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Abstract
Security Requirements Engineering is emerging as a branch of Software Engineer-

ing, spurred by the realization that security must be dealt with early on during the
requirements phase. Methodologies in this field are challenging, as they must take into
account subtle notions such as trust (or lack thereof), delegation, and permission; they
must also model entire organizations and not only systems-to-be.

In our previous work we introduced Secure Tropos, a formal framework for modeling
and analyzing security requirements. Secure Tropos is founded on three main notions:
ownership, trust, and delegation. In this paper we refine Secure Tropos introducing the
notions of at-least delegation and trust of execution; also, at-most delegation and trust
of permission. We also propose monitoring as a security design pattern intended to
overcome the problem of lack of trust between actors. The paper presents a semantics
for these notions, and describes an implemented formal reasoning tool based on Datalog.

1 Introduction

Recent years have seen many proposals that incorporate security in the software engineering
process. At one end of the spectrum, such proposals ensure good coding practices [27]. At
the other extreme, the emphasis is on securing the organization within which a software
system functions [2]. In either case, modeling and analysis of security requirements has
become a key challenge for Software Engineering [6, 8], and is the subject of this paper.

Proposals for Security Requirements Engineering can be classified under one of two
classes. Approaches such as [3, 19, 25] use an off-the-shelve modeling and analysis frame-
work – such as UML, KAOS, or i*/Tropos – and model in that framework security require-
ments. For such approaches, the features of the framework are used to formally analyze
security requirements and guide the implementation. Other approaches [9, 16, 20, 22, 24, 26]
adopt a requirements engineering framework and enhance it with novel constructs specific
to security. For such approaches, formal analysis techniques and implementation guidelines
need to be revised and/or extended to accommodate the new concepts.

Most proposals in the literature focus on protection aspects of security and explicitly
deal with a series of security services (integrity, availability etc.) and related protection



mechanisms (such as passwords, or cryptographic techniques). A shift from this perspec-
tive towards early requirements was proposed by the authors [13, 14] who extended the
i*/Tropos modeling framework [5] to define Secure Tropos. The proposal introduces con-
cepts such as ownership, trust, and delegation within a requirements modeling framework
and shows how security and trust requirements can be derived and analyzed.

The baseline for the contributions of this paper is this work. After a large case study
on the compliance of an ISO-17799-like security policy [21] with Italian privacy legislation,
it was concluded that the concepts offered by Secure Tropos are the right ones but are too
coarse-grained to capture important security facets. Specifically, unlike what the framework
provides for, we found that for pragmatic reasons, it is often the case that services and
permissions are delegated to actors who are not trusted. Nevertheless, the overall system is
still considered secure if there is a way to hold such delegations accountable by monitoring
their (wrong) doings.

The second observation is that trust in actors (or lack thereof) comes in different flavors:
we may trust an actor to actually deliver the services we require (taking into account
skills and/or commitment), or to honor granted permissions. In trust management and
authorization settings (e.g. [4, 7, 17]) one only finds delegations of permission (through
authorization). Requirements of availability are equally important, however, and can only
be captured by modeling delegation of execution (where one actor delegates to another the
responsibility to execute a service).

Thus, the key contribution of this paper is a refined framework for modeling and an-
alyzing security requirements over what has been proposed in [13, 14]. The refinement
includes a distinction of the notions of delegation of execution (at-least delegation) and
delegation of permission (at-most delegation), also the distinction of the notions of trust of
execution (at-least trust) and trust of permission (at-most trust). Finally, we propose the
use of monitoring as a security pattern, a design solution intended to overcome the problem
of lack of trust between actors. These constructs have been formalized and can be formally
analyzed through a tool-supported process. As done in other frameworks that deal with
trust and security [7, 18, 23] we use Datalog as the underlying semantic framework. Other
approaches such as [15] propose to use deontic logic to model the notions of obligation,
empowering and permission. However, these approaches do not distinguish between direct
and indirect capabilities and responsibilities. This is a fundamental distinction in modeling
organizations. In fact, one actor could delegate the execution of (permission on) a service
to another actor since he is not directly able to do so alone.

In the remainder of the paper, we introduce a running example (§2 ), discuss the overall
framework (§3, §4, and §5), its formal semantics (§6) and some useful formal properties
exploited for verification purposes (§7). We conclude with a brief discussion of related work
and a summary of our contributions (§8).

2 A Running Example

The example is abstracted from a substantial case study on the compliance of Italian public
administrations such as universities, local governments and health care authorities to Italian
security and privacy legislation.



