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Abstract
We extend the C*-algebraic approach to interacting quantum field theory, proposed
recently by Detlev Buchholz and one of us (KF) to Fermi fields. The crucial feature
of our approach is the use of auxiliary Grassmann variables in a functorial way.

Keywords Fermions · Algebraic quantum field theory · Grassman algebras

Mathematics Subject Classification 81T05 · 15A75

1 Introduction

In a recent paper [6], it was shown that the formal S-matrices (as generating func-
tionals of time-ordered products) generate a net of local C*-algebras which form a
Haag–Kastler net. The S-matrices are there interpreted as local operations labeled
by classical interaction Lagrangians, and it was shown that a few relations involving
relativistic causality and a classical Lagrangian yield a structure which contains the
canonical commutation relations and allows the construction of Haag–Kastler nets for
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quite general interactions. Let us briefly recall the technical steps: We consider a real
classical scalar field φ and use its full configuration space, namely E ≡ C∞(M, R)

over some globally hyperbolic spacetime M = (M, g) (in the jargon of physicists,
we are “off-shell,” i.e., we are not restricting to configurations which are solutions of
equation of motion). The space of observables F (M) is considered to be the linear
space of local functionals over E of polynomial kind, e.g.,

F[φ] =
N∑

k=0

∫

M
fk(x)φ(x)k ,

with compactly supported smooth densities fk on M . The support of the functionals
(supp F) is defined as the union of the supports of the test densities fk , k ≥ 1, and hence
they are all compactly supported onM . When N > 2, these functionals describe local
self-interactions of the field φ. This allows us to introduce (interacting) Lagrangian
densities

M � x �→ L(x)[φ] =
(
1

2

(
g(dφ(x), dφ(x)) + m2φ(x)2

)
−

N∑

k=0

gkφ(x)k
)
dμg(x) ,

where m2 ≥ 0 and gk are real numbers (coupling constants), and then consider full
Lagrangians L as F -valued maps, namely,

D(M) � f �→ L( f )[φ] .=
∫

M
L(x)[ f φ] .

The, in general, ill-defined, global action functional (i.e., corresponding to f ≡ 1),
is replaced by the introduction of relative Lagrangians, i.e., by defining

δL(φ0)[φ] .= L( f0)[φ]φ0 − L( f0)[φ] .= L( f0)[φ + φ0] − L( f0)[φ] ,

where φ0 ∈ E0 ⊂ E is compactly supported and f0 ∈ D(M) such that f0 ≡ 1 on
suppφ0. Note that the relative Lagrangians do not depend upon the choice of f0 and
belong to F (M), since in the subtraction the kinetic terms disappear and the linear
terms with derivatives of the field φ can be written as linear terms in φ after integration
by parts.

We have nowall ingredients for the core construction:Wefix one suchLagrangian L
anddefine abstractly unitary symbols S(F) labeledoverF (M).Wemay interpret these
symbols as formal S-matrices (scattering matrices: justifications for this interpretation
can be found in [3, 6]).We then generate freely a groupGL out of these symbolsmodulo
the following relations:

• S(F)S(δL(φ0)) = S(Fφ0 + δL(φ0)) = S(δL(φ0))S(F), φ0 ∈ E0, F ∈ F (M),
• S(F + G + H) = S(F + G)S(G)−1S(G + H), F,G, H ∈ F (M), provided
supp F is causally later than supp H .
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Notice that the first requirement corresponds to the incorporation of an equation of
motion w.r.t. to the total action given by L plus F (unitary version of the Schwinger–
Dyson equation) and the second enforces a causality notion in GL implied by the
causality properties of spacetime. It is now a classical construction to pass from the
groupGL to a group algebraAL andmoreover to show [6] that the last can be promoted
to a C*-algebra (andwe use the same symbol for both). It is a first gratifying surprise to
discover that in [6] one shows that the C*-Weyl algebra of the canonical commutation
relations is contained as a proper C*-subalgebra in AL . Actually, one can do more
by localization of the functionals, namely we can redo the construction for any open
bounded (non empty) subregionO ofM and prove that the associationO �→ AL(O)

is a Haag–Kastler net of C*-algebras (see again [6] where this is shown forMinkowski
spacetime1).

The formalism just described was restricted to scalar fields. It is the main goal of
the present paper to generalize it to interacting Fermi fields.

Classical functionals for Fermi fields can be considered as linear functionals on
the Grassmann algebra over the space of field configurations (Sect. 2, see also [24]).
Following the construction recalled above, one would like to associate with each such
functional a formal S-matrix, but only even functionals have a direct interpretation as
arguments of formal S-matrices. On the other hand, the restriction to even functionals
does not allow to formulate the unitary version of the Schwinger–Dyson equation, by
which the classical Lagrangian enters the framework.

There is a well-known way out, namely the use of auxiliary Grassmann variables
(the so-called η-trick, see, e.g.,[15, 18]). These auxiliary variables are needed for
shifting the combinatorics to the bosonic situation, but besides this they should not
influence the structure of the theory. A finite number of Grassmann parameters are
always sufficient, but nothing should depend on their choice. Therefore, the action of
the generated Grassmann algebra should be functorial in the sense that all operations
commutewith homomorphisms between finite-dimensional Grassmann algebras. (See
[17, 19] for an extensive discussion.) Moreover, even linear relations between such
homomorphisms should be respected, so that the embedding of the auxiliary variables
into the theory does not change any relations between them. We prove that such a
covariant action of Grassmann variables on algebras can always be embedded into a
tensor product of the Grassmann algebra with a uniquely determined algebra (Sect. 3).

We then present an adapted version of the axioms of [6] in Sect. 4 and show that
they imply for the free Dirac field the canonical anticommutation relations (Sect. 5).

This is used for solving another problem, namely the construction of a net of C*-
algebras. Due to the fact that odd elements of a Grassmann algebra are nilpotent, it
is not possible to equip the tensor product of a non-trivial Grassmann algebra with
the algebra A of quantum fields with a C*-norm. Moreover, for the same reason, S-
matrices of functionals which depend on theseGrassmann variables have an expansion
in polynomials in Grassmann variables with coefficients in A. There is no reason to
expect that these coefficients have to be bounded, in general. Instead, one applies the
abstract construction of the C*-algebra first to the subalgebra generated by S-matrices

1 The generalization to any fixed globally hyperbolic spacetime M is straightforward. However, the step
toward local covariance requires some non-trivial arguments which can be found in [3].
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of even functionals and adjoins then the smeared Dirac fields which are bounded due
to the anticommutation relations (Sect. 6).

Our construction avoids a famous no go theorem of Powers [23], who proved
that in dimension > 2 canonical anticommutation relations for time zero fields are
incompatible with interactions. Powers showed that the boundedness of canonical
Fermi fields together with causal (anti-)commutation relations imply the bounded-
ness of time derivatives of Fermi fields which then leads to vanishing of interaction
under rather general conditions. The construction of interacting theories in terms of
S-matrices as described above, however, does not involve the time zero fields and also
does not provide, in the interacting case, information about a possible restriction of
fields to a Cauchy surface. In the free case, such an information is obtained from the
unitary Schwinger Dyson equation and yields the canonical anticommutation relations
for the time zero fields, as shown in Sect. 5.

In Sect. 7, we check that our axioms are satisfied in renormalized perturbation
theory. In the appendix, we briefly describe the modifications which occur when both,
Bose and Fermi fields, are present.

2 Fermionic functionals

A (local or nonlocal) fermionic functional on some real vector space V is a linear form
on the Grassmann algebra �V over V . Equivalently, it is a sequence F = (Fn)n∈N0

of alternating n-linear forms on V with

F(v1 ∧ · · · ∧ vn) = Fn(v1, . . . , vn) , F(1�V ) = F0 ∈ R . (2.1)

The pointwise product of fermionic functionals is defined by

(F · G)n(v1, . . . , vn)

=
∑

σ∈Sn
sign(σ )

n∑

k=0

1

k!(n − k)! Fk(vσ(1), . . . , vσ(k))Gn−k(vσ(k+1), . . . , vσ(n)) .
(2.2)

Let now V be the space of functions on some topological space T , and let F be a
fermionic functional on V . The support of F is defined by

supp F = {x ∈ T | for all neighborhoods U of x∃n ∈ N, v1, . . . , vn ∈ V

with supp v1 ⊂ U such that Fn(v1, . . . , vn) �= 0} (2.3)

A fermionic functional F is called additive if it satisfies for all n the condition

Fn(v1 + w1 + z1, . . . , vn + wn + zn)

= Fn(v1 + w1, . . . , vn + wn) − Fn(v1, . . . , vn) + Fn(v1 + z1, . . . , vn + zn)
(2.4)

if supp (w1, . . . , wn) ∩ supp (z1, . . . , zn) = ∅. We remind that supp (w1, . . . , wn) =
∪n

j=1supp (w j ).
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Consider now the special case where V = �(M, E) is the space of sections of
some vector bundle E over the smooth manifold M , equipped with its natural Fréchet
topology. Sincewe are now talking about topological vector spaces, we need to specify
the topology for the tensor product �kV . Fortunately, in the case we consider, V is
nuclear, so all the tensor products are equivalent. The appropriate notion of alternating
k-linear continuous forms in this case is the topological dual of the completed tensor
product �̂kV , which turns out to be the completion of �k�′(M, E) with respect to
the topology of �′(M, E)⊗̂k ∼= �′(Mk, E�k) where all the duals are strong. This
completion is the space of compactly supported antisymmetric distributional sections
of the vector bundle E�k over Mk . We denote it byOk(V [1])where the number in the
square brackets denotes the degree shift (meaning that all the elements are understood
to be in degree 1) and O means the space of functions, so Ok(V [1]) is understood as
a space of functions on the graded manifold V [1].

We define the smooth fermionic functionals as

O(V [1]) .=
∞∏

k=0

Ok(V [1]) , (2.5)

where O0(V [1]) ≡ C. An element F ∈ O(V [1]) will be represented by the sequence
(Fn)n , where Fn ∈ On(V [1]). Note that, due to the required continuity, smooth
fermionic functionals are always compactly supported, in contrast to the bosonic case
(cf. [7]). They are also always differentiable in the following sense:

Definition 2.1 Let F ∈ Ok(V [1]), h ∈ V ⊗̂k−1, �h ∈ V . The left derivative of F at h
in the direction of �h is defined, for every integer k ≥ 0,

〈�h, F (1)(h)
〉
= F(�h ∧ h), for k > 0, (2.6)

F (1) = 0 F ∈ O0(V [1]) . (2.7)

This definition is then extended to O(V [1]) in a natural way. The right derivative is
defined analogously.

