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Abstract

The availability of powerful GPUs and the consequent development of deep
neural networks, have brought remarkable results in videogame levels genera-
tion, image-to-image translation , video-to-video translation, image inpainting
and video generation. Nonetheless, in conditional or constrained settings,
unconditioned generative models still suffer because they have little to none
control over the generated output. This leads to problems in some scenarios,
such as structured objects generation or multimedia manipulation. In the
manner, unconstrained GANs fail to generate objects that must satisfy hard
constraints (e.g., molecules must be chemically valid or game levels must be
playable). In the latter, the manipulation of complex scenes is a challenging
and unsolved task, since these scenes are composed of objects and background
of different classes. In this thesis , we focus on these two scenarios and
propose different techniques to improve deep generative models. First, we
introduce Constrained Adversarial Networks (CANs), an extension of GANs
in which the constraints are embedded into the model during training. Then
we focus on developing novel deep learning models to alter complex urban
scenes. In particular, we aim to alter the scene by: i) studying how to better
leverage the semantic and instance segmentation to model its content and
structure; ii) modifying, inserting and/or removing specific object instances
coherently to its semantic; iii) generating coherent and realistic videos where
users can alter the object’s position.
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Chapter 1

Introduction

1.1 Conditional Deep Generative Models

In recent years, the availability of more powerful GPUs and deep neural

networks have allowed deep generative models to show promising results

in image-to-image translation [47, 70, 71], video-to-video translation [130],

image inpainting [110, 143, 144], and video generation [85]. Nonetheless,

unconditioned generative models have little to no control over the generated

output. This leads to problems in some scenarios, such as structured object

generation. In this case, Generative Adversarial Networks (GANs) [31] alone

struggle to generate objects that have to satisfy hard constraints, like drug

molecules generation, in which all molecules must be chemically valid. Another

example is game levels generation, where we need to ensure that the generated

levels are playable. The issue is that these requirements are usually di�cult to

acquire from examples alone, especially if the data are noisy. Existing works

rely either on ad-hoc architectures [18] or use post-processing techniques that

a�ect the inference time [117, 127]. For example, works based on probabilistic

circuits [88, 57] generate structured objects but their inference grows linearly

with the size of the circuits. As can be imagined, this could lead to problems

if the constraints are complex. Other approaches based on reinforcement
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CHAPTER 1. INTRODUCTION

learning [18, 42] have tackled the problem of e�cient sampling by incorporating

a constrained learning component into the training procedure, and discarding

the constrained part during the inference. Thus, in order to solve these tasks,

it is necessary to develop a model that encodes constraints without a�ecting

the time and the complexity of the sampling procedure.

Another task where unconstrained or unconditioned generative model

struggle is multimedia manipulation. Multimedia manipulation refers to the

process of changing the content or the style of videos and images with respect

to the user needs. The possibility of changing the aspect of a scene is relevant

for a large number of real-world applications including data augmentation

[105], photo editing [68], and Augmented Reality (AR) [28]. Nonetheless, the

manipulation of complex scenes is a challenging and unsolved task, since these

scenes are indeed composed of objects and background of di�erent classes.

Moreover, these objects can be cluttered, occluded, or can appear during a

sequence (in case of video sequence), making it di�cult to apply conventional

manipulation techniques.

In image editing, existing works focus either on removing or inserting an

object. Song et al. [110] insert new objects by asking the user to draw precise

segmentation pixels, while Hong et al. [40] only requires a bounding box,

which is simpler compared to drawing segmentation pixels but lacks control.

Instead, Lee et al. in [62] learn to place an object in plausible locations and

with plausible shapes. The task of object removal has been addressed by

image inpainting models that reconstruct the image from contextual pixels

[144, 143]. Thus, the choice is between models that insert objects in controlled

settings and models that inpaint corrupted areas. Our goal is exploring a

novel framework in order to unify these two tasks.

Extending image manipulation models to videos has proved to be a chal-

lenging task. Video generation models have the additional task to model

2



1.1. CONDITIONAL DEEP GENERATIVE MODELS

the time dimension, and provide motion and temporal consistency of edited

objects. Initial attempts in video generation with deep generative models were

based on generative adversarial networks (GANs). Videos can be generated

starting from random noise [119, 96] in an unconditional setting or condi-

tioned with other type of data such as images or semantic maps [85]. In the

former users have usually little control on latent vector and it is challenging to

modify some part of the scene. Indeed, it is di�cult from a user perspective

to change the content of the video or the position of some objects by only

altering latent codes. In this direction, Wang et al. [130] have proposed a

video-to-video translation model that takes as input a sequence of semantic

maps or sketches and translate them to a video. Later, Pan et al. in [85] have

proposed a conditional generation model that takes as input the �rst frame

along its semantic representation and generates a sequence conditioned on it.

