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“A worker may be the hammer’s master, but the hammer still prevails. A tool knows

exactly how it is meant to be handled, while the user of the tool can only have an ap-

proximate idea.”

Milan Kundera



Abstract

Query answering is one of the most important processes in search systems, for

it connects users to the information stored in data sources. A query is a set

of specifications or constraints that the user provides to describe the objects of

interest. As such, answering a query means retrieving those objects from the data

source that match the user constraints.

An answer from a search system may not fully satisfy the user. This happens

if the answer does not contain the required object or it contains a number of

irrelevant results. Commonly, the user does not know how to describe the query

and ends up with one overly generic or specific or, even worse, she is not even

aware of the correct conditions to describe the expected results. These problems

are particularly evident when the database is interrogated by a novice user who, by

definition, does not have sufficient technological skills to understand complicated

query languages, or simply gives up if the system does not respond properly or

timely.

In this dissertation, we focus on three common problems in the broad query an-

swering process to help novice users find the correct answers when the system does

not provide sufficient support. First, we look at the empty answer problem, where

the user provides a very specific query for which no answer exists in the database.

In particular, we concentrate on interactive approaches for novice users. We end

up with a rich probabilistic framework that includes user preferences and smoothly

guides the user towards the most likely answers by means of simple yes/no ques-

tions on the query conditions to be discarded. Second, we analyze the information

overload problem, that is complementary to the first. In this case the user provides

a too generic query that returns a large set of potentially irrelevant results. We
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tackle the problem in structured databases, and more specifically, labeled graphs.

The solution we propose returns a set of refinements (i.e., more specific queries)

of the input query that, once executed, covers all the initial results. Third, we

propose and study a completely novel query paradigm that assumes that the user

is not able to describe the query conditions to retrieve the objects of interest. In

this regard, we introduce exemplar queries, that allow the user to specify a single

element in the result set and let the system infer the others. We provide clear

semantics and a solution that works in large knowledge graphs.

Finally, we validate the solutions for the three problems both in terms of theoret-

ical results and experimental evaluation and we prove that the proposed methods

efficiently scale up to very large real datasets.
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Chapter 1

Introduction

The increasing number of people accessing information through search engines and

database systems has nurtured a considerable interest in the exploration of simpler

and more user-centric ways of accessing the data. This aspect is particularly important

when the user is not a system or a data expert, what is commonly referred to as a novice

user. Novice users, which are the vast majority of people using computers [Zic13] are,

for their intrinsic nature, less inclined to access data for which the system provides little

or no help at all. It is also true that a considerable amount of people do not approach

basic search systems, such as search engines, because they are either too difficult, or

they hardly match their expectations [Zic13, TS05], contributing to the phenomenon of

digital divide [Fri14].

The preferred way to organize and access the data is through softwares called database

management systems, in short databases. Data in a database are represented and stored

in a plethora of different data-models depending on the use, such as relational [Cod70],

object-oriented [SM95], semi-structured [Abi97], and graphs [Kun90], among others. In

particular, we focus on graphs and relational databases, while still supplying a broad

range of applications, from online e-commerce websites to knowledge bases.

The design of database systems is based on the principles of abstracting the under-

lying storage layer and providing fast access to the data. While from the efficiency

standpoint the systems are constantly improved to have timely answers even with large

amount of data, database ease of use remains, in some cases, limited [Dat83]. A us-

able system provides assistance in all the phases of the information retrieval process,

1
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from the formulation of the query to the presentation of the results. For this rea-

son, much effort has been devoted to the study of usable solutions [JCE+07], such as

keyword-based interfaces [YQC09], query result explanation [Mot84], interactive ap-

proaches [MK09, BRWD+08], and data-exploration tools [sql, ora]. The steps towards

the design of fully usable databases involve more natural search capabilities that explic-

itly take into account the user in the process.

Searching capabilities over databases are enabled by queries. A query is a set of con-

ditions that describes the object of interest, and is commonly specified in a database-

specific language. Queries may fail to accomplish user needs for many reasons. For

instance, a query may be too stringent and return no answers (empty answer prob-

lem) [MK09, Jan07, Mot84] or too generic and return too many, potentially irrelevant,

answers (information overload problem) [BRWD+08, BBCV11, ZTR13]. These two com-

mon issues have been recently studied and solutions have been proposed to assist the user

in the process of progressively refining the query to find the desired results. However, if

expert users can find appropriate workarounds, novice users need a complete assistance

by the system [TS05]. Interactivity and result diversification are two important factors

that can make a big difference for a novice user. The former refers to the design of

systems that progressively propose better queries, while the latter to the presentation

of results or queries that are able to describe the results with short summaries.

Another issue that makes a database less palatable to novice users is the rigidity of the

query languages. These languages use complex operators and syntax, diminishing the

usability of the system itself. This problem has been traditionally solved with keyword-

based interfaces [YQC09], at the price of introducing ambiguity in the interpretation of

the query. An orthogonal approach would be to change the query paradigm in order

to find objects similar to the one the user has in mind and let the system infer the

rest. This is a compromise between the ambiguity of keyword-based interfaces and the

rigidity of the formal query languages.

This dissertation discusses challenges and solutions to improve the interaction with

database systems for novice users when facing incomplete or missing results, irrele-

vant results, or hard to express queries, and proposes novel query paradigms that treat

usability as a first class citizen in query answering. The rest of this chapter is organized

as follows. Section 1.1 presents the motivations behind this work, identifying the main
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niches that constitute the research challenges in Section 1.2. Examples of applications

of the techniques presented here are discussed in Section 1.3. Section 1.4 concludes with

an outline of the thesis.

1.1 Motivation

Users, looking for specific answers, use search systems to retrieve the required informa-

tion. However, from what a user expects as answer and what the database returns there

is often an asymmetry. The database contains a set of objects that, in most cases, do

not entirely correspond to the user needs.

In order to access the data, the user poses a query to the database. A query is commonly

represented as a set of constraints over the items to be returned. The database engine

then returns the items matching the query constraints, that might be empty if no such

item exists. The entire process is called query-answering.

Unfortunately, a novice user needs far more assistance in query answering than normal

users. A novice user typically: -uses an imprecise or limited vocabulary, or at least she

is unable to formulate the correct query; -is not fully capable of describing the required

information; -is not willing to wait for answers and expects guidance and explanations

from the system. Therefore, the study of systematic ways to assist novice users in

answering queries is of paramount importance for the database community. Moreover,

as stated by other researchers [JCE+07], a system that provides little interaction with

the user and no explanation of the results falls short to meet user expectations.

Query 

Database 

Figure 1.1: The user perspective of a database search.

This work focuses on methods to help the user find her expected results with little or no

knowledge about the database and its query languages. Consider the situation depicted

in Figure 1.1. The user is looking for some specific results, and asks a database, in which
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she thinks to find the desired information, to provide them. Unfortunately, the database

does not always respond to the expectations, since, in most cases, simply it does not

contain the specific objects the user is looking for.

The user might encounter the following issues, among others. First, the set of results

of the query is empty, and the database needs to guide the user towards the desired

answer. This is referred to as the empty answer problem, in which the system proposes

to the user a set of relaxed queries with less conditions than the ones she issued. Second,

the user is looking for some structure in the data, but, since she does not know how to

specify the query, she provides a too general description that returns a big number of

irrelevant results and expects further help in defining the query. In database community,

this is referred to as the information overload problem and the set of queries proposed

to the user in this case consists in more specific queries in order to restrict the number of

results. Third, the user is not able to correctly express the desired information need but

she knows one of the items in the result set. We call this problem inexpressible queries,

referring to the inability of the user of defining the set of constraints needed to retrieve

the objects of interest.

The following section discusses in more detail these three challenges and the solutions

proposed in this work.

1.2 Research Challenges and Contributions

Dealing with novice users opens a number of research questions that require ad-hoc

solutions. This dissertation addresses three important aspects in the design of databases

for novice users, namely empty answer , information overload , and inexpressible queries.

Empty

Answer

Users searching for specific information in a database may over-specify the conditions

in the query, and find no item in the data source satisfying all the provided conditions

at once. This is commonly referred to as the empty-answer problem. A popular way to

cope with empty-answers is query relaxation, which attempts to reformulate the original

query into a new query, by removing (i.e., relaxing) some conditions, so that the result

of the new query is likely to contain items similar to those searched.
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Although query relaxation is typically non-interactive [Cha90, Jan07, Jun04], meaning

that all the possible relaxations are returned to the user at once, in this work we propose

an interactive approach [MMBR+13, MMBR+15]. The user starts from an empty-answer

query and the system presents a single relaxation together with a “yes/no” choice of

relaxing the query. Each step slightly perturbs the query, until it returns either a non-

empty answer, or any further change in the query conditions does not result into a

non-empty answer.

In this dissertation, we propose a novel principled interactive framework that optimizes

a wide variety of application-dependent objective functions. For instance, the user might

be suggested steps to find the cheapest car or, conversely the seller may decide to steer

the relaxations towards more expensive automobiles. The framework might also be used

to find the most similar items to those expressed in the query. User preferences and

beliefs are modeled as probability functions and embedded in the interactive process,

for which the framework computes a probability of saying “yes” (accept) or “no” (reject)

the relaxation proposed by the system.

List of publications. In this topic we contributed with the following publications. The

interactive optimization framework for empty-answer has appeared in [MMBR+13] and

extended with top-k relaxations and cardinality constraints on the size of the results

in [MMBR+15]. We also proposed a system demonstration in [MMBR+14].

Information

overload

In large databases, the number of items responding to a single query may be incredibly

large. This is a typical issue that affects novice users, forcing them to either formulate

a more specific query or search the items of interest in the huge list of results. This

problem is usually mentioned as information overload or many-answers problem [MK09],

and is particularly problematic as it requires the user to further inspect the results either

manually or by repeatedly interacting with the database.

This dissertation proposes a solution for the information overload problem when the

database is a set of structured objects and the query is a pattern to be found [MBG15].

A database containing a set of structures is commonly referred to as a graph database.

The solution is based on a principled query refinement approach, in which the query is

considered as a first-class citizen in the structure search. While query reformulation has

been studied in various contexts, such as relational databases [MK09], keyword search
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on structured data [TY09], and web search [HE09], to the best of our knowledge, this is

the first work dealing with graph databases.

Dealing with structures conveys a number of performance issues, mainly because the

generic problem of searching structures in a graph is NP-complete. Therefore, a thor-

ough study of the problem and efficient solutions are proposed here. We base the for-

mulation of our problem on the assumption that the reformulations produced should

provide an effective high-level description of the original query results. In line with

this intuition, we formalize the query-reformulation problem in graph databases as the

problem of finding a set of k reformulations that maximize a linear combination of the

coverage of the original query results and the diversity among the reformulations. This

is modeled as an optimization problem that can be reduced to the Max-Sum Diversifi-

cation problem and, based on a recent theoretical result [BLY12], we propose a greedy

1
2 -approximated algorithm. We describe efficient algorithms to solve the key step of the

greedy algorithm, i.e., finding the reformulation leading to the maximum increment of

the objective function, that unfortunately relies on a #P-complete problem. Our goal

is to solve such a step efficiently while still guaranteeing optimality, as this is needed to

preserve the aforementioned approximation guarantee.

List of publications. Graph query reformulation with diversity has been submitted

for publication in a conference [MBG15].

Inexpressible

queries

The hidden assumption behind query-answering is that the user is aware of the char-

acteristics of the structures of interest and can (at least partially) describe them in the

query. However, this is not always as easy as it might seem at first. There are cases in

which a user knows one single element among the desired results and expects the system

to return the others. In all these cases, traditional query-answering fails its mission of

helping the user in the process.

In this thesis, we propose exemplar queries, a novel query paradigm that treats the user

query as a representative of the results to be returned. We define the novel problem of

exemplar query answering and show its broad range of applicability, from search engines

to databases. Exemplar queries can form the basis of a new generation of search engines

that use them as the main query evaluation mechanism, or they can be used to enhance

the services that existing search engines are currently offering. Note that this approach
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is different from query relaxation [MK09, MMBR+13], which aims at producing more

generic versions of a query.

This work proposes a successful application of this paradigm to large knowledge graphs

(i.e., graphs where nodes are real world objects/concepts and edges are relationships

between them). A query in a knowledge graph is a substructure of the graph while the

answers to an exemplar query are substructures similar to it. Finding similar substruc-

tures in a graph is, in most cases, a hard problem. In this dissertation, we show how

we are able to efficiently find solutions to an exemplar query on large knowledge graphs

and we propose a working prototype [MLVP14b] that exploits the entire Freebase 1 as

knowledge graph for real-time answers. Exact and approximate solutions are presented

as well as two different similarity functions to compute the results, namely subgraph

isomorphism and strong simulation [Val79, MCF+14].

List of publications. In this topic we contributed with the following publications. Ex-

emplar queries have been first introduced in a seminal work, in which we also presented

the algorithms to find isomorphic results [MLVP14a]. The extension with a different

similarity function to retrieve results, namely strong simulation, have been recently sub-

mitted to a journal [MLVP15]. Moreover, we presented a system prototype [MLVP14b]

and a vision paper to describe the interesting directions that we intend to explore, apart

from nurturing further research [LMP+14].

1.3 Applications

Exploratory

Data

Analysis

The three methods described in this dissertation can be employed in exploratory data

analysis [Tuk77, ORPF13]. Exploratory data analysis is the process of finding patterns,

regularities or distributional properties in the data with the purpose of understanding

whether some information can be extracted from. Take for instance a lawyer that is

interested in lawsuits about arsons in Alaska. After loading the information into a

database the analyst perform some exploratory search. Our methods can greatly help

her job. Assume the database contains cases of legal actions in California and Michigan

but not Alaska. In this case, since no results are returned the empty-answer framework

can guide her toward the most reasonable relaxation. On the other hand, if there are

1http://www.freebase.com

http://www.freebase.com
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too many such lawsuits, then query reformulation is used to restrict the search space. If

the user knows about a specific lawsuit in Alaska, performing an exemplar query would

retrieve other similar lawsuits. The proposed methods offer many applications also for

researchers, statisticians and scholars that are not fully aware of the characteristics of

the data but want to find interesting patterns or general information about a topic.

Search

engines

The techniques and the methods presented here are natural applications for search en-

gines, in which they can improve the user experience by interactively refining a user

query, or by proposing interesting related results (with exemplar queries). Since search

engines are constantly improved to return better results, being able to adapt them to

user needs and to propose alternative query paradigms is vital and, as such, one of

the key goals of this thesis. Exemplar queries, for instance, can be employed as an

additional service for people seeking information by providing examples or query recom-

mendations [BYHM04].

Structured

databases

Query reformulation in structured data (explored in Chapter 4) can serve as an amaz-

ingly handful service for the biology domain. Biological and chemical databases usually

contain molecules or compounds that are interpreted by experts to find drugs or specific

structures. Searching in such databases is problematic since most of the structures are

repeated. As an exploratory tool, query reformulation as well as query relaxation, are

used to suggest possible alternative queries that assist the expert in the analysis of the

available data.

Mobile

devices

Usability is, potentially, the core goal of mobile devices [BFJ+01, CSA07], such as ebook

readers, mobile phones, and smart watches. Most of them guide the user towards the

desired functionality through small steps, the so called wizards. The proposed interactive

methods for empty/many-answers clearly respond with this trend, reducing the amount

of information the user has to read from the screen. Visualizing a large set of results in

small screens is troublesome, for it requires many swipe/scroll actions on the window.

Interactive methods can therefore enabling search capabilities over large datasets with

a minimum amount of actions.
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1.4 Outline

This dissertation is organized as follows. Chapter 2 discusses the prior work in the area of

empty answer, information overload and inexpressible queries. In Chapter 3 we describe

our framework for the empty answer problem. We present the probabilistic model and

how it serves different objective functions at the same time. We also introduce the

algorithmic solutions and the experimental assessment in terms of performance and user

satisfaction. Chapter 4 presents our study on query reformulation on graphs, introducing

the context and our objective function that optimizes coverage and diversity at the same

time. We describe a solution with quality guarantee and real-time performance and

evaluate the technique in several real and synthetic datasets. In Chapter 5 we introduce

exemplar queries, a novel query paradigm in which the user query is a representative of

the user’s expected results. We show an application of this paradigm to knowledge graphs

and we evaluate the results both experimentally and through a user study. Chapter 6

concludes delineating the main contributions and describing the promising directions

that follow this dissertation.





Chapter 2

State of the art

The state of art in the area of query reformulation for empty-answer is presented in

Section 2.1. In Section 2.2 we survey the existing approaches for information overload

and the differences with graph query reformulation presented in Chapter 4. Finally, Sec-

tion 2.3 first introduces generic techniques for assisting the user in the query formulation

phase, and then, looking at the neighborhood area of query answering in graphs, clarifies

why exemplar queries discussed in Chapter 5 constitute a completely novel paradigm.

This chapter is based on the related works presented in our publications. More specif-

ically, it expands on empty-answer framework [MMBR+13], graph query reformula-

tion [MBG15], and exemplar queries [MLVP14a] related works.

2.1 Empty Answer

A considerable amount of research has focused on solving the empty-answer problem.

The two main solutions for this problem are top-k results retrieval and query reformu-

lation.

2.1.1 Top-k results

The most natural way to deal with the empty/many-answers problem is the ranked-

retrieval approach, where the task is to propose a ranking function that assigns a

score to all items (even those that do not exactly match the query conditions) in the

11
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database. The ranking function captures the preferences of the user, and returns the

top-k ranked items. This approach can be very effective when the user is relatively

sophisticated and knows what she wants, because the ranking function can be directly

provided by the user. However, in the case of a novice user who is unable to pro-

vide a good ranking function, there have been many efforts to develop suitable system-

generated ranking functions, both by Information Retrieval (IR) [BYRN11, MPV13] and

database [ACDG03, CDHW04, CDHW06] researchers.

The top-k approach proposed in [ACDG03] is based on the idf measure and adapted

for relational databases. A relational database defines a set of attributes that represent

a specific structure of an object, such as “Name” or “Address”. These attributes have

a set of admitted values called domain and the combinations of values constitute the

tuples, e.g., name=“John”, Address=“Main Road” is a tuple. The idf of value v in the

domain of the attribute Ai of a database D is the logarithm of the number of tuples n in

the database, divided by the number of tuples having value v in attribute Ai, denoted as

Fi(v). Intuitively, it gives higher scores to tuple matching less frequent attribute values.

This approach can be generalized to numerical attributes subdividing the attribute into

buckets of a fixed size. Given a query, the score of a tuple is given by the sum of the idf

score on the attributes matching the query conditions.

The other top-k solutions [CDHW04, CDHW06] instead of using a deterministic score as

idf , exploit probabilistic models. The method first computes a set of relevant tuples for

a specific query. This set is estimated from a collection of past queries executed in the

system. The score of a tuple is computed as the posterior probability of attributes not

matching the query terms M̄ , given the set of relevant tuples R, in formula P (M̄ |R)
P (M̄ |M,D)

,

where M̄ is the complement of M .

At the same time, it has also been recognized [BRWD+08, HHI10] that the rank-retrieval

based approach has an inherent limitation for novice users, namely it is not an interactive

process, and if the user does not like the returned results, it is not easy to determine how

the system-generated ranking function should be changed. In this context, approaches

such as query reformulation are preferred alternatives.
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2.1.2 Query reformulation

The alternative way to cope with the empty-answer problem is query reformulation.

Query reformulation (also known as query modification or query rewriting) is a classic

problem in databases and information retrieval, whose main objective is to provide the

user with a set of alternative queries that better capture her search intent. Query

reformulation is particularly useful in two complementary situations: (a) the user query

is too specific and the result set is unavoidably empty (empty answer); (b) the query is

too generic and the system returns a large number of results (information overload).

Query reformulation approaches are mostly non-interactive: they do not take into ac-

count the feedback of the user in the reformulation process. One of them [Cha90]

proposes query modification based on a notion of generalization, and identifies the con-

ditions under which a generalization is applicable. A generalization of a query Q on

a database D is a query Q′ such that DQ ⊆ DQ′ , where DQ is the set of results. A

more recent work [KLTV06] suggests alternative queries on numerical attributes based

on the “minimal” shift from the original (join) query. For a given empty-answer query

Q, two operators are applied, namely RELAX and SKYLINE returning the shift between

the numerical value and the constraints in the query and the tuple pairs that covers

all the other tuples on the conditions of Q, respectively. Enabling reformulations of

keyword queries on structured data is proposed in [YCHH12]. Queries are reformulated

exploiting semantic (hierarchies) and structural (data schema) information in a rela-

tional database. The limitation of these approaches is that the user cannot change the

preferences in the system. Our empty-answer framework, presented in Chapter 3, is an

example of interactive approaches that can greatly help novice users in query answering.

Automatic query reformulation strategies for keyword queries over text data have been

widely investigated in the IR literature [GS93, GS91]. To find related queries, various

strategies have been proposed, including measures of query similarity [BYHM04], query

clustering [WNZ02], or summary information contained in the query-flow graph [ABCG10].

An alternative approach relies on suggesting keyword relaxations by relaxing the ones

which are least specific based on their idf score [HHI10]. Other notable approaches

include the use of query-logs to retrieve search patterns [BBCV11] and learn refor-

mulations. Relaxation strategies have been proposed as a recommendation service

in [Jan07, JL06, Jun04]. Similar to our empty-answer framework, the solution proposed
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by Jannach [Jan07] explores the lattice of the possible relaxations obtained relaxing one

condition from the query at the time. From the lattice the method returns the maxi-

mal non-empty queries, i.e., the set of non-empty queries such that the addition of any

single condition to them will lead to an empty-answer query. These methods are clearly

non-interactive and suggest relaxations with the objective of reaching an interesting an-

swer that has the minimum number of attributes relaxed. Moreover, in the absence of

external sources, such as query-logs, these methods fail to accomplish the required goal

of finding query reformulations.

An interactive method that refines a query to satisfy certain query cardinality constraints

is introduced in [MK09]. The proposed techniques are designed to handle queries having

range and equality predicates on numerical and categorical attributes. The input is a

conjunctive query Q on a set of n constrained attributes A1, ..., An, where a constraint

is denoted as Ai � v with value v, and � ∈ {>,<,≤,≥,=, 6=}, and the output is a

set of refinements with n − 1 constraints. This problem is solved finding minimal so

called extended queries, that returns all the tuples satisfying at least n− 1 constraints.

For instance if the input query is (A1 �1 v1 ∧ ... ∧ An �n vn), an extended query is

(A1 � v1 ∧ ... ∧An−1 �n−1 vn−1) ∨ ... ∨ (A2 �2 v2 ∧ ... ∧An �n vn).

Other interactive approaches include “Why-Not” queries studied in [CJ09, TC10], where,

given a query Q and a set S of results expected by the user, an alternate query Q′ is

designed such that (a) is similar to Q for a certain notion of similarity, (b) returns

the missing results S, and (c) the size of the results set should be minimal. “Why

Not” queries are non-interactive, and the extension of these methods to deal with the

empty answer problem is not trivial. Indeed, a “Why-not” query assumes the user to

be aware of some desired tuples S in the database, whereas in our case, no such set S

is required to the user. In addition, user preferences in “Why-not” questions are not

explicitly modeled. The proposed relaxations are those that minimize the distance with

the original query and include the set S of desired results with the minimum number

of additional tuples. The approach we propose, instead, is unique in that it is built on

top of a principled probabilistic optimization framework that takes into account user

knowledge and preferences and integrates multiple objectives at once.
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2.2 Information overload in graph search

Information overload problem requires some ad-hoc techniques, although complementary

to the empty-answer problem. While most of the techniques presented in Section 2.1

still apply to information overload, a number of solutions exist for this specific problem.

Returning the ranked top-k results is a way to prevent information overload. This

method, highly used in information retrieval, conveys a number of limitations since the

user can neither explicitly choose a subset of the results, nor can she see the rest of the

results without navigating through them from top to bottom.

One effective method to overcome the information overload is faceted search. Faceted

search refers to user interfaces that organize the results in a hierarchy of reformulated

queries to enable the exploration of the query results. A recent study [BRWD+08]

proposes a minimum effort approach for faceted search, in which the query is refined

adding one query condition at a time to drive the user towards the required results with

the minimum number of interactions. This method tackles information overload using

a decision-tree approach: given a query Q on a database D and a set of results DQ,

it constructs a tree that minimizes the Indg function that represents the number of

indistinguishable tuples (tuples having the same value in a specific attribute). The Indg

is the score

Indg(Ai,DQ) =
∑

v∈DomAi

|DQ[Ai = v]|(|DQ[Ai = v]| − 1)/2,

with DQ[Ai = v] being the set of tuples having value v in attribute Ai. Using the above

equation the results are split across attribute values in a tree, such that the number of

steps to find the desired answer is minimized. Similarly in spirit, Facetedpedia [LYR+10]

applies faceted search to Wikipedia.

As far as web search is concerned, query reformulation has also been used as a tool

for a different problem, namely, result diversification [SMO10], that is the problem of

selecting a subset of the query results that are diverse one another [DP12]. The latter

work seeks the smallest set of points in a multidimensional plane that are r-DisC diverse.

An r-DisC diverse set of points is such that any other point not in the set is at distance

≤ r to at least one point in the set. Intuitively, the set of r-DisC points are circles in the
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Figure 2.1: A query Q in a database D as a graph search.

plane that cover all the points with limited overlap between them. Although finding such

a set is NP-hard, a greedy approximate algorithm exists. They also study zoom-in and

zoom-out methods that allow real time adaptations of the parameter r. Diversity (along

with coverage) is also at the basis of the solution presented in Chapter 4, even though

with a different purpose: we want to find other queries that identify diverse subsets of

the results of the original query rather than simply selecting a number of diverse query

results.

All the aforementioned methods work with structured or textual data, however, to the

best of our knowledge, no solution exists for graphs. We are particularly interested in

labeled graphs, having (textual) descriptions in nodes and edges, for they can convey

a vast amount of different information. This section first surveys the main related

literature in answering graph queries, to then describe the neighborhood area of pattern

discovery as a näıve approach for query reformulation in graphs presented in Chapter 4.

Querying

graphs

A graph query is a structure (i.e., a graph) that needs to be found in the data graph.

The types of queries studied in the literature include full-graph search [BDBV01], whose

goal is to retrieve all graphs that are isomorphic to the input query and subgraph/-

supergraph search [YYH05, CKNL07, SZLY08, CKN09, YM13], which finds all graphs

that are supergraph/subgraph of the input query. A more flexible approach, the gen-

eralized subgraph search [LXCB12], is a generalization of subgraph search where exact

edge matching is replaced with the notion of path matching constrained by a path
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length. Similarity search [SLZ+10] relaxes the match conditions even further, returning

all graphs that are similar enough to a query according to a given proximity measure.

Figure 2.1 shows examples of the different graph search types in a small database. Given

a query Q, full-graph search (Figure 2.1a) matches the query only if the matched struc-

ture is exactly the same as the query. Subgraph search, depicted in Figure 2.1b, finds

substructures of the graph matching the query. In generalized graph search, the query

specifies also a maximum distance at which a desired pattern should be found. In the

example in Figure 2.1c the generalized query defines that a dashed edge must be found

within two steps from a dotted edge. Figure 2.1d represents the most flexible method to

match graphs, in which a similarity measure is provided to match results that resemble

to some extent to the input query.

Graph

pattern

mining

Graph query reformulation reminisces the problem of finding patterns in graph databases.

Research in this field has mainly focused on frequent subgraph mining [YH02, HWPY04,

NK04], which aims at finding all structures (usually subgraphs, but also trees or paths)

that occur frequently in the graphs of the database, and optimal graph pattern min-

ing, that is the problem of finding substructure(s) that maximize a given quality func-

tion [MS00, YCHY08].

The earliest works in this area, AGM [IWM00] and FSG [KK01], propose Apriori-based

algorithms. An initial empty pattern is expanded in a breadth first fashion exploiting

the anti-monotonicity property of the frequency, for which the frequency of a pattern

never exceeds the frequency of a subpattern. The exploitation of the Apriori property

enables a fast pruning of the non-frequent patterns. Breadth first approaches have been

demonstrated being slower and less performing than depth first search (DFS) approaches,

like GSpan [YH02]. GSpan is the first work proposing the concept of DFS codes, a

kind of canonical code that uniquely represents a graph pattern as a string. Therefore,

equal graph structures implies equal canonical codes and vice versa. On this basis, a

number of approaches have been proposed elaborating over the concept of informative

patterns [KCN07, SMG09]. Intuitively, a pattern is informative if it can be used as

a description of a set of similar patterns. In [SMG09] the notion of informativeness

is captured by the correlation. Given two graphs G1, G2, the correlation is Cov(G1,G2)
σ(G1)·σ(G2) ,

where Cov is the covariance and σ the standard deviation. If a graph correlates with one

of its subgraphs we conclude that it does not convey more information and thus can be
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ignored. Compact indexes of patterns can be constructed discarding highly correlated

patterns.

Frequent subgraph mining might be viewed as a näıve approach to query reformulation

in graph databases: find the supergraphs of the query graph that appear frequently in

the database and just interpret them as reformulations. The notion of informativeness is

somehow related to the diversity proposed in our approach. However, the aforementioned

methods ignore the user query that is instead the starting point in our approach. This

issue is expanded in Chapter 4.

Result-set

reduction

The problem of reducing the answers to a query issued to a graph database has also

received some attention in the literature. Existing solutions rely on either clustering

the graphs in the result set [FVS+09, HCY+12] (not to be confused with the problem

of clustering the vertices of a single graph [Sch07]) or returning top-k representative

results [RHS14]. A top-k representative query is a query on a graph database (remember

that a graph database is a set of small graphs) that returns the k representative graphs

that compactly summarize all other results. Each graph g in the database D is a feature

vector
→
g = [gi, ..., gm], in which a feature is a graph pattern and the i-th value of the

vector is 1 if and only if gi is a subgraph of g. A top-k representative query returns

the subset of the results matching the query, i.e., {g ∈ D|Q(
→
g ) = 1}, that maximizes a

budget function. The budget function measures the number of results that are similar

to those in the considered subset. Returning the top-k representative queries follows

the trend of overcoming the information-overload issue, but is only tangentially related

to the problem we tackle in Chapter 4. Our query-reformulation problem is indeed

different: rather than aiming at reducing the result set, we ask for something more, i.e.,

we want to output a set of reformulated (i.e., more specific) queries that can help the user

better comprehend the results and refine her search. Existing approaches to result-set

reduction cannot instead output query reformulations, as our problem requires.

2.3 Inexpressible queries

Sometimes, novice users have to cope with the problem of the limited expressive power

and usability of the database systems. Usability has been a key issue in most of the

modern database systems for the last decades [Dat83, JCE+07]. Although a single
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definition does not exist, usability is intuitively defined as the degree to which users can

access, learn, and enjoy a particular system with their own skills [Car99].

2.3.1 Database usability

One of the earliest notable works addressing usability in relational databases is query-by-

example (QBE) [Zlo75], a methodology, orthogonal to SQL, to query by filling missing

values in tuple-centric interfaces. Similarly, more recent works have been successfully

proposed for XML data, such as XQBE [BCC05]. This is only marginally related with

the spirit of this dissertation, in that their main focus is on alternative query interfaces,

while we aim to assist the users (especially novice users) in the query answering process

and hide most of the details of the schema and the structure of the data.

Visual interfaces for querying have a long history. Apart from successful industrial appli-

cations, such as Microsoft SQL Server Data Tools [sql] and Oracle Developer Tools [ora],

several approaches have been proposed in this regards, such as GRIDS [SY98] and

FoXQ [Abr03] to name a few. Works in this area are meant to simplify the access

to the data allowing for an interactive design of the query. Along the same line,

CURSED [PPV02] proposes a method to easily create forms. This visual approach is

somehow orthogonal to the one presented in this work. We intend to improve the query

capabilities of the system and, instead of facilitating the user in the query creation part,

we offer novel solutions in case of failure of the query answering process.

Usability drives the study of keyword-based interfaces, in which the user describes the

desired answer in natural language. These interfaces are inherently more intuitive and

suitable for novice users. However, they convey a number of issues related to the am-

biguity of natural language. Solutions have been proposed to answer keyword queries

over relational [BDG+11, BGS14], trees [FKM00, GSBS03], and graphs [PHIW12, KA11,

KRS+09]. The reliability of these methods depends on NLP (Natural Language Process-

ing) techniques and ranking models. Our approach, instead, is more database-centric,

in that the ultimate goal is to enrich the semantics of the query answering systems.

