
Archive for Mathematical Logic (2023) 62:291–320
https://doi.org/10.1007/s00153-022-00835-5 Mathematical Logic

An infinitary propositional probability logic

Stefano Baratella1

Received: 18 October 2019 / Accepted: 13 June 2022 / Published online: 25 June 2022
© The Author(s) 2022

Abstract
We introduce a logic for a class of probabilistic Kripke structures that we call type
structures, as they are inspired by Harsanyi type spaces. The latter structures are
used in theoretical economics and game theory. A strong completeness theorem for
an associated infinitary propositional logic with probabilistic operators was proved by
Meier. By simplifyingMeier’s proof, we prove that our logic is strongly complete with
respect to the class of type structures. In order to do that, we define a canonical model
(in the sense of modal logics), which turns out to be a terminal object in a suitable
category. Furthermore, we extend some standardmodel-theoretic constructions to type
structures and we prove analogues of first-order results for those constructions.

Keywords Probability logic · Infinitary logic · Completeness

Mathematics Subject Classification Primary 03B48; Secondary 03C75 · 03C20 ·
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1 Introduction

In the first part of this work we provide a different and, in our opinion, simpler proof
of a completeness result originally proved in [13]. Such result concerns an infinitary
propositional probability logic that arises from the formalization of certain structures
known as Harsanyi type spaces. The latter were originally introduced and partly for-
malized in [7] to model beliefs arising from the interactions within a set of agents
and to deal with hierarchies of beliefs. Later, the study of type spaces from a logical
perspective began. In this paper we are concerned with the latter.

Among the works that investigate logical systems inspired by Harsanyi type spaces,
wemention [13, 21]. In this paperwe build on [13]. In turn,major sources of inspiration
of [13] are [8] (where aweak completeness result is established for a finitary language);
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[9] (where a universal type space is constructed in purelymeasure-theoretic terms, thus
removing the topological assumptions needed in a previous construction proposed in
[14]) and also [3] (where the relation between the semantic and the syntactic approach
in game theory and economics is discussed).

We refer the reader to the exhaustive introduction and bibliography in [13, 21] for
a thorough discussion on the import of Harsanyi type spaces in theoretical economics
and game theory, as well as for an historical account on the development of the subject.
It is also worth mentioning [15], where the authors propose a categorical approach.

Harsanyi type spaces can be formalized as probabilistic variants of Kripke struc-
tures. We deal with structures which are weaker than Harsanyi type spaces. We call
them type structures.

We stress that, with the only exception of Sect. 5 (where we take a short categorical
detour), we are concerned exclusively with the logical and model-theoretic aspects
of type structures. In short, we have a class of structures (the type structures) and we
introduce a probability logic for that class, with the aim of proving a completeness
result. Then we investigate model-theoretic properties of the proposed logic. We focus
almost exclusively on the algebraic/probabilistic content of type structures. As already
mentioned, our structures and their associated deductive system are weaker than those
in [13]. Hence, one cannot reasonably expect then to fully model key phenomena in
economic or game theory like interaction of agents, agents introspection or hierarchies
of beliefs (but, regarding introspection, see Remark 14). At this stage, our logic should
be regarded as a probability logic. We believe that it can be extended to encompass the
above mentioned phenomena. Such an extension goes beyond the scope this paper.

Going back to type structures, intuitively we may say that, in a type structure, a
family of probability measures models the beliefs of a single agent at various states of
the world. Differently from [13], who allows for multiple agents, we use a one-sorted
language, as is done in [21].

Admittedly, the current framework may look quite restrictive to readers whose
main interests are in theoretical economics or in game theory. On the other hand, the
motivations behind this paper are of logic nature, as we stated above.

Wepoint out that, in [21], Zhou refrains fromusing an infinitary language.Neverthe-
less he must allow for an infinitary deduction rule to mimic the crucial Archimedean
property (see Sect. 3 below). Eventually, Zhou gets a weak completeness theorem.
Namely, he shows that the set of logical theorems is exactly the set of logically valid
formulas in his propositional probability logic.

In [13],Meier gets strong completeness (namely, the equivalence between provabil-
ity and logical consequence) by working with an infinitary propositional probability
logic. In the first part of this work, we take inspiration from [13] and we show that
a suitable choice of an infinitary language allows for a different and, in our opinion,
simpler proof of a completeness result.