However, the former requires the user to draw a sequence of sketches, which

can be di�cult and problematic in terms of motion consistency. In the latter,

the user has little to no control on the motion of the scene. And, especially,

on the objects in the scene.

In this thesis, we investigate how we can put humans in the loop and how

we can improve the object interactions in the model. In general, three main

topics are discussed in this thesis:

ˆ Constrained generation . We propose a novel extension of GANs in

which the constraints are embedded into the model during training.

ˆ Image manipulation . Inspired by [40, 110, 131], we propose a model

able to insert and remove objects in the scene, coherently with the rest

of the objects in a single pass.

ˆ Controlled video generation . Following the work of [85] on video gen-

eration and Casas et al. [5] on object interactions, we aim at developing

3



CHAPTER 1. INTRODUCTION

a framework where the user can control the motion of objects through

mouse clicks. Moreover, the adoption of a Graph Neural Network (GCN)

will model object interactions in the video.

1.1.1 Contributions

In Chapter 2, we tackle the problem of structured objects generation by

introducing Constrained Adversarial Networks (CANs). CANs extend uncon-

strained GANs by introducing the embedded constraints into the generator.

During the training, the generator is penalized whenever it outputs invalid

structures. The penalty term is implemented using the semantic loss (SL)

[139], which turns constraints into a di�erentiable loss function implemented

as an arithmetic circuit. In contrast to other generative models, CANs support

e�cient inference of valid structures and allows to turn on and o� the learned

constraints at inference time. Moreover, we show how CANs can handle

complex constraints that would be intractable to encode with propositional

logic.

In Chapter 3, we propose a new deep learning method in the �eld of

image manipulation. Inspired by works on image inpainting [110] and object

insertion [40, 62], the proposed method leverages semantic segmentation to

model the content and structure of the image, and learns the best shape and

location of the object to insert. Our model gives the user the possibility to

either draw an object or to let the network decide its shape and position inside

the missing area. In this case, the generation of a new object is done using a

Variational Auto Encoder (VAE) [54]. Then we use a one-stage architecture

to insert the encoded object instances and inpaint the remaining part of the

missing image using segmentation guidance. Our experiments on urban scenes

datasets show that our proposed approach successfully addresses the problem

of image inpaiting and object insertion/removal.

4
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In Chapter 4 we continue to tackle the problem of multimedia manipulation

but in the video generation scenario. Inspired by works on video generation

[85, 103] and objects interaction in urban scenarios [5], we present a novel

framework that generates video sequences with object motion guidance. This

framework is composed of two main parts: (i) a Graph Neural Network that

models the interactions between the objects in the scene and learn a distribu-

tion in order to sample new object trajectories, and (ii) a Deep Generative

Model based on [85, 107] that takes as input an image, its corresponding

segmentation map and the trajectories generated by the GNN and generates a

video sequence conditioned on the trajectories. Given the conditioned nature

of the framework, the user will have the possibility to decide the trajectories

of some of the objects, while the GNN will take care of the other ones.

1.1.2 Outline

This thesis is organized in three chapters. In Chapter 2 we observe that Gen-

erative Adversarial Networks (GANs) [31] struggle in generating objects that

satisfy hard structural constraint. Here, we propose Constrained Adversarial

Networks (CANs), an extension of GANs in which the constraints are em-

bedded into the model during training. In Chapter 3 we focus on controlling

the manipulation of images of challenging scenarios, such as urban scenes.

Indeed, urban scenes usually contain multiple semantics and objects, which

can be frequently cluttered or ambiguous, thus hampering the performance

of standard manipulation models. Here, we propose a novel deep learning

model to alter a scene by removing a user speci�ed portion of the image

and coherently inserting a new object (e.g., a car or a pedestrian) in that

scene. Chapter 4 analyzes how hard it is to generated coherent videos of

complex scenes. To tackle this task, we introduce a framework for video

generation where the user can control the motion of the synthesized video

5
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through mouse clicks specifying simple object trajectories of the key objects in

the scene. Finally, we conclude in Chapter 5 where we also explore potential

new directions.

6



Chapter 2

Constrained Adversarial Networks

Many key applications require to generate objects that satisfy hard structural

constraints, like drug molecules, which must be chemically valid, and game

levels, which must be playable. Despite their impressive success [53, 147, 152],

Generative Adversarial Networks (GANs) [31] struggle in these applications.

The reason is that data alone are often insu�cient to capture the structural

constraints (especially if noisy) and convey them to the model.

As a remedy, we derive Constrained Adversarial Networks (CANs), which

extend GANs to generating valid structures with high probabilty. Given a

set of arbitrary discrete constraints, CANs achieve this by penalizing the

generator for allocating mass to invalid objects during training. The penalty

term is implemented using the semantic loss (SL) [139], which turns the

discrete constraints into a di�erentiable loss function implemented as an

arithmetic circuit (i.e., a polynomial). The SL is probabilistically sound,

can be evaluated exactly, and supports end-to-end training. Importantly,

the polynomial � which can be quite large, depending on the complexity

of the constraints � can be thrown away after training. In addition, CANs

handle complex constraints, like reachability on graphs, by �rst embedding the

candidate con�gurations in a space in which the constraints can be encoded

compactly, and then applying the SL to the embeddings.