Moreover, most of the visual interfaces assume that the user is familiar with the rela-

tional model and can formulate the query in the correct way. The latter assumption, in

particular, does not hold for novice users.
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2.3.2 Query answering in knowledge graphs

We study the problem of Inexpressible queries when the data model is a graph, as we did

for the many-answer problem. More specifically, most of the data is conveniently repre-

sented as a knowledge graph. Knowledge graphs are labeled graphs whose nodes represent

entities (e.g. persons, locations, concepts) and edges are relationships between them.

Typical examples of knowledge graphs include Freebase [BEP+08], YAGO [SKW07],

and DBpedia [LIJ+15]. This model accommodates a plethora of needs and enables

novel interesting challenges [LMP+14].

Related literature for Inexpressible queries includes query modification, as already in-

troduced in the previous section. However, if the user does not know at all how to

formulate the query conditions, the aforementioned techniques cannot be used. As such,

in this specific case, query reformulation is not a valid alternative.

Query answering in knowledge graphs is mainly achieved with keyword search and ap-

proximate search.

Graph

Keyword

search

Keyword search is also a convenient way to cope with Inexpressible queries. The user

provides a keyword query Q = (w1, ..., ws), that consists of a list of words wi, on the

knowledge graph D, and receives as answers a set of graphs or matched nodes. Table 2.1

presents the main works in this area divided by the shape of the structures matched in

the knowledge graph.

Tree-based methods [HWYY07, KRS+09] return a tree as an answer to a keyword query.

BLINKS [HWYY07] is one of the first works tackling keyword search in graphs efficiently.

This method exploits fast indexing techniques to retrieve trees connecting the set of

matched nodes. The answers are then ranked using a scoring function that integrates

graph measures (e.g., node degree) and IR measures (e.g., tf-idf). The more recent

STAR [KRS+09] extends the idea of returning trees as answers to steiner trees 1. Since

the general Steiner tree problem is NP-hard, they propose efficient approximations with

quality guarantees.

A different approach is the one taken by [KEW09] and [KA11]. MING [KEW09] extends

STAR returning graphs as results. The relevance of a result is computed with a random

1A steiner tree is a tree having the minimal distance between a set of input nodes.
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Output shape Description Previous Work

Trees These methods produce connected trees as out-
put, either steiner trees or normal trees

[HWYY07],
[KRS+09]

Subgraphs These methods return a connected subgraph of
the knowledge base.

[KEW09],[KA11]

Structured
queries

These methods match seed nodes with any struc-
ture. The returned output can be disconnected.

[PHIW12]

Table 2.1: Keyword search on knowledge graphs literature

walk on the graph starting by the candidate matching nodes. Similarly, r-clique [KA11]

envisioned the advantages of returning subgraphs that minimizes the overall distance

between the matched nodes, materializing in an index all the possible paths of size at

most r. A valid r-clique must include a node for each candidate match of the query

terms.

Logic-based approaches look at the problem from a different angle. In this sub-area,

QUICK [PHIW12] proposes a hybrid method that exploits NLP parsing to annotate

query terms as entities, concepts and relationships, and subsequently builds a structured

query that resembles a description logic predicate. This predicates are then evaluated

on the graph and ranked according graph and IR measures.

Approximate

search in

graphs

An alternate approach is approximate search. Approximate search can be performed

when the user does not know the exact conditions to formulate the query and sends

an incomplete or imprecise query. On graphs, p-homomorphism [FLM+10] enables sim-

ilarity structure search instead of the strict isomorphism. Likewise, NeMa [KWAY13]

introduces the notion of node neighborhood (i.e., the set of nodes reachable from a source

node in a fixed number of steps) to match nodes and edges within some error range, in-

troduced by the user in the query. One recent work, SLQ [YWSY14], expands the latter

technique including a ranking model for a set of fixed textual/topological transforma-

tions from query nodes to answer nodes in the graph. Noticeably, more elastic notions of

graph match have been proposed exploiting strong simulation to answer a query. Strong

simulation is a recently introduced form of pattern search [MCF+14] that considers the

query as a transition process (where nodes are states of the system and edges are tran-

sitions between the states), and finds answers that preserves the same transitions and

the same order of the user query. Interestingly, the latter problem admits a polynomial
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time algorithm. Simulation is also explored in one our recent work [MLVP15]. An ap-

proach close to ours is GQBE (Graph Query by Example) [JKL+13, JKL+14], where

an input set of nodes is treated as an initial example seed for the results of the user.

Approximate search requires at least an incomplete description of the query, falling short

to fulfill the goal of the inexpressible queries problem, that is instead addressed by our

work in Chapter 5.



Chapter 3

A Holistic Approach for the

Empty-Answer Problem

We new focus on the empty answer problem and, more specifically, on the study of

interactive methods. The traditional approach for the empty answer problem is query

relaxation that proposes relaxed queries with less constraints than the user query. In-

teractive methods are more suitable for novice users in that they are designed to ask

“yes/no” questions instead of showing a set of relaxations all at once. Nevertheless,

when dealing with many stakeholders, such as sellers and end-users, the system should

adapt and return answers based on different objectives and preferences. In this chapter,

we present a principled optimization framework for the empty-answer problem, that ac-

cepts a wide range of objectives. The framework embeds a probabilistic model of the

user preferences and beliefs. We also include experimental results and a user study to

demonstrate the quality of the results of our framework. The algorithms have also been

presented in a system demonstration [MMBR+14].

3.1 Contributions

The main contributions in this chapter can be summarized as follows.

• We propose a principled probabilistic optimization-based interactive framework for

the empty-answer problem that accepts a wide range of optimization objectives,

23
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and is based on estimation of the user’s prior knowledge and preferences over the

data.

• We propose novel algorithmic solutions using our framework. The algorithms

FastOpt and CDR produce optimal and approximate relaxation sequences respec-

tively, without having to explore the entire relaxation tree.

• We propose an extension of the framework that returns top-k relaxations at each

step, and also we allow the possibility to specify a cardinality constraint on the

size of the results. Enabling top-k relaxations is a critical step that affects time.

As such, we introduce a new algorithm, FastCDR, that embeds both the optimal

FastOpt pruning and the approximate cost computed by CDR.

• We explain how our techniques can be used for different cases such as categorical

attributes with hierarchies, numerical attributes, or cases with constraints on the

expected answer set.

• We perform a thorough experimental performance and scalability evaluation using

different optimization objectives on real datasets, as well as a usability study on

real users, and we report our findings.

3.2 Outline

The chapter is organized as follows. In Section 3.3 we present a motivating example

used through the rest of the chapter. Section 3.4 introduces the probabilistic framework

and the notation used to define the exact and approximate algorithms in Section 3.5.

Extensions to the framework are described in Section 3.6. Finally, in Section 3.7 we

present experimental results on real data as well as usability studies on real users.

3.3 Motivating example

Consider a web site like cars.com, where users can search for cars by specifying in a

web-form the desired characteristics. An example instance of such a database is shown

in Figure 3.1. A user is interested in a car that has anti-lock braking system (ABS),

dusk-sensing light (DSL), and manual transmission. The data instance of Figure 3.1

reveals that there is no car that satisfies these three requirements.



Chapter 3. Empty Answer 25

t1
t2
t3
t4

M
a
k
e

M
o
d

e
l

P
ri

c
e

A
B

S

M
P

3

A
la

rm

4
W

D

D
S

L

M
a
n
u

a
l

H
iF

i

E
S

P

T
u

rb
o

VW Touareg $62K 1 0 0 0 0 1 0 1 0

Askari A10 $206K 0 1 0 0 1 1 1 1 0

Honda Civic $32K 1 0 0 0 0 0 0 0 0

Porsche 911 $126K 0 0 0 0 1 0 1 1 0

Figure 3.1: An instance of a car database.

The user is in an urgent need of a cheap car, and is therefore willing to accept one that

is missing some of the desired characteristics. The system knows that the cheapest car

is a Honda Civic (i.e., tuple t3) that has ABS, but no manual transmission and no DSL.

So it proposes to the user to consider cars with no Manual transmission. If the user

accepts, the system next propose to the user to consider cars with no DSL. If she also

accepts the second relaxation, then the cheapest car of the database, tuple t3 would be

returned.

Instead, the system could also propose to the user cars with no ABS in the beginning.

However, if the user accepts that suggestion, this would result in a match of the most

expensive car of the database (Askari A10, tuple t2). Since the user wishes to find the

cheapest car, therefore, proposing first to relax the DSL requirement is preferable.

Assume that when the user is first asked to relax DSL, the answer is no. In this case, the

system needs to investigate what alternative relaxations are acceptable. If the system

knew that most users prefer cars with DSL, it could have used this knowledge to propose

a different relaxation in the first place. In the following sections, we present a framework

that takes into account all the above issues, for different optimization objectives.

The set of possible relaxations of the query ABS=1 ∧ DSL=1 ∧ Manual=1 is graphi-

cally depicted in Figure 3.2 as a lattice where each node represents a query. The query

of a node is a relaxation of the query modeled on the node above. The query is expressed

as a triple where each value of the triple means that the respective condition is ignored

if “-” or considered if “1” (e.g., ABS=1 ∧ DSL=1 as (1, 1,−)). The original query

can be modeled as (1, 1, 1), depicted at the root of the lattice, while each of the other

nodes in the lattice represents a relaxed query. A directed edge from node p to node p′

denotes that p′ contains exactly one additional relaxation that is not present in p. For
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Figure 3.2: Query lattice of the query Q in Example 3.1.

illustration, each relaxation contains the tuples in its answer set. Note that, given a

query with k conditions, the number of possible relaxations is exponential in k.

3.4 Background and Problem

This section introduces the proposed probabilistic framework for interactive query re-

laxation. The framework is based on a cost associated to each user interaction with the

system. Given the generality of the cost model, application-specific instantiations are

presented (such as, proposing results with the maximum price). For ease of explanation

we consider databases with only Boolean attributes and we defer to Section 3.6 for a

discussion on how to convert any database to Boolean.

3.4.1 Background

Let A be a collection {A1, A2, . . ., Am} of m attributes, with each attribute Ai∈A asso-

ciated with a finite domain DomAi . The set of all possible tuples U=DomA1 × DomA2

× . . . ×DomAm constitutes the universe. A database is a finite set D⊆U . A tuple t

(v1, v2, . . ., vm) can also be expressed as a conjunction of conditions Ai=vi, for i=1..m,

allowing it to be used in conjunctive expressions without introducing new operators.

Given t∈U we denote as Constrs(t) the set of conditions of t.
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A query Q is a conjunction of atomic conditions of the form Ai=vi, where Ai∈A and

vi∈DomAi . Each condition in the query is referred to as constraint. The set of con-

straints of a query Q is denoted as Constrs(Q). A query can be equivalently represented

as a tuple (v1, v2, . . . , vm) where the value vk corresponds to attribute Ak and models

the condition Ak=vk if vk∈DomAk
or the boolean value “true” if vk has the special

value “-”. Similarly, a tuple (v1, v2, . . . , vm) can be represented as a query Q, i.e., a

conjunction of conditions of the form Ai=vi, one for each value vi. Thus, by abuse of

notation, we may write a tuple in the place of a query. A tuple t satisfies a query Q if

Constrs(Q) − Constrs(t)=∅. The universe of a query Q, denoted as UQ, is the set of all

the tuples in the universe U that satisfy the query Q. The answer set of a query Q on

a database D, denoted as DQ, is the set of tuples in D that satisfy Q. It is clear from

the definition that DQ ⊆ UQ. An empty answer to a user query means that none of its

satisfying tuples are present in the database.

Example 3.1. The tuple t1 in Figure 3.1 can be represented as Make=VW ∧Model=Touareg

∧ Price=62K ∧ ABS=1 ∧ Computer=0 ∧ Alarm=0 ∧ 4WD=0 ∧ DSL=0 ∧ Manual=1 ∧

HiFi=0 ∧ ESP=1 ∧ Turbo=1. Given the set of attributes (ABS, DSL, Manual), the query

ABS=1 ∧ DSL=1 ∧ Manual=1 can be modeled as (1, 1, 1) while the query ABS=1 ∧ DSL=1

as (1, 1,−). �

3.4.2 Generic Probabilistic Framework

A relaxation is the omission of some of the conditions of the query. This results into

a larger query universe, which means higher likelihood that the database will contain

one or more of the tuples in it, i.e., the evaluation of the relaxed query will return a

non-empty answer.

Definition 3.1. A relaxation of a queryQ is a queryQ′ for which Constrs(Q′)⊆Constrs(Q).

The constraints in Constrs(Q) − Constrs(Q′) are referred to as relaxed constraints and

their respective attributes as relaxed attributes. �

For the rest of this chapter, since our goal is to provide a systematic way of finding a

non-empty answer relaxation, we consider for simplicity only relaxations that involve

one constraint at a time. Note that there are other forms of relaxations, relevant to

categorical attributes with hierarchies, or numerical values. Our techniques can also

handle these forms of relaxations. We discuss these cases further in Section 3.6.
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Figure 3.3: Query Relaxation tree of the query in Example 3.1.

The extra tuples that the query universe of a relaxation of a query Q has as opposed to

query universe of Q is called a tuple space.

Definition 3.2. The tuple space of a relaxation Q′ of a query Q, denoted as TSQ(Q′),

is the set UQ′ − UQ. �

Among the constraints of a user query, some may be fundamental and the user may not

be willing to relax them. We refer to such constraints as hard constraints and to all

the others as soft constraints. Since the hard constraints cannot be relaxed, for the rest

of this chapter we focus our attention on the remaining constraints of the user query,

which are initially considered to be soft.

In the tuple representation of a query, we use the “#” symbol to indicate a hard con-

straint, and “?” to indicate a question to the user for the relaxation of the respective

constraint.

Example 3.2. The expression (1,#,−, 1, ?) represents a relaxation query for which the

user has already refused to relax the second constraint (i.e., she has kept the original

query condition on the second attribute as is), has accepted to relax the third one, and

is now being proposed to relax the last constraint.

In order to quantify the likelihood that a possible relaxation Q′ of a query Q is accepted

by the user, we need to consider two factors: first, the prior belief of the user that an an-

swer will be found in the database using the relaxed query Q′, and second, the likelihood

that the user will prefer (i.e., be satisfied with) the answer set of Q′. The relaxation



Chapter 3. Empty Answer 29

Q′ selected by the framework should have high values for both factors, and additionally

should attempt to optimize application-specific objectives (e.g., try to steer the user

towards highly profitable/expensive cars). We provide generic functional definitions of

both factors next, and defer application-specific details to Section 3.4.4.

Since we cannot assume that the user knows any tuple in the database, we resort to a

probabilistic method for modeling that knowledge through a function called prior(t, Q,Q′).

It specifically measures the user belief that a certain tuple t satisfying the relaxed query

Q′, i.e., a tuple from the tuple space of the relaxation, exists in the database. In order to

estimate the likelihood that the user is satisfied with an answer set, we use a preference

function pref(t, Q) that captures the probability that a user will like a tuple t, given the

query. Section 3.4.4 discusses how specific prior and pref functions can be constructed

for various applications.

Using the prior and the pref functions, we can compute the relaxation preference func-

tion, i.e., the probability that a user accepts a proposed relaxation Q′ to a query Q

(where Q evaluates to an empty answer). The probability to reject the relaxation is:

relPrefno(Q,Q
′) =

∑
t∈TSQ(Q′)

(1− pref(t, Q′)) ∗ prior(t, Q,Q′) (3.1)

which represents the probability of not liking any of the tuples in the tuple space. Thus

the probability of accepting the relaxation is the probability that the user likes at least

one tuple, which is the inverse of the probability of the user not liking any tuple (i.e.,

rejecting the relaxation), namely

relPrefyes(Q,Q
′) = 1− relPrefno(Q,Q′) (3.2)

To encode the different relaxation suggestions and user choices that may occur for a

given query Q that returns no results, we employ a special tree structure which we call

the query relaxation tree (see Figure 3.3 for an example of such a tree). This is similar

to tree structures used in machine learning techniques and games [Mit97]. The tree

contains two types of nodes: the relaxation nodes (marked with double-line rectangles

in Figure 3.3) and the choice nodes (marked with single-line rectangles in Figure 3.3).
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Note that the children of relaxation nodes are choice nodes, and the children of choice

nodes are relaxation nodes.

A relaxation node represents a relaxed query. The root node is a special case of a

relaxation node that represents the original user query. A relaxation node does not

have any children when the respective query returns a non-empty answer, or returns

an empty-answer but cannot be relaxed further (either because all its constraints are

hard, or because no further relaxation can lead to a non-empty answer). In every other

case, relaxation nodes have k children, where k is the number of soft constraints in the

query corresponding to the node. Each child represents an attempt to further relax the

query. In particular, the i-th child represents the attempt to relax the i-th soft constraint

(recall that in each interaction step we attempt to relax only a single constraint). These

children are the choice nodes.

A choice node models an interaction with the user, during which the user is asked

whether she agrees with the relaxation of the respective constraint. Each choice node

has always two children: one that corresponds to a positive response from the user, and

one that corresponds to a negative response. In the first case, the child is a relaxation

node that inherits the constraints from its grandparent (i.e., the closest relaxation node

ancestor), minus the constraint that was just relaxed (this constraint is removed). In

the second case, the child is a relaxation node inheriting the constraints from the same

grandparent, but now the constraint proposed to be relaxed has become a hard constraint

(the relaxation was rejected). A choice node can never be a leaf. Thus, any root-to-leaf

path in the tree starts with a relaxation node, ends with a relaxation node, and consists

of an alternating sequence of relaxation and choice nodes.

Each path of the tree from the root to a leaf describes a possible relaxation sequence.

Note that if the query Q consists of k constraints (i.e., attributes), there are an expo-

nential (in k) number of possible relaxation sequences. In practice, the number of paths

is significantly smaller, because they may terminate early: at relaxation nodes that have

a non-empty answer, or at relaxation nodes for which no descendant corresponds to a

non-empty answer.

Example 3.3. Figure 3.3 illustrates the query relaxation tree for the query Q in the

Example 3.1. Relaxation nodes are modeled with a double-line and choice nodes with a

single-line border. The color-filled nodes are nodes corresponding to relaxations with a
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non-empty answer. The non-colored leaves correspond to relaxations that cannot lead to

a non-empty answer, irrespective of further relaxations that may be applied. Notice how

the ”?” symbol is used to illustrate the proposal to relax the respective condition, and

how this proposal is turned into a relaxed or a hard constraint, depending on the answer

provided by the user. �

Next, we introduce and assign a cost value to every node of the query relaxation tree.

Having the entire query relaxation tree that describes all the possible relaxation se-

quences, the idea is to consider the cost value of each relaxation node to determine

which relaxation to propose during each interaction, based on the specific optimization

objective, as we describe in Section 3.4.4.

Recall Equations (3.1) and (3.2) that describes the probability that a user will reject,

or accept a specific relaxation proposal made by the system. Using these formulae, in

general, the cost of a choice node n can be expressed as:

Cost(n) = relPrefyes(Q,Q
′) ∗ (C1 + Cost(nyes)) +

relPrefno(Q,Q
′) ∗ (C1 + Cost(nno))

(3.3)

where the nyes and nno are the two children (relaxation) nodes of n, Q is the query

corresponding to the parent of n, and Q′ corresponds to the suggested relaxation of Q

at node n. In the formula, the variable C1 is a constant, that is used to quantify any

additional cost incurred for answering the current relaxation proposal.

The cost of a relaxation node, on the other hand, depends on the way the costs of its

children are combined in order to decide the next relaxation proposal. To produce the

optimal solution, at every step of the process, a decision needs to be made on what

branch to follow from that point onward. This decision should be based on the selection

of the relaxation that optimizes (maximizes or minimizes) the cost. Thus, the cost of a

relaxation node n in the query relaxation tree is

Cost(n) = optimizec∈SCost(nc) (3.4)

where Q is the query that the node n represents, S is the set of soft constraints in

Constrs(Q), and nc is the choice child node of n that corresponds to an attempt to relax
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the soft constraint c. The optimization task is either maximization or minimization

depending on the specific objective function.

The cost of a leaf node depends on a specific optimization objective, and the “value”

of the tuples in that leaf node in contributing towards this objective. These details are

presented in Section 3.4.4.

Therefore, the final task is to propose a sequence of relaxation suggestions interactively,

such that the cost of the root node in the relaxation tree is optimized. An algorithm for

that task using the relaxation tree is discussed in Section 3.5.1.

3.4.3 Theoretical analysis

Consider the relaxation problem for an empty answer query in which the aim is to

minimise the user effort, i.e., the number of user interactions needed. If one is able to

find that minimum cost relaxation, the simpler problem of deciding whether a relaxation

has a cost at most n, should have the same or smaller complexity. Unfortunately, the

latter problem can be shown to be NP-complete.

Theorem 3.3. Given a database D and an empty answer query Q, deciding whether

there is a query relaxation tree such that the cost of its root node is less than or equal to

a constant n is NP-complete.

Proof. For the proof we can assume that we have a boolean database, i.e., a database

where each attribute takes a boolean value of 0 or 1. We will show that even for that

special case, the problem is still NP-complete. To do so we reduce the known to be

NP-complete exact cover by 3-set problem (denoted as X3C) [MD79] to ours. Given a

finite set U over 3n elements, and a collection S of 3-elements subsets of U , X3C finds

an exact cover for U , i.e., a sub-collection C ⊆ S of subsets, such that every element of

U occurs in exactly one member of C.

Consider an instance X3C(U, S) of the X3C problem that consists of a finite set U =

{x1, x2, . . . , x3n} defined over 3n elements, and a family S = {S1, S2, . . . , Sq} of subsets

of U , such that, |Si| = 3, ∀1 ≤ i ≤ q and requires a yes or no answer on whether there

exists a cover C ⊆ S of n pairwise disjoint sets, covering all elements in U .
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Given a specific instance I of the X3C problem, we create a database D with q boolean

attributes A = {A1, . . . , Aq} and 3n tuples T = {t1, . . . , t3n}. For each Si = {xj , xk, xl},

Ai contains boolean 1 for tuples {tj , tk, tl}, while the remaining tuples get boolean value

0 for attribute Ai. This way, every attribute is present (i.e.,corresponds to 1 value for

that attribute) in only three tuples. For such a database, we consider the query Q ∈ {0}q

(i.e., all q constraints of Q are set to 0). We also construct a simple “black-box” ranking

function that assigns a preference score pref(t, Q) to each tuple t in the database.

pref(t, Q) = 1, when the tuple exactly matches all the query predicates; otherwise,

pref(t, Q) = 0. Therefore, for our instance, it is easy to see that pref(t, Q) = 0 for all

the tuples, since Q returns no answer in the first place. The next step is to generate

a relaxation tree, and compute the cost of its root node based on the minimum cost

strategy. Interestingly, using the black-box preference function described above, we

have relPrefno = 100% and relPrefyes = 0 in each response node. This is indeed

true, because, pref(t, Q) = 0 for every tuple t, which results in relPrefyes = 0 for every

response node. The above steps achieved to create an instance J of the query relaxation

problem from an instance I of the X3C problem that we initially considered.

We claim that I is a YES-instance of X3C iff J is a YES-instance of our problem.

(⇒): Suppose C = {Sj1 , ..., Sjn} ⊆ S is an exact (disjoint) cover of U . Then consider

each node in the optimal path of the query relaxation tree, where tuple ti ∈ Ak iff

xi ∈ Sjk . Notice that each node Ak consists of only three tuples. Since C is an exact cover

of U , each element x ∈ U appears in exactly one subset Sk ∈ C. Thus, Cost(root) =

100% ∗ (1 + Cost(nno)) = n, that indicates that J is a YES-instance.

(⇐): Let π be a the optimal path in the query relaxation tree. Cost(root) = n, witnesses

the fact that J is a YES-instance. Observe that any node in π only contributes to 3

tuples to the database. Since the overall cost is n, it follows that every node contains

exactly 3 tuples and they are disjoint. Now, if we consider the collection S, it is easy

to verify that |C| = n and that every element x ∈ U appears in exactly one set S ∈ C.

Therefore, I is a YES-instance.
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3.4.4 Application-Specific Instantiations of the Probabilistic Frame-

work

The generic query relaxation framework presented in the previous section is largely

agnostic to application-specific details. However, to illustrate its range of applicability,

we take the opportunity here to discuss various specific instances of the framework,

notably different instances of the prior, pref, and objective functions.

Recall that the prior function represents the user’s prior knowledge of the content of

the database. An implementation of the prior is to consider the data distribution in

the case of known data domains. One possible implementation, which is the one we

use, is the popular Iterative Proportional Fitting (IPF) [BFH07, PKM05] technique on

the instance data (which can be thought as a sample of the subject domain) to esti-

mate the required probabilities. IPF takes into account multi-way correlations among

attributes, and can produce more accurate estimates than a model that assumes in-

dependence across attributes. However, we note that the independence model, or any

other probability density estimation technique can be applied in the place of IPF.

The pref function is the probability/likelihood that a user will like a tuple t given a

query. In simple instances, e.g., where the user in interested in cheap items in the query

instances, the preference for a tuple can be modeled as any suitable function where the

probability is dependent on the price of the item (higher the price, lower the probabil-

ity). More generally, the approach is to use a tuple scoring function for calculating the

pref of the tuples that imposes a non-uniform bias over the tuples in the tuple space.

For example, instead of simple tuple scoring functions (such as price), one could also use

more complex scoring functions such as assigning a relevance score [BYRN11] to each

of the tuples. There exists a large volume of literature on such ranking/scoring func-

tions [ACDG03, CDHW04, BYRN11]. Even though any of these functions are possible,

in our implementation, we use a simple and intuitive measure, which is based on the

Normalized Inverse Document Frequency [ACDG03].

pref(t, query) =

∑
c∈Constr(query)∩Constr(t) idf(c)∑

c∈Constr(query) idf(c)
,

where idf(c) = log
|D|

|{t|t ∈ D, t satisfies c}|
.



Chapter 3. Empty Answer 35

However, the question remains - as the relaxation process progresses, does the preference

of the user also evolve, i.e., the preference for a particular tuple changes? Note that

the preference for a particular tuple may be computed in several different ways: (1)

preference for a tuple is independent of the query and is always static - an example is

where the preference is tied to a static property of the tuple, such as price, (2) preference

for a tuple is query dependent, but only depends on the initial query and does not

change during the interactive query relaxation session - e.g., when the preference is

based on relevance score measured from the initial query, and (3) preference for a tuple

is dependent on the latest relaxed query the user has accepted - this is a very dynamic

scenario where after each step of the interactive session the preference can change. These

different preference computation approaches are referred to as Static, Semi-Dynamic, and

Dynamic respectively.

The generic probabilistic framework discussed in the previous subsection could be used

to optimize a variety of objective functions, by appropriately modifying the preference

computation approach of the tuples, and the cost computation of the leaf nodes, relax-

ation nodes, and the choice nodes of the relaxation tree. We illustrate this next.

Just as each tuple has a preference of being liked by a user, each tuple can also be

associated with a value that represents its contribution towards a specific objective

function. It is important to distinguish the value of a tuple from the preference for a

tuple - e.g., if the objective is to steer the user towards overpriced, highly-profitable

items, then the value of a tuple may be its price (higher the better), whereas the user

may actually prefer lower priced items (lower is better) - although in most applications

the value and the preference of a tuple are directly correlated. Thus in some applications,

our query relaxation algorithms have to delicately balance the conflicting requirement of

trying to suggest relaxations that will lead to high-valued tuples, but at the same time

ensuring that the user is likely to prefer the proposed relaxation. The following example

illustrates this situation:

Example 3.4. Consider the example database in Figure 3.1, and assume that instead of

steering the user towards cheap cars, the objective may steer the users towards expensive

cars. In this case, the value/preference of a tuple is directly/inversely correlated with its

price. For the purpose of illustration, let value of t1 = 0.15, t2 = 0.48, t3 = 0.07, t4 =

0.30. Let us also assume that the probability that the user will say “yes” to relaxing ABS

is only 0.3 (e.g., she knows that most cars come with ABS systems, and relaxing ABS
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will not offer too many additional choice of cars), whereas the probability that she will

say “yes” to relaxing DSL is much higher at 0.7 (e.g., it may be a relatively rare feature,

and relaxing it may offer new choices). Of course, our system can only estimate these

relaxation preference probabilities using Equations 1 and 2, which depend on the prior

and tuple preference functions.

Then, the cost of relaxing ABS is the expected value that can be achieved from it, which

is 0.3× 0.48 = 0.144, while the cost of relaxing DSL is 0.7× 0.15 = 0.105. The system

would therefore prefer to suggest relaxing DSL to the user, since it has a higher cost

(i.e., potential for greater benefit towards to overall objective), even though t2 has lower

preference than t1. �

As with preferences, the value of a tuple may evolve as the user interacts with the

system. Three cases can also be considered here.

Static: In this case, the value of a tuple t is pre-calculated (statically) independently

of the initial query Q, or subsequent relaxed queries Q′. The relaxation suggestions

try to lead the user to a leaf-node that has the highest cost (cost of a non-empty leaf

is the maximum value of the tuples that represent that leaf1)2. One can see that this

is equivalent to guiding the users to the most-valued tuples. In such cases, the cost

of a choice node is computed using Equation 3.3, by setting C1 = 0. Finally, as the

optimization objective is to maximize cost, then the cost of a relaxation node is the

maximum cost of its children.

Semi-Dynamic: In this case, the value of a tuple t is calculated using the initial query

Q, the first time it appears in the tuple space of a relaxation. Typical examples of

such values are relevance score of the tuple to the initial query (here value is same as

preference). This computed value of t is reused in all subsequent relaxations. The rest

of the process is similar to that of Static.

Dynamic: In this case, the value of a tuple t at a relaxation node is calculated using

the latest relaxed query Q′ that the user has accepted. This value computation is fully

dynamic, and the value of the same tuple t may change as the last accepted relaxed query

1Other aggregation functions (such as average) are also possible; the appropriate choice of the
aggregation function is orthogonal to our problem.

2Cost of an empty-leaf node is 0.
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changes. An example of such dynamically changing values are relevance of the tuple to

the most recent relaxed query. Such dynamic value computation approach could be used

inside the framework with the optimization objective of minimizing user effort, as it

minimizes the expected number of interactions. In this case, any leaf node (empty or

non-empty) has equal cost of 0. The cost of a choice node is computed using Equation 3.3,

by setting C1 = 1 (incurs additional cost of 1 with one more interaction). Finally, if

the cost of a relaxation node is computed as the minimum cost of its children, then the

underlying process will suggest relaxations that terminate this interactive process in the

minimum number of steps in an expected sense, thus minimizing the user effort.

More Complex Objective Functions: Interestingly, the proposed framework could

even be instantiated with more complex objective functions, such as those that represent

a combination of the previous optimization objectives of relevance, price, user effort,

etc. (e.g., most relevant results as quickly as possible, or cheapest result as quickly as

possible). In such cases, the cost of a leaf node needs to be modeled as a function that

combines these underlying optimization factors. After that, the cost computation of the

relaxation nodes or the choice nodes in the relaxation tree would mimic either Semi-

Dynamic3 or Dynamic, depending upon the specific combined optimization objective.

Further discussion on complex objective functions is out of the scope of this work.

3.4.5 Cardinality constraint

In several applications, the users are interested in non-empty answers that contain a cer-

tain minimum number of tuples (specified by some cardinality constraint). Our frame-

work assumes that the user is interested in at least one result. To constrain the number of

tuples returned, we simply consider empty any query that returns less than the required

cardinality. No other adjustments are needed.

3.4.6 Top-k relaxations

In certain applications, it may be disappointing for the user to get just one relaxation

suggestion at a time. Our proposed framework can be readily extended to suggest a

ranked list of k relaxations at a given interaction, by suggesting to the user the k best

3choice node and relaxation node cost of Static is same as that of Semi-Dynamic.
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sibling relaxation nodes based on the cost at a given level in the relaxation tree. However,

generating more than one relaxation at the time results in larger computation times,

because we need to explore more relaxation alternatives simultaneously. Section 3.5.3

shows how to efficiently modify algorithms that propose only the single best relaxation

to obtain the desired results without substantially changing the framework.

