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Motivated by the challenge of incorporating data into misspecified and
multiscale dynamical models, we study a McKean–Vlasov equation that con-
tains the data stream as a common driving rough path. This setting allows us
to prove well-posedness as well as continuity with respect to the driver in an
appropriate rough-path topology. The latter property is key in our subsequent
development of a robust data assimilation methodology: We establish prop-
agation of chaos for the associated interacting particle system, which in turn
is suggestive of a numerical scheme that can be viewed as an extension of
the ensemble Kalman filter to a rough-path framework. Finally, we discuss
a data-driven method based on subsampling to construct suitable rough path
lifts and demonstrate the robustness of our scheme in a number of numerical
experiments related to parameter estimation problems in multiscale contexts.
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1. Introduction. Combining mathematical descriptions of reality with observational
data is a key task in economics, science and engineering. In typical applications (such as me-
teorology [67] or molecular dynamics [79]) there is a hierarchy of models available, ranging
from the highly accurate but conceptually and computationally demanding to the approximate
but readily interpretable and scalable. Naturally, real-world data is almost always complex,
multiscale, and increasingly high-dimensional, whereas the corresponding mathematical ab-
stractions are often preferred to be simple and of comparatively low resolution. The discrep-
ancy between intricate data and reduced-order models poses a significant challenge for their
simultaneous treatment, and the failure of some standard statistical approaches in scenarios
of this type is well documented [2, 96, 114].

Robustness to model misspecification and perturbation of the data. is a central concept
in the design of statistical methodology capable of bridging scales: Consider a statistical
model M0—to be thought of as simple —generating (time-dependent) data (Y 0

t )t≥0 and a
corresponding algorithmic procedure � producing the output �((Y 0

t )t≥0). We expect that �

deals adequately with complex data in the case when it is continuous in an appropriate sense.
Indeed, M0 might be a simplified description of an underlying model family (Mε)ε≥0, where
the formal limit limε→0 Mε = M0 encapsulates the passage from a complex to a reduced
description. The output �((Y ε

t )t≥0) on “real-world” data (Y ε
t )t≥0 is then close to �((Y 0

t )t≥0)

by continuity even though � has been contructed on the basis of M0.
Unfortunately, in various contexts (for instance, in parameter estimation for diffusions

[40] and stochastic filtering [10]) the map � is given in terms of stochastic integrals against
(Y 0

t )t≥0 which are well known to be discontinuous with respect to standard topologies [53,
55]. The theory of rough paths provides a principled route towards constructing continuous
modifications �′ of � (employed, for instance, in [29, 40]) by replacing stochastic integrals
in terms of rough integrals defined on appropriately lifted paths (Y,Y). Although the diffi-
culty of obtaining or imposing the additional information Y is well known (see, however, [9,
49, 80] and Section 6 of this article), recent works have demonstrated the potential of includ-
ing path signatures into data-driven methods to compress information efficiently or unveil
multiscale structure [20, 85]. Moreover, the rough path perspective provides refined insights
into misspecification of diffusion models: Indeed, two paths may be “similar in a classical
sense” (for instance, in supremum norm) in spite of their associated lifts exhibiting a large
rough path distance, in turn leading to inaccurate inferences. In Section 6 we discuss how
those discrepancies can be compensated in a systematic and data-driven manner.

In this paper, we follow the rough path paradigm just described and develop a robust
version of the ensemble Kalman filter (EnKF) [15, 48], drawing on a reformulation of the
Kushner–Stratonovich SPDE for stochastic filtering [10] in terms of McKean–Vlasov dy-
namics (known as the feedback particle filter [92, 105, 109]). The EnKF is a versatile ap-
proximate procedure for Bayesian inference that is observed to perform particularly well in
high-dimensional settings [101] and has recently been applied to problems in machine learn-
ing [59, 98]. Our analysis includes the case when the model and observation noises are corre-
lated as this is precisely the setting in which significant obstacles in the construction of robust
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filters are known to occur [29]. Furthermore, as shown in [88] and recalled in Appendix B,
stochastic filtering with correlated noise is a natural generalisation of maximum likelihood
parameter estimation for diffusions in the context of inexact measurements. In this setting,
we discuss the relationship between subsampling-based approaches to multiscale parameter
estimation [96] to the task of estimating the Lévy area in a rough paths approach.

The construction put forward in this paper requires the formulation of McKean–Vlasov
equations in a rough path setting (as studied first in [18] and more recently in the twin papers
[7, 8], both considering the dynamics to be driven by a random rough path). The approach
introduced in [26] is more suitable for our needs as it allows a clear separation between
independent Brownian motions and a common deterministic noise. However, the assumptions
in [26] do not cover unbounded coefficients, while the common noise coefficient may depend
on both the state of the solution and its law. In equation (11) considered below, the coefficient
P only depends on the law of X̂, which simplifies the problem to some extent, but also allows
us to use a different approach, where we treat the stochastic and the rough integrals in two
separated steps. As will become clear from the proofs in Section 4.4, there is no need to
create a joint rough path (or rough driver). All previous works on rough McKean–Vlasov
equations deal with bounded globally Lipschitz-continuous (actually smoother) coefficients.
These results cannot be applied here, as the coefficient P has linear growth in the measure
of the solution and is locally-Lipschitz with Lipschitz constant depending on the moments of
the solution.

1.1. Setting and main results. In this section we specify the exact setting and present
our main results. Throughout the paper we fix a filtered probability space (�,F, (Ft )t≥0,P)

satisfying the usual conditions and consider the following filtering model:

dXt = f (Xt)dt + G1/2 dWt, X0 ∼ π0,(1a)

dYt = h(Xt)dt + U dWt + R1/2 dVt , Y0 = 0.(1b)

In the above display, (1a) represents the (hidden) signal, whereas (1b) specifies the available
observations. Note straight away that the signal noise G1/2 dWt and the observation noise
U dWt + R1/2 dVt may be correlated. We assume that the signal is D-dimensional, that is,
Xt ∈ R

D , and that the observations are d-dimensional, Yt ∈ R
d . In applications it is often

the case that D � d . The maps f : RD → R
D and h : RD → R

d are assumed to be suffi-
ciently regular (see below). We assume G ∈ R

D×D , R ∈ R
d×d to be symmetric nonnegative

definite and U ∈R
d×D . Furthermore, (Wt)t≥0 and (Vt )t≥0 denote independent D- and d- di-

mensional standard Brownian motions, respectively. Lastly, we assume that the observation
covariance

(2) C = UU� + R ∈ R
d×d

is strictly positive definite. Defining the observation σ -algebras

(3) Yt = σ
{
(Ys)0≤s≤t

}∨N , t ≥ 0,

where N ⊂ F is the collection of P-null sets, our objective is to compute or approximate the
filtering measures

(4) πt [φ] = E
[
φ(Xt)|Yt

]
,

for bounded and measurable test functions φ; we refer to [10] for technical details.
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As a step towards tractable numerical approximations of (4), we follow [88] and introduce
the McKean–Vlasov equation

(5)

{
dX̂t = f (X̂t )dt + G1/2 dŴt + Kt(X̂t )C

−1 ◦ dIt + �t(X̂t )dt,

dIt = dYt − (h(X̂t )dt + U dŴt + R1/2 dV̂t

)
,

where (Ŵt )t≥0 (resp. (V̂t )t≥0) is a given D-dimensional (resp. d-dimensional) Brownian
motion, both independent from (Wt)t≥0 and (Vt )t≥0. Denoting by π̂ := L(X̂ | Y) the con-
ditional law with respect to the common noise Y of solutions X̂ to (5), the coefficients
Kt : RD → R

D×d and �t : RD → R
D are required to solve the following partial differen-

tial equations:

(6) div
(
π̂t (Kt − BC)

)= −π̂t

(
h − π̂t [h]),

and

(7) div(π̂t�t ) = 1

2
π̂t

(
Trace

(
KtC

−1Dh
)− π̂t

[
Trace

(
KtC

−1Dh
)])

,

for t ≥ 0 and P-almost surely, where B = G1/2U�C−1. Here div stands for the divergence
operator and Dh is the Jacobian matrix of the function h. Moreover, the common noise Y

coincides with the observation process (1b) and the integral in ◦dY is understood in the sense
of Stratonovich. We would like to remark that in related works the Stratonovich correction is
applied to the spatial component of (t, x) → Kt(x) only, see [99], Remark 4.4, and [92], Sec-
tion 3, for a discussion. Here, Stratonvich integration is understood in the more usual sense
with the semimartingale t → Kt(X̂t ) as the integrand (i.e., the Stratonovich interpretation is
employed in both t and x, in the terminology of [92]).

The construction of the system (5)–(7) as well as existence of solutions will be detailed
in Section 2.4. The filtering problem and the McKean–Vlasov equation (5) are related in the
following way.

PROPOSITION (Formal, see Proposition 2.1). If πt admits a density and the solution to
(5) is unique, then πt = π̂t , P-a.s. for every t ≥ 0.

Reformulations of the filtering problem in terms of McKean–Vlasov dynamics similar
to (5)–(7) have been introduced in [31, 109], further analysed in [92], and are commonly
referred to as feedback particle filters; the formulation (5)–(7) combines Stratonovich inte-
gration (as in [92]) with a stochastic innovation term dIt (as in [99], Section 4.2) so as to
allow for a transition to geometric rough paths in the setting of correlated noises (as in [88]).

One of the practical challenges posed by the system of equations (5)–(7) is solving the
PDEs (6) and (7) in K and � for a given measure π̂ . As has been shown in [105] for a similar
system of equations, replacing K and � by their best constant-in-space approximations in
least-square sense recovers a version of the ensemble Kalman filter dynamics [15]. We follow
this approach (see Lemma 2.2 below) and replace the coefficient KtC

−1 by P : P1(R
D) →

R
D×d , explicitly defined as

(8) P(π) := Covπ(x,h)C−1 + B := π
[
x
(
h − π [h])�]C−1 + B, π ∈ P1

(
R

D),
where, for ρ ≥ 1, Pρ(RD) refers to the set of probability measures on R

D with finite ρth
moment. Similarly, we replace � by 
 : P1(R

D) →R
D , defined as

(9) 
γ (π) = −1

2
Trace

(
P(π)π

[
xγ (Dh − π [Dh])]), 1 ≤ γ ≤ D,π ∈ P1

(
R

D),
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which can be interpreted as an Itô–Stratonovich correction term.1 Thus, we obtain the system

(10)

{
dX̂t = f (X̂t )dt + G1/2 dŴt + P(π̂t ) ◦ dIt + 
(π̂t )dt,

dIt = dYt − (h(X̂t )dt + U dŴt + R1/2 dV̂t

)
,

where π̂t = L(X̂t |Yt ). This equation is well posed according to Lemma 4.18 below.2

In order to construct a robust filter, we replace the common noise in equation (10) by a
deterministic rough path Y ∈ C α([0, T ];Rd) with regularity 1

3 < α ≤ 1
2 . As explained in the

Introduction, the rationale is that the solutions to rough differential equations are expected to
be continuous in the rough path driver (see [53]), in contrast to the Itô solution map associated
to stochastic differential equations. Moreover, using a deterministic path is natural since we
are conditioning on the observation, that we can assume to be given and deterministic.

Applying the modifications from the preceding two paragraphs to equation (5) we obtain
the system

(11)

{
dX̂t = f (X̂t )dt + G1/2 dŴt + P(π̂t )dIt + 
(π̂t )dt,

dIt = dYt − (h(X̂t )dt + U dŴt + R1/2 dV̂t

)
.

It might appear that there is inconsistency between the Itô formulation in equation (11) and
the Stratonovich formulation in equation (10). However, one should notice that the Itô and
Stratonovich formulation of the integrals with respect to Ŵ and V̂ in equation (10) coincide
because the integrand is a semimartingale independent of the integrator. Moreover, the inte-
gral dY in equation (11) is a general rough path integral that corresponds to different stochas-
tic integrals depending on the chosen lift for Y . In particular the case when the Stratonovich
lift is chosen corresponds to the integral ◦dY in equation (10). From Lemma 4.13 below, the
path P(π̂·) is controlled by Y with Gubinelli derivative ([53], Definition 4.6),

(12) P(π̂s)
′ = P(π̂s)

�π̂s

[(
x − π [x])Dh�]C−1 = P(π̂s)

�Covπ̂ (x,Dh)C−1,

so that the rough integral in equation (11) will make sense (see Section 3.3 below for an
overview on controlled rough paths). Moreover, when Y is a semimartingale with covariance
Cov(Yt , Ys) = C(t − s), for s ≤ t , the correction between the Stratonovich and Itô rough path
lift is given by −1

2 Trace(P (π̂t )
′C)dt , which corresponds to 
(π̂)dt , see Appendix C.

Our main result is the following well-posedness and stability theorem for (11).

THEOREM 1.1. Let 1/3 < α < 1/2 and X̂0 ∈ Lρ(�,RD) with ρ > 2/(1 − 2α). As-
sume h ∈ C2

b(RD,Rd) and that f : RD → R
D is bounded and Lipschitz-continuous. Then

equation (11) admits a unique solution. Moreover, the map C α([0, T ];Rd) � Y → π̂ ∈
Pρ(C([0, T ];RD)) is continuous. Moreover, if Y is the Stratonovich lift of Y in (10), then
the solutions to (10) and (11) coincide, P-almost surely.

The proof is a consequence of the results in Section 4.4 and can be found at the end of that
section. Associated to the McKean–Vlasov equation (11) we also study the following system
of mean-field interacting particles:

dX̂i
t = f

(
X̂i

t

)
dt + G1/2 dŴ i

t + P
(
μN

t

)
dI i

t + 

(
μN

t

)
dt,(13a)

dI i
t = dYt − (h(X̂i

t

)
dt + U dŴ i

t + R1/2 dV̂ i
t

)
,(13b)

1Indeed, the system (10) can be recognised as the Stratonovich version of the EnKF, see Appendix C.
2In this paper, we assume h to be bounded, circumventing difficulties with the non-Lipschitzness of P in the

case when h is unbounded. For results addressing this challenge (although in slightly different settings), we refer
the reader to [36, 37, 75, 76].
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where μN
t := 1

N

∑N
i=1 δXi

t
is the empirical measure of the system and Y ∈ C α([0, T ];Rd) is

the canonical lift of a differentiable and bounded path Y : [0, T ] → R
d with bounded càdlàg

derivative. Notice that in the particle system the semimartingale decomposition of P(μN
t ) is

not independent of (Ŵ i, V̂ i), so that the Stratonovich and Itô versions of (13) do not coincide.
However, the empirical measure μN

t will be asymptotically independent of (Ŵ , V̂ ).
Indeed, we have the following well-posedness and convergence result for the interacting

particles.

THEOREM (see Remark 5.2 and Theorem 5.8). Under the same assumptions as Theo-
rem 1.1, let (Yδ)δ>0 be a family of lifts of bounded differentiable paths with càdlàg deriva-
tives that approximate Y in the rough-path metric. Let μδ,N be the empirical measure of (13)

driven by Yδ . Then there exists a sequence δN such that, for every t ∈ [0, T ], μ
N,δN
t

N→∞→ π̂t ,
in ρ-Wasserstein distance in L1.

For results concerning similar mean-field limits in the classical setting we refer to [42, 43,
77]. The preceding two theorems suggest that numerical methods based on the interacting
particle system (13) are robust to perturbations in the data, and hence suitable for applications
in multiscale contexts as described in the Introduction. Inspired by Davie’s work [32], we
propose the following recursive numerical scheme:

Xi
k+1 = Xi

k + f
(
Xi

k

)
�t + G1/2

√
�tξ i

k

+ P̂k

(
�Yk − (

h
(
Xi

k

)
�t + U

√
�tξ i

k + R1/2
√

�tηi
k

))
+ Ĉov(x,Dh)P̂k�Yk + 
̂k�t,

(14a)

in the following referred to as the rough-path ensemble Kalman filter (RP-EnKF). Here,
�t > 0 is the step size, and (ξ i

n) and (ηi
n) denote independent zero mean Gaussian random

variables of dimensions D and d , respectively. The precise form of the estimator versions
P̂k , Ĉov and 
̂k will be detailed in Section 6. Finally, the first term in (14a) is built after the
Gubinelli derivative from (12), with its precise meaning given by

(15)
(
Ĉovk(x,Dh)P̂k�Yk

)
γ =

d∑
j,q=1

D∑
r=1

Ĉovk(x,Dh)γ,j,r (P̂k)r,q(�Yk)q,j γ = 1, . . . ,D.

Crucially, the scheme (14) takes the lifted component �Yk (representing iterated integrals
of the path (Yt )t≥0) as an input. This dependence allows our methodology to appropriately
take into account multiscale structure and other information encoded in the signature (such
as discrepancies due to model misspecification), but also necessitates appropriate ways to
estimate Yk from data. We will discuss this in more depth in Sections 2.3 and 6, but note here
that it is natural to decompose �Yk into its symmetric and skew-symmetric part

(16) �Yk = �Y
sym
k + �Y

skew
k .

The form of the symmetric part �Y
sym
k is suggested by the requirement that the lifted path

is geometric. Indeed, geometric rough paths are also weakly geometric, which by definition
satisfy

(17) �Y
sym
k = 1

2
(yk+1 − yk) ⊗ (yk+1 − yk);

in particular this expression can readily be computed from discrete-time observations yk . The
difficulty thus resides in estimating the Lévy area contributions (or corrections) �Y

skew
k . We
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suggest a subsampling-based method, establishing connections to multiscale parameter es-
timation as investigated in [96]; see Section 2.3. Other approaches towards obtaining �Yk

have been developed in [9, 49, 80]. We would like to stress that although estimating �Y
skew
k

works reasonably well in our experiments (see Sections 6.2 and 6.3), in many applications it
might yield satisfactory results to neglect the skew-symmetric part, that is, to use the approxi-
mation �Yk≈�Y

sym
k , either because the observation path is one-dimensional, or because the

Lévy area term is comparatively small (see Section 6.4). In these cases, the RP-EnKF can be
implemented straightforwardly without additional estimation steps, and represents a robust
Stratonovich-version of the EnKF (see Appendix C).

Itô, Stratonovich and rough integrals. Before concluding this introduction, let us comment
on the difference between the RP-EnKF scheme (14) and the more conventional EnKF up-
dates

(18)
Xi

k+1 = Xi
k + f

(
Xi

k

)
�t + G1/2

√
�tξ i

k

+ P̂k

(
�Yk − (

h
(
Xi

k

)
�t + U

√
�tξ i

k + R1/2
√

�tηi
k

))
,

see [15, 48, 101]. Clearly, (14) and (18) coincide up to the terms in (14a). This difference can
be attributed to alternative (but equivalent) perspectives on the underlying continuous-time
dynamics, and hence we expect the terms in (14a) to cancel each other in the limit as �t →
0, when �Yk is obtained at discrete time-points from (1b) and �Yk are the increments of
the Stratonovich lift corresponding to piecewise linear approximation (that can be computed
according to (17) and setting �Y

skew
k = 0). Indeed, (18) corresponds to the Euler–Maruyama

discretisation of the McKean–Vlasov SDE

(19) dX̂t = f (X̂t )dt + G1/2 dWt + P(π̂t )
(
dYt − (h(X̂t )dt + U dŴt + R1/2 dV̂t

))
,

understood in the sense of Itô. In contrast, the term 
̂k�t in (14a) can be seen as an Itô–
Stratonovich correction to (19), see Appendix C, while the first term in (14a) arises from a
Milstein-type approximation scheme for Stratonovich SDEs [68], Section 10.3, (or as part of
the discrete approximation of rough integrals according to Davie [32]). The equivalence of
the classical and the rough path version, that is, of (10) and (11), is stated in Lemma 4.18.

The distinction between (14) and (18) becomes important when the data �Yk and �Yk is
described by (1) only in an approximate sense and hence robustness becomes a key issue. Im-
portantly, the passage to rough integrals is indispensable for the continuity statements in The-
orem 1.1 and the numerical robustness of the RP-EnKF scheme demonstrated in Section 6.
The Stratonovich picture is natural in view of the Wong–Zakai theorem [54], Section 9.2, and
determines the symmetric part in (16) as Y can then be interpreted as a geometric rough path
(see (17) and Section 6). Our approach of replacing Itô by Stratonovich and subsequently
rough integrals mirrors the construction in [40] in the context of maximum likelihood param-
eter estimation for diffusions.

Our contributions and structure of the paper. Our main contributions are as follows:

• Based on the prior works [88, 92, 99], we derive the McKean–Vlasov system (5)–(7),
incorporating a stochastic innovation term as well as correlated model and observation
noise. Crucially, the dynamics (5)–(7) is given entirely in terms of Stratonovich integrals
that allow the construction of robust filtering schemes built on geometric rough paths.

• We prove well-posedness of the rough McKean–Vlasov dynamics (11) as well as continu-
ity in the rough driver Y (see Theorem 1.1).

• We show well-posedness as well as propagation of chaos of the interacting particle approx-
imation (13).
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• We suggest the RP-EnKF scheme (14) and in particular devise a subsampling based
method to estimate the lift components Yk from data (as corrections in a model misspec-
ification scenario). The robustness of the RP-EnKF (and the nonrobustness of the EnKF)
is demonstrated using numerical examples in the context of combined state-parameter es-
timation.

