzes how hard it is to generated coherent videos of
complex scenes. To tackle this task, we introduce a framework for video
generation where the user can control the motion of the synthesized video
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CHAPTER 1. INTRODUCTION

through mouse clicks specifying simple object trajectories of the key objects in
the scene. Finally, we conclude in Chapter 5 where we also explore potential
new directions.

6



Chapter 2

Constrained Adversarial Networks

Many key applications require to generate objects that satisfy hard structural
constraints, like drug molecules, which must be chemically valid, and game
levels, which must be playable. Despite their impressive success [53, 147, 152],
Generative Adversarial Networks (GANs) [31] struggle in these applications.
The reason is that data alone are often insufficient to capture the structural
constraints (especially if noisy) and convey them to the model.

As a remedy, we derive Constrained Adversarial Networks (CANs), which
extend GANs to generating valid structures with high probabilty. Given a
set of arbitrary discrete constraints, CANs achieve this by penalizing the
generator for allocating mass to invalid objects during training. The penalty
term is implemented using the semantic loss (SL) [139], which turns the
discrete constraints into a differentiable loss function implemented as an
arithmetic circuit (i.e., a polynomial). The SL is probabilistically sound,
can be evaluated exactly, and supports end-to-end training. Importantly,
the polynomial – which can be quite large, depending on the complexity
of the constraints – can be thrown away after training. In addition, CANs
handle complex constraints, like reachability on graphs, by first embedding the
candidate configurations in a space in which the constraints can be encoded
compactly, and then applying the SL to the embeddings.

7



CHAPTER 2. CONSTRAINED ADVERSARIAL NETWORKS

Since the constraints are embedded directly into the generator, high-quality
structures can be sampled efficiently (in time practically independent of the
complexity of the constraints) with a simple forward pass on the generator, as
in regular GANs.1 No costly sampling or optimization steps are needed. We
additionally show how to equip CANs with the ability to switch constraints
on and off dynamically during inference, at no run-time cost.

Overall, the main contributions of our work are as follows:

• CANs, an extension of GANs in which the generator is encouraged at
training time to generate valid structures and support efficient sampling,

• native support for intractably complex constraints,

• conditional CANs, an effective solution for dynamically turning on and
off the constraints at inference time,

• a thorough empirical study on real-world data showing that CANs
generate structures that are likely valid and coherent with the training
data.

2.1 Related Work

Structured generative tasks have traditionally been tackled using probabilistic
graphical models [58] and grammars [116], which lack support for representa-
tion learning and efficient sampling under constraints. Tractable probabilistic
circuits [88, 57] are a recent alternative that make use of ideas from knowledge
compilation [17] to provide efficient generation of valid structures. These
approaches generate valid objects by constructing a circuit (a polynomial)
that encodes both the hard constraints and the probabilistic structure of the

1With high probability. Invalid structures, when generated, can be checked and rejected efficiently. In
this sense, CANs are related to learning efficient proposal distributions [3].
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problem. Although inference is linear in the size of the circuit, the latter can
grow very large if the constaints are complex enough. In contrast, CANs
model the probabilistic structure of the problem using a neural architecture,
while relying on knowledge compilation for encoding the hard constraints
during training. Moreover, the circuit can be discarded at inference time.
The time and space complexity of sampling for CANs is therefore roughly
independent from the complexity of the constraints in practice.

Deep generative models developed for structured tasks are special-purpose,
in that they rely on ad-hoc architectures, tackle specific applications, or have
no support for efficient sampling [32, 18, 140, 117]. Some recent approaches
have focused on incorporating a constraint learning component in training deep
generative models, using reinforcement learning [18] or inverse reinforcement
learning [42] techniques. This direction is complementary to ours and is useful
when constraints are not known in advance or cannot be easily formalized
as functions of the generator output. Indeed, our experiment on molecule
generation shows the advantages of enriching CANs with constraint learning
to generate high quality and diverse molecules.

Other general approaches for injecting knowledge into neural nets (like
deep statistical-relational models [69, 73, 76], tensor-based models [94, 19],
and fuzzy logic-based models [75]) are either not generative or require the
constraints to be available at inference time.

2.2 Unconstrained GANs

GANs [31] are composed of two neural nets: a discriminator d trained to
recognize “real” objects x ∈ X sampled from the data distribution Pr, and a
generator g : Z → X that maps random latent vectors z ∈ Z to objects g(x)
that fool the discriminator. Learning equates to solving the minimax game
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mingmaxd fGAN(g, d) with value function:

fGAN(g, d) := Ex∼Pr
[logPd(x)] + Ex∼Pg

[log(1− Pd(x))] (2.1)

Here Pg(x) and Pd(x) := Pd(real |x) are the distributions induced by the
generator and discriminator, respectively. New objects x can be sampled
by mapping random vectors z using the generator, i.e., x = g(z). Under
idealized assumptions, the learned generator matches the data distribution:

Theorem 1 ([31]). If g and d are non-parametric and the leftmost expectation
in Eq. 2.1 is approximated arbitrarily well by the data, the global equilibrium
(g∗, d∗) of Eq. 2.1 satisfies Pd∗ ≡ 1

2 and Pg∗ ≡ Pr.

In practice, training GANs is notoriously hard [98, 78]. The most common
failure mode is mode collapse, in which the generated objects are clustered in
a tiny region of the object space. Remedies include using alternative objective
functions [31], divergences [82, 2] and regularizers [79]. In our experiments,
we apply some of these techniques to stabilize training.

In structured tasks, the objects of interest are usually discrete. In the
following, we focus on stochastic generators that output a categorical distri-
bution θ(z) over X and objects are sampled from the latter. In this case,
Pg(x) =

∫
Z Pg(x|z)p(z)dz =

∫
Z θ(z)p(z)dz = Ez[θ(z)].

2.3 Generating Structures with CANs

Our goal is to learn a deep generative model that outputs structures x

consistent with validity constraints and an unobserved distribution Pr. We
assume to be given: i) a feature map ϕ : X → {0, 1}b that extracts b binary
features from x, and ii) a single validity constraint ψ encoded as a Boolean
formula on ϕ(x). If x is binary, ϕ can be taken to be the identity; later we
will discuss some alternatives. Any discrete structured space can be encoded
this way.

10
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2.3.1 Limitations of GANs

Standard GANs struggle to output valid structures, for two main reasons.
First, the number of examples necessary to capture any non-trivial constraint
ψ can be intractably large.2 This rules out learning the rules of chemical
validity or, worse still, graph reachability from even moderately large data sets.
Second, in many cases of interest the examples are noisy and do violate ψ, in
which case the data lures GANs into learning not to satisfy the constraint:

Corollary 1. Under the assumptions of Theorem 1, given a target distribution
Pr, a constraint ψ consistent with it, and a dataset of examples x sampled
i.i.d. from a corrupted distribution Pr

′ ̸= Pr inconsistent with ψ, GANs
associate non-zero mass to infeasible objects.

This follows easily from Theorem 1, as the optimal generator satisfies
Pg ≡ Pr

′, which is inconsistent with ψ. Since Theorem 1 captures the intent
of GAN training, this corollary shows that GANs are by design incapable of
handling invalid examples.

2.3.2 Constrained Adversarial Networks

Constrained Adversarial Networks (CANs) avoid these issues by taking
both the data and the target structural constraint ψ as inputs. The value
function is designed so that the generator maximizes the probability of
generating valid structures. In order to derive CANs it is convenient to
start from the following alternative GAN value function [31]: fALT(g, d) :=

Ex∼Pr
[logPd(x)]− Ex∼Pg

[logPd(x)].

Let (g, d) be a GAN and v(x) = 1{ϕ(x) |= ψ} be a fixed discriminator
that distinguishes between valid and invalid structures, where |= indicates

2The VC dimension of unrestricted discrete formulas is exponential in the number of variables [124].
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logical entailment. Ideally, we wish the generator to never output invalid
structures. This can be achieved by using an aggregate discriminator a(x)
that only accepts configurations that are both valid and high-quality w.r.t. d.
Let A be the indicator that a classifies x as real, and similarly for D and V .
By definition:

Pa(x) = P (A |x) = P (D |V,x)P (V |x) = Pd(x)1{ϕ(x) |= ψ} (2.2)

Plugging the aggregate discriminator into the alternative value function gives:

argmax
a

fALT(g, a) (2.3)

= argmax
d

EPr [logPd(x) + log 1{ϕ(x) |= ψ}]− EPg [logPd(x) + log 1{ϕ(x) |= ψ}] (2.4)

= argmax
d

EPr [logPd(x)]− EPg [logPd(x)]− EPg [log1{ϕ(x) |= ψ}] (2.5)

= argmax
d

fALT(g, d)− EPg [log1{ϕ(x) |= ψ}] (2.6)

The second step holds because EPr
[log 1{ϕ(x) |= ψ}] does not depend on d.

If g allocates non-zero mass to any measurable subset of invalid structures, the
second term becomes +∞. This is consistent with our goal but problematic
for learning. A better alternative is to optimize the lower bound:

SLψ (g) := − logPg(ψ) = − logEPg [1{ϕ(x) |= ψ}] ≤ −EPg [log1{ϕ(x) |= ψ}] (2.7)

This term is the semantic loss (SL) proposed in [139] to inject knowledge
into neural networks. The SL is much smoother than the original and it only
evaluates to +∞ if Pg allocates all the mass to infeasible configurations. This
immediately leads to the CAN value function:

fCAN(g, d) := fALT(g, d) + λSLψ (g) (2.8)

where λ > 0 is a hyper-parameter controlling the importance of the constraint.
This formulation is related to integral probability metric-based GANs, cf. [63].
The SL can be viewed as the negative log-likelihood of ψ, and hence it rewards
the generator proportionally to the mass it allocates to valid structures. The
expectation in Eq. 2.7 can be rewritten as:

Ex∼Pg [1{ϕ(x) |= ψ}] =
∑

x:ϕ(x)|=ψ

Pg(x) = Ez

 ∑
x:ϕ(x)|=ψ

∏
i :xi=1

θi(z)
∏

i :xi=0

(1− θi(z))

 (2.9)
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Figure 2.1: Left: fuzzy logic encoding (using the Łukasiewicz T-norm) of x⊕ y in CNF
format as a function of P (x = 1) and P (y = 1). Middle: encoding of DNF XOR. Right:
SL of either encoding.

Hence, the SL is the negative logarithm of a polynomial in θ and it is fully
differentiable.3 In practice, below we apply the semantic loss term directly to
fGAN, i.e., fCAN(g, d) := fGAN(g, d) + λSLψ (g).

If the SL is given large enough weight λ then it gets closer to the ideal
“hard” discriminator, and therefore more strongly encourages the CAN to
generate valid structures. Under the preconditions of Theorem 1, it is clear
that for λ→ ∞ CANs generate valid structures only:

Proposition 1. Under the assumptions of Corollary 1, CANs associate zero
mass to infeasible objects, irrespective of the discrepancy between Pr and Pr′.

Indeed, any global equilibrium (g∗, d∗) of mingmaxd fCAN(g, d) minimizes
the second term: the minimum is attained by logPg∗(ψ) = 0, which entails
Pg∗(¬ψ) = 0. Of course, as with standard GANs, the prerequisites are
often violated in practice. Regardless, Proposition 1 works as a sanity check,
and shows that, in contrast to GANs, CANs are appropriate for structured
generative tasks.

A possible alternative to the SL is to introduce a differentiable knowledge-
based loss into the value function by relaxing the constraint ψ using fuzzy logic,
as done in a number of recent works on discriminative deep learning [19, 75].
Apart from lacking a formal derivation in terms of expected probability of

3As long as Pg(x) > 0, which is always the case in practice.
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satisfying constraints, the issue is that fuzzy logic is not semantically sound,
meaning that equivalent encodings of the same constraint may give different
loss functions [29]. Figure 2.1 illustrates this on an XOR constraint: the
“fuzzy loss” and its gradient change radically depending on whether the XOR
is encoded as CNF (left) or DNF (middle), while the SL is unaffected (right).

Evaluating the Semantic Loss The sum in Eq. 2.9 is the unnormalized
probability of generating a valid configuration. Evaluating it requires to sum
over all solutions of ψ, weighted according to their probability with respect
to θ. This task is denoted Weighted Model Counting (WMC) [7]. Naïvely
implementing WMC is infeasible in most cases, as it involves summing over
exponentially many configurations. Knowledge compilation (KC) [17] is a
well known approach in automated reasoning and solving WMC through
KC is the state-of-the-art for answering probabilistic queries in discrete
graphical models [7, 22, 123]. Roughly speaking, KC leverages distributivity
to rewrite the polynomial in Eq. 2.9 as compactly as possible, often offering
a tremendous speed-up during evaluation. This is achieved by identifying
shared sub-components and compactly representing the factorized polynomial
using a DAG. Target representations for the DAG (OBDDs, DNNFs, etc. [17])
differ in succinctness and enable different polytime (in the size of the DAG)
operations. As done in [139], we compile the SL polynomial into a Sentential
Decision Diagram (SDD) [16] that enables efficient WMC and therefore exact
evaluation of the SL and of its gradient. KC is key in making evaluation
of the Semantic Loss and of its gradient practical, at the cost of an offline
compilation step – which is however performed only once before training.

The main downside of KC is that, depending on the complexity of ψ,
the compiled circuit may be large. This is less of an issue during training,
which is often performed on powerful machines, but it can be problematic for
inference, especially on embedded devices. A major advantage of CANs is
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that the circuit is not required for inference (as the latter consists of a simple
forward pass over the generator), and can thus be thrown away after training.
This means that CANs incur no space penalty during inference compared to
GANs.

The embedding function ϕ The embedding function ϕ(x) extracts Boolean
variables to which the SL is then applied. In many cases, as in our molecule
experiment, ϕ is simply the identity map. However, when fed a particularly
complex constraint ψ, KC may output an SDD too large even for the training
stage. In this case, we use ϕ to map x to an application-specific embedding
space where ψ (and hence the SL polynomial) is expressible in compact form.
We successfully employed this technique to synthesize Mario levels where the
goal tile is reachable from the starting tile; all details are provided below.
The same technique can be exploited for dealing with other complex logical
formulas beyond the reach of state-of-the-art knowledge compilation.

2.3.3 Conditional CANs

So far we described how to use the SL for enforcing structural constraints
on the generator’s output. Since the SL can be applied to any distribution
over binary variables, it can also be used to enforce conditional constraints
that can be turned on and off at inference time. Specifically, we notice that
the constraint can involve also latent variables, and we show how this can be
leveraged for different purposes. Similarly to InfoGANs [10], the generator’s
input is augmented with an additional binary vector c. Instead of maximizing
(an approximation of) the mutual information between c and the generator’s
output, the SL is used to logically bind the input codes to semantic features
or constraint of interest. Let ψ1, . . . , ψk be k constraints of interest. In order
to make them switchable, we extend the latent vector z with k fresh variables
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c = (c1, . . . , ck) ∈ {0, 1}k and train the CAN using the constraint:

ψ =
∧k
i=1(ci ↔ ψi)

where the prior P (c) used during training is estimated from data.