3.5 Algorithmic Solution

3.5.1 FullTree

Algorithm 1 FullTree

Input: Query Q
Output: Relaxation Cost of Q
1: T ← ConstructQRTree(Q)
2: return CompOptCost(T )

3: procedure ConstructQRTree(Query Q)
4: nrelax ← new RelaxationNode(Q) . construct the root
5: C={c | c∈Constrs(Q) ∧ c is hard}
6: ¬Q ← new Query(C)
7: if D¬Q=∅∨Q = ∅ then . non-relaxable query
8: return nrelax
9: for c ∈ Constrs(Q) do

10: if c is not hard then
11: nresp ← new ChoiceNode()
12: nrelax.addChild(nresp)
13: Qyes ← new Query(Constrs(Q)\{c}) . remove c
14: nresp.yesChild ← (ConstructQRTree(Qyes))
15: ch ← Hard(c) . ch is the hard version of c
16: Qno ← new Query((Constrs(Q)\{c}) ∪ {ch})
17: nresp.noChild ← (ConstructQRTree(Qno))

18: return nrelax

19: procedure CompOptCost(Node n)
20: if n has no children then
21: return 0
22: if n is a ChoiceNode then
23: Costyes ← CompOptCost(n.yesChild)
24: Costno ← CompOptCost(n.noChild)
25: Qyes ← n.yesChild.Query . query in the “yes” child
26: Pno ← relPrefno(n.Query,Qyes) . Equation (3.1)
27: Pyes ← 1− Pno

28: return Pyes ∗ (C1+Costyes)+Pno ∗ (C1+Costno) . Equation (3.3)
29: else if n is a relaxation node then
30: return optimum

c∈n.Children
CompOptCost(c)
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Given Equation 3.4, one can visit the whole query relaxation tree in a depth-first mode

and compute the cost of the nodes in a bottom-up fashion. This algorithm is referred

to as FullTree. Its steps are described in Algorithm 1. Note that the specific approach

has the limitation that the whole tree needs to be constructed first by the procedure

ConstructQRTree, and then traversed, a task that is computationally expensive since

the size of the tree can be exponential in the number of the constraints in the query.

Procedure ConstructQRTree constructs the whole tree starting on the root node

representing input query Q, and then it recursively adds child nodes until the query in

the node is non-empty or cannot be relaxed further (i.e., no more constraints to relax).

Furthermore, for every positive response that the user provides to a relaxation request,

the algorithm has to call the database to evaluate the relaxed query. Additionally, based

on the specific score computation approach, for every response, it may have to make

additional calls to recompute the prior and the pref value for the tuples in the relaxed

query tuple space. This may lead to time complexity prohibitive for many practical

scenarios.

3.5.2 FastOpt

To avoid computing the whole query relaxation tree, for each relaxation, we can compute

an upper and a lower bound of the cost of its children. From the ranges of the costs

that the computation provides, we can identify those branches that cannot lead to the

branch with the optimal cost. When the specific optimization minimizes the cost (i.e.,

effort), these are the branches starting with a node that has as a lower bound for its

cost a value that is higher than the upper bound of the cost of another sibling node.

Similarly, when the objective is to maximize the cost (i.e., lead user to most relevant

answers/answers with highest static score), the branches starting with a node that has

as a upper bound for its cost a value that is smaller than the lower bound of the cost

of another sibling node could be ignored. By ignoring these branches the required com-

putations are significantly reduced. We refer to this algorithm as FastOpt. Algorithm 2

shows the FastOpt pseudocode.

Instead of creating the whole tree, FastOpt starts from the root and proceeds in steps.

In each step, it generates the nodes of a specific level. A level is defined here as all

the choice nodes found at a specific (same) depth, alongside the respective relaxation
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(1,1,1)
[0.18,0.52]

(?,1,1)
[0.05,0.22]

(1,?,1)
[0.18,0.35]

(1,1,?)
[0,0.52]

(-,1,1)
[0.08,0.08]

 yes 70% 

(#,1,1)
[0,0.52]

 no 30% 

(1,-,1)
[0.27,0.27]

 yes 67% 

(1,#,1)
[0,0.52]

 no 33% 

(1,1,-)
[0,0.52]

 yes 90% 

(1,1,#)
[0,0.52]

 no 10% 

(1,1,1)
[0.46,0.5]

(?,1,1)
[0.05,0.22]

(1,1,?)
[0.46,0.5]

(-,1,1)
[0.08,0.08]

 yes 70% 

(#,1,1)
[0.1,0.52]

 no 30% 

(1,1,-)
[0.41,0.51]

 yes 90% 

(1,1,#)
[0.09,0.44]

 no 10% 

(#,?,1)
[0.1,0.34]

(#,1,?)
[0,0.52]

(?,1,-)
[0.05,0.41]

(1,?,-)
[0.41,0.51]

(?,1,#)
[0.02,0.41]

(1,?,#)
[0.09,0.44]

(#,-,1)
[0.27,0.27]

 yes 36% 

(#,#,1)
[0,0.52]

 no 64% 

(#,1,-)
[0,0.52]

 yes 20% 

(#,1,#)
[0,0.52]

 no 80% 

(-,1,-)
[0.13,0.13]

 yes 36% 

(#,1,-)
[0,0.52]

 no 64% 

(1,-,-)
[0.52,0.52]

 yes 80% 

(1,#,-)
[0,0.52]

 no 20% 

(-,1,#)
[0.08,0.08]

 yes 20% 

(#,1,#)
[0,0.52]

 no 80% 

(1,-,#)
[0.27,0.27]

 yes 33%

(1,#,#)
[0,0.52]

 no 67%

Figure 3.4: Example 3.5 Query Relaxation Tree after 1st and 2nd expansions

nodes they have as children. For the latter it computes a lower and upper bound of

their cost and uses them to generate a lower and upper bound of the cost of the choice

nodes in that level. When the cost is to be minimized (maximized), those choice nodes

with a lower bound higher than the upper bound (or respectively, with an upper bound

lower than the lower bound) of a sibling node are eliminated along with all their subtree

and not considered further. The computed upper and lower bounds of the choice nodes

allow the computation of tighter upper and lower bounds for their parent relaxation

nodes (compared to bounds that have already been computed for them in a previous

step). The update of these bounds propagates recursively all the way to the root. If

a relaxation node models a query that generates a non-empty answer, then it does not

expand to its sub-children. Furthermore, after |Constrs(Q)| repetitions, the maximum

branch length is reached and the relaxation sequence with the optimum cost can be
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decided.

The upper and lower bounds of the cost of a node are computed by considering the

worst and best case scenario, and depends upon the specific score computation approach.

Recall that the cost of a node is computed according to Equations (3.3) and (3.4). When

the process seeks to optimize the cost using Semi-Dynamic or Static score computation

approach (corresponds to maximum relevance/maximize static score), the lowest cost

of a node n at a level L could be as small as 0, because the remaining |Constrs(Q)| −

L relaxations accepted by the user may have a very small (almost zero) associated

probability, resulting in the expected cost to be close to 0. This yields a lower bound

n.LB=0. Alternately, the highest cost of a node n at a level L is achieved when the user

is lead to the highest cost leaf with a “yes” probability of 100% immediately in the very

next interaction. This yields an upper bound n.UB = maximum cost of any leaf.

In contrast, when the Dynamic score computation approach is used (corresponds to

minimum effort objective), the lowest cost of a node n at a level L of the tree is achieved

when the probability for the yes branch of the choice node is 100% and the Cost(nyes)

in Equation (3.3) is 0. This yields a lower bound n.LB=0. Similarly, the highest cost is

achieved when all the remaining |Constrs(Q)| −L negative responses have a probability

of 100%. This yields an upper bound n.UB = |Constrs(Q)| − L.

At the end, when the computation reaches a level equal to the number of constraints in

the query, |Constrs(Q)|, there is only one choice node to choose. Note that for the leaf

nodes of the full tree, the upper and lower bounds coincide.

FastOpt is applicable to any cost function for which upper and lower bounds of the

cost of a node can be computed even after only part of the tree below the node has

been expanded. The efficiency of the algorithm relies on whether very tight bounds

can be computed even after only a small part of the tree has been expanded. The cost

function should also have the following monotonic property: the upper and lower bound

calculations should get tighter if more of the tree is expanded. All aforementioned cost

functions satisfy this property.

Example 3.5. Consider the running example in Section 3.3, with the initial query

(ABS, DSL, Manual), which aims to guide the user towards cheap cars. The value of

a tuple is inversely proportional to its price. Let the normalized values for those tuples be
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Algorithm 2 FastOpt

Input: Query Q
Output: Relaxation Cost of Q
1: NextBranch ← new RelaxationNode(Q)
2: NextBranch.L ← 1
3: T ← NextBranch
4: repeat
5: Build tree at level NextBranch.L
6: Nrlx ← relaxation nodes in level NextBranch.L
7: for each n∈Nrlx do
8: if n is a leaf then . i.e., no further relaxation is possible
9: n.UB,n.LB ← 0

10: else
11: n.LB ← 0 . best case: 100% prob.“yes” answer
12: n.UB ← |Constrs(Q)| − L . worst case: 100% prob. “no” answer

13: UpdateNodes(NextBranch.L)
14: Prune (T )
15: Tc ← T .Children . children of the root node
16: NextBranch.L ← L+ 1
17: for each n ∈ Tc do
18: if n.L = |Constrs(Q)| then
19: Tc ← Tc \ {NextBranch}
20: NextBranch ← arg min

n∈Tc
{n.UB - n.LB} . minimum diff ub-lb strategy

21: until NextBranch not NULL
22: return CompOptCost(T )

23: procedure UpdateNodes(Level L)
24: NL ← nodes at level L
25: for each n∈NL do
26: if n is a choice node then
27: Compute probabilities as in Algorithm 1
28: ryes, rno ← “yes” and “no” children of n
29: n.LB ← Pyes ∗ (C1 + ryes.LB) + Pno ∗ (C1 + rno.LB)
30: n.UB ← Pyes ∗ (C1 + ryes.UB) + Pno ∗ (C1 + rno.UB)
31: else if n is a relaxation node then
32: n.UB ← optimize

c∈n.Children
(n.UB)

33: n.LB ← optimize
c∈n.Children

(n.LB)

34: procedure Prune(Node r)
35: if exists n ∈ r.Siblings s.t. r.LB > n.UB then . r.UB < n.LB if the obj. is to maximize

36: n.Father.Children ← n.Father.Children \{r}
37: else
38: for each n ∈ r.Children do
39: Prune(n)

0.27, 0.08, 0.52, and 0.13. The objective is to select the relaxation node with the highest

cost (i.e., expected value).

Consider Figure 3.4. At the beginning the root node that is created represents the original

query with 3 conditions. Then, in the first iteration (L=1), the 3 possible choice nodes
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(corresponding to the 3 attributes of the query) along with their yes and no relaxation

child nodes, will be generated (upper half of the figure). Since the relaxation nodes (-,1,1)

and (1,-,1) give non-empty answers, they get lower bound (and upper bound) costs of

.08 and 0.27 respectively (in the figure, the bounds of every node are denoted in square

brackets “[. . .]”). The rest of the relaxation child nodes will be assigned a lower bound

of 0 and an upper bound of 0.52 (price of the most expensive tuple in the database).

Then the bounds of the choice nodes will be updated based on the expected value (con-

sidering respective preference probabilities), and the lower bound (resp. upper bound) of

the root node will also be updated with the maximum of lower bound (resp. upper bound)

cost of its child nodes. In the figure, the values of the quantities relPrefno(Q,Q
′) and

relPrefyes(Q,Q
′) are illustrated next to the label of the no and yes edges, respectively.

Let us now consider the expansion of the second level. For brevity, we only expand the

first and the third child, as shown in the lower half of Figure 3.4. The newly generated

relaxation nodes have new upper bounds, apart from those generating empty answers

(or cannot be relaxed further) that have a 0 upper bound. This impacts the relaxation

nodes of the previous (first) level, whose bounds are updated to [0.08,0.08], [0.1,0.52],

[0.41,0.51] and [0.09,0.44]. The updates propagate all the way to the top. Notice that

the first child of the root has now an upper bound (0.22) that is smaller than the lower

bound of the third child (0.46), thus the first child is pruned and will not be considered

further. �

To further optimize the algorithm, we expand at each step only the node that has the

tightest bounds, i.e., the smallest difference between its lower and upper bounds. The

intuition is that the difference between these two values will become tighter (or even 0),

and the algorithm will very soon decide whether to keep, or prune the node, with no

effect on the optimal cost of the tree.

3.5.3 FastOpt for top-k

Unlike the FullTree algorithm that constructs the entire tree and returns all the possible

relaxations, the FastOpt does not guarantee to maintain at least k branches for each

level. It computes the worst and best case by means of bounds and prunes a branch

if it does not participate for sure to the optimal solution. This condition has to be
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Algorithm 3 FastOpt for top-k

Input: Query Q, number of relaxations k
Output: Relaxation Cost of Q

...
34: procedure Prune(Node r)
35: P← {n} ∪ r.Siblings
36: kUB ← kth highest UB
37: for i = 1...k, pi ∈ P do
38: if pi.LB > kUB then
39: P← P \ {pi}
40: for each p ∈ P do
41: Prune(p)

adapted to the top-k scenario. In the case of top-k relaxations, a priority queue P of

k best children has to be maintained for each subtree. A node can be safely pruned if

there exist k elements with a lower (upper) bound greater (lower) than the kth biggest

(smallest) upper bound.

Algorithm 3 shows the Prune procedure of FastOpt adapted for top-k case with Dynamic

objective. All other objectives are easily computed with minimal changes in the code.

The algorithm first computes a priority queue P containing sibling nodes in decreasing

order of lower bound and the kth biggest lower bound (Lines 34-35). Then it removes

from P any node with a lower bound greater than the kth biggest lower bound (Lines

37-39). Finally, the Prune procedure is called on the remaining nodes in P . It is easy to

see that the algorithm preserves the completeness of the solution, given that the pruned

nodes are those that for sure cannot eventually become part of the final solution. The

performance of Algorithm 3 is clearly affected by the value k: a large k diminishes the

chances to prune branches in advance. We show the relation between k and time in the

experimental section.

3.5.4 Approximate Algorithms

3.5.5 CDR

Although the FastOpt algorithm discussed in the previous section generates optimum-

cost relaxations and builds the relaxation tree on demand, the effectiveness of this al-

gorithm largely depends on the cost distribution properties between the participating

nodes. In the worst case, the FastOpt may still have to construct the entire tree first,
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even before suggesting any relaxation to the user. In fact, due to the exponential nature

of the relaxation tree, even the FastOpt algorithm may be slow for an interactive proce-

dure for queries with a relatively large number of constraints. Applications that demand

fast response time (such as, online air-ticket or rental-car reservation systems) may not

be able to tolerate such latency. On the other hand, these applications may be tolerant

to slight imprecision. Thus, we propose a novel approximate solution that we refer to

as the CDR (Cost Distribution Relaxation) algorithm. Like FastOpt, Algorithm CDR also

constructs the query relaxation tree on demand, but the constructed part is significantly

smaller. This is possible because it leverages the distributional properties of the nodes

of the tree to probabilistically compute their cost. Of course for applications that are

less tolerant to approximate answers, FastOpt may be more desirable, even though the

response time may be higher.

Given a query Q, the algorithm CDR computes first the exact structure of the relaxation

tree up to a certain level L < |Constrs(Q)|. Next, it approximates the cost of each L-

th level choice nodes by considering the cost distributions of its children and proceeds

with the bottom-up computation of the remaining nodes until the root. At the root

node, the best relaxation child node is selected, and the remaining ones are pruned.

Upon suggesting this new relaxation, the algorithm continues further based on the user’s

response. There are three main challenges in the above procedure: (i) in the absence of

the part of the tree below level L, how will the cost of level L nodes be approximated? (ii)

How is the cost of the intermediate nodes approximated in the bottom-up propagation?

and (iii) how is the best relaxation at the root selected? To address these challenges,

we propose the use of the distributional properties of the cost of the nodes and the

employment of probabilistic computations, as described next.

3.5.5.1 Cost Probability Distributions Computation

The algorithm computes the distribution of the cost of the nodes at level L (first the

relaxation nodes, then the choice nodes), and higher by assuming that the underly-

ing distributions are independent and by computing the convolutions [ADGK09] of the

probability density functions (pdf for short).4 We adopt convolution of distributions

definitions from previous work [ADGK09] to compute the probability distribution of the

4The independence assumption is heavily used in database literature, and as the experimental eval-
uation shows, it does not obstruct the effectiveness of our approach.
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cost of the nodes in the partially built relaxation tree, as defined below. Then, in Section

5.2, we discuss how such convolution functions could be efficiently approximated using

histograms.

Definition 3.4 (Sum-Convolution of Distributions). Assume that f(x), g(x) are the

pdfs of two independent random variables X and Y respectively. The pdf of the random

variable X+Y (the sum of the two random variables) is the convolution of the two pdfs:

∗({f, g})(x) =
∫ x

0 f(z)g(x− z) dz.

Definition 3.5 (Max-Convolution of Distributions). Assume that f(x), g(x) are the

pdfs of the two independent random variables X, Y respectively. The pdf of the random

variable Max(X,Y ) (the maximum of the two random variables) is the max convolution

of the two pdfs:max ∗ ({f, g})(x) = f(x)
∫ x

0 g(z) dz + g(x)
∫ x

0 f(z) dz.

The Min-Convolution can be analogously defined, and moreover these definition can be

easily extended to include more than two random variables.

We now describe how to estimate the cost distribution of each node using Sum convo-

lution and Max(similarly Min) convolution. We denote as CostPDF (n) the probability

density function of the cost of a node n.

Cost distribution of a Relaxation Node: We first need to compute the cost distri-

bution of nodes at level L and then propagate the computation to the parent nodes. We

consider the pdf of each node at level L to be uniformly distributed between its upper

and lower bounds of costs as described in FastOpt.

For relaxation nodes at higher levels, we need to compute the optimum cost over all

the children nodes. Note that, optimization objectives associated with Semi-Dynamic

and Static require Max-convolution as the score of the relaxation nodes are maximized

in those cases. In contrast, Dynamic could be used to minimize effort - requiring Min-

convolution to be applied to compute the minimum cost of the relaxation nodes.

Cost distribution of a Choice Node: The computation of the cost distribution in-

volves the summation operation between two pdfs (CostPDF (nyes) and CostPDF (nno)),

and between a constant and a pdf (e.g., C1 + CostPDF (nyes)) (ref. equation (3.3)).

Assuming independence, the former operation involves the sum convolution of two pdfs,

whereas the latter requires the sum convolution between a pdf and a constant. In ad-

dition, C1 + CostPDF (nyes) (similarly C1 + CostPDF (nno)) needs to be multiplied
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Figure 3.5: CostPDF (n) for (a) the “yes” branch of a choice node, (b) choice node,
and (c) non-leaf relaxation nodes.

with a constant relPrefyes (similarly relPrefno). We note this multiplication operation

between a constant and a pdf can be handled using convolution as well.

Selecting Relaxation at the Root: Given that the root node in the relaxation tree

contains k children, the task is to select the best relaxation probabilistically. For each

child node ni of root with pdf CostPDF (ni), we are interested in computing the prob-

ability that the cost of ni is the largest (resp. smallest) among all its k children when

we want to maximize (resp. minimizes) the cost of the root. Formally, the suggested re-

laxation at the root (Nrlx) equals Nrlx = arg maxni(Pr(Cost(ni) ≥
∏k
j=1,j 6=iCost(nj)))

(respectively Nrlx = arg minni Pr(Cost(ni) ≤
∏k
j=1,j 6=iCost(nj)))

Given the user response, the above process is repeated for the subsequent nodes until

the solution is found.
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Algorithm 4 CDR

Input: Query Q, level L
Output: Relaxation node to be proposed at the root
1: for l = 1 . . . L do
2: Nrlx ← relaxation nodes in level l
3: for all n∈Nrlx do
4: if n is a leaf then . n is non-empty or not relaxable
5: CostPDF (n) ← uniform in [1, |Constrs(Q)| − l]
6: for l = L . . . 1 do
7: UpdateRelaxationNodes(l)
8: UpdateChoiceNodes(l)

9: Nu ← child nodes of root
10: return arg max

n∈Nu

(Pr(Cost(n) ≤
∏|Nu|

j=1,j 6=n Cost(nj)))

11: procedure UpdateChoiceNodes(Level l)
12: Nrsp ← choice nodes at level l
13: for all n∈Nrsp do
14: Compute probabilities as in Algorithm 1
15: ryes, rno ← “yes” and “no” child of n

16:
CostPDF (n)← Pyes ∗ (C1 + CostPDF (ryes))+

Pno ∗ (C1 + CostPDF (rno))

17: procedure UpdateRelaxationNodes(Level l)
18: Nrlx ← relaxation nodes at level l
19: for all n∈Nrlx do
20: Nu ← choice child nodes of n
21: CostPDF (n) = min(CostPDF (n1), . . . , CostPDF (n|Nu|))

3.5.5.2 Efficient Computation of Convolutions

The practical realization of our methodologies is based on a widely adopted model for

approximating arbitrary pdfs, namely histograms (we adopt equi-width histograms, how-

ever any other histogram technique is also applicable). In [ADGK09] it has been shown

that we can efficiently compute the Sum, Max, and Min-convolutions using histograms

to represent the relevant pdfs. In the following example, we illustrate how histograms

may be used for representing cost pdfs at nodes of the relaxation tree.

Example 3.6. Consider a query Q with |Constrs(Q)|=5 and empty answers, and assume

that the approximation algorithm sets L = 2. Let us assume that cost is required to be

maximized. Consider a choice node n at level 2, which has child relaxation nodes n′1

(for a positive response to the relaxation proposal) and n′2 (for a negative response);

Wlog, let 1 be the upper bound of cost of n′1
5. Thus, the cost of each child is a pdf with

uniform distribution between 0 and 1. CostPDF (n′1) is approximated using a 3-bucket

equi-width histogram, and if we assume that relPrefyes and relPrefno of n are 0.5, the

5Recall that the lower bound is always 0.
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CostPDF (n) can be computed using Equation 3.3 by approximating the pdf of the cost

of each child with a 3-bucket histogram. Figures 3.5 (a) - (b) illustrate these steps.

The algorithm continues its bottom-up computations, and considers relaxation nodes in

the next higher level: at level 1, given a relaxation node (n′) that has k children (each

corresponds to a choice node in level 2), CostPDF (n′) is computed by using Equation 3.4

and applying max-convolution on its children (see Figure 3.5 (c)). Once the pdf of the

cost of every relaxation node at level 1 has been determined, the algorithm next computes

the pdf of cost of each level 1 choice nodes using sum-convolution, and so on.

3.5.6 FastCDR

Completely constructing L levels as required by the CDR when it needs to return top-

k relaxations becomes computationally expensive. Since the FastOpt behaves like the

FullTree when k is close to |Constrs(Q)| we need a different algorithm to efficiently solve

the problem while guaranteeing quality close to optimal.

CDR can be further optimized by removing from the search space non promising branches

in the first L levels, and continuing the exploration over the remaining nodes. This can

be naturally achieved using FastOpt in the first L levels and then expandingthe remaining

tree using the CDR. Clearly, the solutions produced applying this strategy are as good

as those of CDR, and hopefully better if the removed branch is the one that CDR would

select for expansion. Furthermore, if the optimal solution is found within the first L

levels, the time performance will be the same as FastOpt, eliminating the requirement

of CDR that further expands one of the branches if the optimal is not detected in the

first iteration. We refer to this new hybrid algorithm as Fast Cost Distribution Relaxation

(FastCDR, in short). Algorithm 5 describes its steps in pseudocode. It works exactly as

the CDR except that it first generates all the candidate nodes using FastOpt for top-k

(see Line 12-26).

3.6 Extensions

In this section we present extensions to the framework that allow the use of our meth-

ods in non-boolean attributes. Moreover, we describe some strategy to explore other
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Algorithm 5 FastCDR

Input: Query Q, level L, number of relaxations k
Output: top-k relaxations at root
1: GenerateNodes(L)
2: UpdateRelaxationNodesLowest(L)
3: for l = L..1 do
4: UpdateRelaxationNodes(l) . see Algorithm 4
5: UpdateChoiceNodes(l) . see Algorithm 4

6: Nu ← child nodes of root
7: P← Nu ordered by Pr(Cost(u) ≤

∏|Nu|
∀j=1,j 6=u Cost(j))

8: return p1, ..., pk ∈ P

9: procedure UpdateRelaxationNodesLowest(Level L)
10: Nrlx ← relaxation nodes at level L
11: for all relaxation node n∈Nrlx do
12: CostPDF (n)← uniform in [1, |Constrs(Q)| − L]

13: procedure GenerateNodes(Level L)
14: for l = 1 . . . |L| do
15: Nrlx ← relaxation nodes in level l
16: for relaxation node u∈Nrlx do
17: if u represents an empty answer query then
18: UpdateRelaxationNodesLowest(u)
19: u.UB = u.UB = 0
20: else
21: u.LB = 0
22: u.UB = |Constrs(Q)| − L
23: UpdateChoiceNodes(L)
24: for TLev = (L− 1)..0 do
25: UpdateRelaxationNodes(TLev)
26: UpdateChoiceNodes(TLev)

27: Prune(L) . see Algorithm 2

alternatives if the process ends in an empty-answer.

3.6.1 Databases with categorical and numerical attributes with hier-

archies

Our framework can ingest categorical data, provided that the data is organized and

stored in a specific format. If not, a preprocessing step needs to be executed to bring

the data in that format, an then the algorithm can run as in the boolean database case.

Categorical attributes. The categorical data reorganization is performed attribute

by attribute. Each value of a categorical attribute is an attribute itself in a boolean

database. For instance, attribute price={low, average} is represented as two attributes

price-low and price-high in the corresponding boolean database and a tuple has value
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1 on price-low if the value of the attribute price is low. Given a query on categorical

attributes, we translate it into boolean using the converted attributes. The rest of the

computations in the framework remain unchanged.

The framework can also accommodate the case in which an order or a preference is

induced on the categorical attribute values, by changing the pref function to steer the

user towards a specific attribute value.

Hierarchical attributes. The same idea applies to conceptual hierarchies (i.e., hier-

archies that have a partial or total order of the attributes). In other words, we expand

the query lattice (refer to Figure 3.2) using the hierarchies of each attribute, construct

the query relaxation tree, and finally compute the cost. Additional priorities on the

hierarchy attributes may be embedded in the pref computation. Figure 3.6 contains an

illustration of the categorical data in a boolean database. Vehicle contains two cate-

gories {Car, Motorcycle}. Each of these categories contains the following subcategories

{Chevrolet S10, Ford} and {Aprila, KYMCO}. An attribute is created for each category.

Each tuple has value 1 or 0 for an attribute depending on whether the tuple represents

an object belonging to that category or not. For instance, the attribute corresponding

to category named “car” receives the value 1 for a tuple modeling a “Chevrolet S-10” car

(because it belongs to the category “car”) and 0 for “motorcycle” (because it does not

belong to the category “motorcycle”). The table at the bottom of Figure 3.6 illustrates

how a Ford car and a KYMCO motorcycle are stored in the boolean database.

From an implementation point of view, to navigate through the hierarchies levels during

the execution, the algorithm keeps an additional structure that stores information about

the categorical attributes. During the interactive process with the user, and when the

next best relaxation is computed on the fly, the algorithm will also check if any relaxation

can be applied in the hierarchy levels (i.e., if the current attribute is a “car”, then it is

evaluated whether relaxing one level up to “vehicle” makes sense).

Numerical attributes. The numerical attributes are more elastic from a relaxation

point of view as the numerical value of an attribute can be extended over large ranges

of values. If we consider buckets over data ranges and hierarchies on top of them, this

case is reduced to the hierarchical case and the above methods apply.

Our algorithms can equally ingest databases containing all these kinds of attributes
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Vehicle

Car Motorcycle

Chevrolet S10 Ford Aprilia KYMCO

Vehicle Car Motorcycle Chevrolet S10 Ford Aprilia KYMCO

1 1 0 0 1 0 0

1 0 1 0 0 0 1

Figure 3.6: Categorical data representation in a Boolean database.

simultaneously. However, we recall that the focus of the current work is not on optimized

ways of operating with different types of data, but on the optimization of the interactive

process with the user.

3.6.2 Drill down / Roll back

Proposing to the user the relaxations that at any given moment seem to be the most

promising (according to the criteria we have already discussed) and the responses that

the user has until that moment provided, may end up into a query that no more re-

laxations are possible or even if there are relaxations, they will not lead into a query

with a non-empty answer. This type of relaxations are represented as a leaf in the query

relaxation tree. If this happens, then instead of simply terminating the process, which

may not be the best option for the user, we can retract one or more relaxations and

follow an alternative path, allowing the process to continue.

There are many options that can be used to decide which alternative path to follow. For

instance, one could: (i) go 1-relaxation back, and continue with the next best sibling;

(ii) go t-relaxations back, and continue with the next best sibling, with t having some

predefined value; (iii) go t-relaxations back, and continue with the next best sibling,

with t being the minimum number of levels back s.t. the corresponding subtree has at

least m > 0 tuples, and m being some parameter; (vi) ask the user to which of the

attributes she selected so far she is willing to give up; ban that attribute, go back to

the level where that attribute was relaxed and continue with the next best sibling; (v)

same, but allow the user to select t > 1 attributes that she is willing to give up, and
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discard all of them at once, then go to the attribute at the highest level in the tree, and

recompute from there and by not considering the other t− 1 attributes relaxations; (vi)

same as before, but prioritize all other attributes that are not in the set of attributes

under that attribute, and consider the rest only after this set of attributes is exhausted;

and as a final alternative, (vii) once we go back to another attribute (selected by one of

the previous ways), make zero all probabilities of all attributes the user selected after

that attribute, and continue with the next best sibling.

3.7 Experimental Evaluation

We present our experimental evaluation in this section, investigate the effectiveness

and scalability of our proposed solutions, and compare our proposed framework with a

number of related works and baseline methods. Our prototype is implemented in Java

v1.6, on an i686 Intel Xeon X3220 2.40GH machine, running Linux v2.6.30. We report

the mean values, as well as the 95% confidence intervals, wherever appropriate.

Datasets. We use two real datasets from diverse domains, namely, used cars and real

estate. The Cars dataset is an online used-car automotive dealer database from US, con-

taining 100,000 tuples and 31 attributes. The Homes dataset is a US home properties

dataset extracted from a nationwide realtor website, comprising of 38,095 tuples with

18 boolean attributes. Based on the Cars dataset, we also generated datasets ranging

between 20,000-500,000 rows (Cars-X), where we maintained the original (multidimen-

sional) distribution of attribute values. This offers a realistic setting for testing the

scalability of our algorithms.

Queries. We consider a workload of 20 random empty-answer queries, initially con-

taining only soft constraints. User preferences are simulated using our relPref value

associated with each choice node.

3.7.1 Implemented Algorithms

Interactive. This algorithm is from our interactive query relaxation framework, and

we implement three different instances of the preference computation: (i) Dynamic: a
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minimization of the user effort, with parameter C1 = 1 and leaf cost 0; (ii) Semi-

Dynamic: a maximization of the answers quality with parameter C1 = 0 and leaf cost

equal to the maximum value of the preference function in the result-set; and (iii) Static:

a maximization of a randomly chosen static value for each tuple, with parameter C1 = 0

and leaf cost the maximum profit of the result-set. Additionally, we implement FullTree,

FastOpt, and our two parameterized algorithms CDR and FastCDR. For the experimental

evaluation, we use (Fast)CDR with L = 3, and 20 buckets, exibiting the best trade-off

in terms of time and quality, as shown in Section 3.7.8. Finally, we implement top-k

variants of FastOpt and FastCDR that interactively propose k relaxations at each step.

Baselines. We implement two simple baseline algorithms: Random always chooses the

next relaxation to propose to the user at random, and Greedy greedily selects the first

encountered non-empty relaxation, considering only the next level.

Related Works. In this group of algorithms we have considered a number of approaches

from the related literature.

• top-k: This algorithm takes user-specific ranking functions as inputs (user provides

weights for each attribute of the database), and we show the top-k tuples, ranked by

the linear aggregation of the weighted attributes.

• Why-Not: This algorithm is from [TC10], non-trivially adapted for the empty-answer

problem. We note that method [TC10] is primarily designed for numerical data, and

inappropriate for empty-answer problem, since it assumes that the user knows her de-

sirable answer (unlike empty-answer problems). We make the following adaptations:

given a query with empty-answers, we apply our relevance-based pref ranking function

(Section 3.4) to determine the most relevant tuple in the database that matches the

query (non-exact match). We use that tuple as user’s desirable answer, then convert

the categorical database to a numeric one (in scale 0− 1), and apply [TC10] to answer

the corresponding Why-Not query. The algorithm generates a set of relaxations that we

present to the user.

• Multi-Relaxations: This algorithm is from [Jan07], suggesting all minimal relaxations

to the user.