In Section 2 we review the most relevant results in filtering theory, we motivate the use of
the McKean–Vlasov equation and explain the concept of a robust filter. In Section 3 we intro-
duce common notation and recall some background on rough paths. In Section 4.4 we present
the analysis of the rough McKean–Vlasov equation (11), which includes well-posedness and
stability. In Section 5 we treat the interacting particle system (13) and prove well-posedness
and propagation of chaos. In Section 6 we detail the construction of the numerical scheme,
including a presentation of our subsampling approach towards estimating the Lévy area. Fi-
nally, we conclude the paper with some numerical experiments.

2. Background in filtering, robust representations and McKean–Vlasov dynamics.
In this section we discuss essential background on robust filtering and put our work into
perspective. Section 2.1 will summarise existing approaches towards solving the filtering
problem posed by (4), both from a theoretical as well as from an algorithmic perspective. In
Section 2.2 we review the challenges to these methods posed by perturbations in the observed
data (Ys)0≤s≤t , leading to the concept of robustness. In Section 2.3 we draw connections of
the McKean–Vlasov approach considered in this paper to maximum likelihood based tech-
niques for stochastic differential equations, in particular to the methods developed in [40].
Finally in Section 2.4 we make our McKean–Vlasov formulation as well as the ensemble
Kalman approximation precise.

2.1. Solutions to the filtering problem and algorithms. It is well known that the mea-
sure πt defined in (4) is a measurable function of the observation path (Ys)0≤s≤t and can be
obtained as a solution to the Kushner–Stratonovich SPDE [10], Section 3.6,

(20)
πt [φ] = π0[φ] +

∫ t

0
πs[Lφ]ds

+
∫ t

0

(
πs

[
φh�]− πs

[
h�]πs[φ] + πs

[
(B∇φ)�

])(
C−1 dYs − πs[h]ds

)
,

where

(21) Lφ = 1

2
Trace

(
GD2φ

)+ f · ∇φ

denotes the infinitesimal generator associated to the signal process (1a). The term including
∇φ in (20) accounts for the correlation between the noises in (1a) and (1b). We refer the
reader to the proof of Proposition A.1 in Appendix A for a detailed explanation based on
[10].

From the computational viewpoint, numerically solving (20) directly (for instance, using
grid-based methods) is usually infeasible, especially when the dimension D is large (see [10],
Section 8.5, for a discussion). Many algorithmic approaches therefore rely on the simulation
of carefully constructed interacting particle systems, positing the corresponding (possibly
weighted) empirical measures 1

N

∑N
i=1 δXi

t
as approximations for πt .

Sequential Monte Carlo methods rely on Bayes’ theorem in order to approximate the con-
ditional expectations (4). More precisely, defining the likelihood

(22) lt = exp
(∫ t

0
h(Xs) · C−1 dYs − 1

2

∫ t

0
h(Xs) · C−1h(Xs)ds

)
,
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the filtering measures admit the representation

(23) πt [φ] = E[φ(Xt)lt |Yt ]
E[lt |Yt ] ,

according to the Kallianpur–Striebel formula [10], Proposition 3.16. Consequently, approxi-
mations of πt can be obtained by sampling from the signal dynamics (1a) in conjunction with
appropriate weighting and/or resampling steps on the basis of (22). For detailed accounts, we
refer the reader to [38, 45, 101]. While sequential Monte Carlo methods reproduce the filter-
ing measures exactly in the large-particle limit (see, for instance, [10], Theorem 9.15), their
finite-particle versions become unstable due to weight collapse (resulting in low effective
sample sizes) as the discrepancy between the unconditional and the conditional path space
measures increases. This problem typically becomes more pronounced in situations where
the signal dynamics is transient, or when the state space dimension of the signal is high.

Ensemble Kalman filters (EnKFs) [101], Section 7.1, can be formulated in terms of inter-
acting or mean-field (McKean–Vlasov) diffusions. In the case when U = 0 (i.e., when the
signal and observation noises are uncorrelated [102], Section 7.1, [14]) the basic EnKF due
to Evensen [16, 47, 48] is given by

(24) dX̂t = f (X̂t )dt + G1/2 dŴt + P(πt )C
−1(dYt − (

h(X̂t )dt + R1/2 dV̂t

))
,

with

(25) P(π) = Covπ(x,h),

or a standard particle approximation thereof. The system (24)–(25) is motivated by the fact
that the corresponding law reproduces πt exactly in the linear Gaussian case: If π0 is Gaus-
sian, f (x) = Fx and h(x) = Hx for appropriate matrices H ∈ R

d×D and F ∈ R
D×D , then

πt remains Gaussian for all t ≥ 0, and Law(X̂t ) = πt . In cases where the preceding con-
ditions are not satisfied, the system (24)–(25) becomes an approximation, the accuracy of
which is far from well understood theoretically. However, the ensemble Kalman approach
has empirically proven to be both fairly reliable in nonlinear settings as well as scalable to
high-dimensional scenarios, and therefore nowadays constitutes one of the workhorses in
practical data assimilation tasks [101]. We refer to [15] for a recent review of its theoretical
properties.

The more recently proposed feedback particle filters [31, 105, 109] rely on carefully de-
signed McKean–Vlasov diffusions of the type (24) such that the associated (conditional,
nonlinear) Fokker–Planck equation coincides with the Kushner–Stratonovich SPDE (20). By
construction, such models are exact, and the conditional laws induced by the solutions to
feedback particle filter dynamics provide the filtering measures (4). As an illustration,

(26)
dX̂t = f (X̂t )dt + G1/2 dŴt + K(X̂t ,πt )C

−1(dYt − (
h(X̂t )dt + R1/2 dV̂t

))
+ �(X̂t ,πt )dt,

was suggested in [99] and extended in [88], where K(·, π) = ∇φ(·, π) is determined from
the elliptic PDE

(27) div(π∇φ) = −π
(
h − π [h]),

and � is an appropriate correction term (see Section 2.4 for an in-depth discussion). Clearly,
the systems (24)–(25) and (26)–(27) are strongly related in spirit, combining a replication
of the signal dynamics (1a) with a data-dependent nudging term so as to match the observa-
tions. Reiterating the discussion so far, solutions to (26)–(27) provide exact solutions to the
filtering problem (4), while solutions to (24)–(25) lead to approximate ones (except in the
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linear Gaussian case). However, as P is given explicitly in (25), the system (24)–(25) lends
itself straightforwardly to efficient numerical integration, while the system (26)–(27) poses
a formidable numerical challenge in the form of the high-dimensional PDE (27). What is
more, well-posedness of systems of the type (26)–(27), with coefficients that depend on the
law through the solution of a PDE is currently not well understood. Nevertheless, McKean–
Vlasov formulations of the type (26)–(27) conveniently link between the theoretically opti-
mal Kushner–Stratonovich SPDE (20) and the numerically tractable and practically relevant
ensemble Kalman dynamics (24)–(25). In this paper, we leverage this viewpoint in order to
construct a robust version of (18).

2.2. Robust filtering. In order to model and solve real-life problems it is highly desirable
that the conditional law πt (or any numerical approximation thereof) depends continuously
on the observation path (Ys)0≤s≤t : This property would ensure robustness against misspecifi-
cation of the underlying signal and observation dynamics (as is typical in reduced-order mod-
eling) as well as against anomalies or artefacts in the collection of the data (such as discreti-
sation errors or perturbation by noise), see [10], Chapter 5, for an overview, and Section 2.3
below. Unfortunately, however, the φ-dependent measurable map (Ys(·))s∈[0,t] → πt [φ] pro-
vided by (4) can be shown to be neither unique nor continuous [29] in standard topolo-
gies. At a fundamental level, this problem is due to the appearance of stochastic integrals
against (Ys)0≤s≤t in (20) and (22) which are well known to induce classically discontinu-
ous maps (for instance, in the supremum norm), see [53, 55]. In order to address this issue
and to obtain a continuous3 version of the process (πt )t≥0, Clarke suggested using (stochas-
tic) integration by parts in (22) in order to eliminate the dY -dependence [21]. Notably, this
approach is restricted to the case when the signal and observation noises are independent
(i.e., U = 0), see [21, 22, 73], or the case when the observation is one-dimensional (i.e.,
Yt ∈ R), see [33–35]. Addressing the situation of multidimensional correlated observations,
the authors of [29] showed by means of a counter-example (see [29], Example 1) that con-
tinuity as a function of (Ys)0≤s≤t is impossible to achieve. Instead, they use rough path lifts
C([0, T ];Rd) � (Ys)0≤s≤T → (Ys)0≤s≤T ∈ C α([0, T ];Rd) and establish continuity when
πt is considered as a function of the augmented observation path. Similar ideas have been
pursued in [60], Theorem 5.3, putting forward the notion of “good” approximations of the
observation path. As the aforementioned works are concerned with the likelihood (22), these
lay the foundations for the development of robust sequential Monte Carlo methods as re-
viewed in Section 2.1, and the recent preprint [30] explores that direction. We would also
like to mention the works [41, 62] that allow treating the Zakai SPDE (governing the unnor-
malised filtering distribution [10], Section 3.5) in a rough paths framework, however noticing
that the numerical treatment of SPDEs is faced with enormous challenges, in particular in
high-dimensional settings. Some other works addressing issues in robust or multiscale filter-
ing include [3, 4] (assuming uncertainty in the coefficients) as well as a sequence of works
by N. Perkowski and coworkers in the context of averaging and homogenisation. The lat-
ter started with the theoretical set-up in [64, 65] and its extension to correlated noises [12,
13] as well as to multiple time scales [12]. In subsequent developments, the incorporation of
ideas from importance sampling and control [81, 82] proved advantageous in applications to
increasingly complex dynamical systems such as the Lorenz-96 model [110, 111].

In this paper, we instead construct a robust version of the ensemble Kalman filter (24)–
(25) on the basis of its connections to feedback particle formulations as in (26)–(27). Before
describing our strategy, we review related work on maximum likelihood parameter estimation
for stochastic differential equations.

3As pointed out in [29], the continuity requirement restores the uniqueness of the map (Ys(·))s∈[0,t] → πt [φ].
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2.3. Parameter estimation and filtering in multiscale systems. In this section we present
a prototypical example that illustrates some of the challenges in robust filtering as well as the
scope of the methods developed in this paper, following [88]. Consider the SDE

(28) dZt = F(Zt , θ)dt + dWt,

where Zt ∈ R
d , and F : Rd × � → R

d is a parameterised drift vector field, with parameter
set � ⊂ R

p . The objective is to find the true parameter θ∗ ∈ � from a noisy realisation of
(Zt )t≥0, that is, we assume that the observation process is given by

(29) dYt = dZt + R1/2 dVt .

As before, R ∈ R
d×d denotes the observation noise covariance, and (Vt )t≥0 stands for a

standard d-dimensional Brownian motion. The problem setting (28)–(29) can be brought into
the form (1) by elevating θ to a time-dependent variable, that is, by setting Xt = (Zt , θt ) ∈
R

d+p , hence viewing (28)–(29) as a combined state-parameter estimation problem, see [88].
Accordingly, f :Rd+p →R

d+p and h :Rd+p →R
d are then given as f (z, θ) = (F (z, θ),0)

and h(z, θ) = F(z, θ), and the matrices G ∈ R
(d+p)×(d+p) and U ∈ R

d×(d+p) take the form

(30) G =
(

Id×d 0d×p

0p×d 0p×p

)
, U = (

Id×d 0p×p

)
.

Finally, the filtering formulation is completed by specifying a prior distribution on the ini-
tial condition (Z0, θ0). The resulting filtering measures πt ∈ P(Rd+p) encode the Bayesian
posterior on the combined variable (Zt , θt ). Consequently, the means of the θ -marginals pro-
vide a posteriori estimates on the parameter of interest while the variances can be used for
Bayesian uncertainty quantification.

In the particular case when the path (Zt )t≥0 is observed without contamination by noise,
that is, R = 0, and F is linear4 in θ , that is, F(z, θ) = θf (z) with f satisfying appropriate
nondegeneracy conditions [40], the parameter θ ∈ � can be recovered from the maximum
likelihood estimator

(31) θ∗
T (Z) =

∫�
0 f (Zt)dZt∫�
0 |f (Zt)|2 dt

in the limit when T → ∞, see [74, 83]. Furthermore, in this case the McKean–Vlasov dy-
namics suggested in this paper can be solved explicitly, and the corresponding means are
directly related to (31), see Appendix B and [88]. It is well known that the estimator (31)
can be inaccurate when evaluated on paths that only approximately satisfy (28), for instance
when (28) represents a reduced description of underlying multiscale dynamics [2, 96, 114].
A common approach towards addressing this problem is to subsample [96] or smooth out [1]
the data, see [91, 95] for methodological aspects and [56, 57] for similar ideas in a slightly
different context (here the dynamics (28) is replaced by an ODE due to a particular scaling of
the multiscale system). For specific applications see [87] (multiscale inverse problems), [2,
90, 114] (economics and finance), and [27, 112] (ocean and atmospheric science). We men-
tion in passing that regression-type schemes for parameter estimation in multiscale systems
have been developed in [66, 69, 70].

A different approach towards robustness of the estimator (31) has been taken in [40], ad-
dressing the discontinuity of the Itô integral

∫�
0 f (Zt)dZt . To resolve this issue, the au-

thors suggest replacing Itô by Stratonovich integration (motivated by the Wong–Zakai the-
orem [53], Theorem 9.3, and entailing a correction term involving Df ), and subsequently

4For simplicity of the presentation, we also assume here that θ is one-dimensional, that is, � ⊂R.
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using rough path integration instead of Stratonovich integration (relying on a suitable lift
C([0, T ];Rd) � (Zs)0≤s≤T → (Zs)0≤s≤T ∈ C α([0, T ];Rd)). The resulting estimator

(32) θRP
T (Z) =

∫�
0 f (Zt)dZt − 1

2

∫�
0 Trace(Df )(Zt )dt∫�

0 |f (Zt)|2 dt

can then be shown to be continuous as a map from C α([0, T ];Rd) to R. The construction of
the RP-EnKF dynamics (14) follows a similar line of reasoning, but our approach is applica-
ble to situations where the path (Zt )t≥0 is contaminated by noise (R �= 0) and where F(z, θ)

is nonlinear in θ . The latter generalisation makes our method suitable to applications involv-
ing deep learning, that is, when the drift in (28) is parameterised by a neural network as in
[59]. We discuss the idea of subsampling the observed data path in the context of constructing
an appropriate rough path lift in Remark 6.4 below in Section 6.

2.4. From the filtering problem to the McKean–Vlasov equation. In this section, we dis-
cuss the construction of the McKean–Vlasov system (5)–(7) and the nature of the approxi-
mation in (10) and (11). The general idea goes back to [31, 109], and various modifications
have been proposed in [88, 92, 99]. Our formulation combines Stratonovich integration (as
in [92]) in order to later invoke Wong–Zakai type approximation results with a stochastic
innovation term (as in [88, 101]) as required for the case of correlated model and observation
noise. For the sake of clarity, we repeat the PDEs (6) and (7) in their respective index forms
(using Einstein’s summation convention),

(33) ∂i

(
π̂t

(
K

ij
t − (BC)ij

))= −π̂t

(
hj − π̂t

[
hj ]), j = 1, . . . , d,

and

(34) ∂i

(
π̂t�

i
t

)= 1

2
π̂
((

KtC
−1)ij ∂ih

j − π̂t

[(
KtC

−1)ij ∂ih
j ]).

The system (33)–(34) is analogous to the system (2.5)–(2.6) obtained in [92]; note, however,
that the form of dIt in (5) is different, and so the right-hand sides of (34) and (2.6) in [92]
do not coincide, even in the uncorrelated case (U = 0). The McKean–Vlasov system (5)–(7)
solves the filtering problem in the following sense.

PROPOSITION 2.1. Let T > 0, assume that the system (1) admits a unique solution
(Xt , Yt ) and that the Zakai equation associated to the corresponding filtering problem is
well posed. Let π be the conditional law of X given Y as defined in (4) and assume that πt

admits a C1-density with respect to the Lebesgue measure, P-a.s., for all t ∈ [0, T ]. More-
over, assume that the McKean–Vlasov equation (5) admits a unique solution (X̂t )t∈[0,T ] such
that its conditional law π̂t admits a C1-density with respect to the Lebesgue measure, P-a.s.
Assume that K and � are predictable stochastic processes with values in C1(RD;RD×d) and
C1(RD;RD), respectively, independent from (V̂t )t≥0 and (Ŵt )t≥0, and such that the PDEs
(6) and (7) are satisfied, P-a.s. Then πt = π̂t , for all t ∈ [0, T ].

To prove Proposition 2.1, we define the unnormalised conditional law associated to the
McKean–Vlasov dynamics (5),

(35) ρ̂t [φ] := E
[
φ(X̂t )lt |Yt

]
,

where the likelihood lt is defined in (22). Comparing the evolution of ρ̂t with the solution of
the Zakai equation [10], Section 3.5, allows us to derive the PDEs (6) and (7). This approach
allows us to circumvent the stringent regularity condition in [92], Assumption 3.4. For details
see Appendix A.
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One of the numerical challenges posed by the system of equations (5)–(7) is to obtain
(approximate) solutions K and � to the PDEs (6) and (7). We sidestep this problem by using
constant-in-space approximations leading to the system (10) of ensemble Kalman filter type.
A similar correspondence has been observed in [105] and is optimal in the following sense.

LEMMA 2.2. Let π ∈ P1(R
D) and K : RD → R

D×d be a (weak) solution to (6) such
that π [‖X‖2

F ] < ∞ where ‖ · ‖F denotes the Frobenius norm. Denote by K̃ the best constant
approximation in least-squares sense, that is,

(36) K̃ = arg min
K̃∈RD×d

∫
RD

∥∥K(x) − K̃
∥∥2
F dπ(x).

Then K̃ is given by

(37) K̃ =
∫
RD

x
(
h(x) − π [h])� dπ(x) + BC ∈ R

D×d .

Moreover, let � be a solution to (7) with K replaced by K̃ such that π [|�|2] < ∞. Then the
best constant approximation of � in least-squares sense (with respect to the Euclidean norm)
is given by

�̃γ = −1

2
Trace

(
K̃C−1π

[
xγ (Dh − π [Dh])]), 1 ≤ γ ≤ D.

The proof of this Lemma is postponed to Appendix A.
Constructing numerical approximations for (6)–(7) beyond the constant-in-space approx-

imation is a topic of ongoing research. We mention in particular the approach developed in
[106] and analysed in [93] based on diffusion maps as well as the methods based on the Stein
geometry [46, 89].

2.5. Literature on McKean–Vlasov dynamics. McKean–Vlasov equations are stochastic
differential equations whose coefficients depend on the law of the solution. They are some-
times called law-dependent equations. McKean–Vlasov equations have been the subject of
several studies starting from the seminal work of McKean [86] and Dobrushin [44]. McKean–
Vlasov equations arise as limits of mean-field interacting particle systems, when the number
of particles goes to infinity. For a general introduction on the topic we refer the reader to
Sznitman [104].

In recent years there has been an increased interest in mean-field particles with common
noise, see [24, 71, 72] or [17] in the case of mean-field games. In these types of systems the
particles are subject to the same random perturbation and possibly additional independent
noises. There is no averaging effect of the common perturbation when the number of particles
increases. The limit object is again a law-dependent SDE, but this time the coefficient depends
on the conditional law of the solution given the common noise. This is the case for equation
(11), where the coefficients P and 
 depend on the law of X given Y .

McKean–Vlasov equations from a rough path perspective were studied for the first time
in [18] and more recently in the twin papers [7, 8]. In both of these works the equation is
driven by a random rough path that is quite general and can describe the independent noise,
the common noise or both. This gives the additional difficulty of needing to keep track of the
rough path as an Lp-valued path. In [18] only the drift of the equation depends on the law
of the solution, the coefficients in front of the noise depend only on the state of the solution.
The more recent work [7] generalises that approach to include law-dependent coefficients.
The authors use the approach by Gubinelli on controlled rough paths (see Section 3.2 for a
brief introduction on the topic). In order to do this, they need Lions’ approach to calculus in
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measure spaces endowed with the Wasserstein metric. The equation is then solved as a fixed-
point in the mixed R

d and Lp-space. In [23] the case of pathwise McKean–Vlasov equation
with additive noise is considered. The basic techniques used are similar to the ones used in
the rough-path case, but the need for rough paths is removed thanks to the additive noise. See
also [107].

McKean–Vlasov equations with a rough common noise have been studied recently in [26].
This is the first time that a rough McKean–Vlasov equation is studied when there is a clear
separation between independent Brownian motions and a common deterministic noise. In
[26], the common noise coefficient depends on both the state of the solution and its law. In
equation (11), the coefficient P only depends on the law of X̂, which simplifies the problem to
some extent, but also allows us to use a different approach, where we treat the stochastic and
the rough integrals in two separated steps. As it will be clear from the proofs in Section 4.4,
there is no need to create a joint rough path (or rough driver). All previous works on rough
McKean–Vlasov equations deal with bounded coefficients, which cannot be applied here, as
the ceofficient P has linear growth in the measure of the solution.

Very recently the authors of [54] developed a theory of mixed rough and stochastic differ-
ential equations under Lipschitz and boundedness conditions on the coefficients and they plan
to address the application to McKean–Vlasov equations with common noise in a forthcoming
paper.