To illustrate this definition, consider the case M = M of Minkowski spacetime,
E = M × R and V = �(M, E). We define F ∈ O2(V [1]) by

F(h1 ∧ h2) =
3∑

μ,ν=0

∫
f (x)aμν∂μh1(x)∂νh2(x) d

4x , (2.8)

where h1 and h2 are in �(M, E) = C∞(M), f is in C∞
0 (M, C) and a is any antisym-

metric, constant 4 × 4 matrix. Now we have, for h and �h in �(M, E):

〈�h, F (1)(h)
〉
=

3∑

μ,ν=0

∫
f (x)aμν(∂μ

�h∂νh)(x) d4x . (2.9)
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As a second example, take M = M, E = M × R
k and again V = �(M, E). Let

h1 = (h j
1)

k
j=1, h2 = (h j

2)
k
j=1 and h = (h j )kj=1 be three sections in �(M, E). Define

G(h1 ∧ h2) =
k∑

i, j=1

∫
ai j (x) h

i
1(x)h

j
2(x) d

4x , (2.10)

with any antisymmetric k × k matrix (ai j (x)), all coefficients satisfying ai j ∈
C∞
0 (M, C). We obtain

〈�h,G(1)(h)
〉
=
∑

i< j

∫
ai j (x)

(�hi (x)h j (x) − �h j (x)hi (x)
)
d4x . (2.11)

It has been shown, see, e.g., [24] that the left derivative defined this way satisfies the
Leibniz rule. Iterating this definition, we can define the nth left derivative F (n) of a
fermionic functional.

Note that the derivative of F ∈ Ok(V [1]) is a jointly continuous map

F (1) : V × V ⊗̂k−1 −→ R . (2.12)

It can be identified with a vector-valued distribution in �′(M, E)⊗̂Ok−1(V ). More
generally, the nth derivative F (n) is an element of �′(Mn, E⊕n)⊗̂O(V [1]). The com-
pleted tensor product used here is the projective tensor product. For more details, see,
e.g., section 3.3 of [25]. As noted in [24], the definitions of a wavefront set can be
extended to such vector-valued distributions and the usual theorems about multiplying
distributions apply to this case.

The “standard” characterization of locality for a compactly supported functional
F ∈ Ok(V [1]) is the requirement that F has the form

F(h1, . . . , hk) =
∫

M
α( jx (h1), . . . , jx (hk)) , (2.13)

where α is a compactly supported density-valued alternating function on k arguments
from the jet bundle. Note that α automatically depends only on the finite jet of the
arguments, due to multilinearity and continuity.

It is easy to see that every local functional (2.13) is additive (2.4); however, additivity
does not suffice for locality—an additional smoothness assumption is needed. For the
analogous problem for bosonic functionals, locality is proved for two different versions
of this additional assumption, see [4, Thm. VI.3] and [7, Prop. 2.2]). We give here the
fermionic analogon of the former theorem; the general case of functionals depending
on both fermionic and bosonic variables is treated in the Appendix.

Theorem 2.2 Let F ∈ O(V [1]). Assume that
(1) F is additive.
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(2) For every h ∈ ⊕k∈N V ⊗̂k , the first derivative F (1) of F has empty wave front
set as a vector-valued distribution and the map h �→ F (1)(h) is Bastiani smooth2

from
⊕

k∈N V ⊗̂k to �c(M, E∗). Here, E∗ denotes dual bundle.

Then, F is local.

Proof The proof is patterned after the paper [4], and we provide the necessary ideas
to fill the gaps for the use of their results in our context.

Let F ∈ Ok(V [1]), k �= 0. We have

F(h1 ∧ · · · ∧ hk) = 1

k

k∑

i=1

(−1)k−1
∫

M
F (1)(h1 ∧ . . . ĥi · · · ∧ hk)(x)hi (x) dx

=
∫

M
F (1)(h2 ∧ · · · ∧ hk)(x)h1(x) dx, (2.14)

Denote h
.= h1 ∧ · · · ∧ hk and write

F(h) =
∫

M
ch(x) dx , (2.15)

where ch(x) = evx
(
F (1)(h2 ∧ · · · ∧ hk)h1

)
.

Now, we use the fact that, by assumption, the wavefront set of F (1) is empty and the
map h �→ F (1)(h) is Bastiani smooth, to apply proposition VI.14 of [4] and conclude
that the function ch depends only on finite jets of h1, . . . , hk . Finally, we use Lemma
VI.15 of the same reference and their Proposition VI.4 to conclude that the resulting
function α on the jet bundle is smooth. Hence, F is local. ��

3 Covariant Grassmannmultiplication

We are confronted with the following problem: We want to construct the algebra of
observables, extended also to fermionic operators. But the relations characterizing this
algebraA contain auxiliary Grassmann parameters whose only purpose is to allow the
use of combinatorial formulas known from the bosonic case. We thus obtain in a first
step subalgebrasAG of tensor productsG⊗A ofGrassmann algebrasG withA that are
generated by even elements and the Grassmann algebra itself (understood as G⊗1A).
The aim is to reconstruct the algebra A from that family of subalgebras. To this end
we equip this family of subalgebras with the following structure.

LetGrass denote the category of finite-dimensional real Grassmann algebras, with
homomorphisms as arrows and let AlgZ2 be the category of Z2-graded unital associa-
tive algebras, with unital homomorphisms respecting the Z2 gradation as arrows. Let
now R : Grass → AlgZ2 be the inclusion functor.

2 See [2, 16, 20] for details on this notion of differentiability and smoothness of functionals on locally
convex topological vector spaces, and [4] for a pedagogical review.
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Definition 3.1 AcovariantGrassmannmultiplication algebra is a pair (G, ι) consisting
of a functor

G : Grass → AlgZ2 (3.1)

and a natural embedding ι : R ⇒ G i.e., a family (ιG)G of injective homomorphisms
ιG : G → GG with

ιG ′ ◦ χ = Gχ ◦ ιG , for homomorphisms χ : G → G ′ .

G G ′

GG GG ′

χ

ιG

Gχ

ιG′

(3.2)

We require the following properties of (G, ι):

(1) ιG(G) is graded central in GG, in the sense that

ιG(η) a = (−1)dg(η)dg(a) a ιG(η) , η ∈ G, a ∈ GG , (3.3)

where dg(·) ∈ {0, 1} denotes the degree.3
(2) Let λi ∈ R and χi : G → G ′, i = 1, . . . , n be homomorphisms between Grass-

mann algebras with
∑n

i=1 λiχi = 0. Then
∑n

i=1 λi Gχi = 0.4

The first property in the above definition is quite natural to require. The second one is
a condition motivated by the specific problem we are trying to solve, namely, without
this condition we would not be able to prove the key reconstruction result (i.e., the
reconstruction of the algebra A). Indeed, the condition does not follow from the other
conditions, as may be seen from the example GG = G ⊗ G and Gχ = χ ⊗ χ . We
observe that the linearity condition (2) may be understood as a minimality condition
on the extension by anticommuting parameters.

An example of a covariant Grassmann multiplication algebra is the functor GA

with a graded unital algebra A which maps Grassmann algebras G to tensor products
GAG = G ⊗ A with the product

(η1 ⊗ a1) · (η2 ⊗ a2)
.= (−1)dg(η2)dg(a1) (η1η2) ⊗ (a1a2), η1, η2 ∈ G, a1, a2 ∈ A , (3.4)

and morphisms χ : G → G ′ to morphisms GAχ : G ⊗ A → G ′ ⊗ A by

GAχ(η ⊗ a) = χ(η) ⊗ a , η ∈ G , a ∈ A . (3.5)

3 In the literature, often the degree in the Grassmann algebra and the degree of intrinsic fermionic variables
are distinguished, such that intrinsic variables and auxiliary Grassmann parameters always commute.While
this sometimes avoids sign factors in practical calculations (see, e.g., [15, Chap. 5]), it seems to be less
appropriate in a conceptual analysis.
4 This entails that G is a functor between enriched categories (over the category of vector spaces).
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The natural transformation ι is given by

ιG(η) = η ⊗ 1A , η ∈ G . (3.6)

It is easy to see that also the linearity condition (2) of Definition 3.1 is satisfied. In the
following, we simplify the notation by identifying ιG(η) with η for η ∈ G and 1G ⊗ a
with a for a ∈ A, and similarly we write ηa for η ⊗ a ∈ G ⊗ A.

We apply this construction to the exterior algebra over some vector space V (i.e.,
A = �V ) aswell as to its dual, the algebra of fermionic functionals on V . The latter we
mainly restrict to the subspace of local functionals (denoted byFloc), such thatGFloc

associates with every Grassmann algebra G a G-bimodule. A fermionic functional
induces, for any G, a G-module homomorphism FG from G ⊗ �V to G by

FG(ωη) = F(ω)η = ηF(ω) , ω ∈ �V , η ∈ G , (3.7)

and we identify ηF with the map ω �→ ηF(ω). The ∧-symbol for the product in �V
is usually omitted. At some places we use it in order to make clear that V is identified
with �1(V ).

As an example, for v1, v2 ∈ �1(V ) = V and odd elements η1, η2 ∈ G, we obtain

FG
(
(v1η1)(v

2η2)
)

= FG
(
(v1v2)(η2η1)

)
= F(v1 ∧ v2)η2η1 . (3.8)

The family (FG)G is a natural transformation F : G�V �⇒ GR, that is,

GRχ ◦ FG = FG ′ ◦ G�Vχ .

G ⊗ �V G ′ ⊗ �V

G ⊗ R G ′ ⊗ R

G�V χ

FG

GRχ

FG′

(3.9)

F is already fixed if we know the maps FG on all elements of the form

exp
∑

i∈I
viηi (3.10)

with odd elements ηi ∈ G, vi ∈ �1(V ) = V and a finite index set I ∈ Pfinite(N),
where FG(1G) = F01G (see (2.1)). (This is called the “even rules principle” in [11,
13, 19].) So fermionic functionals F on V can be characterized as coherent families
of G-valued maps FG ◦ exp on the even part of the Grassmann modules G ⊗ V .