In summary, the law requires administrations to set up sophisticated security and pri-
vacy policies that are actually quite close to the complexity of the ISO-17799 standard for
security management. Dealing with privacy introduces additional complications such as
data ownership, trust and consent. Details on the case study for an university can be found
in [21].

For readability we introduce here dramatis personae:1

Alice is an administrative officer, for example of the teaching evaluation office;

Bob, Bert, and Bill are students;

Sam is (the manager of) the student IT system;

Paul and Peter are professors.

3 Tropos and Secure Tropos

Tropos [5] is a methodology for developing agent-oriented software. The methodology
supports different development phases from early requirements to detailed design. The
methodology is founded on models that use the concepts of actor, goal, task, resource and
social dependency for defining the obligations of actors (dependees) to other actors (depen-
ders). A goal represents the strategic interests of an actor. A task specifies a particular
course of actions that produces a desired effect, and can be executed in order to satisfy a
goal. A resource represents a physical or an informational entity. Finally, a dependency be-
tween two actors indicates that one actor depends on another to accomplish a goal, execute
a task, or deliver a resource. Tropos is well suited for modeling both an organization and
IT systems operating within it. However, in [12] we have argued that the Tropos framework
lacks the ability to capture important aspects of security, and hence the new proposal.

Secure Tropos has been proposed in [13, 14] as a formal extension of Tropos, intended
for modeling and analysis of functional and security requirements. To simplify terminology,
the notion of service is used in this framework to refer to a goal, task, or resource, and
three new relationships are introduced:

• Ownership (between an actor and a service) represents the fact that an actor is the
legitimate owner of a service;

• Trust (among two actors and a service), marks a social relationship that indicates the
belief of one actor that another actor will not misuse the service he has been granted.

• Delegation (among two actors and a service), marks a formal passage of permission.

Example 1 By law, Bob is the owner of his personal data. Yet, the data is stored on
servers that are managed by Sam, who in turn gives access to Alice and Paul. In this
scenario, Sam should seek the consent of (or, permission from) Bob for data processing
concerning his personal data.

1This impersonation is actually closer to reality than one may think: the law requires the assignment of
responsibility of each IT sub-system to a person.



Another feature of our proposal is the distinction between permission and delegation.

Example 2 The letter of the University rector that assigns to the CIO the responsibility
for enacting privacy protection measures is an example of delegation.

In digital trust management systems, this would be matched by the issuance of a dele-
gation certificate. The basic consequence of delegation is having more permission holders.
In contrast to these notions, trust simply marks a social relationship that is not formalized
by a “contract” (such as digital credential or a letter). There might be cases where we
might be happy with a “social” protection mechanisms (e.g. because it is impractical or
too costly to do otherwise). In other cases, however, formal delegation is essential.

4 Refining Delegation and Trust

Now we introduce a conceptual refinement of delegation and trust relationships, that will
allow us to capture and model important security facets

Example 3 Alice is interested in gathering data on student performance, for which she
depends on Sam. Bob owns his personal data, such as his academic record. Bob delegates
permission to provide information about his academic record to Sam, on condition that his
privacy is protected (i.e., his identity is not revealed).

In this scenario (Fig. 1(a)), there is a difference in the relationships between Alice–Sam
and Bob–Sam. This is due to a difference in the type of delegation.

Example 4 Bob delegates permission to Sam to provide only the relevant information and
nothing else. On the other hand, Alice, who wants student data, delegates the execution of
her goal to Sam. According to Alice, Sam should at least fulfill the goal she wants. She is
not interested in whether Bob trusts Sam, she simply wants information. Bob, on the other
hand, worries about authorization: anyone who uses his personal must be authorized to do
so.

If we want to check that requirements are consistent and that security requirements for
each actor are met, it is essential to distinguish between these two notions of delegation.
We use at-most delegation when the delegator wants the delegatee to at most fulfill a
service. This is delegation of permission, where the delegatee thinks “I have the permission
to fulfill the service (but I do not need to)”, whereas at-least delegation means that
the delegater wants the delegatee to at least perform the service. This is the delegation
of execution. The delegatee thinks, “Now, I have to get this service fulfilled (...let’s get
started)”. In the graphical representation of Fig. 1 we represent these relationship as edges
respectively labeled P and E.