3. Preliminaries.

3.1. Notation. Given a metric space (S, dS), we call P(S) the space of probability
measures on S. For π ∈ P(S) we denote by π [x] = ∫

S xπ(dx) the mean of π and by
π [φ] = ∫

S φ(x)π(dx) the integral of a measurable function φ : S →R with respect to π .
Let ρ > 0, if S is a normed space with norm | · | and π ∈ P(S), we denote by

Mρ(π) =
∫
S
|x|ρπ(dx), M

ρ
(π) =

∫
S

∣∣x − π [x]∣∣ρπ(dx),

the ρ-moment of π and the ρ-central moment of π , respectively. For ρ ≥ 1, we call Pρ(S) ⊂
P(S) the space of probability measures π on S such that Mρ(π) < ∞. We endow this space
with the ρ-Wasserstein metric

W
ρ
ρ,S(μ, ν) := inf

m∈
(μ,ν)

∫∫
S×S

d
ρ
S (x, y)m(dx,dy),

where 
(μ, ν) is the set couplings between μ and ν. Given a function ϕ ∈ C(Rm,Rn) and a
path x ∈ C([0, T ];Rm), we define

[ϕ]k,x
s,t :=

∫ 1

0
(1 − θ)k−1ϕ(xs + θδxs,t )dθ,

where δxs,t := xt − xs . If ϕ ∈ C1(Rm,Rn), we use the following notation for the Taylor
expansion:

δϕ(x·)s,t = [Dϕ]1,x
s,t δxs,t , [ϕ]1,x

s,t − ϕ(xs) = [Dϕ]2,x
s,t δxs,t .

Throughout the paper we use Dϕ for the usual Fréchet derivative and we denote by ∇ϕ =
Dϕ� the gradient when the function ϕ is scalar. Whenever E is a Banach space, we de-
note by Lp(E) the usual Bochner–Lebesgue spaces. We sometimes use the notation L

ρ
ω :=

Lρ(�,Rd). For a stochastic process X on a filtered probability space (�,F, (Ft )t≥0,P), we
sometimes denote the conditional expectation by Es[Xt ] := E[Xt | Fs].
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3.2. Background in rough paths. The theory of rough paths is a framework that allows
well-posedness and stability properties for equations of the form

(38) Ẋt = ξ(Xt)Ẏt , X0 ∈R
d,

where Y is a path of regularity lower than the regularity assumptions amenable to classical
calculus. For α > 0, we denote by Cα

2 ([0, T ];Rd) the set of all continuous functions

g : {(s, t) ∈ [0, T ]2 : s < t
}→R

d

such that there exists a constant C with |gs,t | ≤ C|t − s|α and we denote by [g]α the infimum
over all such constants. We denote by ‖g‖α := [g]α + |g0| the α-Hölder norm. We write
Cα([0, T ];Rd) for the set of paths f : [0, T ] → R

d such that δf ∈ Cα
2 ([0, T ];Rd), where we

have defined δfs,t := ft − fs .
A rough path is a pair Y = (Y,Y) ∈ C α([0, T ];Rd) ⊂ Cα([0, T ];Rd) × C2α

2 ([0, T ];
R

d×d) such that

Ys,t −Ys,u −Yu,t = Ys,u ⊗ Yu,t .(39)

We equip C α([0, T ];Rd) with its subset topology which we shall call the rough path topol-
ogy. Relation (39), commonly referred to as Chen’s relation, encodes the algebraic property
between a path and its iterated integral, viz the formal equality

Ys,t =
∫ t

s
Ys,r ⊗ dYr .

When α ∈ (1
3 , 1

2 ] the above integral is in general not canonically defined using functional
analysis. However, in the case of Y being a sample path of the Brownian motion, B , one
can use probability theory to define iterated integrals using for example, Itô integration
or Stratonovich integration. We denote by B := (B,BItô) := (B,

∫
B ⊗ dB) and BStrat :=

(B,BStrat) := (B,
∫

B ⊗ ◦dB) these (random) rough paths, respectively. It is classical that

(40) B
Itô
s,t = B

Strat
s,t −1

2
(t − s)Id×d .

The Stratonovich rough path is an example of a geometric rough path, that is to say it is in
the closure in the rough path topology of the image of the mapping

Y →
(
Y,

∫
Y ⊗ dY

)
defined on BV ([0, T ];Rd).

Given two rough paths Y1,Y2 ∈ C α([0, T ];Rd) we define the following distance:

ρα

(
Y1,Y2) := ∥∥Y 1 − Y 2∥∥

α + ∥∥Y1 −Y
2∥∥

2α.

We refer the reader to [53] for a more comprehensive discussion of the rough paths notation
and concepts used in this paper.

3.3. Controlled rough paths and rough differential equations. To use rough paths for a
solution theory of equations of the form (38), which we rewrite with the formal expression

(41) dXt = ξ(Xt)dYt ,

we start with the ansatz that the solution X takes the form of a Taylor-like expansion

(42) δXs,t = X′
sδYs,t + X

�
s,t ,
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where X� is of higher regularity than X, and X′ is the so-called Gubinelli derivative. We
denote by D2α

Y ([0, T ];Rn) the set of all pairs (X,X′) such that X� implicitly defined via
(42) satisfies (X′,X�) ∈ Cα([0, T ];L(Rd;Rn)) × C2α

2 ([0, T ];Rn), which also induces the
topology on D2α

Y ([0, T ];Rn), through the norm∥∥(X,X′)∥∥
D2α

Y
:= ∥∥X′∥∥

α + ∥∥X�
∥∥

2α.

When (X,X′) ∈ D2α
Y ([0, T ];Rn) and (X̂, X̂′) ∈ D2α

Ŷ
([0, T ];Rn) we define

‖X, X̂‖
Y,Ŷ ,2α

:= ∥∥X′ − X̂′∥∥
α + ∥∥X� − X̂�

∥∥
2α.

The sewing lemma provides a continuous integration mapping

D2α
Y

([0, T ];L(Rn,Rd)
)−→ D2α

Y

([0, T ];Rn
)

(X,X′) −→
(∫

Xr dYr ,X

)
,

where

X
�
s,t :=

∫ t

s
Xr dYr − XsYs,t − X′

sYs,t

satisfies |X�
s,t | ≤ C|t − s|3α for some constant C only depending on α. A solution of (41) can

now be defined as a fixed point of the composition of the mappings

D2α
Y

([0, T ];Rn
)−→ D2α

Y

([0, T ];L(Rn,Rd)
) −→ D2α

Y

([0, T ];Rn
)

(X,X′) −→ (
ξ(X), ξ(X)′

)= (
ξ(X),Dξ(X)X′) −→

(∫
ξ(Xr)dYr , ξ(X)

)
.

From the sewing lemma and the definition of the integration mapping we see that we could
equivalently define the solution of (41) as a path X : [0, T ] →R

n such that

X
�
s,t := δXs,t − ξ(Xs)Ys,t − Dξ(Xs)ξ(Xs)Ys,t

satisfies |X�
s,t | ≤ C|t − s|3α . The latter formulation is usually referred to as Davie’s expan-

sion/solution.
One of the remarkable properties of rough path equations is the continuity of the Itô–Lyons

map,

C α
([0, T ];Rd

)−→ Cα
([0, T ];Rn

)
Y −→ X,

where X = XY denotes the solution of (41), provided f is regular enough. In fact, Theo-
rem 1.1 is an analogous result for the McKean–Vlasov dynamics of the ensemble Kalman
filter treated in this paper.

4. Stochastic rough McKean–Vlasov equations. In this section, unless otherwise spec-
ified we fix T > 0 and ρ ≥ 1. Moreover, (�,F, (Ft )t≥0,P) is a complete filtered proba-
bility space that supports a standard m-dimensional Brownian motion W . Recall that for
π ∈ Pρ(RD), we call Mρ(π) the ρ-moment of π and M

ρ
(π) the ρ-central moment of π .
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4.1. McKean–Vlasov SDEs with linear growth in the measure. Consider the measurable
functions b : [0, T ]×R

D ×Pρ(RD) →R
D and σ : [0, T ]×R

D ×Pρ(RD) →R
D×m satisfy-

ing the following assumptions.

ASSUMPTION 1. Let ρ ≥ 1. Assume that there exists a constant C > 0 such that:

(i) (linear growth) ∀t ∈ [0, T ], ∀x ∈ R
D , ∀π ∈ Pρ(RD),

(43)
∣∣b(t, x,π)

∣∣, ∣∣σ(t, x,π)
∣∣≤ C

(
1 + Mρ(π)

) 1
ρ ,

(ii) (locally Lipschitz) ∀t ∈ [0, T ], ∀x, y ∈R
D , ∀π,ν ∈ Pρ(RD),

(44)

∣∣b(t, x,π) − b(t, y, ν)
∣∣, ∣∣σ(t, x,π) − σ(t, y, ν)

∣∣
≤ C

(
1 + Mρ(π)

) 1
ρ
(|x − y| + Wρ,RD(π, ν)

)
.

REMARK 4.1. Notice that, if ρ ≥ ρ′, Assumption 1 with ρ′ implies Assumption 1 with ρ.

Consider the following McKean–Vlasov equation:

(45) dXt = b
(
t,Xt ,L(Xt)

)
dt + σ

(
t,Xt ,L(Xt)

)
dWt, Xt |t=0 = X0 ∈ L2

ω,

where W is an m-dimensional Brownian motion.

LEMMA 4.2. Assume that b and σ satisfy Assumption 1 with ρ ≥ 2, equation (45) admits
a unique strong solution in the classical sense. Moreover, the solution has continuous sample
paths.

PROOF. To prove well-posedness we use a Picard-type argument. Let π0 := L(X0). For
T ≥ 0 and K > 2Mρ(π0) ∨ 1, we define

BK := {
π ∈ P(C

([0, T ];RD) | Mρ(πt ) ≤ K ∀t ∈ [0, T ],Mρ(π0) ≤ K/2
}
.

Let π ∈ BK . We define the following stochastic differential equation:

(46) dXt = b(t,Xt ,πt )dt + σ(t,Xt ,πt )dWt, X̃t |t=0 = X0 ∼ π0.

By our choice of π and Assumption 1, the coefficients b(·, ·, π·) and σ(·, ·, π·) are bounded
and Lipschitz. By standard theory this equation admits a unique strong solution on the interval
[0, T ], which we denote by Xπ . This solution has continuous sample paths, P-a.s. We are
ready to define the map

� : BK → P
(
C
([0, T ];RD

))
π → L(Xπ).

Using standard stochastic calculus estimates, Assumption 1 and Gronwall’s lemma we obtain
the following upper bound on the ρth moment:

(47)
∥∥∥ sup
t∈[0,T ]

|Xt |
∥∥∥
L

ρ
ω

≤ K/2 + T C(1 + K),

where C > 0 is a generic constant that only depends on the coefficients b and σ . Let us now
take T = 1/(4C), with this choice we have ‖ supt∈[0,T ] |Xt |‖L

ρ
ω

≤ K . This implies �(BK) ⊂
BK . Using again stochastic calculus and Gronwall’s lemma, we have that for each t ∈ [0, T ],

(48)

Wρ,C([0,t],RD)

(
�(π),�

(
π ′))ρ

≤
∥∥∥ sup
s∈[0,t]

∣∣Xπ
s − Xπ ′

s

∣∣∥∥∥ρ
L

ρ
ω

≤ C(1 + K)eC(1+K)t
∫ t

0
Wρ,RD

(
πs,π

′
s

)ρ ds, π,π ′ ∈ BK.
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Here C > 0 is again a generic constant depending only on b and σ , possibly different than be-
fore. Also notice that π , π ′ are measures on the path space C([0, T ];RD) and in the left-hand
side of (48) we are considering, with an abuse of notation, their projections on C([0, t],RD).

Notice that, for every s ∈ [0, T ], Wρ,RD(πs,π
′
s)

ρ ≤ Wρ,C([0,s],RD)(π,π ′), for any two
measures in π,π ′ ∈ BK . For every n ∈ N, let �n the nth composition of φ with itself. We can
thus apply (48) n times and obtain

Wρ,C([0,T ];RD)

(
�n(π),�n(π ′))ρ

≤ Cn(1 + K)nenC(1+K)T
∫ t

0

∫ t1

0
· · ·
∫ tn−1

0
Wρ,RD

(
πs,π

′
s

)ρ ds dtn−1 · · · dt1

≤ e(n+1)C(1+K)T

n! Wρ,C([0,T ];RD)

(
π,π ′)ρ, π,π ′ ∈ BK.

In the last inequality we bounded from above the Wasserstein distance in R
d with the Wasser-

stein distance on the path space and grouped it out of the integral. Then we computed the
iterated integral.

For the choice of T = 1/(4C), if we take n large enough, we have that the map �n is
a contraction on BK . By the Banach fixed point theorem, �n has a unique fixed point on
BK , which is also the unique fixed point of � (see [23], Proposition 6), which is the unique
solution to equation (45) up to time T .

Global existence and uniqueness follow by iterating this argument on intervals of fixed
length 1/(4C), which does not depend on the value of the initial condition, but only on the
assumptions on the coefficients of the equation. �

4.2. The common noise case. Consider measurable functions b and σ as in the previous
section and β : [0, T ] ×Pρ(RD) → R

D×m1 , each of which satisfying the following assump-
tion on their respective domain.

ASSUMPTION 2. Let ρ ≥ 1. Let (V , | · |) be a Banach space, for f : [0, T ] ×
R

D ×Pρ(RD) → V assume that there exists a constant C > 0 such that:

(i) (linear growth) ∀x ∈ R
D , ∀π ∈ Pρ(Rd), ∀t ∈ [0, T ],

(49)
∣∣f (t, x,π)

∣∣≤ C
(
1 + M

ρ
(π)

) 1
ρ ,

(ii) (locally Lipschitz) ∀x, y ∈R
D , ∀π,ν ∈ Pρ(RD), ∀t ∈ [0, T ],

(50)
∣∣f (t, x,π) − f (t, y, ν)

∣∣≤ C
(
1 + M

ρ
(π)

) 1
ρ
(|x − y| + Wρ,RD(π, ν)

)
.

Notice that, since β is independent of the space variable x ∈ R
D , condition 2(ii) reduces

to local Lipschitz continuity in the measure variable.
Consider the following McKean–Vlasov equation:

(51)
dXt = b

(
t,Xt ,L(Xt | Bt )

)
dt + σ

(
t,Xt ,L(Xt | Bt )

)
dWt + β

(
t,L(Xt | Bt )

)
dBt,

Xt |t=0 = X0 ∈ L2
ω,

where W is the m-dimensional Brownian motion fixed at the beginning of the section and
B is an m1-dimensional Brownian motion adapted to (Ft )t≥0. Assume that X0, W , B are
independent. In (51), L(X | Bt ) is the conditional law of the solution X given the filtration
Bt := σ(Bs | 0 ≤ s ≤ t) generated by the common noise B .
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LEMMA 4.3. Assume that b, σ and β satisfy Assumption 2 for some ρ ≥ 2. Let X and Z

be any two solutions to equation (51) starting from the same initial condition X0 = Z0 ∈ L
ρ
ω.

Then X and Z are indistinguishable.

PROOF. It follows from the independence of W , B and X0 that

E[Xt | Bt ] = E[X0] +
∫ t

0
E
[
b
(
s,Xs,L(Xs | Bs)

) | Bs

]
ds +

∫ t

0
E
[
β
(
s,L(Xs | Bs)

) | Bs

]
dBs.

Let Xt := Xt −E[Xt | Bt ], we have

Xt = X0 +
∫ t

0

(
b
(
s,Xs,L(Xs | Bs)

)−E
[
b
(
s,Xs,L(Xs | Bs)

) | Bs

])
ds

+
∫ t

0
σ
(
s,Xs,L(Xs | Bs)

)
dWs.

Set Nt := ∫ t
0 σ(s,Xs,L(Xs | Bs))dWs , as an application of Itô’s formula we have

E
[|Nt |ρ | Bt

]≤ ρE

[∫ t

0
|Ns |ρ−2Ns · σ (s,Xs,L(Xs | Bs)

)
dWs | Bt

]
+ C

∫ t

0
E
[|Ns |ρ−2∣∣σσ�∣∣(s,Xs,L(Xs | Bs)

) | Bt

]
ds

≤ C

∫ t

0
E
[|Ns |ρ−2 | Bt

](
1 + M

ρ(L(Xs | Bs)
)) 2

ρ ds

≤ C

∫ t

0
E
[|Ns |ρ−2 | Bt

] ρ
ρ−2 + (1 + M

ρ(L(Xs | Bs)
)) 2

ρ
· ρ

2 ds,

where in the last line we used Young inequality with ρ−2
ρ

+ 2
ρ

= 1. We use Jensen’s inequality
and Gronwall’s lemma to obtain

E
[|Nt |ρ | Bt

]≤ C

∫ t

0

(
1 + M

ρ(L(Xs | Bs)
))

ds.

By using Assumption 2(i) also on the drift, we obtain

M
ρ(L(Xt | Bt )

)= E
[|Xt |ρ | Bt

]≤ M
ρ(L(X0 | B0)

)+ C

∫ t

0

(
1 + M

ρ(L(Xs | Bs)
))

ds.

Gronwall’s lemma gives M
ρ
(L(Xt | Bt )) ≤ CT , where CT > 0 is a constant depending on T .

A similar bound can be obtained for Z.
Combining the upper bounds on the central moment with Assumption 2, we have global

Lipschitz continuity and boundedness of the coefficients, in the sense that b, σ , β satisfy∣∣f (t, x,π) − f (t, y, ν)
∣∣≤ CT

(|x − y| + Wρ,RD(π, ν)
)
.

Using this bound, Burkholder–Davis–Gundy inequality and standard estimates we have

E

[
sup
t≤T

|Xt −Zt |ρ
]
≤ CT

∫ T

0
E

[
sup
s≤t

|Xs −Zs |ρ
]
+E

[
sup
s≤t

Wρ,RD

(
L(Xs | Bs),L(Zs | Bs)

)ρ]dt.

Notice that

Wρ,RD

(
L(Xs | Bs),L(Zs | Bs)

)ρ ≤ E
[|Xs − Zs |ρ | Bs

]
.

We can now use the tower property of the conditional expectation and Gronwall’s lemma to
obtain

E

[
sup
t≤T

|Xt − Zt |ρ
]
= 0,

which implies indistinguishability of the processes (Xt)t∈[0,T ] and (Zt )t∈[0,T ]. �
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REMARK 4.4. Weak existence follows from [61] and one can apply Yamada–Watanabe
to obtain well-posedness of (51). However, well-posedness will also follow from our results
on mixed rough and stochastic McKean–Vlasov equations in the special case β(t,π) = P(π)

defined in (61) below.

4.3. McKean–Vlasov with continuous deterministic forcing. Let b : RD ×Pρ(RD) →
R

D and σ : RD ×Pρ(RD) → R
D×m be measurable functions satisfying the following as-

sumptions.

ASSUMPTION 3. Let ρ ≥ 1. Assume that there exists a constant C > 0 such that:

(i) (linear growth) ∀x ∈ R
D , ∀π ∈ Pρ(Rd),

(52)
∣∣b(x,π)

∣∣, ∣∣σ(x,π)
∣∣≤ C

(
1 + M

ρ
(π)

) 1
ρ ,

(ii) (Lipschitz continuity) ∀x, y ∈R
d , ∀π,ν ∈ Pρ(RD),

(53)
∣∣b(x,π) − b(y, ν)

∣∣, ∣∣σ(x,π) − σ(y, ν)
∣∣≤ C

(
1 + M

ρ
(π)

) 1
ρ
(|x − y| + Wρ,RD(π, ν)

)
.

Let F : [0, T ] → R
D be a continuous bounded function, X0 ∈ L

ρ
ω and consider the follow-

ing stochastic differential equation:

(54) dXt = b
(
Xt,L(Xt)

)
dt + σ

(
Xt,L(Xt)

)
dWt + dFt , Xt |t=0 = X0.

DEFINITION 4.5. A stochastic process (Xt)t∈[0,T ] on R
D is a solution for equation (54)

with initial condition X0 if (σ (Xt ,L(Xt)))t∈[0,T ] is predictable and for every t ∈ [0, T ], the
following integral equation is satisfied P-a.s.:

Xt − Ft = X0 − F0 +
∫ t

0
b
(
Xs,L(Xs)

)
ds +

∫ t

0
σ
(
Xs,L(Xs)

)
dWs.

REMARK 4.6. In the following, we will construct an adapted solution (Xt)t∈[0,T ]
with continuous sample paths. Since σ is Lipschitz continuous, we immediately have that
(σ (Xt ,L(Xt)))t∈[0,T ] is predictable and the Itô integral is well defined.

Let Xt be a solution to equation (54), we define Xt := Xt − E[Xt ]. We start with some
preliminary expansions and estimates for X. We have, for s, t ∈ [0, T ],
(55) δXs,t =

∫ t

s

(
b
(
Xr,L(Xr)

)−E
[
b
(
Xr,L(Xr)

)])
dr +

∫ t

s
σ
(
Xr,L(Xr)

)
dWr.

LEMMA 4.7. Let ρ ≥ 2 and X0 ∈ L
ρ
ω. There exists a constant CT such that CT → 0 as

T → 0 and ∥∥∥ sup
t∈[0,T ]

|Xt |
∥∥∥
L

ρ
ω

≤ eCT
[
CT + ‖X0‖L

ρ
ω

]
.

Moreover, for α < 1
2 and ρ > 2

1−2α
, we have∥∥[X]α
∥∥
L

ρ
ω

≤ CT

(
1 + ‖X0‖L

ρ
ω

)
.