In particular, we can define shifts in the arguments as they occur in the unitary
Dyson–Schwinger equation (i.e.,, the relation ’Dynamics’ given in (4.3)). A shifted
functional F �w, with �w = ∑

j∈J �w jθ j with odd elements θ j of some Grassmann

123
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algebra G ′ and �w j ∈ V , J ∈ Pfinite(N), is defined as a family (F �w
G )G of G-module

maps from G ⊗ �V to G ⊗ G ′,

F �w
G

(
exp
∑

i∈I
viηi

)
= FG⊗G ′

⎛

⎝exp

⎛

⎝
∑

i∈I
viηi +

∑

j∈J

�w jθ j

⎞

⎠

⎞

⎠

=
∑

n≥0

∑

i1<...<in

F �w
n (vi1 , . . . , vin )ηin · · · ηi1 ,

(3.11)

with alternating multilinear G ′-valued maps F �w
n as components

F �w
n (v1, . . . , vn) =

∑

k≥0

∑

j1<...< jk∈J

Fk+n(v
1, . . . , vn, �w j1 , . . . , �w jk ) θ jk · · · θ j1 .

(3.12)

We will see that every covariant Grassmann multiplication algebra is almost of the
form GA for some graded algebra A, which is universal in the following sense.

Theorem 3.2 Let G be a covariant Grassmann multiplication algebra as defined
above. Then, there exist a graded unital algebra A and a natural embedding

σ ≡ (σG)G : G �⇒ GA (3.13)

such that for any other graded unital algebraA′ with a natural embedding σ ′ : G �⇒
GA′

there exists a unique homomorphism τ : A → A′ with σ ′
G = (id ⊗ τ) ◦ σG.

AG
.= GG

G ⊗ A G ⊗ A′

σG σ ′
G

id ⊗ τ

The proof of the theorem will be split into four parts.

First part of the proof. We construct A together with natural embeddings

σG : AG
.= GG → G ⊗ A , (3.14)

i.e., injective homomorphisms satisfying

σG ′ ◦ Gχ = GAχ ◦ σG (3.15)

for homomorphisms χ : G → G ′.
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We use the fact that any finite-dimensional real Grassmann algebra is isomorphic to
�R

n for some n ∈ N0. In a first step, we study the linear hull of homomorphisms from
�R

n to�R
m . Let ηi , i = 1, . . . , n denote the generators of�R

n and θ j , j = 1, . . . ,m
the generators of �R

m . Then, {ηI , I ⊂ {1, . . . , n}} with ηI = ∏i∈I ηi is a basis of
�R

n , and {θJ , J ⊂ {1, . . . ,m}} with θJ =∏ j∈J θ j is a basis of �R
m . ��

Lemma 3.3 Let χ be a linear map from �R
n to �R

m with

χ(ηI ) =
∑

J⊂{1,...,m}
cI J θJ . (3.16)

χ is a linear combination of homomorphisms of Grassmann algebras if and only if

cI J = 0 (3.17)

whenever |I | + |J | is odd or |J | < |I |.
Proof By definition, homomorphisms χ of Grassmann algebras preserve the degree
mod 2, and χ(ηI ) =∏i∈I χ(ηi ) has form degree at least |I | if χ(ηI ) �= 0. This proves
the only if statement of the lemma.

To prove the other direction, we construct matrix units EJ I , EJ I (ηI ′) = δI I ′θJ for
|I | + |J | even and |J | ≥ |I | as linear combinations of homomorphisms. Obviously,
the given linear map χ (3.16) can be written as

χ =
∑

I⊂{1,...,n}, J⊂{1,...,m}
cI J EJ I . (3.18)

To show that EJ I is a linear combination of homomorphisms of Grassmann algebras,
let PI be the homomorphism of�R

n with PIηi = ηi if i ∈ I and PIηi = 0 otherwise.
Then,

EI
.= PI

∏

i∈I
(id − PI\{i}) (3.19)

projects onto the subspace ofmultiples of ηI . Given I = {i1, . . . , i|I |} (with i1 < · · · <

i|I |) and J with |I |+|J | even and |J | ≥ |I |, let (J1, . . . , J|I |)be a partition of J into odd
subsets such that the indices in Jk are smaller than those in Jl if 1 ≤ k < l ≤ |I |, and
consider the homomorphism χ J I : �R

n → �R
m with χ J I (ηik ) = θJk , 1 ≤ k ≤ |I |,

and χ J I (ηl) = 0 for l /∈ I . Hence, χ J I (ηI ) = θJ . Then,

EJ I = χ J I ◦ EI (3.20)

is a linear combination of homomorphisms. ��
In the following, we denote these matrix units by Emn

J I in order to indicate that they are
mappings from �R

n to �R
m ; note that En

I
.= EI (3.19) can be written as En

I = Enn
I I .

Also, the projections PI get an upper index n. Moreover, we extend the action of the
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functorG to linear combinations of homomorphisms:G(
∑

i λiχi )
.=∑i λi Gχi . We

use the following notations:

πK = GPn
K

ρK = GEn
K

(3.21)

The projections π• satisfy the relation

πKπJ = πK∩J , (3.22)

which shows that they commute with each other, and Definition (3.19) turns into

ρK = πK

∏

k∈K
(id − πK\{k}) . (3.23)

The projections ρ• form a direct sum decomposition of A�Rn :

Lemma 3.4 The projections ρ• have the following properties:

(i) Direct sum decomposition

ρK ρJ = δJ K ρK , (3.24)∑

K⊂{1,...,n}
ρK = idA�Rn . (3.25)

(ii) Convolution

ρK (ab) =
∑

J⊂K

ρJ (a)ρK\J (b) . (3.26)

Proof (i) Since (En
K )K⊂{1,...,n} is precisely the set of projections onto the one dimen-

sional subspaces of �R
n corresponding to the basis (ηK )K⊂{1,...,n}, they satisfy

En
K En

J = δJ K EK and
∑

K En
K = id�Rn . Under application of the functor G,

these relations are maintained; in particular, by definition of a functor it holds that
G(En

K En
J ) = ρK ρJ and G(id�Rn ) = idA�Rn .

(ii) To prove (3.26), we consider the homomorphisms χλ of �R
n , λ ∈ R

n , given
by the action ηi �→ λiηi on the generators. Obviously, it holds that

χλ En
K = En

K χλ = λK En
K with λK .=

∏

k∈K
λk . (3.27)

Looking at the pertinent homomorphism (Gχλ) of A�Rn and using part 3 of Defini-
tion 3.1, the formula (3.27) turns into

(Gχλ) ρK = ρK (Gχλ) = λK ρK . (3.28)
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Hence, we obtain

(Gχλ) ρK (ρJ (a) ρI (b)) = ρK ((Gχλ)ρJ (a) (Gχλ)ρI (b)) , (3.29)

which implies

λK ρK (ρJ (a) ρI (b)) = λJ λI ρK (ρJ (a) ρI (b)) ∀λ ∈ R
n . (3.30)

We conclude that

ρK (ρJ (a) ρI (b)) = 0 unless K = I ∪ J , I ∩ J = ∅. (3.31)

Therefore, by using also (3.25), we may write

ρK (ab) =
∑

J ,I

ρK (ρJ (a) ρI (b)) =
∑

J⊂K

ρK
(
ρJ (a) ρK\J (b)

)
. (3.32)

In view of the formula (3.23) for ρK , we note that

πK
(
ρJ (a) ρK\J (b)

) = ρJ (a) ρK\J (b) for J ⊂ K , (3.33)

and for K0 � K

πK0

(
ρJ (a) ρK\J (b)

) = πK0ρJ (a) πK0ρK\J (b) = 0 (3.34)

since at least one of the factors vanishes. So we arrive at

ρK
(
ρJ (a) ρK\J (b)

) = ρJ (a) ρK\J (b) (3.35)

which completes the proof of (3.26). ��
Second part of the proof. Let An .= ρ{1,...,n}(A�Rn ) be the subspace of the highest
Grassmann degree elements. We have a ∈ An iff π{1,...,n}\{k}(a) = 0 for 1 ≤ k ≤ n.
We define products

An × Am → An+m (3.36)

by

a · b .= (−1)m dg(a)Gχn+m
{m+1,...,m+n}(a)Gχn+m

{1,...,m}(b) (3.37)

where, for J ≡ { j1, . . . , j|J |} ⊂ {1, . . . , n}, χn
J : �R

|J | → �R
n is the homomor-

phism induced by ηi �→ η ji with j1 < j2 < · · · < j|J |. The term on the right-hand
side of the equation is indeed an element of An+m . Namely, we have

PK ◦ χn
J = χn

J ◦ P{i | ji∈K } (3.38)
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hence

π{1,...,n+m}\{k}(a · b)
= ±Gχn+m

{m+1,...,m+n} ◦ π{1,...,n}\{k−n}(a) · Gχn+m
{1,...,m} ◦ π{1,...,m}\{k}(b) = 0 (3.39)

since for k ≤ n the second and for k > n the first factor vanishes.
The product is associative. This follows from a straightforward calculation. Let

a ∈ An , b ∈ Am and c ∈ Ak . Then,

(a · b) · c = (−1)dg(a)m+dg(a)k+dg(b)k

· Gχn+m+k
{k+m+1,...,k+m+n}(a)Gχn+m+k

{k+1,...,k+m}(b)Gχn+m+k
{1,...,k} (c) = a · (b · c) . (3.40)

In the next step, we define an inductive system

An � a �→ ιk,n(a)
.= η1 · · · ηk−nGχk

{k−n+1,...,k}(a) ∈ Ak , k ≥ n (3.41)

with ιk,n ◦ ιn,m = ιk,m . If k = n mod 2 , we can also write

ιk,n = GEkn
{1,...,k},{1,...,n} (3.42)

with the matrix units defined before.
This system of embeddings is compatible with the product defined above:

Lemma 3.5 Let a ∈ Am and b ∈ Ak , hence a · b ∈ Am+k . For n ≥ m and l ≥ k, it
then holds that

ιn,m(a) · ιl,k(b) = ιn+l,m+k(a · b) . (3.43)

Proof We insert the definitions of the embeddings and the product and obtain, for the
left-hand side,

ιn,m(a) · ιl,k(b) = ε η1 . . . ηl−kηl+1 . . . ηl+n−m Gχn+l
{l+n−m+1,...,l+n}(a)Gχn+l

{l−k+1,...,l}(b)
(3.44)

with ε = (−1)k(n−m+dg(a)), and for the right-hand side

ιn+l,m+k(a · b) = ε′ η1 . . . ηn+l−m−k Gχn+l
{l+n−m+1,...,l+n}(a)Gχn+l

{n+l−m−k+1,...,n+l−m}(b)
(3.45)

with ε′ = (−1)dg(a)k . Finally, we use that any element ofAn+l is totally antisymmetric
under a permutation of the indices of the η’s, again due to part 3 of Definition 3.1.
Hence, applying the permutation

p =
(

(l − k + 1) · · · l (l + 1) · · · (l + n − m)

(l − k + 1 + n − m) · · · (l + n − m) (l + 1 − k) · · · (l + n − m − k)

)

(3.46)
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to (3.44) we indeed obtain (3.45), since sign(p) = (−1)k(n−m). ��
Third part of the proof.We use now Lemma 3.5 and define A as the inductive limit of
this system with injections ιn : An → A such that

ιk ◦ ιk,n = ιn for k ≥ n (3.47)

and where the product is defined by

ιn(a) · ιm(b)
.= ιn+m(a · b) for a ∈ An, b ∈ Am . (3.48)

We equip A with a grading such that

dg(ιn(a))
.= (dg(a) + n) mod 2 . (3.49)

It remains to construct the embeddings σG : AG → G ⊗ A. Again, it is sufficient
to consider the case G = �R

n , n ∈ N0. For J ≡ { j1, . . . , j|J |} ⊂ {1, . . . , n} (with
j1 < j2 < . . . < j|J |) let χ J

n : �R
n → �R

|J | denote the homomorphism induced
by η ji �→ ηi and ηk �→ 0 if k /∈ J . (Note the relations χ J

n ◦ χn
J = id�R|J | and

χn
J ◦ χ J

n = Pn
J .) Then, we define

σ�Rn (a)
.=

∑

J⊂{1,...,n}
ηJ ⊗ ι|J | ◦ Gχ J

n ◦ ρJ (a) . (3.50)

Lemma 3.6 σ�Rn has the following properties:

(i) It satisfies the naturality condition (3.15).
(ii) It is a homomorphism of graded algebras.