Further, we want to separate the concepts of trust and delegation, as we might need
to model systems where some actors must delegate permission or execution to other actors
they don’t trust. Also in this case it is convenient to have a suitable distinction for trust in
managing permission and trust in managing execution. The meaning of at-most trust is
that an actor (truster) trusts that another actor (trustee) will at most fulfill a service, but
will not overstep it. The meaning of at-least trust is that an actor (truster) trusts that
another actor (trustee) will at least fulfill a service.
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Figure 1: Delegation and Monitoring

Example 5 At-most trust applies to permissions: Bob trusts Sam to use Bob’s personal
information within certain bounds. At-least trust applies to executions: Alice believes Sam
can accomplish her desired task (and possibly more).

Actor dependencies in Tropos (and i*) represent at-least delegation combined implicitly
with at-least trust. The delegation proposed by Giorgini et al. [14] blurs the distinction
between at-least and at-most delegation and at-least and at-most trust.

In the development of a system, a designer should be able to guarantee and implement
the trust and delegation relationships captured in the social setting during the requirements
analysis phase. This analysis can be done with the methodology advocated in [14].

However, specific situations may impose that some services have to be delegated to
some actors even when there is no trust relationship between them. In our example [21],
this situation may arise when services are outsourced to outside providers for whom a
trust relationship remains to be developed. These providers may offer services that range
from cleaning to security, from ERP clock cycles to network backbones. We propose to
legitimize such situations in our framework by adopt monitoring as a design pattern that
can neutralize the lack of trust. The following section focuses on monitoring as a design
pattern.



5 Monitoring

When services need to be delegated in the absence of trust, monitoring offers a surrogate
for trust. According to Gans’s et al. [11], the existence of distrust can be tolerated with an
additional overhead of monitoring the untrustworthy delegatee. Here we refine Gans’s et
al. intuition and integrate it within our framework.

The goal of an actor playing the role of monitor is to check for the violation of trust2.
The act of monitoring can be done by the delegator himself, or it can be delegated to another
actor. Monitors can also be distinguished into at-most and at-least ones. Consider the
situation presented in Fig. 1(a).

Example 6 Suppose that there is no trust between Bob and Sam for the goal “maintain
privacy”, but Bob must delegate permission nonetheless. In this case, he depends (D) on
the ombudsman (O) for monitoring if Sam transgresses his permissions. This is shown in
Fig. 1(b)) with an at-most monitor (monitor for permission – Mp) relationship between
the ombudsman and Sam.

Example 7 If Alice is not confident that Sam will provide updated information, she may
delegate to her secretary Carol the task of checking up on him to make sure new information
about students is entered into the system. This is shown in Fig. 1(c)) with an at-least
monitor (monitor for execution – Me) relationship between Carol and Sam.

Another important distinction that emerges when we use a monitor is related to the
type of service (goal, task or resource) for which monitoring is required. Let us assume
that the service in Fig. 1 is a task (i.e., a specific sequence of actions). Here, the Monitor
has to check if Sam executes the actions associated with the task.

Example 8 To achieve the goal delegated to him in Example 7, Sam issues a letter to the
head of each student secretariat office, so that student marks are entered into the system
within 30 days from the date of final exams.

What happens if Sam delegates the task or some of its subtasks to other actors? A
possible solution to this problem is to extend monitoring across paths of delegation to the
actor where actual execution takes place. According to this solution, there will be a monitor
relationship between the Monitor and all intermediate actors involved in the execution of
at least some part of the task.

Example 9 To reach the objective of entering marks within 30 days, secretariat offices
require that professors submit marks within this period. This is a further step of delegation
of execution. To monitor this delegation, the actor responsible at the office, may also assign
the task of reminding professors that they must return mark lists on time.

Notice that monitoring as such is not a primitive construct in our framework. Instead,
it is pattern that can be realized in terms of other constructs. In all cases, however, every
service will either be delegated during the design process to a trusted actor, or it will be

2Indeed, monitoring could also be used for the evaluation of the fulfillment of a service assigned to a
trusted actor.



General predicates
delegate(Type : t, Actor : a, Actor : b, Service : s)
delegateChain(Type : t, Actor : a, Actor : b, Service : s)
trust(Type : t, Actor : a, Actor : b, Service : s)
trustChain(Type : t, Actor : a, Actor : b, Service : s)
monitoring(Type : t, Actor : a, Actor : b, Service : s)
confident(Type : t, Actor : a, Service : s)
Specific for execution
requests(Actor : a, Service : s)
provides(Actor : a, Service : s)
should do(Actor : a, Service : s)
can satisfy(Actor : a, Service : s)
Specific for Permission
owns(Actor : a, Service : s)
has per(Actor : a, Service : s)
Goal refinement
goal(Service : s)
subgoal(Service : s1, Service : s2)
OR subgoal(Service : s1, Service : s2)
AND subgoal(Service : s1, Service : s2)
AND decomp(Service : s1, Service : s2, Service : s3)

Table 1: Predicates

delegated to an untrusted one, in which case the delegatee will be monitored by a trusted
actor.