7



CHAPTER 2. CONSTRAINED ADVERSARIAL NETWORKS

Since the constraints are embedded directly into the generator, high-quality

structures can be sampled e�ciently (in time practically independent of the

complexity of the constraints) with a simple forward pass on the generator, as

in regular GANs.1 No costly sampling or optimization steps are needed. We

additionally show how to equip CANs with the ability to switch constraints

on and o� dynamically during inference, at no run-time cost.

Overall, the main contributions of our work are as follows:

ˆ CANs, an extension of GANs in which the generator is encouraged at

training time to generate valid structures and support e�cient sampling,

ˆ native support for intractably complex constraints,

ˆ conditional CANs, an e�ective solution for dynamically turning on and

o� the constraints at inference time,

ˆ a thorough empirical study on real-world data showing that CANs

generate structures that are likely valid and coherent with the training

data.

2.1 Related Work

Structured generative tasks have traditionally been tackled using probabilistic

graphical models [58] and grammars [116], which lack support for representa-

tion learning and e�cient sampling under constraints. Tractable probabilistic

circuits [88, 57] are a recent alternative that make use of ideas from knowledge

compilation [17] to provide e�cient generation of valid structures. These

approaches generate valid objects by constructing a circuit (a polynomial)

that encodes both the hard constraints and the probabilistic structure of the
1With high probability. Invalid structures, when generated, can be checked and rejected e�ciently. In

this sense, CANs are related to learning e�cient proposal distributions [3].
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problem. Although inference is linear in the size of the circuit, the latter can

grow very large if the constaints are complex enough. In contrast, CANs

model the probabilistic structure of the problem using a neural architecture,

while relying on knowledge compilation for encoding the hard constraints

during training. Moreover, the circuit can be discarded at inference time.

The time and space complexity of sampling for CANs is therefore roughly

independent from the complexity of the constraints in practice.

Deep generative models developed for structured tasks are special-purpose,

in that they rely on ad-hoc architectures, tackle speci�c applications, or have

no support for e�cient sampling [32, 18, 140, 117]. Some recent approaches

have focused on incorporating a constraint learning component in training deep

generative models, using reinforcement learning [18] or inverse reinforcement

learning [42] techniques. This direction is complementary to ours and is useful

when constraints are not known in advance or cannot be easily formalized

as functions of the generator output. Indeed, our experiment on molecule

generation shows the advantages of enriching CANs with constraint learning

to generate high quality and diverse molecules.

Other general approaches for injecting knowledge into neural nets (like

deep statistical-relational models [69, 73, 76], tensor-based models [94, 19],

and fuzzy logic-based models [75]) are either not generative or require the

constraints to be available at inference time.

2.2 Unconstrained GANs

GANs [31] are composed of two neural nets: a discriminatord trained to

recognize �real� objectsx 2 X sampled from the data distributionPr , and a

generatorg : Z ! X that maps random latent vectorsz 2 Z to objectsg(x)

that fool the discriminator. Learning equates to solving the minimax game

9
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ming maxd f GAN (g; d) with value function:

f GAN (g; d) := Ex� Pr [logPd(x)] + Ex� Pg [log(1 � Pd(x))] (2.1)

HerePg(x) and Pd(x) := Pd(realj x) are the distributions induced by the

generator and discriminator, respectively. New objectsx can be sampled

by mapping random vectorsz using the generator, i.e.,x = g(z). Under

idealized assumptions, the learned generator matches the data distribution:

Theorem 1 ([31]). If g andd are non-parametric and the leftmost expectation

in Eq. 2.1 is approximated arbitrarily well by the data, the global equilibrium

(g� ; d� ) of Eq. 2.1 satis�esPd� � 1
2 and Pg� � Pr .

In practice, training GANs is notoriously hard [98, 78]. The most common

failure mode is mode collapse, in which the generated objects are clustered in

a tiny region of the object space. Remedies include using alternative objective

functions [31], divergences [82, 2] and regularizers [79]. In our experiments,

we apply some of these techniques to stabilize training.

In structured tasks, the objects of interest are usually discrete. In the

following, we focus on stochastic generators that output acategorical distri-

bution � (z) over X and objects are sampled from the latter. In this case,

Pg(x) =
R

Z Pg(xjz)p(z)dz =
R

Z � (z)p(z)dz = Ez[� (z)].

2.3 Generating Structures with CANs

Our goal is to learn a deep generative model that outputs structuresx

consistent with validity constraints and an unobserved distributionPr . We

assume to be given: i) a feature map� : X ! f 0; 1gb that extracts b binary

features fromx, and ii) a single validity constraint encoded as a Boolean

formula on� (x). If x is binary, � can be taken to be the identity; later we

will discuss some alternatives. Any discrete structured space can be encoded

this way.

