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Abstract

Homogenization of the incremental response of grids made up of preloaded elastic rods leads
to homogeneous effective continua which may suffer macroscopic instability, occurring at the
same time in both the grid and the effective continuum. This instability corresponds to the loss
of ellipticity in the effective material and the formation of localized responses as, for instance,
shear bands. Using lattice models of elastic rods, loss of ellipticity has always been found to
occur for stress states involving compression of the rods, as usually these structural elements
buckle only under compression. In this way, the locus of material stability for the effective
solid is unbounded in tension, i.e. the material is always stable for a tensile prestress. A
rigorous application of homogenization theory is proposed to show that the inclusion of sliders
(constraints imposing axial and rotational continuity, but allowing shear jumps) in the grid
of rods leads to loss of ellipticity in tension, so that the locus for material instability becomes
bounded. This result explains (i.) how to design elastic materials subject to localization of
deformation and shear banding for all radial stress paths; (ii.) how for all these paths a
material may fail by developing strain localization and without involving cracking.

Keywords Tensile buckling · Sliding interface · Material instability · Homogenization

1 Introduction
A design strategy leading to metamaterials capable of effectively filtering and conditioning wave
propagation is the composition of elastic structures via periodic lattices [1–9]. In these structures,
different effects related to out-of-plane or in-plane deformations, presence of bending moment
or prestress have been explored [10–13]. Still, many important issues remain unknown, so that
the present article addresses one of these, namely, the possibility of defining structured materials
capable of suffering instabilities for all possible prestress states, including tensile.

The incremental response of a periodic grid of preloaded elastic rods can be homogenized
to obtain an effective, prestressed elastic solid, linearly relating the increments of the first Piola-
Kirchhoff stress and of the displacement gradient, [14–17]. Two types of instability may occur in the
grid, classified as ‘microscopic’ and ‘macroscopic’. Only the latter is captured by the homogenized
material response and corresponds to its loss of ellipticity, which, in turn, coincides with the
condition of strain localization, and, as a special case, shear band formation [18–22].

Recently, two-dimensional grids of prestressed elastic rods, subject to in-plane incremental
normal and shear forces and bending moment, have been advocated as materials that can be
designed to exhibit instabilities inside the elastic range as well as to display tunable effective
properties [23]. However, loss of ellipticity in these materials has been so far shown to be possible
only when compression is involved, so that the locus of material stability for the homogenized
material is unbounded in tension. This circumstance is a direct consequence of the fact that usually
elastic rods only buckle in compression. However, real materials exhibit localization of strain for

∗Corresponding author: e-mail: bigoni@ing.unitn.it; phone: +39 0461 282507.

1

ar
X

iv
:2

20
1.

00
50

7v
2 

 [
ph

ys
ic

s.
ap

p-
ph

] 
 2

 J
un

 2
02

2

mailto:bigoni@ing.unitn.it


all stress states, including tension [24]. Therefore, it might be superficially (and erroneously)
concluded that it is impossible to design an artificial material with a bounded stability domain,
using a grid of elastic rods. In contrast with this erroneous conclusion, it is shown in this article
that employing slider constraints (permitting only relative transverse sliding between the connected
ends of two rods) inside the rods forming the periodic lattice may lead to a macroscopic buckling in
tension, formally corresponding to loss of ellipticity in the homogenized response for tensile stress
states.

As a consequence, it is rigorously proven that homogenization leads to a smooth and bounded
domain where failure determined by strain localization and shear bands is excluded. This failure
occurs as soon as this domain is touched, as it happens for every radial stress paths emanating
from the unloaded state.

Therefore, a new way is found to design architected materials with a stability (or ‘failure’)
domain that is bounded for all stress ‘directions’. These materials, designed as grids of elastic
beams endowed with slider constraints as sketched in Fig. 1, will be shown to greatly extend their
compliance under stretching as a consequence of the occurrence of a localized shear deformation
band.

Fig. 1. A periodic two-dimensional grid of (axially and flexurally deformable) elastic rods equipped with sliders
leads to tensile and compressive global bifurcations corresponding to loss of strong ellipticity in the effective material.
The rods are axially preloaded in tension or compression from a stress-free configuration (left). The response to an
incremental shear displacement u(s) on the boundary of the grid leads to shear forces and bending moments (shown
in red) in the rods and it corresponds in the effective material to an incremental shear (shown in orange), so that
the bending moments in the rods do not contribute to the mean stress (right).

The methodology developed in this article allows for the control and design of the bifurcation
pattern triggered by both compressive and tensile stress in a 2D lattice material. These can
be effectively leveraged for a wide range of engineering applications, as recent studies show that
suitably controlled buckling instabilities can be harnessed to realize innovative devices. Some
instances of direct exploitation of a specific kind of ‘tensile’ buckling (namely an instability triggered
by local compression produced by a global stretch) have been explored for the design of flexible 3D
electronics [25, 26] and bio-inspired active skins [27]. Therefore, the extension of the design space
to structures and materials exhibiting buckling under pure tension can open unexplored routes to
novel fabrication processes for periodic electro-mechanical systems at different scales.

The results shown in the present article are directly connected to the discovery of tensile buck-
ling [28, 29] and are obtained through a rigorous application of homogenization theory providing
an energetic match between a preloaded lattice (Section 2) and an effective elastic continuum
(Section 3). Examples of materials characterized by a bounded stability domain and their char-
acteristics are provided (Section 4), followed by the analysis of the ‘re-stabilization’ occurring in
the effective continuum, while the elastic grid is subject to local instabilities (Section 5). Finally,
concluding remarks are drawn at the end of the paper (Section 6).
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2 Incremental response of lattices incorporating sliding con-
straints

A two-dimensional periodic lattice of elastic rods, deformable in the plane both axially and flex-
urally, is considered, in which all structural members are axially prestressed from an unloaded
reference configuration B0. Each junction between the rods is assumed to be one of two types:
a fully welded junction or a sliding constraint. The former is standard as it prescribes perfect
continuity of displacements and rotations, while the latter allows for a displacement jump along
the sliding direction, here assumed to be orthogonal to the rod’s axis, see Fig. 1.

The prestress is produced by tensile or compressive dead loading acting at infinity, while body
forces in the lattice are not considered for simplicity. The preload is postulated not only to
satisfy equilibrium, but also to preserve periodicity and leave the structure free from flexure. The
incremental response is analyzed by considering arbitrary deformations, which include development
of bending moment and axial and shear forces.

The prestressed configuration B is periodic along two linearly independent vectors {a1,a2},
defining the direct basis of the lattice, so that the structure can be constructed from a single unit
cell C, assumed to be composed of NB nonlinear elastic rods with Euler-Bernoulli incremental
kinematics, as sketched in Fig. 1.