In the formal model, monitoring is formalized in terms of additional axioms that ensure
that an actor is confident that a service will be executed or a permission will not be abused
even if existing trust relations offer no support for this.

Once we see monitoring as a simple design solution (essentially, a security pattern)
we can treat monitoring goals like other goals in that they can be refined and delegated.
Trust relationships linked to monitoring can then be captured with existing constructs.
For example, monitoring often requires having permission to access monitored data or
personnel. This itself may create problems of permission and authorization that can be
modeled in the framework.

6 Formalization

As done in [13, 14] as well as [7, 18, 23], we use Datalog [1] to formalize the new concepts
we have introduced in order to automatically verify the correctness and consistency of
functional and security requirements. A Datalog program is a set of rules of the form
L:- L1 ∧ ... ∧ Ln, where L (called the head of the rule) is a positive literal and L1, ..., Ln

are literals (called the body of the rule). Intuitively, the rule states that if L1, ..., Ln are
true then L must be true. In Datalog, negation is treated as negation as failure: if it is not
possible to infer that an atom is true, it is inferred that it is false.

We first present the predicates used for the formalization. Table 1 extends the pred-



icates already presented in [13, 14] introducing new ones for execution, permission and
monitoring3. To make the new predicates as generic as possible, we use the first argument
of each predicate as a type parameter. Thus, delegate, delegateChain, and monitoring can
be of type t ∈ {exec, perm}; trust, trustChain can have types t ∈ {exec, perm,mon}; as well,
confident can have types t ∈ {satisfy , exec, owner}. For the same reason, predicates take
as arguments generic services (i.e., goals, tasks and resources)4.

6.1 Formal Model for Execution

The predicate requests(a, s) holds if actor a wants service s fulfilled, while provides(a, s)
holds if actor a has the capability to fulfill service s. The predicate delegate(exec, a, b, s)
holds if actor a delegates5 the execution of service s to actor b. Actor a is called delegator ;
actor b is called delegatee. The predicate trust(exec, a, b, s) holds is actor a trusts that
actor b at least fulfills service s. Actor a is called trustor ; actor b is called trustee. The
predicate trust(mon, a, b, s) holds if actor a trusts that actor b monitors whether service s
will be satisfied. The predicate monitoring(exec, a, b, s) holds if actor a monitors if actor b
can satisfy at least service s.

Other predicates define properties that will be used during formal analysis. The predi-
cates delegateChain(exec, a, b, s) and trustChain(exec, a, b, s) hold if there is a delegation and
a trust chain respectively, between actor a and actor b. The predicate should do(a, s) iden-
tify actors who should directly fulfill a service. The predicate can satisfy(a, s) holds if actor
a can satisfy service s. The predicate confident(satisfy , a, s) holds if actor a is confident
that service s can be satisfied. Finally, we have predicates for goal/task refinement and
resource decomposition. Their semantics and axiomatization are straight-forward.

The axiomatization of predicates for execution is shown in Table 2. The first batch of
axioms deals with delegation and trust: E1 and E2 build a delegation chain of execution;
E3 and E4 (M1 and M2) build a trust chain for execution (monitoring); E5 builds chains
over monitoring steps. E6 and M4 have chains propagate from a service to its parts.
According to E6 trust of execution flows top-down with respect to service decomposition.
Likewise, axiom M4 for monitoring states that trustChain flows top-down with respect to
service decomposition. M5 states that if an actor who is monitored for a service further
delegates the service to another, then the monitoring is transferred to the delegatee; that
is, monitoring is transferred along with delegations to ensure that a service is fulfilled.

The remaining axioms define global properties of the model. E7 and E8 state that an
actor has to execute the service if he provides a service and if either some actor delegates
the service to him, or he himself aims for the service. E9 and E10 state that an actor
who aims for a service, can fulfill the service if either he provides it or has delegated it to
someone who can fulfill it. Service decompositions are accounted for through axioms E11
and E12. If an actor can satisfy at least one of the or-sub-goals/tasks of a goal/task, then
he can satisfy the root goal/task. Dual axiom holds for and-decompositions.