Among the differenceswith [13], wemention: 1. a different formulation of the prop-
erty of continuity at the empty set of a probability measure; 2. the use of very basic
results in probability theory (for instance, we do not need to invoke Carathéodory’s
Extension Theorem at any point); 3. the straightforward proofs of completeness (The-
orem 13 below) and of the existence of a terminal object within the category of type
structures (Sect. 5).
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The reader who is not interested in a comparison with the first part of [13] will find
this paper basically self-contained.

We begin the second part of this work with some comments on the above men-
tioned category of type structures, which is the one usually studied in the literature.
Such category apparently lacks some natural constructions. For this reason, we focus
on algebraic rather than categorical properties of type structures. More precisely, we
naturally extend products and ultraproducts of first-order structures to arbitrary fami-
lies of type structures. Among others, we prove an Upward Löwenheim-Skolem-like
theorem and, under an admittedly very strong set-theoretic assumption, a Łoś-like the-
orem. Such results hint that further model-theoretic investigations of type structures
might be of interest.

By taking inspiration from the literature, we extend the inverse limit construction
from systems of probability spaces to certain systems of type structures. Borrowing
from the literature, we also deal the direct limit of systems of probability spaces,
by pointing out the difficulties in extending such construction to systems of type
structures.

We do not know whether the above mentioned constructions have economic or
game-theoretic meaning.

Eventually, we point out that most logics are compositional, but probability is not.
The general framework that we introduce in the first part of this work seems necessary
to ensure a fruitful interplay between the logic and the probability components of the
system.

2 Formulas and structures

By recursion on n ∈ ω we define 0ג = ℵ0; n+1ג = nג2 and we let ν = (2ג)
+, the

successor cardinal of .2ג Such choice of ν will be motivated in the following.
First of all we introduce the formulas of our logic, to be named LνP . We do it in a

rather informal way: all the definitions below can be easily formalized.
The alphabet of LνP contains denumerably many propositional variables qi , i ∈ N,

and the symbol ⊥ for “falsum” (these also play the role of atomic formulas); the usual
finitary propositional connectives; the infinitary connectives

∨
and

∧; the probability
quantifiers P≥r , r ∈ Q ∩ [0, 1] ; the auxiliary symbols ( and ).

We denote by V the set of propositional variables.
The set P of probability formulas is the least set S with the following properties:

S contains the atomic formulas; S is closed under application of the finitary proposi-
tional connectives and under conjunctions and disjunctions of countable sequences of
formulas; for all ϕ ∈ S and all r ∈ Q ∩ [0, 1] , the string P≥rϕ is in S.

The restriction on the cardinality of conjunctions and disjunctions inP is a technical
requirement which is necessary to make sure that the satisfiability relation is well-
defined. See below. Each formula inP is a countable string of symbols froma countable
alphabet. It follows that |P| = .1ג

Notice that, differently from the set L0 of finitary formulas in [13], we allow for
infinitary formulas in P. This will simplify axioms, deduction rules and also most
of the proofs of the results in [13]. It should also be noted that a disavantage of
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allowing for infinitary formulas in P is that an easily computable upper bound (2ג)
for the cardinality of the canonical structure defined in Sect. 4 is higher than Meier’s
when–1ג) set I of agents is countable).

As is customary in set theory, throughout this paper initial letters of the greek
alphabet (α, β, γ, . . . ) denote ordinals.

The setF of formulas is the least set S that containsP and is closed under application
of the finitary connectives and under the following formation rule: for all α < ν and
all sequences A ∈ Sα the strings

∧
A0 . . . Aβ . . . and

∨
A0 . . . Aβ . . . , β < α, are

in S. For notational simplicity, the latter will be denoted by
∧

β<α Aβ and
∨

β<α Aβ

respectively. We also write
∧

� for the conjunction of the formulas in set �, assuming
that some well-ordering on � has been fixed. Similarly with

∨
�.

Regularity of ν and the cardinality limitation in the definition of F imply that each
formula in F is a string of length < ν.

We will use the terms P-formula and F-formula, with the obvious meaning. When
writing just “formula”, we mean “F-formula”.

In order to reduce the use of brackets, we assume that the propositional connectives
(finitary or infinitary) satisfy the same binding priority as in propositional logic, with
the probability quantifiers having the highest one.

From now on, letters r , s, t always denote rationals in the closed real unit interval.
When we write P≥rϕ, it is understood that ϕ ∈ P.