Proof (i) Let χ be a homomorphism from �R
n to �R

m . For the right-hand side of
(3.15), we obtain

GAχ (σ�Rn (ρJ (a))) = χ(ηJ ) ⊗ ι|J | ◦ Gχ J
n ◦ ρJ (a)

=
∑

K⊂{1,...,m}
cJ K θK ⊗ ι|J | ◦ Gχ J

n ◦ ρJ (a), (3.51)

by using (3.5) and (3.16); we recall that χJ K is nonvanishing only if |K | − |J | ∈
{0, 2, 4, . . .}. Inserting the definitions into the left-hand side, we get

σ�Rm (Gχ(ρJ (a))) =
∑

K⊂{1,...,m}
θK ⊗ ι|K | ◦ GχK

m ◦ ρK (Gχ(ρJ (a))) . (3.52)

Both expressions are equal, namely for (3.52) we use

ρK (Gχ)ρJ = G(Em
KχEn

J ) = cJ KGEmn
K J (3.53)
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and

χK
m ◦ Emn

K J = E |K |,n
{1,...,|K |},J , (3.54)

So we obtain that (3.52) is equal to

∑

K

cJ K θK ⊗ ι|K | ◦ GE |K |,n
{1,...,|K |},J (a). (3.55)

For (3.51), we indeed obtain the same result, by inserting properties of the inductions
ι,

ι|J | = ι|K | ◦ ι|K |,|J |, (3.56)

ι|K |,|J | = GE |K |,|J |
{1,...|K |},{1,...,|J |} (3.57)

by using that |K | − |J | ∈ {0, 2, 4, . . .}, and finally

E |K |,|J |
{1,...|K |},{1,...,|J |}χ

J
n E

n
J = E |K |,n

{1,...,|K |},J . (3.58)

(ii) The degree is preserved, dg(σ�Rn (a)) = dg(a), as a consequence of (3.49). To
prove that also the product is preserved, we use (3.26) and find

σ�Rn (a b) =
∑

K⊂{1,...,n}

∑

J⊂K

ηK ⊗ ι|K | ◦ (GχK
n )
(
ρJ (a) ρK\J (b)

)

=
∑

K⊂{1,...,n}

∑

J⊂K

σ�Rn
(
ρJ (a) ρK\J (b)

)
. (3.59)

On the other hand, we have

σ�Rn (a) · σ�Rn (b)

=
∑

J ,L⊂{1,...,n}
(−1)dg(a)|L| ηLηJ ⊗

(
ι|J | ◦ Gχ J

n ◦ ρJ (a)
)

·
(
ι|L| ◦ Gχ L

n ◦ ρL(b)
)

(3.60)

where only disjoint pairs L, J contribute, since otherwise ηLηJ = 0.
Using (3.48) and setting K

.= J ∪ L , we have

(
ι|J | ◦ Gχ J

n ◦ ρJ (a)
)

·
(
ι|L| ◦ Gχ L

n ◦ ρL (b)
)

= ι|K |
(
(Gχ J

n ) ◦ ρJ (a) · (Gχ L
n ) ◦ ρL (b)

)
,

(3.61)

and by (3.37) we get

(Gχ J
n ) ◦ ρJ (a) · (Gχ L

n ) ◦ ρL(b) = (−1)dg(a)|L| G(χK
n ◦ χJ L)(ρJ (a)ρL(b)).

(3.62)
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where χJ L is the automorphism of�R
n which is induced by a permutation pJ L on the

indices of its generators. pJ L ∈ Sn maps (l1, . . . , l|L|, j1, . . . , j|J |) into (k1, . . . , k|K |)
and acts trivially on the remaining indices. Here, K = J ∪ L = {k1, . . . , k|K |} with
k1 < · · · < k|K | , J = { j1, . . . , j|J |} with j1 < · · · < j|J | and L = {l1, . . . , l|L|} with
l1 < · · · < l|L|.

We insert (3.62) and (3.61) into (3.60) and obtain

σ�Rn (a) · σ�Rn (b) =
∑

J ,L⊂{1,...,n},J∩L=∅
ηLηJ ⊗ ι|K | ◦ G(χK

n ◦ χJ L)(ρJ (a)ρL(b)) .

(3.63)

Since

ηK = χJ L(ηLηJ ) (3.64)

and since ρK acts trivially on ρJ (a)ρL(b) and commutes with GχJ L , we may write
(3.63) as (notice that L = K \ J )

∑

K⊂{1,...,n}

∑

J⊂K

χ−1
J L (ηK ) ⊗ ι|K | ◦ G(χK

n ) ◦ ρK ((GχJ L)(ρJ (a)ρL(b)))

=
∑

K⊂{1,...,n}

∑

J⊂K

(GAχ−1
J L ) ◦ σ�Rn ((GχJ L)(ρJ (a)ρL(b))) . (3.65)

The latter expression coincides with (3.59) by the naturality of σ�Rn .
Fourth part of the proof. To complete the proof of the theorem, we still have to verify
the statement about the universality of A. Let A′ be a graded algebra and σ ′ a natural
transformation fromG toGA′

. Taking into account that for any a ∈ A there is an n ∈ N

such that a = ιn(a0) for some uniquely fixed a0 ∈ An and that for this n Definition
(3.50) gives σ�Rn (a0) = η{1,...,n} ⊗ a, we define a homomorphism τ : A → A′ by

η{1,...,n} ⊗ τ(a) = σ ′
�Rn (a0) , a0 ∈ An . (3.66)

For an arbitrary b ∈ A�Rn we easily check

(id ⊗ τ) ◦ σ�Rn (b) =
∑

J

(id ⊗ τ) ◦ σ�Rn (ρJ (b))

=
∑

J

(id ⊗ τ)(ηJ ⊗ ι|J |(Gχ J
n ◦ ρJ (b)))

=
∑

J

ηJ ⊗ τ
(
ι|J |(Gχ J

n ◦ ρJ (b))
)

=
∑

J

GA′
χn
J ◦ σ ′

�R|J | ◦ Gχ J
n (ρJ (b))

=
∑

J

σ ′
�Rn (ρJ (b)) = σ ′

�Rn (b) (3.67)

123



  101 Page 18 of 37 R. Brunetti et al.

where the second last equality follows from the naturality of σ ′. ��

4 The algebra of Fermi fields

We choose now V = �(M, E)whereM is a globally hyperbolic spacetime and denote
by Vc its subspace of compactly supported sections. V is interpreted as the space of
field configurations. LetFloc be the space of local fermionic functionals onV , and let L
denote a generalized fermionic Lagrangian on V , i.e., a map C∞

0 (M) � f �→ L( f ) ∈
Floc with supp L( f ) ⊂ supp f andwith L( f +g+ f ′) = L( f +g)−L(g)+L(g+ f ′)
if supp f ∩ supp f ′ = ∅. We restrict ourselves to generalized Lagrangians that lead to
Green hyperbolic [1] equations of motion.

We construct a covariant Grassmann multiplication algebra G : Grass → AlgZ2

in the sense of Definition 3.1. The algebras AG ≡ GG are generated by invertible
elements 5 SG(F) with F ∈ G ⊗ Floc with the following properties and relations:

• (Parity) SG(F) is even for even F .
• (Naturality) If χ : G → G ′ is a homomorphism of Grassmann algebras, then

SG ′ ◦ GFlocχ = Gχ ◦ SG .

G ⊗ Floc G ′ ⊗ Floc

AG AG ′

GF locχ

SG

Gχ

SG′

(4.1)

• (Quantization condition) SG(η) = ιG(eiη) for η ∈ G.
• (Causal factorization)

SG(F1 + F2 + F3) = SG(F1 + F2)SG(F2)
−1SG(F2 + F3) (4.2)

for even functionals F1, F2, F3 with supp F1∩ J−(supp F3) = ∅where J− denotes
the past of the region in the argument.

• (Dynamics) Let �h = ∑i∈I ηi �hi with odd elements ηi ∈ G, �hi ∈ Vc and I ∈
Pfinite(N). 6 Then,

SG(F) = SG(F
�h + δ�h L) (4.3)

where

δ�h L = L( f )
�h − 1G ⊗ L( f ) (4.4)

5 SG (F) can be expanded into a finite combination of (products of) Grassmann variables; such a combi-
nation is invertible if and only if the coefficient of 1G is invertible.
6 At variancewith the notations in (3.11), theGrassmann algebraG considered here contains theGrassmann
variables appearing in both the unshifted argument exp

∑
ηiv

i and the shift �h.
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with f ≡ 1 on supp �h and the unit 1G of G.

Note that the quantization condition implies SG(0) = 1AG . Setting F = 0 in the
relation dynamics, we obtain

SG(δ�h L) = 1AG , (4.5)

which is characteristic for the on-shell algebra, cf. [6] and Sect. 7. We apply now
Theorem 3.2 and obtain a graded algebra A and embeddings σG : AG → G ⊗ A.