• Mishra and Koudas: This algorithm is from [MK09]. Given a query, the method

suggests a set of relaxations, such that the number of tuples in the answer set is bounded
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by a user specified input. Our empirical study on the queries presented above exhibits

that 81% of the queries with 8 constraints do not lead to a non-empty answer (i.e.,

failing queries), if the relaxations take place along each attribute independently (and

ignore multiple attribute relaxations in conjunction). Our empirical study, depicted in

Figure 3.7, shows that 81% of the queries with 8 constraints do not lead to a non-

empty answer (i.e., failing queries), if the relaxations take place along each attribute

independently (and ignore multiple attribute relaxations in conjunction). Therefore,

[MK09] largely fails to successfully address the empty-answer problem at hand.

Summary of Experiments.

We implement the related works discussed above, and set up a user study comparing

the related works with our proposed framework in Section 3.7.2. Additionally, we also

present other two user studies: a separate study that validates the effectiveness of dif-

ferent cost-functions supported by our framework, and a comparison between single and

top-k relaxations produced by our methods. An empirical comparison among the differ-

ent objectives is presented in Section 3.7.3. Section 3.7.4 presents quality experiments to

experimentally demonstrate the effectiveness of our proposed framework in optimizing

the preferred cost function (by the cost of the root node of the relaxation tree). Sec-

tion 3.7.5 presents the scalability studies. Section 3.7.6 and Section 3.7.7 present the

results at increasing k and cardinality, respectively. Section 3.7.8 reports the effective-

ness of the approximate algorithms CDR and FastCDR varying the parameter (L).

Summary of Results. Our study concludes the following major points - (1) Existing

methods are unable to address the same broad range of objectives (e.g., the case when

the overall goal conflicts with user preference) as we do. (2) More than 60% of the users

prefer “step-by-step” interactive relaxation suggestion to non-interactive top-k results

based on user defined ranking functions (11%), or returning all relaxations suggestions

in one step [TC10, GS91] (20%). (3) User satisfaction is maximum (i.e., over 90%) with

the returned results by our framework even for seller-centric optimization objectives. (4)

Our proposed algorithms scale well with increasing dataset or query size (experiments

up to 500k tuples). (5) Algorithm CDR can effectively balance between efficiency and the

quality of the returned results (within a factor of 1.08 from the optimal). (6) FastCDR

preserves quality close to optimal and real-time performance at increasing k.
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Q1 Rate the suggested refinements in this interactive process.

Q2 Did you like the system guiding you in the relaxation process?

Q3 Did the system help you arrive to the results fast?

Q4 Did you prefer using the help of this system to relaxing the query by yourself?

Table 3.1: Questions asked in the user-study.
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3.7.2 User Study

We build a prototype of our system and use the Homes database to conduct two user

studies with Amazon’s Mechanical Turk (AMT).

Comparison to previous work. In this user study, we compare our proposed method

Interactive (for seller-centric optimization) with top-k, Why-Not and Multi-Relaxations.

We hire 100 qualified AMT workers to evaluate 5 different queries, and measure user

satisfaction in a scale of 1 to 4 6 independently and in comparison with other methods.

We ask each worker, which method is most preferable (Favored), rate her satisfaction

61- very dissatisfied, 2 - dissatisfied, 3- satisfied, 4-very satisfied



Chapter 3. Empty Answer 57

0	  
0.5	  
1	  

1.5	  
2	  

2.5	  
3	  

3.5	  
4	  

4.5	  

4	   5	   6	   7	  

N
um

be
r	  o

f	  s
te
ps
	  

Query	  size	  

Dynamic	  
Semi-‐Dynamic	  
Sta6c	  

Figure 3.11: Number of steps vs query size in the user study.

with the quality of the returned results (Answers Quality) for each method, and rate

her satisfaction with the effectiveness of each of methods (Usability). In addition we ask

them the age range and the level of expertise with the use of computers and Internet

(näıve to IT professional user in the range 1-4). As depicted in Figure 3.8, more than

60% of the users prefer Interactive compared to other methods, and only 11% of users

like to design ranking functions. With regard to result quality, more than 80% think

that Interactive is appropriate for obtaining good quality results. At the other extreme,

the adaptation of Why-Not algorithms produce good quality results only for 58% of

the workers. With regard to method usefulness, the users are asked to independently

evaluate the usefulness of each of the four methods in obtaining fast answers. 88% of the

users prefer Interactive (i.e., give scores of 3 or 4), whereas 76% prefer Multi-Relaxations,

65% top-k, and 58% Why-Not. Finally, the users are also asked to score Interactive in

terms of overall satisfaction: 91% workers are very satisfied with Interactive, out of which

49% are näıve users (data is not shown in Figure 3.8).

Optimization goals comparison. We set up three different tasks, hire a different

set of 100 workers to test different optimization functions (without actually knowing

them) in our framework. We propose five empty-answer queries per HIT, with 4 − 7

attributes. The study uses the FastOpt algorithm, and the workers are asked to evaluate

the suggested refinements (Q1), the system guidance (Q2), the time to arrive to the final

result (Q3), and the system overall (Q4), in a scale of 1 (very dissatisfied) to 4 (very

satisfied). We compare different optimization functions in terms of number of steps,

profit, and answer quality (we only show results for the number of steps; the others

exhibit a behavior similar to the ones described in the previous section, and are omitted
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for brevity). The analysis shown in Figure 3.11 shows that Dynamic guides users to non-

empty results 2 times faster than the other approaches when the query size increases.

The results (Figure 3.9) also show that the users express a favorable opinion towards

our system. As expected, the Static method, being seller-centric, is the least preferred,

yet satisfies 60% of the users on an average. The Semi-Dynamic approach is the most

preferable overall, producing higher quality results faster, and highest user satisfaction

(ranging between 72-89%) .

Top-k quality. In this user study we compare the quality of the FastOpt when the

number of relaxations proposed changes. The user does not provide any yes/no answer

if multiple relaxations are shown, assuming only yes answers in that case. We ask the

users to evaluate 5 different queries with single or multiple (2,3) relaxations proposed.

At the end we propose to: choose among single and multiple relaxations (Preferred),

evaluate the overall quality of the answers for single and multiple (Answer quality)

and, evaluate the easiness of use (Usability) in a scale of 1 to 4. Users found both

techniques useful and appreciated their features, with a slight preference for Multiple,

mainly because of its small advantage in terms of usability.
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Figure 3.12: Comparison of different goals in terms of objective function value (effort,

profit, quality) vs query size (Homes dataset).

3.7.3 Preference Computation Comparison

Figure 3.12a shows how different cost functions behave with respect to the number of

expected steps before we find a non-empty answer. We notice that the Static approach

performs significantly worse than the other two. This is due to the fact that, in order to

find more profitable tuples, the best option is to relax several constraints, which leads

to producing long optimal paths. On the other hand, Figure 3.12b shows that Static

achieves considerably better profit results, which means that the extra cost incurred pays
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off. Figure 3.12c measures the quality of the results, and indicates that the inclusion

of the preference function in the probability computation tends to favor good quality

answers. We also observe that the behavior of Static is very different from that of

Dynamic and Semi-Dynamic, since it does not depend on the user preference, while the

other two are highly user-centric, thus leading to (slightly) better answer quality.
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Figure 3.13: Relaxation cost vs query size (Homes dataset).

3.7.4 Effectiveness

In the next set of experiments, we evaluate the effectiveness of the algorithms by mea-

suring the cost of the relaxation for different query sizes. For brevity, we present only the

results for Dynamic, since there are no significant differences among those objectives and

we compare algorithm based on the cost function value at the root (see Equation 3.3).

In these experiments, we use queries of size up to 7, because this is maximum possible

size for running FullTree in our experimental setup. Figure 3.13a depicts the results

for the Homes dataset (normalized by the cost of FullTree for query size 3). The Cars

dataset results are similar, and we omit them for brevity.

The graph confirms the intuition that the Random and Greedy algorithms are not able

to find the optimal solution (i.e., the solution with the minimum expected number of

relaxations). In addition, their relative performance gets worse as the size of the query

increases, since the likelihood of making non-optimal choices increases as well. For

query size 7, Random produces a solution that needs 2.5 times more relaxations than

the optimal one and 2.6 for Greedy. As expected, they also exhibit the largest variance

in performance.
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On the other hand, CDR and FastCDR perform very close to FullTree, choosing the

best path in most of the cases. The same observation holds for larger queries (upto

10 attributes, refer to Figure 3.13b), where all values are normalized by the cost of

FastOpt for query size 3). Our results also shows that CDR remains within a factor

of 1.08 off the optimal solution (expressed by FastOpt in the graph) corroborating its

effectiveness to the empty-answer problem. Interestingly, FastCDR, due to the pruning

strategy of FastOpt, guarantees nearly optimal answers even for large queries. The

results demonstrate that CDR and FastCDR are effective solutions to the empty-answer

problem, even when the query size grows much larger than L (set to 3 for all the

experiments).
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Figure 3.14: Results with increasing query size.

3.7.5 Scalability

Figure 3.14 illustrates experiments on the scalability properties of the top performers,

FullTree, FastOpt, CDR and FastCDR, when both the size of the query and the size of
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the database increase.

Figure 3.14a shows the time to propose the next relaxation, as a function of the query

size. We observe that the FastOpt algorithm performs better than CDR when the query

size is small (i.e., less than 8), but worse than FastCDR that combines the characteristics

of both. This behavior is explained by the fact that CDR is always computing all the

nodes of the relaxation tree up to level L, while FastCDR applies pruning rules to speed

up the computation. In contrast, FastOpt is able to prune several of these nodes, leading

to a significantly smaller tree. For query sizes larger than 8, CDR and FastCDR compute

more than two order of magnitudes less relaxation nodes than FastOpt. Moreover, as the

query size increases CDR performs close to FastCDR since the time to compute the levels

below L dominates the computation. Finally, FullTree has an acceptable performance

only for small query sizes (in our experimental setting we could only execute FullTree

for query sizes up to 7).

The FastOpt algorithm remains competitive to CDR for small sized queries, but becomes

extremely slow for large query sizes, requiring almost 10 sec for queries of size 10. For

the same queries, FastCDR executes three orders of magnitude faster, requiring 8.3 ms

to produce the next relaxation, and significantly less than 1 ms for smaller queries.

We also experiment with varying dataset sizes between 25K-500K tuples, using the

Cars-X datasets, having query size set to 6. Figure 3.14b indicates that query time is

moderately affected by size of the database, since relaxation tree becomes smaller with

increasing dataset size even though the database access time increase. This happens be-

cause more tuples in the dataset translate to an increased chance of a specific relaxation

(i.e., node in the query relaxation tree) being non-empty. Note that, even though CDR

involves more nodes than FastOpt, it performs similarly, since FastOpt has to build the

entire tree before producing the first relaxation, whereas, CDR chooses the best candi-

date relaxation after computing the first L levels of the tree, which translates to reduced

time requirements per iteration.

We also show in Figure 3.14c the impact to the answer quality (Semi-Dynamic preference

computation) as a function of database size. As expected, we obtain more qualitative

answers with bigger databases, since the likelihood of having non-empty queries with

good results also increases. As per quality comparison, FastCDR performs close to

FastOpt with different optimization criteria.
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Overall, we observe that FullTree quickly becomes inapplicable in practice, while FastOpt

is useful only for small query sizes. In contrast, CDR and FastCDR are able to propose

relaxations in less than 10 ms, even for queries with 10 attributes, and always produces

a solution that is very close to optimal.

3.7.6 Impact of k in the top-k relaxations

In the next set of experiments, we show the impact of the k in the top-k relaxations.

The FastOpt algorithm is compared with the FastCDR in terms of time and quality.

Figure 3.15b shows the query time of each method at increasing k varying the number

of reformulations and averaging the results obtained with query size 3-7. FastCDR takes

nearly constant time in k and returns results one order of magnitude faster than the

optimal. On the other hand, FastOpt query time increases linearly with k performing

worse than FullTree with k = 5. The reason is that the pruning power of FastOpt is

affected by k, since the number of branches in the relaxation to be constructed is bigger.

Moreover, the overhead induced by the pruning procedure negatively affects the query

time. In terms of quality, Figure 3.15a shows that FastCDR is approximately as good as

optimal at increasing k.
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Figure 3.15: CDR and FastCDR behavior with increasing number of relaxations pro-
posed at each step.

3.7.7 Cardinality Impact

We analyze the impact of cardinality on our methods. A high cardinality value tends to

produce deeper trees, affecting time and quality. Figure 3.16b shows that FastOpt takes 6

times more when the cardinality moves from 5 to 100. The approximate algorithms CDR
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Figure 3.16: CDR behavior with increasing cardinality in Homes dataset.

and FastCDR are constant in the cardinality value. Moreover, as depicted in Figure 3.16a,

the quality of the results produced by FastCDR is not affected by the cardinality value.

3.7.8 Calibrating (Fast)CDR

Recall that the (Fast)CDR-L algorithms start by computing all the nodes of the relax-

ation tree for the first L levels (see Section 3.5.4), where L is a parameter.

Figure 3.17a and 3.17b show the impact of L on the cost (the values have been normalized

using as a base the cost of (Fast)CDR-4 for query size 3). We notice that for L = 2 the

CDR behaves reasonably well only for very small query sizes, while FastCDR produces

qualitative relaxations up to query size 8. This behavior is expected, since for big

query sizes the algorithm is trying to approximate the node cost distributions and then

makes decisions based on too little information. Increasing L always improves cost.

L = 3 results in a considerable improvement in cost, but the results show that further

increases have negligible additional returns. We also compare the time performance in

Figures 3.17c,3.17d. The results show that (Fast)CDR-4 quickly becomes expensive in

terms of time. We conclude that using L = 3, CDR and FastCDR achieve the desirable

trade-off between effectiveness and efficiency.

We also conduct experiments in Figure 3.18b with varying the number of the FastCDR

histogram buckets between 5− 40, which has a negligible impact on time performance.

We experience in Figure 3.18a that with more than 20 buckets the effect on the quality

is minimal. The algorithm is also stable with respect to the data used.



Chapter 3. Empty Answer 64

0	  

2	  

4	  

6	  

8	  

3	   4	   5	   6	   7	   8	   9	   10	  

Co
st
	  

Query	  Size	  

L=2	   L=3	   L=4	  

(a) Cost vs query size CDR-L

0	  

1	  

2	  

3	  

4	  

3	   4	   5	   6	   7	   8	   9	   10	  

Co
st
	  

Query	  Size	  

L=2	   L=3	   L=4	  

(b) Cost vs query size FastCDR-L

0	  

100	  

200	  

300	  

3	   4	   5	   6	   7	   8	   9	   10	  

Q
ue

ry
	  T
im

e	  
(m

s)
	  

Query	  Size	  

L=4	   L=3	   L=2	  

(c) Time vs query size CDR-L

0	  

20	  

40	  

60	  

3	   4	   5	   6	   7	   8	   9	   10	  

Q
ue

ry
	  T
im

e	  
(m

s)
	  

Query	  Size	  

L=4	   L=3	   L=2	  

(d) Time vs query size FastCDR-L

Figure 3.17: CDR and FastCDR behavior for different values of L at increasing query
size.
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Figure 3.18: CDR behavior with increasing number of buckets in Homes and Cars
datasets.



Chapter 4

Graph Query Reformulation

In the previous chapter we have studied the empty-answer problem, in which a user

provides an over specified query for which no results exist in the database. In this

chapter we tackle the complementary information overload problem. The user in this

case is struggled with a very large number of results obtained from a too generic query.

This causes an information overload that is as problematic as an empty-answer, for it is

impossible to find the required object. We study this problem on structured databases

and, more specifically, when the data is represented as a set of small graphs (graph

database). This chapter describes our findings and solutions for this problem. We

demonstrate that the problem of finding reformulations in graph databases is hard and

we propose a solution with quality guarantee. We conclude with a thorough experimental

assessment on several real and synthetic graph databases.

4.1 Contributions

Our main contributions are summarized as follows.

• We initiate the investigation of the problem of query reformulation in graph

databases. We do so by formalizing the problem of finding a set of k reformu-

lations of the input query that maximizes a linear combination of coverage and

diversity.

65
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• We show that our problem is NP-hard, as well as that our coverage function

is monotone and submodular, and that our diversity measure is a pseudometric.

These two properties allow us to adopt a greedy algorithm with provable quality

guarantees.

• In order to guarantee efficiency, we devise a fast yet exact algorithm for the compu-

tation of the reformulation leading to the maximum objective-function increment.

• We perform an extensive evaluation on real and synthetic graph databases. Results

confirm high quality and efficiency achieved by our method.

4.2 Outline

We first introduce the problem with an example in Section 4.3. Section 4.4 introduces the

graph query reformulation problem and the notation used throughout the algorithmic

solution in Section 4.5. In Section 4.6 we propose the experimental results with insights

of time and quality of our algorithms.

4.3 Motivating example
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Figure 4.1: A graph query and a set of five reformulations produced by our method
on the real-world database AIDS.

In the example in Figure 4.1 the data analyst is searching for sulfonic acids1 in the

database.
1http://en.wikipedia.org/wiki/Sulfonic_acid

http://en.wikipedia.org/wiki/Sulfonic_acid
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Sulfonic acids are made of a sulfonyl hydroxide group (corresponding to the query

in Figure 4.1) associated with some organic compound. Instead of directly searching

independently for the various sulfonic acids, the data analyst issues the sulfonyl hydrox-

ide group as a query, for which the database returns 510 graphs. In order to help the

analyst in the exploratory search, the database proposes several reformulations of the

original query with the associated number of matching graphs. This immediately pro-

vides a high-level summary of what the database contains and guidance for the analyst

in further inspecting more specific queries.

4.4 Background and Problem

We now introduce a slightly different model from the one in Chapter 3, although we

preserve the same notation for database and query we highlight the differences. The

model we study here is a set of small graphs, called graph database.

4.4.1 Background

Let D be a graph database defined over a set of labels L. Each element of D is a labeled

graph G : 〈N,E〉, where N is a set of vertices, E ⊆ N ×N is a set of edges, for which

it exists a labeling function ` : N ∪ E → L that assigns a label from L to each vertex

in N and each edge in E. For presentation clarity, we assume the graphs in D to be

undirected; however, all our methods can straightforwardly handle directed graphs as

well without any significant modifications.

A graph isomorphism between two graphs G1 : 〈N1, E1〉 with labeling function `1 and

G2 : 〈N2, E2〉 with labeling function `2, is a bijective function µ : N1 → N2 such that: (i)

`1(u) = `2(µ(u)), for each u ∈ N1, and (ii) for every (u, v) ∈ E1, (µ(u), µ(v)) ∈ E2 and

`1(u, v) = `2(µ(u), µ(v)). If a graph isomorphism exists between G1 and G2, we say that

G1 and G2 are isomorphic. If a graph isomorphism exists between G1 and a subgraph

of G2, we say that G1 is subgraph isomorphic to G2, and we denote it by G1 v G2.

A query Q to a graph database D is a connected labeled graph. The answer to Q is the

set DQ = {G ∈ D | Q v G} of all graphs in D, which Q is subgraph isomorphic to. We

refer to DQ as the results or the result set of Q.
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Given a query Q, a reformulated query (or, simply, a reformulation) Q′ of Q is a con-

nected labeled graph such that Q v Q′. We denote by SQ the set of all possible re-

formulations of Q in the entire graph database D, i.e., SQ =
⋃
G∈D{Q′ | Q v Q′ v

G, Q′connected}. It can be observed that, by definition, the answer to every reformu-

lated query Q′ is always a subset of the answer to the original query Q, i.e., DQ′ ⊆ DQ.

4.4.2 Problem Definition

Given a graph database D and a query Q, our goal is to find a set of k reformulations of

Q that captures well the results DQ of Q. More specifically, we aim at selecting a set of

reformulations of cardinality k that exhibits (i) high coverage of the result set DQ, and

(ii) high diversity among the subsets of DQ identified by the single reformulations. We

next formalize these concepts.

The coverage of a set of reformulations Q is defined as the number of results in DQ

captured by the reformulations:

cov(Q) =
∣∣∣⋃Q′∈QDQ′

∣∣∣ , (4.1)

while the diversity between two queries Q′ and Q′′ is defined as the number of uncommon

results:

div(Q′, Q′′) =
∣∣DQ′ ∪ DQ′′∣∣− ∣∣DQ′ ∩ DQ′′∣∣ = (4.2)

=
∣∣DQ′∣∣+

∣∣DQ′′∣∣− 2
∣∣DQ′ ∩ DQ′′∣∣ .

Overall, the function we aim at maximizing is:

f(Q) = cov(Q) + λ
∑

Q′,Q′′∈Q
div(Q′, Q′′), (4.3)

where λ ∈ [0, 1] is a parameter that trades off between coverage and diversity.2 Finally,

the problem we tackle in this work is formally defined as follows:

2λ plays also the role of a regularization factor for the (possibly) different scales of the two terms of
f .
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Figure 4.2: The Graph Query Reformulation problem.

Problem 1 (Graph Query Reformulation). Given a graph database D, a query Q,

and an integer k, find a set Q∗ of reformulations of Q such that:

Q∗ = argmax
Q⊆SQ

f(Q)

subject to |Q| = k.

For λ = 0, Problem 1 corresponds to the well-known MaximumCoverage prob-

lem [H+97], which is known to be NP-hard. As a result, Problem 1 is NP-hard as

well.

Example 4.1. Figure 4.2 shows an example of the Graph Query Reformulation

problem. The figure depicts a query Q, its corresponding result set DQ = {R1, . . . , R5},

and four reformulations Q′1, . . . , Q
′
4. The subset of DQ captured by each reformulation

is as follows: the first four results and the last four results form the result set of Q′1 and

Q′2, respectively, while the results of Q′3 and Q′4 are {R1, R2} and {R3, R4}, respectively.

We also assume λ = 0.3.

For k = 2, it can intuitively be observed that {Q′3, Q′4} detect two of the main discrim-

inating patterns arising from the result set DQ. The solution {Q′1, Q′2} instead does

not summarize DQ equally well, as Q′1 and Q′2 identify two very general and not really

informative patterns that are similar to one another and, as such, are both present in

most of the results in DQ. This observation is acknowledged by the notions of coverage

and diversity: {Q′1, Q′2} have indeed slightly larger coverage than {Q′3, Q′4}, but they also
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exhibit much smaller diversity, which makes the latter solution preferable. Hence, this

example shows that coverage and diversity are both critical in order to find a valid set

of reformulations. Our objective function f captures this main finding: f({Q′3, Q′4}) is

larger than f({Q′1, Q′2}), thus {Q′3, Q′4} is preferred to {Q′1, Q′2} according to f .

4.5 Algorithmic Solution

We next focus on how to solve Problem 1. We first discuss a näıve solution based on

frequent subgraph mining (Section 4.5.1). Then, we shift the attention to the proposed

approach: we prove some properties of our objective function f (Section 4.5.2) , based

on which we present a greedy algorithm exhibiting a 1
2 -approximation guarantee, while

in Section 4.5.3 we treat the subproblem of finding the reformulation that maximizes the

marginal potential gain (defined next), which is the key step of the greedy algorithm.

4.5.1 A näıve approach

The objective function defined in Equation (4.3) may resemble a notion of frequency:

the more a reformulation covers a result set, the more frequent that reformulation is

among the graphs in the result set.

This observation allows for defining a simple heuristic strategy to attack Problem 1,

which is based on the well-known problem of frequent subgraph mining [YH02, HWPY04,

NK04]: given a graph database and a threshold σ, find all subgraphs that are contained

into at least σ graphs of the database. In our context we do not have a threshold-based

problem definition; however, a natural yet straightforward way of adapting the frequent-

subgraph-mining problem to our context exists, and it corresponds to ask for the top-k

frequent subgraphs that are supergraphs of the input query graph.

The advantage of using this approach as a solution to Problem 1 is that the literature

on frequent subgraph mining can be reused almost as is, since the adaptation of existing

frequent-subgraph-mining techniques to this variant of the problem is trivial. Unfortu-

nately, this simple approach is not guaranteed to produce high-quality results. Indeed,

while the notion of frequency is related to the notion of coverage, the notion of diversity
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Algorithm 6 Greedy

Input: A graph database D, a query Q, an integer k
Output: A set of reformulated queries Q

1: Q ← ∅
2: while |Q| < k do
3: Q∗ ← arg maxQ′∈SQ\Q∆f (Q, Q′) . Equation (4.4)
4: Q ← Q∪ {Q∗}

is instead completely ignored. Taking into account diversity is crucial to find meaningful

solutions, as clearly demonstrated in Example 4.1.

The poor effectiveness of this näıve strategy is also supported by experimental evidence

(see Section 4.6).

4.5.2 An approach with quality guarantees

The algorithm we propose as a more principled solution to Problem 1 relies on a recent

result by Borodin et al. [BLY12]. Given a universe of elements U , let w : 2U → R be a

non-negative function measuring the quality of every subset of U , and d : U × U → R

be a distance function between elements of U . Also, let g be a set function defined

as a linear combination of w and the sum of pairwise distances computed according to

d, i.e., for any Û ⊆ U , g(Û) = w(Û) + λ
∑

u′,u′′∈Û d(u′, u′′) (with λ ∈ [0, 1] being a

parameter). Finally, given a subset U ′ ⊂ U and an element u /∈ U ′, let 1
2(w(U ′ ∪ {u})−

w(U ′)) + λ(
∑

u′,u′′∈Û ′∪{u} d(u′, u′′) −
∑

u′,u′′∈Û d(u′, u′′)) denote the marginal potential

gain of the function g. Borodin et al. [BLY12] show that, for the problem of maximizing

a set function like g under a cardinality constraint, a greedy algorithm that iteratively

selects the element maximizing the marginal potential gain achieves a 1
2 -approximation

guarantee if (i) the quality function w is monotone submodular, and (ii) the universe

U spans a metric space, i.e., d is a metric. As shown in more detail next, this result

remains true even if d is a pseudometric.

In our context, the universe U corresponds to the set SQ of all possible reformulations

of the input query Q, while the quality function corresponds to the coverage function

cov and the distance between two elements is measured in terms of the diversity div

between two reformulations. Also, given a set of reformulated queries Q ⊆ SQ and a

reformulation Q′ ∈ SQ \ Q, and denoting by ∆cov(Q, Q′) = cov(Q ∪ {Q′})− cov(Q) the

marginal gain of the coverage term and by ∆div(Q, Q′) =
∑

Q̂∈Q div(Q̂,Q′) the marginal
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gain of the diversity term, the marginal potential gain of our function f is defined as

∆f (Q, Q′) =
1

2
∆cov(Q, Q′) + λ∆div(Q, Q′). (4.4)

Thus, to exploit the above result by Borodin et al. [BLY12] we need to prove that the

function cov is monotone submodular, and div is a pseudometric. We next prove that

these properties indeed hold.

Lemma 4.1. cov(·) is a monotone submodular set function.

Proof. A set function w is said monotone if for every S ⊆ T it holds that w(S) ≤ w(T ).

It is straightforward to see from Equation (4.1) that the function cov possesses such a

property. Concerning submodularity, a set function w is said submodular if for every

S ⊆ T and every x /∈ T it holds that w(S ∪ {x})− w(S) ≥ w(T ∪ {x})− w(T ). Let Q′

and Q′′, Q′ ⊆ Q′′, be two sets of reformulations and let Q̂ /∈ Q′′ be a reformulation. It

holds that:

Q′ ⊆ Q′′ ⇒

⇒
⋃
Q′∈Q′ DQ′ ⊆

⋃
Q′′∈Q′′ DQ′′

⇒
∣∣∣DQ̂ ∩⋃Q′∈Q′ DQ′

∣∣∣ ≤ ∣∣∣DQ̂ ∩⋃Q′′∈Q′′ DQ′′
∣∣∣

⇔
∣∣∣DQ̂∣∣∣−∣∣∣DQ̂∩⋃Q′∈Q′ DQ′

∣∣∣ ≥ ∣∣∣DQ̂∣∣∣−∣∣∣DQ̂∩⋃Q′′∈Q′′ DQ′′
∣∣∣

⇔cov(Q′ ∪ {Q̂})− cov(Q′) ≥ cov(Q′′ ∪ {Q̂})− cov(Q′′).

Then, cov is submodular, and the lemma follows.

Lemma 4.2. div(·, ·) is a pseudometric.

Proof. To be a pseudometric, div needs to satisfy three of the classic properties pos-

sessed by any metric, i.e., (i) non-negativity (div(x, y) ≥ 0), (ii) symmetry (div(x, y) =

div(y, x)), and (iii) triangle inequality, while, concerning (iv) reflexivity, it is sufficient

that div(x, y) = 0 holds if x = y, while possibly div(x, y) = 0 for distinct objects x 6= y.

It is easy to see that the (i), (ii), and (iv) hold by definition. Concerning triangle in-

equality, we need to prove that div(x, y) + div(y, z) ≥ div(x, z), which corresponds to

show that |Dx ∩ Dy|+ |Dy ∩ Dz| − |Dy| − |Dx ∩ Dz| ≤ 0.
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By the inclusion-exclusion principle, i.e., |X|+ |Y | = |X ∪ Y |+ |X ∩ Y |, for two sets X

and Y , we can derive:

|Dx ∩ Dy|+ |Dy ∩ Dz| − |Dy| − |Dx ∩ Dz| =

= |(Dx∩Dy)∪(Dy∩Dz)|+|Dx∩Dy∩Dz|−|Dy|−|Dx∩Dz|

= |(Dy ∩ (Dx ∪ Dz)|+|Dx ∩ Dy ∩ Dz|−|Dy|−|Dx ∩ Dz|

≤ |(Dy∩(Dx∪Dz)|+|Dx∩Dy∩Dz|−|Dy|−|Dx∩Dy∩Dz|

= |(Dy ∩ (Dx ∪ Dz)| − |Dy| ≤ 0,

where the latter inequality holds as |X ∩ Y | ≤ |X|. The lemma follows.

The proposed Greedy algorithm, whose pseudocode is shown as Algorithm 6, iteratively

selects the reformulation Q∗ that brings the maximum marginal potential gain to the

objective function f , until k reformulations have been selected.

The following result holds.

Theorem 4.3. Greedy is a 1
2 -approximation algorithm for the Graph Query Refor-

mulation problem.

Proof. Looking at the proof of Theorem 1 in [BLY12], it is easy to see that such a theorem

remains true even in case of pseudometrics, as the reflexivity axiom is not exploited at

all. The proof is completed by the results stated in Lemma 4.1 (monotonicity and

submodularity) and Lemma 4.2 (pseudometric).

4.5.3 Maximizing the marginal potential gain

The proposed Greedy needs to face two main challenges:

• Finding the element that maximizes the marginal potential gain is very difficult

in our context, as it corresponds to selecting a reformulated query Q∗ ∈ SQ \ Q

that achieves the desired maximum objective-function increment, and, in the worst

case, this requires to enumerate all possible subgraphs of each graph G ∈ D that Q

is subgraph isomorphic to. Such a problem corresponds to counting all subgraph-

isomorphic structures in a graph and is known to be #P-complete [Val79].
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• Our function f is non-monotone: this makes the design of pruning strategies non-

trivial at all (e.g., traditional downward-closure-based algorithms do not work).

In the following we present the proposed solution to the most critical step of the Greedy

algorithm of finding the element that maximizes the marginal potential gain. We aim at

solving this step efficiently while still guaranteeing optimality, as this is needed to pre-

serve the approximation guarantee of Theorem 4.3. To this end, we devise an algorithm,

called Fast MMPG, that visits the search space in a smart way based on two main find-

ings: (i) an efficient computation of the marginal potential gain ∆f , and (ii) an upper

bound on the maximum marginal potential gain achievable by a set of reformulations

that is used to prune significant portions of the search space. We next report the details

of each of these findings and describe the proposed Fast MMPG.

Computing ∆f in linear time

We show here how to efficiently solve the frequently-occurring subproblem of computing

∆f when a reformulation Q′ is given. According to Equation (4.4), ∆f is a linear

combination of ∆cov and ∆div. The marginal gain ∆cov can be computed by a simple

scan of the results in DQ′ , thus taking O(|DQ′ |) time. As far as ∆div concerns, a näıve

computation would instead consider the results of all reformulations in the current set

Q, thus requiring quadratic time. We next show how to carry out the computation in

a smarter way, so as to take O(|DQ′ |) time as well. The idea is to adopt a vector that

keeps track of how many reformulations (among the ones already computed) capture

any single result of the input query. This simple structure is sufficient to overcome the

quadratic cost of the pairwise comparison in Equation (4.3).

Given a query Q, let {R1, . . . , Rn} denote the graphs in its result set DQ. As stated

above, the results of every reformulated query Q′ of Q are guaranteed to be a subset

of DQ. Therefore, one can alternatively keep track of the results of Q′ by using a

binary n-dimensional vector xQ′ , where xQ′ [i] = 1 if and only if Ri ∈ DQ′ . Given a

set of reformulations Q ⊆ SQ, let also mQ =
∑

Q̂∈Q xQ̂ be an n-dimensional integer

vector whose i-th entry contains the number of reformulations in Q having Ri among

their results. We hereinafter refer to mQ as the multiplicity vector. We also use ‖v‖ to

denote the L1-norm of a vector v, i.e., the sum of the elements in v. In the next theorem
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we show how to exploit mQ and xQ′ to achieve the desired O(|DQ′ |)-time computation

of ∆div.