10
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2.3.1 Limitations of GANs

Standard GANs struggle to output valid structures, for two main reasons.

First, the number of examples necessary to capture any non-trivial constraint

 can be intractably large.2 This rules out learning the rules of chemical

validity or, worse still, graph reachability from even moderately large data sets.

Second, in many cases of interest the examples are noisy and do violate , in

which case the data lures GANs into learningnot to satisfy the constraint:

Corollary 1. Under the assumptions of Theorem 1, given a target distribution

Pr , a constraint  consistent with it, and a dataset of examplesx sampled

i.i.d. from a corrupted distribution Pr
0 6= Pr inconsistent with , GANs

associate non-zero mass to infeasible objects.

This follows easily from Theorem 1, as the optimal generator satis�es

Pg � Pr
0, which is inconsistent with . Since Theorem 1 captures theintent

of GAN training, this corollary shows that GANs areby designincapable of

handling invalid examples.

2.3.2 Constrained Adversarial Networks

Constrained Adversarial Networks (CANs) avoid these issues by taking

both the data and the target structural constraint as inputs. The value

function is designed so that the generator maximizes the probability of

generating valid structures. In order to derive CANs it is convenient to

start from the following alternative GAN value function [31]: f ALT (g; d) :=

Ex� Pr [logPd(x)] � Ex� Pg [logPd(x)].

Let (g; d) be a GAN andv(x) = 1f � (x) j=  g be a �xed discriminator

that distinguishes between valid and invalid structures, wherej= indicates
2The VC dimension of unrestricted discrete formulas is exponential in the number of variables [124].
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logical entailment. Ideally, we wish the generator tonever output invalid

structures. This can be achieved by using an aggregate discriminatora(x)

that only accepts con�gurations that are both valid and high-quality w.r.t.d.

Let A be the indicator thata classi�esx as real, and similarly forD and V.

By de�nition:

Pa(x) = P(A j x) = P(D j V;x)P(V j x) = Pd(x)1f � (x) j=  g (2.2)

Plugging the aggregate discriminator into the alternative value function gives:

arg max
a

f ALT (g; a) (2.3)

= arg max
d

EPr [logPd(x) + log 1f � (x) j=  g] � EPg [logPd(x) + log 1f � (x) j=  g] (2.4)

= arg max
d

EPr [logPd(x)] � EPg [logPd(x)] � EPg [log1f � (x) j=  g] (2.5)

= arg max
d

f ALT (g; d) � EPg [log1f � (x) j=  g] (2.6)

The second step holds becauseEPr [log1f � (x) j=  g] does not depend ond.
If g allocates non-zero mass toany measurable subset of invalid structures, the
second term becomes+ 1 . This is consistent with our goal but problematic
for learning. A better alternative is to optimize the lower bound:

SL  (g) := � logPg( ) = � logEPg [1f � (x) j=  g] � � EPg [log1f � (x) j=  g] (2.7)

This term is thesemantic loss(SL) proposed in [139] to inject knowledge

into neural networks. The SL is much smoother than the original and it only

evaluates to+ 1 if Pg allocatesall the mass to infeasible con�gurations. This

immediately leads to the CAN value function:

f CAN (g; d) := f ALT (g; d) + �SL  (g) (2.8)

where� > 0 is a hyper-parameter controlling the importance of the constraint.
This formulation is related to integral probability metric-based GANs, cf. [63].
The SL can be viewed as the negative log-likelihood of , and hence it rewards
the generator proportionally to the mass it allocates to valid structures. The
expectation in Eq. 2.7 can be rewritten as:

Ex � Pg [1f � (x) j=  g] =
X

x :� (x )j=  

Pg(x) = Ez

2

4
X

x :� (x )j=  

Y

i : x i =1

� i (z)
Y

i : x i =0

(1 � � i (z))

3

5 (2.9)
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Figure 2.1: Left: fuzzy logic encoding (using the Šukasiewicz T-norm) ofx � y in CNF

format as a function ofP(x = 1) and P(y = 1) . Middle: encoding of DNF XOR. Right:

SL of either encoding.

Hence, the SL is the negative logarithm of a polynomial in� and it is fully

di�erentiable.3 In practice, below we apply the semantic loss term directly to

f GAN , i.e., f CAN (g; d) := f GAN (g; d) + �SL  (g).

If the SL is given large enough weight� then it gets closer to the ideal

�hard� discriminator, and therefore more strongly encourages the CAN to

generate valid structures. Under the preconditions of Theorem 1, it is clear

that for � ! 1 CANs generate valid structures only:

Proposition 1. Under the assumptions of Corollary 1, CANs associate zero

mass to infeasible objects, irrespective of the discrepancy betweenPr and Pr
0.