We still have to equip our algebras with an antilinear involution. On a real Grass-
mann algebra �V over some real vector space V , we define an involution by v∗ = v
for v ∈ �1(V ) = V , for linear maps A from �V to some graded *-algebra by

A∗(ω) = (−1)dg(A)dg(ω)A(ω∗)∗ , ω ∈ �V (4.6)

and for the tensor product G ⊗ A of a Grassmann algebra G with a graded *-algebra
A we set

(η ⊗ a)∗ = (−1)dg(η)dg(a)η∗ ⊗ a∗ , η ∈ G , a ∈ A . (4.7)

For a covariant Grassmann multiplication algebra G, we require that the algebras
GG are *-algebras and the embeddings ιG : G → GG are *-homomorphisms.
The algebras AG = GG defined by the axioms above obtain a *-operation by
SG(F)∗ = SG(F∗)−1. The subspacesAn ⊂ A�Rn are invariant under the *-operation.
The involution on the inductive limit A is induced by

ιn(a)∗ .= (−1)n(n−1)/2+n(dg(a)+n)ιn(a
∗) . (4.8)

Indeed, since for a ∈ An , b ∈ Am equation (3.37) implies that

(a · b)∗ = (−1)m dg(a)+n dg(b)+nm b∗ · a∗ , (4.9)

the involution satisfies the condition

(ιn(a)ιm(b))∗ = ιm(b)∗ιn(a)∗ . (4.10)

We observe that (σG)G then is a family of *-homomorphisms. Namely, let G = �R
n

and A�Rn � a = ρJ (a) for some J ⊂ {1, . . . , n}. Using that dg(ηJ ) = |J |, η∗
J =

(−1)|J | (|J |−1)/2ηJ , dg(ι|J | ◦ Gχ J
n (a)) = (dg(a) + |J |)mod 2 and (Gχ J

n (a))∗ =
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Gχ J
n (a∗), we obtain

σ�Rn (a)∗ =
(
ηJ ⊗ (ι|J | ◦ Gχ J

n (a))
)∗

= (−1)|J | (dg(a)+|J |) η∗
J ⊗ (ι|J | ◦ Gχ J

n (a))∗

= (−1)|J | (dg(a)+|J |)+|J |(|J |−1)/2 ηJ ⊗ (ι|J | ◦ Gχ J
n (a))∗

= ηJ ⊗ (ι|J | ◦ Gχ J
n (a∗))

= σ�Rn (a∗) . (4.11)

Hence, σG ◦ SG behaves under the ∗-operation equally to SG , to wit, σG (SG(F))∗ =
σG (SG(F∗))−1. The involution onA is universal, in the sense that the homomorphism
τ in Theorem 3.2 is a *-homomorphism provided σ ′ preserves the *-structure.

In the following, we omit the symbols σG by identifying AG with a subalgebra of
G ⊗ A.

Note that the ideal of G ⊗ A generated by the generators of G is annihilated by
every positive linear functional on G ⊗ A.

5 Canonical anticommutation rules

We specialize now to the Dirac field on Minkowski space for simplicity, the general-
ization to globally hyperbolic spacetimes being straightforward (see, e.g., [14]). The
space of field configurations h ∈ V is the space of smooth sections of the spinor bun-
dle, equipped with a nondegenerate Lorentz invariant sesquilinear form (u, v) �→ uv
on each fiber. (Note that u does not mean complex conjugation, see (5.3).) We may
choose V = C∞(M, C

4) with the Spin(2) ≡ SL(2, C) action on C
4 by the matrix

representation

SL(2, C) � A �→
(
A 0
0 (A∗)−1

)
(5.1)

which corresponds to the choice of γ -matrices

γ0 =
(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
, i = 1, 2, 3 . (5.2)

The sesquilinear form is obtained from the standard scalar product (·, ·) on C
4 by

uv = (u, γ0v) (5.3)

The γ -matrices are then Hermitian with respect to the sesquilinear form.
For compactly supported sections, we can define a sesquilinear form by

〈h1, h2〉 =
∫

dx h1(x)h2(x) . (5.4)
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The classical Dirac field ψ is the evaluation functional

ψ(x) : V → C
4; ψ(x)[h] .= h(x) (5.5)

and the conjugate field ψ maps the configuration into the dual space

ψ(x) : V → (C4)∗; ψ(x)[h1](v) .= h1(x)v . (5.6)

Smeared fields are defined as usual, that is, ψ(s)[h] .= 〈s, h〉, where s ∈ Vc is a test
section of the spinor bundle, and ψ(s)[h] .= 〈h, s〉. Note that according to (4.6) we
have ψ(s)∗ = −ψ(s).

The Dirac Lagrangian L = ψ ∧ /Dψ with the Dirac operator /D = iγ ∂ − m
associates with any compactly supported test function f a 2-form L( f ) on V , namely

L( f )[h1, h2] = 〈 f h1, /D( f h2)〉 − 〈 f h2, /D( f h1)〉 . (5.7)

Note that /D is Hermitian with respect to the sesquilinear form 〈·, ·〉; hence, L( f ) takes
imaginary values.

We want to use the (free) Dirac Lagrangian for constructing a covariant Grassmann
multiplication algebra G, i.e., the local S-matrices in Minkowski spacetime as in the
previous section, and the relation dynamics and the causal factorization to derive the
anticommutation relations.

To this end, we need to extend the used functionals to G-valued functionals by
(3.7). We have for η ∈ G, s, h ∈ Vc

ψ(s)G[hη] = ψ(s)[h]η = 〈s, h〉η (5.8)

and

ψ(s)G[hη] = ψ(s)[h]η = 〈h, s〉η. (5.9)

This suggests to extend the sesquilinear form 〈·, ·〉 to a G ⊗ C-valued map 〈·, ·〉G on
(G ⊗ Vc) × (G ⊗ Vc) by

〈ηh, h′η′〉G = η〈h, h′〉η′ (5.10)

for h, h′ ∈ Vc and η, η′ ∈ G. We may also extend the fields ψ and ψ to test sections
ηi si ∈ G ⊗ Vc by

ψG(ηs)[hη′] = ηψ(s)[h]η′ = 〈ηs, hη′〉G (5.11)

and

ψG(ηs)[hη′] = ηψ(s)[h]η′ = (−1)dg(η)dg(η′)+dg(η)+dg(η′)〈hη′, ηs〉G; (5.12)
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hence,

ψG(ηs) = ηψG(s) , ψG(ηs) = ηψG(s). (5.13)

The extended Lagrangian L( f )G (with spacetime cutoff f ) is a quadratic form on
even elements of G ⊗ Vc. Namely, let h = ∑ hiηi with hi ∈ V and odd elements
ηi ∈ G. Then

L( f )G[eh] = 1

2
L( f )G [hh] = 1

2

∑
L( f )[hi ∧ h j ]η jηi = 〈 f h, /D f h〉G .

(5.14)

The variation under a shift �h =∑i∈I �hiθi , with odd elements θi ∈ G, �hi ∈ Vc is then
a sum of a linear and a constant functional, namely

δ �h LG[eh] = δ �h LG [1 + h] = 〈�h, /Dh〉G + 〈h, /D�h〉G + 〈�h, /D�h〉G . (5.15)

Since /D is self-adjoint with respect to 〈·, ·〉, we have

〈�h, /Dh〉G = 〈 /D�h, h〉G (5.16)

and hence, using (5.12)

δ �h LG = ψG( /D�h) − ψG( /D�h) + 〈�h, /D�h〉G . (5.17)

Let now s ∈ (G ⊗ Vc)even and let

DG(s)
.= ψG(s) − ψG(s) (5.18)

be the smeared classical “doubledDirac field” viewed as an element in (G⊗Floc)even.

Proposition 5.1 Let s = ∑n
i=1 ηi si with si ∈ Vc and ηi odd elements of G. The

S-matrix SG built with the doubled Dirac field has the expansion

SG (DG(s)) = 1A +
n∑

k=1

i k

k!
∑

i1<···<ik

ηik . . . ηi1Bk(s
i1 ∧ · · · ∧ sik ) (5.19)

with R-multilinear alternating maps Bk : V k
c → A, k = 1, . . . , n (the time-ordered

products of the doubled Dirac field).

Proof Let χ : �R
n → G denote the homomorphism which acts on the generators of

�R
n by χ(θi ) = ηi . Then, by the naturality of S we have

SG(DG(s))=(SG ◦ GF locχ)

(
D�Rn

(
n∑

i=1

θi s
i

))
= (Gχ ◦ S�Rn )

(
D�Rn

(
n∑

i=1

θi s
i

))
;

(5.20)
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hence, it suffices to treat the case G = �R
n with generators ηi , i = 1, . . . , n. By

assumption, SG(DG(
∑n

i=1 ηi si )) takes values in �R
n ⊗ A; hence, it is of the form

SG

(
DG

(
n∑

i=1

ηi s
i

))
=

∑

I⊂{1,...,n}
ηI B

I (s1, . . . , sn) (5.21)

with BI (s1, . . . , sn) ∈ A.
Let χλ, λ ∈ R

n denote the homomorphism of �R
n induced by ηi �→ λiηi . Then,

by the naturality of S we get

BI (λ1s
1, . . . λns

n) = λI B I (s1, . . . , sn); (5.22)

hence, BI depends only on the variables si , i ∈ I and is homogeneous of degree 1
in every entry. In particular, for λ = 0 we obtain B∅ = SG(0) = 1. Moreover, as a
function on k = |I | variables, BI does not depend on the choice of I . We set

i k

k! Bk(s
k, . . . , s1)

.= B{1,...,k}(s1, . . . , sk). (5.23)

Replacing χ by a permutation p ∈ Sn of the generators, we find

∑

i1<···<im

ηp(im ) . . . ηp(i1)Bm(si1 , . . . , sim ) =
∑

i1<···<im

ηim . . . ηi1 Bm

(
s p

−1(i1), . . . , s p
−1(im )

)

(5.24)

for all 1 ≤ m ≤ n. Let p be such that it acts nontrivially only on {1, . . . , k}, i.e.,,
p( j) = j for all k < j ≤ n. Identifying the coefficients of ηk . . . η1 by using
ηp(k) . . . ηp(1) = (−1)sign(p)ηk . . . η1, we see that Bk is totally antisymmetric.

It remains to prove that is Bk is additive in every entry. We have

SG

(
DG

(
k+1∑

i=1

ηi s
i

))
= 1A +

k+1∑

m=1

im

m!
∑

i1<···<im

ηim . . . ηi1Bm(si1 ∧ · · · ∧ sim ).

(5.25)

We now choose the homomorphism χ which maps ηk+1 to ηk and leaves all other
generators invariant. Identifying again the coefficients of ηk . . . η1, we find

Bk

(
s1 ∧ · · · ∧

(
sk + sk+1

))
= Bk

(
s1 ∧ . . .∧sk

)
+Bk

(
s1 ∧ · · · ∧ sk−1 ∧ sk+1

)
.