Theorem 4.4. Given a set of reformulations Q ⊆ SQ and a reformulation Q′ ∈ SQ \Q,

the marginal gain ∆div(Q, Q′) is equal to:

∆div(Q, Q′) = ‖mQ‖+ |Q| × |DQ′ | − 2 mQ · xQ′ .

Proof. ∆div(Q, Q′) is equal to:

∆div(Q, Q′) =
∑
Q̂∈Q

div(Q̂,Q′) =

=
∑
Q̂∈Q

(
|DQ̂|+ |DQ′ | − 2|DQ̂ ∩ DQ′ |

)
=

∑
Q̂∈Q

|DQ̂|︸ ︷︷ ︸
‖mQ‖

+
∑
Q̂∈Q

|DQ′ |

︸ ︷︷ ︸
|Q|×|DQ′ |

−2
∑
Q̂∈Q

|DQ̂ ∩ DQ′ |. (4.5)

By noticing that the i-th entry of the vector mQ can alternatively be expressed as

mQ[i] =
∑

Q̂∈Q 1[Ri ∈ DQ̂] (where 1[·] is the indicator function), the term
∑

Q̂∈Q |DQ̂ ∩

DQ′ | in (4.5) can be rewritten as:

∑
Q̂∈Q

|DQ̂ ∩ DQ′ |=
∑
Q̂∈Q

∑
i∈[1..n],
Ri∈DQ′

1[Ri ∈ DQ̂]

=
∑

i∈[1..n],
Ri∈DQ′

∑
Q̂∈Q

1[Ri ∈ DQ̂]

︸ ︷︷ ︸
mQ[i]

=

=
∑

i∈[1..n]

(
xQ′ [i]×mQ[i]

)
= mQ · xQ′ . (4.6)

The proof is completed combining (4.5) and (4.6).

It is easy to see that the rewriting in Theorem 4.4 allows for computing ∆div linearly in

|DQ′ | as the terms ‖mQ‖ and |Q|×|DQ′ | are constant, while the scalar product mQ ·xQ′

requires a scan of only the |DQ′ | non-zero entries of xQ′ .
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Upper bound on ∆f

Here we derive an upper bound on the marginal potential gain ∆f (Equation (4.4))

exhibited by a set of reformulations. Specifically, given a reformulated query Q′, let

TQ′ denote the set of all reformulations that Q′ is subgraph isomorphic to, i.e., TQ′ =

{Q′′ ∈ SQ \ Q | Q′ v Q′′}. We show how to bound the maximum marginal potential

gain achievable by a reformulation in TQ′ in a very efficient manner, that is by looking

only at the reformulation Q′. The ultimate goal is to exploit the resulting upper bound

to early recognize (and skip) unnecessary portions of the search space.

We derive our upper bound by studying which results in DQ should be captured by

a reformulation in TQ′ to achieve maximum marginal potential gain. To this end, let

DQ = {R1, . . . , Rn} denote the results of the original query Q. We assume that a set

of reformulations Q ⊆ SQ have been computed and kept track of the results identified

by Q by the multiplicity vector mQ introduced above. Let Q1, Q2 ∈ SQ \ Q be two

reformulations such that their corresponding result sets differ by only one element, i.e.,

DQ2 = DQ1 ∪ {Rj}. We want to study when the marginal potential gain brought by Q2

is no less than the one given by Q1, i.e., when φf = ∆f (Q, Q2)−∆f (Q, Q1) ≥ 0. Note

that we focus on a pair of reformulations whose result sets differ by only one element in

order to simplify the presentation of the theoretical results therein. This however does

not result in any loss of generality, as shown later in Theorem 4.8.

We start our reasoning by showing how to profitably rearrange the quantities ∆cov(Q, Q2)−

∆cov(Q, Q1) (Lemma 4.5) and ∆div(Q, Q2)−∆div(Q, Q1) (Lemma 4.6).

Lemma 4.5. Let Q1, Q2 ∈ SQ \Q, s.t. DQ2 = DQ1 ∪{Rj}. It holds that ∆cov(Q, Q2)−

∆cov(Q, Q1) = 1[mQ[j] = 0].

Proof.

∆cov(Q, Q2)−∆cov(Q, Q1) =

=
∑

i∈[1..n],
Ri∈DQ2

1[mQ[i] = 0] −
∑

i∈[1..n],
Ri∈DQ1

1[mQ[i] = 0]

=
∑

i∈[1..n],
Ri∈DQ1

1[mQ[i] = 0] + 1[mQ[j] = 0] −
∑

i∈[1..n],
Ri∈DQ1

1[mQ[i] = 0]

= 1[mQ[j] = 0].
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Lemma 4.6. It holds that ∆div(Q, Q2)−∆div(Q, Q1) = |Q| − 2mQ[j].

Proof.

∆div(Q, Q2)−∆div(Q, Q1) =

=
∑
Q̂∈Q

div(Q̂,Q2)−
∑
Q̂∈Q

div(Q̂,Q1)

=
∑
Q̂∈Q

(
|DQ̂|+ |DQ2 |︸ ︷︷ ︸

|DQ1
|+1

−2|DQ̂ ∩ DQ2 |
)

−
∑
Q̂∈Q

(
|DQ̂|+ |DQ1 | − 2|DQ̂ ∩ DQ1 |

)
= |Q| − 2

∑
Q̂∈Q

(
|DQ̂ ∩ (DQ1 ∪ {Rj})| − |DQ̂ ∩ DQ1 |

)
= |Q| − 2

∑
Q̂∈Q

(
|DQ̂ ∩ DQ1 |+ 1[Rj ∈ DQ̂]− |DQ̂ ∩ DQ1 |

)
= |Q| − 2

∑
Q̂∈Q

1[Rj ∈ DQ̂]

︸ ︷︷ ︸
mQ[j]

= |Q| − 2mQ[j].

We now exploit Lemma 4.5 and 4.6 to show the desired condition about φf = ∆f (Q, Q2)−

∆f (Q, Q1) ≥ 0. We formally state this in the next lemma.

Lemma 4.7. φf ≥ 0 if and only if mQ[j] ≤ 1
2 |Q|.

Proof. By Lemma 4.5 and 4.6 it results that:

φf = ∆f (Q, Q2)−∆f (Q, Q1) =

=
1

2
(∆cov(Q, Q2)−∆cov(Q, Q1)) + λ (∆div(Q, Q2)−∆div(Q, Q1))

=
1

2
1[mQ[j] = 0] + λ(|Q| − 2mQ[j]).

From the latter equality, it can be observed that, if mQ[j] = 0, then φf = 1
2 + λ|Q| > 0.

Otherwise, if mQ[j] > 0, then φf = λ(|Q| − 2mQ[j]), which is ≥ 0 when mQ[j] ≤ 1
2 |Q|.

The lemma follows.
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Lemma 4.7 shows a condition about which results are “worth” to be captured by a

reformulation in order to achieve maximum marginal potential gain: ideally, the best

reformulation Q∗ should contain in its result set DQ∗ all and only those results Rj

whose corresponding multiplicity mQ[j] is no more than 1
2 |Q|. To be precise, actually,

the results Rj such that mQ[j] = 1
2 |Q| do not affect optimality: they can either be

present in DQ∗ or not.

We exploit the above reasoning to derive our upper bound on the maximum marginal

potential gain exhibited by a reformulation in TQ′ . We denote such an upper bound by

∆f (Q, Q′) and we formally state it in the next Theorem 4.8. Particularly, we express

∆f (Q, Q′) in terms of three n-dimensional binary vectors: uQ and vQ, which keep

track of the results in DQ exhibiting null multiplicity and multiplicity no more than

1
2 |Q|, respectively (uQ[i] = 1 if and only if mQ[i] = 0, and vQ[i] = 1 if and only if

0 < mQ[i] ≤ 1
2 |Q|), and xQ∗ , which keeps track of the results that the best reformulation

Q∗ should ideally capture and is defined as the Hadamard (i.e., element-wise) product

between vQ and xQ′ , i.e., xQ∗ = vQ ◦ xQ′ . The value of ∆f (Q, Q′) is as follows.

Theorem 4.8. For a reformulation Q′∈SQ\Q it holds that

max
Q′′∈TQ′

∆f (Q, Q′′) ≤ ∆f (Q, Q′) =

=
1

2
uQ ·xQ∗+λ (‖mQ‖+|Q|×‖xQ∗‖−2mQ ·xQ∗) ,

Proof. By Lemma 4.7, we know how the result set of the best reformulationQ∗ should be:

the content of this best result set DQ∗ is expressed by the binary vector xQ∗ = vQ ◦xQ′ .

Based on this, Equation (4.4) can be rewritten as follows:

∆f (Q, Q′) = ∆f (Q, Q∗) =

=
1

2
∆cov(Q, Q∗) + λ∆div(Q, Q∗)

=
1

2
uQ ·xQ∗+λ (‖mQ‖+|Q|×|DQ∗ |−2mQ ·xQ∗)

=
1

2
uQ ·xQ∗+λ (‖mQ‖+|Q|×‖xQ∗‖−2mQ ·xQ∗) ,

where the third equality above derives from Theorem 4.4.
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R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

mQ = 0 4 2 1 0 5 5 6 6 7 (‖mQ‖ = 36)︸ ︷︷ ︸
< 1

2 |Q|
︸ ︷︷ ︸
= 1

2 |Q|
︸ ︷︷ ︸

> 1
2 |Q|

uQ = 1 0 0 0 1 0 0 0 0 0

vQ = 1 1 1 1 1 1 1 0 0 0

xQ′ = 1 1 1 0 0 1 0 1 1 1 (‖xQ′‖ = 7)︸ ︷︷ ︸
DQ′={R1,R2,R3,R6,R8,R9,R10}

xQ∗ = 1 1 1 0 0 1 0 0 0 0 (‖xQ∗‖ = 4)︸︷︷︸
vQ◦xQ′

︸ ︷︷ ︸
DQ∗={R1,R2,R3,R6}

Figure 4.3: Illustration of the computation of the upper bound stated in Theorem 4.8.

The computation of the upper bound ∆f (Q, Q′) is really fast: it takes O(|DQ′ |) time, as

all the terms of the expression in Theorem 4.8 either are constant or can be computed

by considering the |DQ′ | non-zero entries of the vector xQ′ .

Example 4.2. Figure 4.3 shows an example of the computation of the upper bound ∆f .

We consider an input query Q whose results are DQ = {R1, . . . , R10}. We also assume

that a set Q of |Q| = 10 reformulations have already been computed and that λ = 0.5.

The integer vector mQ contains the multiplicity of the results in Q, i.e., each entry

mQ[i] contains the number of reformulations in Q having Ri among their results, while

the binary vectors uQ and vQ keep track of the results in DQ having null multiplicity

and multiplicity ≤ 1
2 |Q|, respectively. For a given reformulation Q′, the binary vectors

xQ′ and xQ∗ denote the actual result set RQ′ and the result set of the ideal reformulation

Q∗ that can be generated from Q′, respectively. According to Lemma 4.7, the result set

of Q∗ is given by all and only the results of Q′ whose multiplicity is ≤ 1
2 |Q|, that is

xQ∗ = vQ ◦ xQ′.

The marginal gain of the coverage term ∆cov(Q, Q∗) is equal to the scalar product uQ ·

xQ∗; therefore, ∆cov(Q, Q∗) = 1. According to Theorem 4.4, the marginal gain of the

diversity term is ∆div(Q, Q∗) = ‖mQ‖+ |Q|×|xQ∗ |−2mQ ·xQ∗ = 36+10×4−2×11 =

54. As a result, the upper bound of Q′ is ∆f (Q, Q′) = ∆f (Q, Q∗) = 1
2∆cov(Q, Q∗) +

λ∆div(Q, Q∗) = 27.5, while the actual marginal potential gain of Q′ is ∆f (Q, Q′) =

1
2∆cov(Q, Q′) + λ∆div(Q, Q′) = 1

2uQ · xQ′ + λ(‖mQ‖+ |Q| × |xQ′ | − 2mQ · xQ′) = 23.5.
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Figure 4.4: Illustration of the Fast MMPG algorithm

The Fast MMPG algorithm

We exploit the findings discussed above in order to efficiently find a reformulation ex-

hibiting the maximum marginal potential gain. We assume our search space SQ \ Q

organized as a tree T , whose root corresponds to the input query Q, while the children

of each node (reformulation) Q′ correspond to all reformulations generated by adding

a single edge to Q′. According to this definition, a reformulation can in principle have

multiple fathers; this can however be avoided by borrowing standard mechanisms from

frequent subgraph mining,3 hence we can safely assume that each reformulation in T

has actually a single father. As already anticipated, we also denote by TQ′ the subtree

of T rooted at Q′.

The proposed Fast MMPG algorithm, whose outline is reported as Algorithm 7, vis-

its the various nodes Q′ of the tree T in non-increasing ordering of their upper-bound

∆f (Q, Q′)—the rationale here is that larger upper bounds correspond to more promis-

ing subtrees. To this end, a priority queue P is used. At the beginning, P contains the

children of the original query Q (Line 2), and the algorithm processes the reformulations

in P until it becomes empty or the maximum upper bound therein does not exceed the

best-so-far value ∆∗f (Lines 3–13). For each reformulation Q′ extracted from P, the algo-

rithm first computes the marginal potential gain ∆f (Q, Q′) (according to Theorem 4.4),

and uses it to possibly update ∆∗f (Lines 5–8). ∆f (Q, Q′) is also compared to the upper

bound ∆f (Q, Q′) in order to early recognize whether it is worth to keep visiting the

subtree TQ′ (Line 9): the visit goes ahead only if ∆f (Q, Q′) < ∆f (Q, Q′), otherwise

(i.e., if the marginal potential gain equals the upper bound) TQ′ is entirely skipped. If

the subtree TQ′ is not pruned, all children Q′′ of Q′ are generated and, for each of them,

3In our implementation we avoid to consider the same reformulation multiple times by keeping trace of the
DFS code [YH02] of each reformulation visited.
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Algorithm 7 Fast MMPG

Input: A graph database D, a query Q, a set of reformulations Q
Output: A reformulation Q∗ ∈ SQ \ Q that maximizes ∆f (Q, Q∗)

1: ∆∗f ← −∞
2: initialize P with {children of Q} \ Q
3: while P is not empty ∧max(P) > ∆∗f do
4: Q′ ← poll(P)
5: if ∆f (Q, Q′) > ∆∗f then
6: Q∗ ← Q′

7: ∆∗f ← ∆f (Q, Q′)
8: if |DQ′ | > 0 ∧ ∆f (Q, Q′) < ∆f (Q, Q′) then
9: Q′ ← {children of Q′} \ Q

10: add {Q′′ ∈ Q′ | ∆f (Q, Q′′) > ∆∗f} to P

the corresponding upper bound ∆f (Q, Q′′) is computed according to Theorem 4.8 (Line

10). All children Q′′ having ∆f (Q, Q′′) no more than the best-so-far marginal potential

gain ∆∗f are discarded, while all others are added to P to be processed in a later iteration

(Line 11).

The children of a (reformulated) query Q′ (Lines 2 and 10) are generated according to

the following strategy. For each result R ∈ DQ′ , we keep track of all the subgraphs of R

that are isomorphic to Q′, and we expand each of those subgraphs by one step of bfs

initiated in the vertices of that subgraph. A nice side effect of this strategy is that, for

each children Q′′ of Q′ yielded, we automatically have the corresponding result set DQ′′

without running any further subgraph-search query on the database. As a result, the

only subgraph-search query we need is the one to compute the results DQ of the original

query Q.4

Example 4.3. Figure 4.4 shows the execution of the Fast MMPG algorithm on an ex-

ample query Q and the corresponding reformulation tree. In the example we assume

that a set of reformulations Q have already been computed. The priority queue P is

initialized with the children of Q, which, according to their upper bounds, follow the or-

dering Q′1 → Q′2 → Q′3 → Q′4. In the first iteration, Q′1 is extracted from P and the

best-so-far value is set to ∆∗f = ∆f (Q, Q′1) = 18. Among the children of Q′1, only Q′11

is added to the priority queue as the upper bound of the other child Q′12 is not > ∆∗f .

The new ordering of the reformulations in P is Q′2 → Q′11 → Q′3 → Q′4, therefore Q′2

is the next reformulation to be processed. The value of ∆∗f is updated again and set to

∆∗f = ∆f (Q, Q′2) = 20, while all children of Q′2 are pruned as their upper bound are

less than ∆∗f . The next reformulation processed is Q′11, which leads to a new ∆∗f value

4We use the traditional subgraph-isomorphism algorithm by Ullmann [Ull76] for this. Our work is however
orthogonal to the method used for answering subgraph-search queries: to achieve further speed-up, one can also
resort to some existing indexing strategy [SZLY08, CKN09, CKFY11].
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equal to ∆f (Q, Q′11) = 22. After that, the algorithm terminates as the maximum upper-

bound value within P (i.e., ∆f (Q, Q′3) = 21) becomes smaller than ∆∗f : the subtrees

TQ′3 and TQ′4 are therefore entirely skipped. The reformulation ultimately outputted by

Fast MMPG is Q′11.

The next theorem formally shows the soundness of the proposed Fast MMPG algorithm.

Theorem 4.9. Algorithm 7 finds an optimal solution to the problem arg max
Q′∈SQ\Q

∆f (Q, Q′)

stated in Line 3 of Algorithm 6.

Proof. Let Q∗ be an optimal solution to the problem at hand derived by considering the

whole search space T = SQ\Q, i.e., Q∗ = argmaxQ′∈T ∆f (Q, Q′). Let also T̃ ⊆ T be the

subset of the search space visited by Algorithm 7. The algorithm visits all the solutions

in T̃ , and, among these solutions, it outputs the one exhibiting maximum marginal

potential gain (see Lines 5–8), i.e., it outputs a solution Q̃∗ = argmaxQ′∈T ′ ∆f (Q, Q′).

To prove the correctness of Algorithm 7, it is thus sufficient to show that the marginal

potential gain of the solution Q̃∗ output by the algorithm is equal to the marginal

potential gain of the optimal solution Q∗, i.e., we need to show that ∆f (Q, Q̃∗) =

∆f (Q, Q∗): this would clearly imply that the solution Q̃∗ output by the algorithm is an

optimal solution itself.

To prove this, one can easily note that the solutions that are skipped by Algorithm 7

may only come from the pruning rules in Lines 9 and 11. Thus, we need to show the

correctness of these pruning rules, that is neither of these rules can leave out solutions

having marginal potential gain larger than the one exhibited by the solution Q̃∗ ulti-

mately output by the algorithm.

The rule at Line 9 says that, denoting by TQ′ the subtree of the search space T rooted

at Q′, TQ′ is not visited further if the maximum marginal gain ∆f (Q, Q′) of Q′ is no less

than the upper bound ∆f (Q, Q′) on the marginal potential gain exhibited by a solution

in TQ′ . Theorem 4.8 guarantees that ∀Q′′ ∈ TQ′ : ∆f (Q, Q′′) ≤ ∆f (Q, Q′), which clearly

means that all the solutions within TQ′ \ {Q′} cannot exhibit marginal potential gain

larger than the one exhibited by Q′, thus there is no need to consider them further. This

proves the correctness of the pruning rule at Line 9.

The rule at Line 11 instead states that, among the children of Q′, only the children Q′′

such that ∆f (Q, Q′′) is larger than the best marginal potential value ∆∗f encountered



Chapter 4. Information overload 83

so far are considered further. The correctness of the rule is again guaranteed by The-

orem 4.8: no solutions within any subtree rooted at any of the children of Q′ skipped

can exhibit larger marginal potential gain than the one found so far, thus none of these

children can lead to a better solution.

The correctness of the pruning rules implies that

∀Q′ ∈ T \ T̃ : ∆f (Q, Q′) ≤ ∆f (Q, Q̃∗)

⇒ ∆f (Q, Q̃∗) = ∆f (Q, Q∗),

which completes the proof.

4.6 Experimental Evaluation

Table 4.1: Characteristics of the real databases: number of graphs; min, avg, and max
number of graph vertices/edges; number of vertex/edge labels; average density defined

as |E|/
(|V |

2

)
, where |V | is the number of vertices and |E| is the number of edges.

# vertices # edges # labels
database # graphs min avg max min avg max vertices edges avg density

AIDS 10 000 2 25 214 1 27 217 51 4 0.1
Financial 13 087 5 14 34 4 14 46 45 68 0.2
Web 17 920 2 8 48 1 7 53 639 8 0.3

In this section we empirically evaluate our approach by assessing its accuracy and effi-

ciency on both real and synthetic databases, and comparing it to a number of baselines.

4.6.1 Experimental setting

Methods. We recall that our method corresponds to the Greedy algorithm (Algo-

rithm 6) equipped with the proposed Fast MMPG (Algorithm 7) to perform the marginal-

potential-gain-maximization step. For the sake of brevity, in the following we denote

our method by Fast MMPG only.

We compare our Fast MMPG to three baselines. The first baseline corresponds to the

Greedy algorithm when equipped with a brute-force method to maximize the marginal

potential gain, i.e., a method that visits the whole reformulation search space without

exploiting any finding devised in Section 4.5.3. Such a baseline, denoted by Greedy BF, is
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mainly aimed at efficiency evaluation. The second baseline is the näıve method inspired

by frequent subgraph mining and discussed in Section 4.5.1: this method selects the most

frequent k supergraphs of the input query as reformulations. We refer to this baseline as

k-freq. The third baseline is a method that discovers subgraph features from the graph

database, indexes them, and, given a query Q, it returns the immediate (i.e., minimal)

supergraphs of Q among the features present in the index as reformulations. In our

implementation we extract discriminative yet frequent features according to the state-

of-the-art methods defined in [SZLY08, YYH05], while we use the well-known Lindex

method [YM13] for indexing such features. We refer to this baseline as Lindex.

All methods are implemented in Java 1.7, and the experiments are performed on a i686

Intel Xeon E5-2440 2.40GHz, 125GB RAM machine over Linux kernel v3.8.0, which we

limit to 30GB in all experiments. The graph database is loaded into main memory using

the ParMol library [MWU+07]. We use a copy of Lindex kindly provided by the authors

of [YM13] both for the Lindex baseline and to compute the dfs codes of all methods.

Real databases. We use real-world, publicly-available databases. The main charac-

teristics of such databases are shown in Table 4.1. Next we report a short description.

• AIDS5 is a biological database extracted from the well-known AIDS anti-viral screen-

ing dataset6 and traditionally used in the graph-database literature [YCHY08,

SZLY08, CKN09, SLZ+10, CKFY11, LXCB12]. Vertices and edges represent atom

and atom bonds, respectively.

• Financial7 is a transaction workflow of loan-request processes submitted to a fi-

nancial institute. Every vertex represents a subprocess while edges correspond to a

resource exchanged between two processes.

• Web8 is a workflow of web interactions between users and a recommender system

for restaurants. A vertex is a restaurant and an edge is a browsing action.

Synthetic databases. We generate synthetic databases using the popular GraphGen

graph generator [CKNL07].9 We consider different database and graph sizes in order to

better assess the scalability of our proposal (see Section 4.6.5).

5
www.cs.ucsb.edu/~xyan/software.htm

6
http://dtp.nci.nih.gov/docs/aids/aids_data.html.

7
www.win.tue.nl/bpi/2012/challenge

8
kdd.ics.uci.edu/databases/entree/entree.html

9
http://www.cse.ust.hk/graphgen/.

www.cs.ucsb.edu/~xyan/software.htm
http://dtp.nci.nih.gov/docs/aids/aids_data.html
www.win.tue.nl/bpi/2012/challenge
kdd.ics.uci.edu/databases/entree/entree.html
http://www.cse.ust.hk/graphgen/
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Query generation. We generate random queries of various sizes. To ensure non-empty

answers, we start from a vertex of a graph in the database (both sampled uniformly at

random) and perform a dfs from that vertex until the desired size has been reached.

To have meaningful reformulations, we discard queries having too few results (i.e., with

number of results less than the number k of output reformulations). For each set of

experiments and parameter configuration, we report results averaged over 10 random

queries.

4.6.2 Ruling out Greedy BF

In Figure 4.5 we report the running time of our Fast MMPG and the Greedy BF baseline,

using a synthetic database generated with GraphGen [CKNL07], where we vary the

database size and set all other parameters to their default values.

It is easy to see that Greedy BF is not suitable for any real-world settings: on even

very small databases of 30 graphs it is already four orders of magnitude slower than

Fast MMPG, and we could not run it on larger databases due to its excessive running

time. For this reason, we avoid to report efficiency results for Greedy BF in the remainder.

In terms of accuracy, we recall that both Fast MMPG and Greedy BF employ the greedy

scheme in Algorithm 6 and they both also optimally solve the sub-problem of maximizing

the marginal potential gain (for the optimality of our Fast MMPG see Theorem 4.9). As

a consequence, they produce exactly the same results.
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Figure 4.5: Running time of the proposed Fast MMPG algorithm vs. the brute-force
Greedy BF baseline.

4.6.3 Ruling out Lindex

We discuss here the results achieved by the Lindex baseline. All the indexes on graph

databases proposed in the literature are expressively designed to split a query graph
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Figure 4.6: Percentage of queries for which the Lindex baseline returns no reformula-
tions with varying (a) query size (|Q|), and (b) number of reformulations (k).

in features of smaller size, in order to speed-up subgraph-search queries. Thus, such

indexes usually work well if the task is to find small-sized subgraphs of the query graph,

while being less suited for the task of finding supergraphs. As a result, for queries of

size exceeding the size of the largest feature in the index, the Lindex baseline would

inevitably output an empty answer. As the features indexed are usually of very small

size, this actually happens very often.

Indeed, Figure 4.6 shows the percentage of queries for which no reformulations are

found by Lindex. It can be observed that Lindex fails in finding reformulations in most

cases, e.g., 100% of the times for queries of size larger than 2 on the Financial and

Web graphs. This confirms that Lindex is not really suitable for the problem of Graph

Query Reformulation we tackle in this work. For this purpose, we avoid to report

further details on Lindex in this sections.

4.6.4 Performance with varying parameters

Here we discuss the results of the evaluation on real datasets. We perform tests with

varying the main parameters involved in the process: (i) size (i.e., number of edges) |Q|

of the input query, (ii) value of the regularization factor λ (Equation (4.3)), and (iii)

number of output reformulations k. We vary these parameters in the following ranges:

|Q| ∈ [2, 14], λ ∈ [0, 0.5], k ∈ [5, 25]. While varying one parameter, we keep the other

two fixed to (around) their median values, i.e., we set |Q| = 6, λ = 0.3, and k = 10.

We report running times (Figures 4.7–4.9) and quality (in terms of objective-function

value, Tables 4.2–4.4) of the proposed Fast MMPG algorithm and the baseline k-freq.
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Figure 4.7: Running times of the proposed Fast MMPG algorithm and the k-freq
baseline on the real datasets with varying query size |Q|.
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Figure 4.8: Running times of the proposed Fast MMPG algorithm and the k-freq
baseline on the real datasets with varying regularization factor λ.
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Figure 4.9: Running times of the proposed Fast MMPG algorithm and the k-freq
baseline on the real datasets with varying number of reformulations k.

Query size (|Q|). Figure 4.7 reports the efficiency of Fast MMPG varying the query size.

It can be observed that our algorithm can easily handle all real databases, with running

times ranging from a few milliseconds (Web) to a few seconds (AIDS). The difference in

time observed through the various databases is mainly due to the size of the graphs

therein: the graphs in AIDS are indeed generally larger than the other two databases.

Moreover, as a general finding, times are decreasing as the query size increases, which

is expected as larger queries lead to smaller result sets. Finally, the running times of

our method are comparable to the baseline k-freq: although this baseline employs a

much simpler scheme than our Fast MMPG, and, as such, is expected to run faster, we

instead do not observe this in practice. The reason is that, even though k-freq may

visit less reformulations than Fast MMPG, the ones visited by k-freq are top-frequent
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reformulations for which a quite large number of subgraph isomorphisms need to be

performed. On the contrary, our Fast MMPG algorithm does not necessarily visits top-

frequent reformulations as diversity is also considered.

The quality results are shown in Table 4.2, where we report the objective-function values

of Fast MMPG and k-freq, along with the percentage gain achieved by Fast MMPG over

k-freq (last row). In general, Fast MMPG evidently outperforms k-freq, with gain ranging

from up to 40% on Web to 52% on AIDS (17% and 34% on average). The reason of the

larger improvement exhibited on AIDS is likely due to the type of graphs contained in the

database: the graphs in AIDS are larger and more diversified than the workflow graphs

in Financial and Web, which are instead more similar to one another and thus capture

less results.

Finally, we generally observe that the objective-function value decreases as the query

size increases. This is expected since the objective-function value is directly proportional

to the number of query results, and, clearly, the larger the query, the fewer the results.

0.001	  

0.01	  

0.1	  

1	  

10	  

0	   0.001	   0.01	   0.05	   0.1	   0.5	  
 λ	  

Coverage	  
Diversity	  

(a) AIDS

0.001	  

0.01	  

0.1	  

1	  

10	  

0	   0.001	   0.01	   0.05	   0.1	   0.5	  
λ	  	  

Coverage	  
Diversity	  

(b) Financial

0.0001	  

0.001	  

0.01	  

0.1	  

0	   0.001	   0.01	   0.05	   0.1	   0.5	  
λ	  	  

Coverage	  
Diversity	  

(c) Web

Figure 4.10: Values of the coverage and diversity terms (in thousands) exhibited by
Fast MMPG on real datasets with varying λ. The value of the diversity term is reported

multiplied by λ.

Regularization factor (λ). The running time of Fast MMPG with varying λ (Fig-

ure 4.8) follows a fluctuating trend for smaller values of λ, while converging for λ > 0.1.

In all cases, the running time is again very small: it ranges from 3.2 milliseconds (Web)

to 3.6 seconds (AIDS). Again, our Fast MMPG is really close to the baseline k-freq.

As far as the quality results (Table 4.3), as expected, larger λ values lead to larger

improvements by our Fast MMPG over the baseline. The motivation is that a larger

value of λ steers the objective function towards the maximization of diversity. Since

coverage is implicitly captured, as a side effect, by the top-k frequent reformulations

output by the k-freq baseline, the latter is unsurprisingly closer to Fast MMPG for values

of λ close to zero. However, we restate that a value of λ too small is not generally a
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good choice, because it would practically correspond to ignore diversity, which instead

plays a key role, as extensively discussed above.

Finally, we report in Figure 4.10 how the value of the coverage and diversity terms of the

proposed objective function are affected by λ. As a main observation, in all databases, a

good balancing between the two terms is achieved for λ ≥ 0.1. A more detailed analysis

on the coverage and diversity terms of our objective function (as far as the baseline

k-freq too) can be found in Section 4.7.

Table 4.2: Quality (in terms of the objective function f defined in Equation (4.3),
values in thousands) of the proposed Fast MMPG algorithm and the k-freq baseline on

real datasets with varying the query size |Q|.

|Q| |Q| |Q|
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14

Fast MMPG 30 14 6 1.5 1.8 1.6 1 34 6.4 1.6 1.5 1.1 .7 .4 .7 .1 .07 .07 .023 .021 .012
k-freq 23 11 4.3 .8 1.3 .8 .6 34 5.8 1.2 .8 1 .9 .3 .55 .09 .04 .06 .018 .019 .01
gain (%) 24 19 27 46 27 52 43 1 10 21 44 17 15 30 18 15 40 3 18 8 15

AIDS Financial Web

Table 4.3: Quality (in terms of the objective function f defined in Equation (4.3))
of the proposed Fast MMPG algorithm and the k-freq baseline on real datasets with

varying the objective-function regularization factor λ.