PROOF. Using standard estimates and the Burkholder–Davis–Gundy (BDG) inequality
on equation (55) we have∥∥∥ sup

t∈[0,T ]
|Xt |

∥∥∥ρ
L

ρ
ω

≤ ‖X0‖ρ

L
ρ
ω

+ C

∫ T

0

(
1 + M

ρ(L(Xt)
))

dt.
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The first inequality follows from a standard application of Gronwall’s lemma. For the second
inequality we use again BDG and Jensen’s inequality to obtain

E
[|δXs,t |ρ]≤ |t − s|ρ/2−εCT

(
1 + ‖X0‖L

ρ
ω

)
,

for some ε > 0 arbitrarily small. The second inequality as well as the condition on ρ follows
from the Kolmogorov continuity theorem [53], Theorem 3.1. �

REMARK 4.8. The bounds in Lemma 4.7 do not depend on the forcing term F . This
gives us a good a priori bound on the solution. Let T > 0 be fixed and arbitrarily large and
assume that there exists M0 > 0 such that ‖X0‖Lρ ≤ M0. Then there exists a global constant
M(M0, T ) such that

(56)
∥∥∥ sup
t∈[0,T ]

|Xt |
∥∥∥
L

ρ
ω

,
∥∥[X]α

∥∥
L

ρ
ω

≤ M.

We have the following a priori estimates.

LEMMA 4.9. Let ρ ≥ 2. Given X0 ∈ L
ρ
ω and F ∈ C([0, T ];RD), we call X(F,X0) a

solution to equation (54) with forcing F and initial condition X0.
Let b, σ satisfy Assumption 3. Then there exists a constant CT := C(T ,ρ) > 0 such that

CT → 0 as T → 0 and

(57)
∥∥∥ sup
t∈[0,T ]

∣∣Xt(F,X0)
∣∣∥∥∥

L
ρ
ω

≤ eCT
[
CT + ‖F‖Cb

+ ‖X0‖L
ρ
ω

]
.

Given X0, Y0 ∈ L
ρ
ω and F,G ∈ C([0, T ];RD), there exists a positive constant C > 0 such

that

(58)
∥∥∥ sup
t∈[0,T ]

∣∣Xt(F,X0) − Xt(G,Y0)
∣∣∥∥∥

L
ρ
ω

≤ e
C(1+‖X0‖L

ρ
ω
)(‖F − G‖Cb

+ ‖X0 − Y0‖L
ρ
ω

)
.

PROOF. We write X and omit here the dependence of the process on F and X0 as there
is no possibility of confusion in the first part of the proof. Using Jensen’s inequality, the
Burkholder–Davis–Gundy inequality and Assumption 3 we have the following estimate for
s, t ∈ [0, T ]:

E sup
t∈[0,T ]

|Xt |ρ ≤ E|X0|ρ + CT ρ−1
∫ �

0
E
∣∣b(Xr,L(Xr)

)∣∣ρ dr

+ CT ρ/2−1
∫ �

0
E
∣∣σ (Xr,L(Xr)

)∣∣ρ dr + C sup
t∈[0,T ]

|Ft |ρ

≤ E|X0|ρ + C
(
T ρ−1 + T ρ/2−1) ∫ �

0

(
1 +E|Xr |ρ)dr + C sup

t∈[0,T ]
|Ft |ρ,

where the constant C depends only on ρ, b and σ . Equation (57) follows immediately using
the bounds in Lemma 4.7.

We now prove inequality (58). Applying a similar reasoning as before, we obtain

E sup
t∈[0,T ]

∣∣Xt(F,X0) − Xt(G,Y0)
∣∣ρ ≤ C

(
T ρ + T ρ/2) ∫ T

0

(
1 +E

∣∣Xt(F,X0)
∣∣ρ)

·
(
E sup

r∈[0,t]
∣∣Xr(F,X0) − Xr(G,Y0)

∣∣ρ + Wρ,RD

(
L
(
Xt(F,X0)

)
,L
(
Xt(G,Y0)

))ρ)dt

+ ‖F − G‖Cb
.
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The ρ-Wasserstein distance is controlled by the L
ρ
ω norm of the difference of the processes,

so we can apply Gronwall’s lemma and Lemma 4.7 to obtain the desired inequality (58). �

In addition to the previous bounds, if the forcing term is α-Hölder continuous, we have
that also the solution is α-Hölder continuous.

LEMMA 4.10. Let α ∈ (1
3 , 1

2) and ρ > 2/(1 − 2α). Assume that F,G ∈ Cα([0, T ];RD)

and X0, Y0 ∈ L
ρ
ω. Then there exist CT ,C := C(ρ,T ,α) > 0 such that CT → 0 as T → 0 and

(59)
∥∥[X(F,X0)

]
α

∥∥
L

ρ
ω

≤ CT

(
1 + ‖X0‖L

ρ
ω

)+ C[F ]α.

Moreover,∥∥[X(F,X0) − X(G,Y0)
]
α

∥∥
L

ρ
ω

≤ CT e
C(1+‖X0‖L

ρ
ω
)(‖F − G‖Cb

+ ‖X0 − Y0‖L
ρ
ω

)
+ C[F − G]α.

(60)

PROOF. We write X and omit here the dependence of the process on F , X0 as there
is no possibility of confusion in the first part of the proof. Using Jensen’s inequality, the
Burkholder–Davis–Gundy inequality and Assumption 3 we have the following estimate for
s, t ∈ [0, T ]:

E
[∣∣δ(X − F)s,t

∣∣ρ]
≤ C|t − s|ρ−1

∫ t

s
E
∣∣b(Xr,L(Xr)

)∣∣ρ dr + C|t − s|ρ/2−1
∫ t

s
E
∣∣σ (Xr,L(Xr)

)∣∣ρ dr

≤ C
(|t − s|ρ−1 + |t − s|ρ/2−1) ∫ t

s

(
1 +E|Xr |ρ)dr

≤ C
(|t − s|ρ−1 + |t − s|ρ/2−1)|t − s|

(
1 +E

∣∣∣ sup
r∈[0,T ]

Xr

∣∣∣ρ)
≤ C|t − s|ρ/2−ε

[
CT

(
1 +E

[
sup

r∈[0,T ]
|Xr |ρ

])]
.

The constant CT is such that CT → 0, as T → 0. We apply Lemma 4.7 to obtain the following
estimate:

E
[∣∣δ(X − F)s,t

∣∣ρ] ≤ CT |t − s|ρ/2−ε(1 + ‖X0‖L
ρ
ω

)
,

for some ε > 0 arbitrarily small. Using the Kolmogorov continuity theorem we obtain that
X − F is α-Hölder continuous for ρ > 2/(1 − 2α) and∥∥[X]α

∥∥
L

ρ
ω

≤ ∥∥[X − F ]α
∥∥
L

ρ
ω

+ C[F ]α ≤ CT

(
1 + ‖X0‖L

ρ
ω

)+ C[F ]α.

We now prove inequality (60). Arguing as in the first half of the proof we obtain

E
∣∣δ(X(F,X0) − X(G,Y0) − (F − G)

)
s,t

∣∣ρ
≤ C

(|t − s|ρ−1 + |t − s|ρ/2−1)
·
∫ t

s

(
1 + E|Xr |ρ)(E∣∣Xr(F,X0) − Xr(G,Y0)

∣∣ρ
+ Wρ

(
L
(
Xr(F,X0)

)
,L
(
Xr(G,Y0)

))ρ)dr.
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We apply Lemma 4.7 and (58) and use the fact that the Lρ -norm of the difference of the
process controls the ρ-Wasserstein distance, to obtain

E
∣∣δ(X(F,X0) − X(G,Y0) − F + G

)
s,t

∣∣ρ
≤ CT |t − s|αρe

CT (1+‖X0‖L
ρ
ω
)(‖F − G‖Cb

+ ‖X0 − Y0‖L
ρ
ω

)ρ
.

Equation (60) follows as before from the Kolmogorov continuity theorem, for ρ > 2/(1 −
2α). �

LEMMA 4.11. Let F ∈ Cb([0, T ];RD) and X0 ∈ L2
ω. Let b and σ satisfy Assumption 3.

Then equation (54) admits a unique strong solution.

PROOF. To prove existence we define

b̃(t, x,μ) := b
(
x + Ft , (τFt )#μ

)
, t ∈ [0, T ], x ∈ R

D,μ ∈ P
(
R

D),
where τz : RD → R

D is the translation by z ∈ R
D . Similarly we define σ̃ . It is immediate to

see that, if b, σ satisfy Assumption 3, then b̃, σ̃ satisfy Assumption 1.
By Lemma 4.2 the following equation admits a unique global strong solution X̃:

dX̃t = b̃
(
t, X̃t ,L(X̃t )

)
dt + σ̃

(
t, X̃t ,L(X̃t )

)
dWt, X̃t |t=0 = X0 − F0.

The stochastic process X = X̃+F solves equation (54). Uniqueness follows from the a priori
estimates given in Lemma 4.9. �

4.4. Rough McKean–Vlasov.

ASSUMPTION 4. Let h ∈ C2
b(RD,Rd).

For a given probability measure π ∈ P(RD), we define for 1 ≤ l ≤ D, 1 ≤ j ≤ d ,

(61) P(π) := Covπ(x,h)A + B, Covπ(x,h)l,j =
∫
R

D

(
xl − π

[
xl])hj (x)π(dx),

where A ∈ R
d×d and B ∈ R

D×d are given matrices. Notice that in the definition of the co-
variance we can choose to centre either one or both of the variables without changing the
result. Indeed, in other sections of the paper we work with different formulations.

Let Y := (Y,Y) ∈ C α([0, T ];Rd) and X0 ∈ L2
ω. We study the following equation:

dXt = b
(
Xt,L(Xt)

)
dt + σ

(
Xt,L(Xt)

)
dWt + dFt , Xt |t=0 = X0,(62a)

dFt = P
(
L(Xt)

)
dYt .(62b)

DEFINITION 4.12. A couple (X,F ) : [0, T ] × � → R
D ×R

D is a solution to equation
(62) if:

• F is a continuous path and X solves equation (62a) in the sense of Definition 4.5;
• P(L(Xt )) ∈ D2α

Y ([0, T ];L (Rd,RD)) and F is the rough integral in (62b).

Next we prove that, if X solves (62a) for a fixed controlled F , then P(L(Xt)) is a con-
trolled path, which makes the rough integral (62b) well defined.
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LEMMA 4.13. Let α ∈ (1
3 , 1

2) and ρ > 2/(1 − 2α). Let Y := (Y,Y) ∈ C α([0, T ];Rd),
F ∈ D2α

Y ([0, T ];RD) and X0 ∈ L
ρ
ω(RD).

If πt is the law of the solution process Xt(F,X0) to equation (54) with forcing F and
initial condition X0, then

P(π·) ∈ D2α
Y
([0, T ];L (

R
d,RD)),

with Gubinelli derivative

(63) P(πs)
′ = (

F ′
s

)�
π
[(

x − π [x])Dh�]A.

Moreover, we have the bound∥∥P(π·)
∥∥
D2α

Y
≤ C‖h‖C2

b

(
1 + ‖X0‖L

ρ
ω

+ [F ]α)(CT

(
1 + ‖X0‖L

ρ
ω

)+ ∥∥F ′∥∥
Cb

[Y ]α + [RF ]
2α

)
,

where CT → 0 as T → 0.

PROOF. To simplify the notation, we write Xt for Xt(F,X0). Let Xt := Xt −E[Xt ]. We
have the following expansion for h(X), s, t ∈ [0, T ]:

δh(X·)s,t = [Dh]1,x
s,t

(∫ t

s
b
(
Xr,L(Xr)

)
dr + RF

s,t

)
+ ([D2h

]2,x
s,t δXs,t + Dh(Xs)

)(∫ t

s
σ
(
Xr,L(Xr)

)
dWr + F ′

sδYs,t

)
.

(64)

Let s, t ∈ [0, T ]. From the definition of P(π), equation (61), we have

δP (π·)s,t = δE
[
X·h(X·)�

]
s,tA

= E
[
δXs,th(Xs)

�]A +E
[
δXs,t δh(X·)�s,t

]
A

+E
[
Xsδh(X·)�s,t

]
A

=: I1 + I2 + I3.

We expand I3 even further using (64)

I3 = E
[
Xs

(
Dh(Xs)F

′
sδYs,t

)�]
A +E

[
Xs

(
Dh(Xs)

∫ t

s
σ
(
Xr,L(Xr)

)
dWr

)�]
A

+E

[
Xs

(
[Dh]1,x

s,t

(∫ t

s
b
(
Xr,L(Xr)

)
dr + RF

s,t

))�]

+E

[
Xs

([
D2h

]2,x
s,t δXs,t

(∫ t

s
σ
(
Xr,L(Xr)

)
dWr + F ′

sδYs,t

))�]
A

=: E[Xs

(
Dh(Xs)F

′
sδYs,t

)�]
A + I4.

We can write

δP (π·)s,t = E
[
Xs

(
Dh(Xs)F

′
sδYs,t

)�]
A + RP

s,t ,

where RP
s,t = I1 + I2 + I4. For 1 ≤ l ≤ D and 1 ≤ j ≤ d we write the (l, j) entry of the matrix

P as

δP l,j (π·)s,t = (
P l,j (π·)

)′
s · δYs,t + RP l,j

s,t ,

where, for s ∈ [0, T ], P(πs)
′ ∈ L (Rd,L (Rd,RD)) ∼= R

D×d×d is the Gubinelli derivative
given as

(
P l,j (πs)

)′ := D∑
k=1

E
[
X

l

s

(
Dh(Xs)

�A
)j ](

F ′
s

)k =
D∑

k=1

d∑
i=1

E
[
X

l

s∂kh
i(Xs)

]
Ai,j (F ′

s

)k ∈ R
d .
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We check now that RP is a remainder with regularity 2α. Using the martingale property
of the stochastic integral in (55), we have

I1 = E
[
Es[δXs,t ]h(Xs)

�]A = E

[∫ t

s

(
b
(
Xr,L(Xr)

)−E
[
b
(
Xr,L(Xr)

)])
dr h(Xs)

�
]
A.

We apply Lemma 4.7 to obtain

|I1| ≤ |t − s|C‖h‖∞
(
CT + ‖X0‖L

ρ
ω

)
,

where C > 0 is a global constant. For I2 we use Lemma 4.7 and (59) to obtain, for any ρ > 3,

|I2| =
∣∣E[δXs,t

([Dh]1,x
s,t δXs,t

)�]∣∣≤ ‖Dh‖∞
∥∥[X]α

∥∥
L

ρ
ω

∥∥[X]α
∥∥
L

ρ
ω

≤ ‖Dh‖∞CT

(
1 + ‖X0‖L

ρ
ω

)[
CT

(
1 + ‖X0‖L

ρ
ω

)+ [F ]α]|t − s|2α.

We proceed by finding a bound for I4. Notice that the term E[Xs(Dh(Xs)
∫ t
s σ (Xr,

L(Xr)dWr)
�] vanishes thanks to the martingale property of the stochastic integral. Using

Lemma 4.7 and inequality (59), we get

I4 ≤ C|t − s|2α‖Dh‖∞
∥∥∥ sup
t∈[0,T ]

Xt

∥∥∥
L

ρ
ω

(
CT

(
1 +

∥∥∥ sup
t∈[0,T ]

Xt

∥∥∥
L

ρ
ω

)
+ [RF ]

2α

)
+ C|t − s|2α

∥∥D2h
∥∥∞∥∥[X]α

∥∥
L

ρ
ω

(
CT

(
1 +

∥∥∥ sup
t∈[0,T ]

Xt

∥∥∥
L

ρ
ω

)
+ ∥∥F ′∥∥

Cb
[Y ]α

)
≤ C|t − s|2α‖Dh‖∞

(
CT + ‖X0‖L

ρ
ω

)(
CT

(
1 + ‖X0‖L

ρ
ω

)+ [RF ]
2α

)
+ C|t − s|2α

∥∥D2h
∥∥∞(1 + ‖X0‖L

ρ
ω

+ [F ]α)(CT

(
1 + ‖X0‖L

ρ
ω

)+ ∥∥F ′∥∥
Cb

[Y ]α)
≤ C|t − s|2α(‖Dh‖∞ + ∥∥D2h

∥∥∞)(1 + ‖X0‖L
ρ
ω

+ [F ]α)
· (CT

(
1 + ‖X0‖L

ρ
ω

)+ ∥∥F ′∥∥
Cb

[Y ]α + [RF ]
2α

)
. �

We now set up a contraction argument that we will use to prove the well-posedness of
equation (62). Let f ∈ D2α

Y ([0, T ];L(Rd,RD)). We define, for t ∈ [0, T ],

(65)
(
Ft,F

′
t

) := (∫ t

0
fr dYr , ft

)
∈ D2α

Y
([0, T ];RD).

Now we plug this as the forcing into equation (54) with initial condition X0 ∈ L
ρ
ω(RD) and

call X the solution with law π . We define the map

(66)

 : D2α

Y
([0, T ];L(Rd,RD

))→ D2α
Y
([0, T ];L(Rd,RD

))
f → P(π·).

Using the following estimate:

ft = ft − f0 + f0 = f ′
0Y0t + R

f
0t + f0 ≤ ∣∣f ′

0
∣∣[Y ]αtα + |f0| + t2α[Rf ]

2α

we get

‖f ‖Cb
≤ C

(
1 + ‖Y‖α

)(|f0| +
∣∣f ′

0
∣∣+ ‖f ‖D2α

Y

)
.

From [53], Theorem 4.10, we have the following estimates:[
RF ]

2α ≤ C‖Y‖α

(|f0| +
∣∣f ′

0
∣∣+ ‖f ‖D2α

Y

)
,

[F ]α,‖F‖D2α
Y

≤ C
(
1 + ‖Y‖α

)(|f0| +
∣∣f ′

0
∣∣+ ‖f ‖D2α

Y

)
.
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It follows from Lemma 4.13 that 
 is well defined. Let us prove that there exists a small time,
such that the following set is invariant under 
:

D(
) := {
f ∈ D2α

Y | |f0| +
∣∣f ′

0
∣∣+ ‖f ‖D2α

Y
≤ 2‖h‖∞M

}
,

where M is the global constant of Remark 4.8.
If we assume that Y ∈ C ᾱ with α < ᾱ < 1/2, we have the following estimates:∣∣
(f )0

∣∣= ∣∣E[X0h(X0)
]
A + B

∣∣≤ ‖h‖∞M,∥∥
(f )
∥∥
D2α

Y
= ∥∥P(π·)

∥∥
D2α

Y

≤ C‖h‖C2
b

(
1 + ‖X0‖L

ρ
ω

+ ‖Y‖α

(|f0| +
∣∣f ′

0
∣∣+ ‖f ‖D2α

Y

))
· (CT

(
1 + ‖X0‖L

ρ
ω

)+ ‖Y‖α

(|f0| +
∣∣f ′

0
∣∣+ ‖f ‖D2α

Y

))
≤ ‖h‖C2

b
CT

(
1 + M + 2‖h‖∞

(‖Y‖α ∨ ‖Y‖ᾱ

))2
≤ ‖h‖∞M,

where in the last step we chose T small enough such that

CT ≤ ‖h‖∞M

‖h‖C2
b
(1 + M + 2M‖h‖∞(‖Y‖α ∨ ‖Y‖ᾱ))2 .

Adding the previous estimates we proved that 
(D(
)) ⊂ D(
). Since CT only depends on
global quantities, we can divide each interval [0, T ] into smaller intervals of length T and in
each one apply the contraction argument. We prove in the following that 
 is a contraction
on D(
). We start by showing that 
 is Lipschitz continuous.

LEMMA 4.14. Let 1/3 < α < 1/2. Let ρ > 2/(1 − 2α) and X0,Z0 ∈ L
ρ
ω. Let Y, Ŷ ∈ C ᾱ

and F ∈ D2α
Y , G ∈ D2α

Ŷ
. Assume that there exists a universal constant C > 0 such that

‖F‖D2α
Y

≤ C‖Y‖α, ‖G‖D2α

Ŷ
≤ C‖Ŷ‖α, ‖X0‖L

ρ
ω
,‖Z0‖L

ρ
ω

≤ C,

where X0 = X0 − E[X0] and Z0 = X0 − E[Z0]. We call Xt(F,X0) (resp. Xt(G,Z0)) the
solution to equation (54) with inputs F and X0 (resp. G and Z0). We call R the difference
of the remainders of P(πx) and P(πz). There exists a global constant CT > 0 such that
CT → 0 as T → 0 and∥∥P (πx),P (πz)∥∥

Y,Ŷ ,2α
(67)

≤ (CT + ‖Y‖α

)(‖X0 − Z0‖L
ρ
ω

+ ‖F − G‖Cb
+ [F − G]α + ∥∥F ′ − G′∥∥

Cb

+ [F ′ − G′]
α

)+ ∥∥G′∥∥
Cb

[Y − Ŷ]α.
(68)

A similar estimate can be obtained for the difference of the Gubinelli derivatives.

PROOF. To simplify the notation, we write Xt for X(F,X0)t and Zt for X(G,Z0)t . Let
Xt := Xt −E[Xt ], similarly we define Zt . We have the following expansion for h(X)−h(Z),
s, t ∈ [0, T ], P-a.s.:

δ
(
h(X·) − h(Z·)

)
s,t

= Dh(Xs)F
′δYs,t − Dh(Zs)G

′
sδŶs,t

(69a)
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+ Dh(Xs)

(∫ t

s
σ
(
Xr,L(Xr)

)
dWr

)
− Dh(Zs)

(∫ t

s
σ
(
Zr,L(Zr)

)
dWr

)(69b)

+ [Dh]1,z
s,t

(∫ t

s

[
b
(
Xr,L(Xr)

)− b
(
Zr,L(Zr)

)]
dr

+ RF
s,t − RG

s,t

)(69c)

+ ([Dh]1,x
s,t − [Dh]1,z

s,t

)(∫ t

s
b
(
Xr,L(Xr)

)
dr + RF

s,t

)
(69d)

+ [
D2h

]2,z
s,t δZs,t

(∫ t

s

[
σ
(
Xr,L(Xr)

)− σ
(
Zr,L(Zr)

)]
dWr

)
(69e)

+ [
D2h

]2,z
s,t δZs,t

(
F ′

sδYs,t − G′
sδŶs,t

)
(69f)

+ ([
D2h

]2,z
s,t δ(X − Z)s,t + ([D2h

]2,x
s,t − [D2h

]2,z
s,t

)
δXs,t

)
·
(∫ t

s
σ
(
Xr,L(Xr)

)
dWr + F ′

sδYs,t

)
.