(5.26)

��
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We now use f = ηs as the smearing object for D, with s ∈ Vc and η a generator
of G. The involution on AG is defined by SG(DG(ηs))∗ = SG(DG(ηs)∗)−1, and
D(s) = ψ(s) − ψ(s) is self-adjoint. The above proposition implies

SG(DG(ηs))∗ = 1 − i B1(s)
∗η (5.27)

and

SG(DG(ηs)∗)−1 = SG(DG(−ηs))−1 = (1 − iηB1(s))
−1 = 1 + iηB1(s)

(5.28)

Since B1(s) anticommutes with η, it is self-adjoint. We decompose it in its complex
linear and antilinear parts,

B1(s) = �(s)∗ + �(s) , �(s) ∈ A . (5.29)

We interpret � as the quantized Dirac field; it is an A-valued antilinear functional
on Vc.

Theorem 5.2 The quantized Dirac field � satisfies the canonical anticommutation
rules over Vc:

{�(s1)∗, �(s2)∗} = {�(s1),�(s2)} = 0 , {�(s1),�(s2)∗} = 〈s2, i /Ss1〉1A ,

(5.30)

where

/S = (iγ ∂ + m)� (5.31)

with � the commutator function of the scalar theory. 7

Proof Let f =∑i∈I ηi f i and g =∑i∈I θi gi , with f i , gi ∈ Vc, ηi , θi odd elements
of G and I ∈ Pfinite(N). We decompose f = f ′ + /D�h with supp �h, supp f ′ compact
such that supp f ′ does not intersect the past of supp g. We may choose

�h = a/SR f (5.32)

where a is a smooth function with a ≡ 1 on a neighborhood of the past of supp g, and
/SR denotes the retarded inverse of /D. From (5.17), we have

DG( /D�h) = (δ�h L) − 〈�h, /D�h〉G , (5.33)

7 Instead of the usual notation S, SR , S±, SF for the propagators of theDiracfield,wewrite /S, /SR , /S±, /SF ,
because the letter ’S’ is reserved for the S-matrices.With regard to the factors (−1), i and 2π in the definition
of these propagators, we use the conventions given in [15, App. A.2].
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hence, according to the relation Dynamics, we find

SG(DG( f )) = SG(DG( f ′) + δ�h L − 〈�h, /D�h〉G)

= SG(DG( f ′)−�h − 〈�h, /D�h〉G)

= SG
(
DG( f ′) − 〈�h, f ′〉G − 〈 f ′, �h〉G − 〈�h, /D�h〉G

)
.

(5.34)

From Causal factorization, we thus obtain

SG(DG( f ))SG(DG(g)) = SG(DG( f ′ + g) − 〈�h, f ′〉G − 〈 f ′, �h〉G − 〈�h, /D�h〉G) .

(5.35)

Using f ′ = f − /D�h, we get

DG( f ′ + g) = DG( f + g) + (δ−�h L) − 〈�h, /D�h〉G . (5.36)

We now use again the relation dynamics:

SG (DG( f )) SG (DG(g)) = SG
(
DG( f + g) + (δ−�h L) + c

) = SG
(
DG( f + g)

�h + c
)

,

(5.37)

where c
.= −〈�h, f ′〉G − 〈 f ′, �h〉G − 2〈�h, /D�h〉G . Taking into account that

DG( f + g)
�h − DG( f + g) + c = 〈( f + g), �h〉G + 〈�h, ( f + g)〉G + c

= 〈 f − f ′, �h〉G+〈�h, f − f ′〉G−2〈�h, /D�h〉+〈g, �h〉G+〈�h, g〉G
= 〈 /D�h, �h〉G + 〈�h, /D�h〉G − 2〈�h, /D�h〉G + 〈g, �h〉G + 〈�h, g〉G
= 〈g, �h〉G + 〈�h, g〉G . (5.38)

we arrive at

SG (DG( f )) S (DG(g)) = S (DG( f + g) + E( f , g))

= SG (DG( f + g)) SG (E( f , g)) (5.39)

with E( f , g) ∈ G given by

E( f , g)
.= 〈g, �h〉G + 〈�h, g〉G = 〈g, /SR f 〉G + 〈/SR f , g〉G (5.40)

where we replaced �h = /SR
( f − f ′) by /SR f since supp (/SR f ′) ∩ supp g = ∅. (The

second equality in (5.39) follows from Causal factorization and supp E( f , g) = ∅.)
The relation (5.39) implies the canonical anticommutation relations. To see this,

we first observe that

SG(DG(g))SG(DG( f )) = SG(DG( f ))SG(DG(g))SG(E(g, f ) − E( f , g))

(5.41)
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with

E(g, f ) − E( f , g) = 〈 f , /Sg〉G − 〈g, /S f 〉G (5.42)

with the G ⊗ C-valued sesquilinear form

〈g, /S f 〉G = 〈g, /SR f 〉G − 〈/SRg, f 〉G . (5.43)

Let now f = η1s1 and g = η2s2 with s1, s2 ∈ Vc and odd elements η1, η2 ∈ G.
Inserting

SG(E(g, f ) − E( f , g)) = 1 + iη2η1
(
〈 f 1, /Sg2〉G + 〈g2, /S f 1〉G

)
. (5.44)

and (5.29) into (5.41), we get a non-trivial identity only for the coefficients of η1η2:

−
(
�(s2)∗ + �(s2)

) (
�(s1)∗ + �(s1)

)

=
(
�(s1)∗ + �(s1)

) (
�(s2)∗ + �(s2)

)
− i
(
〈s1, /Ss2〉G + 〈s2, /Ss1〉G

)
.

(5.45)

This equation must hold individually for the terms being linear/antilinear in s1 and lin-
ear/antilinear in s2. Hence, we obtain the canonical anticommutation relations (5.30).

To see that the definition /S
.= /SR − (/SR

)∗ (5.43) (where (/SR
)∗ denotes the adjoint

of /SR with respect to the sesquilinear form 〈·, ·〉, which coincides with the advanced
inverse of the Dirac operator) agrees with the explicit formula (5.31) for /S, note that

/SR = (iγ ∂ + m)�R, (/SR
)∗(x) = (iγ ∂x + m)�R(−x) (5.46)

and �(x) = �R(x) − �R(−x). ��
Remark 5.3 To verify the consistency of our conventions, we check that 〈·, i /S·〉 is a
positive semidefinite sesquilinear form on Vc. From (5.31), we obtain

γ 0i /S(x − y) = (2π)−3
∫

d4 p δ(p2 − m2)ε(p0)(p0 + �α · �p + mγ 0)e−i p(x−y)

(5.47)

(where αk
.= γ0γk for k = 1, 2, 3) and thus

〈 f , i /S f 〉 = 2π
∫

d4 p δ(p2 − m2)ε(p0)
(
f̃ (p), (p0 + �α · �p + mγ 0) f̃ (p)

)

(5.48)

where f̃ denotes the Fourier transform of f . The positivity follows now from the fact
that the matrix-valued function
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p �→ ε(p0)(p0 + �α · �p + mγ 0) (5.49)

is positive semidefinite on both components of the mass hyperboloid p2 = m2.

6 C*-structure

The axioms define a graded unital *-algebra A = A0 ⊕ A1. We now want to equip
it with a C*-norm. We start with S-matrices S(F) with even fermionic functionals
F without auxiliary Grassmann variables. There we can proceed as in the case of a
bosonic field. We look at the group generated by these elements modulo the relations
causality and the quantization condition S(c) = eic1 for constant functionals c and
define a state on the group algebra by

ω(U ) = 0 for U /∈ {eic1|c ∈ R} . (6.1)

The operator norm in the induced GNS representation is a C*-norm. We then equip
the algebra with the maximal C*-norm [21, 22]. Note that in contrast to the bosonic
case the dynamical relation does not lead to relations within this algebra.

We now want to extend this C*-norm. We cannot expect that it can be extended to
the full algebra, since the presence of the Grassmann variables induces an expansion
of the S-matrices into polynomials of Grassmann variables whose coefficients cannot
be expected to be bounded, in general. An example is

S(η jμ( f μ)) = 1 + iηJμ( f μ), (6.2)

where η is an even element of G with η2 = 0, with the classical current

jμ( f μ) =
∫

ψ ∧ γμψ f μ (6.3)

of the Dirac field and its quantized version Jμ (defined by (6.2)).
Instead, we use the anticommutation relations (5.30) which imply that for || f ||Vc =

1, with the seminorm

|| f ||2Vc = 〈 f , i /S f 〉 , (6.4)

�( f )∗�( f ) is a self-adjoint projection. Hence, for every nonzero C*-seminorm

||�( f )|| = || f ||Vc (6.5)

holds. Moreover, we have

Proposition 6.1 �( f ) = 0 if || f ||Vc = 0.

Proof Let f ∈ Vc with || f ||Vc = 0. Then, due to the positive semidefiniteness of
〈·, i /S·〉, we may use the Cauchy–Schwarz inequality to obtain 〈g, i /S f 〉 = 0 for every
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g ∈ Vc. Thus, /S f = 0. But then, due to the general properties of normal hyperbolic
operators, f must be of the form /Dh for some h ∈ Vc. So for an odd element η ∈
G, we get DG(η f ) = δηh L; hence, by the axiom Dynamics SG(DG(η f )) = 1,
�( f ) + �( f )∗ = 0. Since ||i f ||Vc = || f ||Vc , we can repeat the argument with i f
instead of f and arrive at �( f ) = 0. ��
We conclude that the *-algebra generated by�( f ), f ∈ Vc is the algebra of canonical
anticommutation relations.

Let us consider the sub-*-algebra B of A, generated by the S-matrices S(F) with
even F as above and the Dirac fields �( f ), then we have

Theorem 6.2 The maximal C*-seminorm on B exists and is a C*-norm.

Proof Let us equip B with the norm

||A||1 = inf

⎧
⎨

⎩
∑

i

∏

j

||C j
i || ∣∣ A =

∑

i

∏

j

U j
i C

j
i

⎫
⎬

⎭ (6.6)

with products U j
i of S-matrices S(F) and their inverses and C j

i elements of the *-
algebra generated by the Dirac field, equipped with its unique C*-norm || · ||. For every
element A as in (6.6) and any C*-seminorm p we get p(A) ≤ ∑i

∏
j p(C

j
i ), since

unitary elements are bounded by 1 in every C*-seminorm, then by uniqueness of the
C*-norm || · || one gets p(C j

i ) = ||C j
i || hence the Banach norm || · ||1 dominates

every C*-seminorm, and we can equip B with its maximal C*-seminorm. It remains
to show that this is actually a norm.