Indeed, any global equilibrium(g� ; d� ) of ming maxd f CAN (g; d) minimizes

the second term: the minimum is attained bylogPg� ( ) = 0 , which entails

Pg� (:  ) = 0 . Of course, as with standard GANs, the prerequisites are

often violated in practice. Regardless, Proposition 1 works as a sanity check,

and shows that, in contrast to GANs, CANs are appropriate for structured

generative tasks.

A possible alternative to the SL is to introduce a di�erentiable knowledge-

based loss into the value function by relaxing the constraint using fuzzy logic,

as done in a number of recent works on discriminative deep learning [19, 75].

Apart from lacking a formal derivation in terms of expected probability of
3As long asPg(x) > 0, which is always the case in practice.
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satisfying constraints, the issue is that fuzzy logic is not semantically sound,

meaning that equivalent encodings of the same constraint may give di�erent

loss functions [29]. Figure 2.1 illustrates this on an XOR constraint: the

�fuzzy loss� and its gradient change radically depending on whether the XOR

is encoded as CNF (left) or DNF (middle), while the SL is una�ected (right).

Evaluating the Semantic Loss The sum in Eq. 2.9 is the unnormalized

probability of generating a valid con�guration. Evaluating it requires to sum

over all solutions of , weighted according to their probability with respect

to � . This task is denoted Weighted Model Counting (WMC) [7]. Naïvely

implementing WMC is infeasible in most cases, as it involves summing over

exponentially many con�gurations. Knowledge compilation (KC) [17] is a

well known approach in automated reasoning and solving WMC through

KC is the state-of-the-art for answering probabilistic queries in discrete

graphical models [7, 22, 123]. Roughly speaking, KC leverages distributivity

to rewrite the polynomial in Eq. 2.9 as compactly as possible, often o�ering

a tremendous speed-up during evaluation. This is achieved by identifying

shared sub-components and compactly representing the factorized polynomial

using a DAG. Target representations for the DAG (OBDDs, DNNFs,etc. [17])

di�er in succinctness and enable di�erent polytime (in the size of the DAG)

operations. As done in [139], we compile the SL polynomial into a Sentential

Decision Diagram (SDD) [16] that enables e�cient WMC and therefore exact

evaluation of the SL and of its gradient. KC is key in making evaluation

of the Semantic Loss and of its gradient practical, at the cost of an o�ine

compilation step � which is however performed only once before training.

The main downside of KC is that, depending on the complexity of ,

the compiled circuit may be large. This is less of an issue during training,

which is often performed on powerful machines, but it can be problematic for

inference, especially on embedded devices. A major advantage of CANs is

14
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that the circuit is not required for inference (as the latter consists of a simple

forward pass over the generator), and can thus be thrown away after training.

This means that CANs incur no space penalty during inference compared to

GANs.

The embedding function � The embedding function� (x) extracts Boolean

variables to which the SL is then applied. In many cases, as in our molecule

experiment,� is simply the identity map. However, when fed a particularly

complex constraint , KC may output an SDD too large even for the training

stage. In this case, we use� to map x to an application-speci�c embedding

space where (and hence the SL polynomial) is expressible in compact form.

We successfully employed this technique to synthesize Mario levels where the

goal tile is reachable from the starting tile; all details are provided below.

The same technique can be exploited for dealing with other complex logical

formulas beyond the reach of state-of-the-art knowledge compilation.

2.3.3 Conditional CANs

So far we described how to use the SL for enforcing structural constraints

on the generator's output. Since the SL can be applied to any distribution

over binary variables, it can also be used to enforce conditional constraints

that can be turned on and o� at inference time. Speci�cally, we notice that

the constraint can involve also latent variables, and we show how this can be

leveraged for di�erent purposes. Similarly to InfoGANs [10], the generator's

input is augmented with an additional binary vectorc. Instead of maximizing

(an approximation of) the mutual information betweenc and the generator's

output, the SL is used to logically bind the input codes to semantic features

or constraint of interest. Let 1; : : : ;  k be k constraints of interest. In order

to make them switchable, we extend the latent vectorz with k fresh variables
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c = ( c1; : : : ; ck) 2 f 0; 1gk and train the CAN using the constraint:

 =
V k

i=1 (ci $  i )

where the priorP(c) used during training is estimated from data.

Using a conditional SL term during training results in a model that can be

conditioned to generate object with desired, arbitrarily complex properties

 i at inference time. Additionally, this feature shows a bene�cial e�ect in

mitigating mode collapse during training, as reported in Section 2.4.2.

2.4 Experiments

Our experimental evaluation aims at answering the following questions:

Q1 Can CANs with tractable constraints achieve better results than GANs?

Q2 Can CANs with intractable constraints achieve better results than GANs?

Q3 Can constraints be combined with rewards to achieve better results than

using rewards only?