Using a conditional SL term during training results in a model that can be
conditioned to generate object with desired, arbitrarily complex properties
ψi at inference time. Additionally, this feature shows a beneficial effect in
mitigating mode collapse during training, as reported in Section 2.4.2.

2.4 Experiments

Our experimental evaluation aims at answering the following questions:

Q1 Can CANs with tractable constraints achieve better results than GANs?

Q2 Can CANs with intractable constraints achieve better results than GANs?

Q3 Can constraints be combined with rewards to achieve better results than
using rewards only?

We implemented CANs4 using Tensorflow and used PySDD5 to perform knowl-
edge compilation. We tested CANs using different generator architectures on
three real-world structured generative tasks.6 In all cases, we evaluated the
objects generated by CANs and those of the baselines using three metrics
(adopted from [100]): validity is the proportion of sampled objects that
are valid; novelty is the proportion of valid sampled objects that are not
present in the training data; and uniqueness is the proportion of valid unique
(non-repeated) sampled objects.

4The code is freely available at https://github.com/unitn-sml/CAN
5URL: pypi.org/project/PySDD/
6Details can be found in Appendix A.

16

pypi.org/project/PySDD/


2.4. EXPERIMENTS

2.4.1 Super Mario Bros level generation

In this experiment we show how CANs can help in the challenging task of
learning to generate videogame levels from user-authored content. While
procedural approaches to videogame level generation have successfully been
used for decades, the application of machine learning techniques in the creation
of (functional) content is a relatively new area of research [112]. On the one
hand, modern video game levels are characterized by aesthetical features that
cannot be formally encoded and thus are difficult to implement in a procedure,
which motivates the use of ML techniques for the task. On the other hand,
the levels have often to satisfy a set of functional (hard) constraints that are
easy to guarantee when the generator is hand-coded but pose challenges for
current machine learning models.

Architectures for Super Mario Bros level generation include LSTMs [111],
probabilistic graphical models [33], and multi-dimensional MCMC [109]. Mar-
ioGANs [117] are specifically designed for level generation, but they only
constrain the mixture of tiles appearing in the level. This technique cannot
be easily generalized to arbitrary constraints.

In the following, we show how the semantic loss can be used to encode
useful hard constraints in the context of videogame level generation. These
constraints might be functional requirements that apply to every generated
object or might be contextually used to steer the generation towards objects
with certain properties. In our empirical analysis, we focus on Super Mario
Bros (SMB), possibly one of the most studied video games in tile-based level
generation.

Recently, [127] applied Wasserstein GANs (WGANs) [2] to SMB level
generation. The approach works by first training a generator in the usual way,
then using an evolutionary algorithm called Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) to search for the best latent vectors according
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to a user-defined fitness function on the corresponding levels. We stress
that this technique is orthogonal to CANs and the two can be combined
together. We adopt the same experimental setting, WGAN architecture and
training procedure of [127]. The structured objects are 14 × 28 tile-based
representations of SMB levels (e.g. Fig. 2.2) and the training data is obtained
by sliding a 28 tiles window over levels from the Video game level corpus [113].

We run all the experiments on a machine with a single 1080Ti GPU for 4
times with random seeds.

CANs with tractable constraints: generating SMB levels with pipes

In this experiment, the focus is on showing how CANs can effectively deal
with constraints that can be directly encoded over the generator output. Pipes
are made of four different types of tiles. They can have a variable height but
the general structure is always the same: two tiles (top-left and top-right) on
top and one or more pairs of body tiles (body-left and body-right) below (see
the CAN - pipes in picture in Fig. 2.2 for examples of valid pipes). Since
encoding all possible dispositions and combinations of pipes in a level would
result in an extremely large propositional formula, we apply the constraint
locally to a 2× 2 window that is slid, horizontally and vertically, by one tile
at a time (notice that all structural properties of pipes are covered using this
method). The constraint consists of a lot of implications of the type “if this is
a top-left tile, then the tile below must be a body-left one” conjoined together
(see the Appendix A for the full formula). The relative importance of the
constraints is determined by the hyper-parameter λ (see Eq. 2.8).

There are two major problems in the application of the constraint on pipes
when using a large λ: i) vanishing pipes : this occurs because the generator
can satisfy the constraint by simply generating layers without pipes; ii) mode
collapse: the generator may learn to place pipes always in the same positions.
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GAN - pipes CAN - pipes GAN - playable CAN - playable

Figure 2.2: Examples of SMB levels generated by GAN and CAN. Left: generating levels
containing pipes; right: generating reachable levels. For each of the two settings we report
prototypical examples of levels generated by GAN (first and third picture) and CAN
(second and fourth picture). Notice how all pipes generated by CAN are valid, contrarily to
what happens for GAN, and that the GAN generates a level that is not playable (because
of the big jump at the start of the map).

We address both issues by introducing the SL after an initial bootstrap phase
(of 5, 000 epochs) in which the generator learns to generate sensible objects,
and by linearly increasing its weight from zero to λ = 0.2. The final value for
λ was chosen as the highest value allowing to retain al least 80% of pipe tiles
on average with respect to a plain GAN. All experiments were run for 12, 000
epochs.

Table 2.1 reports experimental results comparing GAN and CAN trained
on all levels containing pipes. CAN manage to almost double the validity of
the generated levels (see the two left pictures in Fig. 2.2 for some prototypical
examples) while retaining about 82% of the pipe tiles and without any
significant loss in terms of diversity (as measured by the L1 norm on the
difference between each pair of levels in the generated batch) or cost in terms
of training (roughly doubled training times). Inference is real-time (< 40 ms)
for both architectures.

These results allow to answer Q1 affirmatively.
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Model # Maps Validity (%) Average pipe-tiles / level L1 Norm Training time

GAN 7 47.6 ± 8.3 7.8 0.0115 1h 12m
CAN 7 83.2 ± 4.8 6.4 0.0110 2h 2m

Table 2.1: Comparison between GAN and CAN on SMB level generation with pipes.
The 7 maps containing pipes are mario-1-1, mario-2-1, mario-3-1, mario-4-1, mario-4-2,
mario-6-2 and mario-8-1, for a total of 1, 404 training samples. Results report validity,
average number of pipe tiles per level, L1 norm on the difference between each pair of
levels in the generated batch and training time. Inference is real-time (< 40 ms) for both
architectures.

CANs with intractable constraints: generating playable SMB levels

In the following we show how CANs can be successfully applied in settings
where constraints are too complex to be directly encoded onto the generator
output. A level is playable if there is a feasible path7 from the left-most to the
right-most column of the level. We refer to this property as reachability. We
compare CANs with CMA-ES, as both techniques can be used to steer the
network towards the generation of playable levels. In CMA-ES, the fitness
function doesn’t have to be differentiable and the playability is computed
on the output of an A* agent (the same used in [127]) playing the level.
Having the SL to steer the generation towards playable levels is not trivial,
since it requires a differentiable definition of playability. Directly encoding
the constraint in propositional logic is intractable. Consider the size of a
first order logic propositional formula describing all possible path a player
can follow in the level. We thus define the playability constraint on the
output of an embedding function ϕ (modelled as a feedforward NN) that
approximates tile reachability. The function is trained to predict whether
each tile is reachable from the left-most column using traces obtained from
the A* agent. See Appendix A for the details.

Table 2.2 shows the validity of a batch of 1, 000 levels generated respectively

7According to the game’s physics.
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Network type Level Tested samples Validity Training time Inference time per sample

GAN mario-1-3 1000 9.80% 1 h 15 min ∼ 40 ms
GAN + CMA-ES mario-1-3 1000 65.90% 1 h 15 min ∼ 22 min

CAN mario-1-3 1000 71.60% 1 h 34 min ∼ 40 ms

GAN mario-3-3 1000 13.00% 1 h 11 min ∼ 40 ms
GAN + CMA-ES mario-3-3 1000 64.20% 1 h 11 min ∼ 22 min

CAN mario-3-3 1000 62.30% 1 h 27 min ∼ 40 ms

Table 2.2: Results on the generation of playable SMB level. Levels mario-1-3 (123 training
samples) and mario-3-3 (122 training samples) were chosen due to their high solving
complexity. Results compare a baseline GAN, a GAN combined with CMA-ES and a CAN.
Validity is defined as the ability of the A* agent to complete the level. Note that inference
time for GAN and CAN is measured in milliseconds while time for GAN + CMA-ES is in
minutes.

by plain GAN, GAN combined with CMA-ES using the default parameters
for the search, and a forward pass of CAN. Each training run lasted 15000

epochs with all the default hyper parameters defined in [127], and the SL
was activated from epoch 5000 with λ = 0.01, which validation experiments
showed to be a reasonable trade-off between SL and generator loss. Results
show that CANs achieves better (mario-1-3 ) or comparable (mario-3-3 )
validity with respect to GAN + CMA-ES at a fraction of the inference time.
At the cost of pretraining the reachability function, CANs avoid the execution
of the A* agent during the generation and sample high quality objects in
milliseconds (as compared to minutes), thus enabling applications to create
new levels at run time. Moreover, no significant quality degradation can be
seen on the generated levels as compared to the ones generated by plain GAN
(which on the other hand fails most of the time to generate reachable levels),
as can be seen in Fig. 2.2. With these results, we can answer Q2 affirmatively.

2.4.2 Molecule generation

Most approaches in molecule generation use variational autoencoders (VAEs)
[30, 60, 15, 99], or more expensive techniques like MCMC [101]. Closest to
CANs are ORGANs [32] and MolGANs [18], which respectively combine Se-
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quence GANs (SeqGANs) and Graph Convolutional Networks (GCNs) with a
reward network that optimizes specific chemical properties. Albeit comparing
favorably with both sequence models [49, 32] (using SMILE representations)
and likelihood-based methods, MolGAN are reported to be susceptible to
mode collapse.

In this experiment, we investigate Q3 by combining MolGAN’s adversarial
training and reinforcement learning objective with a conditional SL term on
the task of generating molecules with certain desirable chemical properties.
In contrast with our previous experimental settings, here the structured
objects are undirected graphs of bounded maximum size, represented by
discrete tensors that encode the atom/node type (padding atom (no atom),
Carbon, Nitogren, Oxygen, Fluorine) and the bound/edge type (padding
bond (no bond), single, double, triple and aromatic bond). During training,
the network implicitly rewards validity and the maximization of the three
chemical properties at once: QED (druglikeness), SA (synthesizability) and
logP (solubility). The training is stopped once the uniqueness drops under
0.2. We augment the MolGAN architecture with a conditional SL term,
making use of 4 latent dimensions to control the presence of one of the 4

types of atoms considered in the experiment, as shown in Section 2.3.3.

Conditioning the generation of molecules with specific atoms at training
time mitigates the drop in uniqueness caused by the reward network during
the training. This allows the model to be trained for more epochs and results
in more diverse and higher quality molecules, as reported in Table 2.3.

In this experiment, we train the model on a NVIDIA RTX 2080 Ti. The
total training time is around 1 hour, and the inference is real-time. Using
CANs produced a negligible overhead during the training with respect to
the original model, providing further evidence that the technique doesn’t
heavily impact on the training. This results suggest that coupling CANs with
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Reward for SL validity uniqueness diversity QED SA logP

QED + SA + logP
False 97.4 2.4 91.0 47.0 84.0 65.0
True 96.6 2.5 98.8 51.8 90.7 73.6

Table 2.3: Results of using the semantic loss on the MolGAN architecture. The diversity
score is obtained by comparing sub-structures of generated samples against a random
subset of the dataset. A lower score indicates a higher amount of repetitions between
the generated samples and the dataset. The first row refers to the results reported in the
MolGAN paper.

a reinforcement learning objective is beneficial, answering Q3 affirmatively.

2.5 Conclusion

We presented Constrained Adversarial Networks (CANs), a generalization
of GANs in which the generator is encouraged during training to output
valid structures. CANs make use of the semantic loss [139] to penalize the
generator proportionally to the mass it allocate to invalid structures and. As
in GANs, generating valid structures (on average) requires a simple forward
pass on the generator. Importantly, the data structures used by the SL, which
can be large if the structural constraints are very complex, are discarded
after training. CANs were proven to be effective in improving the quality of
the generated structures without significantly affecting inference run-time,
and conditional CANs proved useful in promoting diversity of the generator’s
outputs.

23



CHAPTER 2. CONSTRAINED ADVERSARIAL NETWORKS

24



Chapter 3

Semantic-Guided Image Inpainting

Manipulating images to insert and remove objects automatically is of paramount
relevance for a large number of real-world applications including data aug-
mentation, photo editing and Augmented Reality (AR). Recent literature has
shown promising results in image manipulation to translate images from one
domain to another [47, 152, 12, 71, 106, 107, 70], inpaint missing parts of
images [144, 80, 50], and change portion of faces and fashion garments [34, 50].
However, manipulating images (i.e. adding, reconstructing and removing ob-
jects) of complex scenes is a challenging and still unsolved problem. Complex
scenes are indeed characterized by multiple semantics and objects, which are
often cluttered or occluded, making it difficult to apply conventional image
inpainting techniques.

Existing works on image editing focus either on object insertion or removal.
Solutions to the former task usually require users to draw segmentation
pixels [40] or a precise bounding box of the object to be inserted [62], while
object removal has been addressed by image inpainting [144, 80, 50], which
reconstructs the most probable pattern from contextual pixels. Thus, one
has to choose between models that insert objects in controlled settings and
models that inpaint corrupted areas. Moreover, complex scenes (e.g. urban
scenes) are often overlooked in favour of natural scenes and photographs
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1. Remove objects via input shape

2. Remove objects / area inpainting

3. Insert objects via random sampling
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4. Insert objects via input shape
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Figure 3.1: Our holistic model can be applied in a wide range of manipulations in complex
scenes. At inference time users can remove objects by either precisely indicating a mask or
an entire area. Moreover, they can insert new objects (e.g. cars, pedestrians) by randomly
generating them or by feeding a segmentation mask as input.

with a small number of semantic classes, which allows the use of different
stratagems to guide the generative network. In non-complex scenes, literature
relies on edge maps [80] and object contours [138], which results are however
not satisfactory when the missing region is large or complex.

In this chapter, we focus on complex urban scenes that contain multiple
objects, clutter and numerous semantic classes. We propose a novel and
unified framework to manipulate images by removing and inserting objects.
We formulate the problem by learning to reconstruct (inpaint) missing regions
and generate plausible shapes of objects to be inserted. To help the model
at understanding complex scenes, we leverage information from semantic
segmentation maps in order to guide the network in both the encoding and
the decoding phases. We learn to accurately generate both the semantic
segmentation and the real pixels enforcing them to be consistent with each
other. To this end, we design and propose a novel decoder module based on
Spatially-Adaptive (DE) normalization (SPADE) [86] that uses the predicted
segmentation to normalize generated features and synthesize high-quality im-
ages. Differently from previous works, our unified framework allows numerous
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use cases at inference time. For example, users can interact with the model
by precisely removing the pixel of an object, removing entire areas, inserting
random sampled objects or placing input shapes directly in the scene (see
Figure 3.1).