By considering in-plane flexural and axial incremental deformations, the incremental displace-
ment field of the k–th rod in a given unit cell is defined by the vector field

uk(sk) = {uk(sk), vk(sk)}T, ∀k ∈ {1, ..., NB} , (1)

where sk is the coordinate along the k–th rod, uk(sk) and vk(sk) are the axial and transverse
incremental displacements. The incremental rotation of the rod’s cross-section θk(sk) is assumed
to satisfy the unshearability condition of the Euler-Bernoulli kinematics, namely, θk(sk) = v′k(sk).

In order to formulate the problem of incremental equilibrium for the lattice, the contributions
to the second-order incremental energy are derived for the single rod in Section 2.1 and for the
slider constraint in Section 2.2. These are then combined in Section 2.3 to obtain the unit cell
equilibrium.

2.1 Analytic solution for the prestressed elastic rod
The incremental equilibrium equations for an elastic rod obeying Euler-Bernoulli kinematics, pre-
stressed with an axial load P (assumed positive in tension), and pre-stretched by λ0 > 0, are the
following

A(λ0)u′′(s) = 0 , (2a)
B(λ0) v′′′′(s)− P (λ0) v′′(s) = 0 , (2b)

where A(λ0) and B(λ0) are the incremental axial and bending stiffnesses, respectively, and s ∈ (0, l)
with l being the current length of the rod. It is worth noting that the current axial and bending
stiffnesses are, in general, functions of the current pre-stretch λ0, which in turn depends on the
axial load P (see for instance [23]). In the following, the parameters A(λ0) and B(λ0) will simply
be denoted as A and B, and treated as independent quantities for generality.

Eqs. (2) is a system of linear ODEs for the functions u(s) and v(s). As the system is fully
decoupled, the solution is easily obtained in the form

u(s) = Cu1 + Cu2 s , v(s) = Cv1 e
−β s + Cv2 e

β s + Cv3 s+ Cv4 , (3)

where {Cu1 , Cu2 , Cv1 , ..., Cv4} are 6 arbitrary complex constants and β =
√
P/B.

For a rod of length l, the following nomenclature can be introduced

u(0) = u1 , v(0) = v1 , θ(0) = θ1 , u(l) = u2 , v(l) = v2 , θ(l) = θ2 , (4)

so that the vector q = {u1, v1, θ1, u2, v2, θ2}T collects the degrees of freedom of the rod expressed
in terms of end displacements. Solving the conditions (4) for the constants {Cu1 , Cu2 , Cv1 , ..., Cv4}T
allows the solution (3) to be rewritten as

u(s) = N(s;P ) q , (5)

3



which is now a linear function of the nodal displacements q. The 2×6 matrix N(s;P ) acts as a
matrix of prestress-dependent ‘shape functions’ and therefore the representation (5) can also be
considered as the definition of a ‘finite element’ endowed with shape functions built from the exact
solution. Moreover, these shape functions reduce to the solution holding true in the absence of
prestress, because in the limit

lim
P→0

N(s;P ) =

[
1− s

l 0 0 s
l 0 0

0 (l−s)2(l+2s)
l3

(l−s)2s
l2 0 (3l−2s)s2

l3
s2(s−l)
l2

]
,

the usual shape functions (linear and Hermitian for axial and flexural displacements, respectively)
are retrieved.

By employing Eq. (5), the incremental stiffness matrix of a prestressed rod can be computed,
so that for the k-th rod the elastic strain energy at second order is given by

Ek =
1

2

∫ lk

0

(
Ak u

′
k(sk)2 +Bk v

′′
k (sk)2

)
dsk =

1

2
qT
k

(∫ lk

0

Bk(sk;Pk)TEkBk(sk;Pk)dsk

)
qk , (6)

where Ek is a matrix collecting the stiffness terms, while Bk(sk;P ) is the strain-displacement
matrix, defined as follows

Ek =

[
Ak 0
0 Bk

]
, Bk(sk;Pk) =

[
∂
∂sk

0

0 ∂2

∂s2k

]
Nk(sk;Pk) .

The ‘geometric’ contribution due to the presence of the axial prestress is now included in the
potential energy,

Vgk =
1

2
Pk

∫ lk

0

v′k(sk)2 dsk =
1

2
qT
k

(
Pk

∫ lk

0

bk(sk;Pk)Tbk(sk;Pk) dsk

)
qk , (7)

where bk(sk;Pk) =
[
0 ∂

∂sk

]
Nk(sk;Pk) is a vector collecting the derivatives of the shape functions

describing the transverse displacement v. A combination of Eqs. (6) and (7), yields the potential
energy for the k-th rod in the form

Vk = Ek + Vgk . (8)

Note that, as the equilibrium equations for the rods have been linearized around an axially
preloaded configuration, the potential (8) represents the incremental potential energy with respect
to the current configuration.

From Eqs. (6), (7) and (8) the prestress-dependent stiffness matrix is defined as

Kk(Pk) =

∫ lk

0

Bk(sk;Pk)TEkBk(sk;Pk)dsk + Pk

∫ lk

0

bk(sk;Pk)Tbk(sk;Pk)dsk,

so that

Kk =



Ak

lk
0 0 −Ak

lk
0 0

0 12Bk

l3k
ϕ1(pk) 6Bk

l2k
ϕ2(pk) 0 − 12Bk

l3k
ϕ1(pk) 6Bk

l2k
ϕ2(pk)

0 6Bk

l2k
ϕ2(pk) 4Bk

lk
ϕ3(pk) 0 − 6Bk

l2k
ϕ2(pk) 2Bk

lk
ϕ4(pk)

−Ak

lk
0 0 Ak

lk
0 0

0 − 12Bk

l3k
ϕ1(pk) − 6Bk

l2k
ϕ2(pk) 0 12Bk

l3k
ϕ1(pk) − 6Bk

l2k
ϕ2(pk)

0 6Bk

l2k
ϕ2(pk) 2Bk

lk
ϕ4(pk) 0 − 6Bk

l2k
ϕ2(pk) 4Bk

lk
ϕ3(pk)


,

where the ϕj are functions of the non-dimensional measure of prestress pk = Pkl
2
k/Bk given by

ϕ1(pk) =
p
3/2
k

12
(√
pk − 2 tanh

(√
pk/2

)) , ϕ2(pk) =
pk

6
√
pk coth

(√
pk/2

)
− 12

,

ϕ3(pk) =
pk cosh

(√
pk
)
−√pk sinh

(√
pk
)

4
√
pk sinh

(√
pk
)
− 8 cosh

(√
pk
)

+ 8
, ϕ4(pk) =

√
pk
(
sinh

(√
pk
)
−√pk

)(
4
√
pk coth

(√
pk/2

)
− 8
)

sinh2
(√
pk/2

) .
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Note that the tangent stiffness matrix Kk representative of the k−rod in the prestressed lattice
reduces, in the limit of vanishing prestress (or unitary pre-stretch λ0k = 1), to the usual stiffness
matrix of an Euler-Bernoulli beam with Hermitian shape functions, so that

lim
p→0

ϕj(p) = 1, ∀j ∈ {1, ..., 4}.