3Monitoring is treated as a defined predicate.
4For resources the subgoal relation needs to be replaced by a part-of relation.
5For the sake of simplicity we do not deal with the question of depth here. See Li et al. [17] for an account

of delegation with depth. What has emerged from several case studies is that depth is less important than
qualifications such as “only to members of the same office”.



Delegation
E1 delegateChain(exec, A, B, S)← delegate(exec, A, B, S)
E2 delegateChain(exec, A, C, S)← delegate(exec, A, B, S) ∧ delegateChain(exec, B,C, S)
Trust
E3 trustChain(exec, A, B, S)← trust(exec, A, B, S)
E4 trustChain(exec, A, C, S)← trust(exec, A, B, S) ∧ trustChain(exec, B, C, S)
E5 trustChain(exec, A, C, S)← trustChain(mon, A, B, S) ∧monitoring(exec,M,C, S)
E6 trustChain(exec, A, B, S1)← subgoal(S, S1) ∧ trustChain(exec, A, B, S)
M1 trustChain(mon, A, B, S)← trust(mon, A, B, S)
M2 trustChain(mon, A, C, S)← trust(mon, A, B, S) ∧ trustChain(mon, B,C, S)
M3 trustChain(mon, A, C, S)← trustChain(exec, A, B, S) ∧ trustChain(mon, B, C, S)
M4 trustChain(mon, A, B, S1)← subgoal(S, S1) ∧ trustChain(mon, A, B, S)
Monitoring

M5 monitoring(exec,M,B, S1)←
{

delegateChain(exec, A, B, S1)∧
monitoring(exec,M,A, S) ∧ subgoal(S1, S)

Should do
E7 should do(A,S)← delegateChain(exec, B,A, S) ∧ provides(A,S)
E8 should do(A,S)← requests(A,S) ∧ provides(A,S)
Can satisfy
E9 can satisfy(A,S)← should do(A,S)
E10 can satisfy(A,S)← delegate(exec, A, B, S) ∧ can satisfy(B,S)
E11 can satisfy(A,S)← OR subgoal(S1, S) ∧ can satisfy(A,S1)
E12 can satisfy(A,S)← AND decomp(S, S1, S2) ∧ can satisfy(A,S1) ∧ can satisfy(A,S2)
Confident to can satisfy
E13 confident(satisfy , A, S)← should do(A,S)

E14 confident(satisfy , A, S)←
{

delegateChain(exec, A, B, S)∧
trustChain(exec, A, B, S) ∧ confident(satisfy , B, S)

E15 confident(satisfy , A, S)← OR subgoal(S1, S) ∧ confident(satisfy , A, S1)

E16 confident(satisfy , A, S)←
{

AND decomp(S, S1, S2) ∧ confident(satisfy , A, S1)
∧confident(satisfy , A, S2)

Table 2: Axioms for execution

The notion of confidence is captured by axioms E13-E16. Actor a, who aims at service s,
is confident that s will be fulfilled if he knows that all delegations have been done to trusted
or monitored actors and that the actors have necessary permission. Axioms E15 and E16
specify how confidence is propagated upwards along a service decomposition hierarchy.

6.2 Formal Model for Permission

In Table 1 we include predicates for modeling permission. The first set of predicates corre-
sponds to the relations used by the requirements engineer. The predicate owns(a, s) holds
if actor a owns service s: the owner of a service has full authority concerning access and
usage of the services, and can delegate this authority to other actors. The intuition is that
delegate(perm, a, b, s) holds if actor a at most delegates to actor b permission to fulfill service
s. The predicate trust(perm, a, b, s) holds is actor a trusts that actor b with the permis-
sion to fulfill service s. The predicate monitoring(perm, a, b, s) is the dual of its execution
counterpart.



Delegation
P1 delegateChain(perm, A, B, S)← delegate(perm, A, B, S)
P2 delegateChain(perm, A, C, S)← delegate(perm, A, B, S) ∧ delegateChain(perm, B, C, S)
Trust
P3 trustChain(perm, A, B, S)← trust(perm, A, B, S)
P4 trustChain(perm, A, C, S)← trust(perm, A, B, S) ∧ trustChain(perm, B, C, S)
P5 trustChain(perm, A, C, S)← trustChain(mon, A, B, S) ∧monitoring(perm, B, C, S)
P6 trustChain(perm, A, B, S)← subgoal(S, S1) ∧ trustChain(perm, A, B, S1)
M6 trustChain(mon, A, C, S)← trustChain(perm, A, B, S) ∧ trustChain(mon, B, C, S)
Monitoring