λ λ λ
0 0.01 0.05 0.1 0.5 0 0.01 0.05 0.1 0.5 0 0.01 0.05 0.1 0.5

Fast MMPG 433 613 1 345 2 260 9 566 201 244 422 649 2 461 4 5.2 9.3 14.3 54.7
k-freq 409 540 1 063 1718 6 954 188 222 360 533 1 914 4 5 8.4 12.7 46.6
gain (%) 6 12 21 24 27 7 9 15 18 22 0 3 9 11 15

AIDS Financial Web

Table 4.4: Quality (in terms of the objective function f defined in Equation (4.3))
of the proposed Fast MMPG algorithm and the k-freq baseline on real datasets with

varying the number of output reformulations k.

k k k
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Fast MMPG 1 791 5 917 12 462 21 235 32 029 629 1 555 2 904 4 630 6 645 12 35 68 99 134
k-freq 1 373 4 336 9 709 17 061 25 667 535 1 224 2 241 3 410 5 400 7 30 62 92 123
gain (%) 23 27 22 20 20 15 21 23 26 19 41 14 8 7 8

AIDS Financial Web

Number of reformulations (k). The efficiency results of Fast MMPG with varying

the number of output reformulations are reported in Figure 4.9. Clearly, the running

time is increasing as k increases. However, the trends on all datasets are roughly linear

in k, which attests the scalability of our method with respect to the output size. Again,

our Fast MMPG is really close to the baseline k-freq.
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The quality results reported in Table 4.4 show that, while being better than the baseline

in all settings, Fast MMPG exhibits (slightly) decreasing gain as k increases. This is

reasonable as the greedy scheme of Fast MMPG implies that the maximum marginal-

gain value gets progressively smaller as more reformulations are added to the solution.

4.6.5 Scalability

We test the scalability of our Fast MMPG algorithm (and the k-freq baseline) on syn-

thetic databases. Particularly, we analyze the efficiency performance from two main

perspectives, that is varying (i) the database size (i.e., number of graphs), and (ii) the

average size (expressed as number of edges) of the graphs in the database. To this end,

we use GraphGen [CKNL07] to generate databases of sizes in the range [25K, 250K] and

average graph sizes in [10, 50]. All other parameters are set to the default values sug-

gested by the generator. The main parameter values are: number of vertex labels (20),

number of edge labels (20), average graph density (0.3). All such values are consistent

with the ones observed on our real datasets.

The results of this evaluation are reported in Figure 4.11. The main message of the left

figure is that Fast MMPG can handle query reformulation in a database of 250K graphs

in a few seconds. More specifically, the trend is weakly exponential in the database size:

the running time ranges from almost 0.1s (25K graphs) to 2.2s (250K graphs). This

attests full scalability of Fast MMPG on very large database sizes.

The scalability of Fast MMPG is also confirmed by the experiment with varying the graph

size: our algorithm takes less than one second for handling databases with average graph

size of 50. We remark that this value is far beyond the graph size that is commonly

encountered in real-world scenarios (in our three real-world databases, the average graph

size is 4, 14 and 27 as reported in Table 4.1). However, here Fast MMPG (and k-

freq too) is more sensitive to changes than the previous experiment: this is expected

since, like most methods on querying graph databases, our technique relies on subgraph-

isomorphism-like primitives, whose running time is notoriously more affected by the

size of the graph than the number of graphs, as larger graphs typically lead to more

isomorphisms.
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Figure 4.11: Scalability of the proposed Fast MMPG algorithm on synthetic databases:
(a) running time vs. database size (avg graph size set to 30); (b) running time vs.

average graph size (database size set to 10K).

4.6.6 Qualitative evaluation

We provide here some visual examples of the results produced by our Fast MMPG algo-

rithm and the k-freq baseline. Figure 4.16a shows a query issued to the AIDS dataset.

The query corresponds to a well-known chemical compound, i.e., formaldehyde. The

reformulations output by our Fast MMPG correspond to chemical compounds that span

the search space horizontally, thus showing non-overlapping molecules, among which one

can recognize two very common compounds of formaldehyde, namely formamide (fourth

reformulation) and acetone (fifth reformulation). On the other hand, the k-freq refor-

mulations are very general and all close to each other (some of them are even subgraphs

of other reformulations, e.g., first and fourth reformulation): such reformulations are

therefore much less informative than the ones found by our Fast MMPG.

The second example on the Financial dataset (Figure 4.16b) clearly shows that meth-

ods based only on frequency (like k-freq) are not suitable for capturing the various

(diverse) alternatives from the results of a query. Indeed, once a frequent structure

(reformulation) containing the query has been encountered, all other reformulations are

most likely generated starting from there, meaning that every subsequent reformulation

is a supergraph of the previous one. This is exactly what happens with the reformula-

tions output by k-freq for the example in Figure 4.16b. Instead, our Fast MMPG returns

reformulations whose common structure mostly corresponds to the query itself.
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4.7 Impact of coverage and diversity on the Graph Query

Reformulation problem

In this section we provide further insights on the two main terms of the proposed objec-

tive function f , i.e., coverage (cov) and diversity (div). In Figure 4.12 and Figure 4.13

we report the values of these two terms exhibited by the proposed Fast MMPG and the

k-freq baseline, on the various datasets.

Figure 4.13 shows that the diversity exhibited by our Fast MMPG is evidently higher

than that of k-freq, for all values of λ but λ = 0, which corresponds to considering only

coverage in the proposed objective function f (note the values reported are expressed in

thousands). This is clearly expected as the baseline k-freq does not explicitly account

for diversity.
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Figure 4.12: Value of the coverage term (in percentage) exhibited by the proposed
Fast MMPG and the k-freq baseline on real datasets with varying λ.

A more interesting finding is what arises from Figure 4.12, where it is shown that our

Fast MMPG is generally better than the baseline in terms of coverage too, even for larger

values of λ. The reason of this behavior is the following. Although coverage is somehow

implicitly taken into account by frequency (which is the (only) aspect considered by

k-freq), the latter leads, as a side effect, to favor reformulations that come all from the

same “heaviest” branch of the reformulation tree, i.e., the branch that contains the most

frequent reformulation. In other words, k-freq tends to recursively expand the branch

containing such most frequent reformulation, so that all the reformulation outputted are

supergraphs of such most frequent reformulation, and, as such, are not able to cover other

more diverse results. This is also the reason why k-freq generally finds reformulations

that are very similar to each other, and thus not really interesting. A practical example

of this behavior (on the Financial dataset) has already been reported and discussed in

Section 4.6.6, Figure 4.16.
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Figure 4.13: Value of the diversity term exhibited by the proposed Fast MMPG and
the k-freq baseline on real datasets with varying λ. Values are expressed in thousands.
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Figure 4.14: Running times of the proposed Fast MMPG algorithm and the baselines
on the real datasets with varying query size |Q|.

4.8 Comparison with Index Based Methods [Extended]

We compare here time and quality performance of the proposed Fast MMPG algorithm

to the Lindex baseline. Figures 4.14–4.15 show running times on the three datasets with

varying query size and number of reformulations, respectively. For Lindex, we report

both the time when the baseline returns a non-empty set of reformulations (Lindex(Succ))

and the overall time even though no reformulation is output (Lindex(All)). As expected

Lindex is in general faster that Fast MMPG as it can exploit an indexing structure and

the fact that most queries are actually not executed as no results are returned.

Nevertheless, in terms of quality, Tables 4.5–4.7 clearly show that Lindex performance is

rather poor when compared to our Fast MMPG, even in those few cases where Lindex is

able to produce non-empty answers.
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Figure 4.15: Running times of the proposed Fast MMPG algorithm and the baselines
on the real datasets with varying number of reformulations k.

Table 4.5: Quality (in terms of the objective function f defined in Equation (4.3),
values in thousands) of the proposed Fast MMPG algorithm and the Lindex baseline
on real datasets with varying the query size |Q|. The first two lines refer to absolute

values, while third and fouth lines refer to values averaged by k.

|Q| |Q| |Q|
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14

Fast MMPG 30 14 5.9 1.5 1.8 1.6 1 34 6.4 1.6 1.5 1.1 .7 .4 1.3 .17 .04 .07 .05 .03 .01
Lindex .03 .01 0 0 0 0 0 .02 0 0 0 0 0 0 1 0 0 0 0 0 0
Fast MMPG 3 1.4 .6 .15 .18 .16 .11 3.4 .64 .16 .15 .12 .07 .04 .13 .02 .01 .01 .01 0 0
Lindex 2.5 .7 .15 0 0 0 0 1.7 0 0 0 0 0 0 .1 0 0 0 0 0 0
empty
answers (%)

0 40 70 100 100 100 100 0 100 100 100 100 100 100 0 100 100 100 100 100 100

AIDS Financial Web

Table 4.6: Quality (in terms of the objective function f defined in Equation (4.3)) of
the proposed Fast MMPG algorithm and the Lindex baseline on real datasets with vary-
ing the objective-function regularization factor λ. The first two lines refer to absolute

values, while third and fouth lines refer to values averaged by k.

λ λ λ
0 0.01 0.05 0.1 0.5 0 0.01 0.05 0.1 0.5 0 0.01 0.05 0.1 0.5

Fast MMPG 430 613 1 344 2 259 9 574 430 613 1 344 2 259 9 574 430 613 1 344 2 259 9574
Lindex 229 271 442 654 2 356 229 271 442 654 2 356 229 271 442 654 2356
Fast MMPG 43 61 134 226 957 43 61 134 226 957 43 61 134 226 957
Lindex 23 27 44 65 236 23 27 44 65 236 23 27 44 65 236
empty
answers (%)

70 70 70 70 70 100 100 100 100 100 100 100 100 100 100

AIDS Financial Web

Table 4.7: Quality (in terms of the objective function f defined in Equation (4.3))
of the proposed Fast MMPG algorithm and the Lindex baseline on real datasets with
varying the number of output reformulations k. The first two lines refer to absolute

values, while third and fouth lines refer to values averaged by k.

k k k
5 10 15 20 25 5 10 15 20 25 5 10 15 20 25

Fast MMPG 1 791 5 917 12 462 21 235 32 029 629 1 555 2 904 4 630 6 645 12 35 68 99 134
Lindex 682 1 505 1 505 1 505 1 505 0 0 0 0 0 0 0 0 0 0
Fast MMPG 358 592 831 1 062 1 281 126 156 194 231 266 2 3 5 5 5
Lindex 136 151 100 75 60 0 0 0 0 0 0 0 0 0 0
empty
answers (%)

70 70 70 70 70 100 100 100 100 100 100 100 100 100 100

AIDS Financial Web
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Figure 4.16: Examples queries on the AIDS and Financial datasets and the refor-
mulations returned by Fast MMPG and k-freq (k = 5).

4.8.1 Summary of experimental assessment

Our experiments provide evidence that Fast MMPG is a better choice than the two

baselines to solve Problem 1, both in terms of accuracy and efficiency. On the one hand,

while Greedy BF is guaranteed to provide the same quality of Fast MMPG, its poor

efficiency makes it not suitable for any real-world graph database. On the other hand,

the method based on frequent subgraph mining, i.e., k-freq, while being comparable to

Fast MMPG in terms of efficiency, it is evidently less accurate.

The quality of the reformulations generated is guaranteed by Theorem 4.3. A visual

inspection of the results confirms the practical usefulness of query reformulation in graph

databases. For instance, Figure 4.16 represents real query reformulations generated by

our method in the AIDS and Financial datasets. In terms of scalability, the evaluation

on datasets with up to 250K graphs and graph size up to 50 reports time < 1 sec: this

makes our method Fast MMPG a good candidate for real-world deployment.





Chapter 5

Exemplar Query Answering

So far, we have described two methods to scope with underspecified/overspecified queries.

In this chapter we deal with the case of users that are not aware of the correct conditions

to formulate the query. We introduce the novel exemplar queries paradigm, in which the

user query is considered an example of the intended results. Although exemplar queries

find applications in various data-models, we propose a solution for labeled graphs and, in

particular, knowledge graphs. The proposed solution scales on incredibly large graphs,

returning real time answers. We experimentally evaluate our approach in terms of qual-

ity and time. We also propose a user study to support the adoption and usefulness of

exemplar queries.

5.1 Contributions

Our contributions can be summarized as follows.

• We introduce and formally define a novel form of query answering, referred to as

exemplar queries, that treats a query as a sample from the desired result set.

• We study exemplar queries for graph-based models, and devise two similarity mea-

sures, based on subgraph isomorphism and strong simulation, that take edge-labels

into consideration. In addition, we provide a theoretical analysis for our measures,

proving their correctness, and we demonstrate that the two proposed similarity

measures capture different, yet interesting use cases.

97
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• We propose two algorithms to compute the exact solution: a straightforward solu-

tion, and an optimized algorithm that can prune the search space. Furthermore, we

describe an approximation algorithm with significant efficiency gains and minimal

effect on quality, which can be used for real-time query answering.

• We perform a thorough experimental evaluation, using the largest multigraph ever

used (Freebase) in this field. We experimentally show that existing approaches

either fail to produce correct exemplar query evaluations, or they do so in a much

longer time, that makes them inapplicable for online applications. In contrast, the

experiments demonstrate the efficiency of our solutions, and a user-study validates

the usefulness of exemplar queries.

5.2 Outline

This chapter is organized as follows. We first introduce in Section 5.3 the motiva-

tion of exemplar queries and highlight the practical applications in the every day life.

Section 5.4 introduces exemplar queries and the exemplar query answering problem,

proposing a natural application on knowledge graphs. In Section 5.5 we propose two

instances of the similarity function used to answer an exemplar query, namely subgraph

isomorphism and strong simulation, as well as efficient algorithmic solutions that scale to

large graphs. Section 5.6 describes a natural ranking function that exploits both struc-

tural and distance-based measures. Finally, in Section 5.7 we present an experimental

assessment of our algorithms in terms of quality and performance.

5.3 Motivating example

Consider a student who wants to perform a study on company acquisitions in the Bay

area, without being an expert in the field, or familiar with the related terminology.

Writing a query with the terms “acquisitions” and “Bay Area” will return documents

talking about acquisitions and also mentioning the Bay area. An article on the takeover

of del.icio.us by Yahoo! may not be returned if the actual words of acquisition and Bay

area are not explicitly mentioned in the text.
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The student knows that a good case of the type of acquisition she is looking for is the

one of YouTube by Google. Thus, she issues the query: “Google founded-in Menlo Park

acquired YouTube”. The search engine typically responds with results related to Google,

Menlo Park, and YouTube, but will not return anything related to an acquisition of

del.icio.us by Yahoo!. If many users have performed similar searches in the past, an

analysis of the query logs may reveal that information and the search engine (based

on log analysis) may propose, in the related searches section, queries on Yahoo! and

del.icio.us. (A simple test in existing search engines reveals that this is not actually

happening.) Relaxing one or more of the query conditions does not help in a significant

way, since the results are still focused around the Google case.

Consider now a second candidate answer for the user query: Paramount that was ac-

quired by CBS. Among the Yahoo!-Tumblr and CBS-Paramount, it is more likely that

the former is among the company acquisitions that the user is interested in, and not

the latter. This is because even though Yahoo! was founded in a different city than

Google, that city is still in California (just like with Google), while the city that CBS

was founded is in New York. Furthermore, the example of Google-YouTube that the user

provided is about IT companies, and so are the Yahoo!-Tumblr, while CBS-Paramount

belong to the brodcasting industry.

Thus, there is a need to devise a method for inferring the set of elements that the user

is interested in from a sample (of that set), provided by the user.

5.4 Background and Problem

Achieving the required functionality can be seen as a two-step process. The first is to

identify in the data repository the structures satisfying the specifications in the user

query, i.e., those that represent the sample that the user already knows to be part of

the desired result set. This can be easily achieved using traditional query evaluation

techniques. We denote the results of this type of evaluation of a query Q as DQ and

refer to it as the user sample.

The second step is to find the remaining structures of interest for the user based on the

structure that has been identified in the first step. Note that there exists a query that

describes all these structures that the user is looking for, it is just that she is not aware
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of that query, or is not in a position to describe it. Thus, it is natural to assume that

all the structures of interest have some commonalities, especially to the one that the

user provided as an indicative example. As such, we are interested in finding similar

structures to the results of the first step, and return these results as an answer to the

user-provided query.

We refer to this new query paradigm as exemplar queries and the results of their evalu-

ation as relevant answers.

Definition 5.1. The evaluation of an exemplar query Qe on a database D, denoted as

xmpEval(Qe), is the set {a | ∃s∈DQe ∧ a≈s}, where a and s are structures in D and

the symbol ≈ indicates a similarity function.

Looking for structures similar and not exact to those explicitly described in the query,

reminisces query relaxation. Yet, our problem is different. In query relaxation, one or

more of the query conditions are relaxed, so the results in the answer set are elements

that satisfy fewer conditions of the user query. The desired results in our case may be

based on characteristics that are different to those mentioned in the user query, therefore

query relaxation fails to answer exemplar queries.

Note that the definition of exemplar queries is independent of the data model, the query

form, the retrieved results and the similarity function. As long as there is a standard

query evaluation methodology and some similarity function that can be used to fit a

specific use case, the exemplar queries can be answered. This leads to flexibility and

the ability to use exemplar queries in a wide range of different applications. We are

particularly interested in applying exemplar queries in cases where the data is highly

heterogeneous and have some relaxed structure. For that reason we have chosen to use

a flexible data model, a simple query form with a traditional query evaluation that is

based on subgraph matching, and a very generic similarity function that is based on

edge label-preserving similarity on graphs.

We assume an infinite set of labels L and of values V. The set V consists of an infinite set

of atomic values T and of object identifiersO, i.e., V=T ∪O. An object is a representation

of a real world entity or concept and is modeled through an object identifier and a set of

attributes for that identifier that model characteristic properties of the real world entity

or concept.
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Definition 5.2. A database D is a graph 〈N,E〉 where N⊆ O and E⊂O×L×(O∪T ),

both finite.

The expression n
`→ n′, denotes an edge from node n to node n′ labeled `. We also

say that two nodes n1, n2 are equivalent, and denote it as n≡n′, if they represent the

same atomic value or the same object, i.e., the identifiers of the objects they respectively

represent are the same.

A query is traditionally an expression describing a set of objects alongside a set of

conditions they need to satisfy. These conditions describe certain characteristics of

these objects and the relationships they may have among them. We make the natural

assumption that the objects referenced in a query are somehow all connected, otherwise

the query expression would actually constitute two independent queries. Answering a

query means finding the subgraphs in the database that have a structure matching the

graph representation of the query. The set of these subgraphs constitutes the answer set

of the query.

Definition 5.3. A query Q is a database whose graph representation is a connected

graph Q : 〈NQ, EQ〉. An answer to a query Q : 〈NQ, EQ〉 on a database D is any

connected subgraph D′ : 〈ND′ , ED′〉 of D matching the query Q, i.e., there exists a non-

trivial binary relation R, such that ∀nQ ∈ NQ,∃nD′ ∈ ED′ : nQR nD′ . The set of all

such subgraphs, denoted as DQ, is referred to as the answer set of the query.

Note that this type of query evaluation can also accommodate cases where user pro-

vided queries are flat keyword queries, provided that they are first translated to some

structured form in accordance with Definition 5.2. This task is outside the scope of this

work, but there is already a large amount of literature [BDG+11] on that topic.

Any choice of the relation R is admissible, however we assume to have one that preserves

the semantics of the user query.

Query Q is finally evaluated as an exemplar query through Definition 5.1. As such, in

this chapter we tackle the following problem.

Problem 2 (Exemplar Query Answering). Given an exemplar query Qe, find all

answers a ∈ D such that a ∈ xmpEval(Qe) for a chosen similarity function ≈.
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Regarding the similarity function, although multiple different forms of similarity can be

used, we consider two alternatives based on edge-preserving subgraph matching relations.

The first is a similarity function based on the notion of subgraph isomorphism [Coo71].

The second is a more elastic function, based on the recently introduced strong simula-

tion [MCF+14]. While subgraph isomorphism searches for perfect matches of the input

query in the database, strong simulation groups matching nodes based on the edge-labels

of the neighbor nodes. As we discuss in more detail later on, strong simulation relaxes

the strict requirements of isomorphism, while preserving the topology and the semantics

of the original query. Finally, we note that we are interested in returning a ranked list

of results, and in particular the top-k most similar and relevant structures.

Figure 5.1: An instance of the Exemplar Query Answering problem.

Example 5.1. Consider the example described in Section 5.3 and the portion of the

database illustrated in Figure 5.1. The user query (the exemplar query) is Q1 shown at

the top left corner of the figure. The evaluation of that query on the database results to

the user sample that is indicated in the database with the dashed box labeled S. Searching

for similar structures (edge-isomorphic structures) to this user sample, results to the two

structures indicated with the dotted line boxes labeled A1 and A2, that serve as the rele-

vant answers to the exemplar query. Among the two relevant answers, the neighborhood

of A1 has more nodes and edges in common to the user sample S, for instance, the IT

Company, the Search Engine and the California, than those that the neighborhood of

A2 has in common, hence, A1 should be ranked higher than A2.

Now consider query Q2 where the user, differently from Q1, also asks for companies that

owns a website. The query matches the sample S but the only perfect match is A2, that

is instead semantically further away than A1. In this case, the user does not necessarily

need strict equality, but is interested in companies with at least one acquisition and
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one website. Using simulation both A1 and A2 would be returned as answers, since

Tumblr, being both an acquisition and a website, satisfies the requirements of the query.

Therefore, in this example Tumblr serves the purpose of both Freebase and YouTube.

This motivates the study of both similarity functions.

Since the first step of the exemplar query evaluation is a standard search in a graph

for a subgraph matching the user query and many solutions have already been stud-

ied [PHIW12, KA11, KRS+09], we will not discuss this problem further. Instead, we

focus on the implementation of the second step, which is to devise a method that given

such subgraph (the user sample) finds other edge-isomorphic (or alternatively simulat-

ing) subgraphs (the relevant answers) and ranks them based on their neighborhood.

One of the main challenging parts of this is that there is no clear limit on how large

a neighborhood to consider, apart from the entire database. In our implementation,

we use Freebase, which is one of the largest knowledge-graphs available nowadays. Ex-

isting works on graph similarity concentrate the effort of searching on a large number

of small graphs, but searching on a very large graph in the form and size we consider

here has not been considered before, even though there is an increasing interest for such

application [LMP+14].

5.5 Algorithmic Solution

5.5.1 The Basic XQ Algorithm

Once the user query has been evaluated and the sample S has been identified in the

database D, the set of similar structures will have to be discovered. To do so, the user

sample S will have to be compared with every other subgraph in the database. Instead

of considering the exponential number of subgraphs in the database, a node ns from

S is randomly selected to serve as a seed. Then all the nodes in the database D are

considered, one at a time. For each such node n, we check whether a subgraph that

contains n and is similar to S can be constructed when mapping ns to n. If such a graph

is found, then it is added in the result set, i.e., the set of relevant answers. At the end

of this procedure the relevant answers are sorted and returned to the user (all of them,

or only the top-k) as the result to the exemplar query. (The sorting task is studied in

detail in Section 5.6.)
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Algorithm 8 XQ

Input: Database D : 〈N,E〉
Input: User Query Q
Output: Set of relevant answers Q

1: Q ← ∅
2: S ← eval(Q)
3: ns ← selectARandomNode(S)
4: for each n ∈ N do
5: A← FindSimilarSubgraphs(S, ns,D, n)
6: if A 6= ∅ then
7: Q ← Q ∪ A
8: Rank(Q)
9: return Q

The pseudo-code of the above steps is described in Algorithm 8. The construction of

the matching subgraphs (line 5 in Algorithm 8) is done by initially considering a graph

G consisting only from the node ns and a subgraph T consisting only from node n, and

assuming that a similarity relation maps ns to n. Then the algorithm iteratively tries

to expand the subgraphs G and T with edges from S and D, respectively, such that the

resulting subgraphs remain similar (based on the selected similarity function). If (after

a number of steps) the graph G becomes equal to S, then T is one of the answers.

Searching for possible matches of the user sample in the entire database, as the Algorithm

XQ requires, is an expensive operation. Thus, one of the main challenges is how to

effectively and efficiently reduce the search space preserving quality guarantees on the

answers. In what follows we propose solutions based on structural properties of the

database that adapt to different similarity functions.

5.5.2 Instantiations of the similarity function

The XQ algorithm requires the definition of a similarity function to find the answers to

an exemplar query. Although different similarity function could fit the definition, we are

interested in those that preserve the structural and semantic properties of the user query.

More specifically, a candidate similarity function should preserve the edge-labels of the

user sample, and the (basic) connections between nodes. We identify two compelling

similarity functions, based on: (1) subgraph isomorphism, which seeks for exact matches

and is known to be NP-hard, and (2) strong similarity, a weaker notion of subgraph

matching that admits a cubic-time solution in the size of the query.
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In the following sections, we formally define the two similarity functions we use in this

work, and discuss their properties.

Subgraph isomorphism. The most natural definition of similarity to the query terms

is strict equality. In graph terms, this means finding structures that are subgraph iso-

morphic to the user sample. While subgraph isomorphism is defined over node and edge

labels, matching node labels means referring to the exact same object, which is too strict

for the exemplar query scenario. Therefore, we define edge-preserving1 isomorphism as

follows:

Definition 5.4. A database D is edge-preserving isomorphic to a database D′, denoted

as D'D′, if there is a bijective function µ from the nodes of D to the nodes of D′ such

that for every edge n1
`→n2 in D, the edge µ(n1)

`→µ(n2) is in D′.

Isomorphism is a very restrictive similarity function, in that it recognizes only exact

structures. We acknowledge that this level of precision could be desired in some cases

but detrimental in other settings. Consider for instance the query Q2 and the two graphs

S and A2 from Example 5.1. They are conceptually very close, S is an IT company that

has bought another company, owns a website and was founded in California. A1 on the

other hand differs from S, because Tumblr is a website and also an acquisition of Yahoo.

However, the user could be interested in A1 and may want it included in the results.

This more flexible similarity requires the notion of simulation [Par81], and in particular,

strong simulation [MCF+14]. �

Strong simulation. Intuitively, a graph simulates a query graph if it mimics the same

edge sequences of the query and, as such, it preserves sequences of edge labels in the

same order. In practice, this translates in checking if any sequence of edge labels in the

query is contained in the graph. Since the subgraph match is performed in a sequence-

wise fashion, this notion preserves the same semantics of the query, yet allowing for some

freedom in the structure.

Definition 5.5 (Simulation). Let S : 〈Ns, Es〉 and D : 〈N,E〉 be two databases repre-

sented as graphs. D simulates S if there exists a relation R, such that, for every node

ns ∈ Ns and n ∈ N for which (ns, n) ∈ R and ns
`→ n′s, there exists a n′ such that

n
`→ n′ and (n′s, n

′) ∈ R.

1In the rest of the document we will be dropping the part “edge-preserving”.
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Figure 5.2: A sample (S) and two simulating graphs (G1 and G2).

This flexibility though, has some significant shortcomings. First, graph simulation does

not consider parent-child relationships, since it only requires that nodes in the relation

match the outgoing edges of the query. Second, the matched graph is not bounded, in

that any sequence of edges with the same label can be matched to a single edge in the

query. These issues are illustrated in the following example.

Example 5.2. Consider the scenario in Figure 5.2. The user is asking for IT companies

for which we know the venture fund, such that one acquired the other. She provides

the example “Sequoia Capital invested in IT company Youtube acquired by IT company

Google”. This is depicted as the sample S in the figure, and we then want to find similar

graphs using simulation. Searching for similar structures results in G1 and G2. G1

simulates S because both Google and Yahoo! have the same acquired edge, Youtube and

Tumblr have an isA edge, then IT Company matches both IT Company and Website in

G1, and Sequoia and Spark matches for the investor edge. However, the fundamental

property that the two companies are of the same type is lost, since simulation does not

require to match nodes with the same parent. Note that also G2 simulates S, since Google

is matched by Microsoft and CBS, YouTube is matched by Paramount, IT Company is

matched by Publishing and IT Company in G2, and Sequoia is matched by InterWest.

Intuitively, any edge sequence in S is matched by some sequence in G2. Simulation

disregards the locality of the match, finding possible answers in any place of the graph.

Motivated by the above discussion, we adopt a more stringent similarity function called

strong simulation. Strong simulation requires the definition of dual simulation. Dual

simulation is a bidirectional simulation that checks both the incoming and outgoing

edges of each query node.
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Definition 5.6 (Dual simulation). Let S : 〈Ns, Es〉 and D : 〈N,E〉 be two databases

represented as graphs. D dual simulates S, denoted as S ED D, if there exists a relation

R, such that for every node ns ∈ Ns and n ∈ N for which (ns, n) ∈ R:

(1) for all ns
`→ n′s, exists n′ such that n

`→ n′ and (n′s, n
′) ∈ R, and

(2) for all n′′s
`→ ns, exists n′′ such that n′′

`→ n and (n′′s , n
′′) ∈ R.

While dual simulation admits answers of any diameter, strong simulation is bounded to

the diameter of the query. Strong simulation is based on the notion of neighborhood.

We call d-neighbor of a node n a node that is reachable from n in at most d steps, i.e.,

the shortest path from n to this node is no longer than d.

Definition 5.7 (d-neighbor). Let n ∈ N be a node of a database D = 〈N,E〉. The

node ni ∈ N is a d-neighbor of n if there exists a shortest path from n to ni of length at

most d. The d-neighborhood of n, denoted as Nd(n), is the set of d-neighbors of n. The

d-graph of n, denoted as D[n, d] is the subgraph of D induced2 by the nodes in Nd(n).

Strong simulation defines bounds on the size of the simulation. Moreover, as proved

in [MCF+14], the size of the maximum dual simulation relation is bounded by the

diameter of the query. Recall that the diameter of a query is the length of the longest

shortest path.

Definition 5.8 (Strong simulation). A database D : 〈N,E〉 strong simulates a database

S : 〈Ns, Es〉, denoted as S ES D, if there exists a node n ∈ N and a d-graph D[n, d]

such that:

(1) d is equal to the diameter of the query S.

(2) S ED D[n, d] with the maximal dual simulation (i.e., any other dual simulation of

S in D[n, d] is contained in the maximal).

This definition embodies the two important properties of bounding the simulation re-

lation size within the d-graph, and preserving the parent-child relationships. Looking

back at Example 5.1, we observe that using Definition 5.8, the query returns both A1

2A subgraph induced by a set of nodes N is the subgraph whose edges have both endpoints in N .
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and A2 as results. At the same time, both G1 and G2 (shown in Figure 5.2) are rejected,

which is the desired behavior.

Note that, differently from [MCF+14], our definition matches edge labels instead of node

labels. In Section 5.5.4, we describe how we can adapt the algorithms in [MCF+14] for

this case, providing analytical results on the correctness of this adaptation. �

The following sections introduce algorithmic solutions for both similarity functions. Sec-

tion 5.5.3 introduces approximate and exact algorithms to evaluate exemplar queries

with isomorphism, while Section 5.5.4 describes our strong simulation algorithms, de-

signed for the case of exemplar queries.

5.5.3 Finding Subgraph Isomorphic Answers

Since subgraph isomorphism is an NP-hard problem, we need to carefully design our

algorithmic solutions in order to be efficient in practice. This becomes particularly

important when the database size is large. In this section, we present the methods, and

the ideas behind them, that we devised in order to efficiently answer exemplar queries

using isomorphism as the similarity measure.

5.5.3.1 An Efficient Exact Solution

To improve the performance, we propose an effective way to prune the search space,

i.e., the list of database nodes we have to match to the nodes of the user sample in or-

der to find isomorphic structures, leading to a new algorithm: FastXQ. The FastXQ

algorithm is divided into two steps, first we use the query to drive a process that will

restrict and prune the search space, then we apply XQ to the resulting restricted spaced.

To prune the space we devise an efficient technique for comparing nodes, and an algo-

rithm for effectively rejecting pairs of nodes that are bound to not participate in any

isomorphic mapping, we call this algorithm IterativePruning. Although this tech-

nique may lead to false positives, the schema is effective and reduces significantly the

search space. The false positives are subsequently removed by running the traditional

isomorphic verification algorithm on them.
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To compare nodes, inspired by [KLY+11], we devise a technique that is meant to rep-

resent the neighborhood in a compact way, and to match the nodes in advance without

the need to examine all the nodes in the graph. In more details, the idea is to store

in advance a compact representation of the neighborhood of each node, i.e., nodes and

edges that are at a fixed distance d from each node. This provides an effective way to

compare nodes, allowing the pruning to remove the non-matching nodes without having

to actually visit their neighborhood.

A basic concept of our approach is also the notion of neighborhood introduced in Defi-

nition 5.7.

For every node in the database we compute a table consisting of the number of nodes

that are reachable from that node at some specific distance and with a path ending with

a label `. In other words, for a node n, for every label ` and for every distance i we keep

the cardinality of the set Wn,`,i, where

Wn,`,i = {n1|n1
`→ n2 ∨ n1

`← n2, n2 ∈ Ni−1(n)}

In practice, since doing so for every node in the database is expensive in terms of space,

we employ an implementation similar to the idea of the inverted indexes. We use an

index structure that for every label and for every distance can provide a list of all the

nodes that have a label ` at the respective distance, and the number of such labels.