To evaluate our framework, we conduct experiments on two large-scale
datasets of urban scenes, namely Cityscapes [14] and Indian Driving [125].
These datasets consist of a large number of semantic classes (on average 17)
and diverse and unstructured environmental conditions, which make them
a perfect benchmark for complex scene manipulations. Our results show
that with the proposed method we can insert and place objects in existing
complex scenes generating high-quality images, outperforming state-of-the-art
approaches on image inpainting.

Overall, the main contributions of our work are as follows:

• We propose a new holistic framework to manipulate complex scenes and
allow users to insert and remove different types of objects in a single
pass. At inference time, users can do a wide range of manipulations,
considering different types of object insertion and removal operations.

• We design a new decoder module based on SPADE [86] that uses the
predicted segmentation map instead of the ground truth. Thus, at
inference time we allow the use of SPADE without asking the user to
specify the precise semantic pixels of the desired transformation.

• We validate the proposed solution in the challenging task of manipulation
of urban scenes using two large-scale datasets, namely Cityscapes and
Indian Driving. Quantitative and qualitative results show that our
method significantly outperforms the state of the art models in all the
experiments.
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3.1 Related Work

Our work is best placed in the literature of image inpainting and image
manipulation. The former aims at restoring a damaged image or remove
undesired objects, while the latter tries to synthetize new images with a
user-specified object.

Image inpainting. Image inpainting approaches have witnessed a dramatic
improvement in image quality especially thanks to deep learning methods, in
particular to Generative Adversarial Networks (GANs) [31]. Most notably,
Pathak et al. [87] propose an encoder-decoder network, inspired by auto-
encoder approaches, which synthetizes a part region of the image depending
on its surroundings. The combination of reconstruction and adversarial
losses are shown to be sufficient for the neural networks to inpaint the missing
region of the image. However, blurry results and disconnected edges frequently
occur in generated regions. Thus, Iizuka et al. [43] propose to use dilated
convolutions to increase the receptive field and combine the global and local
discriminators to improve the quality of the generated patches. Yu et al. [143]
instead propose the use of a two-stage approach to first coarsely reconstruct the
image and then refine the coarse details. An additional contextual attention
module is proposed to capture distant information. Zheng et al. [150] focus
on generating multiple plausible results for the same missing region by using
a Variational-Autoencoder (VAE). Finally, Yu et al. [144] propose a spatial
region-wise approach that normalizes the corrupted and uncorrupted regions
with two different means and variances.

Recently, various efforts using structural information have been explored
to better reconstruct edges and contours. For example, Nazeri et al. [80]
and Jo et al. [50] use input edge maps during the image inpainting. Xiong
et al. [138] use object contours and a multi-stage process to disentangle
the background from a foreground object. Ren et al. [93] instead focus
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on reconstructing missing structures of free-form missing parts through a
flow-based method. Song et al. [110] explore semantic segmentation images
to guide the reconstruction in a two-stage process. However, most of the
techniques found to be effective in non-complex scenes (e.g. faces, simple
scenes) result in non-satisfactory reconstructions due to the higher clutter
and number of different semantics of complex scenes. Moreover, existing
approaches based on image inpainting remove existing objects and reconstruct
the background patterns without inserting new objects.

Image manipulation. Image manipulation aims at modifying an existing
image towards a user-desired outcome. In image-to-image translation this
outcome is usually changing the visual appearance of an image while maintain-
ing the original structure (e.g. blonde hair woman ↔ black hair man). For
example, literature has shown promising results on translating domains in the
image space (e.g. blonde hair woman to black hair woman) [47, 152, 12, 71],
and from the image space to the semantic space [47, 131]. There has been
also some efforts towards free-form editing, where the mask is not rectangular
nor regular. Notable example is free-form editing of faces and fashion pictures
where people draw a sketch of the desired transformation [21, 50].

However, synthesising new object instances in an existing complex scene
is a challenging task as it involves the generation of a reliable structure and
appearance, which has to fit harmoniously with the structure of the rest of the
image. This problem has been much less studied in the literature. Ouyang et
al. [84] propose a conditional GAN operating on the image manifold to insert
plausible pedestrians into an urban scene. Hong et al. [40] instead suggest to
focus on the semantic segmentation, inpaint missing regions and paste into
them a segmentation mask provided by the user as input. Lee et al. [62]
propose a network that predicts the location and the shape of different objects
(namely pedestrian and car) to insert them in the semantic segmentation
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Figure 3.2: (left) Our model synthetizes a new image (xFILLED) and its segmentation
(sFILLED) from an incomplete image (xBLANKED), its segmentation map (sBLANKED) and an
optional instance, which might be sampled from a latent distribution (z ∼ N (0, I)) or fed
in input. The two discriminators encourage the generation of samples that resemble the
real data distribution. (right) Our decoder block in the generator is based on SPADE [86].
We propose a modification to use the predicted segmentation map instead of the ground
truth segmentation and adopt a multi-scale segmentation loss to better learn it.

space. Finally, Berlincioni et al. [4] focus on semantic segmentation removing
cars and pedestrians from a road layout by feeding the binary masks in
input to the model. However, existing work allow users to either insert or
delete objects from an existing scene. Interestingly, most of the literature
focus just on the semantic segmentation space leaving to another network
(e.g. pix2pix [47]) the generation of real pixels. This results in a fragmented
approach that makes it difficult to edit an existing image. To the best of
our knowledge, our approach is the first which permits to model multiple
object instances’ types and which allows, at the same time, to remove and
reconstruct portions of images.

From layout to images. Noteworthy are the preliminary results in the
related task of layout-to-image generation, which starts from a sparse object
layout to synthetize plausible images. Pavllo et al. [114] created a layout-
to-mask-to-image system starting from a bounding box layout to generate
plausible segmentation maps and images. Zhao et al. [149] started from a scene

30



3.2. APPROACH

description graph to generate possible images that correspond to the input
graph. These works focus on synthetizing plausible images from an empty
frame either using segmentation masks or bounding box layouts. However,
in our setting we want to generate new objects and reconstruct images that
have to fit and adapt well in the existing complex scene. Moreover, most of
the layout-to-mask-to-image works test only few semantics and objects, while
in our setting there are on average 17 different object categories per image.

3.2 Approach

In this chapter, we aim at editing an image by removing and inserting object
instances (e.g. car or pedestrian) in an existing urban context. At inference
time, users can thus remove existing objects by blanking-out a portion of
the image and asking the network to insert an object instance to replace the
removed one (see Figure 3.1).

Inspired by recent literature of image inpainting, we propose a one-stage
deep architecture that predicts the missing parts of the given images but also
inserts new object instances. Our model allows the user to specify the exact
position of the object or to let the network decide where to insert it inside
a bigger area. We learn a latent space of object shapes from which sample
the plausible objects to be inserted. To help the network dealing with this
challenging task, we guide the generation of new images through semantic
segmentation. Figure 3.2 shows an overview of the proposed network.

Formally, given an image xBLANKED ∈ RH×W×3, its segmentation map sGT ∈
RH×W×C (C is the number of classes in the segmentation map), a latent code
z ∼ N (0, I) and a one-hot encoding label c ∈ RD, we want to synthetize
a new image xFILLED. Instead of the missing area, this image has to contain
an object instance of class c and to have the missing part reconstructed
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resembling the ground truth image xGT ∈ RH×W×3, which is the original
image without the blanked-out area.

Training the network. For a pair of images (xGT, sGT) in the dataset, we
randomly generate a binary image mask m ∈ {0, 1}H×W×1 that defines the
area of the original image to be blanked out. Whenever the mask m contains
an object belonging to the modelled classes (e.g. car and pedestrian) we
extract also the binary mask ms ∈ {0, 1}H×W×1 that is 0 everywhere except
in the pixel locations of the object. We note that the mask m might be much
bigger than the object mask ms. Then, we use the image mask m, to define
xBLANKED = xGT ⊙m and sBLANKED = sGT ⊙m.

To ease the description of our method, we split it in two parts: object
generation and inpainting, which are described as follows.

3.2.1 Learning to generate instances

We aim at inserting new objects in the semantic space. Given an object ms,
we want to learn a generative function starting from a latent code and a
class generating the object Gs(z, c) = ms. As inserting a new object is an
ambiguous task (e.g. pedestrians might have different poses or shapes), we
want to learn to generate multiple plausible objects and results from which
the user can choose from. Thus, we focus on learning a latent distribution
of object shapes through an encoder network Es, which will be then used to
synthetize a new object shape in a VAE-fashion [56]. The VAE allows the
generation of multiple objects by sampling multiple times from the learned
latent distribution.

The shape and size of each object shape depends on its type (e.g. pedes-
trian) but also on its location in the scene. For example, pedestrians on the
lower left part of the image are usually bigger than pedestrians on the upper
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part of the image, due to the different perspective. Thus, we formulate the
problem as learning an encoder z ∼ Es(ms, c, l), where l is the location
vector of the shape.

Inspired by VAE literature [56], we assume a low-dimensional latent space
distributed as a Gaussian, from which we can sample z ∼ N (0, I) where I is
the identity matrix. Finally, we learn the encoder to learn the distribution
with:

LV AEs = −DKL(Es(ms, c, l)∥N (0, I)) (3.1)

where DKL(p∥q) = −
∫
p(t) log p(t)

q(t)dt is the Kullback-Leibler divergence. This
loss is ultimately expected to lead at learning the true posteriors of the latent
distribution.

Then, we encourage the generated mask m̂s to be as similar as possible to
the original one after the sampling.

Lrecs = ∥ms − m̂s∥1 (3.2)

We learn to generate realistic instances in an adversarial Least Square
GAN [74], i.e. considering a loss:

Ladvs (Gs, Ds) =
1

2
Ems

[(Ds(ms))
2] +

1

2
Em̂s

[(Ds(m̂s)− 1)2] (3.3)

where Ds is the discriminator of object instances, based on DCGAN [89].

We jointly train the generator Gs and discriminator Ds using the following
objective function:

Ladvs (Gs, Ds) = λV AEs LV AEs + λrecs Lrecs + λadvs Ladvs (3.4)

3.2.2 Learning to inpaint

The goal of our model is not only to insert a new instance in the image, but also
to modify the surrounding part by either altering the shape of existing objects,
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or removing them. Thus, we aim to complete the blanked image xBLANKED and
insert the object instance m̂s in the urban scene. As the task of inserting
a new object operates on the semantic space, we facilitate the network by
using the semantic segmentation, which is often available either through large
scale human annotated datasets [14, 125, 81] or semi/weakly/un-supervised
approaches [131, 64, 52].

Given a blanked image xBLANKED, its corresponding segmentation sBLANKED,
and a desired object class c, the network has to output an image xFILLED

and its corresponding segmentation sFILLED, which have the blanked part
reconstructed and with the object instance inserted. Following Figure 3.2,
we feed the network with the three inputs and we sample z from the latent
distribution. Eim encodes the image xBLANKED, while Ese encodes both sBLANKED

and the generated instance m̂s. We note that, since m̂s is a binary image,
the network has to understand the object class from its shape. The intuition
behind the two-streams encoder is that Eim focuses on learning the style of
the image, while Ese focuses on the content and semantic by means of the
semantic segmentation.

The two encoders are then jointly fused in the feature level through a
composition of several Residual Blocks [37]. Then, in the decoder of the
network, the image inpainting and semantic segmentation are progressively
generated and updated across various decoder blocks with the segmentation
map used to guide the inpainting of the masked image.

Segmentation reconstruction and decoder block. Motivated by the
impressive results of the SPADE [86] normalization on image generation
from semantic segmentation, we propose a new decoder block to guide the
generation process. In the original formulation, SPADE exploits a human
drawn semantic segmentation to synthetize photorealistic images. Here, we
instead guide the normalization with a predicted segmentation map, thus
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without relying on human drawn semantic segmentations. This choice has two
prominent advantages: i) it does not require the segmentation of the desired
outcome (as we want to inpaint, we do not have it), and ii) it alleviates the
mode collapse of the generated results that permits the nice consequence to
have multiple diverse images.

Figure 3.2 (right) shows our decoder block. First, we get as input the fea-
tures of the previous layer and upsample them using an upsampling sub-pixel
convolution [104]. These upsampled features are used to predict the segmen-
tation map slFILLED and forwarded to the SPADE Resblock [86]. To remove
any dependency of the batch we also replace SPADE Batch Normalization in
favour of Instance Normalization [120].

To encourage consistency of real pixels and segmentation masks, but
also of segmentation masks across the decoder layers, we use a multi-scale
segmentation loss between the predicted segmentation mask and the ground
truth

Lsec = −
C∑
k

m∑
i=0

skGT log(upscale(ski )) (3.5)

where C is the number of considered semantics (e.g. road, car), and upscale
interpolates si to match the size of sGT and compute Lsec on highly detailed
segmentation maps.

Image reconstruction. We encourage the network at reconstructing the
image with different state of the art losses:

• Pixels reconstruction. Given an image sampled from the data distribution,
we should be able to reconstruct it after encoding and decoding. This can
be obtained using:

Lrecc = ∥xFILLED − xGT∥1 (3.6)

The L1 loss encourages the generation of sharper images than the L2 [47].
The loss is normalised by the mask size.
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• Feature-Matching Loss. Inspired by [131], the feature-matching loss com-
pares the activation maps of the layers of the discriminator. This forces
the generator to produce images whose representations are similar to the
ground truth in the discriminator space. It is defined as:

LFMc = E
[ K∑
k=1

L∑
i=1

∥D(i)
k (xkGT, s

k
GT)−D

(i)
k (xkFILLED, s

k
GT)∥1

K

]
(3.7)

where K is the number of scales of the discriminator, L is the last layer
of the discriminator and D(i)

k is the activation map of the ith layer of the
discriminator.