We implemented CANs4 using Tensor�ow and used PySDD5 to perform knowl-

edge compilation. We tested CANs using di�erent generator architectures on

three real-world structured generative tasks.6 In all cases, we evaluated the

objects generated by CANs and those of the baselines using three metrics

(adopted from [100]): validity is the proportion of sampled objects that

are valid; novelty is the proportion of valid sampled objects that are not

present in the training data; anduniqueness is the proportion of valid unique

(non-repeated) sampled objects.
4The code is freely available at https://github.com/unitn-sml/CAN
5URL: pypi.org/project/PySDD/
6Details can be found in Appendix A.
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2.4.1 Super Mario Bros level generation

In this experiment we show how CANs can help in the challenging task of

learning to generate videogame levels from user-authored content. While

procedural approaches to videogame level generation have successfully been

used for decades, the application of machine learning techniques in the creation

of (functional) content is a relatively new area of research [112]. On the one

hand, modern video game levels are characterized by aesthetical features that

cannot be formally encoded and thus are di�cult to implement in a procedure,

which motivates the use of ML techniques for the task. On the other hand,

the levels have often to satisfy a set of functional (hard) constraints that are

easy to guarantee when the generator is hand-coded but pose challenges for

current machine learning models.

Architectures for Super Mario Bros level generation include LSTMs [111],

probabilistic graphical models [33], and multi-dimensional MCMC [109]. Mar-

ioGANs [117] are speci�cally designed for level generation, but they only

constrain the mixture of tiles appearing in the level. This technique cannot

be easily generalized to arbitrary constraints.

In the following, we show how the semantic loss can be used to encode

useful hard constraints in the context of videogame level generation. These

constraints might be functional requirements that apply to every generated

object or might be contextually used to steer the generation towards objects

with certain properties. In our empirical analysis, we focus onSuper Mario

Bros (SMB), possibly one of the most studied video games in tile-based level

generation.

Recently, [127] applied Wasserstein GANs (WGANs) [2] to SMB level

generation. The approach works by �rst training a generator in the usual way,

then using an evolutionary algorithm called Covariance Matrix Adaptation

Evolution Strategy (CMA-ES) to search for the best latent vectors according
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to a user-de�ned �tness function on the corresponding levels. We stress

that this technique is orthogonal to CANs and the two can be combined

together. We adopt the same experimental setting, WGAN architecture and

training procedure of [127]. The structured objects are14� 28 tile-based

representations of SMB levels (e.g. Fig. 2.2) and the training data is obtained

by sliding a28 tiles window over levels from theVideo game level corpus[113].

We run all the experiments on a machine with a single 1080Ti GPU for4

times with random seeds.

CANs with tractable constraints: generating SMB levels with pipes

In this experiment, the focus is on showing how CANs can e�ectively deal

with constraints that can be directly encoded over the generator output. Pipes

are made of four di�erent types of tiles. They can have a variable height but

the general structure is always the same: two tiles (top-left and top-right) on

top and one or more pairs of body tiles (body-leftand body-right) below (see

the CAN - pipesin picture in Fig. 2.2 for examples of valid pipes). Since

encoding all possible dispositions and combinations of pipes in a level would

result in an extremely large propositional formula, we apply the constraint

locally to a 2 � 2 window that is slid, horizontally and vertically, by one tile

at a time (notice that all structural properties of pipes are covered using this

method). The constraint consists of a lot of implications of the type �if this is

a top-left tile, then the tile below must be abody-leftone� conjoined together

(see the Appendix A for the full formula). The relative importance of the

constraints is determined by the hyper-parameter� (see Eq. 2.8).

There are two major problems in the application of the constraint on pipes

when using a large� : i) vanishing pipes: this occurs because the generator

can satisfy the constraint by simply generating layers without pipes; ii)mode

collapse: the generator may learn to place pipes always in the same positions.
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GAN - pipes CAN - pipes GAN - playable CAN - playable

Figure 2.2: Examples of SMB levels generated by GAN and CAN. Left: generating levels

containing pipes; right: generating reachable levels. For each of the two settings we report

prototypical examples of levels generated by GAN (�rst and third picture) and CAN

(second and fourth picture). Notice how all pipes generated by CAN are valid, contrarily to

what happens for GAN, and that the GAN generates a level that is not playable (because

of the big jump at the start of the map).

We address both issues by introducing the SL after an initial bootstrap phase

(of 5; 000epochs) in which the generator learns to generate sensible objects,

and by linearly increasing its weight from zero to� = 0:2. The �nal value for

� was chosen as the highest value allowing to retain al least 80% of pipe tiles

on average with respect to a plain GAN. All experiments were run for12; 000

epochs.

Table 2.1 reports experimental results comparing GAN and CAN trained

on all levels containing pipes. CAN manage to almost double the validity of

the generated levels (see the two left pictures in Fig. 2.2 for some prototypical

examples) while retaining about 82% of the pipe tiles and without any

signi�cant loss in terms of diversity (as measured by the L1 norm on the

di�erence between each pair of levels in the generated batch) or cost in terms

of training (roughly doubled training times). Inference is real-time (< 40 ms)

for both architectures.