Wewrite P>rϕ as abbreviation for¬P≥1−r¬ϕ. For better readability, we will also
use the expressions P≤rϕ and P<rϕ, which can be easily defined in terms of the
primitive probability quantifier: they stand for ¬P>rϕ and ¬P≥rϕ respectively.

Next, we introduce the structures that we will deal with and their semantics. We
take inspiration from the formalization of the Harsanyi type spaces first explicitly and
completely given in [14].

Let (	,F) be a measurable space. On the family P(	,F) of probability measures
on (	,F) we consider the σ -algebra σ	,F generated by the sets of the form

{μ ∈ P(	,F) : μ(A) ≥ r}, with A ∈ F and r ∈ Q ∩ [0, 1] .

Definition 1 A type structure is a 4-tuple (	,F , T , v), where

(1) (	,F) is a measurable space;
(2) T : 	 → P(	,F) is a measurable function;
(3) v : V ∪ {⊥} → F is a function such that v(⊥) = ∅.

With reference to the previous definition, the triple (	,F , T ) is called a type space.
Intuitively, for every q ∈ V ∪ {⊥}, v(q) is the set of ω ∈ 	 at which q is true. The
latter is required to be a measurable subset of 	.

If there is no ambiguity, we identify a type structure (	,F , T , v) with its support
	.

Let (	,F , T , v) be a type structure. We recursively define when a formula ϕ is
true at ω ∈ 	 (notation: 	,ω |� ϕ) as follows:
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(1) 	,ω �|� ⊥;
(2) 	,ω |� q if and only if ω ∈ v(q), for q ∈ V ;
(3) the finitary and infinitary propositional cases relative to P-formulas are the same

as in propositional logic;
(4) 	,ω |� P≥rψ if and only if T (ω)({ω′ ∈ 	 : 	,ω′ |� ψ}) ≥ r , for a P-formula

ψ ;
(5) the cases relative to the formulas in F \ P are the same as in propositional logic.

We let ϕ	 := {w ∈ 	 : 	,ω |� ϕ}.
Remark 2 One easily shows by induction on ϕ ∈ P that ϕ	 ∈ F . Here it is crucial
that P is closed under conjunctions and disjunctions of countable cardinality only.

Furthermore, when ϕ of the form P≥rψ, notice that

ϕ	 = T−1({μ ∈ P(	,F) : μ(ψ	) ≥ r}).

Then measurability of T and the inductive assumption ψ	 ∈ F yield ϕ	 ∈ F .
Therefore the satisfiability relation is well-defined.

A formula ϕ is satisfiable (valid) in 	 if ϕ	 �= ∅ (ϕ	 = 	). Let � ⊆ F. We let
�	 = ⋂

γ∈� γ 	, with the convention that ∅	 = 	.

We adopt a “local" notion of logical/semantic consequence. We say that ϕ ∈ F is a
logical consequence of � (notation: � |� ϕ) if

�	 ⊆ ϕ	, for all type structures 	.

We write |� ϕ for ∅ |� ϕ. A formula ϕ is valid if |� ϕ.

3 Axioms, rules and soundness

As in [11, Chapter V], we denote by P(Lν) the infinitary propositional logic (with
denumerably many propositional variables) in which conjunctions and disjunctions
over sequences of formulas of length less than ν are allowed. In the following we will
use, often without explicit mention, [11, Theorem 5.5.4] on the strong completeness
of P(Lν).

The following set of axioms schemas for LνP is by nomeans intended to beminimal
(this is certainly not the case with A0 below). Rather, we aim at an intuitive set of
axioms. The axiomatization below is inspired by those in [12] and [13].

A0. All the F-instances of valid formulas of P(Lν)

P1. P≥0⊥
P2. P≥rϕ → P>sϕ (s < r )
P3. P>rϕ → P≥rϕ

P4. P≤rϕ ∧ P≤sψ → P≤min(r+s,1)(ϕ ∨ ψ)

P5. P≥1(¬(ϕ ∧ ψ)) ∧ P≥rϕ ∧ P≥sψ → P≥r+s(ϕ ∨ ψ) (r + s ≤ 1)
P6. P≥1(ϕ → ψ) → (P≥rϕ → P≥rψ)
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P7.
∧

r<s P
≥rϕ → P≥sϕ

P8.
∧

0<n∈N

∨
k∈N P≤1/n(

∧
m≤k ϕm ∧ ¬∧

m∈N ϕm), for all {ϕm}m∈N ⊆ P

Axioms P4 and P5 state finite additivity of probability. Axioms P6 and P7 state
monotonicity of probability and the Archimedean property respectively.