• Perceptual and Style Loss. First introduced in [27, 51], Lpercc is used to
penalize results that are not perceptually similar to the source image, in this
case the ground truth, and it is particularly important in complex scenes,
where multiple details and objects are present. The perceptual distance is
measured by the distance between the activation maps of the two images
using a pretrained network. Formally:

Lpercc = E
[ 4∑
i=1

1

Ni
∥ϕl(xFILLED)− ϕl(xGT)∥1

]
(3.8)

where ϕi corresponds to the activation map of the i-th layer of a ImageNet
pre-trained VGG-19 network [108]. Ni = HjWjCj is a normalization factor
that takes into account the number of elements of VGG-19. The activation
maps of the VGG-19 network are also used to compute the style loss, Lstylec ,
which measures the differences between covariances of the activation maps
and penalizes the style shifting of the two images. Formally:

Lsytlec = Ej
[ ∥∥∥(Gϕ

j (xFILLED)−Gϕ
j (xGT))

∥∥∥
1

]
(3.9)

where Gϕ
j is computed as Gϕ

j = ψψT 1
Ni

, ψ is ϕj reshaped into a Cj ×HjWj

matrix. Similarly to Lpercc , the style loss encourage high quality results in
complex scenes.
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We learn the generation through an adversarial with a Least Square
loss [74]. We construct the adversarial game with a multiscale discriminator
PatchGAN [131, 47]

Ladvc (Gs, Ds) =
K∑
k=1

1

2
ExGT[(D

k
g(x

k
GT, s

k
GT))

2]+

1

2
ExFILLED[(D

k
g(x

k
FILLED, s

k
GT)− 1)2]

(3.10)

where K is the number of scales and k refers to the kth scale of the image
and segmentation map. Each layer k of the discriminator Dg takes as input
the generated image xkFILLED and the ground truth segmentation map skGT. The
ground truth segmentation map skGT is here useful to verify the coherence
between the generated image and the semantic segmentation.

The entire inpaint network is trained with the following losses:

LDc
= Ladvc (Gc, Dc) (3.11)

LGc
=Ladvc (Gc, Dc) + λrecc Lrecc (Gc) + λpercc Lpercc (Gc)+

λstylec Lstylec (Gc) + λFMc LFMc (Gc) + λcrossc Lcrossc (Gc)
(3.12)

where λrec, λperc, λstyle, λFM and λcross are hyper-parameters for the weights
of the corresponding loss terms. The value of most of these parameters come
from the literature. We refer to Appendix B for the details.

3.3 Experiments

We conduct a quantitative evaluation on two widely recognized datasets for
urban benchmarks, namely Cityscapes [14] and the Indian Driving [125]. The
former is focused on European contexts while the latter exhibits a higher
diversity of pedestrians and vehicles, but also ambiguous road boundaries
and conditions. For both the datasets we first resize the images to height
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256, then we random crop them to 256 × 256. Inspired by literature [14], we
aggregate the 35 segmentation map categories into 17 groups for Cityscapes,
and in Indian Driving we follow a similar approach from 40 categories to 21
groups. We refer to Appendix B for additional details.

3.3.1 Baselines

As baselines we select three state of the art models for image manipulation,
namely Hong et al [40], and inpainting, i.e. SPG-Net [110] and RN [144].
Hong et al [40] is a two-stage manipulation model that uses the segmentation
mask and insert or remove objects from an image. The user is required to
specify the exact bounding box where to insert the object. SPG-Net is a
two-stage inpainting network that leverages the semantic segmentation as
input, while RN is a one stage inpainting network learning a normalization
layer to achieve consistent performance improvements over the previous works.
We used the source code released by RN authors, while we implemented from
scratch SPG-Net following the description of the original paper as the code
was not available. We release the code of our model and the implementation
of SPG-Net.

3.3.2 Experimental settings

We design the following two testing setups for our network.

Restore. We test the models for image inpainting, where a portion of the
image is blanked out and the network has to generate a plausible portion of
the image.

Place. We test the models for the task of object insertion and image
inpainting together. Thus, we blank out a portion of the image. The networks
have to reconstruct the image and the desired object has to be present in the
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reconstruction. As SPG-Net and RN are not able to insert objects, we modify
them to use an instance sampled from the latent space trained with the same
VAE we use in our proposal. We call these networks SPG-Net* and RN*.
Since Hong et al [40] is only able to place objects as big as the bounding
box, we first restore the missing part, then we ask the network to place a new
object in the exact position where the ground truth object is. We note that
this setting might favour Hong et al [40] model.

In order to conduct a fair comparison with [110], for the restore task we use
rectangular masks. Thus, for each image, we create a single rectangular mask
at random locations. Each mask can have a size that goes from 32x32 up to
128x128. For the place task, we maintain the same size of the mask of the
restore one but we change the position. In particular, we firstly extract a valid
instance from the instance-wise annotation of each image. We pre-process
the dataset extracting information for each object discarding instances that
are too small or occluded from other objects. Then, we randomly choose
one from the list of valid objects and we generate the mask based on the
position of the instance. Whenever an image does not contain a valid object,
we generate a new mask at random position. We release the generated mask
to ease the comparison of future research with our model.

3.3.3 Evaluation

We evaluate generated results through image quality and instance accuracy.
We measure image quality through the Peak Signal-to-Noise Ratio (PSNR)
and the Fréchet Inception Distance (FID) [38]. The FID is the Wasserstein-
2 distance between the generated and real image feature representations
extracted from a pre-trained Inception-V3 model [115]. Higher PSNR and
Lower FID values indicate higher image quality.

To measure the presence of inserted objects we use the F1 metric through
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Table 3.1: Quantitative results for our model and the baselines. We evaluate the models
through image quality (PSNR and FID) and accuracy of instance insertion (F1).

Model
Cityscapes Indian Driving

PSNR↑ FID↓ F1↑ PSNR↑ FID↓ F1↑

R
es

to
re

Hong et al. [40] 31.07 7.26 0.00 30.31 6.34 0.00
SPG-Net [110] 31.36 7.97 0.00 29.95 6.39 0.02
RN [144] 32.16 9.64 0.00 29.83 11.14 0.02
Our proposal 32.95 5.08 0.06 30.97 5.45 0.05

P
la

ce

Hong et al. [40] 31.08 7.26 0.10 30.32 6.32 0.91
SPG-Net* 31.37 7.96 0.60 29.94 6.38 0.87
RN* 31.74 9.79 0.54 29.62 10.76 0.71
Our proposal 32.96 5.05 0.91 30.98 5.43 0.97

the use of a pre-trained YOLOv3 [92] network, which detects whether the
desired instances are inserted. Higher scores indicate that the network is
inserting synthetic objects that resemble the real ones. For the restore
experimental setting, we compute the score by detecting whether at least one
of the modelled instances (i.e. cars and pedestrians) is inserted.

Perceptual user study. We also run a perceptual study asking 19 users to
conduct a user study on both datasets. Each user evaluates 38 random images,
19 for each experimental setting. For each image we show the original masked
image and the generated output of all the networks. The users are asked to
select the best output judging the realism and quality of reconstructed pixels.

3.4 Results

Quantitative results. We evaluate our proposal with the state of the
art solutions in two settings: restore and place, which test the ability to
inpaint missing portions of images and manipulate an image (insert, remove,
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Figure 3.3: Qualitative evaluation on the task of object insertion and inpainting. The first
two rows show results on the Cityscape dataset while the last two rows show the Indian
Driving results. We show the results on the same multi-domain model conditioned on two
types of object insertion: cars and pedestrians.

reconstruct), respectively. Table 3.1 shows that our approach outperforms
all the compared models in the two settings. In particular, we observe that
our model significantly improves the quality of generated images, measured
through FID and PSNR. In the restore setting, we observe that, as expected,
all inpaiting models collapse to object removal, rarely proposing the insertion
of a new object in an existing scene. Thus, we condition existing models to
insert new objects (place setting). Without significant losses on the image
quality, we observe that both SPG-Net* and RN* learn to insert object
instances. However, our proposal greatly improves both the image quality
and the accuracy of object insertion, which increases on average by 18% and
310% in Indian Driving and Cityscapes, respectively. Overall, we also show
that merely changing existing models (RN and SPG-Net) does not achieve
state of the art performance.
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Qualitative results. We begin by commenting on the results of the most
challenging place experimental setting. Figure 3.3 shows four different images
from which we want to reconstruct the missing part but also insert a user-
defined object (e.g. car or pedestrian). We can see that our method correctly
inserts the required object, while others struggle at doing it, especially in
Cityscapes. While RN is often able to generate object shapes that are correctly
detected by YOLOv3 [92], a visual inspection of the second and fourth row
of Figure 3.3 highlights that the object is poorly colorized. Moreover, all the
baselines fail at adapting the reconstructed pixel to the scene. In particular,
SPG-Net and Hong et al. suffer from significant blurriness and artifacts (see
Figure 3.3 first rows), while RN unreliably reconstructs the edges and result
in blurry reconstructions. On the contrary, our proposal results in sharper
images and distinguishable inserted objects.

We now discuss the restore results where the model has only to reconstruct
missing parts of the image. Figure 3.4 shows that our model generates sharper
images with pixels that are well adapted in the original scene. In particular,
we observe that our model can reconstruct even the horizontal road marking
quite well (see the first row Figure 3.4). State of the art models, instead, seem
to struggle at the reconstruction. These poor results might be a consequence
of two main reasons. First, RN focuses on free-form missing parts, while
we might generate big areas where their normalization might fail. Second,
the reason behind the “checkerboard” artifacts of SPG-Net might lie on the
Deconvolution applied in the decoder in order to upsample the features.
Indeed, Deconvolution has been shown to produce results that present various
artifacts [83] and that can be reduced using style loss [97].

Thus, we propose a new decoder block, based on SPADE, that jointly
predicts the segmentation and real pixels. By using the predicted segmentation
as input to the SPADE normalization, we guide the decoder to reconstruct
semantics that are consistent with the real pixels. As a result, edges and
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contours are visually pleasing and better reconstructed than the state of the
art models. It is worth noting that our decoder can also be applied easily to
other existing models.

Our holistic framework can be applied in a wide range of manipulations of
complex scenes. Thus, we also test our model performance in inserting and
removing an user specified input shape (see Figure 3.1 for the manipulation
types). Qualitative and quantitative results for these two tasks show that
our model significantly outperforms the baselines (see Appendix B Figure B.1
and Figure B.2). Surprisingly, we qualitatively observe that RN generates
low quality results and visible boundaries even in the free-form task in which
they focus, highlighting the challenge of complex scene manipulation.

Input image Hong et al. [40] SPG-Net RN Our

Figure 3.4: Qualitative evaluation on the task of inpainting without object insertion. The
first row shows results on the Cityscape dataset, while the last row shows the Indian
Driving results. Zoom in for better details.

Perceptual user study. The user study shows that our generated images
have been selected 85% of the time. Specifically, our results are perceptually
better 90% and 80% of the time in the restore task and place tasks respectively.

Ablation. Our model introduces various novel components and different
state of the art losses whose contribution has to be validated. We performed
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Table 3.2: Ablation study of the architecture and input quality.

Model PSNR↑ FID↓

Our proposal (A) 32.96 5.05
(A) w/o Lstyle 32.68 5.38
(A) w/o LFM 32.66 5.30
(A) w/o Ese and sBLANKED 32.35 5.42
(A) w/o SPADE 32.57 5.56

(A) using DeepLabv3 [9] segmentation 32.85 5.11

an ablation study on Cityscapes, which is the standard testbed for inpainting
in complex scenes.

We begin by testing the contribution of the style Lstyle and feature matching
LFM losses. Table 3.2 shows that removing one of the two losses results in
a small performance drop. However, qualitative results show they reduce
the “checkerboard” artifacts in the image, which is confirmed by recent
literature [97] (see Appendix B).

Similar to SPG-Net, our network uses a segmentation mask in input, which
is supposed to guide the network at learning a better feature representation.
However, it is arguably a costly choice as it requires human annotations.
Moreover, our decoder block predicts the segmentation and uses the SPADE
normalization, which might be sufficient to have high-quality results. To
test these two hypotheses, we first train a network without the segmentation
encoder Ese and the segmentation map sBLANKED. From Table 3.2, we can
observe a significant drop in performance, but our network still performs
better than state of the art without these two components. Thus, this setting
might be considered in limited-resource scenarios. Then, we test the use
of predicted segmentation maps instead of the ground truth maps. So, we
use segmentation images generated by a pre-trained segmentation predictor
DeepLabv3 [9]. We observe no significant performance degradation.
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Finally, we observe that by removing the entire SPADE block we see a
significant negative effect on image quality. However, these results are better
than the state of the art models, which show that the contribution of our
model is not only a consequence of SPADE. We refer to Appendix B for
additional ablations for components of our SPADE block.

3.5 Conclusion

In this chapter, we proposed a novel framework that unifies and improve
previous methods for image inpainting and object insertion. At inference
time, users interact with our model by feeding as input an image and its
segmentation that have blanked area, and optionally an object (label or shape)
to be inserted. The model encodes both the two input images, samples from a
latent distribution whenever a class label is fed, and reconstructs the images.
If users desire to insert the object, the reconstructed images contain it as
expected.

To encourage high quality reconstructions, we use semantic segmentation
maps both in input and in the decoder. Specifically, we proposed a new
decoder block that is based on SPADE and mixes a semantic prediction task
with the normalization to generate adequate images. We believe that this
decoder block might be applied to a wide range of tasks that exploit the
semantic segmentation to generate new images.

To the best of our knowledge, we are the first at learning to jointly remove,
inpaint and insert objects of multiple types in a single one-stage model. We
hope that our work will stimulate future research on the challenging manip-
ulation of complex scenes, having multiple cluttered objects and semantic
classes.
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Chapter 4

Controllable Video Generation

Recent years have witnessed several breakthroughs in the generation of high
dimensional data such as images [12, 20, 72] or videos [119, 129]. However,
most practical and commercial applications require to control generated visual
data on inputs provided by the user. For instance, in image manipulation,
photo editing software [45] applies deep learning models to allow users to
change portions of an image [144, 102, 80].

Regarding videos, several possible ways to control the generated sequences
have been considered. For instance, the generation of frames can be con-
ditioned on simple categorical attributes [36], short sentences [66] or sound
[118]. An interesting recent research direction comprises works that attempt
to condition the video generation process providing motion information as
input [119, 133, 106, 107]. These approaches allow to generate videos of
moving faces [133], human silhouettes and, in general, of arbitrary objects
[119, 106, 107]. However, these works mainly deal with videos depicting a
single object. It is indeed extremely more challenging to animate images and
generate videos when multiple objects are present in the scene, as there is no
simple way to disentangle the information associated with each object and
easily model and control its movement.

This chapter introduces Click to Move (C2M), the first approach that allows
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Figure 4.1: Illustration of the video generation process of Click to Move (C2M): 1) the
user selects the objects in a scene and specify their movements. 2) Our network models
the interactions between all objects through the GCN and 3) predicts their displacement.
4) The network produces a realistic and temporally consistent video.

users to generate videos in complex scenes by conditioning the movements of
specific objects through mouse clicks. Fig.4.1 illustrates the video generation
process of C2M. The user only needs to select few objects in the scene and
to specify the 2D location where each object should move. Our proposed
framework receives as inputs an initial frame with its segmentation map
and synthesizes a video sequence depicting objects for which movements are
coherent with the user inputs. The proposed deep architecture comprises
three main modules: (i) an appearance encoder that extracts the feature
representation from the first frame and the associated segmentation map, (ii)
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a motion module that predicts motion information from user inputs and image
features, and (iii) a generation module that outputs the synthesised frame
sequence. In complex scenes with multiple objects, modelling interactions
is essential to generate coherent videos. To this aim, we propose to adopt a
Graph Neural Network (GCN), which models object interactions and infers the
plausible displacements for all the objects in the video, while respecting the
user’s constraints. Experimental results show that our approach outperforms
previous video generation methods on two publicly available datasets and
demonstrate the effectiveness of the proposed GCN framework in modelling
object interactions in complex scenes.