(69g)

Let s, t ∈ [0, T ]. We call πx := L(X) and πz := L(Z). From the definition of P(π), equation
(61), we have

δ
(
P
(
πx·
)− P

(
πz·
))

s,t

= E
[
δ(X· − Z·)s,th(Zs)

�]A +E
[
δ(X· − Z·)s,t δh(Z·)�s,t

]
A

+E
[
(Xs − Zs)δh(Z·)�s,t

]
A +E

[
δXs,t

(
h(Xs) − h(Zs)

)]
A

+E
[
δXs,t δ

(
h(X·) − h(Z·)

)
s,t

]
A +E

[
Xsδ

(
h(X·) − h(Z·)

)
s,t

]
A

=: I11 + I12 + I13 + I21 + I22 + I23.

Using the same expansion for h(Z) as in (64), we obtain

I13 = E
[
(Xs − Zs)

(
Dh(Zs)G

′
sδŶs,t

)�]
A + 0

+E

[
(Xs − Zs)

(
[Dh]1,z

s,t

(∫ t

s
b
(
Zr,L(Zr)

)
dr + RG

s,t

))�]
A

+E

[
(Xs − Zs)

([
D2h

]2,z
s,t δZs,t

(∫ t

s
σ
(
Zr,L(Zr)

)
dWr + G′

sδŶs

))�]
A

= E
[
(Xs − Zs)

(
Dh(Zs)G

′
sδŶs,t

)�]
A + I14 + I15.

The second term in the first line vanishes thanks to the martingale property of the stochastic
integral. Similarly, we expand I23 using (69). Notice that the term (69b) vanishes because the
stochastic integral is a martingale. The term (69a) produces a term of regularity α, the others
have regularity 2α.

I23 = E
[
Xs

(
Dh(Xs)F

′δYs,t − Dh(Zs)G
′
sδŶs,t

)�]
A + I24,

where I24 := E[Xs((69c) + · · · + (69g))]A. We thus obtain that

δ
(
P
(
πx·
)− P

(
πz·
))

s,t = E
[
(Xs − Zs)

(
Dh(Zs)G

′
sδŶs,t

)�]
A

+E
[
Xs

(
Dh(Xs)F

′δYs,t − Dh(Zs)G
′
sδŶs,t

)]
A + Rs,t
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= E
[
Xs

(
Dh(Xs)F

′δYs,t

)�]
A −E

[
Zs

(
Dh(Zs)G

′
sδŶs,t

)�]
A + Rs,t

= P
(
πx

s

)′
δYs,t + P

(
πz

s

)′
δŶs,t + Rs,t

with Rs,t = I11 + I12 + I14 + I15 + I21 + I22 + I24. For 1 ≤ l ≤ D and 1 ≤ j ≤ d we write
the (l, j) entry of the matrix as

δ
(
P
(
πx)− P

(
πz))l,j

s,t =
D∑

k=1

E
[
X

l

s

(
Dh(Xs)

�A
)i,k(

F ′
s

)k] · δYs,t

−
D∑

k=1

E
[
Z

l

s

(
Dh(Zs)

�A
)i,k(

G′
s

)k] · δŶs,t + RP l,j

s,t .

We must now find estimates for [R]2α . We start by some estimates of the processes in Lρ .
From equation (58) we have

(70)
∥∥∥ sup
t∈[0,T ]

|Xt − Zt |
∥∥∥
L

ρ
ω

≤ C
(‖F − G‖Cb

+ ‖X0 − Z0‖L
ρ
ω

)
.

It follows from the equations for X and Z as well as estimate (70) that∥∥[X − Z]α
∥∥
L

ρ
ω

≤ CT

(
1 + ‖X0‖L

ρ
ω

)∥∥∥ sup
t∈[0,T ]

(Xt − Zt)
∥∥∥
L

ρ
ω

≤ CT

(‖F − G‖Cb
+ ‖X0 − Z0‖L

ρ
ω

)
.

Using Lemma 4.7 we also have∥∥[X − Z]α
∥∥
L

ρ
ω

≤ ∥∥[X]α
∥∥
L

ρ
ω

+ ∥∥[Z]α
∥∥
L

ρ
ω

≤ CT .

From (60) we have∥∥[X − Z]α
∥∥
L

ρ
ω

≤ CT

(‖F − G‖Cb
+ ‖X0 − Z0‖L

ρ
ω

)+ C[F − G]α.

From (59) we obtain ∥∥[X]α
∥∥
L

ρ
ω
,
∥∥[Z]α

∥∥
L

ρ
ω

≤ CT .

Using the previous estimates we obtain

δ(I11 + I21)s,t ≤ CT ‖h‖C1
b

∥∥∥ sup
t∈[0,T ]

|Xt − Zt |
∥∥∥
L

ρ
ω

|t − s|2α,

δ(I12 + I22)s,t ≤ CT ‖h‖C1
b

∥∥[X − Z]α
∥∥
L

ρ
ω
|t − s|2α,

δ(I14 + I15)s,t ≤ ‖h‖C2
b

∥∥∥[ sup
t∈[0,T ]

|Xt − Zt |
∥∥∥
L

ρ
ω

(
CT + [RG]

2α + ∥∥G′∥∥
Cb

[Ŷ ]α)|t − s|2α.

For I24 we have a combination of the above and an extra term

[I24]2α ≤ · · · + ∥∥F ′ − G′∥∥
Cb

[Y]α + ∥∥G′∥∥
Cb

[Y − Ŷ]α.

Summing up, we get

[R]2α ≤ C
(‖F − G‖Cb

+ ‖X0 − Y0‖L
ρ
ω

+ [F − G]α)(CT + [RG]
2α + ∥∥G′∥∥

Cb
[Ŷ ]α)

+ ∥∥F ′ − G′∥∥
Cb

[Y]α + ∥∥G′∥∥
Cb

[Y − Ŷ]α,

which gives the desired estimate using the assumption ‖G‖D2α

Ŷ
≤ C‖Ŷ‖α .
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We now look at the difference between the Gubinelli derivatives. From (63) we get

δ
(
P
(
πx)− P

(
πz))

s,t = δE
[
(X· − Z·)Dh(X·)F ′·

]
s,t + δE

[
Z·
(
Dh(X·) − Dh(Z·)

)
F ′·
]
s,t

+ δE
[
Z·Dh(Z·)

(
F ′· − G′·

)]
s,t .

By analysing each term independently and with similar reasoning as in the case of the re-
mainder, we obtain[

P
(
πx)− P

(
πz)]

α ≤ (CT + ‖Y‖α

)(‖F − G‖Cb
+ ‖X0 − Z0‖Lρ + [F ′ − G′]

α

)
.

Estimate (67) is obained by putting together the estimates on the remainder and the Gubinelli
derivatives. �

We are now ready to prove the main well-posedness result.

THEOREM 4.15. Let 1/3 < α < ᾱ < 1/2. Let ρ > 2/(1 − 2α) and X0,Z0 ∈ Lρ . Let Y ∈
C ᾱ([0, T ];Rd). If b, σ and h satisfy Assumptions 3 and 4, then equation (62) admits a unique
solution (X,F ) ∈ Lρ(C([0, T ];RD)) × D2α

Y ([0, T ];RD) in the sense of Definition 4.12.

PROOF. If X, F solves equation (62), then necessarily F ∈ C([0, T ];RD) and we can
apply the a priori bound in Lemma 4.9 to see that X ∈ Lp(C([0, T ];Rd)). A process X :
� → C([0, T ];RD) is a solution to equation (62) if and only if P(L(X)) is a fixed point of

, defined in (66).

We want to prove that 
 : D(
) → D(
) is a contraction. If f,g ∈ D(
) we have that
F , G defined as in (65) satisfy the assumptions of Lemma 4.14 with a global constant C =
C(h,M). By taking Y = Ŷ and X0 = Z0 the estimate in Lemma 4.14 reduces to∥∥
(f ) − 
(g)

∥∥
D2α

Y
≤ CT

(
M,‖Y‖ᾱ

)(‖f − g‖D2α
Y

+ ‖f0 − g0‖Cb

)
, f, g ∈ D(
).

Choosing now T0 small enough such that CT0 < 1, we have that 
 is a contraction on the
closed subset D(
) ⊂ D2α

Y ([0, T0],L(Rd,RD)). Hence, 
 admits a unique fixed point.
Since the small constant CT0 in the definition of the domain D(
) of 
 and in the contrac-

tion argument only depends on the global quantities h, M , Y and not on the initial condition
X0, we can construct a finite family of subsequent time intervals of size T0 that covers [0, T ].
On each of these time interval we construct the solution as a fixed point of 
. �

COROLLARY 4.16. Let 1/3 < ᾱ < 1/2 and ρ > 2/(1 − 2ᾱ). Let X0 ∈ Lρ and Y1,Y2 ∈
C ᾱ . For i = 1,2, let Xi be the solution to equation (62) with driver Yi and initial condition
X0. Call πi := L(Xi) ∈Pρ(C([0, T ];RD)). There exists a positive constant C > 0 such that

Wρ,C([0,T ];RD)

(
π1, π2)≤ Cρᾱ

(
Y1,Y2).

PROOF. It follows from Lemma 4.9 and Lemma 4.14 that the solution map Y → X

of equation (62) is a Lipschitz-continuous function between the spaces C ᾱ([0, T ];Rd) and
Lρ(C([0, T ];RD)). The corollary follows as the Wasserstein distance between π1 and π2 is
always less than or equal to the Lρ distance between X1 and X2. �

We now proceed to prove a Wong–Zakai type result when X is the solution to equation
(62) driven by the Itô lift Y of a Brownian motion. We introduce the approximation Xn as
the solution of

dXn
t = b

(
Xn

t ,L
(
Xn

t

))
dt + σ

(
Xn

t ,L
(
Xn

t

))
dWt + dFn

t , Xt |t=0 = X0,(71a)

Ḟ n
t = P

(
L
(
Xn

t

))
Ẏ n

t − 1

2
P
(
L
(
Xn

t

))�
E
[
X

n

t Dh
(
Xn

t

)�]
A.,(71b)

where Yn is a piecewise linear approximation of Y . We have the following result.
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THEOREM 4.17. The solution Xn converges to X in the Wasserstein distance, viz P-a.s.
we have

Wρ,C([0,T ];RD)

(
L
(
Xn),L(X)

)→ 0

as n → ∞.

PROOF. We start by noting that Xn solves (71) if and only if it solves the rough path
equation

dXn
t = b

(
Xn

t ,L
(
Xn

t

))
dt + σ

(
Xn

t ,L
(
Xn

t

))
dWt + dFn

t , Xt |t=0 = X0,

dFn
t = P

(
L
(
Xn

t

))
dYn,Itô

t ,

where

Yn,Itô
st =

(
δY n

s,t ,

∫ t

s
δY n

s,r ⊗ Ẏ n
r dr − 1

2
(t − s)Id×d

)
.

Indeed, the local approximation of Fn is

Fn
s,t ≈ P

(
L
(
Xn

s

))
δY n

s,t + P ′(L(Xn
s

))(∫ t

s
δY n

s,r ⊗ Ẏ n
r dr − 1

2
(t − s)Id×d

)
.(72)

The first term in the right hand side contributes for the first term in the right hand side of
(71b). The second term in the right hand side of (72) has Hölder regularity greater than 1
and vanishes when summing over [s, t] in a partition of [0, T ] and sending the mesh of the
partition to 0. Finally the third term in the right hand side of (72) contributes for the second
term in the right hand side of (71b), indeed from (63) with πs = L(Xn

s ) and F ′
s = P(L(Xn

s ))

we have

(73)
1

2
(t − s)P

(
L
(
Xn

s

))′
Id×d = 1

2
P
(
L
(
Xn

s

))�
E
[
X

n

s Dh
(
Xn

s

)�]
A(t − s).

It is well known that the canonical lift of Yn,

Yn,Str
st =

(
δY n

s,t ,

∫ t

s
δY n

s,r ⊗ Ẏ n
r dr

)
,

converges P-a.s. in the rough path topology to the rough path

YStr
st =

(
δYs,t ,

∫ t

s
δYs,r ⊗ ◦dYr

)
,

where the latter integral is the Stratonovich integral. From this it follows immediately that

Yn,Itô
st →

(
δYs,t ,

∫ t

s
δYs,r ⊗ ◦dYr−1

2
(t − s)Id×d

)
=
(
δYs,t ,

∫ t

s
δYs,r ⊗ dYr

)
,

where the latter integral is the Itô integral. The result now follows from Corollary 4.16. �

4.5. Proof of Theorem 1.1. We can now proceed with the proof of the main theorem.

Well-posedness of the rough stochastic McKean–Vlasov equation (11). Given the coeffi-
cients of equation (11) we transform it into equation (62) by defining the following coeffi-
cients:

b(x,π) := f (x) − P(π)h(x),

σ (x,π) :=
(
G

1
2 − P(π)U, −P(π)R

1
2

)
,

P (π) := Covπ(x,h)C−1 + B.
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The m-Brownian motion W in (62) stands for the paired independent Brownian motions
(Ŵ , V̂ ) of equation (11), with m = D + d . Moreover, if Y = (Y,Y) is any given rough path,
we can modify it by a bounded variation term to obtain

Ys,t :=
(
Ys,t ,Ys,t−1

2
(t − s)C

)
.

We have that equation (62) driven by Y corresponds to equation (11) driven by Y and the
term 1

2(t − s)C generates the correction term 
(π). Hence, the proof of well-posedness and
stability of equation (11) follows from Theorem 4.15 and Corollary 4.16.

Well-posedness of the McKean–Vlasov equation with common noise (10). The uniqueness
of equation (10) follows from Lemma 4.3, as the coefficents of equation (10) satisfy Assump-
tion 2. The following lemma gives existence.

LEMMA 4.18. Let Xy denote the solution of (11) and let Y(ω) denote the Stratonovich
rough path lift of the Brownian motion Y . Then XY is the solution of (10) and we have

(74) E
[
φ
(
XY

t

)|Yt

]
(ω) = E

[
φ
(
X

y
t

)]∣∣
y=Y(ω)|[0,t], PY -a.e. ω

for any φ ∈ Cb(R
D,R).

PROOF. Since the Stratonovich rough path lift of Y |[0,t] coincides with (Y,Y)|[0,t], we
notice that by uniqueness, we have

XY
t = X

Y|[0,t]
t .

Since Y|[0,t] is independent of σ(Ŵs, V̂s,X0,0 ≤ s ≤ t), then it is also independent of X
y
t for

every y ∈ C α([0, t];Rd). Using the monotone class theorem for functions we get (74).
From [53], Corollary 5.2, we get that∫

P
(
π̂(ω)

)
dY(ω) =

(∫
P(π̂) ◦ dY

)
(ω) for P-a.e. ω,

where π̂t = L(XY | Yt ) = L(Xy)|y=Y, the second equality is by definition (74). Hence XY

satisfies (10). �

5. The interacting particle system. In this section we prove well-posedness and con-
vergence of the interacting particle system (13) in the case when Y is a path of bounded
variation.

To compress the notation and have a slightly more general result we study the following
mean-field system:

(75)
dX

i,N
t = [

b
(
X

i,N
t ,μN

t

)+ P
(
μN

t

)
Ẏt + 


(
μN

t

)]
dt + σ

(
X

i,N
t ,μN

t

)
dWi

t ,

X
i,N
t |t=0 = Xi

0, i = 1, . . . ,N,

where μN
t := 1

N

∑N
i=1 δ

X
i,N
t

. The variable X
i,N
t is in the state space R

D . (Wi)i∈N is a family

of independent m-dimensional Brownian motions and (Xi
0)i∈N is a family of independent

and identically distributed initial conditions with law π0 ∈ P(RD). Moreover, assume that
Ẏ : [0, T ] → R

D is càdlàg and bounded. We assume that the coefficients b, σ and P satisfy
Assumption 3 and 4, but notice that P only depends on the measure. For the coefficient 
 we
assume the following.

ASSUMPTION 5. Let ρ ≥ 1, assume that there exists a constant C > 0 such that:
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(i) (linear growth) ∀π ∈ Pρ(Rd),∣∣
(π)
∣∣≤ C

(
1 + M

ρ
(π)

) 2
ρ ,

(ii) (Lipschitz continuity) ∀π,ν ∈Pρ(RD),∣∣
(π) − 
(ν)
∣∣≤ C

(
1 + M

ρ
(π)2 + M

ρ
(ν)
) 1

ρ Wρ,RD(π, ν).

REMARK 5.1. Notice that the growth is quadratic in the central moments of the measure.
Also, the best Lipschitz constant we can hope for is the square of the central moment of one
measure and the central moment of the other.

REMARK 5.2. By doing the same substitution as in Section 4.5 and taking (9) for 
 we
recover the interacting particle system (13).

LEMMA 5.3. Let T > 0 and ρ ≥ 1. If the initial distribution π0 has finite ρ-moment,
then equation (75) admits a pathwise unique strong solution on [0, T ]. Moreover, there exists
C = C(ρ,π0, T ) > 0 such that

(76)
1

N

N∑
j=1

E

[
sup

t∈[0,T ]
∣∣Xj,N

t

∣∣ρ]≤ C, max
i=1,...,N

E

[
sup

t∈[0,T ]
∣∣Xi,N

t

∣∣ρ]≤ C
(
1 + ‖Ẏ‖∞

)
,

where X
i,N = Xi,N − 1

N

∑N
j=1 Xj,N , for i = 1, . . . ,N .

PROOF. Under Assumptions 3, 4 and 5, the coefficients are locally Lipschitz and there
is classically strong existence and pathwise uniqueness for the SDE (75) up to an explosion
time τ . We want to prove that τ > T . Let us call the solution X

(N)
t = (X

i,N
t , . . . ,X

N,N
t ).

Since the coefficents P and 
 do not depend on the state variable x we have the following

identity for X
i,N

, i = 1, . . . ,N :

dX
i,N

t =
(
b
(
X

i,N
t ,μN

t

)− 1

N

N∑
j=1

b
(
Xj,N,μN

t

))
dt + σ

(
X

i,N
t ,μN

t

)
dWi

t

− 1

N

N∑
j=1

σ
(
Xj,N,μN

t

)
dW

j
t .

Notice that

M
ρ(

μN
t

)= EμN
t

[∣∣X −EμN
t
[X]∣∣ρ]= 1

N

N∑
i=1

∣∣Xi,N

t

∣∣ρ.

Using Assumption 3 we obtain that for every ρ ≥ 2 there exists a constant C > 0 independent
of Ẏ and N such that

E

[
sup
s≤t

∣∣Xi,N

s

∣∣ρ]≤ E
[∣∣Xi,N

0
∣∣ρ]+ C

∫ t

0

(
1 + 1

N

N∑
j=1

E
[∣∣Xj,N

s

∣∣ρ])ds.

Taking the mean over i and using Gronwall’s lemma we obtain the first estimate in (76). We
can now estimate the moments of Xi,N as follows:

E

[
sup

t∈[0,T ]
∣∣Xi,N

t

∣∣ρ]≤ C
(
1 + ‖Ẏ‖∞

) ∫ T

0
E
[(

1 + M
ρ(

μN
s

))]2 ds ≤ (1 + ‖Ẏ‖∞
)
C,

where C = C(ρ,π0, T ) can change from one inequality to the next. Since X(N) has finite
L

ρ
ω-norm on the interval [0, T ], it means that the explosion time satisfies τ > T . �
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REMARK 5.4. Notice that in Lemma 5.3 the choice of T > 0 was arbitrary, which im-
plies that the system of interacting particles is well posed on intervals of any length.

5.1. Propagation of chaos. For i = 1, . . . ,N , we introduce the following McKean–
Vlasov equation:

(77)
dXi

t = [
b
(
Xi

t ,πt

)+ P(πt )Ẏt + 
(πt )
]
dt + σ

(
Xi

t ,πt

)
dWi

t ,

πt = L
(
Xi

t

)
, Xi

t |t=0 = Xi
0 ∼ π0.

By construction the random variables X1, . . . ,XN are independent and identically dis-
tributed.

Equation (77) is well-posed because it corresponds to equation (62) driven by the rough
path

Yst :=
(
Ys,t ,

∫ r

s
Ys,r ⊗ Ẏr dr − 1

2
(t − s)Id×d

)
,

where Yt := ∫ t
0 Ẏr dr . Notice that, since Ẏ is càdlàg and bounded, the path Y is Lipschitz

continuous which is much more regular than α-Hölder with α ∈ (1
3 , 1

2 ].
Let X

i := Xi −E[Xi] and notice that, by definition M
ρ
(πt ) = ‖Xi

t‖ρ

L
ρ
ω

. Using the a priori
estimate in Lemma 4.7 and Assumptions 3 and 5 we can see that, for any ρ ≥ 2 we have an
estimate on the central moments of πt ,

M
ρ
(πt ) ≤

∥∥∥ sup
t∈[0,T ]

∣∣Xi

t

∣∣∥∥∥ρ
L

ρ
ω

≤ C
[
1 + M

ρ
(π0)

]ρ
.