For this purpose, we choose a family of unitaries in the algebra generated by the
Dirac field which is a basis of a dense subset and which is closed under multiplication
and adjunction, up to a factor. To obtain this basis, we use the fact that the algebra
of canonical anticommutation relations (the CAR algebra) is, by the Jordan-Wigner
transformation, isomorphic to a tensor product of 2×2-matrix algebras (see for instance
[10] and the detailed treatment in [12]) where the unit together with the Pauli matrices
form such a basis. We consider the generated group U , together with a non-trivial
(hence faithful) representation σ of the CAR algebra.

We then construct the induced representation of the full group V generated by U
and the S-matrices S(F) as above, by proceeding as follows: We choose from every
coset j ∈ V /U a representative Vj . Then, the induced representation π is defined on
the Hilbert space

Hπ =
⊕

j∈V /U

H j
σ (6.7)

where each summand is a copy of the representation space of σ , by

(π(V )v)i =
∑

j∈V /U ,V−1
i V Vj∈U

σ(V−1
i V Vj )v j for v =

⊕

j∈V /U

v j ∈ Hπ .

(6.8)
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(Note that the sum contains only one term.)
π cannowbeextended to the group algebra overV which is a ||·||1-dense subalgebra

B0 of B. This representation is faithful. To see this, we apply a generic element∑
V∈V λV V , withλV �= 0 for a finite linearly independent subset ofV , to the subspace

corresponding to the coset of unity, denoted by 0̂. Assume
∑

V∈V λVπ(V ) = 0. Let

V0̂ = 1 and v ∈ H 0̂
σ . Then,

∑

V∈V
λVπ(V )v =

⊕

j∈V /U

∑

V∈ j

λV σ(V−1
j V )v . (6.9)

Since σ has a faithful extension to theCARalgebra, we conclude that for all j ∈ V /U

∑

V∈ j

λV V
−1
j V = 0 . (6.10)

But the set {V−1
j V |V ∈ j, λV �= 0} is linearly independent; hence, λV = 0 for all

V ∈ j . Thus, the operator norm in this representation is a C*-norm onB0. Moreover,
since π is continuous, it has a unique extension to a C*-seminorm on B.

Finally, given any element of B ∈ B, B �= 0, there is some choice of U such
that B ∈ B0; hence, there is a C*-seminorm nonvanishing on B. Thus, the maximal
C*-seminorm on B is indeed a norm. ��
Remark 6.3 The proof uses only dense *-algebras. By completing B, it is clear that
the CAR C*-algebra is properly contained in it.

Moreover, by restriction to open bounded subregions of Minkowski spacetime we
can define a net of C*-algebras from B. This construction uses the Lagrangian of
the free theory. But as shown in [6] (see also [3] for an explicit formula), the net of
interacting observables can be constructed within the net of the free theory and vice
versa. In particular, operators satisfying the CAR can also be found in the interacting
theory.

7 Equivalence of the relation dynamics to the field equation in
perturbation theory

For the perturbative description of Dirac spinor fields (see, e.g., [15, Chap. 5.1.1]), we
aim to prove the equivalence of the relation “Dynamics” (4.3) to the axiom“Field equa-
tion” for time-ordered products. The main idea of proof is taken from [6, Appendix].
We throughout work with extended fermionic functionals FG with compact support,
i.e.,, FG is defined on G ⊗ �V , where V = C∞(M, C

4); this is not necessary; how-
ever, proceeding this way we may directly borrow some formulas from Sect. 5. By
F , we mean the space of all functionals of this kind and by Floc the subspace of the
local ones.
Star product and unrenormalized time-ordered product. To define the star product, let

/S±
(x)

.= ±(i /∂x + m)�+(±x), (7.1)
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where �+ is the scalar Wightman 2-point function (or a Hadamard function). Note
that /S+ and /S− are related to the “anticommutator function” /S appearing in Sect. 5
by /S(x) = −i

(
/S+

(x) + /S−
(x)
)
. The star product is defined by

(η1 ⊗ F1,G)�(η2 ⊗ F2,G)
.= (−1)dg(η2)dg(F1) (η1η2) ⊗ (F1,G�F2,G) (7.2)

for F1,G, F2,G ∈ F , and η1, η2 ∈ G, and

F1,G�F2,G

.=
∞∑

n,k=0

�
n+k

n!k!
∫

dx1 · · · dxn+k dy1 · · · dyn+k
δn+k
r F1,G

δψt1(x1)G · · · (n) δψu1(xn+1)G · · · (k)

∧
n∏

j=1

/S+
t j s j (x j − y j )

k∏

l=1

/S−
vl ul (yn+l − xn+l)

δn+k F2,G
δψ s1(y1)G · · · (n) δψv1(yn+1)G · · · (k) ,

(7.3)

where δn/δψt1(x1)G · · · (n)
.= δn/δψt1(x1)G · · · δψtn (xn)G and δr

δψG
denotes the func-

tional derivative from the right-hand side. 8

In addition, we introduce the unrenormalized time-ordered product �F , by the same
formulas (7.2) and (7.3), but with both /S+

(z) and (−/S−
(z)) replaced by

/SF (z)
.= (i /∂x + m)�F (z) = θ(z0) /S+

(z) − θ(−z0) /S−
(z) (7.4)

everywhere, where �F is the scalar Feynman propagator. This product exists if the
pertinent contractions do not form any loop diagram—we shall use it only in such
instances. For example, for jμ(x)G

.= ψ(x)G ∧ γ μψ(x)G (i.e.,, the electromagnetic
current) the last term in

jμ(x)G�F jν(y)G = jμ(x)G ∧ jν(y)G + � ψ(x)G ∧ γ μ /SF (x − y) γ ν ψ(y)G

+ � ψ(y)G ∧ γ ν /SF (y − x) γ μ ψ(x)G − �
2 tr
(
γ μ /SF (x − y) γ ν /SF (y − x)

)
,

(7.5)

(where matrix notation for the spinors is used and tr(·) denotes the trace in C
4×4)

does generally not exist, but it is well defined when smeared out with a test function
f (x, y) which has support outside of the diagonal x = y.
Both � and �F are associative, and the latter is commutative if both factors are even

elements ofG⊗F . For FG =∑ j η j ⊗Fj,G ∈ (G⊗F )even, exponentials exp∧(FG)

8 By δFG
δψ(x)G

(h) or δFG
δψ(x)G

(h), we mean the integral kernel of the left (functional) derivative F(1)
G (h) of

FG at h as introduced in definition 2.1; the functional derivative from the right-hand side is defined by

δr

δψ(y)G
ψ(x1)G ∧ · · · ∧ ψ(xn)G

.= (−1)n−1 δ

δψ(y)G
ψ(x1)G ∧ · · · ∧ ψ(xn)G

and similarly for δr /δψ(y)G .
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and exp�F
(FG) are defined by the pertinent power series, where the powers are meant

with respect to the indicated product.
Weworkwith the sesquilinear form 〈· , ·〉G (5.10) and theLagrangian L( f )G (5.14).

We use that the variation of L( f )G under a shift, δ�h LG (5.15) (where �h =∑i∈I �hiηi ,
with odd elements ηi ∈ G, �hi ∈ Vc), may be written in terms of the smeared classical
double Dirac field DG(s) (5.18) as

δ�h LG = DG( /D�h) + 〈�h, /D�h〉G ∈ (G ⊗ Floc)even, (7.6)

by using (5.17).
For FG ∈ (G ⊗ F )even, we introduce the Euler derivative

(εFG)(�h)
.= d

du

∣∣∣
u=0

Fu �h
G =

∫
dx

(
�h(x)

δFG
δψ(x)G

+ δr FG
δψ(x)G

�h(x)

)
. (7.7)

By using /D/S+ = 0 = /D/S−, we obtain

FG�DG( /D�h) = FG ∧ DG( /D�h) = DG( /D�h) ∧ FG = DG( /D�h)�FG (7.8)

for all FG ∈ (G ⊗ F )even and all �h of the above given form. For the product �F , the
relation /D/SF = iδ yields

exp�F
(i DG( /D�h)) = exp∧(i DG( /D�h)) · exp(−i 〈�h, /D�h〉G). (7.9)

The renormalized time-ordered product. The renormalized (off-shell) time-ordered
product is a collection of linear maps Tn : F⊗n

loc → F , n ∈ N, which is defined by
certain basic axioms and renormalization conditions, see, e.g., [15, Chap. 5.1.1]; in
particular, Tn,G : ((G ⊗ Floc)even)

⊗n → (G ⊗ F )even, defined by

Tn,G(η1 ⊗ F1,G, . . . , ηn ⊗ Fn,G)
.= (ηn · · · η2η1) ⊗ Tn(F1,G, F2,G , . . . , Fn,G),

(7.10)

is required to be invariant under permutations of (η1 ⊗ F1,G), . . . , (ηn ⊗ Fn,G). Due
to the basic axiom “Causality,” Tn,G agrees with the n-fold product �F if supp Fj,G ∩
supp Fk,G = ∅ for all j < k. The generating functional of the sequence of time-ordered
products (Tn,G)n∈N is the S-matrix

SG : (G ⊗ Floc)even → (G ⊗ F )even

defined by

SG(λFG)
.= TG

(
exp⊗(iλFG)

) ≡ 1 +∑∞
n=1

inλn
n! Tn,G(F⊗n

G ) , (7.11)

which we understand as a formal power series in λ ∈ R. In particular, since δ�h LG does
not contain any terms of second or higher order in ψG, ψG , there do not contribute
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any loop diagrams to SG(δ�h LG); hence, we obtain

SG(δ�h LG) = exp�F
(iδ�h LG) = exp∧(iDG( /D�h)) , (7.12)

where the second equality is due to (7.6) and (7.9).
The renormalization condition “(off-shell) Field equation” can be written in terms

of the retarded interacting field:

RG
(
exp⊗(FG), HG

) .= d

idλ

∣∣∣
λ=0

SG(FG)�−1�SG(FG + λHG)

= SG(FG)�−1�TG
(
exp⊗(i FG) ⊗ HG

)
,

(7.13)

(where FG, HG ∈ (G ⊗ Floc)even and FG is interpreted as the interaction), as

RG

(
exp⊗(FG), [(εFG)(�h) + DG( /D�h)]

)
= DG( /D�h) , (7.14)

see, e.g., [15, formula (5.1.51)]. By using field independence of the time-ordered
product (which is a further renormalization condition), that is,

TG
(
exp⊗(i FG) ⊗ (εFG)(�h)