Our work is inspired by previous literature that generates videos from
an initial frame and the associated segmentation maps [85, 103]. From
these works, we inherit a two-stage procedure where we first estimate the
optical flows between an initial frame and all the generated frames, and
subsequently refine the image obtained by warping the initial frame according
to the estimated optical flows. However, our framework improves over these
previous works as it allows the user the possibility to directly control the
video generation process with simple mouse clicks. Similarly to the work of
Hao et al. [35], we propose to control object movements via sparse motion
inputs. However, thanks to the GCN, our approach can deal with scenes with
multiple objects, while [35] cannot. Furthermore, the method in [35] does
not explicitly consider the notion of object, as it does not use any instance
segmentation information, and does not model the temporal relation between
multiple frames. We instead work on multiple frames and in the semantic
space, so the user can intuitively select the object of interest and move it in a
temporal consistent way. The use of semantic information is motivated by
recent findings in the area of image manipulation where it has been shown
that semantic maps are beneficial in complex scenes [1, 62].

Overall, the main contributions of our work are as follows:
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• We propose Click to Move (C2M), a novel approach for video generation
of complex scenes that permits user interaction by selecting objects in
the scene and specifying their final location through mouse clicks.

• We introduce a novel deep architecture that leverages the initial video
frame and its associated segmentation map to compute the motion
representations that enable the generation of frame sequence. Our deep
network incorporates a novel GCN that models the interaction between
objects to infer the motion of all the objects in the scene.

• Through an extensive experimental evaluation, we demonstrate that the
proposed approach outperforms its competitors [85, 103] in term of video
quality metrics and can synthesize videos where object movements follow
the user inputs.

4.1 Related Works

Video generation with user control. With the recent progress in deep
video synthesis, researchers have focused in designing new approaches that
include user input in the generation process. Video generation can be con-
trolled by different means. For example, MoCoGAN [119] disentangles videos
into motion and content latent spaces. Therefore, it is possible to control
videos by “copying" the action from another video or by changing the identity
of the person. Chan et al. [6] propose to generate dance videos following a
“do as I do" motion transfer strategy: body poses are estimated for every
frame of another video and transferred to control the pose of the person in
the generated video. Wiles et al. [133] control human face motion through a
driving vector that can be extracted from videos or pose information. Siaro-
hin et al. [106, 107] propose an approach suitable to arbitrary objects and
learn motion representations without requiring specific prior knowledge. This
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approach can be employed with various types of videos, ranging from human
bodies to robotics. Regarding audio-visual methods, talking heads video can
be generated from an initial image and an input audio clip [133, 8, 151]. In
this chapter, we propose a novel framework that involves the user in the
generation process. However, while previous works mostly focus on generating
videos depicting a single object (e.g. a face or human body), we address the
more challenging task of video synthesis of complex scenes where multiple
objects have to move consistently while accounting for user input.

Future frame prediction. The problem we address in this work is closely
related to future frame prediction, which aims to generate a video sequence
given its initial frames. Early works formulate the problem as a deterministic
prediction task [23, 77, 128]. However, this formulation cannot work on
most real world videos due to the inherent motion uncertainty. Thus, recent
approaches adopt adversarial [59] or variational [25, 61, 119] formulations that
can model stochasticity. Several works focus on the architectural design and
propose to estimate optical flow [59, 24, 67, 65] to generate the future frames
by warping the previous one. Other works study solutions for long term
predictions [126, 39, 141, 91]. Similarly, Li et al. [65] propose a multi-step
network that first generates an optical flow, then converts it back to the RGB
space to generate novel videos. Instead, Zhang et al. [148] propose to employ
an optical flow encoder that maps motion information to a latent space. At
test time, different random motion vectors can be sampled to generate video
with different motion.

When it comes to complex environment involving multiple objects, addi-
tional supervision is highly beneficial. For example, Wu et al. [134] use video
frames, optical flows, instance maps and semantic information together to
decouple the background from the dynamic objects and thus predict their
trajectory. Similarly, Hao et al . [35] show that providing sparse motion tra-
jectories to their model helps generating videos with higher quality. However,
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contrary to our approach, their method does not take advantage of instance
segmentation and does not model object interactions.

Recently, Pan et al. [85] and Sheng et al. [103] have proposed to get a
benefit from segmentation information to improve video generation. Videos
are generated from a single frame and the corresponding segmentation map.
Both approaches are based on a two-stage procedure. The first stage aims
at estimating the optical flow between the initial frame and every generated
frame. In the the second stage, the initial frame is warped according to the
optical flow and refined by an encoder-decoder network. Inspired from these
works, our approach adopts a similar variational auto-encoder framework
boosted with optical flow and occlusion supervision. However, we include a
novel Graph Convolutional Network (GCN) that models object interactions
and takes into account the sparse motion vectors provided by the user.

+ D

Generation Module

Motion Encoding

Appearance Encoding

Training
Encoder Decoder

FC

FC

Test

GCN

GCN

Decoder

Figure 4.2: Our network is composed of three modules, namely (i) Appearance encoding,
(ii) Motion encoding, and (iii) Generation module. The Appearance Encoding focuses on
learning the visual appearance from X0. The Motion Encoding models the interactions
between the objects, predicts their displacement, encodes the motion, and generates the
optical flow and occlusion mask for the Generation Module, which focuses on generating
temporal consistent and realistic videos. On the right, we show our GCN module to model
objects’ interactions.
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4.2 Click to Move framework

We aim at generating a video from its initial frame X0 ∈ RH×W×3 and a set
of user-provided 2D vectors that specify the motion of the key objects in the
scene. At test time, we assume that we also have at our disposal the instance
segmentation maps of the initial frame. Our system is trained on a dataset of
videos composed of T frames with the corresponding instance segmentation
maps at every frame. As we will see later, in practice, instance segmentation
is obtained using a pre-trained model.

Considering a set of C classes, we assume that N objects are detected
at time t in the frame Xt ∈ RH×W×3. The instance segmentation is rep-
resented via a segmentation map St ∈ {0, 1}H×W×C , a class label map
Ct ∈ {1, ..., C}H×W and an instance map It ∈ {1, ..., N}H×W that specifies
the instance index for every pixel. At test time, the user provides the motion
of the M objects in the scene by drawing 2D arrows corresponding to the
displacement between the barycenter of the object in X0 and the object’s
desired position at time T (See Fig. 4.1). Notably, the user is free to provide
motion vectors for as many objects as desired. Therefore the motion vectors
are represented by a list M = {(δm, im), 1 ≤ m ≤ M}, where δm ∈ R2

contains the barycenter displacement of the object with instance index im.
At training time, the list M is obtained by randomly sampling objects in
every video and estimating their corresponding δm, which is defined as the
displacement of the instance segmentation’s barycenters between the first and
last frame.

The proposed framework is articulated in three main modules, as illustrated
in Fig. 4.2. First, the Appearance encoding is in charge of encoding the initial
frame. This module receives as input the concatenation of the initial frame
X0, the segmentation S0 and the instance map I0, while it outputs a feature
map za via the use of an Encoder EA. Second, the Motion encoding, predicts
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the video motion from the motion vectors provided by the user and the image
features za. This module includes a novel Graph Convolutional Network
(GCN) that infers the motion of all the objects in the scene by combining
the object motion vectors in M and the image features za. This motion
module is described in Sec. 4.2.2 while the details specific to our GCN are
given in Sec. 4.2.1. Finally, the Generation module is in charge of combining
the encoded appearance and the predicted motion to generate every frame of
the output video.

4.2.1 Object motion estimation with GCNs

Our GCN aims at inferring the motion of all the objects in the scene by
combining the motion vectors provided by the user and the image features
za. This section first describes the specific message-passing algorithm that
we introduce to model the motion vectors. Then we show how our GCN
is embedded into a Variational Auto-Encoder (VAE) framework to allow
sampling the possible object motions that respect the user’s constraints.

Handling user control with GCNs. We propose to use a graph to model
the interactions between the objects in the scene. Each node corresponds to
one of the N objects detected in X0. The graph is obtained fully connecting
all the objects with each other. Let us introduce the following notations: fn is
the feature vector for the nth object and is extracted from za via region-wise
average pooling. dn ∈ R2 is the estimated barycenter displacement for the nth

object. Finally, un ∈ {0, 1} is a binary value that specifies whether the object
motion has been provided by the user (un = 1) or if it should be inferred
(un=0).

In a standard GCN [136], the layer-wise propagation rule specifies how the
features f (k)

n at iteration k of the node n are computed from the features of
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it neighbouring nodes at the previous iteration f
(k−1)
j :

f (k)
n =

∑
j∈N(n)

1√
Dnj

θ⊤f (k−1)
n (4.1)

where N(n) denotes the neighbours of the node n, θ are the trainable param-
eters and Dnj is a normalization factor equal to the sum of the degree of the
nodes n and j. In our context, we need to modify this update rule to take
into account that the object motion of each node is either known or unknown.
Besides, we propose two different propagation rules for the node features fn
and the motion vectors dn. We propose to make these rules depending on un.
If un = 1, the node corresponds to an object with a motion controlled by the
user and we update only the features:

f (k)
n = f (k−1)

n +
∑

j∈N(n)

1√
Dnj

θ⊤
f (f

(k−1)
n ⊕ d(k−1)

n ) (4.2)

d(k)
n = d(k−1)

n . (4.3)

Here, θf denotes the trainable parameters and ⊕ is the concatenation op-
eration. This formulation allows propagating feature information through
the node while keeping the object motion constant for the nodes with known
motion. Note that, in equation 4.2, we opt for a residual update since the
messages from the neighbouring nodes are added to the current value f

(k−1)
n .

Our preliminary results showed that equation 4.1 update rule ended up with
all the nodes having the exact same features. On the contrary, the residual
update that helped objects converging to better features. Indeed, this residual
update can be seen as skip connections, similar to those of resnet architec-
tures, that allow gradient information to pass through the GCN updates and
mitigate vanishing gradient problems.

If un=0, the node corresponds to an object with unknown motion and we
update both the features and the motion vector. The feature update remains
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identical to equation 4.2 and the motion vector is updated as follows:

d(k)
n = d(k−1)

n +
∑

j∈N(n)

1√
Dnj

θ⊤
d (f

(k−1)
n ⊕ d(k−1)

n ) (4.4)

where θd denotes the trainable parameters for the motion estimation. This
novel propagation rule allows to aggregate the information contained in the
neighbouring nodes to refine the motion estimation of nodes with unknown
motion. In the next section, we detail how this GCN is embedded into a VAE
framework in order to sample possible object motions.

Overall architecture for motion sampling. Our GCN is embedded
into a VAE framework composed of an encoder and a decoder network. At
training time, we employ an encoder and a decoder while only the decoder is
used at test time, as illustrated in Fig. 4.2-Right. Note that the features fn
condition both the encoder and the decoder. The goal of the encoder network
is map the input value dn of every node to a latent space zn. This encoder is
implemented using a GCN that employs the propagation rule described in
Sec 4.2.1 and receives as input fn ⊕ dn for every node. For every node, the
latent variable zn is given by f

(k)
n after the last message propagation update.

We assume zn follows a unit Gaussian distribution (zn ∼ N (0, 1)). The
decoder network receives as input the randomly sampled latent variable zn

for the nodes with unknown motion (i.e. un = 0) and is trained to reconstruct
the input motion dn. The decoder is implemented with another GCN with
the same propagation rules and with inputs f (0)

n ⊕ d
(0)
n where f

(0)
n = fn and:

d(0)
n =


FC(zn) if un = 0
M∑
m=1

1(im = n)δm if un = 1.
(4.5)

where 1 denotes the indicator function and FC(.) denotes a fully-connected
layer that projects the sampled latent variable zn to the space of dn (i.e. R2).
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Intuitively, the sum in equation 4.5 iterates over all the objects in M to select
the corresponding motion vector provided by the user.

At test time, the GCN encoder is not used. The latent variable zn is
sampled according to our unit Gaussian prior distribution for every object
with unknown motion and forwarded to the decoder. The decoder outputs
the 2D motion of every object in the scene.

4.2.2 Motion encoding

This module is in charge of predicting the optical flows and the occlusion maps
between the initial frame X0 and every frame that has to be generated. To
this aim, for every time step t, we compute a binary tensor Bt ∈ {0, 1}H×W

that specifies the locations of the objects in the scene. At time t= 0, the
object-location map B0 is computed from the instance segmentation map I0:

∀(i, j) ∈ H ×W,B0[i, j] =
N∑
n

1(I0[i, j] = n). (4.6)

For t > 0, Bt cannot be estimated with the previous equation since It is
not known at test time. Instead, we consider a simple rigid model for every
object and obtain Bt by warping B0 according to the the object motion dt.
At training time, dt is estimated from the segmentation maps while, at test
time, we employ d̂t, which is the displacement predicted by our GCN. Finally,
this object-location tensor is mapped to a latent tensor zs via an encoder ES.

Note that, the output video cannot be fully encoded via the initial frame
and the motion of each object since there exist other sources of variability
such as the appearance of new objects or change in object sizes. Therefore, we
introduce a latent motion variable zm that encodes all the motion information
that cannot be described by zs and za. We employ an auto-encoder strategy
at training time, estimating zm from the complete video sequence with an
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encoder EM . More precisely, EM receives as input the concatenation of all
the video frames, the instance segmentation maps S0 and I0, and the optical
flow for every frame. At test time, the latent motion code zm is sampled
according to the prior distribution (i.e. zm ∼ N (0, I)).

Finally, we provide the latent variables za, zs and zm to the same decoder,
which outputs the bi-directional optical flows and occlusion maps. More
precisely, the decoder outputs the forward and the backward optical flow at
every time steps denoted by Ff

t and Fb
t respectively and the corresponding

occlusion maps Of
t and Ob

t . Note that the backward optical flows and occlusion
maps are then provided to the generation modules, while the forward optical
flow and occlusion maps are used only for loss computation.

4.2.3 Generation module and training objectives

We employ a generation module inspired by [107]. After two down-sampling
convolutional blocks applied on the initial frame X0, we obtain a feature map.
We proceed independently for every frame to generate and warp the feature
map according to the optical flow predicted by the motion module. Then
we multiply the warped feature map by the occlusion map predicted by the
occlusion estimator to diminish the impact of the features corresponding to
the occluded parts. Finally, the masked feature maps are fed to a subsequent
network to output the generated video. This network is composed of several
residual blocks, followed by two up-sampling convolutional blocks.