From this one can easily recover the following estimate for the moments of πt :

(78)
Mρ(πt )

1
ρ ≤ C

(
1 + ‖Ẏ‖∞

)(
Mρ(π0) + M

2ρ
(πt )

) 1
ρ

≤ C
(
Mρ(π0) + ‖Ẏ‖∞

)(
1 + M

2ρ
(π0)

)2
,

where C = C(ρ,T ).

REMARK 5.5. Notice that the ρ-moment of πt is only bounded by the 2ρ-central mo-
ment of π0 because of the quadratic growth of 
 from Assumption 5.

In the following we will hide the dependence on π0 in the constant C and only focus
on the explicit dependence on ‖Ẏ‖∞. We define the empirical measure associated with the
independent particles Xi as μN

t := 1
N

∑N
i=1 δXi

t
. It follows from [50], Theorem 1, that for any

ρ > ρ there exists an explicit rate of convergence H(N) = H(N,ρ,ρ) such that H(N) → 0
as N → ∞ and

(79) E
[
Wρ,RD

(
μN

t ,πt

)ρ]≤ Mρ(πt )
ρ
ρ H(N) ≤ C

(
1 + ‖Ẏ‖∞

)
H(N),

where in the last inequality we used (78) and C depends on the moments of π0.
Moreover, the rate is optimal and explicitly given as

H(N) =

⎧⎪⎪⎨⎪⎪⎩
N− 1

2 + N
1− ρ

ρ , ρ >
D

2
, ρ �= 2ρ,

N− ρ
D + N

1− ρ
ρ , 1 ≤ ρ <

D

2
, ρ �= D

D − 2
.
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Notice that if we have enough moments the optimal rate of convergence for independent
particles is H(N) = 1√

N
. Furthermore, we have the following estimate, because μN and μN

are both empirical measures:

Wρ,RD

(
μN

t ,μN
t

)ρ ≤ 1

N

N∑
i=1

∣∣Xi,N
t − Xi

t

∣∣ρ,

so that we have from the triangle inequality

(80) sup
t∈[0,T ]

E
[
Wρ,RD

(
μN

t ,πt

)ρ]≤ C
(
1 + ‖Ẏ‖∞

)
H(N) + sup

t∈[0,T ]
1

N

N∑
i=1

E
∣∣Xi,N

t − Xi
t

∣∣ρ,

where C depends on the 2ρ-moment of π0, for ρ > ρ. Now that we have stated most of the
preliminaries we can prove the following convergence result.

PROPOSITION 5.6. Let ρ > ρ ≥ 2. If X0 ∈ L
2ρ
ω , there is a function J (N) =

O(log(N)−1) such that

max
i=1,...,N

E

[
sup

t∈[0,T ]
∣∣Xi,N

t − Xi
∣∣ρ]� e‖Ẏ‖∞J (N).

PROOF. We call X
i,N := Xi,N − 1

N

∑N
j=1 Xj,N , for i = 1, . . . ,N and recall that the cen-

tral moment for the empirical measure is M
ρ
(μN

t ) = 1
N

∑N
i=1 |Xi,N

t |ρ . For R > 0, we define
the stopping time TR := inf{t ≥ 0 : Mρ

(μN
t ) ≥ R}.

We set Zi := Xi,N − Xi and using Assumptions 3 and 5 as well as inequality (80) and
Lemma 4.7 we compute the following:

max
i=1,...,N

E
[∣∣Zi

t

∣∣ρ1{TR>t}
]

≤ CE

[∫ t∧TR

0

(
1 + M

2ρ
(πs)‖Ẏ‖∞ + M

ρ(
μN

s

))(∣∣Zi
s

∣∣+ Wρ,RD

(
πs,μ

N
s

))ρ ds

]
≤ C

(
1 + ‖Ẏ‖∞ + R

)[∫ t

0
max

i=1,...,N
E
[∣∣Zi

s

∣∣ρ1{TR≥s}
]
ds + H(N)

]
.

Using Gronwall’s inequality we obtain

max
i=1,...,N

E
[∣∣Zi

t

∣∣ρ1{TR>t}
]≤ C

(
1 + ‖Ẏ‖∞

)
eC(1+‖Ẏ‖∞)ReCRH(N).

Now we compute the following using Cauchy–Schwarz and Markov inequalities as well as
(76):

E
[∣∣Zi

t

∣∣ρ1{TR≤t}
]≤ C

(
E
[∣∣Zi

t

∣∣2ρ]) 1
2P(TR ≤ t)

1
2 ≤ CP

(
sup
s≤t

M
ρ(

μN
s

)≥ R
) 1

2

≤ C

R
1
2

(
1

N

N∑
i=1

E

[∣∣∣ sup
t∈[0,T ]

X
i,N

t

∣∣∣ρ]) 1
2

≤ C

R
1
2

.

Notice that we used E[|Zi
t |2ρ] ≤ C(E[|Xi,N

t |2ρ] + E[|Xi
t |2ρ]) ≤ C(1 + ‖Ẏ‖∞), hence we

need from Remark 5.5 that the initial measure π0 has finite 2ρ moments. We can put together
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the estimates to obtain

max
i=1,...,N

E
[∣∣Zi

t

∣∣ρ]≤ C

R
1
2

+ C
(
1 + ‖Ẏ‖∞ + R

)
eC(1+‖Ẏ‖∞)eCRH(N)

≤ CeC(1+‖Ẏ‖∞)

(
1

R
1
2

+ eCRH(N)

)
,

where we changed the constants from one line to the next. Now choose R = R(N) such that

R(N) → ∞, eCR(N)H(N) → 0 as N → ∞.

Remember that H(N) ≈ N−γ with γ < 1
2 so that choosing R(N) ≈ log(Nγ ) for some 0 <

γ <
γ
C

we have a rate of convergence

J (N) ≈ (
γ log(N)

)−1 + NγC−γ ≈ log(N)−1. �

REMARK 5.7. Notice that the rate of convergence is far from the optimal 1√
N

of a sam-
ple of independent and identically distributed random variables. This is due to the nonlocal
Lipschitz condition on 
 in Assumption 5.

Finally, we can put together Corollary 4.16 and Proposition 5.6.

THEOREM 5.8. Let δ > 0 and Yδ be a bounded differentiable approximation of a ge-
ometric rough path Y = (Y,Y) ∈ C α . Let μN,δ be the empirical measure of the system of
mean-field particles (75) with input Yδ . Moreover, let π be the law of the solution to equation
(62) driven by (Y,Y− 1

2(t − s)Id) ∈ C α .
Then there exists ρ > 0 and a sequence δ(N) such that δ(N) → 0 and

sup
t∈[0,T ]

E
[
Wρ,RD

(
μ

N,δ(N)
t , πt

)ρ]→ 0 as N → ∞.

PROOF. Let δ ≡ δ(N) > 0 to be chosen later. Let πδ(N) be the law of a solution to (77).
By the triangle inequality, Proposition 5.6 and Corollary 4.16 (which can be applied for every
ρ > 2/(1 − 2ᾱ))

sup
t∈[0,T ]

E
[
Wρ,RD

(
μ

N,δ(N)
t , πt

)ρ]� sup
t∈[0,T ]

E
[
Wρ,RD

(
μ

N,δ(N)
t , π

δ(N)
t

)ρ]
+ Wρ,C([0,T ];RD)

(
πδ(N),π

)
� e‖Ẏ δ(N)‖∞J (N) + ρα

(
Yδ(N),Y

)
.

Choosing δ(N) such that ‖Ẏ δ(N)‖∞ = o(log(J (N)−1)) = o(log(log(N))) we have that the
right hand side vanishes as N → ∞. �

6. The numerical scheme, construction of the lift and examples. In this section we
derive the RP-EnKF (rough path ensemble Kalman filter) numerical scheme alluded to in
the Introduction (see equation (14)), discuss the construction of appropriate rough path lifts,
and provide details concerning the implementation. Furthermore, we demonstrate its effec-
tiveness in the context of misspecified and multiscale models by means of a few examples in
the context of parameter estimation. This setting provides a convenient testbed for the sce-
nario where the model and observation noises are correlated, and we expect our conclusions
regarding (non-)robustness to be relevant more generally.
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6.1. Numerical scheme.

Discretising in time. A natural scheme for approximating the dynamics of the interacting
particle system (13) is given by

Xi
k+1 = Xi

k + f
(
Xi

k

)
�t + G1/2

√
�tξ i

k

+ P̂k

(
�Yk − (

h
(
Xi

k

)
�t + U

√
�tξ i

k + R1/2
√

�tηi
k

))
+ Ĉovk(x,Dh)P̂k�Yk + 
̂k�t,

(81a)

where �t > 0 is the step size, and (ξ i
n) and (ηi

n) denote independent zero mean Gaussian
random variables with unit variance of dimensions D and d , respectively. In the above dis-
play, P̂k := Ĉovk(x, h)C−1 + B and Ĉovk(x,Dh) refer to the standard unbiased empirical
estimators of the covariance, that is,

Ĉovk(x, h) = 1

N − 1

N∑
i=1

(
Xi

k − X̄k

)⊗ h
(
Xi

k

) ∈ R
D×d,(82a)

Ĉovk(x,Dh) = 1

N − 1

N∑
i=1

(
Xi

k − X̄k

)⊗ Dh
(
Xi

k

) ∈R
D×d×D,(82b)

where

(83) X̄k = 1

N

N∑
i=1

Xi
k

refers to the empirical mean. With (82) in place, the standard empirical estimator for 
 as
defined in (9) is given by

(84) 
̂k,γ = −1

2
Trace

(
Ĉovk,γ (x,Dh)P̂k

)
,

where 
̂k,γ denotes the γ th component of 
̂k ∈ R
D , and a similar convention is used for

Ĉovk,γ (x,Dh). The precise meaning of the first term in equation (81a) is

(
Ĉovk(x,Dh)P̂k�Yk

)
γ =

d∑
j,q=1

D∑
r=1

Ĉovk(x,Dh)γ,j,r (P̂k)r,q(�Yk)q,j , γ = 1, . . . ,D,

and analogously in equation (84) with �Yk replaced by the d-dimensional identity matrix.

REMARK 6.1 (Gubinelli derivative). The first term in (81a) is modelled after the Gu-
binelli derivative P(π̂s)

′ in (12). We would like to stress that a standard time discretisation of
the interacting particle system (13) according to Davie [32] would involve further contribu-
tions accounting for correlations between the particles as well as for cross terms induced by
the joint lift (Y,W,V ) → ((Y,W,V ), (Y,W,V)). At least formally, these additional terms
vanish in the limit as N → ∞, and our numerical experiments have not shown noticeable
benefits of including them.

Constructing the lift Y. In order to implement the RP-EnKF scheme defined in (81), we
need to posit the discrete-time second order increments �Yk ∈ R

d×d , given discrete-time
samples y0, y1, . . . , yn ∈ R

d from (Yt )0≤t≤T . In what follows we will denote the piecewise-
linear interpolation of y0, . . . , yn with step size �t by (Y

(�t)
t )0≤t≤T and consider the decom-

position of �Yk into symmetric and skew-symmetric parts,

(85) �Yk = �Y
sym
k + �Y

skew
k ,
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where

(86)
�Y

sym
k := sym(�Yk) := 1

2

(
�Yk + �Y

�
k

)
,

�Y
skew
k := skew(�Yk) := 1

2

(
�Yk − �Y

�
k

)
.

For the symmetric part, we set

(87) �Y
sym
k = sym

(∫ tk+1

tk

Y
(�t)
tk,r

⊗ dY (�t)
r

)
= 1

2
(yk+1 − yk) ⊗ (yk+1 − yk),

maintaining structural similarities to the defining algebraic relation of weakly geometric
rough paths [53], Section 2.2. We also note that (87) can be thought of as an estimator for the
quadratic variation of Y on the time interval [tk, tk+1]. Defining the skew-symmetric part is
more challenging since5

(88) skew
(∫ tk+1

tk

Y
(�t)
tk,r

⊗ dY (�t)
r

)
= 0,

indicating that information on the enclosed area between two neighbouring points is in-
evitably lost by the discretisation. However, Wong–Zakai type results on piecewise linear
interpolations of semimartingales [28], Proposition 2, as well as the convergence of sim-
plified Euler schemes [39, 52] suggest that the scheme (81) with �Y

skew
k = 0 and �Y

sym
k

as defined in (87), based on data (Yt )0≤t≤T obtained from (1b), recovers (11) in the limit
�t → 0, and our numerical experiments support this conjecture. We leave a detailed analysis
for future work and refer to [9, 49, 80] for specific approaches towards estimating Lévy areas.
We next discuss the setting when the data is only approximately obtained from (1a), in which
case the skew-symmetric contributions �Y

skew
k will play a crucial role:

Correcting Y in the context of model misspecification. Let us consider the case when instead
of observations (Yt )0≤t≤T from (1), we have access to perturbed or modified data (Y ε

t )0≤t≤T ,
so that Y ε → Y in Cα([0, T ];Rd) for some α ∈ (1

3 , 1
2 ], almost surely. Particular instances of

this situation occur when the filtering model (1) arises as a simplified description of a more
elaborate (possibly multiscale) model in the limit as ε → 0 (with ε referring to a scale separa-
tion parameter in the multiscale scenario). For specific examples we refer to Sections 6.2–6.4
below. Assuming for a moment that (Y ε

t )0≤t≤T is in Cγ ([0, T ];Rd) for γ > 1
2 , the canon-

ical lift Yε
s,t = ∫ t

s Y ε
s,r dY ε

r is well defined, and it might seem natural to use Yε := (Y ε,Yε)

in the rough McKean–Vlasov dynamics (11), or a discretised version thereof in the scheme
(14). However, it is then clearly possible that Yε �→ Y := (Y,YStrat) in C α([0, T ];Rd), with
Y

Strat denoting the Stratonovich lift associated to (1b). In this case, the continuity statement
of Theorem 1.1 suggests that the solutions to (11) driven by Y and Yε may be substantially
different, in general, and hence inference based on Yε may be erroneous.6 In this case, we
say that the model providing (Y ε

t )0≤t≤T is misspecified with respect to the filtering model (1)
on which the schemes developed in this paper are built. The degree of misspecification can
be quantified using the rough path metric ρα(Y,Yε), see Section 3.2.

In order to devise a practical method to address the problem exposed in the preceding para-
graph, let us assume that there exists Y = (Y,Y) ∈ C α([0, T ];Rd) such that Yε → Y. Noting

5This relation expresses the fact that the area enclosed by a straight line with itself is zero.
6We remind the reader that the system (11) has been derived on the basis of the approximation stated in

Lemma 2.2 which is only exact in the case when f and h are affine, and π0 is Gaussian. For the sake of discus-
sion in this section, we assume that the incurred error is negligible and the solution to (11) driven by Y provides
sufficiently accurate estimates.
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that Y and Y = (Y,YStrat) lie above the same path Y , we see that the model discrepancy is
captured by

(89) As,t := Y
Strat
s,t −Ys,t , s, t,∈ [0, T ].

Introducing a sequence of equidistant grids with mesh sizes δ > 0, the discrepancy A can be
recovered as follows, commuting the limits δ → 0 and ε → 0.

LEMMA 6.2. Let Y be a semimartingale, and consider its Stratonovich lift Y =
(Y,YStrat). Assume that there exists a convergent family of rough paths Yε = (Y ε,Yε) ⊂
C α([0, T ];Rd),

(90) Yε ε→0−−→ Y = (Y ,Y) ∈ C α([0, T ];Rd), P-a.s.,

so that the limit Y lies above Y , that is, Y = Y , P-a.s. Let us futher denote by Y ε,(δ) and Y (δ)

the piecewise linear interpolations of Y ε and Y , respectively, on an equidistant grid of mesh
size δ > 0. The corresponding (canonical) rough path lifts are given by Y(δ) = ∫

Y (δ) ⊗ dY (δ)

and Y
ε,(δ) = ∫

Y ε,(δ) ⊗ dY ε,(δ), respectively. Moreover, assume that for fixed ε > 0,

(91) Y
ε,(δ) δ→0−−→ Y

ε in C2α
2
([0, T ];Rd×d),P-a.s.

Then the discrepancy A =Y−Y
Strat satisfies

(92) As,t = lim
ε→0

lim
δ→0

Y
ε,(δ)
s,t − lim

δ→0
lim
ε→0

Y
ε,(δ)
s,t , s, t ∈ [0, T ],P-a.s.,

and, furthermore, A is skew-symmetric, that is, A�
s,t = −As,t , P-a.s.

REMARK 6.3. Let us briefly discuss the two main assumptions stated in (90) and (91).
The convergence in (90) expresses the condition that the misspecified model family can
asymptotically be described in terms of rough paths (that do not in general need to agree
with the Stratonovich lift associated to (1b)). The condition in (91) demands that the lift Yε

can be recovered from iterated integrals along piecewise linear interpolations. This is in par-
ticular the case when Y

ε is the canonical lift of a sufficiently regular path Y ε , and also, by
virtue of the Wong-Zakai theorem, for Stratonovich lifts. Although the limits in Lemma 6.2
are assumed to hold in P-almost sure sense, an inspection of the proof below reveals that
analogous versions of this result can straightforwardly be stated in terms of convergence in
distribution or in L1(P). In our numerical experiments in the sections below, the assumptions
of Lemma 6.2 are satisfied (with an appropriate notion of convergence).

PROOF. We have

(93) lim
ε→0

lim
δ→0

Y
ε,(δ) = Y

in C2α
2 ([0, T ];Rd×d) by the assumptions in (90) and (91). On the other hand, we have

(94) lim
δ→0

lim
ε→0

Y
ε,(δ) = lim

δ→0
Y

(δ) =Y
Strat

in C2α
2 ([0, T ];Rd×d), where the first limit follows from explicitly evaluating the iterated

integrals Yε,(δ) and using the fact that Y ε → Y in Cα([0, T ];Rd). The second limit follows
from the Wong–Zakai theorem, see, for instance, [53], Theorem 9.3. To see that A is skew-
symmetric, it suffices to observe that both (Y,YStrat) and Y are geometric rough paths. �
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From Lemma 6.2, setting �Y
skew
k = Atk,tk+1 is expected to correct the model misspecifi-

cation error (see also [40], Section 8.2, and [100]). We also note that Chen’s relation together
with Y = Y implies

(95) As,t = A0,t −A0,s, s, t ∈ [0, T ],
so that it is sufficient to estimate the function t →A0,t . In practice, a realisation of (Y ε

t )0≤t≤T

will only be available for one specific (small) value of ε. To mimic (92), we may however
compute the difference between Y

ε,(δ1) and Y
ε,(δ2) for δ1 � δ2, so that δ1 is small and δ2 is

large in comparison with ε.
Recalling that (Yt )0≤t≤T is typically available in the form of a discrete time series

y0, . . . , yn (to which we can associate a grid with mesh size δ1 = �t coinciding with the
grid for the numerical scheme (81) and with piecewise linear interpolation (Y

(�t)
t )0≤t≤T ),

we are naturally led to the idea of subsampling the data in order to obtain a coarser grid
with mesh size δ2 = τδ1 = τ�t . More precisely, for a specific time-lag τ ∈N≥1, consider the
subsampled sequence y0, yτ , y2τ , . . . , as well as the associated piecewise linear interpolation
(Y

(τ�t)
t )0≤t≤T . The time-lag τ shall be chosen in such a way that the corresponding area

paths

(96)

t → skew
(∫ t

0
Y

(�t)
0,r ⊗ dY (�t)

r

)
=:Yskew,(�t)

0,t ,

t → skew
(∫ t

0
Y

(τ�t)
0,r ⊗ dY (τ�t)

r

)
=:Yskew,(τ�t)

0,t

are “as distinct as possible” (attempting to realise the limiting regimes in (92)), while main-
taining (Y

(�t)
t )0≤t≤T ≈ (Y

(τ�)
t )0≤t≤T . The latter desideratum is motivated by the fact that

Lemma 6.2 holds under the assumption that Y and Y are over the space path Y . The compar-
isons between Y

skew,(�t) and Y
skew,(τ�t) as well as between Y�t and Y τ�t can be made in

supremum norm, for instance. We then set

(97) �Y
skew
k = (

Y
skew,(�t)
0,tk+1

−Y
skew,(�t)
0,tk

)− (
Y

skew,(τ�t)
0,tk+1

−Y
skew,(τ�t)
0,tk

)≈ Atk,tk+1,

for the correction in the numerical scheme (81), relying on (95) and (92). Equation (97) com-
pares the area contributions associated to the original interpolation Y (�t) and the subsampled
interpolation Y (τ�t). The requirement (Y

(�t)
t )0≤t≤T ≈ (Y

(τ�t)
t )0≤t≤T is meant to ensure that

Y (�t) and Y (τ�t) mainly differ at the second-order level Y; visually, the subsampling opera-
tion may be understood as “straightening out” Y and measuring the area difference accumu-
lated thereby.