These results allow to answerQ1 a�rmatively.
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Model # Maps Validity (%) Average pipe-tiles / level L1 Norm Training time

GAN 7 47.6 � 8.3 7.8 0.0115 1h 12m
CAN 7 83.2 � 4.8 6.4 0.0110 2h 2m

Table 2.1: Comparison between GAN and CAN on SMB level generation with pipes.

The 7 maps containing pipes aremario-1-1, mario-2-1, mario-3-1, mario-4-1, mario-4-2,

mario-6-2 and mario-8-1, for a total of 1; 404 training samples. Results report validity,

average number of pipe tiles per level, L1 norm on the di�erence between each pair of

levels in the generated batch and training time. Inference is real-time (< 40 ms) for both

architectures.

CANs with intractable constraints: generating playable SMB levels

In the following we show how CANs can be successfully applied in settings

where constraints are too complex to be directly encoded onto the generator

output. A level isplayableif there is a feasible path7 from the left-most to the

right-most column of the level. We refer to this property asreachability. We

compare CANs with CMA-ES, as both techniques can be used to steer the

network towards the generation of playable levels. In CMA-ES, the �tness

function doesn't have to be di�erentiable and the playability is computed

on the output of an A* agent (the same used in [127]) playing the level.

Having the SL to steer the generation towards playable levels is not trivial,

since it requires a di�erentiable de�nition of playability. Directly encoding

the constraint in propositional logic is intractable. Consider the size of a

�rst order logic propositional formula describing all possible path a player

can follow in the level. We thus de�ne the playability constraint on the

output of an embedding function� (modelled as a feedforward NN) that

approximates tile reachability. The function is trained to predict whether

each tile is reachable from the left-most column using traces obtained from

the A* agent. See Appendix A for the details.

Table 2.2 shows the validity of a batch of1; 000levels generated respectively

7According to the game's physics.
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Network type Level Tested samples Validity Training time Inference time per sample

GAN mario-1-3 1000 9.80% 1 h 15 min � 40 ms
GAN + CMA-ES mario-1-3 1000 65.90% 1 h 15 min � 22 min

CAN mario-1-3 1000 71.60% 1 h 34 min � 40 ms

GAN mario-3-3 1000 13.00% 1 h 11 min � 40 ms
GAN + CMA-ES mario-3-3 1000 64.20% 1 h 11 min � 22 min

CAN mario-3-3 1000 62.30% 1 h 27 min � 40 ms

Table 2.2: Results on the generation ofplayableSMB level. Levelsmario-1-3 (123training

samples) andmario-3-3 (122 training samples) were chosen due to their high solving

complexity. Results compare a baseline GAN, a GAN combined with CMA-ES and a CAN.

Validity is de�ned as the ability of the A* agent to complete the level. Note that inference

time for GAN and CAN is measured in milliseconds while time for GAN + CMA-ES is in

minutes.

by plain GAN, GAN combined with CMA-ES using the default parameters

for the search, and a forward pass of CAN. Each training run lasted15000

epochs with all the default hyper parameters de�ned in [127], and the SL

was activated from epoch5000with � = 0:01, which validation experiments

showed to be a reasonable trade-o� between SL and generator loss. Results

show that CANs achieves better (mario-1-3) or comparable (mario-3-3)

validity with respect to GAN + CMA-ES at a fraction of the inference time.

At the cost of pretraining the reachability function, CANs avoid the execution

of the A* agent during the generation and sample high quality objects in

milliseconds (as compared to minutes), thus enabling applications to create

new levels at run time. Moreover, no signi�cant quality degradation can be

seen on the generated levels as compared to the ones generated by plain GAN

(which on the other hand fails most of the time to generate reachable levels),

as can be seen in Fig. 2.2. With these results, we can answerQ2 a�rmatively.

2.4.2 Molecule generation

Most approaches in molecule generation use variational autoencoders (VAEs)

[30, 60, 15, 99], or more expensive techniques like MCMC [101]. Closest to

CANs are ORGANs [32] and MolGANs [18], which respectively combine Se-
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quence GANs (SeqGANs) and Graph Convolutional Networks (GCNs) with a

reward network that optimizes speci�c chemical properties. Albeit comparing

favorably with both sequence models [49, 32] (using SMILE representations)

and likelihood-based methods, MolGAN are reported to be susceptible to

mode collapse.

In this experiment, we investigateQ3 by combining MolGAN's adversarial

training and reinforcement learning objectivewith a conditional SL term on

the task of generating molecules with certain desirable chemical properties.