Objective functions. Our GCN framework employs the evidence lower
bound of the VAE framework. It is composed of a reconstruction term on the
predicted motion vector and the Kullback-Leibler divergence (KL) between
the conditional distribution of zn and its unit Gaussian prior:

LV AE =
1

N

N∑
n=0

∥dn − d̂n∥1 −DKL(zn∥N (0, I)), (4.7)
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where d̂n is the displacement predicted by the GCN.

Forward-backward Consistency. Similarly to [102], we ensure the cycle con-
sistency between forward and backward optical flows. More precisely, for
every non-occluded pixel location p, we minimize the L1 distance between
the corresponding optical flows:

LFc(F f , F b) =
1

T

T∑
i=1

∑
p

Of
t (p)|F

f
t (p)− Fb

t(p+ Ff
t (p))|1

+ Ob
t(p)|Fb

t(p)− Ff
t (p+ Fb

t(p))|1

(4.8)

Smoothness. Following [103], we employ a smoothness loss that penalizes high
gradient values in the optical-flow map that do not correspond to high-gradient
values in the image X0 (for more details refer to [103]).

Supervised flow. To improve the quality of the generated videos in our multi-
objects setting, we take advantage of a pre-trained FlowNet2 [44] network for
optical flow and occlusion estimation. FlowNet2 provides high quality optical
flow maps that we use as supervision for our motion decoder network using a
standard L1 loss.

Motion Encoding uncertainty. To allow the sampling of zm at test time, the
output of the motion encoder EM is mapped to a unit Gaussian distribution
via the KL-divergence:

Lm =−DKL(zm∥N (0, I)) (4.9)

Generation module. The generation module is trained using state-of-the-art
losses for video generation. Following [74, 131, 47] we adopt a PatchGAN
discriminator trained with a Least Square loss. For the generator, we apply
the structural similarity loss [132], the perceptual loss [51], feature matching
loss [131], and a standard pixel-level reconstruction L1 loss.
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4.3 Experiments

Datasets. We evaluate our model with two publicly available datasets,
namely Cityscapes and KITTI 360.

• Cityscapes [14] provides videos at 17 Frames Per Second (FPS) of European
urban scenes. We resize all images to 256× 128 resolution for performance
reasons. The dataset contains 2975 video sequences for training and 500
video sequences for testing. Since Cityscapes does not provides instance and
semantic segmentations for the video sequences, we used [11] to generate
them.

• KITTI 360 [137] provides a richly annotated videos at 11 FPS in German
suburban areas. We resize all images to 192× 64 resolution. The dataset
for our evaluation contains 6941 training videos and 423 test sequences. We
aggregate the segmentation categories to match the 19 classes of Cityscapes.

Baselines. We compare with the state-of-the-art model for video generation
in complex scenarios, i.e. Sheng et al. [103], which can generate high-quality
videos from a staring frame and its associated semantic segmentation map.
Since Sheng et al. [103] is not able to generate videos controlling object
positions, we modify it by including the object location tensor Bt into the
appearance encoder of the original model. We call this model Sheng*. For
a fair comparison, we also test our approach with a variant of the method
of Sheng et al., referred to as S. Sheng*, where we add our Supervised flow
loss that uses the supervision of a pretrained network in order to improve
optical flow prediction. We note that Sheng et al. [103] is an extension of Pan
et al. [85] and that these two works correspond to the same method. Thus,
Pan et al. [85] is not included in our comparison. It is also worth that Hao et
al. [35] is not included in the baselines, as it focuses on image generation and
does not explicitly model the semantic space. Thus, it would be unfair to
compare Hao et al. with our method on the temporal consistency and object
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displacements in videos.

Settings. We design three test settings to evaluate our proposal extensively.

• Oracle (O). For each video, we select a random object that has to be moved,
we feed the networks with the ground truth displacements between the
first and last frames, and let the models generate the video. This setting
evaluates the network capacity to benefit from the given sparse motion
information.

• Custom. For each input video, we select a random object that has to be
moved, we feed the networks with displacement shifted by λ = 1.5 (i.e.
d′
n = λdn) and let the models generate the video. This setting evaluates

the network capacity to condition the video on sparse motion inputs, which
are different from the ground truth.

Then, we also experiment a drastic scenario where all the objects are moved
following the Custom. In this experiments, all future positions are provided
as input. In this experiment, the GCN can be by-passed since un = 1 for
every object. This experiments differ from Ground truth and Custom where
our GCN has to infer the plausible future positions of all the objects that are
not provided by the user. In all our experiments, we generate 5 future frames
starting from the provided initial frame.

Evaluation metrics.

• FVD. We adopt the Fréchet video distance (FVD) metric [122] to evaluate
both the video quality and temporal consistency of generated frames. We
compute the FVD between the ground truth test videos and the generated
ones. The lower the FVD, the better.

• NDE. We measure the adherence of generated videos with the user-provided
motions by computing the Normalised Displacement Error (NDE) as the
Euclidean distance between the coordinate specified by the user and the
coordinate where the object ends-up in the generated video, which is then
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normalised Euclidean distance of the ground truth starting coordinate and
the ending one. All object’s positions are detected through YOLOv3 [92].
We discard the objects that cannot be detected in the ground truth videos
due to the resolution of videos, or because objects are too small to be
correctly detected by YOLOv3. The lower the NDE, the better.

• Acc. The object’s positions in generated videos can be difficult to track
due to the presence of artifacts, occlusions and low-quality images. Thus,
we report here the Accuracy (Acc) of the YOLOv3 detector in generated
videos. The higher the Accuracy, the better.

Model FVD↓ NDE↓ Acc↑

A: Our proposal 288 1.01 0.84
B: (A) w/o GCN 369 1.42 0.70
C: (A) w/o Obj. Interactions 375 1.38 0.76
D: (A) w/o Sup. 301 1.13 0.84

Table 4.1: Ablation study results on Cityscapes.

4.3.1 Ablation Study

We conduct an ablation study on Cityscapes to evaluate the impact of the
individual components of the model. We begin by testing the contribution
of our GCN by removing the motion estimation module and directly use
the object location tensor of the user-controlled object Bt in the appearance
encoder. Table 4.1-B shows that removing the motion estimator leads to a
drop in all three metrics. Without the GCN, the network cannot infer the
positions of the objects in the scene and fails at moving the object. The
quality of the video decreases as well (FVD 369 vs FVD 289).

Then, we test a version of the GCNs that does not model the interactions
between objects. To do so, we remove all the edges between the nodes of the
GCN, thus considering each object as independent. Tab. 4.1-C shows that,
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Setting
(N)

Model
Cityscapes KITTI 360

FVD↓ NDE↓ Acc↑ FVD↓ NDE↓ Acc↑

Oracle
(1)

Sheng [103] 373 2.11 0.68 443 3.92 0.68
Sheng* 498 2.12 0.58 507 3.66 0.66
S. Sheng* 493 1.78 0.57 527 3.79 0.33
Ours 288 1.01 0.84 463 1.83 0.75

Custom
(1)

Sheng [103] 373 1.53 0.66 443 3.98 0.62
Sheng* 498 1.61 0.57 506 3.27 0.60
S. Sheng* 493 1.41 0.59 527 3.34 0.30
Ours 303 0.66 0.88 470 2.06 0.81

Custom
(all)

Sheng [103] 373 1.48 0.73 443 2.93 0.48
Sheng* 498 1.47 0.67 506 3.19 0.49
S. Sheng* 493 1.38 0.60 527 2.71 0.24
Ours 321 0.96 0.86 464 1.58 0.72

Table 4.2: Quantitative comparison in the Oracle and Custom setting. N is the number
of user-controlled objects. N = 1 selects one object at random

while the object is correctly moved (NDE and Acc are similar to A), the video
quality is considerably worse. In Appendix C, we qualitatively show that the
network cannot move the other objects consistently.

Finally, we also test the network without flow supervision (i.e. Tab. 4.1-D).
As expected, the performance decreases in NDE and FVD. Nevertheless, the
quality of the image quality measured with FVD remains higher than when
we do not model object interactions (i.e. Tab. 4.1-C).

4.3.2 Comparison with State-of-the-art

Quantitative comparison. We compare our method with the method of
Sheng et al. [103], and its modifications, namely Sheng* and S. Sheng*. To
the best of our knowledge, the method of Sheng et al. [103] model is the most
similar work that generates videos in complex environments also leveraging
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Figure 4.3: Qualitative comparison in the Custom setting on the Cityscapes dataset with
ground truth reference. The position of the moved object at t = 0 is highlighted in red.
Zoom for details.

the semantic space of frames.

Tab. 4.2 shows the quantitative evaluation of all the models. We first
compare our proposal in the Oracle setting, where the displacement dn of
one random object n is computed from ground truth frames. From NDE and
Acc, we observe that our approach consistently outperforms state-of-the-art
methods by enabling the user to move objects more precisely in both the
datasets (see Tab. 4.2-Oracle results). In particular, NDE decreases from
Sheng et al. [103] results by 47% and 53% in Cityscapes and KITTI 360,
respectively. Regarding the video quality, which evaluates both the temporal
consistency and image quality, we significantly improve the state-of-the-art
performance in Cityscapes (FVD decreases by 22.79% from [103]), while in
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Figure 4.4: Results of predicting the frames t + 1, t + 3 , and t + 5 on the Cityscapes
dataset [14] with ground truth reference. On first three columns, we move the pedestrian
near the semaphore to left. On the last three columns we move car crossing the street.
The position of the moved object at t = 0 is highlighted in red. Zoom for details.

KITTI 360 we are slightly worse than Sheng et al. [103]. We hypothesize this
result is caused by the low frame rate of KITTI 360, which rewards Sheng et
al. [103] that is dominated by modelling only the ego-motion, while ignoring
other objects’ movements. Through Sheng* results, we note that adding
the information to move the objects in the scene helps the baseline through
NDE, but the video quality decreases significantly. Only through additional
supervision (i.e. S. Sheng* ), FVD partially decreases. However, our model
is far better at moving the objects in the scene, while having better video
quality than Sheng* and S. Sheng*.

Tab. 4.2-Custom also shows the Custom experiment, where di is multiplied
by λ = 1.5 from the ground truth displacement. Again, we observe that
our proposal offers better control of the object’s movements compared to
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state-of-the-art approaches and improves video quality. Our approach moves
objects to positions that differ from the ground truth, showing that the
Motion Encoding module correctly follows the user inputs, infers the missing
objects and composes them in a temporally consistent manner.

We also perform experiments where we ask the models to move all objects
(i.e. N objects) with the Custom setting. The last rows of Tab. 4.2 show that
our proposal achieves the best results even at this “drastic" task.

Finally, we note that, our approach without supervised optical flow (Tab.4.1-
D) outperforms the existing approaches compared in Tab. 4.2 both in terms
of video quality and object control. This result confirms that the performance
of our approach are not due to our use of supervision for optical flow but
rather to our architecture.

Qualitative comparison. We now report the qualitative comparison for
the tested models. Fig. 4.4 shows the results of two groups of experiments,
where we feed the network with two different initial frames. In the first group
of images, we want to move to the left the pedestrian that in the ground truth
is in the position highlighted with the red bounding box. All three baselines
fail to move the pedestrian. Sheng et al. [103] only moves the ego vehicle
slightly to the right, leaving the pedestrian in the same position, while moving
the entire scene. Sheng* and S. Sheng* moves the ego vehicle forward but
fail at moving the pedestrian, which stays exactly in the same position in all
the frames. C2M, instead, correctly and gradually moves to the left of the
pedestrian, which goes out the red bounding box.

In the second group of images in the last three columns of Fig. 4.4, we
aim to move a car that in the ground truth was in the position highlighted in
red. Sheng et al. [103] can only move the ego-motion forward while the car
remains in the same starting position. The other two baselines slightly move
the car but not to the desired position specified by the user. However, our
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proposal significantly moves the car to the left, which goes partially out from
the bounding box, while changing very little in the ego-motion of the video.

Finally, Fig. 4.3 shows a qualitative example of how our model can modify
the van’s position with different displacement. Moving it to the ground truth
position (λ = 1) and to custom coordinates (λ = 1.5). As seen in the previous
experiment, the baseline fails at moving the white van to the left. Instead, it
stretches the back of the van. In contrast, with λ = 1 and λ = 1.5 the van
goes from the bounding box with different horizontal shifts, depicting that
our network can correctly change the position of the van to the user-specified
positions.

4.4 Conclusion

In this chapter, we introduce Click to Move, a framework for video generation
that allows the user to select key objects in the scene and control their motion
by specifying their position in the last video frame. At test time, our approach
receives the initial frame and the corresponding instance segmentation maps
to generate a video that starts from the provided frame and respects the object
motion constraints specified by the user. Objects in a scene are often not
independent one from another. Thus, we introduce a novel GCN framework
that employs specific message-passing rules to model object interaction while
accounting for the user inputs. Experimentally, we demonstrate that our
method outperforms state-of-the-art approaches and that the proposed GCN
architecture allows better motion control. As future works, we plan to extend
our approach to allow the generation of videos with variable length.
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Chapter 5

Conclusion and Future Work

Deep generative models have shown promising results in video games’ level
generation [111, 117, 127], image-to-image translation [47, 70, 71], video-to-
video translation [130], image inpainting [110, 143, 144] and video generation
[85]. However, in conditional or constrained settings, unconditioned generative
model fails to generate plausible objects because there is little to no control
over the generated output.

In this thesis, we have explored three settings where unconstrained genera-
tive models may struggle.

In Chapter 2, we have presented Constrained Adversarial Networks (CANs)
to solve the problem of structured objects generation. CANs are a generaliza-
tion of vanilla GANs in which the constraints are embedded into the generator.
Specifically, we made use of the Semantic Loss (SL) [139] to penalize the
generator when it generates invalid structures during the training. Unlike
other methods that use post-processing techniques, which affect the inference,
the generation of valid structures only requires a forward pass of the network.
Moreover, the compiled constraints used in the SL can be discarded after
training, thus making possible to use CANs also on low-power devices.

Then, in Chapter 3 and Chapter 4 we shifted to multimedia manipulation.
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Chapter 3 has explored the manipulation of images in challenging urban
scenarios. Here, we have proposed an approach to unify the tasks of object
insertion and image inpainting. In detail, we have introduced a novel method
that alters a complex urban scene by removing a user specified portion of the
image and coherently inserting a new object (e.g. car or pedestrian) in that
scene. Our model is composed of two stages. In the first stage we give the
user the possibility to either draw an object or to let the network decide its
shape and position inside the missing area. The second part of the model
consists of a one-stage architecture that leverages semantic segmentation to
guide the inpainting of the missing part of the image. We test this model on
two complex urban scenes datasets and we show that our proposed approach
successfully address the problem of semantically-guided inpainting of complex
urban scenes.