M7 monitoring(perm,M,B, S1)←
{

delegateChain(perm, A, B, S1)∧
monitoring(perm,M,A, S) ∧ subgoal(S1, S)

Has permission
P7 has per(A,S)← owns(A,S)
P8 has per(A,S)← delegateChain(perm, B, A, S) ∧ has per(B,S)
P9 has per(A,S1)← subgoal(S1, S) ∧ has per(A,S)
Owner is confident to give the service to trusted actors
P10 confident(owner , A, S)← owns(A,S) ∧ not diffident(A,S)
P11 diffident(A,S)← delegateChain(perm, A, B, S) ∧ diffident(B,S)
P12 diffident(A,S)← delegateChain(perm, A, B, S) ∧ not trustChain(perm, A, B, S)
P13 diffident(A,S)← subgoal(S1, S) ∧ diffident(A,S1)

Table 3: Axioms for permission

Other predicates are used to define interesting properties used in formal analysis. The
predicates delegateChain(perm, a, b, s) and trustChain(perm, a, b, s) hold if there is a dele-
gation, resp. a trust chain of permission among actor a and actor b. The basic idea of
has per sums up the possible ways in which an actor can secure permission on a service:
either directly or by delegation. From the point of view of the owner, confidence means
that the owner is confident that the permission that he has delegated will not be misused.
Alternatively, the owner is confident that he has delegated permission only to trusted or
monitored agents. This means that even if there is one untrusted or unmonitored delega-
tion, then the owner could be uneasy about the likely misuse of his permissions. So, an
owner is confident, if there is no likely misuse of his permission. It can be seen that there
is an intrinsic double negation in the statement. So we try to model it using a predicate
diffident(a, s). At any point of delegation of permission, the delegating agent is diffident,
if the delegation is being done to an agent who is neither trusted not monitored or if the
delegatee could be diffident himself. In this way, confident(owner , a, s) holds if owner a is
confident to give the permission on service s only to trusted actors.

Table 3 presents the axioms for permission. P1 and P2 build a delegation chain of
permission; P3 and P4 build a trust chain for permission; P5 builds trust chains over
monitoring steps. P6 has the chain propagate through subgoals. If an actor trusts that
another will not overstep the set of actions required to fulfill a part of a service, then the
first can trust the last will not overstep the set of actions required to fulfill the service.
Essentially, trust of permission flows bottom-up with respect to goal refinements. M6 is
used to build a trust chain for monitor. M7 states that if an actor under monitoring



Can see the service fulfilled (can execute)
Ax1 can execute(A,S)← should do(A,S) ∧ has per(A,S)
Ax2 can execute(A,S)← delegateChain(exec, A, B, S) ∧ can execute(B,S)
Ax3 can execute(A,S)← OR subgoal(S1, S) ∧ can execute(A,S1)

Ax4 can execute(A,S)←
{

AND decomp(S, S1, S2) ∧ can execute(A,S1)
∧ can execute(A,S2)

Confident to see the service fulfilled (confident to execute)
Ax5 confident(exec, A, S)← should do(A,S) ∧ has per(A,S)

Ax6 confident(exec, A, S)←
{

delegateChain(exec, A, B, S)∧
trustChain(exec, A, B, S) ∧ confident(exec, B, S)

Ax7 confident(exec, A, S)← OR subgoal(S1, S) ∧ confident(exec, A, S1)

Ax8 confident(exec, A, S)←
{

AND decomp(S, S1, S2) ∧ confident(exec, A, S1)
∧ confident(exec, A, S2)

Need to know
Ax9 need to have perm(A,S)← should do(A,S)

Ax10 need to have perm(A,S)←
{

delegate(perm, A, B, S) ∧ not other delegater(A,B, S)
∧ need to have perm(B,S)

Ax11 other delegater(A,B, S)← delegate(perm, C, B, S) ∧ need to have perm(C,S) ∧A 6= C

Table 4: Axioms Involving both permission and execution

delegates a service to another, then the monitor have to watch for the delegatee, that is,
the monitor follows the delegation. The owner of a service has full authority concerning
access and disposition of it. Thus, P7 states that if an actor owns a service, he has it. P8
states that the delegatee has the service. The notion of confidence and diffidence that we
have sketched above is captured by the axioms P10-P13.