The index is a hash table in which keys are edge labels and values are two dimensional

matrices. For a label ` the matrix contains in position i, j all the nodes n, such that

|Wn,`,i| = j, for each j > 0.

Note that, once computed for each label ` and each i ≤ d, W compactly represents the

neighborhood of a node. For this reason, if we compute W for the nodes of the user

sample as well, we can compare nodes in the database and nodes in the user sample, in

order to know in advance which nodes can be pruned. We denote the d-neighborhood of

a node ns of graph S by NSd (ns). A node n ∈ N of D : 〈N,E〉 matches a node ns ∈ Ns

in the user sample, and therefore is not pruned, if for each label ` and a distance i ≤ d,

|Wn,`,i| ≥ |Wns,`,i| (ref. to Theorem 5.9 for a formal proof).

Using the ability to compare nodes through the compact representation of their neigh-

borhood, we devise a way of fast eliminating pairs of the user sample and database
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nodes, respectively, that are unlikely to participate in an isomorphism match. Tradi-

tional techniques that compute isomorphisms compute matches of the different nodes

independently and then try to combine the results. We believe that this process can be

optimized further, if the comparison of the nodes takes into consideration the previously

computed matches. To implement this idea we exploit the dual simulation in Defini-

tion 5.6. Note that, in this case, the dual simulation is used to prune nodes in advance

and not as a similarity function as in Section 5.5.4.

Deciding whether one graph dual simulates another graph is known to be solvable in

polynomial time with respect to the size of the graph [MCF+14]. The main idea of

our approach is to perform multiple dual simulations of the user sample on the database

graph while pruning the non matching nodes iteratively. The algorithm works as follows.

First, it calculates the d-neighborhood for each node of the user sample. Then, a user

sample node is selected as starting node. Although any node is a valid starting node

we propose to pick the node with the lowest selectivity among the user sample nodes,

with the hope to reduce the number of candidate matches between the user sample

and database nodes. The selectivity is an estimate of the number of possible matches

generated from a user sample node. The idea is to consider the number of adjacent

nodes of a user sample node and the frequency of the labels of the edges connected to

it. The selectivity of a node n is

Sel(n) = freq(n) +
d∑
i=1

1

i

∑
Wn,`,i

|E`|, (5.1)

where the frequency freq(n) of a node n is defined as the sum of the number of outgoing

and incoming edges. Similarly, we define the frequency of a label ` as the number of edges

in the graph having label ` and we denote it as |E`|. The less probable the combination

of labels at a certain distance is, the lower the selectivity and the higher is the expected

pruning power.

After having selected the starting node nmin, the algorithm retrieves the nodes in the

database that match the node nmin and marks them as candidate mappings µ(nmin),

where µ ⊆ NS × N is the mapping between user sample and database nodes that the

algorithm will compute. Then the algorithm iteratively checks, for each user sample

node ns not yet visited, that each adjacent edge of ns matches the edges adjacent to
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Algorithm 9 IterativePruning

Input: A database D : 〈N,E〉
Input: A user sample S : 〈NS , ES〉
Output: A set of candidate mappings µ ⊆ NS ×N

1: NSd ← d-neighborhood of S
2: Vis ← ∅ . Visited nodes
3: nmin ← arg min

n∈NS

Sel(n)

4: C ← {nmin} . Query candidates
5: µ(nmin)← {n|NSd (nmin) ⊆ Nd(n)}
6: for each ns ∈ C do

7: if ns
`→ n′s ∈ ES and n′s 6∈ Vis then

8: µ(ns)← µ(ns) \ {n|n
`
6→ n1, n ∈ µ(ns)}

9: µ(n′s)← {n1|n
`→ n1, n ∈ µ(ns),NS

d (n′s) ⊆ Nd(n1)}
10: else if n′s

`→ ns ∈ ES and n′s 6∈ Vis then

11: µ(ns)← µ(ns) \ {n|n1
`

6→ n, n ∈ µ(ns)}
12: µ(n′s)← {n1|n1

`→ n, n ∈ µ(ns),NS
d (n′s) ⊆ Nd(n1)}

13: C ← C ∪ {n′s|ns
`→ n′s ∨ ns

`← n′s}
14: C ← C \ {ns}
15: Vis ← Vis ∪{ns}

the nodes n ∈ µ(ns), verifying the label and the direction of the edge. If it does not

match, then n is removed from µ(ns), otherwise we consider a node n1 adjacent to n a

candidate for the user sample node n′s adjacent to ns, i.e., we insert it into µ(ns), if the

condition described by Theorem 5.9 holds. Finally, the user sample node ns is marked

as visited and removed from the candidate list. The steps of the algorithm are described

in pseudo-code in Algorithm 9.

The following theorem guarantees that Algorithm 9 does not falsely discard any node

while traversing the user sample nodes. However, it may introduce false positives, i.e.,

nodes that match the user sample nodes but are not included in an isomorphism.

Theorem 5.9. Given a database D : 〈N,E〉 and a user sample S, let Nd and NSd
be the d-neighborhood of D and S respectively. If there exists a subgraph-isomorphism

µ : NS → N , then ∀ns ∈ NS ,NSd (ns) ⊆ Nd(n), n ∈ N,n ∈ µ(ns)

Proof. (by contradiction) Suppose that (ns, n) ∈ µ, but NSd (ns) 6⊆Nd(n), then there

exists i, 1 ≤ i ≤ v and a label ` such that |Wns,`,i| > |Wn,`,i|. For this reason we can say

that there exists n′s ∈Wns,`,i, connected to n′′s ∈ Ni−1(ns) by `, i.e., n′s
`→ n′′s . The latter

assumption holds since µ is a subgraph-isomorphism. However, there does not exist any

µ(n′s)
`→ µ(n′′s), which contradicts the subgraph-isomorphism hypothesis.
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Additionally, a guarantee that the algorithm correctly computes multiple simulations of

the user sample S, is offered by the following theorem.

Theorem 5.10. Given a user sample S, if Algorithm 9 terminates with a complete

exploration of the nodes S, then there exists in µ a dual simulation R of S.

Proof. In order to prove the theorem we need to find at least one subgraph of D that

simulates the sample S. The hypothesis assumes that all the nodes in the sample have

been visited, so the set of visited nodes V is is equal to Ns. We assume, wlog, that

initially µ contains all the nodes in the graph. Since the only node in C is nmin (Line

4) the algorithm repeatedly inspects the query to find incoming and outgoing edges

with some specific label. Given a node n ∈ µ(nmin) and an edge n
`→ n1 there are

two possibilities: (1) n does not have n1 such that n
`→ n1 or (2) there exists n1 such

that n
`→ n1. If (2) holds, either there exists some other node with an ` edge, or the

algorithm stops with an empty µ. On the other hand, if (1) holds then the algorithm

adds n1 to µ(n1) and continues the search. At the end all the nodes and edges of the

sample are checked in both directions, incoming and outgoing (Line 7-13), and the dual

simulation found in D.

In the worst case, Algorithm 9 will have to traverse the entire database for each node.

Thus, the complexity of the algorithm is O(|E| ∗ (|NS |+ |ES |)). Since the user sample

is typically very small, the algorithm is, for the majority of practical cases, quadratic to

the number of nodes. In implementation, to reduce the time computation of µ we used

a hash map for storing the nodes of the user sample and their partial mappings.

The set of candidate mappings computed by Algorithm 9 is used to eliminate those nodes

of the database that will never participate in an isomorphism with the user sample nodes.

5.5.3.2 An Approximate Solution

In the previous subsection, we described an exact solution to prune the search space,

removing nodes that cannot possibly match the user sample. In this subsection, we

propose an additional method that removes in advance nodes that are likely to not be

relevant for the user, we call this method ApFastXQ.
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We aim at restricting in advance the search space in order to search for solutions only

in the portion of the graph that is more likely to contain relevant answers. As already

mentioned in the previous subsections, both pairs Yahoo!-Tumblr and CBS-Paramount

are part of the solution space, but the pair Yahoo!-Tumblr is more relevant to the user,

and therefore we would like to restrict our search only to the subgraph that is containing

the second but not the first.

In the following, we describe how we model this portion of the graph, which we call

Relevant Neighborhood. That portion is the subset of nodes with higher proximity to

the nodes of the user sample. The intuition behind this is that nodes in the graph that

are located far from the user sample will be also semantically distant from the user’s

intention as expressed in the exemplar query.

We model a relatedness measure based on the distance in the graph, and we use it

to prune away nodes that are far away from the user sample before even looking for

isomorphic structures.

It is clear that, while the approach described in the previous subsection is exact (does not

discard any valid answers), this second approach is approximate: some correct answers

could potentially be filtered out as they fall out of the Relevant Neighborhood. For

this reason, we propose a principled way of measuring the relatedness and for pruning

the graph, aimed at discarding only irrelevant solutions. We implement a function

that iteratively retrieves the Relevant Neighborhood without traversing the entire graph.

As we show later (Section 5.7), thanks to the RelevantNeighborhood algorithm,

by operating in this special portion of the graph, we can effectively reduce the search

space. The restricted search space can then be given as input to XQ in Algorithm 8,

without sacrificing the quality of the results. We can still apply on this subgraph the

pruning techniques presented in the previous subsection and then look for isomorphic

structures on a much smaller database. Hence, the ApFastXQ algorithm first applies

the RelevantNeighborhood algorithm and then FastXQ.

Identifying the Relevant Neighborhood. To find the subset Qρ of the set of answers

Q, that contains the answers that are relevant to the user, we assume to have some

measure of relevance ρ. Since the only evidence of the user’s intent is the input query Q

and the corresponding user sample S that we have found in the first step of the exemplar



Chapter 5. Inexpressible queries 114

Figure 5.3: A visualization of APPV

query evaluation, we can define the set of relevant answers as Qρ = {A′ ∈ Q | ρ(A′, S) >

τ}, with τ > 0 being a minimum threshold.

Since Qρ is clearly a set of subgraphs in D, we say that the set of solution Qρ is contained

in the subgraph Dρ ⊆ D, which is any subgraph of D that contains all the members of

Qρ, relevant answers, and none of the remaining irrelevant solutions in Q\Qρ. For this

reason we call Dρ the Relevant Neighborhood of the sample S.

This portion of the graph, being a subgraph itself, is identified by the subset of relevant

nodes Nρ ⊆ N . Those are nodes whose relevance measure ρ is within the a threshold τ ,

i.e., Nρ = {n ∈ N |ρ(n, S) > τ}. Operationally, we first identify the set of relevant nodes

Nρ, and then with only those nodes, we easily construct the subgraph Dρ ⊆ D.

In our solution, we implement ρ as a distance measure on the graph, such that it measures

the distance of every node from the nodes of the sample NS , and we keep only nodes

that are within a certain distance threshold from the sample. In order to compute this

distance we propose the Adaptive Personalized PageRank Vector (APPV), an extension

of the Personalized PageRank Vector (PPV), designed to exploit the properties of our

problem. This is implemented by the RelevantNeighborhood algorithm. �

The RelevantNeighborhood Algorithm. Our solution models the computation

of the Personalized PageRank vector (PPV) [JW03] which is used as an estimate of

the distances of the nodes in the graph from the subset of nodes in the user sample.
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Algorithm 10 RelevantNeighborhood

Input: User Sample S : 〈NS , ES〉
Input: Database D : 〈N,E〉
Input: Teleportation probability c
Input: Threshold τ
Output: Subgraph D′ ⊆ D

1: Ā← AdjacencyNormalized(D, S)
2: p← [0]×N
3: for each qi ∈ NS do
4: p[qi]← 1/|NS |
5: v ← ComputeAPPV(Ā,p, c, τ)
6: ND′ ← Nearest(N,v)
7: D′ ← GetSubgraph(D, ND′)
8: return D′

Personalized PageRank computes the PageRank biased towards the preferences of the

user. In our case, user preferences are expressed through the query Q and for this reason

we initialize the preference vector according to the nodes in the user sample S, which

models the query Q in the database.

The main difference between the original PPV model and our solution, APPV, lays on

the semantic of edges. Traditionally, edges between nodes are treated equally as they

usually represent just a link from one webpage to another (i.e., they are of the same

kind). In contrast, our model adapts to the various edges and their labels, according to

S. In particular, the edges in our model may represent different kinds of relationships. It

is therefore natural to differentiate based on the information carried by different edges,

as some relationships are more informative than others. Moreover, labels that do appear

in the user query should be treated differently when computing the PageRank, because

they represent the user preference.

Figure 5.3 depicts the output of the computation on the graph of our running example.

Here all the nodes have been assigned the weights from the final APPV, computed using

the set of nodes in the sample as initial preferences.

The set Nρ, which satisfies the selectivity requirement, consists of nodes with Personal-

ized PageRank score higher than a minimum threshold τ , 0 < τ < 1.

This whole process, presented in Algorithm 10, returns the portion of the graph that

is combined with Algorithm 9 to produce a restricted database D′ which is provided to

Algorithm 8 instead of D.
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Assume a model of the database D : 〈N,E〉, and let AD be the adjacency matrix of

this graph. If |N | is the number of nodes in the database, then AD is an |N | × |N |

square matrix. In this matrix, we have that 0 < ADij ≤ 1 if and only if the node i has

a relationship e`ij with node j with label `; otherwise, we have ADij = 0. In this way,

the element ADij models the amount of information that is transferred from node i to

node j by the edge e`ij as a function of its label `. In our solution, the values in AD are

proportional to the amount of information [Sha01] carried by the edge e`ij , which is:

I(e`ij) = I(`) = log
1

P (`)
= − logP (`) (5.2)

P (`) =

∣∣E`∣∣
|E|

(5.3)

where E` is the set of edges with label `. Note that the frequency of a label can be easily

computed in the database.

In order to account for the importance of the edges in the user sample, we additionally

define matrix AS , which is constructed from the adjacency matrix of the database, but

where only entries for edges whose label appears also in S are assigned a non-zero value.

In other words, we construct an |N | × |N | square matrix with 0 < ASij ≤ 1 if the nodes i

and j are connected by an edge and that edge has a label ` that appears as label of one

edge in the user sample S, and with ASij=0 otherwise.

We then combine the two matrices into the matrix Ā = AD+AS and normalize it. Under

this transformation Ā becomes the transition probability matrix for the knowledge-base

graph, where more relevance is given to edges carrying more information, as well as to

edges with labels that appear in the query. We also define p, an |N | × 1 column vector,

which serves as the normalized preference vector for which p[i] 6= 0 iff ni ∈ NS , i.e.,

0 < p[i] ≤ 1 if and only if the node i is in S. Given the column normalized transition

probability matrix Ā, the teleportation probability c, and the preference vector p, our

technique adheres to the Personalized PageRank semantics [JW03].

Thus, the APPV v is defined as the stationary distribution of the Markov chain with

state transition given by the matrix

(1− c)Āv + cp (5.4)
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Algorithm 11 ComputeAPPV

Input: Adjacency Matrix Ā
Input: Node vector p
Input: restart probability c
Input: threshold τ
Output: Approximate APPV v

1: for each qi ∈ p do
2: p[qi]← p[qi]× 1/τ

3: v ← p
4: while ∃ ni ∈ p | p[ni] 6= 0 do
5: aux← [0]
6: for each ni ∈ p | p[ni] 6= 0 do
7: particles← p[ni]× (1− c)
8: for each ni → nj ∈ D (Sort by Āij Desc.) do
9: if particles ≤ τ then

10: break
11: passing ← particles× Āij
12: if passing ≤ τ then
13: passing ← τ

14: aux[nj ]← aux[nj ] + passing
15: particles← particles− passing
16: p← aux
17: for each ni ∈ p do
18: v[ni]← v[ni] + p[ni]

19: return v

where the teleportation probability c ∈ (0, 1) is typically ≈ 0.15, with small changes in

this value having little effect in practice [PBMW99].

The exact computation of this vector typically requires O(|N |2) time and space. Per-

forming the computation through power iteration requires O(|N |t) time, where t is the

number of iterations to be performed. Nevertheless, this computation is still not prac-

tical for very large graphs.

In order to compute this value fast, we extend the template proposed in [BYBC06] and

apply an approach similar to the weighted particle filtering procedure proposed in [LC10]

but extended to correctly take into account the teleportation probability, and to consider

the non-uniform edge weights that we previously introduced. The extension is shown in

Algorithm 11.

Algorithm 11 simulates a set of 1/τ floating particles (line 2) starting from each node

with a non-zero value in p. At each iteration (lines 6-15), they split among the neighbors

of the node they are currently visiting, but we prevent them to split to arbitrarily small
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sizes, limiting them to have minimum size τ (lines 12-13). When spreading the particles

among the neighbors, the algorithm gives preference to the edges with higher weights.

The restart probability c will dissipate part of the particles at every iteration (line 7),

and the algorithm will stop when no more particles are floating around.

At the end of the algorithm, we return the APPV containing the scores that have been

accumulated through each iteration on every node. We then keep the subset of the

graph containing only those nodes with a score higher than some threshold and the

edges connected to them (line 6-7 in Algorithm 10). Since we are dealing with an

iterative approximation, we keep only those nodes that have been visited by at least one

particle, which means that we discard all solutions not greater than τ .

5.5.4 Finding Simulating Answers

In its original formulation, strong simulation is node-label preserving [MCF+14], mean-

ing that the query and the database have labels on the nodes (instead of the edges). On

the contrary, our definition is strictly based on edge labels: we require to preserve the re-

lationships among nodes, ignoring the node labels. The adaptation of strong simulation

from node-label preserving to edge-label preserving is possible, albeit non-trivial. We

discuss the details in the following paragraphs. We also show that it is possible to use

the same strong simulation algorithms in our setting. The solution we propose includes

the translation of our graph into an expanded graph.

Definition 5.11 (Expanded Graph). For a given graph G : 〈N,E〉 the expanded graph

is a graph G+ : 〈N+, E+〉, where each n1
`→ n2, (n1, n2) ∈ E is substituted with two

edges n1 → n` and n` → n2, where n` is a new uniquely identified node with label `.

The path n1 → n` → n2 is called expanded edge and n` is called edge-node.

Clearly, N+ = N ∪ {n` | ∃ n1, n2 ∈ N,n1
`→ n2} and E+ = {(n1, n

`), (n`, n2) | n1, n2 ∈

N ∧ n1
`→ n2}.

Figure 5.4 represents an edge n1
`→ n2 and its expansion. Note that the nodes n1 and

n2 in the expansion have no labels. We are now ready to prove that the definition of

dual simulation in [MCF+14] is equivalent to ours when applied to the expanded graph.

Recall that in a node-labeled graph, simulation is defined as follows.
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n1

n2

`

n1

`

n2

Figure 5.4: An edge (left) and the corresponding expansion (right).

Definition 5.12 (Node-label dual simulation). A node-labeled database D1 : 〈N1, E1〉

dual simulates another graph D2 : 〈N2, E2〉, denoted as D1 END D2, if there exists a

relation R, such that, for every node n1 ∈ N1 and n2 ∈ N2 for which (n1, n2) ∈ R: (1)

for all n1
`→ n′1, exists n′2 such that n2 → n′2 and (n′1, n

′
2) ∈ R, (2) for all n′′1

`→ n1, exists

n′′2 such that n′′2
`→ n2 and (n′′1, n

′′
2) ∈ R.

We need to prove that edge-label strong simulation is equivalent to node-label simulation

on expanded graphs. We first prove the following lemmas.

Lemma 5.13. Given two databases S : 〈Ns, Es〉 and D : 〈N,E〉, S ED D ⇔ S+ END D+.

Proof. The structure of the proof is as follows. We prove both arrows separately con-

structing another dual simulation starting from the one existing by hypothesis.

(⇒): Given a dual simulation relation RD from s to D we construct a relation

R′D = RD ∪R+
D,

where R+
D = {(s`, n`) | s`∈N+

s , n
`∈N+,(s1, n1), (s2, n2)∈ RD ∧ s1

`→ s2, n1
`→ n2}. Note

that for the generality of s1, s2, n1, n2, R+
D contains edges in both directions. R′D is, in

fact, a dual simulation from S+ to D+. Suppose R′D is not a dual simulation, then it

must exists s ∈ N+
s such that it for any n ∈ N+, (s, n) /∈ RD. We have two cases:

(1) s ∈ N . This is a contradiction, since RD is a dual simulation it exists a n, such that

(s, n) ∈ RD.

(2) s ∈ N+ \N . This means that s is an edge-node and exists a label ` and s1, s2 ∈ Ns,

such that s1
`→ s2. By hypothesis exists n1, n2 ∈ N such that (s1, n1) ∈ RD, and

(s2, n2) ∈ RD. However, in the expanded graph n1 → n` → n2, implying that (s`, n`) ∈

R′D contradicting the hypothesis.
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Algorithm 12 StrongSimSearch

Input: User database D: 〈N,E〉
Input: User sample S
Output: Set of simulating answers Q

1: D+ ← Expand(D)
2: S+ ← Expand(S)
3: Q← ∅
4: Q+ ← Match(D+, S+) . Algorithm from [MCF+14]
5: for all q+ ∈ Q+ do
6: Q← Q ∪Contract(q+)

(⇐): The proof is similar to the forward arrow, noticing that RD = R′D \ R
+
D, and will

be omitted.

We are now ready to prove the following Theorem.

Theorem 5.14. Let S : 〈Ns, Es〉 and D : 〈N,E〉 two databases, S ES D ⇔ S+ ENS D+.

Proof. Recall that from Definition 5.8, two graphs are strongly similar if there exists a

node n ∈ N and a d−graph D[n, d] such that (1) d is equal to the diameter of S, and

(2) S ED D[n, d] with the maximal dual simulation. If S ES D, by Lemma 5.13 follows

that S+ END D+[n, d] and it easy to see that d is the diameter of S+. It also flows that

S+ END D+[n, d] with the maximal relation, since the relation, as defined in Lemma 5.13

contains all the pairs plus the pairs included in the expanded edges.

Theorem 5.14 states that it is sufficient to run the Match algorithm from [MCF+14]

on an expanded graph, and then remove all the edge-nodes and the matching from the

expanded graph to obtain valid strong-simulating results for the original graph. Algo-

rithm 12 shows the pseudocode of the strong-simulation algorithm. First, the graphs S

and D are expanded using the procedure Expand (Line 1,2); then, the Match algorithm

is used to find strong-simulating answers Q+ in the expanded graphs S+ and D+ (line

4). Finally, all the results in Q+ are contracted using the Contract function to remove

the expanded-edges (line 5-7).

Algorithm complexity. The Match algorithm on D+ runs in O(|N+|(|N+|+ (|N+
s |+

|E+
s |)(|N+|+ |E+|))) as shown in [MCF+14]. Since the size of the user sample is small,

|N+
s | is bounded by a small constant and we can consider Match to run in O(|N+|(|N+|+

(|N+| + |E+|))). On the other hand, |N+| = |N | + |E| since for each edge we add a
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node and |E+| = 2|E|. Therefore, since both Expand and Contract execute in O(|E|)

time, the overall complexity is dominated by Match, which runs in O(|N |4) for expanded

graphs.

Applying pruning techniques. Algorithm 12 works with any kind of graph, but

expanding the entire database may be time consuming. A legitimate question then is

whether IterativePruning can be applied with simulation.

Indeed, this is possible by relaxing the constraint in Theorem 5.9. It easily follows

from Theorem 5.9 and Definition 5.6 that in a database D : 〈N,E〉, a node n ∈ N

matches a node ns ∈ Ns in the user sample S, so it is not pruned, if for each label `

and a distance i ≤ d, if |Wns,`,i| > 0 then |Wn,`,i| > 0. We refer to this algorithm as

IterativePruning∗.

We call FastXQSim the algorithm that derives from XQ, when instantiated with the

StrongSimSearch similarity function described in Algorithm 12 and the pruning al-

gorithm IterativePruning∗.

Regarding the restriction of the search space presented in Section 5.5.3.2, we note that no

changes are needed to RelevantNeighborhood. Therefore, for the case of strong sim-

ulation, we can use the ApFastXQ algorithm by first applying the RelevantNeigh-

borhood algorithm presented above, and then the FastXQ with IterativePruning∗.

We refer to this new algorithm as ApFastXQSim.

5.6 Ranking Query Answers

Once the answers have been computed from the user sample, they need to be ranked in

order to either be returned sorted to the user that posed the query, or to select only the

k most promising candidates, i.e., the top-k. To do this, we introduce a novel ranking

function that is a linear combination of two scores, namely, the structural similarity

score S based on the d-neighborhood and the amount of information as provided by the

Personalized PageRank, which indicates the importance of a label in the graph. The

score of each answer is computed by using the above two parameters to compare the

answer to the user sample.
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Most node similarity measures proposed in the literature are based on the concept of

graph similarity and isomorphism. This is the case for Graph Edit Distance [GXTL10],

which is computed with a reduction to graph isomorphism, and is therefore inapplica-

ble to our problem, due to its high time complexity. A different method is proposed

in [KLY+11] and is based on a vectorial representation of nodes. This idea seems suitable

for our settings, thus we extended it in order to capture the differences among nodes

that emerge when taking into account the edge-labels of the neighbors. We also embed

distance information aiming at giving different weights to nodes based on their distance

from the sample. Thus, for every node n we build a vector containing a value for every

label ` ∈ L in the graph, and we compute this score as

σ(n, `) =
d∑
i=1

I(`)|Wn,`,i|
i2

Given the vectorial representation of two nodes, we compute the node similarity S using a

metric for vectors, such as the Jaccard, euclidean distance or cosine similarity. Note that

our vectorial representation contains already the computed score σ. In our experiments

we use cosine similarity but any other similarity metrics can also be used. Therefore,

the structural similarity between a node ns of the user sample and any matching node

n is computed as follows:

S(ns, n) =

∑
`∈L

σ(ns, `)σ(n, `)√∑
`∈L

σ(ns, `)2

√∑
`∈L

σ(n, `)2

The structural similarity above does not take into account the proximity measure of

the results with respect to the user sample. Therefore, we consider a linear combina-

tion, parametrized by λ, between the node similarity (structural) and the Personalized

PageRank (proximity) as follows.

ρ(ns, n) = λS(ns, n) + (1− λ)v[n] (5.5)

where v[n] is the APPV defined in Section 5.5.3.2.
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This score is then averaged over the number of nodes matching the user sample nodes

in the similarity relation R and summed to the individual score for each node in the

sample.

ρ(S,R) =
∑
ns∈Ns

(∑
n∈R(ns) ρ(ns, n)

|R(ns)|

)
(5.6)

Note that the choice of λ in Equation 5.5 is data dependent. A value λ close to 1

favors results that are mostly similar to the neighbors of the user sample nodes. On the

other hand, a value close to 0 will take into account only solutions that are close to the

original query. For this reason, we can see λ as a diversification parameter that depends

on the user and on the data. This is also the approach taken by most diversification

models [AGHI09].

5.7 Experimental Evaluation

In this section, we experimentally validate our solution by comparing it to other ap-

proaches, and measuring its performance. We discuss differences between isomorphism

and strong simulation.

Queries: We extracted 100 real queries from the AOL query log, and manually mapped

them to the knowledge base3. These queries are highly heterogeneous in terms of size

and frequency of edge labels. Each query has 2 to 11 edges and diameter up to 8, while

the average diameter is 2.8, in line with any real world bulk of queries [GFMPdlF11].

In order to test our algorithms with different query shapes, a query can contain cycles,

paths, trees or complete graphs.

Datasets: We downloaded the full Freebase knowledge-base [Goo14] in April 2014,

obtaining a connected graph of 76M nodes and 314M edges, with about 4.5K distinct

edge types. We refer to this dataset as Real. To the best of our knowledge this is

the biggest graph used in this context in the literature, and the first time that the

entire Freebase graph is used for this purpose. While related works [KLY+11, YYH04,

WDT+12] use a small part of Freebase, we explored solutions that scale to its full size.

3List of queries: http://www.mi.parisdescartes.fr/~themisp/exemplarquery-ext/

http://www.mi.parisdescartes.fr/~themisp/exemplarquery-ext/
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Based on Real we generated 10 synthetic datasets, embedding 20 samples of the test

set in different points of the graph: we performed a breadth first traversal from a fixed

starting node and randomly chose to embed an answer according to a distribution that

decreases exponentially with the distance from the starting node (thus modeling answers

at varying distances). For the scalability tests, we generated graphs having 0.5M, 1M,

5M, 10M and 20M nodes, and 1K embedded queries. We denote them as GSize-x, where

x is the graph size. Similarly, we generated graphs with 10M nodes, and 0.5K, 1K, 2K,

5K and 10K embedded answers. We denote them as QSize-x, where x is the number of

generated answers.

Experimental Setup: We experimentally evaluate the impact of the parameter d on

the running time (see Section 5.7.3). We notice that d = 2 is a good choice since any

larger value does not significantly reduce the time, while requiring more space to store

the d-neighborhood. We observe that λ = 0.3 (see Section 5.6) is a good compromise for

retrieving diverse and qualitative results. In Section 5.7.4, we study the effect of varying

the threshold parameter τ (see Section 5.5.3.2), for which the default value is 0.003. All

the reported results are averages over 5 consecutive runs. We implemented our solution

in Java 1.8, and ran the experiments on a i686 Intel Xeon E52440 2.40GH machine with

12 Cores in hyper-treading and 188Gb RAM, over Linux kernel v3.13.0. The graphs are

loaded into main memory using our graph library available under open source license4.

Implemented Algorithms: Apart from FastXQ, ApFastXQ, FastXQSim and Ap-

FastXQSim, we implemented three additional algorithms from related works:

QueryReformulation: An algorithm that produces query reformulations by mining ses-

sions from query logs in a term-level fashion [WZ08]. The model is trained on the AOL

query log and the suggestions are based on our query test set.

EQ-Graph: Entity-query graph is a model that computes serendipitous suggestions start-

ing from entity mentions in a page [BDFMWB13]. For our queries to work in this setting,

we associated to each node the corresponding Wikipedia page (or the best Wikipedia

4https://github.com/mutandon/Grava

https://github.com/mutandon/Grava
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page that represents the node). The model is trained on a big query log from the Yahoo!

Search Engine.

NeMa: This algorithm [KWAY13], and other previous works, are based on the assump-

tion that there exists a truly small set of correct answers to a graph query, which is

not true in our case. Therefore, we implemented their technique taking into account

edge label matches instead of node matches. The authors kindly provided us a C++

implementation (compiled using gcc v4.4.3).

Summary of Results: Our user studies demonstrate that 92% of the users exemplar

queries are relevant and useful for search tasks, and that existing approaches are not

able to provide effective solutions for our problem, while our method identifies mean-

ingful results with 81% precision. We observe that the IterativePruning Algorithm

saves on average 30% time resulting in a pruned graph 80% smaller, with even higher

improvements when we choose starting nodes with low selectivity. More than 50% of

the queries take less than 1 second for τ ≥ 0.003. With smaller τ a small portion of

queries takes more than 10s. The set of results measuring performance demonstrate the

scalability of our approach to the largest knowledge-graph available in the field (76M

nodes, 312M edges), while maintaining interactive response times. Finally, we witness

that although strong simulation runs slower than isomorphism, it retrieves 34% more

nodes (i.e., entities).

5.7.1 Usefulness

In order to assess the quality of the proposed solution, we conducted the following user

study. We asked 94 users (uniformly distributed with respect to education level, age

and country) to evaluate our system. For each query in the test set, we provided an

explanation of the topic, the query intention, and our answer set with the top-10 results

provided by our ranking function. We asked each user to rate each result as irrelevant,

weakly related, or very related with respect to the topic and the expressed query intention.

Each user evaluated between 2 to 10 queries (on average 8). The users provided 4540

marks in total, shown in Figure 5.5: 81% of our results are marked as relevant (weakly or

strongly) and only 19% of them are not considered relevant suggestions. Out of the 427

suggestions we produced, 172 (i.e., 40%) are judged highly relevant by more than 50% of
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the users. Note also that each exemplar query contains at least one relevant (weakly or

strongly) result for 99% of the users. Moreover, we ask each user to express her opinion

with respect to (a) the idea of using examples as a search paradigm, (b) whether she

already had the need of searching using exemplar queries, and (c) the usefulness of the

system in general. As shown in Figure 5.6, 92% of the users considers the exemplar

queries paradigm and the overall system useful for retrieving additional and relevant

information. Moreover, 62% of the people interviewed declared that they had already

had the need to perform this kind of exemplar queries search in the past (but there was

no system to support them).
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5.7.2 Comparison to Previous Work

In the following we compare our method against two different approaches: (a) algorithms

that produce related queries, and (b) an approximate query answering technique for

graphs.
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Related Queries: We implemented and compared with the methods QueryReformula-

tion and EQ-Graph mentioned earlier, through a user study similar to the one presented

in Section 5.7.1. For each query in the test set, we presented to users three groups

of suggestions: one produced with our method, and one produced by each one of the

two methods above. We then asked users which of the three groups of suggestions they

considered the most helpful for each query task.