2.2 Second-order energy contribution of the slider constraint
For the formulation of the incremental equilibrium of the lattice, the contributions to the potential
energy of the constraints between the rods need to be introduced. As the constraints considered
in this work are clamps and sliders, the derivation of the incremental contribution of the latter
is addressed in the following, while the former simply impose continuity of displacements and
rotations.

Two rods subject to the same axial load P are considered, connected through a slider constraint,
as sketched in Fig. 2. By denoting the strain-energy density of the rods as ψ, the potential energy

Fig. 2. Stress-free (left), stretched (center), and incrementally deformed (right) configurations of two rods connected
to each other through a slider constraint and subject to an axial load P . The slider imposes a constraint on the
displacement jump, JuKS · nS = 0, and on the rotation, JθKS = 0.

can be written as

V =

∫ L1

0

ψ dx1 +

∫ L2

0

ψ dx2 − P u2(L2) + P u1(0) , (9)

where the local coordinates x1 and x2 as well as the rods’ length are referred to the stress-free
reference configuration. The strain-energy density ψ is dependent on the local stretch λ and
curvature χ of the rod, which are defined as

λ = (1 + u′(x)) cos θ(x) + v′(x) sin θ(x) , χ = θ′(x) ,

with the rotation field θ satisfying the unshearability constraint θ = arctan [v′/(1 + u′)]. The
dependence of ψ on λ and χ is assumed in the form ψ(λ, χ) = ψλ(λ) + ψχ(χ).

The equilibrium configuration of the connected rods is provided by the principle of virtual work,
effective to the stationary condition

δV =

∫ L1

0

δψ dx1 +

∫ L2

0

δψ dx2 − P δu2(L2) + P δu1(0) = 0 , (10)

whose solution is to be sought in the space of the displacement fields satisfying the slider constraint
between points S− and S+, which reads

JuKS ·
(
cos θS e

t + sin θS e
n)︸ ︷︷ ︸

nS

= 0 , (11)

where JuKS denotes the displacement jump across the slider, JuKS = uS+ −uS− , the unit vector nS
describes the orientation of slider in the deformed configuration, and the rotation field is continuous,
θS = θS− = θS+ , as sketched in Fig. 2.
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Instead of dealing with Eq. (10) subject to the constraint (11), the equilibrium can be equiv-
alently formulated by means of the Lagrange multiplier method, so that the potential energy (9)
becomes

V̂ =

∫ L1

0

ψ dx1 +

∫ L2

0

ψ dx2 − P u2(L2) + P u1(0)︸ ︷︷ ︸
V

+µ JuKS ·
(
cos θS e

t + sin θS e
n)︸ ︷︷ ︸

S

, (12)

with µ being the Lagrange multiplier of the slider constraint. The augmented potential (12) is
now used to obtain the straight stretched equilibrium configuration and the second-order potential
governing the incremental equilibrium.

The straight equilibrium configuration is easily obtained by solving the vanishing condition of
the first variation of functional (12), evaluated for a displacement field of the form

u0k(xk) = u0k(0) + (u0k(Lk)− u0k(0))
xk
Lk

, v0k(xk) = 0 ∀k ∈ {1, 2} ,

so that stationarity of the augmented potential (12) reads as

δV̂0 =

∫ L1

0

ψ′λ(λ01) δu′1 dx1 +

∫ L2

0

ψ′λ(λ02) δu′2 dx2 − P δu2(L2) + P δu1(0)+

+ µ (δu2(0)− δu1(L1)) + δµ (u02(0)− u01(L1)) = 0 , ∀δu1, δu2, δµ ,
(13)

yielding the following equilibrium conditions

ψ′λ(λ01) = ψ′λ(λ02) = µ0 = P , u02(0) = u01(L1) , (14)

where λ01 and λ02 denote the stretch values of the rods, while µ = µ0 denotes the value of the
Lagrange multiplier at the equilibrium. These conditions are derived from equation (13) by taking
advantage of homogeneity of the stretch in the two rods (so that λ01 and λ02 are constants) and
noting also that the residual bending moment ψ′χ(0) vanishes on a straight configuration.

Upon the straight stretched configuration defined by Eq. (14), the incremental equilibrium is
governed by the second-order expansion of the augmented potential, Eq. (12). Letting ∆u1, ∆u2,
and ∆µ be the increments with respect to the straight equilibrium configuration, the expansion
assumes the form

V̂(u01 + ∆u1,u02 + ∆u2, µ0 + ∆µ) ∼ δV̂0︸︷︷︸
=0

+δ2V0(∆u1,∆u2,∆µ) + δ2S0(∆u1,∆u2,∆µ), (15)

where the subscript (·)0 highlights reference to the straight equilibrium configuration.
The second-order part of Eq. (15) is composed of two terms: the term δ2V0 accounting for the

incremental energy distributed on the rods (as if the slider were absent) and the term δ2S0 that
accounts only for the contribution of the slider constraint. The rods’ contribution δ2V0 assumes the
usual form, Eq. (8) (see [23] for details), while the slider contribution δ2S0 has to be determined.
Using the definition of S from Eq. (12) and recalling the properties of the straight equilibrium
configuration, Eqs. (14), δ2S0 becomes

δ2S0(∆u1,∆u2,∆µ) = µ0 J∆uKS · ∆θSe
n + ∆µ J∆uKS · et

= µ0(∆v2(0)−∆v1(L1))∆θS + ∆µ(∆u2(0)−∆u1(L1)) ,
(16)

where the incremental rotation of the slider ∆θS can be written in terms of the transverse displace-
ment as

∆θS =
1

λ01

∂∆v1
∂x1

(L1) =
1

λ02

∂∆v2
∂x2

(0) ,

or also as
∆θS =

∂∆v1
∂s1

(l1) =
∂∆v2
∂s2

(0) ,

obtained by simply updating the reference configuration from the stress-free, described by the
coordinate xk ∈ [0, Lk], to the current stretched configuration function of sk = λ0kxk ∈ [0, lk].
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Having determined the second-order contribution of the slider, Eq. (16), the symbol ∆, in-
troduced to denote incremental quantities, will be omitted in order to ease the notation. Thus,
all quantities are assumed in the following to be incremental quantities unless stated otherwise.
Accordingly, the contribution of the slider, Eq. (16), is simply denoted by S and written as

S (JuKS, µ) = P JuKS · θSen + µ JuKS · et , (17)

where the equality µ0 = P provided by Eq. (14) has been used. The stationary of Eq. (17) with
respect to the Lagrange multiplier µ yields the condition JuKS ·et = 0, expressing continuity of the
axial displacement across the slider. Hence, Eq. (17) is finally simplified as

S (JuKS) = P JuKS · θSen . (18)

The following subsection combines the incremental energy of the rods, Eq. (8), with that
pertaining to the sliders, Eq. (18), to construct the incremental equilibrium of the entire lattice
structure.