In contrast with our previous experimental settings, here the structured

objects are undirected graphs of bounded maximum size, represented by

discrete tensors that encode the atom/node type (padding atom (no atom),

Carbon, Nitogren, Oxygen, Fluorine) and the bound/edge type (padding

bond (no bond), single, double, triple and aromatic bond). During training,

the network implicitly rewards validity and the maximization of the three

chemical properties at once:QED (druglikeness),SA (synthesizability) and

logP (solubility). The training is stopped once the uniqueness drops under

0:2. We augment the MolGAN architecture with a conditional SL term,

making use of4 latent dimensions to control the presence of one of the4

types of atoms considered in the experiment, as shown in Section 2.3.3.

Conditioning the generation of molecules with speci�c atoms at training

time mitigates the drop in uniqueness caused by the reward network during

the training. This allows the model to be trained for more epochs and results

in more diverse and higher quality molecules, as reported in Table 2.3.

In this experiment, we train the model on a NVIDIA RTX 2080 Ti. The

total training time is around 1 hour, and the inference is real-time. Using

CANs produced a negligible overhead during the training with respect to

the original model, providing further evidence that the technique doesn't

heavily impact on the training. This results suggest that coupling CANs with
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Reward for SL validity uniqueness diversity QED SA logP

QED + SA + logP
False 97.4 2.4 91.0 47.0 84.0 65.0
True 96.6 2.5 98.8 51.8 90.7 73.6

Table 2.3: Results of using the semantic loss on the MolGAN architecture. The diversity

score is obtained by comparing sub-structures of generated samples against a random

subset of the dataset. A lower score indicates a higher amount of repetitions between

the generated samples and the dataset. The �rst row refers to the results reported in the

MolGAN paper.

a reinforcement learning objective is bene�cial, answeringQ3 a�rmatively.

2.5 Conclusion

We presented Constrained Adversarial Networks (CANs), a generalization

of GANs in which the generator is encouragedduring training to output

valid structures. CANs make use of the semantic loss [139] to penalize the

generator proportionally to the mass it allocate to invalid structures and. As

in GANs, generating valid structures (on average) requires a simple forward

pass on the generator. Importantly, the data structures used by the SL, which

can be large if the structural constraints are very complex, are discarded

after training. CANs were proven to be e�ective in improving the quality of

the generated structures without signi�cantly a�ecting inference run-time,

and conditional CANs proved useful in promoting diversity of the generator's

outputs.
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Chapter 3

Semantic-Guided Image Inpainting

Manipulating images to insert and remove objects automatically is of paramount

relevance for a large number of real-world applications including data aug-

mentation, photo editing and Augmented Reality (AR). Recent literature has

shown promising results in image manipulation to translate images from one

domain to another [47, 152, 12, 71, 106, 107, 70], inpaint missing parts of

images [144, 80, 50], and change portion of faces and fashion garments [34, 50].

However, manipulating images (i.e. adding, reconstructing and removing ob-

jects) of complex scenes is a challenging and still unsolved problem. Complex

scenes are indeed characterized by multiple semantics and objects, which are

often cluttered or occluded, making it di�cult to apply conventional image

inpainting techniques.

Existing works on image editing focus either on object insertion or removal.

Solutions to the former task usually require users to draw segmentation

pixels [40] or a precise bounding box of the object to be inserted [62], while

object removal has been addressed by image inpainting [144, 80, 50], which

reconstructs the most probable pattern from contextual pixels. Thus, one

has to choose between models that insert objects in controlled settings and

models that inpaint corrupted areas. Moreover, complex scenes (e.g. urban

scenes) are often overlooked in favour of natural scenes and photographs

25



CHAPTER 3. SEMANTIC-GUIDED IMAGE INPAINTING

Figure 3.1: Our holistic model can be applied in a wide range of manipulations in complex

scenes. At inference time users can remove objects by either precisely indicating a mask or

an entire area. Moreover, they can insert new objects (e.g. cars, pedestrians) by randomly

generating them or by feeding a segmentation mask as input.

with a small number of semantic classes, which allows the use of di�erent

stratagems to guide the generative network. In non-complex scenes, literature

relies on edge maps [80] and object contours [138], which results are however

not satisfactory when the missing region is large or complex.

In this chapter, we focus on complex urban scenes that contain multiple

objects, clutter and numerous semantic classes. We propose a novel and

uni�ed framework to manipulate images by removing and inserting objects.

We formulate the problem by learning to reconstruct (inpaint) missing regions

and generate plausible shapes of objects to be inserted. To help the model

at understanding complex scenes, we leverage information from semantic

segmentation maps in order to guide the network in both the encoding and

the decoding phases. We learn to accurately generate both the semantic

segmentation and the real pixels enforcing them to be consistent with each

other. To this end, we design and propose a novel decoder module based on

Spatially-Adaptive (DE) normalization (SPADE) [86] that uses the predicted

segmentation to normalize generated features and synthesize high-quality im-

ages. Di�erently from previous works, our uni�ed framework allows numerous
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