The results, depicted in Figure 5.7, show that in 64% of the cases the users preferred our

solution to the other two. Furthermore, for 78% of the queries that received more than

2 marks, the majority of users preferred our solution. In 18% of the cases none of the

proposed solutions were satisfying, neither the answers proposed by our model nor those

produced by the other algorithms. Overall, the two competing approaches together was

preferred by less than 30% of the users, none of them choosing the two approaches in

all the queries.
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Figure 5.8: Time vs Size of graph with NeMa and our approach (Real dataset).

Approximate Query Answering on Graphs: We now present the comparison be-

tween our approach and NeMa [KWAY13], a state of the art technique for answering

approximate queries on graphs. Since on Real a single query takes NeMa more than 13

hours to process, we test NeMa on graphs obtained after applying RelevantNeigh-

borhood on our query test set, thus giving it an advantage. The results in Figure 5.8

show that NeMa is almost three orders of magnitude slower than our algorithm. This

suggests that a query answering technique for graphs is not applicable to our setting.

We also provide anecdotal evidence comparing the top-5 results from our method and

NeMa. Tables 5.1a and 5.2a show the top-5 results of NeMa for two different exemplar

queries compared with the results of our algorithm, shown in Tables 5.1b and 5.2b (for
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Google - YouTube - Menlo Park
Yahoo! - LAUNCH Media - Stanford Univ.
Yahoo! - Musicmatch - Stanford Univ.
Yahoo! - Right Media - Stanford Univ.
Yahoo! - Inktomi Corporation - Stanford Univ.

(a) Top-5 results for NeMa.

Google - AdMob - Menlo Park
Google - DoubleClick - Menlo Park

Yahoo! - del.icio.us - Santa Clara
Microsoft - Powerset - Albuquerque

A&E Television - Lifetime Ent. Services

(b) Results for exemplar query with isomorphism.

Google - AdMob - Youtube [...] - Menlo Park
YouTube - Next New Networks - San Mateo

Yahoo! - Inktomi - Del.icio.us, Inc. [...] - Santa Clara
AOL - Sphere - Netscape - USA

John Wiley & Sons - InfoPOEMs - New York City

(c) Results for exemplar query with strong simulation.

Table 5.1: Comparison of results for query “Google - YouTube - Menlo Park”.

our algorithm, we report the top-2 results containing query terms, the top-2 results not

containing query terms, and for reference, the lowest ranking result). We observe that

if the structure of the exemplar query is complex (e.g., it contains cycles), NeMa fails

to find the correct answers, mapping different query nodes on the same graph node as

depicted in Table 5.2a-row 3, where the same graph node,“Oral Transmission”, is used

twice. Actually, 87% of the answers produced by NeMa are not isomorphic to the test

queries, producing results that contain the same node more than once, and thus, leading

to poor results. Furthermore, the top answers proposed by NeMa for Q2 contain dis-

eases that are not sexually transmitted (e.g., diabetes that is ranked 2nd), a situation

that does not occur with our algorithm. For strong simulation, Tables 5.1c and 5.2c

report the top-2 results containing query terms, the top-2 results not containing query

terms and the result with the lowest ranking score. Note that, with strong simulation,

some answers include more nodes than those in the query. For instance, the first result

in Table 5.1c lists all the acquisitions made by Google5 and finally, Menlo Park. The

maximality enforced by strong simulation compresses several isomorphic answers in one

single answer. Similarly, the third result (that does not contain any node of the query),

5For sake of presentation we do not report the complete list of entities in the answer.
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Water purification - Fecal-oral route - Cholera
Smoking cessation - Vector - Diabetes mellitus
Oral Transm. - Cytomegalovirus - Oral Transm.
Oral Transm. - Cerebral palsy - Cytomegalovirus
Water purification - Fecal-oral route - Cholera

(a) Top-5 results for NeMa.

Sex - HIV infection - Safe sex
Sex - HIV infection - Sexual abstinence

Safe sex - Vertical transmission - Hepatitis B
Safe sex - Vertical transmission - Syphilis

Hand washing - Droplet Contact - Cold

(b) Results for exemplar query with isomorphism.

Sex - Condom - HIV infection - Safe Sex [...] - Candidiasis
Sex - Condom - Unsafe Sex - [...] - Pelvic inflammation

Vaccine - Poor Hygiene - Immunodeficiency [...] - Influenza
Contact with infected person - Aciclovir [...] - Chickenpox

DPT vaccine - Child age - Droplet Contact [...] - Pertussis

(c) Results for exemplar query with strong simulation.

Table 5.2: Comparison of results for query “Condom - Sex - HIV infection”.

represents all the acquisitions by Yahoo and the Santa Clara node. As opposed to iso-

morphism, strong simulation correctly groups answers having the same root node (e.g.

Yahoo). Table 5.2c shows how the maximality condition bounds the size of the answers.

Indeed, all the results that are in the first two rows of Table 5.2b are condensed in the

first result in Table 5.2c that represents all the risk factors and prevention methods for

sexually transmitted infections. We observe that some nodes are still repeated among

different results, concluding that strong simulation does not necessarily collapse all the

redundant information in one single answer. Nonetheless, with an appropriate presenta-

tion of the results we already obtain good clusters of answers. Note that Table 5.2c-rows

3,4 presents relevant answers about other contagious infections not related to sex. These

results are also present in the isomorphic answers in low ranked position.

5.7.3 Pruning Effectiveness

In the next experiments we study the impact of pruning on query time and the effect of

selectivity on pruning time.
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Pruning impact: We perform a batch of experiments using repeatedly the query

test set, comparing the query time with and without applying IterativePruning, and

depict the results in Figure 5.9. The parameter d of IterativePruning (Section 5.5.3.1)

determines how large is the representation of the neighborhood on each knowledge-graph

node and it is compared to the similar representation for each node of the query. By

definition, a higher value of d causes a more aggressive pruning of the search space. (We

note that, as discussed in Section 5.5.3.1, our pruning technique does not modify the

quality of the final result set, neither does it discard any relevant result.) Nonetheless,

any value for d larger than the query diameter has no impact on pruning power as

highlighted in Theorem 5.9. Figure 5.11 validates the latter claim showing that the

benefit with d = 3 minimal. This result shows that, in general, the graph structures are

not captured by the d−neighborhood of a node for edges at distance 3 or more.
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Overall, applying pruning results in 3% to 99% less query time. Furthermore, we observe

that for 17% of the queries, pruning does not affect query time. We notice that pruning

is more effective when the frequencies of the edge labels of the sample in the graph are

high, since a large part of the graph is eliminated with fewer operations. This observation

allows us to run the IterativePruning on demand. On average, IterativePruning

reduces query time by 30% and the graph size by 80% (by removing non-matching

edges). This entire batch of experiments takes 38 minutes to execute without pruning

and 17 minutes with pruning, saving 55% of the total time.

Pruning Selectivity: We study the performance of pruning in terms of time as a

function of the selectivity of the starting node in the sample. Remember that low

selectivity means better pruning (see Equation 5.1). We run experiments measuring the

correlation between time and selectivity, selecting the different nodes of the sample as

starting nodes. The results show a positive correlation of 0.57 between selectivity and

time performance, which is statistically significant at the 0.01 significance level. We

conclude that starting from a low selective node positively impacts the pruning time,

with savings up to 87%.

5.7.4 Calibrating RelevantNeighborhood

We study the effect of τ on RelevantNeighborhood in terms of time and quality

of the results. Parameter τ of RelevantNeighborhood determines the degree of ap-

proximation of the estimation of PPV of each node and is directly related to the number

of answers retrieved and to the running time. In Figure 5.16a and 5.16b, we plot the size

of the neighborhoods (counts of vertices and edges from the graph) visited for increasing

values of τ (from 0.001 to 0.01), and the number of answers retrieved in each case. We

refer to visited vertices/edges as the vertices/edges retrieved by our RelevantNeigh-

borhood algorithm. Relevant answers are found in the graph containing only such

nodes and edges.

We witness an exponential decay in the number of visited nodes and edges as τ increases,

which is directly proportional to the number of answers retrieved. This is mirrored, in

Figure 5.14a and 5.14b by a decrease of the running time needed to retrieve the relevant

neighborhood and to prune it. In line with this, Figure 5.15a and Figure 5.15b show

that with larger values of τ the total time needed to compute the results decreases
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in the same manner. Thus, with larger neighborhood we expect to find, as we do,

more answers to the query, but they will also require more time to be computed. We

experience a discrepancy in the number of answers retrieved with isomorphism and with

strong simulation. This discrepancy apparently favors isomorphism, but this is not the

correct analysis. Conversely, answer graphs retrieved with strong simulation are usually

34% larger than graphs retrieved with isomorphism due to the maximality property of

strong simulation. Indeed, a node in the user sample could be matched to multiple nodes

at the same time, ideally collapsing multiple distinct isomorphic answers. We expand

over this issue in Section 5.7.6

τ P@1 P@5 P@10 P@50 P@100

0.002 1 0.99 0.99 0.85 0.75

0.003 1 0.97 0.94 0.80 0.73

0.004 1 0.95 0.93 0.71 0.60

0.005 1 0.94 0.92 0.66 0.56

Table 5.3: Precision of ApFastXQ varying τ

We now evaluate the quality of the answers produced by ApFastXQ, by measuring

precision at 1,5,10, 50,100, where precision at k (abbreviated P@k) is defined as the

fraction of results produced by FastXQ that are also produced by ApFastXQ in the

first k positions. Table 5.3 shows that overall precision is high, especially for the top

positions. Any value of τ between 0.003 and 0.005 is a reasonable choice, leading to

high precision and an average query time of less than 2.4 seconds. Evidently, the choice

of this parameter depends on the application. In a biological setting, where precision

is more important than time, τ = 0.002 could be a reasonable choice, producing very

precise answers in about 10 seconds. On the web, where timely answers are needed,

τ = 0.005 can still offer precise answers in the top positions, in less than 1 second. In

our experiments, we use τ = 0.003. When analyzing the performance of our approach,

we measure the correlation between the search time with isomorphism and a number

of query characteristics, namely diameter, density, number of repeated edge labels, and

average label frequency. With isomorphism queries featuring a large number of repeated

edge labels positively correlates with the running time and the correlation is statistically

significant with p-value < 0.001. The same observation does not hold for strong simula-

tion. We observe a weak correlation, with p-value < 0.01, between search time and the

average number of times a label appears in the query.
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Figure 5.12: Scalability experiments varying number of answers and number of nodes
in the graph.

5.7.5 Scalability

We present the scalability experiments as a function of the number of answers and

the size of the database. In Figure 5.12a we show the number of visited edges and

nodes, as well as the number of results when the number of embedded answers increase

(recall that QSize-x contains exactly x answers for each exemplar query). The time

of ApFastXQ is the sum of the times shown in Figure 5.12a. We observe that using

RelevantNeighborhood as the number of answers increases from 60 to 100, the

number of explored nodes remains almost the same. This behavior is expected, since

RelevantNeighborhood does not explore more nodes as long as the structure of the

graph remains almost unchanged, but it finds more answers in the same subgraph.

Conversely, if the size of the dataset increases and the number of answers is fixed (Fig-

ures 5.12c and 5.12d) it is less likely to find answers close to the exemplar query. As

expected, since the number of nodes explored is almost the same (see Figure 5.12c) the
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time is constant.This supports our design choice, since changes in the peripheral part of

the graph do not affect the APPV algorithm.

5.7.6 Remarks on Isomorphism and Simulation

We discuss the principal differences between ApFastXQ and ApFastXQSim. Recall

that ApFastXQ differs from ApFastXQSim only in the similarity function adopted.

Consequently, the time required by the RelevantNeighborhood and IterativePrun-

ing algorithms is always the same, hence it is reported only once in Figure 5.14a

and 5.14b. Therefore, the running time in Figure 5.15a is affected by the difference

in computation between the two algorithms. In particular, we notice that the time

required to compute the set of maximal d-graphs is much higher than that for isomor-

phism for very few large and complex queries. This becomes particularly evident in

Figure 5.15b that shows roughly the same median running time for the two approaches.

As previously noticed, there is a big difference in the number of answers retrieved (see

Figure 5.16a and 5.16b). This is not only a natural consequence of the strong simulation,

but is also a desirable effect, because all the results are simply grouped in more large

answers. Figure 5.13 validates this claim, showing that strong simulation retrieves from

22% (τ = 0.01) to 48% (τ = 0.0003) more nodes than isomorphism. The figure reports

the average increment as a function of τ and is obtained by counting the difference in the

number of nodes in both answer sets. As expected, the answer set retrieved with strong

simulation is a superset of the one retrieved by isomorphism. We conclude that answering

exemplar queries with either strong simulation or isomorphism is equivalent in terms of

performance and that strong simulation captures more answers with an acceptable slack
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in terms of matching quality. Hence, the choice of the similarity function depends on

the user requirements, but, in both cases, the semantics of the query is preserved.
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Figure 5.14: Study of the RelevantNeighborhood and IterativePruning time
as a function of the threshold τ , comparing Isomorphism and Simulation with the

ApFastXQ/ApFastXQSim Algorithms.

0.01	  

0.1	  

1	  

10	  

100	  

1000	  

0	   0.005	   0.01	  

Ti
m
e	  
(s
)	  

τ	  

Total	  Time	  SIM	  
Total	  Time	  ISO	  

(a) Average total time.

0.01	  

0.1	  

1	  

10	  

100	  

1000	  

0	   0.005	   0.01	  

Ti
m
e	  
(s
)	  

τ	  

Total	  Time	  SIM	  

Total	  Time	  ISO	  

(b) Median total time.

Figure 5.15: Study of the total time as a function of the threshold τ , comparing
Isomorphism and Simulation with the ApFastXQ/ApFastXQSim Algorithms.
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Chapter 6

Conclusions

Query answering is the process of retrieving objects from a database satisfying a set of

conditions expressed in a query. Since the number of users accessing data in any format,

either online or in standalone applications, is constantly increasing the design of search

systems has to reflect the user needs. This becomes critical with novice users, i.e., users

with little or no experience with computers, because they require far more support from

the system than practiced users. Novice users are difficult customers since they use a

restrict vocabulary when formulating the query, they require correct and timely answers,

and they need a direction from the system.

For these challenges this dissertation initiated a study. As such, we proposed methods

to cope with very common problems in query answering: (1) the empty answer problem,

in which the user provides too restrictive queries and the system returns no answers; (2)

the information overload problem, which deals with the opposite problem of having a

generic query for which a large number of results exists; and (3) the inexpressible query

problem, in which the user cannot correctly express the query conditions to return the

answer she is looking for. For each of these problems we proposed efficient solutions

that focus on specific aspects of the process. We remark the main findings in the next

sections and highlight the contributions and future extensions that appear as interesting

research challenges.

137
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6.1 Key Contributions

Database usability with an attention to novice users is an important aspect that needs

better consideration. This dissertation makes three significant contributions in this

area by proposing interactive approaches for the empty answer problem [MMBR+13,

MMBR+15, MMBR+14], methods for coping with the information overload problem

in graph databases [MBG15], and, finally, the exploration of exemplar queries as a

solution for users struggling with inexpressible queries [MLVP14a, MLVP15, MLVP14b,

LMP+14]. For each problem we provide algorithmic solutions, thorough experimental

assessment, and open-source code1. We also built two system prototypes [MMBR+14,

MLVP14b]. The details of each contribution are summarized in the following.

6.1.1 Empty Answer

We proposed a novel and principled interactive approach for queries that return no an-

swers by suggesting relaxations to achieve a variety of optimization goals. The proposed

approach follows a broad, optimization-based, probabilistic framework which takes into

consideration user preferences. This is different from prior query reformulation ap-

proaches that are largely non-interactive, and/or do not support such a broad range of

optimization goals. The holistic framework is adapted to return top-k reformulations

at each step and to include a cardinality constraint. Moreover, any database can be

translated into boolean and the same techniques can be applied.

We developed optimal and approximate solutions to the problem, demonstrating how

our framework can be instantiated using different optimization goals. The solution

materializes a tree together with the possible relaxations and the yes/no answers from

the user, and computes a cost for each choice. In this way, at any point in the tree, the

best solution that has the optimal cost can be proposed to the user.

The framework forms the basis of our IQR system prototype [MMBR+14]. We have ex-

perimentally evaluated the efficiency and effectiveness of our approach on real and syn-

thetic datasets. We showed that our approach outperforms the previous non-interactive

approaches in terms of user experience and provides timely answers on real-size datasets.

1Available upon request
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6.1.2 Information overload

We studied the problem of query reformulation in graph databases. Graph databases are

set of labeled graphs that conveniently model several data, such as chemical compounds,

workflows, and ego-networks, over which a novice user is hardly able to search. Given a

graph database and a query graph, the goal is to produce a set of query reformulations,

i.e., queries that are more specific than the original query and, as such, capture a subset

of the results. The reformulations represent a good abstract summary of the results as

well as a useful guidance for refining the search.

We formalized the problem of finding a set of k reformulations of the input query that

maximize a linear combination of coverage and diversity. We characterized its hardness

and showed that it allows a greedy approximate algorithm with quality guarantees. We

also devised a principled strategy to efficiently solve the most critical step of the greedy

algorithm, i.e., finding the reformulation maximizing the marginal potential gain.

We experimentally validated our approaches on both real-world and synthetic databases

attesting that our method runs in real-time, scales well on large databases, and provides

high-quality results.

6.1.3 Inexpressible queries

Inexpressible queries are one of the most subtle obstacles for novice users who need

easy ways to retrieve the data. For this issue, we introduced and defined exemplar

queries, a novel query paradigm, and described how it can naturally be applied to graph

data models. The exemplar queries paradigm treats the user input as an example of

the intended results. This paradigm is based on the notion of similarity: an object

belongs to the query answers if it is similar enough to the given user example. We

formalized the similarity in two different ways, namely subgraph isomorphism and strong

simulation. Subgraph isomorphism finds exact matches between the query and the

graph, while strong simulation admits matches that preserve the same edge-label order

but having different shapes with respect to the query. The two similarities convey issues

and advantages and are used in different scenarios: isomorphism requires that the user

knows exactly the example, while simulation introduces some degree of freedom.
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We proposed an exact solution based on an effective and theoretically sound pruning

technique, alongside an efficient approximation algorithm based on personalized PageR-

ank. We also proved that strong-simulation algorithm can be adapted to our case ex-

ploiting a structure called expanded graph.

We evaluated our approach in terms of efficiency and effectiveness using Freebase, one

of the biggest knowledge graphs available. This, as far as our knowledge goes, is the

first time that Freebase is used in its entirety in the literature. We coupled our results

with a user study, confirming the efficiency and usefulness of the proposed system.

6.2 Immediate Extensions

The problems presented in this dissertation have several extensions we wish to study in

more detail. Possible extensions include enriching the methods to work on different data

models. While this is a matter of representation and many methods to translate one

format to another already exist, we would like to concentrate on fundamental questions

related to database usability for novice users. In what follows, we discuss the most

promising of these extensions.

6.2.1 Range and disjunctive queries

The empty answer framework deals with conjunctive queries, namely queries in which the

conditions must be all satisfied at the same time. Conjunctive queries do not represent

the entirety of queries that a relational database can ingest. More specifically, disjunctive

queries and range conditions (i.e., conditions with >,<,≤,≥) are commonly used to

specify more flexible constraints and retrieve more answers. Dealing with disjunctive

queries requires a rigorous design, since the relaxation tree we propose is based on the

assumption that removing one condition would result in a more generic query. This does

not hold for disjunctive queries. The relaxation tree can be adapted to accept range and

disjunctive queries by employing skyline queries and queries with the minimal shift from

the user query [CJ09, MK09]. Therefore, instead of proposing a single relaxation, many

conditions can be relaxed in a single step.
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6.2.2 Query reformulation in graphs

Another interesting direction is the exploration of interactive approaches for the empty

answer problem in graphs. We argue in Chapter 3 that the adaptation of existing

approaches for query reformulation in graphs is not trivial. A query in a graph leads to

an empty answer if it does not match any structure of the database. A relaxed query

is therefore a subgraph of the user query. Finding such relaxations requires checking

for isomorphic structures and, as such, is an NP-hard problem. To the best of our

knowledge, the empty answer problem in graphs has not been studied yet. Indeed,

existing solutions do not directly tackle this problem, focusing on optimizing the query

answering process instead of progressively proposing more specific queries [YCHY08,

YM13].

The corresponding problem of query reformulation has been studied, in this dissertation,

for graph databases. The extension of this work to big graphs, such as knowledge graphs

is problematic, because big graphs, conversely to graph databases, do not limit the size

of the reformulations (or the limit is the entire graph). The current query reformulation

solution can be applied to big graphs only considering neighborhood graphs of each

node, i.e., graphs with nodes and edges at a fixed distance from a node. The latter

solution is far from being perfect, since interesting patterns may not be found within

a fixed distance from a node. A more promising solution comprises correlation based

methods [KCN07], in which a set of interesting reformulations are chosen from those

that are least correlated one another.

6.2.3 User preferences

While the empty answer framework natively makes use of user preferences, this infor-

mation is not present in graph query reformulation and exemplar queries. These sources

have been successfully employed in many fields [BBCV11, MPV13], for they convey

valuable information about users and their habits. The exploitation of this additional

information is the basis of personalized systems and optimized ranking models. Integrat-

ing such valuable sources is a challenging task, since the solutions may not scale with the

size of the database and the objective functions have to adapt accordingly. The problem

is then finding solutions that satisfy the user in terms of interests and preferences and
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this is not an easy task. In the design of usable systems preferences should be taken into

consideration.

6.2.4 Multiple exemplar queries

Multiple queries optimization has been studied extensively for performance issues in

relational databases [Sel88, SG90, CM86]. However, the exemplar queries context is

completely different: in the earlier works, the results for a single, or multiple queries do

not change, while in exemplar queries the results become more specific as the number

of example queries increases. Moreover, the straightforward solution that computes the

intersection between the result sets is not directly applicable when there is no common

edge labels in the input samples. A recent study computes the relevant neighborhood

of the samples in order to find intersections among them [JKL+14]. However, this does

not provide a clear semantics for multiple exemplar queries, thus the problem needs to

be investigated further.

6.3 Open Problems

This dissertation opens important research questions for the database community. Ex-

emplar queries, interactivity, and the structured queries study, represent the tip of the

database usability iceberg. Since there is a significant amount of work that remains

to be done, in this section we highlight the main lines of research departing from this

dissertation.

6.3.1 Probabilistic databases

The methods proposed in this dissertation do not deal with probabilistic databases.

Probabilistic databases are flexible data models consisting of uncertain facts. This

means that any fact in the database is associated with an existence probability. This

data model comes into play when facts are extracted from sources that introduce er-

rors, such as sensors, and data mining processes. However, flexibility comes at a price:

while in deterministic databases the database has one possible instance, a probabilistic

database has an exponential number of interpretations (or worlds) since any edge may
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or may not exist with some probability. The proposed techniques are designed for de-

terministic databases, but fail to achieve the same goals with probabilistic databases.

Query answering in probabilistic databases has to be completely redesigned [DS07], not

only for time performance, but also because the semantics of the query and the matching

function change as well.

The exploration of methods for novice users in probabilistic databases is a fresh, yet

intriguing challenge. Exemplar queries, for instance, could be studied in uncertain graphs

that naturally model protein interaction networks or knowledge graphs extracted from

documents corpora. Query reformulation as well has to be rebuilt from scratch to work

on probabilistic databases. Uncertain graphs have recently attracted the attention of the

database community [BGKV14, PBGK10], but the usability of such systems is limited

to few practitioners.

6.3.2 Exemplar Query Search

In Chapter 5 we presented our initial work about exemplar queries, where we show the

importance of exemplar queries in the search task. Exemplar queries should become

part of a research work that guides the user through all the steps, from the formulation

of the query to the presentation of the results. Given a keyword query an exemplar

query-enabled system should first identify if the user is asking an exemplar query. This

necessitates a study of machine learning techniques to predict the user need. Second, the

query is evaluated over the database using traditional keyword answering techniques,

such as [PHIW12, KRS+09]. In this phase multiple possible interpretations can be

found. This ambiguity needs to be solved in some way, finding the best answers even

when the query presents uncertainty. Third, the answers of the exemplar query are

retrieved using our approach. However, multiple data sources should be employed at

the same time, in order to retrieve more answers and to acquire transversal knowledge.

While we considered only a single knowledge graph, searching a number of data sources

at the same time introduces another level of complexity. Answering queries on multiple

data sources is an interesting direction to study and deals with the traditional data

integration problem [BLN86]. Finally, the results are cleaned, ranked and presented to

the user. The overall process includes a number of research challenges that need to be

investigated further.
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ability using small display devices. In Proceedings of the 25th annual



Bibliography 149

ACM international conference on Design of communication, pages 263–

268. ACM, 2007.

[Dat83] C. J. Date. Database usability. SIGMOD Rec., 13(4):1–1, May 1983.

[DP12] Marina Drosou and Evaggelia Pitoura. Disc diversity: result diversifi-

cation based on dissimilarity and coverage. Proceedings of the VLDB

Endowment, 6(1):13–24, 2012.

[DS07] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic

databases. The VLDB Journal, 16(4):523–544, 2007.

[FKM00] Daniela Florescu, Donald Kossmann, and Ioana Manolescu. Integrat-

ing keyword search into xml query processing. Computer Networks,

33(1):119–135, 2000.

[FLM+10] Wenfei Fan, Jianzhong Li, Shuai Ma, Hongzhi Wang, and Yinghui Wu.

Graph homomorphism revisited for graph matching. Proceedings of the

VLDB Endowment, 3(1-2):1161–1172, 2010.

[Fri14] Thomas N Friemel. The digital divide has grown old: Determi-

nants of a digital divide among seniors. new media & society, page

1461444814538648, 2014.

[FVS+09] Miquel Ferrer, Ernest Valveny, Francesc Serratosa, Itziar Bardaj́ı, and

Horst Bunke. Graph-based k-means clustering: A comparison of the set

median versus the generalized median graph. In Computer Analysis of

Images and Patterns, pages 342–350. Springer, 2009.

[GFMPdlF11] Mario Arias Gallego, Javier D Fernández, Miguel A Mart́ınez-Prieto,

and Pablo de la Fuente. An empirical study of real-world sparql queries.

In 1st International Workshop on Usage Analysis and the Web of Data

(USEWOD2011) at the 20th International World Wide Web Conference

(WWW 2011), Hydebarabad, India, 2011.

[Goo14] Google. Freebase data dumps. https://developers.google.com/

freebase/data, 2014.

[GS91] S. Gauch and J.B. Smith. Search improvement via automatic query

reformulation. TOIS, 9(3):249–280, 1991.

https://developers.google.com/freebase/data
https://developers.google.com/freebase/data


Bibliography 150

[GS93] Susan Gauch and John B. Smith. An expert system for automatic query

reformulation. JASIS, 44(3):124–136, 1993.

[GSBS03] Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram.

Xrank: Ranked keyword search over xml documents. In Proceedings of

the 2003 ACM SIGMOD international conference on Management of

data, pages 16–27. ACM, 2003.

[GXTL10] Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph

edit distance. Pattern Analysis and applications, 13(1):113–129, 2010.

[H+97] Dorit S Hochbaum et al. Approximation algorithms for NP-hard prob-

lems, volume 20. PWS publishing company Boston, 1997.

[HCY+12] Xin Huang, Hong Cheng, Jiong Yang, Jeffery Xu Yu, Hongliang Fei,

and Jun Huan. Semi-supervised clustering of graph objects: a subgraph

mining approach. In Database Systems for Advanced Applications, pages

197–212. Springer, 2012.

[HE09] Jeff Huang and Efthimis N. Efthimiadis. Analyzing and evaluating query

reformulation strategies in web search logs. In CIKM, pages 77–86, 2009.

[HHI10] Vagelis Hristidis, Yuheng Hu, and Panagiotis G. Ipeirotis. Ranked

queries over sources with boolean query interfaces without ranking sup-

port. In ICDE, pages 872–875, 2010.

[HWPY04] Jun Huan, Wei Wang, Jan Prins, and Jiong Yang. Spin: mining maximal

frequent subgraphs from graph databases. In Proceedings of the tenth

ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 581–586. ACM, 2004.

[HWYY07] Hao He, Haixun Wang, Jun Yang, and Philip S. Yu. Blinks: Ranked

keyword searches on graphs. In Proceedings of the 2007 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’07, pages

305–316, New York, NY, USA, 2007. ACM.

[IWM00] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. An apriori-

based algorithm for mining frequent substructures from graph data.



Bibliography 151

In Principles of Data Mining and Knowledge Discovery, pages 13–23.

Springer, 2000.

[Jan07] Dietmar Jannach. Techniques for fast query relaxation in content-based

recommender systems. KI’06: Advances in AI, pages 49–63, 2007.

[JCE+07] HV Jagadish, Adriane Chapman, Aaron Elkiss, Magesh Jayapandian,

Yunyao Li, Arnab Nandi, and Cong Yu. Making database systems us-

able. In Proceedings of the 2007 ACM SIGMOD international conference

on Management of data, pages 13–24. ACM, 2007.

[JKL+13] Nandish Jayaram, Arijit Khan, Chengkai Li, Xifeng Yan, and Ramez

Elmasri. Querying knowledge graphs by example entity tuples. arXiv

preprint arXiv:1311.2100, 2013.

[JKL+14] Nandish Jayaram, Arijit Khan, Chengkai Li, Xifeng Yan, and Ramez

Elmasri. Towards a query-by-example system for knowledge graphs. In

Proceedings of Workshop on GRAph Data management Experiences and

Systems, pages 1–6. ACM, 2014.

[JL06] D. Jannach and J. Liegl. Conflict-directed relaxation of constraints in

content-based recommender systems. Advances in Applied AI, pages

819–829, 2006.

[Jun04] Ulrich Junker. Quickxplain: Preferred explanations and relaxations for

over-constrained problems. In AAAI, volume 4, pages 167–172, 2004.

[JW03] Glen Jeh and Jennifer Widom. Scaling personalized web search. In

Proceedings of the 12th international conference on World Wide Web,

pages 271–279. ACM, 2003.

[KA11] Mehdi Kargar and Aijun An. Keyword search in graphs: Finding r-

cliques. Proceedings of the VLDB Endowment, 4(10):681–692, 2011.

[KCN07] Yiping Ke, James Cheng, and Wilfred Ng. Correlation search in graph

databases. In Proceedings of the 13th ACM SIGKDD international con-

ference on Knowledge discovery and data mining, pages 390–399. ACM,

2007.



Bibliography 152

[KEW09] Gjergji Kasneci, Shady Elbassuoni, and Gerhard Weikum. Ming: Mining

informative entity relationship subgraphs. In Proceedings of the 18th

ACM Conference on Information and Knowledge Management, CIKM

’09, pages 1653–1656, New York, NY, USA, 2009. ACM.

[KK01] Michihiro Kuramochi and George Karypis. Frequent subgraph discov-

ery. In Data Mining, 2001. ICDM 2001, Proceedings IEEE International

Conference on, pages 313–320. IEEE, 2001.

[KLTV06] Nick Koudas, Chen Li, Anthony K. H. Tung, and Rares Vernica. Relax-

ing join and selection queries. In VLDB, pages 199–210, 2006.

[KLY+11] Arijit Khan, Nan Li, Xifeng Yan, Ziyu Guan, Supriyo Chakraborty, and

Shu Tao. Neighborhood based fast graph search in large networks. In

Proceedings of the 2011 ACM SIGMOD International Conference on

Management of data, pages 901–912. ACM, 2011.

[KRS+09] Gjergji Kasneci, Maya Ramanath, Mauro Sozio, Fabian M Suchanek,

and Gerhard Weikum. Star: Steiner-tree approximation in relationship

graphs. In Data Engineering, 2009. ICDE’09. IEEE 25th International

Conference on, pages 868–879. IEEE, 2009.

[Kun90] Hideko S Kunii. Graph data model. In Graph Data Model, pages 7–20.

Springer, 1990.

[KWAY13] Arijit Khan, Yinghui Wu, Charu C Aggarwal, and Xifeng Yan. Nema:

Fast graph search with label similarity. Proceedings of the VLDB En-

dowment, 6(3):181–192, 2013.

[LC10] Ni Lao and William W Cohen. Fast query execution for retrieval models

based on path-constrained random walks. In Proceedings of the 16th

ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 881–888. ACM, 2010.

[LIJ+15] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-

tokostas, Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey,
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