2.3 Incremental equilibrium for the unit cell
The equations governing the incremental equilibrium are formulated for a unit cell of the lattice
with respect to the current preloaded configuration. The incremental potential energy V(q) of a
unit cell can be evaluated by summing the contribution of each rod, Eq. (8), as well as of each
slider, Eq. (18), so that

V(q) =

NB∑
k=1

Vk(Ckq) +

NS∑
i=1

Si(JuKSi
) , (19)

where NS is the number of sliders in the unit cell, q is the vector collecting the degrees of freedom
of the unit cell, Si denotes the contribution of i-th slider, and Ck is the connectivity matrix of
the k-th rod, such that qk = Ckq, which imposes the appropriate constraints at the junctions
between the rods (continuity of all the fields for welded junctions and continuity of rotation and
axial displacement for sliders).

The current configuration of the unit cell is subject to external generalized incremental forces f
(including bending moments) transmitted by the rest of the lattice from which the cell is thought
to be ideally ‘excised’. Hence, the incremental equilibrium for a single unit cell can be stated
through the principle of virtual work as

δV(q, δq) = f · δq , ∀δq , (20)

where δq is the virtual counterpart of q. Note that, due to the assumption of absence of body
forces, the external virtual work f ·δq only involves forces applied on the unit cell boundary, as the
only non-vanishing external forces acting on a unit cell are those transmitted by the neighboring
cells.

The incremental equilibrium equations are therefore obtained from the variational statement,
Eq. (20), yielding

K(P ) q = f , (21)

where

K(P ) =
∂2V(q)

∂q ∂q
, (22)

is the symmetric (as derived from a scalar potential) stiffness matrix of the unit cell, function of
the vector P = {P1, ..., PNB}, which collects the axial prestress of the rods. The dimension of the
system (21) is 3Nj where Nj is the number of nodes in the unit cell.

It is worth pointing out that the contribution Vk from each rod, appearing in the potential
energy, Eq. (19), is positive definite whenever the preload is tensile (Pk > 0), while the slider
contribution Sk is indefinite even for a tensile preload. This property implies that in the absence of
slider constraints bifurcations would be excluded for tensile preload state. Therefore, the presence
of the sliders allows V to vanish for a non-trivial deformation even when Pk > 0 , ∀k ∈ {1, ..., NB}
and thus tensile instabilities of the lattice (and its effective continuum) become possible.
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3 The effective prestressed elastic continuum
As the preloaded configuration of the lattice is assumed to be spatially periodic, the homogenized
incremental response of an effective prestressed elastic solid can be defined by computing the
average strain-energy density, associated to an incremental displacement field (defined for the
j-th node by the displacement and rotation components, respectively, q

(j)
u = {u(j), v(j)}T and

q
(j)
θ = {θ(j)}) which obeys the Cauchy-Born hypothesis [30–32]. The latter, for a single unit cell,

prescribes that the displacement of the lattice’s nodes be decomposed into the sum of an affine
incremental deformation (ruled by a constant second-order tensor L) and a periodic field (defined
by a displacement q̃(j)

u and a rotational q̃(j)
θ component) as

q(j)
u = q̃(j)

u + Lxj , q
(j)
θ = q̃

(j)
θ , ∀j ∈ {1, ..., Nj} , (23)

where xj is the position of the j-th node.
The periodic term q̃ satisfies q̃(p) = q̃(q) for all {p, q} such that xq − xp = n1a1 + n2a2 (with

nj ∈ {0, 1}). This term can be expressed as a function of its independent components through
a partition of the degrees of freedom, to be made in accordance with the location of the nodes
present inside the unit cell. Specifically, by denoting with q̃i the degrees of freedom located inside
the unit cell, with q̃l, q̃r, q̃b, q̃t those on the left, right, lower, and upper edge respectively, and
with q̃lb, q̃rb, q̃lt, q̃rt those located at the four corners, the periodic field can be expressed as

q̃ =



q̃i

q̃l

q̃b

q̃lb

q̃r

q̃t

q̃rb

q̃lt

q̃rt


=



I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 I 0 0
0 0 I 0
0 0 0 I
0 0 0 I
0 0 0 I




q̃i

q̃l

q̃b

q̃lb

 , (24a)

which may succinctly be rewritten as
q̃ = Z0 q̃

∗ , (24b)

where Z0 and q̃∗ are defined according to Eq. (24a). The same partitioning is also used for the
vectors q and f . Note that the periodicity conditions (24) represent the long-wavelength limit of
the Floquet-Bloch conditions used in wave propagation problems [23, 33].

In order to enforce the Cauchy-Born conditions into the equations of incremental equilib-
rium (21), it is convenient to rewrite Eq. (23) as

q(q̃∗,L) = Z0 q̃
∗ + q̂(L) , (25)

where the affine part of the deformation q̂(L) is a vector-valued function linear in L and such that

q̂(L)(j)u = Lxj , q̂(L)
(j)
θ = 0 , ∀j ∈ {1, ..., Nj} ,

where the same notation introduced with Eq. (23) has been used so that the subscript u (subscript
θ) denotes displacement (rotation) components.

Note that, since the lattice is subject to a non-vanishing prestress state, the macroscopic incre-
mental deformation gradient defined by Lmust be an arbitrary second-order tensor, not constrained
to be symmetric (as it happens in the absence of prestress [20, 31, 32]). As explained in the next
section, this lack of symmetry is essential for the correct evaluation of the incremental fourth-order
tensor defining the effective continuum, ‘macroscopically equivalent’ to the lattice.

3.1 Incremental constitutive tensor for the effective continuum
Before introducing the homogenization technique, it is important to recall that, as shown in Sec-
tion 2, the equilibrium equations for the lattice are (i) obtained in the context of a linearized theory,
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and (ii) referred to a prestressed reference configuration. Therefore, the effective continuum, for
the moment unknown, has to be formulated in the context of the incremental theory of nonlinear
elasticity by means of a relative Lagrangian description as introduced by Hill [34], see also [24]. As
a consequence, the response of the effective material is defined by an incremental constitutive law
in the form

Ṡ = C[L] , (26)

relating the increment of the first Piola-Kirchhoff stress Ṡ to the gradient of incremental displace-
ment L, through the elasticity tensor C. The most general form for the constitutive tensor C
is

C = E + I � T in components Cijkl = Eijkl + δikTjl , (27)

where δik is the Kronecker delta, T is the Cauchy stress, defining the prestress, and E is a fourth-
order elastic tensor, endowed with all usual (left and right minor and major) symmetries

Eijkl = Ejikl = Eijlk = Eklij , (28)

so that C lacks the minor symmetries but possesses the major symmetry. The symmetries of C
explain the reason why the full incremental deformation gradient L, and not only its symmetric
part, appears in the Cauchy-Born hypothesis, Eq. (23), of the lattice. Moreover, Eq. (27) shows
that L can be restricted to be symmetric only in the absence of prestress, T = 0.