REMARK 6.4 (Relationship to subsampling in multiscale parameter estimation). As
mentioned in Section 2.3, ideas related to subsampling have been considered extensively
in the context of multiscale parameter estimation (without observational noise), see, for in-
stance, [91, 95]. The method proposed in this section is different in that we use the subsam-
pled paths in order to estimate the Lévy area correction, but otherwise input the original data
path into the RP-EnKF dynamics (14). Moreover, the motivations are distinct: While sub-
sampling in the aforementioned works is used in order to eliminate small-scale fluctuations,
our method is specifically designed to estimate Lévy area correction terms. Our method may
constitute a convenient alternative in complex settings where multiple effects would require
competing subsampling frequencies, posing a challenge to tradional subsampling strategies.
As our approach ultimately uses the resolution of the original data, we would expect to be
able to include effects on multiple scales rather seamlessly into the procedure put forward in
this section. Moreover, our arguments in this section suggest a principled approach towards
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choosing appropriate subsampling frequencies (see also [5, 6] for alternatives in the more tra-
ditional setting of subsampling). We leave a detailed exploration of the connection between
both methods for future work and refer the reader to the follow-up paper [100].

6.2. Physical Brownian motion in a magnetic field. In a first example, we consider a pa-
rameter estimation problem where the dynamics of interest is driven by a physical Brownian
motion subject to a magnetic field. More precisely, physical Brownian motion (Wε

t )t≥0 is
defined in terms of the unique strong solution to the following system of SDEs:

dWε
t = 1

ε
MP ε

t dt, Wε
0 = 0,(98a)

dP ε
t = −1

ε
MP ε

t dt + dW 0
t , P ε

0 = 0,(98b)

where Wε
t ,P ε

t ∈ R
2, (W 0

t )t≥0 is a standard (mathematical) two-dimensional Brownian mo-
tion, and ε � 1 is a small parameter, the limit ε → 0 corresponding to the regime of negligible
particle mass. Furthermore, the matrix M is given by

(99) M =
(

1 γ

−γ 1

)
,

with γ ∈ R being a real-valued parameter associated to the strength of the magnetic field.
For fixed α ∈ (1/3,1/2) and T > 0, it is known that (Wε,Wε) → (W 0,Wphys(γ )) in
C α([0, T ];Rd) and L1 as ε → 0, where

(100) W
ε
s,t =

∫ t

s
Wε

s,r ⊗ dWε
r

denotes the canonical lift, and

(101) W
phys
s,t (γ ) =

∫ t

s
W 0

s,r ⊗ ◦dW 0
r + (t − s)D,

with area correction

(102) D = 1

2

(
0 γ

−γ 0

)
,

see [51] and [53], Section 3.4. The setting is reminiscent of the passage between under-
damped and overdamped Langevin dynamics, see [94], Section 6.5.1, and [95], Section 2.2.
Similar to [40], Section 8.2, we consider the problem of estimating the parameter θ ∈R in

(103) dZε
t = θf

(
Zε

t

)
dt + dWε

t , Zε
0 = 0,

given noisy observations of the path (Zε
t )0≤t≤T , that is, given a path (Y ε

t )0≤t≤T of the solution
to

(104) dY ε
t = dZε

t + R1/2 dVt , Y0 = 0,

see Section 2.3. In (103) and (104), we allow for both ε = 0 and ε > 0, that is, we con-
sider the dynamics driven by both mathematical and physical Brownian motion. Note that
in the noiseless case R = 0 our setting coincides with the one discussed in [40, 100], see
also Appendix B. Standard arguments show that both (Zε,Zε) and (Y ε,Yε) converge in
C α([0, T ];Rd) with a nontrivial area correction akin to (101), where in the latter case, Yε

refers to the Stratonovich iterated integrals. As an illustration, we plot sample paths of t → Zε
t

and an off-diagonal component of t → ∫ t
0 Zε

s ⊗ dZε
s in Figure 1, comparing the cases ε = 0

and ε = 10−2, for the same realisation of (a discretised version of) (W 0
t )0≤t≤T . Crucially, the

convergence towards a nontrivially lifted path as expressed in (101) manifests itself in the
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FIG. 1. t → Zε
t and t → ∫ t

0 Zε
s ⊗ dZε

s for mathematical and physical Brownian motion.

offset between the paths in Figure 1b, corresponding to a component of A in (92). Through-
out this section, we choose a fine time step of �t = 10−4 for all the involved approximations,
N = 10 for the number of particles, θtrue = 1/2 for the parameter to be recovered, γ = −2.0
for the strength of the magnetic field, R = 0.1 for the variance of the observation noise, and
f (z1, z2) = −(z1 − z2, z1 + z2)

� for the drift in (103).
To test the robustness of the EnKF scheme (18) and the RP-EnKF scheme (14), we gen-

erate data according to (103) and (104) for both ε = 0 (mathematical Brownian motion) and
ε = 10−2 (physical Brownian motion). We would like to stress that the filtering methodol-
ogy (expressed in terms of the schemes (18) and (14)) is however based on the model (1)
and therefore tailored to the case ε = 0. In Figure 2, we show the empirical mean of the θ̂ -
components for the output of the EnKF-dynamics (18), considering both mathematical and
physical Brownian motion as drivers in (103). Evidently, the EnKF is not robust, in the sense
that it fails to recover the true parameter θtrue in the case when ε = 10−2, see Figure 2b.

We proceed by showing the corresponding results for the RP-EnKF scheme defined by
(81) in Figure 3, demonstrating the robustness promised by Theorem 4.17. For the required

FIG. 2. Output (empirical mean of the θ̂ -components) of the EnKF-scheme (18), for data obtained from the
dynamics (103) driven by either mathematical or physical Brownian motion. The blue line indicates the true value
θtrue = 1

2 . To suppress sampling error, we plot averaged results computed from 5 independent runs.
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FIG. 3. Output (empirical mean of the θ̂ -components) of the RP-EnKF-scheme (14), for data obtained from the
dynamics (103) driven by either mathematical of physical Brownian motion. The blue line indicates the true value
θtrue = 1

2 . To suppress sampling error, we plot averaged results computed from 5 independent runs.

(discrete-time) lift �Y, we use the construction detailed in Section 6.1. More precisely, in the
case of physical Brownian motion, we set the time-lag to τ = 700. In the case of mathematical
Brownian motion, we set the skew-symmetric part in (85) to zero, �Y

skew
k = 0, correspond-

ing to the choice τ = 1. These choices have been made on the basis of the subsampled area
processes t → skew(

∫ t
0 Y

ε,(τ�t)
s ⊗dY

ε,(τ�t)
s ) depicted in Figure 4. More precisely, Figures 4a

and 4c show the dependence t → skew(
∫ t

0 Y
ε,(τ�t)
s ⊗ dY

ε,(τ�t)
s ) with different values of the

time-lag τ , for physical Brownian motion (ε = 10−2, Figure 4a) and mathematical Brownian
motion (ε = 0, Figure 4c). While the subsampling only minimally effects the area process
associated to the process driven by mathematical Brownian motion (Figure 4c), we observe
a systematic shift in the case of physical Brownian motion (Figure 4c), revealing the latent
multiscale structure. The difference between the original and subsampled area processes for
physical Brownian motion is shown in Figure 4b. As the time-lag τ increases, said differ-
ence approaches the theoretically expected area correction implied by (101)–(102). The fact
that the difference between the original and the subsampled area process reaches a plateau
at around τ = 700 is illustrated in Figure 4e, as opposed to the difference between the orig-
inal and the subsampled paths, see Figure 4d. Consequently, the choice τ = 700 strikes a
balance between separating the original and subsampled area processes as much as possible
while maintaining similarity between the original and subsampled paths (as suggested by the
discussion motivating (97)).

6.3. Fast chaotic dynamics—Lorenz-63. In this example, we consider the rescaled
Lorenz ordinary differential equations [103] for Lε

t = (L
(1),ε
t ,L

(2),ε
t ,L

(3),ε
t ) ∈R

3,

L̇
(1),ε
t = σ

ε2

(
L(2),ε − L(1),ε), L

(1),ε
0 = l

(1)
0 ,(105a)

L̇
(2),ε
t = 1

ε2

(
ρL(1),ε − L

(2),ε
t − L

(1),ε
t L

(3),ε
t

)
, L

(2),ε
0 = l

(2)
0 ,(105b)

L̇
(3),ε
t = 1

ε2

(
L

(1),ε
t L

(2),ε
t − βL

(3),ε
t

)
, L

(3),ε
0 = l

(3)
0 ,(105c)

with the standard parameters σ = 10, ρ = 28 and β = 8
3 as an example of fast chaotic dynam-

ics approximating Brownian noise (with nontrivial area correction). We would like to stress
that the phenomena described in this section can be considered generic across a wide range
of fast chaotic deterministic dynamical systems, and refer the reader to [19] for an overview.
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FIG. 4. Illustration of the subsampling procedure from Section 6.1 for constructing the discrete-time lift �Y.

(4a): Area processes t → skew(
∫ t
0 Y

ε,(τ�)
s ⊗ dY

ε,(τ�t)
s ) (off-diagonal component) for physical Brownian mo-

tion (ε = 10−2) and time-lags τ = 100(green), . . . , 800 (yellow). The area process associated to the path with-
out subsampling is plotted in black. (4b): Differences of original and subsampled area processes in the case

of physical Brownian motion (ε = 10−2), that is, t → ∫ t
0 (Y

ε,(τ�t)
s ⊗ dY

ε,(τ�t)
s − Y

ε,(�t)
s ⊗ dY

ε,(�t)
s ), in the

spirit of (97). The dashed line represents the theoretically expected area correction according to (101). (4c):
Area processes associated to mathematical Brownian motion (ε = 0), same colour scheme as for Figure 4a. (4d):

L2-discrepancy between the original path (Y
(�t)
t )0≤t≤T and the subsampled path (Y

(τ�t)
t )0≤t≤T as a function

of the time-lag τ for physical Brownian motion (ε = 10−2). (4e): L2-discrepancy between the original area pro-

cess skew(
∫ ·
0 Y

(�t)
s ⊗ dY

(�t)
s )0≤t≤T and the subsampled area process skew(

∫ ·
0 Y

(τ�t)
s ⊗ dY

(τ�t)
s )0≤t≤T as a

function of the time-lag τ for physical Brownian motion (ε = 10−2).

With ε = 1, the system (105) has originally been proposed as a simplified model for at-
mospheric convection [84], and can serve as a prototype for the study of chaotic ODEs. As
is well known, (105) possesses a “strange” chaotic attractor � equipped with a unique SRB
(Sinai–Ruelle–Bowen) measure7 μ, see [113]. For ε � 1, a random initial condition Lε

0 ∈ R
3

and after appropriate centering and rescaling, the solution (Lt )t≥0 is well approximated by a
Brownian motion with a nontrivial area correction in the sense of rough paths:

For Hölder-continuous observables v : R3 → R
m that are μ-centered (i.e.,

∫
R3 v dμ = 0),

a functional CLT (or weak invariance principle) holds for

(106) Wε
t := 1

ε

∫ t

0
v
(
Lε

s

)
ds,

assuming that Lε
0 is initialised randomly according to μ. More precisely, there exists a Brow-

nian motion W (possibly on an extended probability space) with appropriate covariance

7The notion of SRB measures provides a suitable generalisation of ergodic measures.
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� ∈ R
m×m such that Wε → W weakly in C([0, T ];Rm) as ε → 0, see [63], Theorem 1.5.8

Moreover, it was shown in [11], Theorem 1.6, that a so-called iterated weak invariance prin-
ciple holds for the iterated integrals

(107) W
ε
t =

∫ t

0
Wε

s ⊗ dWε
s ,

that is, (Wε,Wε) → (W,W) weakly in C([0, T ];Rm ×R
m×m), where

(108) Wt =
∫ t

0
Ws ⊗ ◦dWs + Dt,

with area correction D ∈ R
m×m
skew . We refer to [19], Theorem 4.4, for the corresponding state-

ment in p-variation rough path topology.
In what follows, we consider (Zε

t )t≥0 to be driven by (L
(1:2),ε
t )t≥0 := (L

(1),ε
t ,L

(2),ε
t )t≥0,

(109) dZε
t = θf

(
Zε

t

)
dt + λ

ε
dL

(1:2),ε
t ,

with the parameter θ ∈ R to be inferred from noisy observations

(110) dY ε
t = dZε

t + R1/2 dVt ,

and λ > 0 mediating the strength of the chaotic perturbation. Since
∫
Rd (L(1),L(2))� dμ = 0

according to [97], Section 11.7.2, we expect (109) to be well approximated by

(111) dZ0
t = θf

(
Z0

t

)
dt + G1/2 dWt,

in the regime ε � 1, with standard two-dimensional Brownian motion (Wt)t≥0 and appropri-
ate covariance G ∈ R

2×2. Replacing (109) by (111) is often a desirable simplification both
computationally and conceptually, see, for instance, [58], [97], Section 11.7.2, and [108],
Section 3.1. To apply our methodology, we need to presuppose G; estimates can be obtained
using the approaches suggested in [58], Example 6.2, or [69], for instance. Here we use the
value G

1/2
11 = 0.13 reported in [69], Section 3.2.6, for λ = 2

45 and note that W 1 = W 2 almost
surely by a short calculation using (105). To test the RP-EnKF, we simulate data according
to (105), (109) and (110) using an Euler–Maruyama discretisation with time step �t = 10−5,
an observation noise level of R = 0.01 and a parameter value of θtrue = 0.5 to be recovered.
Furthermore, we set ε = 0.05 and f (z1, z2) = (z1 − z2, z1 + z2)

�. The RP-EnKF is set up
according to the model (111) with observations (110), using the scheme (14) with N = 10
particles. As an illustration for the challenges that are posed by the attempt to incorporate data
from (109)–(110) into a model of the form (111), we plot the output of the EnKF scheme (18)
in Figure 5a, noting that it fails to recover the correct parameter value θtrue. Figures 5b and
5c show the output of the RP-EnKF scheme (14), with τ = 1 (implying �Y

skew
k = 0) and

τ = 500, respectively. We see that the area correction obtained through the subsampling pro-
cedure is necessary to obtain satisfactory numerical results. The time-lag τ = 500 has been
determined in the same way as in Section 6.2; in particular, plots for the subsampled area
processes are qualitatively similar to Figures 4 and 4b but are omitted here for the sake of
brevity.

8In fact, the convergence takes place μ-almost surely, see [63], Theorem 1.1. The covariance � is given in
terms of suitable long-time ergodic averages or (under certain conditions) Green–Kubo formulae, see [19, 97].
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FIG. 5. Output (empirical mean of the θ̂ -components) EnKF and RP-EnKF (with and without area correction),
for data obtained from the dynamics (109) perturbed by fast chaotic noise (Lorenz-63). The blue line indicates the
true value of θ . To suppress sampling error, average results are plotted computed from 5 independent runs.

6.4. Homogenisation in a two-scale potential. In our final example, we consider the mo-
tion of a Brownian particle in a (rugged) two-scale potential,

(112) dZε
t = −θ∇V

(
Zε

t

)
dt − 1

ε
∇p

(
Zε

t

ε

)
dt + √

2σdWt,

where p ∈ C∞(R2;R), p(x1, x2) = p1(x1)+p2(x2), is an L-periodic function in both direc-
tions, that is, pi(x+L) = pi(x), for all x ∈ R and i = 1,2, modelling small-scale fluctuations
around the potential V . It is well known that for T > 0, the law of the solution (Zε

t )t≥0 con-
verges weakly in C([0, T ];Rd) to the law associated to

(113) dZt = −θK∇V (Zt , θ)dt + √
2σK dWt,

where K = diag(L2/(C1Ĉ1),L
2/(C2Ĉ2)), with

(114) Ci =
∫ L

0
e−pi (y)

σ dy, Ĉi =
∫ L

0
e

pi (y)

σ dy,

see [96] and [97], Chapter 11. Similar results in a rough-path context can be found in [78].
The homogenised dynamics (113) encapsulate the rugged landscape described by p in the
diffusion-mass matrix K. Like in the previous experiments, we consider the task of estimat-
ing the parameter θ from noisy observations of (112), using the EnKF and RP-EnKF based on
(113). We choose V (z) = 1

2 |z|2, p1(x) = cos(x), p2(x) = 1
2 cos(x) and σ = 1. Data from the

two-scale dynamics (112) is simulated for ε = 10−2, θtrue = 1 using an Euler–Maruyama dis-
cretisation with time step �t = 10−4. With the same values for θtrue, �t and σ , we simulate
data from the reduced model (113), where K ≈ diag(0.62386,0.884176) has been obtained
by numerical integration in (114). Both (112) and (113) are perturbed by noise according to
(110) with R = 10−2 and, as in Sections 6.2 and 6.3, the resulting observation paths are used
in the EnKF- and RP-EnKF schemes with N = 10 particles (see equations (18) and (14)) to
estimate θtrue. We display the results for the means of θ̂ over time using the EnKF and the
RP-EnKF in Figures 6 and 7, respectively.

Clearly, the RP-EnKF deals adequately with multiscale data, while the EnKF fails to re-
cover the true parameter θtrue in this setting. We would like to stress that the RP-EnKF scheme
has been implemented without area correction, that is imposing Yk = Y

sym
k as defined in (87).

The choice Y
skew
k = 0 is motivated by a plot analogous and qualitatively similar to Figure 4c

(omitted due to space considerations), showing that subsampling does not indicate substan-
tial Lévy area correction terms (intuitively, the dynamics (112) do not contain significant
“rotational” contributions in the regime ε → 0).
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FIG. 6. Output (empirical mean of the θ̂ -components) of the EnKF-scheme (18), for data obtained from the
reduced model (113) (left) and the multiscale model (112) (right). The blue line indicates the true value θtrue = 1.
To suppress sampling error, we plot averaged results computed from 5 independent runs.

APPENDIX A: FROM THE FILTER PROBLEM TO THE MCKEAN–VLASOV
EQUATION: PROOFS

In this section we prove the formal connection between the filtering problem and the
McKean–Vlasov equation. In order to prove Proposition 2.1, we need a few preparations.
Let us define

Mt =
∫ t

0
h(Xs) · C−1 dYs,

and the likelihood

lt = exp
(
Mt − 1

2
〈M〉t

)
= exp

(∫ t

0
h(Xs) · C−1 dYs − 1

2

∫ t

0
h(Xs) · C−1h(Xs)ds

)
.

We can now introduce the unnormalised filtering measures

ρt [φ] = E
[
φ(Xt)lt |Yt

]
, t ≥ 0.

The measures ρt satisfy the Zakai equation:

FIG. 7. Output (empirical mean of the θ̂ -components) of the RP-EnKF-scheme (14), for data obtained from the
reduced model (113) (left) and the multiscale model (112) (right). No area correction is used, that is, Yskew

k = 0.
The blue line indicates the true value θtrue = 1. To suppress sampling error, we plot averaged results computed
from 5 independent runs.
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PROPOSITION A.1 (Zakai equation). The evolution of (ρt )t≥0 is given by

(115) ρt [φ] = ρ0[φ] +
∫ t

0
ρs[Lφ]ds +

∫ t

0
ρs[φh] · C−1 dYs +

∫ t

0
ρs[∇φ] · B dYs,

P-a.s., ∀φ ∈ C2
b(RD), where

Lϕ = 1

2
Trace

(
GD2φ

)+ f · ∇φ

is the generator associated to (1a). The filtering measures (πt )t≥0 can be recovered from the
Kallianpur–Striebel formula (or Bayes theorem)

(116) πt [φ] = ρt [φ]
ρt [1] .

PROOF. We connect our setting to the one from [10], Section 3.8, by setting Ỹt :=
C−1/2Yt and h̃(x) := C−1/2h(x), noting that Ỹ satisfies

(117) dỸt = h̃(Xt )dt + dW̃t , Ỹ0 = 0,

where W̃t := C−1/2(UWt + R1/2Vt) is a standard Brownian motion. Within this proof, the
tilde indicates that the corresponding object occurs in [10], Section 3.8, (without tilde). We
also introduce the vector of operators B̃ = (B̃1, . . . , B̃d)� by B̃i = (C1/2UG1/2∇)i , satisfy-
ing

(118)
〈
Mφ, W̃ i 〉

t =
∫ t

0
B̃iφ(Xs)ds, φ ∈ C2

b

(
R

D).
Here, Mφ is the martingale

(119) M
φ
t = φ(Xt) − φ(X0) −

∫ t

0
Lφ(Xs)ds, t ≥ 0, φ ∈ C2

b

(
R

D),
so that (118) corresponds to the equation (3.70) in [10]. The claim therefore follows from
[10], Corollary 3.39, by substituting Y and h for Ỹ and h̃. �

Next, we write the Zakai equation in its Stratonovich form:

LEMMA A.2. The Stratonovich-version of the Zakai equation is given by

ρt [φ] = ρ0[φ] +
∫ t

0
ρs[Lφ]ds +

∫ t

0
ρs[φh]C−1 ◦ dYs +

∫ t

0
ρs[∇φ] · B ◦ dYs(120a)

− 1

2

∫ t

0

(
ρs

[
(φh) · C−1h

]+ ρs

[
Trace

(
D(φh)B

)+ ∇φ · Bh
])

ds(120b)

− 1

2

∫ t

0
ρs

[
Trace

(
D2φG1/2U�C−1UG1/2︸ ︷︷ ︸

BCB�

)]
ds.(120c)

PROOF. Using (115), we see that for i = 1, . . . , d

ρt [φhi] =
d∑

j,k=1

∫ t

0
ρs[φhihj ](C−1)jk dY k

s +
D∑

r=1

d∑
k=1

∫ t

0
ρs

[
∂r(φhi)

]
Brk dY k

s + FV,
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where FV stands for a contribution of finite variation. Recalling 〈Y k,Y k̄〉t = Ckk̄t , for k, k̄ =
1, . . . , d , we obtain∫ t

0
ρs[φh]C−1 dYs =

∫ t

0
ρs[φh]C−1 ◦ dYs

− 1

2

∫ t

0

d∑
i=1

(
d∑

j=1

ρs[φhihj ](C−1)ij +
D∑

j=1

ρs

[
∂j (φhi)B

ji])ds.