6.3 Combining Execution and Permission

The checking of complex properties requires reasoning with both execution and permission.
In Table 4 we present the notions from both the point of view of the requester and the
point of view of the owner. The predicate can execute(a, s) holds if actor a can see service
s fulfilled. The predicate confident(exec, a, s) holds if actor a is confident that service s
will be fulfilled. This is the case if actor a knows that all delegations have been done to
trusted or monitored actors and that the actors who will ultimately execute the service,
have permission to do so. This is done using the axioms Ax5-Ax6. Goal refinements are
taken care of by using axioms Ax7-Ax8 in a straight-forward way.

Owners may wish to delegate permissions to providers only if the latter actually do
need the permission. The last part of Table 4 defines the predicates that are necessary to
analyze need-to-know properties. As a result of absence of diffidence, the owner can be
confident that his permission will not be misused. But has this permission reached the
actors who actually need it? The owner might also want to ensure that there has been
no unwanted delegation of permission. This can be achieved by identifying the actors who
actually need-to-know (or rather need-to-have) the permission. This set of axioms captures
also the possibility of having alternate paths of permission delegations. In this case the
formal analysis will not yield one model but multiple models in which only one path of
delegation is labeled by the need-to-have property and the others are not.
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Figure 3: Design for execution and permission

Example 10 (Figure 2) Alice and Carol (7 and 8) have both received consent (permis-
sion) from Bob (1) for using his personal data. In turn, they both delegate it to the faculty
secretariat (3), which must have the permission to provide the data to Paul (6), the uni-
versity tutor who is responsible for providing personal counseling to Bob. In this case only
one of either Alice or Carol needs to have the permission.

7 Analysis and Verification

We use the DLV system6 to verify security properties with respect to a Secure Tropos
model. In Table 5 we use the A ⇒? B to mean that one must check that each time A
holds it is desirable that B also holds. In Datalog this can be represented as the constraint
:- A, not B. If the set of features is not consistent, i.e., they cannot all be simultaneously
satisfied, the system is inconsistent, and hence it is not secure. This technique also allows
us to check that our proposed axioms are indeed consistent.

Pro1 states that if there is a delegation chain either the delegater trusts the delegatee
or there is a monitor and the delegator trust the monitor. Pro2 states that a requester
can satisfy his goals, and Pro3 states that a requester wants to be confident to satisfy the
service.

6http://www.dbai.tuwien.ac.at/proj/dlv



Execution
Pro1 delegateChain(exec, A, B, S)⇒? trustChain(exec, A, B, S)
Pro2 requests(A,S)⇒?can satisfy(A,S)
Pro3 requests(A,S)⇒?confident(satisfy , A, S)
Pro4 should do(A,S)⇒?not delegateChain(exec, A, B, S)
Permission

Pro5 delegateChain(perm, A, B, S)⇒? trustChain(perm, A, B, S)
Pro6 owns(A,S)⇒? confident(owner , A, S)
Pro7 owns(A,S)⇒? not delegateChain(perm, B, A, S) ∧ A 6= B
Execution & Permission

Pro8 requests(A,S)⇒?can execute(A,S)
Pro9 requests(A,S)⇒?confident(exec, A, S)
Pro10 owns(A,S)⇒?need to have perm(A,S)
Pro11 owns(A,S)⇒?need to have perm(A,S) ∧ confident(owner , A, S)

Table 5: Desirable Properties of a Design

Example 11 (Figure 3(a)) Bob and Bert (1 and 2) need counseling. They can receive it
(formal relation can satisfy) because they delegate the execution to Paul and Peter (4 and
5), while Bill (3) cannot receive all the advice he needs because he requested it from Alice
(6), who is not able to provide counseling on faculty matters.

Bob is also confident that he will receive all counseling he needs since he delegates the
execution to Paul and Peter (4 and 5) whom he trusts, while Bert is not confident since he
delegates to Paul (4) whom he does not trust.

Pro4 states that if an actor provides a service and if either some actor delegates this
service to him or he himself requests the service, then he has to execute the service without
further delegation. Pro5 states that if there is a delegation chain, either the delegator trusts
the delegatee or there is a monitor. Pro6 states that the owner of the service has to be
confident to give the service to trusted actors, and Pro7 states that a service cannot be
delegated back to its owner.

Example 12 (Figure 3(b)) Bob and Bert (1 and 2) need to provide their personal data in
order to get effective counseling. Bob is confident about his personal data since he delegates
permissions to Paul and Peter (4 and 5), whom he trusts to only use the data for counseling.
On the other hand, Bert is not confident on his data since he delegates it to Paul (4) whom
he does not trust to keep the information confidential.