The incremental strain-energy density for the prestressed continuum is referred to the pre-
stressed configuration. It can be expressed in terms of a second-order expansion with respect to
the incremental deformation gradient L as follows

W(L) = T ·L︸ ︷︷ ︸
W1(L)

+C[L] ·L/2︸ ︷︷ ︸
W2(L)

, (29)

where the first-order increment W1(L) accounts for the work expended by the current prestress
state T (due to the relative Lagrangian description the first Piola-Kirchhoff stress coincides with
the Cauchy stress), while the second-order termW2(L) is the strain-energy density associated with
the incremental first Piola-Kirchhoff stress given by Eq. (26).

It is also worth noting that a calculation of the second gradient of the incremental energy
density, Eq. (29), with respect to L yields the constitutive fourth-order tensor C relating the stress
increment to the incremental displacement gradient. Taking the first gradient provides, when
evaluated at L = 0, the prestress T . The latter property will be used to dissect the effect of
prestress in the homogenized response of the lattice.

3.2 First and second-order matching of the incremental strain-energy
density

The homogenization of the lattice response is based on the equivalence between the average in-
cremental strain-energy associated to a macroscopic incremental displacement gradient applied to
the lattice and the incremental strain-energy density of the effective elastic material subject to
the same deformation. In the classical homogenization theory, this condition is known as macro-
homogeneity condition, or Hill-Mandel theorem [20, 31, 35, 36], which provides the link between
the microscopic and macroscopic scales.

In the following, the macro-homogeneity condition is enforced to obtain the incremental energy
density (29) that matches the effective behavior of the prestressed lattice at first- W1(L) and at
second- W2(L) order. Thus, the homogenization scheme is based on the following steps:

(i) An incremental deformation gradient L is considered, so that the incremental energy density
for the unknown effective continuum is defined by Eq. (29);

(ii) following the Cauchy-Born hypothesis, Eq. (25), the incremental displacement field for the
lattice is prescribed by the given tensor L and the periodic vector q̃∗ necessary to enforce
the equilibrium of the lattice;

(iii) with the solution of the lattice in terms of L (the periodic vector q̃∗ becomes in solution a
function of L) the incremental energy density is calculated for the lattice;
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(iv) the two incremental energy densities in the continuum and in the lattice are matched, so to
obtain the components of the incremental elastic tensor defining the effective solid.

Determination of the periodic displacement field for the lattice. By substituting condi-
tion (25) into Eqs. (21) and pre-multiplying by ZT

0 , the incremental equilibrium becomes

ZT
0 K(P )Z0 q̃

∗ + ZT
0 K(P ) q̂(L) = ZT

0 f , (30)

where the right-hand side can be written more explicitly using the partitioning introduced by
Eq. (24a) as

ZT
0 f =


f i

f l + fr

f b + f t

f lb + frb + f lt + frt

 .

The fact that the only non-vanishing forces are assumed to be the internal forces transmitted at
the unit cell boundary by the neighboring cells implies f i = 0. Moreover, as the displacement
field satisfying the Cauchy-Born hypothesis generates internal forces in the infinite lattice that are
periodic along the direct basis {a1,a2}, any single unit cell is subject to external boundary forces
that are anti-periodic. Consequently, f l = −fr, f b = −f t and f lb = −frb−f lt−frt, so that the
term ZT

0 f vanishes and Eq. (30) becomes

ZT
0 K(P )Z0 q̃

∗ = −ZT
0 K(P ) q̂(L) . (31)

The solution of the linear system (31) provides the incremental periodic displacement field q̃∗

internal to the lattice for every given L. As a consequence of the linearity of q̂(L), the solution
q̃∗(L) is, in turn, a linear function of L.

A few considerations have to be made about the solvability of the system (31). In fact, it
is easy to show that the matrix ZT

0 K(P )Z0 is always singular, regardless of the specific lattice
structure under consideration. This is proved by considering a vector q̃∗ = t defining a pure rigid-
body translation and observing that K(P )Z0 t = 0, which, in turn, implies that the dimension
of the nullspace of ZT

0 K(P )Z0 is at least 2, as two linearly independent rigid-body translations
exist for a 2D lattice. Any other deformation mode, possibly contained in ker(ZT

0 K(P )Z0), is
therefore a zero-energy mode, called ‘floppy mode’ [37, 38]. These modes are excluded in the
following analysis to ensure solvability of system (31), so that ker(ZT

0 K(P )Z0) contains only two
rigid-body translations. Floppy modes can be always recovered in limits of vanishing stiffness and
can eliminated or introduced playing with prestress [39, 40].

Having excluded floppy modes and observing that the right-hand side of Eq. (31) is orthogonal
to ker(ZT

0 K(P )Z0),
t ·ZT

0 K(P ) q̂(L) = 0,

for all rigid-body translations t, the solution q̃∗(L) can now be determined.

Match of the second-order incremental strain-energy density and determination of the
incremental constitutive tensor. The solution of the linear system (31) allows the incremental
displacement, Eq. (25), to be expressed only in terms of the macroscopic displacement gradient L
as q(q̃∗(L),L). Therefore, the second-order incremental strain-energy stored in a single unit cell
of the lattice undergoing a macroscopic strain can be evaluated as follows

E(L) =
1

2
q(q̃∗(L),L) ·K(P ) q(q̃∗(L),L) , (32)

which is a quadratic form in L, because q(q̃∗(L),L) is linear in L. By equating the second-order
strain-energy density of the continuumW2(L) = C[L]·L/2 to the average energy of the lattice (32),
the following equivalence condition is obtained

1

2
C[L] ·L︸ ︷︷ ︸

Continuum

=
1

|C|
E(L)︸ ︷︷ ︸

Lattice

, (33)
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where |C| is the area of the unit cell.
Finally, a calculation of the second gradient of Eq. (33) with respect to L yields the incremental

constitutive tensor for the effective Cauchy material, in the form

C =
1

|C|
∂2 E(L)

∂L ∂L
=

1

2|C|
∂2

∂L ∂L

[
q(q̃∗(L),L) ·K(P ) q(q̃∗(L),L)

]
, (34)

which becomes now an explicit function of the prestress state, as well as of all the mechanical
parameters defining the lattice.