Similarly, for r = 1, . . . ,D,

ρt [∂rφ] =
d∑

j,k=1

∫ t

0
ρs

[
(∂rφ)hj

](
C−1)jk dY k

s +
D∑

p=1

d∑
k=1

∫ t

0
ρs[∂r∂pφ]Bpk dY k

s + FV,

implying∫ t

0
ρs[∇φ]B dYs =

∫ t

0
ρs[∇φ]B ◦ dYs

− 1

2

∫ t

0

D∑
r=1

(
d∑

i=1

ρs

[
(∂rφ)hi

]
Bri +

D∑
p=1

ρs[∂r∂pφ](BCB�)rp)ds.
�

We now proceed to the proof of Proposition 2.1:

PROOF OF PROPOSITION 2.1. Let us define

ρ̂t [φ] = E
[
φ(X̂t )lt |Yt

]
, t ≥ 0,

which is the unnormalised filtering measure associated to (5). Since Xt and X̂t are indepen-
dent given Yt , we have that

ρ̂t [φ] = E
[
φ(X̂t )|Yt

]
E[lt |Yt ] = π̂t [φ]ρt [1].

From (116) it thus follows that πt = π̂t is equivalent to ρt = ρ̂t . In the following we therefore
compute the evolution of ρ̂t . Notice first that

Mt =
∫ t

0
h(Xs) · C−1 dYs =

∫ t

0
h(Xs) · C−1 ◦ dYs − 1

2

〈
h(X)C−1, Y

〉
t ,

where, using B = G
1
2 U�C−1,

〈
h(X)C−1, Y

〉
t =

d∑
i,j=1

〈
hi(X)

(
C−1)

ij , Y
j 〉

t =
D∑

r=1

d∑
i=1

∫ t

0
∂rh

i(Xs)B
ri ds

=
∫ t

0
Trace

(
Dh(Xs) · B)ds.

From dlt = lt dMt we have

lt = 1 +
∫ t

0
ls ◦ dMs − 1

2

∫ t

0
ls d〈M〉s

= 1 +
∫ t

0
lsh(Xs) ◦ C−1 dYs − 1

2

∫ t

0
ls Trace

(
Dh(Xs) · B)ds

− 1

2

∫ t

0
lsh(Xs) · C−1h(Xs)ds,
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implying

φ(X̂t )lt = φ(X̂0) +
∫ t

0
φ(X̂s)lsh(Xs) · C−1 ◦ dYs

− 1

2

∫ t

0
φ(X̂s)lsh(Xs) · C−1h(Xs)ds

(121a)

− 1

2

∫ t

0
φ(X̂s)ls Trace

(
Dh(Xs) · B)ds +

∫ t

0
ls∇φ(X̂s) ◦ dX̂s .(121b)

The last term satisfies∫ t

0
ls∇φ(X̂s) ◦ dX̂s

=
∫ t

0
ls∇φ(X̂s) · f (X̂s)ds +

∫ t

0
ls∇φ(X̂s) ◦ G1/2 dŴs

+
∫ t

0
ls∇φ(X̂s)Ks(X̂s)C

−1 ◦ dYs −
∫ t

0
ls∇φ(X̂s) · Ks(X̂s)C

−1h(X̂s)ds

−
∫ t

0
ls∇φ(X̂s) · Ks(X̂s)C

−1 ◦ (U dŴs + R1/2 dV̂s

)+ ∫ t

0
ls∇φ(X̂s) · �s(X̂s)ds.

Next, we convert the terms involving V̂ and Ŵ back to their Itô-form,∫ t

0
ls∇φ(X̂s) ◦ G1/2 dŴs

=
∫ t

0
ls∇φ(X̂s)G

1/2 dŴs

+ 1

2

∫ t

0
ls Trace

(
D2φ(X̂s)G

)
ds − 1

2

∫ t

0
ls Trace

(
D2φ(X̂s)

(
Ks(X̂s)B

�))ds.

Here we used the fact that, for every i, k = 1, . . . ,D we have 〈l, (G1/2)ikŴ k〉t = 0 and

〈
X̂j ,

(
G1/2)ikŴ k 〉

t = Gij t −
∫ t

0

(
Ks(X̂s)C

−1UG1/2)ji ds,

where G1/2U�C−1 = B . Similarly,∫ t

0
ls∇φ(X̂s) · Ks(X̂s)C

−1 ◦ (U dŴs + R1/2 dV̂s

)
=
∫ t

0
ls∇φ(X̂s) · Ks(X̂s)C

−1(U dŴs + R1/2 dV̂s

)
+ 1

2

∫ t

0
ls Trace

[
D(∇φ · Ks)(X̂s) · C−1(G1/2U� − Ks(X̂s)

)]
ds,

using C = UU� + R and, for k = 1, . . . ,D and l = 1, . . . , d ,

〈
X̂k,

(
UŴ + R1/2V̂

)l 〉
t = (

G1/2U�)kl
t −

∫ t

0
Kkl

s (X̂s)ds.

We now take the conditional expectation in (121). Note that the conditional expectation with
respect to Y commutes with the integration in dY and that the conditional expectation of
the integrals in dW and dV vanishes because (W,V ) are independent from Y , see [25],
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Appendix B. We obtain

ρ̂t [φ] = ρ̂0[φ] +
∫ t

0
ρ̂s[φ]πs[h] · C−1 ◦ dYs − 1

2

∫ t

0
ρ̂s[φ]πs

[
h · C−1h

]
ds(125a)

+
∫ t

0
ρ̂s[Lφ]ds − 1

2

∫ t

0
ρ̂s

[
Trace

(
D2φKsB

�)]ds

+
∫ t

0
ρ̂s[∇φ · Ks]C−1 ◦ dYs

(125b)

−
∫ t

0
ρ̂s

[∇φ · KsC
−1h

]
ds

− 1

2

∫ t

0
ρ̂s

[
Trace

(
D(∇φ · Ks) · C−1(G1/2U� − Ks

))]
ds.

(125c)

− 1

2

∫ t

0
ρ̂s[φ]πs

[
Trace(DhB)

]
ds

+
∫ t

0
ρ̂s[∇φ · �]ds.

(125d)

Importantly, we have used the fact that Xt and X̂t are independent given Yt , and also
that Ŵt and V̂t are independent from Yt . The next step is to compare (120) and (125). The
dY -contributions agree if and only if

(126) ρs[φh] + ρs[∇φ] · BC = ρ̂s[φ]πs[h] + ρ̂s[∇φ · Ks],
which we recognise (after identifying π̂ = π and ρ̂ = ρ) to be a weak version of (6).

To compare the ds-contributions, let us first manipulate the second term in (125c) using
(6),

ρ̂s

[
∂m

(
∂iφKij

s

)(
C−1)jk(

G1/2U� − Ks

)mk]
= −

∫ (
∂iφKij

s

)(
C−1)jk

∂m

(
ρ̂s

(
G1/2U� − Ks

)mk)dx

= −
∫ (

∂iφKij
s

)(
C−1)jk(

hk − π̂s

[
hk])dρ̂s = −ρ̂s

[∇φ · KsC
−1(h − π̂s[h])].

Similarly, the middle term in (125b) satisfies

ρ̂s

[
(∂i∂jφ)Kil

s

]
Bjl = −Bjl

∫
(∂jφ)∂i

(
ρ̂sK

il
s

)
dx

= Bjlρ̂s

[
(∂jφ)

(
hl − π̂s

[
hj ])]− Bjl

∫
(∂jφ)∂i

(
ρ̂s(BC)il

)
dx

= Bjlρ̂s

[
(∂jφ)

(
hl − π̂s

[
hl])]+ ρ̂s[∂i∂jφ](BCB�)ij

= ρ̂s

[∇φ · B(h − π̂s[h])]+ ρ̂s

[
Trace

(
D2φ

(
BCB�))].

We now collect terms and compare the ds-contributions in (120) and (125), arriving at

−1

2

(
ρs

[
φh · C−1h

]+ ρs

[
Trace

(
D(φh)B

)+ ∇φ · Bh
])

(128a)

= −1

2
ρ̂s[φ]πs

[
h · C−1h

]− 1

2
ρ̂s

[∇φ · B(h − π̂s[h])](128b)

− 1

2
ρ̂s

[∇φ · KsC
−1(h + π̂s[h])]+ ρ̂s[∇φ · �s] − 1

2
ρ̂s[φ]πs

[
Trace(DhB)

]
.(128c)
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Next, we work on the first term in (128c),

ρ̂s

[(
∂iφKij

s

)(
C−1)jk(

hk + π̂s

[
hk])]

= −
∫

φ∂i

(
ρ̂sK

ij
s

)(
C−1)jk(

hk + π̂s

[
hk])dx

− ρ̂s

[
φKij

s

(
C−1)jk

∂ih
k]

=
∫

φ
(
hj − π

[
hj ])(C−1)jk(

hk + π
[
hk])dρ̂s

−
∫

φ∂i

(
ρ̂s(BC)ij

)(
C−1)jk(

hk + π̂s

[
hk])dx − ρ̂s

[
φKij

s

(
C−1)jk

∂ih
k]

= ρ̂s

[
φ
(
hj − π

[
hj ])(C−1)jk(

hk + π̂s

[
hk])]+ ρ̂s

[
∂iφ
(
hk + π̂s

[
hk])]Bjk

+ ρ̂s

[
φBik∂ih

k]− ρ̂s

[
φKij

s

(
C−1)jk

∂ih
k]

= ρ̂s

[
φhjhk](C−1)jk − ρ̂s[φ]πs

[
hj ]πs

[
hk](C−1)jk

+ ρ̂s

[
∂iφ
(
hk + π̂s

[
hk])]Bjk + ρ̂s

[
φBik∂ih

k]− ρ̂s

[
φKij

s

(
C−1)jk

∂ih
k]

= ρ̂s

[
φhC−1h

]− ρ̂s[φ]πs[h]C−1πs[h] + ρ̂s

[∇φ · B(h + π̂s[h])]
+ ρ̂s

[
φ Trace(DhB)

]− ρ̂s

[
φ Trace

(
KsC

−1Dh
)]

.

Plugging this into (128) we see that after a great number of cancellations that (128) reduces
to

ρs[∇φ · �s] = 1

2
ρs[φ](πs

[
Trace(Dh · B) − hC−1h

]− πs[h]C−1πs[h])
− 1

2
ρs

[
φ Trace

(
KsC

−1Dh
)]

.

Using (6) in its weak formulation tested against h on the first term in the right-hand side we
obtain

(129) πs[∇φ · �s] = 1

2

(
πs[φ]πs

[
Trace

(
KsC

−1Dh
)]− πs

[
φ Trace

(
KsC

−1Dh
)])

,

which is a weak version of (7).
We have thus obtained constraints on the coefficients of K and � of the McKean–Vlasov

equation (5) such that ρ̂ solves the Zakai equation satisfied by the conditional density ρ of the
signal of the filtering problem. We can conclude because the solution to the Zakai equation is
assumed to be unique. �

We conclude this section with the proof of Lemma 2.2

PROOF OF LEMMA 2.2. The variance (36) is minimised when K̃ = π [K]. The weak
formulation of (6) is given as

(130) π
[∇φ · (K − BC)

]= π
[(

h − π [h])�φ
]
,

where φ ∈ C2
b(RD), we derive this equation in (126).

To compute the expectation of K , we would like to test equation (130) on φ(x) = xγ ,
γ = 1, . . . ,D, so that ∇φ(x) = eγ , the γ th elemental vector. However, we only assume that
equation (130) is satisfied for bounded function. We take a sequence φn ∈ C2

b that coincides
with xγ on B(0, n), the ball centered in the origin with radius n, and satisfies |∇φn| ≤ |∇φ| =
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1. Now we evaluate (130) in φn and then we pass to the limit on both sides. We use the
Cauchy–Schwartz inequality and the integrability assumption on K to obtain∣∣π[(∇φn − ∇φ

) · (K − BC)
]∣∣≤ π

[
1B(0,n)c‖K − BC‖F

]≤ π [1B(0,n)c ] 1
2 π
[‖K − BC‖2

F

] 1
2

� π [1B(0,n)c ] 1
2 .

The last term goes to 0 by tightness of π . Notice that BC is a constant, so it is always integral
with respect to π . Similarly, for the right hand side of (130) we obtain∣∣π[(h − π [h])�(φn − xγ )]∣∣� ‖h‖Cb

π
[
1B(0,n)c |x|],

the last term goes to 0 as n → ∞ as we assumed π ∈ P1(R
D).

We proved that (130) is satisfied for φ(x) = xγ , this gives us an equation for the γ th row
of π [K]

π
[
Kγ ]− (BC)γ =

∫
RD

xγ (h(x) − π [h])� dπ(x), γ = 1, . . . ,D.

Hence, K̃ = π [K] = Covπ(x,h) + BC.
We now show the corresponding statement for �̃ when K is replaced by K̃ in (7). Again

�̃ = π [�], since the expectation minimises the variance. For 1 ≤ γ ≤ D, we input the test
function φ(x) = xγ into the weak formulation

π [∇φ · �s] = 1

2

(
π [φ]π[Trace

(
K̃C−1Dh

)]− π
[
φ Trace

(
K̃C−1Dh

)])
,

of (7) to obtain the desired expression for �̃. The weak formulation is derived rigorously in
(129). �

APPENDIX B: ON THE FORMAL CONNECTION BETWEEN MCKEAN–VLASOV
FILTERING AND MAXIMUM LIKELIHOOD ESTIMATION

Here we discuss the relationship between parameter estimation based on the ensemble
Kalman filter and the maximum likelihood approach considered in [40]. In a nutshell, the
two methods essentially agree in the noiseless case R = 0 with Gaussian initial condition, as
relevant McKean–Vlasov dynamics can be solved explicitly in this case. This connection has
already been pointed out in [88].

Notice that for the particular choice of the coefficients f and h (see equation (132) below)
Assumption 3 and 4 required by our main theorem are not satisfied. Because of this, the
connection of our work with maximum likelihood estimation is only established at a formal
level.

We are given a d-dimensional process Z, which depends on an m-dimensional parame-
ter θ . We observe Z through the observation Y , which is possibly noisy.

dZt = g(Zt)θ dt + G̃
1
2 dWt,(131a)

dθt = 0,(131b)

dYt = dZt + R
1
2 dVt .(131c)

Here W and V are independent d-dimensional Brownian motions, g :Rd →R
d×m is a given

C2
b function and G̃ ∈ R

d×d is a given positive semidefinite deterministic matrix.
Let D = d + m. We set the D-dimensional signal process as X := (Z, θ) and replace the

equation for dZ into the equation for the observation dY . System (131) becomes equivalent
to system (1) with the following drift coefficients:

(132) f (x) = f (z, θ) = (
g(z)θ,0

)
, h(x) = h(z, θ) = g(z)θ.
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Moreover, the coeffiecents of the noise are

G =
(
G̃ 0
0 0

)
, U =

(
G̃

1
2 0

)
.

Remember πt [φ] := E[φ(Xt) | Yt ] is the conditional law of X given Y .
First we consider noiseless observations, that is, we set R = 0. In this case we have that

C := UU� + R = G̃, B := G
1
2 U�C−1 =

(
Idd×d

0m×m

)
.

We interpret system (131) as a filtering problem, as described in Section 2.3. Then we can
construct the corresponding (approximate) McKean–Vlasov equation. We need to compute
P as defined in (8), which can be decomposed as follows:

P(π) =
(

Covπ(z, h)

Covπ(θ, h)

)
C−1 + B :=

(
π
[
z
(
h − π [h])�]

π
[
θ
(
h − π [h])�]

)
C−1 + B.

In this case with R = 0, we have Y = Z, which implies

πt(dz,dθ) = δ(z − Zt)π
θ (dθ),

πt [h] =
∫
R

D
g(z)θπt (dz,dθ) = g(Zt)

∫
R

m
θπθ

t (dθ) =: g(Zt)θ̄t .

We have the following:

Covπt (z, h) =
∫
R

d+m
z
(
g(z)θ − g(z)θ̄t

)�
πt(dz,dθ)

= Zt

(∫
R

m
(θ − θ̄ )πθ

t (dθ)

)�
g(Zt)

� = 0d×d,

Covπt (θ, h) =
∫
R

m
θ(θ − θ̄t )

�πθ
t (dθ)g(Zt )

� = Var(θt )g(Zt )
�.

We have thus obtained P explicitly

P(πt ) =
(

Covπ(z, h)

Covπ(θ, h)

)
C−1 + B =

(
0d×d

Var(θt )g(Zt)
�

)
G̃−1 +

(
Idd×d

0m×m

)

=
(

Idd×d

Var(θt )g(Zt)
�G̃−1

)
.

We now compute 
̂, which is defined in (9). We start with the z contribution, for γ = 1, . . . , d ,
we have

π
[
zγ (Dh − π [Dh])�]= Z

γ
t π
[
Dh − π [Dh]]� = 0D×d .

Now compute the contribution in θ . For γ = 1, . . . ,m and i = 1, . . . , d , we have

πt

[
θ̄ γ Dh�]

j,i =
m∑

k=1

∂zj g
i,k(Zt )Cov

(
θk
t , θ

γ
t

)
1j≤d = (

∂zj g(Zt)Var(θt )
)i,γ 1j≤d,

j = 1, . . . , d + m. So that we have

P(πt )
�πt

[
θγ (Dh − πt [Dh])�]= (

Idd×d

(
Var(θt )g(Zt )

�G̃−1)�)(Dg(Zt)
� Var(θt )

·γ
0m×d

)

= Dg(Zt)
� Var(θt )

·γ
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and


γ (πt ) = −1

2
Trace

(
Dg(Zt)Var(θt )

·γ ).
If m = 1, we have


(πt ) =
⎛⎝ 0d

−1

2
Var(θt )TraceDg(Zt)

⎞⎠ .

We can now write the McKean–Vlasov dynamics (11),

dZt = dYt ,(133a)

dθ̂t = Var(θ̂t )g(Zt)
�G̃−1[dYt − G̃

1
2 dŴt − g(Zt)θ̂t dt

]
− 1

2
Var(θ̂t )TraceDg(Zt)dt.

(133b)

We interpret equation (133) in the sense of Definition 4.12. Taking expectation in (133b),
and writing this equation in integral form, we obtain the rough path maximum likelihood
estimator from [40], up to the rescaling Var(θ̂t ), see also [88].

We would like to obtain an equation for the variance of θ̂ . We start by computing the
following equation for the centered random variable θ̄ := θ̂ − π [θ ]:

dθ̄t = −Var(θ̂t )g(Zt )
�G̃−1[G̃ 1

2 dŴt + g(Zt)θ̄t dt
]
.

By taking the square and using Itô formula we obtain the following equation for Var(θ̂):

d Var(θ̂t ) = −Var(θ̂t )
2g(Yt )

�G̃−1g(Yt )dt.

The solution is

Var(θ̂t ) =
(∫ t

0
g(Ys)

�G̃−1g(Ys)ds + 1

Var(θ̂0)

)−1
.

Assume now that there exists f : Rd → R such that g = G̃�∇f . Since the variance is a
path of bounded variation, we have that the integrand in the rough integral in equation (133b)
is controlled by Y in the following way:

Var(θ̂t )g(Yt )
�G̃−1 − Var(θ̂s)g(Ys)

�G̃−1 = Var(θ̂t )∇f (Yt )
� − Var(θ̂s)∇f (Ys)

�

= Var(θ̂t )D
2f (Yt )δYs,t + Rs,t .

The Gubinelli derivative Var(θ̂t )D
2f (Zt) is symmetric, which means that the rough integral

in (133b) does not depend on the area of the geometric rough path Y. Hence, the expansion
of the integral is completely determined by the path itself.

APPENDIX C: ITÔ–STRATONOVICH CORRECTION FOR THE ENSEMBLE
KALMAN FILTER

In Section 2.4, we derived the system (10) by approximately solving the PDEs (6) and (7).
An alternative approach is to convert the ensemble Kalman filter formulation

(134)

{
dX̂t = f (X̂t )dt + G1/2 dŴt + P(π̂t )dIt ,

dIt = dYt − (h(X̂t )dt + U dŴt + R1/2 dV̂t

)
,

from [88] to its Stratonovich form. Here we show that this leads to the same result.
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LEMMA C.1. For the solution to (134), we have that

(135)
∫ t

0
P(π̂s)dIt =

∫ t

0
P(π̂s) ◦ dIt +

∫ t

0

(π̂s)ds,

thus recovering (10) from (134).

PROOF. Direct calculation (using Itô’s formula for the expression (8) and applying the
conditional expectation) shows that

(136) dP ij (π̂t ) = (
π̂t

[
xi∂xl

hkP lm(π̂t )
]− π̂t

[
xi]π̂t

[
∂xl

hkP lm(π̂t )
])(

C−1)kj dYm + FV,

where FV stands for a process of finite variation. The claim therefore follows from the con-
version formula

(137)
∫ t

0
P(π̂s)dIt =

∫ t

0
P(π̂s) ◦ dIt − 1

2

〈
P(π̂·), I·

〉= ∫ t

0
P(π̂s) ◦ dIt − 1

2

〈
P(π̂·), Y·

〉
,

together with the fact that 〈Y,Y 〉t = Ct . �
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