Finally, in Chapter 4 we have presented a novel framework that generates
video sequences with object motion guidance. In this framework, the user can
control the motion of the synthesized video through mouse clicks specifying
simple object trajectories of the key objects in the scene. The movement of
the objects that are not controlled by the user are modelled using a Graph
Convolution Network (GCN). Then, the model combines an input frame,
its corresponding segmentation map and the trajectories generated by the
GCN, and generates a video sequence conditioned on the trajectories. Our
experiments have shown that this novel method outperforms existing methods
on two publicly available datasets, thus demonstrating the effectiveness of
our GCN framework at modelling object interactions.

The works discussed in this thesis pave the way for various possible future
directions. For example, in an ongoing work, we are investigating how we
can improve the graph neural network proposed in Chapter 4. First of all,
analysing various ways for improving the performance of our GCN, we have
seen that objects that are detected as foreground but are static (e.g. parked
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cars) may have an impact on the performance of the predicted trajectories.
Indeed, in datasets as Cityscapes, where parked cars or static pedestrians
occupy a large portion of the scene, we have noticed that sometimes the
objects move only by few pixels. To solve this issue, we are proposing to
make use of deep learning techniques to detect static foreground objects and
merge them into the background. This will allow our GCN to model the
interaction of only dynamic objects in the scene. Then, we are working for
extending our GCN in order to predict not only the object’s position at time
T, but also its scale and rotation. In particular, for each dynamic object, our
GCN will predict its moving path, scale change, and shape in the future. The
object appearance in the generated frames will be approximated by applying
an affine transformation, predicted using spatial transformation network [48],
on the object in the input frame.

Then, we plan to study how we can apply our graph neural network to video
prediction [134, 25] or video interpolation [135]. In video prediction, given past
frames, we aim at predicting future frames; while in video interpolation, the
objective is predicting the intermediate frames between two frames. Although
having multiple conditioning frames can lead to better ego-motion estimation
and object’s trajectories, these two scenarios are non trivial to solve if we
want to put the human in the loop. Indeed, with respect to video generation,
the user has less control on the possible trajectories that an object can take.

Following the great success of multimodal models in image synthesis [145]
and video generation [41, 26], we are also planning to investigate possible
solutions for the generation of new urban scenes and environments using other
source of data. Thus, exploiting not only images and videos but also data on
structural urban characteristics and social behaviors detected by other sources
of data (e.g. location data or neighborhood characteristics). These models
would have great impact in society since they will be able to understand the
perception of cities.
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Appendix to Chapter 2

A.1 Implementation details

A.1.1 Super Mario Bros Level Generation

The deep neural network for this experiment is based on the DCGANs used
in [127]. Batch normalization and ReLU are applied between the layers of
the generator g, while batch normalization and Leaky ReLU with a slope of
0.2 has been used for the discriminator d. In the last layer of the generator
we apply a softmax activation function to obtain probabilities that are finally
given in input to the Semantic Loss. On the other hand, the generation of
samples is done through the application, always on g, of a stretched softmax
function followed by an argmax, as in [127].

The networks have been trained using the WGAN guidelines [2]. Thus,
the number of iterations on the discriminator has been set to 5 for each
iteration on the generator. RMSProp has been used as optimizer, with a
constant learning rate equal to 0.00005. The batch size used during the
experiments has been set to 32. Layers have been initialized using normal
initializer for both the generator and the discriminator. Moreover, weight
clipping is applied on the weights of d with c equal to 0.01. Finally, the size of
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the latent vector has been set to 32 and sampled from a normal distribution
N (0,1)

Table A.1 shows the network architecture of g and d. In experiments where
the SL is enabled only after some epoch e, in the first epochs before e only
GANs runs are executed. After that threshold, CAN runs are created as a
fork of GAN runs.

Part Input Shape → Output Shape Layer Type Kernel Stride

g

(32) → (1, 1, 32) Reshape. - -
(1, 1, 32) → (h8 , w

8 , 16) Deconv. 4× 4 1× 1

(h8 , w
8 , 16) → (h4 , w

4 , 8) Deconv. 4× 4 2× 2

(h4 , w
4 , 8) → (h2 , w

2 , 4) Deconv. 4× 4 2× 2

(h2 , w
2 , 4) → (h, w, 13) Deconv. 4× 4 2× 2

d

(h, w, 13) → (h2 , w
2 , 64) Conv. 4× 4 2× 2

(h2 , w
2 , 64) → (h4 , w

4 , 128) Conv. 4× 4 2× 2

(h4 , w
4 , 128) → (h8 , w

8 , 256) Conv. 4× 4 2× 2

(h8 , w
8 , 256) → (1, 1, 1) Conv. 4× 4 1× 1

Table A.1: Super Mario Bros Level Generation network architecture.

Details about the pipes constraint

Figure A.1: A decomposed pipe

As reported in Section 2.4, experiment with the constraint on pipes has
been run for 12000 epochs. Figure A.1 shows the various parts composing a
pipe and their disposition. Suppose to call a the matrix boolean variables
corresponding to the output of the generator x with shape 2×2×. Remember
that we apply the constraint separately to windows of size 2× 2, with each
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pixel having 5 channels. The four channels represent the probabilities of the
tiles: [top-left, top-right, body-left, body-right, others ]. In particular, in the
last channel we collapse all the probabilities of the tiles that do not belong to
pipes (air, monsters, walls, ...). Then, given the 2× 2× 5 boolean vector, the
list of the clauses composing the final constraint can be written as:

(a0,0,0 ⇐⇒ a0,1,1) top-left tile requires top-right tile on the right and vice-versa

(a0,0,2 ⇐⇒ a0,1,3) body-left tile requires body-right tile on the right and vice-versa

(a0,0,0 → a1,0,2) top-left tile requires body-left tile below

(a0,1,1 → a1,1,3) top-right tile requires body-right tile below

(a1,0,2 → (a0,0,2 ∨ a0,0,0)) body-left tile requires body-left of top-left above

(a1,1,3 → (a0,1,3 ∨ a0,1,1)) body-right tile requires body-right of top-right above
1∧
i=0

1∧
j=0

OHE(ai,j) One hot encoding over all the 4 positions

Notice that first two indexes describe the position, e.g. 0, 0 means the
upper left corner of the 2 × 2 window, and the third index defines the tile
type.

Details about the reachability constraint

The feedforward neural network ϕ is implemented using a CNN with two final
dense layers, which architecture is described in Table A.2.

Performances of the approximation network ϕ include an accuracy and an
F1-score higher than 94%. Picture A.2 shows examples of how reachability
maps have been approximated with ϕ. The first column contains levels
generated by the GAN. The binary maps have been obtained by summing
the probabilities of all the solid tiles (ground, pipes, ...), given in white. The
second column contains the reachability maps, computed by the A* agent
and averaged over 100 different runs. Finally, the third column shows the
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Input Shape → Output Shape Layer Type Kernel Stride

(h, w, 13) → (h, w, 8) Conv. 3× 3 1× 1

(h, w, 8) → (h, w, 16) Conv. 5× 5 1× 1

(h, w, 16) → (h, w, 24) Conv. 7× 7 1× 1

(h, w, 24) → (h, w, 32) Conv. 9× 9 1× 1

(h, w, 32) → (h, w, 64) Conv. 11× 11 1× 1

(h, w, 64) → (h, w, 96) Conv. 13× 13 1× 1

(h, w, 96) → (h, w, 128) Conv. 15× 15 1× 1

(h, w, 128) → (h, w, 192) Conv. 17× 17 1× 1

(h, w, 192) → (h, w, 32) Dense - -
(h, w, 32) → (h, w, 2) Dense - -

Table A.2: Reachability Network architecture.

reachability maps approximated by the ϕ neural network. Notice how well
does ϕ work: the second and third columns are almost indistinguishable. PR
and P̂R are such that A∗ : Pg → PR and ϕ : Pg → P̂R

A.1.2 Molecule Generation

The MolGAN architecture is composed of three networks, the generator G,
the discriminator D and the reward network R. D and R share the same
architecture, but are trained with different objectives. R is trained to predict
the product of the QED, SA, logP metrics (in [0, 1]). G is optimized to
produce samples that maximize the output of R and are convincing to D, on
top of that, the conditional semantic loss is also applied.
While R is trained in parallel with D and G, the loss of G with respect to the
output of R is activated only after 150 epochs, at which point the adversarial
loss stops being used. The semantic loss is applied to G from the start to the
end of the training. The weight of the semantic loss is equal to 0.9, whereas
the adversarial loss of G has a weight of 0.1.
Improved WGAN is used as the adversarial loss between G and D (ncritic =
5), whereas R is trained to estimate the desired target by mean squared error,
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and G is trained with deep deterministic policy gradient w.r.t. the output of
R, which is seen as a reward to maximize.
Training proceeds until the uniqueness of the batch falling below 0.2. During
training, the learning rate is set at a constant value of 0.001, the batch size
is 32 and there is no dropout. Adam with β1 = 0.9 and β2 = 0.999 is the
optimizer of choice. Batch discrimination is used.
Results are obtained by evaluating a batch of 5000 generated samples.
The input noise z has dimension 32 if the semantic loss is not applied, 36 if
it is applied; with the first 32 dimensions sampled from a standard normal
distribution and the last four from a uniform distribution in [0, 1].
The maximum number of nodes for each molecule is 9, with 5 possible atom
types and 5 bond types. Each molecule is represented by two matrices, one
mapping each node to a label, and one adjacency matrix informing about the
presence or lack of edges between nodes, and their type.
The input noise is received by G and processed by three fully connected layers
of 128, 256, 512 units each, while tanh acts as the activation function; a linear
projection followed by a softmax is then applied to the output of the last
layer to have it matching the size of the adjacency matrices.
D and R share the same architecture (no parameters are shared), based on
two relational graph convolutions [18] of 64, 32 hidden units, followed by an
aggregation as in [18] to obtain a graph level representation of 128 features.
Two fully connected layers of 128, 1 units then reduce the graph embedding
to a single output value, with tanh as the activation for the hidden layer and
with sigmoid being applied on the output in the case of R. The MolGAN
architecture is trained on the QM9 dataset [90, 95] composed of 5000 training
examples.
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Figure A.2: Given some generated levels (first column), this picture compares real reacha-
bility maps computed by the A* agent (second column) and approximated by P̂R (third
column).



Appendix B

Appendix to Chapter 3

B.1 Implementation Details

The encoder of our image completion architecture follows the two-stream
convolutional encoder of [40]. Specifically, both encoders downsample the
input four times, using Instance normalization [121] and ELU [13] as activation
function. The encoder is followed by nine residual blocks. With respect to the
original proposed residual block, we have decided to use dilated convolution
with increasing dilation factor as proposed in [142], Instance normalization
[121], ELU activation [13]. Moreover we have decided to remove the activation
function at the end of each residual block after an evaluation phase. Out
proposed model has been implemented using PyTorch. The batch has been
set to four due to GPU limitation. The model has been trained for 600
epochs for the Cityscapes dataset and for 200 epochs for the Indian Driving
Dataset using Adam [55] as optimizer with a learning rate of 0.0002. For
our experiments we choose λrecon = λperc = λFM = λcross= 10, λstyle = 250,
λV AE= 5 and λinst_recon= 20. Spectral normalization (SN) [79] was used in
in the discriminator. Although recent works [146] have shown that SN can
be used also for the generator, it further increases the training time with
only minor improvements. For this reason, we have decided to not use it.
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The details of the architecture are shown in Table B.1 and Table B.2. We
release the source code of our model and the SPG-Net implementation at
https://github.com/PierfrancescoArdino/SGINet.

Part Input → Output Shape Layer Information

Es

(4104,) → (8128,) FC-(8128), LeakyReLU
(, 8128) → (32, 32, 8) RESHAPE
(32, 32, 8) → (32, 32, 32) CONV-(N32, K3x3, S1, P1), IN, LeakyReLU
(32, 32, 32) → (16, 16, 64) CONV-(N64, K4x4, S2, P1), IN, LeakyReLU
(16, 16, 64) → (8, 8, 128) CONV-(N128, K4x4, S2, P1), IN, LeakyReLU
(8, 8, 128) → (4, 4, 256) CONV-(N256, K4x4, S2, P1), IN, LeakyReLU

(4,4, 256) → (Z,) CONV-(Z, K4x4, S1, P0)
(4,4 256) → (Z,) CONV-(Z, K4x4, S1, P0)

Gs

(Z + NC + θ) → ( h
16

, h
16

, 256) DECONV-(N256, K4x4, S1, P0), IN, ReLU
( h
16

, h
16

, 256) → (h
8
, h

8
, 128) DECONV-(N128, K4x4, S2, P1), IN, ReLU

(h
8
, h

8
, 128) → (h

4
, h

4
, 64) DECONV-(N64, K4x4, S2, P1), IN, ReLU

(h
4
, h

4
, 64) → (h

2
, h

2
, 32) DECONV-(N32, K4x4, S2, P1), IN, ReLU

(h
2
, w

2
, 32) → (h, w, 1) CONV-(N32, K4x4, S2, P1), SIGMOID

Ds

(h,w,1) → (h
2
,w
2
,64) CONV-(N64, K4x4, S2, P1), LeakyReLU

(h
2
,w
2
,64) → (h

4
,w
4
,128) CONV-(N128, K4x4, S2, P1), IN, LeakyReLU

(h
4
,w
4
,128) → (h

8
,w
8
,256) CONV-(N256, K4x4, S2, P1), IN, LeakyReLU

(h
8
,w
8
,256) → ( h

16
, w
16

,512) CONV-(N512, K4x4, S2, P1), IN, LeakyReLU
( h
16

, w
16

,256) → (1,1,1) CONV-(N1, K4x4, S1, P0)

Table B.1: Network architecture. We use the following notation: Z: the dimension
of attribute vetor, NC : the number of the class instance, θ: the number of location
parameters of the affine transformation, K: kernel size, S: stride size, P: padding size,
CONV: a convolutional layer, DECONV: a deconvolutional layer, FC: fully connected
layer, IN: Instance Normalization
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Part Input → Output Shape Layer Information