Match of the first-order incremental strain-energy density and homogenization of the
prestress state. So far, the incremental constitutive tensor C of a continuum ‘equivalent’ to a
prestressed elastic lattice, Eq. (34), has been obtained through homogenization. It is important
now to ‘dissect’ from C the effect of the prestress T and, as a consequence, to obtain tensor E.

It will be shown below that the current prestress state T of the homogenized material can
directly be linked to the preload state P = {P1, ..., PNB} of the lattice. In fact, by observing that
equation (33) represents the second-order incremental strain energy, equal toW2(L) = Ṡ(L) ·L/2,
an equivalence analogous to that expressed by equation (33) can be obtained considering the first-
order increment of the strain energy,W1(L) = T ·L. Thus, the first-order term can be identified as
the average work done by the prestress state P during the lattice deformation q(q̃∗(L),L) induced
by L. Accordingly, the following equivalence can be stated

T ·L︸ ︷︷ ︸
Continuum

=
1

|C|
fP · q(q̃∗(L),L)︸ ︷︷ ︸

Lattice

, (35)

where vector fP collects the forces that emerge at the nodes of the unit cell and are in equilibrium
with the axial preload P , in the current configuration assumed as reference. As a consequence, the
forces fP are independent of L and linear in P .

Equation (35) requires that the work done by axial loads fP for nodal displacements q associ-
ated to a skew-symmetric velocity gradient L = W be zero, namely

fP · q(q̃∗(W ),W ) = 0 . (36)

This statement is a direct consequence of the principle of virtual work for rigid body incremental
motions, because q(q̃∗(W ),W ) represents an incremental rotation of the lattice and fP satisfies
equilibrium. Hence, taking into account the property (36), the homogenized prestress T can be
obtained as the gradient of the equivalence condition (35) with respect to the symmetric part of
L, denoted as D,

T =
1

|C|
∂

∂D

[
fP · q(q̃∗(D),D)

]
. (37)

4 Tensile material instabilities in a preloaded lattice
The analytical framework developed in Sections 2, and 3 is now applied to a particular lattice
structure in order to showcase a concrete example of a material displaying static instabilities that
are triggered by both compressive and tensile presstress states. The lattice under analysis is the
rectangular grid illustrated in Fig. 3 which is preloaded along the two principal directions and
endowed with sliding constraints. The sliders are stiffened by linear springs to prevent trivial
floppy modes that would otherwise be present when the preload vanishes. The unit cell of the
periodic structure, Fig. 3a, is chosen to provide the minimum number of rods and thus simplify
the computations involved in the stability analysis.

The lattice configuration is parametrized by the following dimensionless ratios

pi =
Pi l

2
i

Bi
, λi = li

√
Ai
Bi

, κi =
ki l

3
i

Bi
, ξ = l2/l1 , χ = A2/A1 , ∀i ∈ {1, 2} , (38)

where the index i identifies the horizontal and vertical rods according to Fig. 3a, while ki denotes
the sliding stiffness of the sliders provided by the linear springs.

11



(a) Unit cell
(b) Periodic lattice

Fig. 3. The rectangular lattice of preloaded rods endowed with sliding constraints used to realize a material capable
of losing ellipticity under tensile and compressive loadings. Linear springs are introduced to stiffen the sliders, thus
preventing floppy modes at vanishing preload.

Buckling of structures similar to those considered here and embedding sliding constraints has
been considered in [41], under the hypotheses that the structure has a finite-size and is subject
to equibiaxial loading. In [41] the rods are assumed as axially extensible, but rigid under bend-
ing, while both deformations are taken into account in the present work. Moreover, an effective
continuum material for such structures has not been given in [41].

The general homogenization method developed in Section 3, applied to the lattice material
represented in Fig. 3, allows the identification of the effective incremental constitutive tensor C
and prestress tensor T (which may be conveniently made dimensionless through multiplication by
l1/A1) as explicit functions of all parameters (38). The resulting expression of the constitutive
tensor C is quite lengthy and is deferred to Appendix A, while the homogenized prestress tensor
T can be compactly expressed as

T =
P1

l2
e1 ⊗ e1 +

P2

l1
e2 ⊗ e2 .

4.1 Positive definiteness, strong ellipticity, and lattice stability
A comprehensive stability analysis of the orthotropic lattice under study requires the determi-
nation of the threshold for the applied preload which triggers one or multiple non-trivial static
bifurcations [23].

With regards to the stability of the effective medium, the positive definiteness (PD) of the
incremental constitutive operator C ensures the uniqueness of the incremental boundary value
problem subject to arbitrary boundary conditions [24]. The effective material is defined PD if

C[L] ·L > 0 , ∀L 6= 0 , (39)

which, due to the major symmetry of C, is equivalent to the positiveness of all the eigenvalues of
C. When PD is lost at a given loading threshold, condition (39) does not hold true and therefore
zero-energy modes (or floppy modes) arise. Thus if the effective material is PD, the lattice can be
considered ‘macroscopically stable’ against arbitrary disturbances. Otherwise, some macroscopic
deformation exist, which is associated to a zero energy expenditure.

Strong ellipticity (SE) characterizes the stability of the effective medium with respect to pertur-
bations that vanish on the boundary of an arbitrary small sphere (corresponding to the so-called
‘van Hove problem’ [24]) and is defined as the positive definiteness of the acoustic tensor A(C)(n)
associated to the incremental fourth-order tensor C

g ·A(C)(n) g > 0 ∀n 6= 0 ∀g 6= 0 , (40)

where A(C)(n) g = C[g ⊗ n]n.
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On the other hand, the bifurcation of an incrementally loaded periodic lattice can be analyzed
with a Floquet-Bloch technique as shown in [15, 23]. This analysis shows that both local and
global bifurcation modes can occur and only the latter correspond to failure of ellipticity for the
effective material evaluated from homogenization [18, 20, 22].

4.2 A bounded stability domain
Stability domains represent an effective tool to characterize the regions of the prestress space where
a material is stable. Their boundaries define the thresholds of instability.

Stability domains for the orthotropic lattice shown in Fig. 3 are computed in the 2D dimen-
sionless prestress space {p1, p2} for several values of the dimensionless sliding stiffnesses κ1 and κ2
with the purpose of investigating both cubic and orthotropic configurations, including the limiting
cases κ1 → ∞ and κ2 → ∞. Physically, these limits correspond to sliders with infinite sliding
stiffness, thus realizing perfect ‘welding’ conditions. Several configurations for ‘fully welded’ grids
have been explored in [23] where it has been shown that the stability domain of these materials
is unbounded for tensile preloads. However, the results reported in this section demonstrate that
the introduction of sliding constraints strongly alters the structure of the stability domain.

For the computation of the stability domains, the slenderness values are set equal to λ1 = λ2 =
20, while the aspect ratio and the area ratio are chosen as ξ = χ = 1.