)
= −i(εSG(FG))(�h) , (7.15)

the identity (7.14) is equivalent to

TG
(
exp⊗(i FG) ⊗ DG( /D�h)

)
= SG(FG)�DG( /D�h) + i(εSG(FG))(�h), (7.16)

which is the Schwinger–Dyson equation as given in [6, formula (A.2)] written for the
Dirac field.
Equivalence of the relation dynamics and field equation. To derive the relation dynam-
ics from the field eq. (7.14), note the relations

d

dλ
Fλ�h
G = (εFλ�h

G )(�h),
d

dλ
δ
λ�h LG = DG( /D�h) + 2λ〈�h, /D�h〉G, (7.17)

and

(εδ
λ�h LG)(�h) = λ

d

du

∣∣∣
u=0

DG( /D�h)u
�h = 2λ〈�h, /D�h〉G , (7.18)

which follow from (7.7), (7.6) and (5.18). Hence, setting

KG(λ)
.= Fλ�h

G + δ
λ�h LG ∈ (G ⊗ Floc)even, (7.19)

we obtain

d

dλ
KG(λ) = (εKG(λ)) (�h) + DG( /D�h). (7.20)
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In addition, we introduce

UG(λ)
.= SG(FG)�−1�SG (KG(λ)) . (7.21)

To obtain a simpler formula for UG(λ), we compute d
idλUG(λ) by using (7.20):

d

idλ
UG(λ) = SG(FG)�−1�TG

(
exp⊗(i KG(λ)) ⊗ [(εKG(λ)) (�h) + DG( /D�h)]

)

= UG(λ)�RG

(
exp⊗(i KG(λ)), [(εKG(λ)) (�h) + DG( /D�h)]

)
,

(7.22)

after insertion of the identity SG (KG(λ)) �SG (KG(λ))�−1 = 1 in the middle of the
first line. Now, we insert the field Eq. (7.14) for the interaction KG(λ) and, in a second
step, we take into account the relation (7.8):

d

idλ
UG(λ) = UG(λ)�DG( /D�h) = UG(λ) ∧ DG( /D�h). (7.23)

Since UG(0) = 1, we conclude that

UG(λ) = exp∧(iλDG( /D�h)) = SG(δ
λ�h LG), (7.24)

where (7.12) is inserted in the second equality. This identity can equivalently bewritten
as

SG(F
�h
G + δ�h LG) = SG(FG)�SG(δ�h LG) = SG(δ�h LG)�SG(FG) , (7.25)

the second equality follows from (7.8). This is the “off-shell” version of the relation
dynamics (4.3) in terms of the perturbative S-matrix (7.11). More precisely, reducing
the space of field configurations to the solutions of the Dirac equation,

V0
.= {h ∈ V | /Dh = 0}, (7.26)

we have DG( /D�h)|V0 = 0 and, hence, SG(δ�h LG)|V0 = 1; that is, restricting the
functionals in this way, the relation (7.16) takes the on-shell form of the relation
dynamics (4.3).

That the field equation (7.14) follows from the relation dynamics can easily be seen:
Applying d

idλ

∣∣
λ=0 to the relation dynamics in the form (7.24) and taking into account

the formula (7.22), we obtain the field equation.
Validity of the further defining relations for the algebra AG . The axiom causality for
the time-ordered product Tn,G implies that SG(FG) = TG(exp⊗(i FG)) satisfies the
causal factorization (4.2). The validity of the further defining relations for the algebra
AG is obvious, in particular SG(FG)∗ = SG ((FG)∗)�−1 is a further renormalization
condition for Tn,G , which can easily be satisfied. Summing up, the algebra

A
.=
∨

�
{SG(FG)

∣∣ FG ∈ (G ⊗ Floc)even} (7.27)
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(where
∨

� means the algebra, under the product �, generated by members of the
indicated set), fulfills all defining relations for AG .

This can also be shown for the algebra obtained by the algebraic adiabatic limit [5]
of the relative S-matrices

(SG)FG (HG)
.= SG(FG)�−1�SG(FG + HG) , FG, HG ∈ (G ⊗ Floc)even.

(7.28)

Again, the only non-trivial step is the verification of the relation dynamics—this can
be done in precisely the same way as in [6, Appendix].

8 Conclusions and outlook

In this paper, we have proposed a new description of theories with fermionic degrees
of freedom, which is compatible with the C∗-algebraic framework introduced by [6].
A key feature is the fact that only finite-dimensional Grassmann algebras are needed
in our construction, but the dependence on Grassmann parameters has to be functorial.
This is very much in line with the language of locally covariant quantum field theory
[9] and shows the power of this, slightly more abstract, category theory viewpoint.
The importance of the functorial formulation is also emphasized by [17, 19] in the
treatment of supersymmetric theories. A potential future direction of research would
be to apply our framework to some finite supersymmetric models, e.g., N = 4 SYM.

In our future investigations, we plan to apply this framework to study gauge fields
coupled to fermions,with the hope thatwewould be able to describe the chiral anomaly
in the framework of [6].We addressed the issue of anomalies, at present only for scalar
fields, in our paper [3]. Other possible applications include treatment of known exactly
solvablemodels including fermions, notably the Thirringmodel. In particular, we hope
to be able to use the framework established in this work, together with the results of
[8] to put the known duality between the sine Gordon model and the Thirring model
into the C∗-algebraic framework of AQFT.

Data Availability Data sharing is not applicable to this article as no new data were created or analyzed in
this study.
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Appendix A: Graded functionals

For completeness, we include here the result on characterization of local functionals
that depend on both fermionic and bosonic variables. Consider vector bundles E0 →
M and E1 → M , with their spaces of smooth sections E0

.= �(M, E0) and E1
.=

�(M, E1).
Let �′

p|q(Mp+q , E�p
0 � E1

�q) denote the appropriate completion of the space

�′(E0)
⊗s p ⊗ �′(E1)

∧q , understood as the space of distributional sections symmetric
in the first p and antisymmetric in the last q arguments.

Definition A.1 DefineOk(E0⊕E1[1]) as the subspace ofC∞(E0×∧kE1, C) consisting
of functionals that are totally antisymmetric and k-linear in the last k arguments. Let
O(E0 ⊕ E1[1]) .=∏∞

k=0 O
k(E0 ⊕ E1[1]).

Derivatives with respect to the bosonic variable φ0 are defined in the usual way and
derivatives with respect to the fermionic variable φ1 are given by Definition 2.1, with
φ0 fixed. In particular, for F ∈ Ok(E0 ⊕ E1[1])

δn F

δφn
0

(φ0) ∈ �′
n|k(Mn+k, E�n

0 � E�k
1 ) ∼= �′

n|0(Mn, E�n
0 )⊗̂�′

0|k(Mk, E�k
1 )

(A.1)

so can be seen as a distributionwith values inOk(E1[1]). For proof, see Theorem III.10
of [4] and Proposition 3.4 of [25]. Similarly, for n < k,

δn F

δφn
1

(φ0) ∈ �′
0|n(Mn, E�n

1 )⊗̂�′
0|k−n(M

k−n, E�k−n
1 ) , (A.2)

so it is identified with a distribution with values in Ok−n(E1[1]). Hence, in general,
δn F
δφn

i
(φ0), i = 0, 1 is a distributional section on Mn with values inO(E1[1]). The usual

rules for multiplication of distributions with given wave front sets apply in this case
as well. More details can be found in [24, 25]

Theorem A.2 Let U be an open subset of E0 and F ∈ Ok(U ⊕ E1[1]) be smooth in
the sense of Bastiani. Assume that

(1) F is additive.
(2) For every ϕ ∈ U, h ∈ ⊕k∈N E ⊗̂k−1

1 , the differentials δF
δφ0

(ϕ, h) and δF
δφ1

(ϕ, h)

of F have empty wave front sets and the maps (ϕ, h) �→ δF
δφ0

(ϕ, h), (ϕ, h) �→
δF
δφ1

(ϕ, h) are Bastiani smooth fromU×⊕k∈N E ⊗̂k
1 to�c(M, E∗

0 ) and�c(M, E∗
1 ),

respectively. Here, B∗
0 and B∗

1 denote dual bundles.

Then, for every ϕ ∈ U, there is a neighborhood V of the origin in E0, an integer N
and a smooth C-valued function α on the N-jet bundle such that

F(ϕ + ψ; h1 ⊗ · · · ⊗ hk) =
∫

M
α( j i0x (ψ), j i1x (h1), . . . , j

ik
x (hk)) , (A.3)

123



  101 Page 36 of 37 R. Brunetti et al.

where i0, . . . , ik < N, for all ψ ∈ V and h ∈⊕k∈N E ⊗̂k
1 .

Proof Let F ∈ Ok(E0 ⊕ E1[1]), k �= 0. The fundamental theorem of calculus implies
that

F(ϕ + ψ, h1 ⊗ · · · ⊗ hk) =
∫ 1

0
dt
∫

M

δF

δφ0(x)
(ϕ + tψ, h1 ⊗ · · · ⊗ hk)ψ(x)dx

+1

k

k∑

i=1

(−1)k−1
∫

M

δF

δφ1(x)
(ϕ, h1 ⊗ . . . ĥi · · · ⊗ hk)(x)hi (x)dx

=
∫ 1

0
dt
∫

M

δF

δφ0(x)
(ϕ + tψ, h1 ⊗ · · · ⊗ hk)ψ(x)dx

+
∫

M

δF

δφ1(x)
(ϕ; h2 ⊗ · · · ⊗ hk)h1(x)dx, (A.4)

as F(ϕ, 0) = 0 and F(ϕ, .) is totally antisymmetric. Denote h
.= h1 ⊗ · · · ⊗ hk . We

apply lemma VI.13 of [4] to the first term and conclude that for all ϕ ∈ U and all
ψ ∈ V such that the segment ϕ + tψ ⊂ U for 0 ≤ t ≤ 1,

F(ϕ + ψ, h) =
∫

M
c0,ψ,h(x)dx +

∫

M
c1,ψ,h(x)dx , (A.5)

where

c0,ψ,h(x) =
∫ 1

0

δF

δϕ0(x)
(ϕ + tψ; h)ψ(x)dt (A.6)

and

c1,ψ,h(x) = δF

δϕ1(x)
(ϕ; h2 ⊗ · · · ⊗ hk)h1(x) . (A.7)

Now, we apply proposition VI.14 of [4] and conclude that the functions c0,ψ,h and
c1,ψ,h depend only on finite jets of ψ and h1, . . . , hk . Finally, we use Lemma VI.15
to conclude that the resulting function on the jet bundle is smooth. This concludes the
proof. ��
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