This is similar to the previous example on misplaced delegation (Example 11). The differ-
ence between the two lies in what is possible for poor Bert. In the former case he is afraid
to receive bad advice (delegation of execution), in the latter his personal information may
be misused.

The last part of Table 5 shows properties to verify at-most model and at-least model
at the same time. Pro8 states that the requester has to can see the service fulfilled. Pro9
states that the requester has to be confident to see the service fulfilled.
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Example 13 (Figure 4) Bob and Bert (1 and 2) delegate permission to Sam (4). More-
over, Bob delegates permission to his parents (5). Paul (7), needs to get student information
to provide accurate counseling, but he cannot directly ask them. Thus, he delegates the task
of getting permission for the data to Sam. Paul could also ask permission for Bob’s data
from Bob’s parents. So Paul can suppose that someone provides the personal information
of his students. On the other hand, Peter (6), delegates execution of the task to provide
his students’ personal information to Carol (3), but the latter does not have permission to
manage it. Thus, Carol cannot forward the information to Peter. Further, Paul delegates
execution of the task to make available personal information of his students to the student
information system. If he does not trust the system for this goal, then he is not confident
he will get the personal information.

8 Related Work and Conclusions

The work by Liu et al. [19] uses the goal-oriented i*/Tropos RE methodology to introduce
goals such as “Security” or “Privacy”, and proposes dependency analysis to check if the
system is secure. In [3], general taxonomies for privacy are proposed for a standard goal
oriented analysis. Another early RE example is [25], which presents a requirements process
model, based upon reuse and templates, for security policies in a organization.

On the side of approaches explicitly intended for security, Jürjens has proposed UMLsec
[16], an extension of low-level security mechanisms in UML, and the CORAS methodology
for modeling risk and vulnerability [9]. In the same spirit, Lodderstedt et al. [20] propose an
UML-based modeling language (SecureUML). Their approach is focused on modeling access
control policies and integrating them into a model-driven software development process.
One of the major limitations of all these proposals is that they treat security in system-
oriented terms, and do not support the modeling and analysis of security requirements at
an organizational level. In other words, they are targeted to model a computer system
and the policies and access control mechanisms it supports. In contrast, to understand the
problem of security engineering we need to model the organization and social relationships
between all actors involved in the system.

Other approaches [22, 24, 26] propose to model the behavior of attachers. McDermott
and Fox adapt use cases [22] to capture and analyze security requirements, and they call
the adaption an abuse case model. An abuse case is an interaction between a system and
one or more actors, where the results of the interaction are harmful to the system, or one of



Figure 5: The ST-Tool

the stakeholders of the system. Guttorm and Opdahl [24] define misuse cases, the inverse
of UML use cases, which describe functions that the system should not allow. Moving
towards early requirements, the role of abuse-cases is played by Anti-Goals proposed by
van Lamsweerde et al. [26].

In this paper we have extended our previous work [13, 14] providing a comprehensive
modeling framework for security requirements. In particular, the framework offers

• the notions of delegation and trust of execution and delegation and trust of permission,
respectively in the form of at-least and at-most delegation and trust;

• the use of monitoring as design solution (pattern) to overcome the problem of lack of
trust between actors;

• a comprehensive semantic model based on Datalog to ease translations from require-
ments into security policies and trust management systems using the same semantics
(as already stated in [13]).

Our framework with all new features presented in this paper is supported by the ST-
Tool7 (Figure 5). ST-Tool is a graphical tool (implemented in Java) to support the design
of (Secure) Tropos models. The tool allows system designers to draw (Secure) Tropos
diagrams by selecting from the menu the desired (Secure) Tropos elements and to verify the
correctness of the specification of the corresponding element. It also supports the automatic
transformation of Secure Tropos graphical models into formal specifications, specifically
both Datalog specification and Formal Tropos specification [10]. For every Tropos element it
is possible to specify properties (i.e. creation-properties, invar-properties, fulfill-properties)

7Available on the web at http://sesa.dit.unitn.it/sttool/.



with respect to the syntax of Formal Tropos, and the resulting specification is automatically
displayed. A Datalog specification can also be generated and displayed along similar lines.
In addition, the tool provides a user-friendly interface to the DLV system and permits a
designer to select properties of each model and to specify additional security policies. The
resulting Datalog specifications are automatically verified by the DLV system.

Future work plans include refining the proposed framework to the point where we can
derive security services and mechanisms comparable to the standards ISO-7498-2 and ISO-
17799.
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