Results are reported in Figs. 4–6. Each figure contains six plots corresponding to different values
of sliding stiffness, and in each plot three kinds of stability domains are illustrated. The shaded
regions in dark blue and bounded by a dashed line represent preload states where the effective
material is PD, while the light blue regions bounded by a solid line define the domain where the
effective material is SE. Note that as a consequence of Eqs. (39) and (40) PD regions are always
contained inside SE regions. The third domain is the one enclosed by the colored spots, which
define the region where the lattice is stable, so that both long and short-wavelength bifurcations
are excluded.

It can be observed in all of the three Figs. 4–6 that the boundary for lattice stability (colored
spots) coincides with the boundary of SE for the effective material and encloses the origin. This im-
plies that the critical bifurcation occurring in the lattice is macroscopic, namely, a long-wavelength
bifurcation corresponding to the formation of a shear band.

The red and green spots denote the presence of a horizontal and vertical shear band, respectively,
while the insets depict the corresponding critical dyad ncr⊗gcr responsible for the loss of SE along
the direction ncr and with critical polarization gcr. Note also that the diamond-shaped spots (two
for each domain) denote limit points characterized by the simultaneous occurrence of a vertical
and a horizontal shear band.

Fig. 4 shows stability domains for different slider stiffness κ1 = κ2 = {1, 2, 5, 10, 100} of a lattice
with cubic symmetry. Figs. 5 and 6 refer to κ1 6= κ2 and therefore refer to orthotropy. In the
case of cubic symmetry, Fig. 4, the equibiaxial loading path p1 = p2 becomes a symmetry axis for
the stability regions, while this symmetry is broken when the two sliders have a different stiffness,
κ1 6= κ2, Figs. 5, 6.

Remarkably, the stability domain of the lattice is bounded both in compression and in tension,
and tends to become unbounded in tension when the stiffness of the sliders increases, so that in
the limit κ1 → ∞ and κ2 → ∞ the case of a ‘welded connection’ is recovered for which there is
no bifurcation in tension. In addition, three non-trivial features of the stability domains can be
highlighted:

(i) The SE and PD limit points coincide for uniaxial tension loading along the horizontal (p2 =
0) and vertical direction (p1 = 0). This is clearly visible in Figs. 4a–d and Figs. 5a–d.

(ii) The transition from a single horizontal (occurring for p2 < p1) to a single vertical (occurring
for p2 > p1) shear band is marked by the equibiaxial loading path p1 = p2 regardless of the
values of sliding stiffness κ1 and κ2. This can be observed in Figs. 4–6 by noting that the two
limit points, leading to the formation of two shear bands and marked with diamond-shaped
spots in the figures, lie on the equibiaxial line. Note also that these points are corner points
of the otherwise smooth stability boundary.
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Fig. 4. Strong ellipticity (SE), positive definiteness (PD), and lattice stability domains for the cubic grid with
λ1 = λ2 = 20, ξ = χ = 1, and six values of sliding stiffness κ1 = κ2 = 1, 2, 5, 10, 20, 100. The arrows sketched in the
insets represent the critical direction ncr and the associated mode gcr responsible for the loss of strong ellipticity.
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Fig. 5. Strong ellipticity (SE), positive definiteness (PD), and lattice stability domains for the orthotropic grid
with λ1 = λ2 = 20, ξ = χ = 1, and six values of sliding stiffness κ1 = κ2/3 = 1, 2, 5, 10, 20, 100. Compared to
the cubic case reported in Fig. 4, the orthotropy induced by the different sliding stiffnesses increases the size of the
stability domain along the direction of the stiffest sliders (vertical).

15



-10

-5

0

5

10

-10

-5

0

5

10

-10 -5 0 5 10

-10

-5

0

5

10

-10 -5 0 5 10

Fig. 6. As for Fig. 5, but for values of sliding stiffness κ1 = 1, 2, 5, 10, 20, 100 and κ2 = 100, representing the case
of a strongly orthotropic grid with an almost unbounded stability domain for vertical tensile loading.
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(iii) In Figs. 4–6, the region corresponding to uniqueness with respect to global bifurcations in
the grid of rods has a ‘leaf-shaped’ shape and is bounded by a closed line marked with green
and red spots, denoting occurrence of macroscopic bifurcations. Outside this region, local
bifurcations occur in the lattice, so that uniqueness is possible only inside the ‘leaf-shaped’
boundary.

In the same figures, the regions corresponding to uniqueness for the grid of rods mark the
first SE boundary that is encountered in a radial (increasing) stress path by the effective
material. Thus, it is clear that loss of uniqueness at the ‘leaf-shaped’ boundary coincides
with the critical loss of SE in the effective material, which correctly captures instability of
the elastic grid.

However, differently from the lattice, the effective material evidences zones outside the bound-
ary of global instability, where SE and even PD are recovered (not shown in Figs. 4–6, but
investigated in Section 5). In these zones the response of the homogenized material returns to
be stable, but this stability does not reflect the behavior of the grid of rods, which is subject
to local instabilities, so that the homogenization scheme does not work properly. This sort
of ‘re-stabilization’ for the effective solid, which recovers SE and even PD after having lost
both in a radial path of increasing prestress, is analyzed in Section 5.

4.3 Zero-energy modes at loss of PD of the effective material
The stability analysis presented in Section 4.2 demonstrates that the bounded stability domain of
the lattice material endowed with sliders is correctly captured by the SE domain of the effective
medium, which allows the prediction of shear band formation.

An investigation on the deformation of the lattice and the effective material is presented in
Figs. 7 and 8, both referring to the following parameters of the grid

λ1 = λ2 = 20 , ξ = χ = 1 , κ1 = κ2 = 10 ,

corresponding to one of the cases analyzed in Fig. 4.
In both figures, the grid and the effective material are prestressed up to a point denoted with

a red triangle in the prestress space (inset of the figure) and then subject to an incremental
deformation defined by the tensor L. The applied incremental deformation L is chosen to be
the macroscopic zero-energy mode corresponding to the given radial loading path. In turn, the
macroscopic zero-energy modes are obtained by evaluating, on the PD boundary, the eigenvectors
Lcr leading to failure of the PD condition (39), or second-order work C[Lcr] · Lcr = 0. Then, by
solving Eq. (31) and using Eq. (25), the actual displacement field of the lattice can be determined
and visualized. Fig. 7 refers to a uniaxial tensile prestress state upon which an incremental simple
shear L = e1 ⊗ e2 is applied. Fig. 8 refers to a biaxial stress path inclined at 30◦ with respect to
the horizontal axis and an incremental deformation L = 0.866025 e1 ⊗ e2 + 0.5 e2 ⊗ e1.