Remark 3 Axiom P8 formalizes the property of continuity (from above) at the
empty set (the latter is often referred to as continuity at zero). Namely, P8 is
intended to syntactically capture the property that, for a finite measure μ, when-
ever {Ak}k∈N is a decreasing sequence of measurable sets such that

⋂
k∈N Ak = ∅,

then limk→∞ μ(Ak) = 0.
In order to clarify the content of P8, we argue semantically. We fix a type structure

	 and {ϕm}m∈N ⊆ P. By Remark 2, each ϕ	
m is a measurable set. Hence so is Ak =

(∧
m≤k ϕm ∧ ¬∧

m∈N ϕm
)	

, for all k ∈ N. Let ω ∈ 	 be arbitrarily chosen. By
definition of truth of a formula, we have that formula P≤1/n(

∧
m≤k ϕm ∧¬∧

m∈N ϕm)

is true at ω if and only if T (ω)(Ak) ≤ 1/n. Therefore truth of P8 at ω amounts to
requiring that the following holds:

(∗) f or each 0 < n ∈ N there is some k ∈ N such that T (ω)(Ak) ≤ 1/n.

Finally, we note that the Ak’s defined above form a decreasing sequence and that⋂
k∈N Ak = ∅. Since, for a finite measure, property of σ -additivity is equivalent to

finite additivity plus continuity at the empty set (see, for instance, [2, §1.2]) and since
T (ω) is a probability measure, statement (*) is necessarily true at ω.

We stress that the previous argument shows that P8 is a valid axiom.

Notice that, differently from [13], we formulate continuity at the empty set by
means of an axiom, rather than with an inference rule.

The inference rules of LνP are the following. Albeit our formal proofs will be
Hilbert style, we formulate the rules in natural deduction style for sake of better
understanding.

MP (Modus Ponens)
ϕ ϕ → ψ

ψ

C (Conjunction) For all cardinals κ ≤ ν and all {ϕα}α<κ ⊆ F,

ϕ0 . . . ϕα . . . (α < κ)
∧

α<κ ϕα

N (Necessitation) � ϕ

� P≥1ϕ
(ϕ ∈ P)

Rules MP and C are exactly those in [11, §5.1]. Rule N is reminiscent of the
necessitation rule in modal logic (hence the name).
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Notice that, same as in modal logic and differently fromMP and C-rule, N-rule can
be applied only when ϕ is provable from logical axioms and deduction rules only (i.e.
when ϕ is a logical theorem, according to the terminology introduced below).

As we remarked above, differently from [13], we do not need an infinitary rule
expressing the property of continuity at the empty set.

The notion of (Hilbert style) proof from a given set of assumptions is formulated
as usual (see the beginning of [11, Chapter 5]). We stress that a proof is a sequence
of fewer than ν formulas.

We use the standard notation � � ϕ to say that there exists a proof of ϕ from the
set � of assumptions. As is usual, � ϕ stands for ∅ � ϕ. Formulas ϕ satisfying the
latter are called logical theorems.

In order to become familiar with the deduction system, we invite the reader to verify
that � P≤1ϕ, for every P-formula ϕ. Notice also that � P>1(ϕ) ↔ ⊥.

Furthermore, if ϕ,ψ are P-formulas such that � ϕ ↔ ψ then, for all r , � P≥rϕ ↔
P≥rψ follows from N rule and axiom P6. In the following we will often use the latter
fact without explicit mention.

A set � ⊆ F is consistent if � �⊥. A maximal consistent set is a set which is
maximal with respect to inclusion among consistent sets.

Let � be maximal consistent. It is straightforward to verify that the following hold:
� is closed under provability; for every formula ϕ exactly one between ϕ and ¬ϕ is in
�; (

∧
α<κ ϕα) ∈ � if and only if, for all α < κ, ϕα ∈ �; (

∨
α<κ ϕα) ∈ � if and only if

there exists α < κ such that ϕα ∈ �; (α → β) ∈ � if and only if (α ∈ � ⇒ β ∈ �).

The existence of (maximal) consistent sets will be a consequence of the Soundness
Theorem below.

Theorem 4 Let � ∪ {ϕ} ⊆ F. Then

� � ϕ ⇒ � |� ϕ.