Eim

(h, w, 3 + m) → (h, w, 32) CONV-(N32, K5x5, S1, P2), IN, ELU
(h, w, 32) → (h

2
, w

2
, 64) CONV-(N64, K5x5, S1, P2), IN, ELU

(h
2
, w

2
, 64) → (h

4
, w

4
, 128) CONV-(N128, K4x4, S2, P1), IN, ELU

(h
4
, w

4
, 128) → (h

8
, w

8
, 256) CONV-(N256, K4x4, S2, P1), IN, ELU

(h
8
, w

8
, 256) → ( h

16
, w

16
, 512) CONV-(N512, K4x4, S2, P1), IN, ELU

Ese

(h, w, C +m+ m̂s) → (h, w, 32) CONV-(N32, K5x5, S1, P2), IN, ELU
(h, w, 32) → (h

2
, w

2
, 64) CONV-(N64, K5x5, S1, P2), IN, ELU

(h
2
, w

2
, 64) → (h

4
, w

4
, 128) CONV-(N128, K4x4, S2, P1), IN, ELU

(h
4
, w

4
, 128) → (h

8
, w

8
, 256) CONV-(N256, K4x4, S2, P1), IN, ELU

(h
8
, w

8
, 256) → ( h

16
, w

16
, 512) CONV-(N512, K4x4, S2, P1), IN, ELU

E

( h
16

, w
16

, 512 + 512) → ( h
16

, w
16

, 1024) CONCAT(Eim, Ese)
( h
16

, w
16

, 1024) → ( h
16

, w
16

, 1024) Residual Block: CONV-(N1024, K3x3, S1, P1, D2), IN, ELU
( h
16

, w
16

, 1024) → ( h
16

, w
16

, 1024) Residual Block: CONV-(N1024, K3x3, S1, P1, D2), IN, ELU
( h
16

, w
16

, 1024) → ( h
16

, w
16

, 1024) Residual Block: CONV-(N1024, K3x3, S1, P1, D2), IN, ELU
( h
16

, w
16

, 1024) → ( h
16

, w
16

, 1024) Residual Block: CONV-(N1024, K3x3, S1, P1, D4), IN, ELU
( h
16

, w
16

, 1024) → ( h
16

, w
16

, 1024) Residual Block: CONV-(N1024, K3x3, S1, P1, D4), IN, ELU
( h
16

, w
16

, 1024) → ( h
16

, w
16

, 1024) Residual Block: CONV-(N1024, K3x3, S1, P1, D4), IN, ELU
( h
16

, w
16

, 1024) → ( h
16

, w
16

, 1024) Residual Block: CONV-(N1024, K3x3, S1, P1, D8), IN, ELU
( h
16

, w
16

, 1024) → ( h
16

, w
16

, 1024) Residual Block: CONV-(N1024, K3x3, S1, P1, D8), IN, ELU
( h
16

, w
16

, 1024) → ( h
16

, w
16

, 1024) Residual Block: CONV-(N1024, K3x3, S1, P1, D8), IN, ELU

G

( h
16

, w
16

, 1024) → (h
8
, h

8
, 512) Decoder Block

(h
8
, w

8
, 512) → (h

4
, h

4
, 256) Decoder Block

( w
16

, w
16

, 256) → (h
2
, w

2
, 128) Decoder Block

(h
2
, w

2
, 128) → (h, w, 64) Decoder Block

(h, w, 64) → (h, w, 32) SPADEResBlock
(h, w, 32) → (h, w, 3) CONV-(N32, K7x7, S1, P3, D8), Tanh
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Table B.2: Network architecture. We use the following notation: m: the dimension of
the mask, C: the semantic classes, m̂s: the dimension of the instance, K: kernel size, S:
stride size, P: padding size, D: dilation factor, CONV: a convolutional layer, IN: Instance
Normalization, SN: Spectral Normalization
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B.2 Dataset details

Cityscapes. The dataset contains 5000 street level images divided between
training, validation and testing sets. We used the 2975 images from the
training set during the training and we tested our model on the 500 images
from the validation set. The resolution of the images is 2048 × 1024. We
resize each image to be 512 × 256 in order to maintain the scale and then
we apply random cropping of size 256 × 256. Cityscapes segmentation maps
have 35 categories. We aggregated them in 17 categories inspired by the
literature [14].

Indian Driving. It consists of 20000 images collecting driving sequences
on Indian roads. As for the Cityscapes, we used the validation set for the
evaluation phase. We removed the 720p images and resized the remaining
(1080p) images to 512 × 288. Thus, we obtain a dataset of 11564 training
images and 1538 evaluation images. Among these evaluation images, we
randomly select 500 for the evaluation. Finally, we apply random cropping
of size 256 × 256. To be comparable with Cityscapes, we aggregated the 40
segmentation maps categories into 21 groups.

B.3 Use cases

We test the network also on different uses cases listed in Figure 3.1, namely
precise removal and mask insertion. The former aims to remove the exact
shape of the object by reconstructing background pixels, while the latter
inserts a mask provided by the user as input. We observe that our solution
outperforms the state of the art both quantitatively (see Table B.3) and
qualitatively (see Figure B.2 and Figure B.1).
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B.4. ADDITIONAL RESULTS
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Figure B.1: Qualitative evaluation on the task of object precise removal. The first two
rows show results on the Cityscape dataset while the last two rows show the Indian Driving
results. We show two types of object removal: cars and pedestrians.

B.4 Additional results

We show additional result for each dataset and for each experimental settings.
In particular, Figure B.3 and Figure B.4 show additional results for both the
the Cityscapes and the Indian Driving datasets for the reconstruct experimen-
tal settings. While, Figure B.5 and Figure B.6 for the insert & reconstruct
experimental settings.
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Figure B.2: Qualitative evaluation on the task of "mask insertion" object reconstruction.
The first two rows show results on the Cityscape dataset while the last two rows show the
Indian Driving results. We show two types of object insertion: cars and pedestrians.

Table B.3: Quantitative results for our model and the baselines for the use cases of precise
removal and maks insertion. We evaluate all the networks in two experimental settings
and through image quality (PSNR and FID).

Model
Cityscapes Indian Driving

PSNR↑ FID↓ PSNR↑ FID↓

R
es

to
re

Hong et al. [40]
SPG-Net [110] 29.35 21.56 25.06 42.68
RN [144] 30.34 23.41 27.04 50.20
Our proposal 31.06 16.34 27.20 40.15

R
es

to
re

Hong et al. [40] 31.03 13.87 28.23 19.20
SPG-Net* 31.36 17.96 27.44 26.96
RN* 31.70 18.67 28.32 39.91
Our proposal 32.39 10.96 28.85 19.02
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B.5. EDGES CONTOURS

Input image Hong et al. [40] SPG-Net RN Our GT

Figure B.3: Additional results on Cityscapes reconstruct experimental setting.

B.5 Edges contours

In complex scenes, conventional inpainting methods might generate unsat-
isfactory results. For example, edge generators might underperform when
the missing areas are either big or when they contain multiple objects and
semantics. Thus, we show EdgeConnect [80] results, which is a popular
inpaiting method that exploits edges to inpaint missing regions. Figure B.7
shows the results of the edge inpainting in Cityscapes. As can be seen, when
the portion of image to inpaint is large, the network is not capable of generate
plausible edges. Indeed, in the first row it fails to generate the border of the
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Input image Hong et al. [40] SPG-Net RN Our GT

Figure B.4: Additional results on Indian Driving Dataset reconstruct experimental setting.

building. While in the second row it generates a huge quantity of lines that
do not fit the context of the object. Generated edges in complex scenes are
often not reliable.

B.6 Additional ablations

As additional tests, we also ablate the different components of our decoder
block. In our decoder, we removed the learned convolution for the residual
skip connection, and replaced the Batch Normalization [46] with Instance
Normalization [120]. Table B.4 also shows that our modifications to the
original SPADE [86] are effective. Moreover, they allow using this block when
the batch size is small (or even one).
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Figure B.5: Additional results on Cityscapes Dataset insert & reconstruct experimental
setting.

In Figure B.8 we instead show the qualitative evaluation on the ablation
study with and without Lstyle. The figure shows that removing Lstyle the
network generate "checkerboard" artifacts.

Table B.4: Ablation study of the components of the SPADE block.

Model PSNR↑ FID↓

Our proposal (A) 32.96 5.05
(A) w/o SPADE 32.57 5.56
(A) w Sync Batch Normalization 32.05 5.59
(A) w learned skip connection 32.76 5.49
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Figure B.6: Additional results on Indian Driving Dataset insert & reconstruct experimental
setting.



GT Input image Edges

Figure B.7: Results of [80] on the Cityscapes dataset.

Input image Our Our w/o Lstyle

Figure B.8: Qualitative evaluation on the ablation study with and without Lstyle. Removing
Lstyle the network generate "checkerboard" artifacts. Zoom in for better details.





Appendix C

Appendix to Chapter 4

We here provide additional information regarding network architectures (Ap-
pendix C.1) and implementation details (Appendix C.2). Then, we pro-
vide additional high-resolution qualitative results in Appendix C.3 on both
Cityscapes and KITTI 360.

C.1 Network architectures

We provide the details of the trajectory encoder Es and flow predictor D
in Table C.1. The flow decoder is composed of two heads (referred to as
FlowD and OccD) and shared layers (referred to as FeatD). For more details
regarding the architecture of the other networks, please refer to the code
attached with this supplementary material.

C.1.1 Convergence issue

During preliminary experiments, we observed that using eq.(1) update rule
(from the manuscript) ended up with all the nodes having the exact same
features. For this reason, we added a residual update that helped objects
converging to better features. Indeed, this residual update can be seen as
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Part Input → Output Shape Layer Information

Es

(BS,5, 64,128, 1 ) → (BS,5, 32,64,32) 3DCONV-(N32, K{3,4,4}, S{1,2,2}, P{1,1,1}), BN, LeakyReLU
(BS,5, 32,64,32 ) → (BS,5, 16,32,64) 3DCONV-(N64, K{3,4,4}, S{1,2,2}, P{1,1,1}), BN, LeakyReLU
(BS,5, 16,32,64 ) → (BS,5, 8,16,128) 3DCONV-(N128, K{3,4,4}, S{1,2,2}, P{1,1,1}), BN, LeakyReLU

FeatD

(BS * 5, 2, 4, 272) → (BS * 5, 2, 4, 512) CONV-(N512, K3, S1, P1), BN, LeakyReLU
(BS * 5, 2, 4, 512) → (BS * 5, 4, 8, 256) UP, CONV-(N256, K3, S2, P1), BN, LeakyReLU
(BS * 5, 4, 8, 512) → (BS * 5, 8, 16, 128) SKIP, UP, CONV-(N128, K3, S1, P1), BN, LeakyReLU
(BS * 5, 4, 8, 512) → (BS, 5, 8, 16, 128) RESHAPE
(BS, 5, 8, 16, 256) → (BS, 5, 8, 16, 128) SKIP, 3DCONV-(N128, K3, S1, P1), BN, LeakyReLU
(BS, 5, 8, 16, 128) → (BS * 5, 8, 16, 128) RESHAPE
(BS * 5, 8, 16, 256) → (BS * 5, 16, 32, 64) SKIP, UP, CONV-(N64, K3, S1, P1), BN, LeakyReLU
(BS * 5, 16, 32, 64) → (BS, 5, 16, 32, 64) RESHAPE
(BS, 5, 16, 32, 128) → (BS, 5, 16, 32, 64) SKIP, 3DCONV-(N64, K3, S1, P1), BN, LeakyReLU
(BS, 5, 16, 32, 64) → (BS * 5, 16, 32, 64) RESHAPE
(BS * 5, 16, 32, 128) → (BS * 5, 32, 64, 32) SKIP, UP, CONV-(N32, K3, S1, P1), BN, LeakyReLU
(BS * 5, 32, 64, 32) → (BS, 5, 32, 64, 32) RESHAPE
(BS, 5, 32, 64, 64) → (BS, 5, 32, 64, 32) SKIP, 3DCONV-(N32, K3, S1, P1), BN, LeakyReLU

FlowD
(BS * 5, 32, 64, 64) → (BS * 5, 64, 128, 32) SKIP, UP, CONV-(N32, K3, S1, P1), BN, LeakyReLU
(BS * 5, 64, 128, 32) → (BS * 5, 64, 128, 2) CONV-(N2, K5, S1, P2), IN, Tanh

OccD
(BS * 5, 32, 64, 64) → (BS * 5, 64, 128, 32) SKIP, UP, CONV-(N32, K3, S1, P1), BN, LeakyReLU
(BS * 5, 64, 128, 32) → (BS * 5, 64, 128, 2) CONV-(N1, K5, S1, P2), Sigmoid

Table C.1: Network architecture. We use the following notation: Z: the dimension of
motion vector, K: kernel size, S: stride size, P: padding size, CONV: a convolutional layer,
UP: upsample, 3D-CONV: 3D convolutional layer, BN: Batch Normalization, SKIP: skip
connection

skip connections, similar to those of resnet architectures, that allow gradient
information to pass through the GCN updates and mitigate vanishing gradient
problems.

C.2 Implementation.

Our architecture is implemented with Pytorch 1.7.0, while the graph neural
network has been implemented using Pytorch Geometric. We use the ADAM
optimizer [55] with a learning rate of 2e-4 for the Generation module and
1e-4 for the Motion estimation. The modules are trained upon convergence.
Training takes about one day for the Cityscapes dataset and two days for the
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KITTI 360 dataset. The experiments are done using two Nvidia RTX 2080Ti.

C.3 Additional qualitative results

For the Cityscapes dataset, we train an additional model at higher resolution
(i.e. 256× 128 pixels) without changing any hyper-parameter. The results
obtained with this model on two initial frames are shown in Figure C.1 and
Figure C.2. These results are well in-line the the qualitative results reported
in Chapter 4. We observe that the other methods are not able to move the
object (see the red bounding boxes that indicate the initial position of the
object). Indeed, the cars are either static, in Sheng et al. [103] and Sheng*,
or blurry, in S. Sheng*. On the contrary, our approach is able to move the
object and generates frames of good quality.

Figure C.4 and Figure C.5 instead show some additional visual results on
KITTI 360.

Finally, Figure C.6 shows a qualitative example of the ablation study we
performed in Section 4.3. The first row of this Figure shows a version of
our network that does not model object interactions. By comparing the first
and second rows of Figure C.6, we clearly see that, while the highlighted
object correctly moves, all the other objects have unrealistic motions. This
confirms the quantitative results about the importance of modelling the object
interactions to have temporal consistent movements of different objects in the
scene.
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Figure C.1: Results of predicting the frames t + 1, t + 3 , and t + 5 on the Cityscapes
dataset [14] with ground truth reference. On first three columns, we move the pedestrian
near the semaphore to left. On the last three columns we move car crossing the street.
The position of the moved object at t = 0 is highlighted in red. Zoom for details.
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Figure C.2: Results of predicting the frames t + 1, t + 3 , and t + 5 on the Cityscapes
dataset [14] with ground truth reference. On first three columns, we move the pedestrian
near the semaphore to left. On the last three columns we move car crossing the street.
The position of the moved object at t = 0 is highlighted in red. Zoom for details.
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Figure C.3: Results of predicting the frames t + 1, t + 3 , and t + 5 on the Cityscapes
dataset [14] with ground truth reference. On first three columns, we move the pedestrian
near the semaphore to left. On the last three columns we move car crossing the street.
The position of the moved object at t = 0 is highlighted in red. Zoom for details.
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Figure C.4: Results of predicting the frames t + 1, t + 3 , and t + 5 on the KITTI360
dataset [137]. The position of the moved object at t = 0 is highlighted in red. Zoom for
details.
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Figure C.5: Results of predicting the frames t + 1, t + 3 , and t + 5 on the KITTI360
dataset [137]. The position of the moved object at t = 0 is highlighted in red. Zoom for
details.
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Figure C.6: Results of the ablation test on the Cityscapes dataset [14].
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