It is worth noting that the zero-energy mode for uniaxial tension (Fig. 7b) highlights the peculiar
interplay, occurring at the instability threshold, between the local deformation of the unit cell and
the macroscopic deformation. In fact the bifurcation mode shows the sliders within each cell
opening vertically while enabling an overall horizontal macroscopic shearing. Note also that under
uniaxial tension, loss of positive definiteness PD for the homogenized incremental constitutive
operator coincides with loss of strong ellipticity SE.

Similarly to Fig. 1, Figs. 7 and 8 report both the incrementally deformed grid and the cor-
responding incrementally deformed effective material (shown in orange). From both figures the
following conclusions can be drawn:

• The bending moments applied at the ends of the rods correspond to a null mean stress and
therefore do not provide any effect on the boundary of the effective material. In fact, this
effect is a higher-order contribution within the homogenization scheme adopted here, so that
it could be highlighted only in a higher-order description employing Cosserat or Mindlin
continua for the effective material.

• At loss of PD the effective material admits incremental deformations corresponding to zero
second-order energy. For these deformations (addressed in the figures), an element of the
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effective material is subject to an incremental strain with null surface tractions. In this
case, the grid of rods deforms only under incremental bending moments, which, although
contributing to the local equilibrium of the lattice, do not appear on the effective continuum.
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Fig. 7. An incremental simple shear deformation, L = e1 ⊗ e2, is superimposed upon a uniaxial prestress state.
The response of the unit cell, together with the prestress position in the stability domain, is shown on the left, while
the incremental deformation of the grid, with superimposed the incremental deformation of the effective continuum,
is shown on the right. (a) The prestress state is far from the PD and SE boundaries, p ≈ {3.32955, 0}. (b) The
prestress state belongs to both the PD and SE boundaries (coinciding for uniaxial stress), pcr ≈ {6.65910, 0}; in
this case, the reported incremental deformation is a zero-energy mode for the effective material.

5 Re-stabilization of the effective continuum induced by lat-
tice periodic microinstabilities

The occurrence of the ‘re-stabilization’ mentioned in Section 4.2 is highlighted in Fig. 9. Here
zones of PD (shaded dark gray) and SE (shaded light gray) are shown that extend beyond the
leaf-shaped zone corresponding to the critical (in other words, the first encountered in a radial
stress path) loss of SE (shaded blue) for the effective material.

This occurrence can be explained on the basis of the homogenization scheme described in
Section 3. One of the key points of this procedure is the solution of Eq. (31), so that to obtain
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Fig. 8. As for Fig. 7, except that the prestress states are tensile and biaxial, located on a line inclined at 30◦ with
respect to p1-axis and that the superimposed deformation is an incremental deformation L = 0.866025 e1 ⊗ e2 +
0.5 e2 ⊗ e1. (a) The prestress is well inside the SE domain, p ≈ {3.53705, 2.04212}; (b) The prestress state is on
the PD boundary, pcr ≈ {7.07411, 4.08424}, now inside the SE boundary, and the reported incremental deformation
represents the corresponding zero-energy mode for the effective material.
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the periodic displacement vector q̃∗ caused by a uniform deformation gradient L applied to the
nodes of the grid. The solvabilty of Eq. (31) relies on the absence of so-called floppy modes,
i.e. zero-energy modes, besides rigid translations, as was already observed in Sec. 3.2. However,
compressive/tensile prestress may induce in the lattice periodic zero-energy modes, associated to
buckling shapes of a single isolated elastic link. The tensile and the first two compressive buckling
loads and shapes for a single link, both hinged and clamped, are shown in Fig. 9b.

When one of these lattice periodic microbifurcations is attained, the coefficient matrixZT
0 K(P )Z0

in Eq. (31) admits a non-trivial zero-energy mode (floppy mode), so that the displacement vector
q̃∗ tends to infinity. As a result, the incremental strain energy (32) becomes unbounded. Fur-
thermore, continuing in a radial stress path beyond the singularity, the effective material may
recover SE, condition (40), or even PD, condition (39). However, the grid of rods is subject to
local instabilities characterized by a periodic bifurcation mode, as illustrated in Fig. 9. In these
conditions the homogenization framework does not capture the real behavior of the grid of rods,
which remains unstable after the first global bifurcation corresponding to loss of SE in the effective
material.

Fig. 9b reports the local modes of bifurcation occurring in all the rods, as they were isolated from
each other, at different re-stabilization points (indicated with the letters (c)–(f) in panel (a) and
referring to corresponding panels denoted with the same letters). The square zones highlighted in
orange in the figure represent the element of the homogenized continuum, which is left undeformed
by the deformation mode corresponding to the local bifurcation mode shown to occur in the lattice.
This incremental deformation in the grid is therefore ‘invisible’ to the effective continuum.

6 Concluding remarks
Harnessing periodic lattices of elastic rods to design architected materials may lead to the erroneous
conclusion that the latter are characterized by an ellipticity domain unbounded in tension. As a
consequence, it may be believed that these materials cannot fail under an ellipticity loss when these
stress states prevail. How these materials can be created to achieve a bounded stability domain
has been shown in the present article through the use of sliders, namely, constraints allowing only
relative sliding between two connected pieces of rod. This result shows that homogenization leads
to bounded stability domains. Moreover, our results open new possibilities for the realization of
artificial materials with tunable properties and exhibiting strain localization within the elastic
regime and for all possible directions in the stress space.
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(a) Stability domains beyond the first bifurcation (b) Buckling modes of a single elastic rod

(c) Equibiaxial tension: p1 = p2 ≈ 6.659 (d) Equibiaxial tension: p1 = p2 ≈ 9.703

(e) Equibiaxial compression: p1 = p2 ≈ −14.65 (f) Equibiaxial compression: p1 = p2 ≈ −33.91

Fig. 9. Re-stabilization of the effective material outside the domain of initial SE. The latter is reached when the
material is subject to a radial increase in stress, but beyond this threshold, the material recovers SE and even PD.
In these re-stabilization regions, homogenization does not work, as the grid of elastic rods is always subject to local
bifurcations and is therefore unstable. (a) Stability domains beyond the first bifurcation. (b) Buckling modes of a
single elastic rod endowed with a slider and a stiffening spring: the tensile and the first two compressive bifurcation
modes are shown for both hinged and clamped configurations. Lattice microbifurcations inducing re-stabilization
of the effective material: (c) equibiaxial tension: p1 = p2 ≈ 6.659, (d) equibiaxial tension: p1 = p2 ≈ 9.703, (e)
equibiaxial compression: p1 = p2 ≈ −14.65 and (f) equibiaxial compression: p1 = p2 ≈ −33.91.
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A Full expression for the effective constitutive tensor
The complete analytic expression for the effective constitutive tensor of the lattice analyzed in
Section 4 is here reported in dimensionless form C = A

l C̄ (null components are omitted).
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where the coefficient D is given by
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