Proof By induction on a proof of ϕ from �, after verifying that axioms are valid and
rules preserve validity. As for validity of P8, see Remark 3 above. ��

As a corollary of the Soundness Theorem, we get that every satisfiable set of sen-
tences is consistent. Furthermore, for all type structures 	 and all ω ∈ 	, the set
{ϕ ∈ F : 	,ω |� ϕ} is maximal consistent.

Same as in infinitary propositional logic, it is immediate to exhibit an inconsistent
set which can be obtained as union of a chain of consistent sets. Hence the usual
application of Zorn’s Lemma for proving that every consistent set extends to some
maximal consistent one cannot be performed in the current framework.

4 Completeness

We provide a construction which vaguely resembles the canonical model construction
in various modal logics.

We denote by 	 the family of sets ω of P-formulas with the following properties:
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(1) ω is consistent;
(2) every formula in ω is an atomic or a negated atomic formula or is of the form

P≥rϕ or ¬P≥rϕ for some r and some ϕ ∈ P;
(3) for each propositional variable q, one between q and ¬q is in ω;
(4) for every formula ϕ of the form P≥rψ, one between ϕ and ¬ϕ is in ω;

It follows from Theorem 4 that 	 �= ∅.

Remark 5 Notice that every ω ∈ 	 has cardinality 1ג and that |	| ≤ .2ג In the
following we will form conjunctions of |	|-many formulas (see Proposition 8 below).
Hence the choice ν = (2ג)

+.

We denote by ω� the closure under provability of ω ∈ 	.

Remark 6 A straightforward proof by induction on formulas shows that, for every
ω ∈ 	 and every F-formula ψ, the set ω� contains exactly one between ψ and
¬ψ. It follows that ω� is maximal consistent. Furthermore, there is a one-to-one
correspondence between 	 and the family of maximal consistent sets of F-formulas.

Next, we define a type structure based on 	. Let ϕ ∈ P and ω ∈ 	. We let

ϕω = sup{r : P≥rϕ ∈ ω}, ϕω = inf{s : P≤sϕ ∈ ω}.

Proposition 7 Let ϕ ∈ P. For all ω ∈ 	 it holds that ϕω = ϕω.

Proof Let us assume that ϕω < ϕω. Let r ∈ Q be such that ϕω < r < ϕω. Then
P≤rϕ /∈ ω. From the latter follows that P>rϕ ∈ ω. By axiom P3 we get P≥rϕ ∈ ω.

On the other hand, from ϕω < r we get P≥rϕ /∈ ω: a contradiction. Hence ϕω ≥ ϕω.

Eventually, let us assume ϕω < ϕω. Then there exist r , s ∈ Q such that ϕω <

r < s < ϕω and both P≤rϕ, P≥sϕ are in ω. By axiom P2 we get from the latter
P>rϕ ∈ ω, thus contradicting the consistency of ω.

Therefore ϕω = ϕω. ��
For every F-formula η, we let

[η] = {ω ∈ 	 : η ∈ ω�},

where ω� is the deductive closure of ω (see Remark 6). Let � ⊆ F. We let [�] =⋂
γ∈�

[
γ
]
. Notice that if |�| < ν then [�] = [∧

�
]
.

Same as in [13, Proposition 2], but with different and possibly simpler proofs, we
get the following:

Proposition 8

(1) � ∨
ω∈	(

∧
ω).

(2) For every F-formula η,

� η ↔
∨

ω∈[η]

(∧
ω
)

.
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Proof

(1) Let R be an injective map which, restricted to V , is the identity and maps every
formula of the form P≥rϕ into a new propositional variable qϕ,r . Application of
R transforms every ω ∈ 	 into a set R(ω) of propositional variables or negated
propositional variables of the infinitary propositional logic P(Lν) whose set, let
us call it V1, of propositional variables has cardinality 1ג and contains V .

Let T be the set of truth valuations of P(Lν). Notice that |T | = ,2ג for every
v ∈ T is uniquely determined by its restriction to the set V1. For every v ∈ T and
every propositional variable q we let

qv(q) =
{

q if v(q) = 1;
¬q otherwise

Since |� ∨
v∈T

∧
q∈V1 q

v(q), by [11, Theorem 5.4], we have that
∨

v∈T
∧

q∈V1
qv(q) is a theorem ofP(Lν). As LνP extendsP(Lν), we get in the former logic

�
∨

v∈T

∧

q∈V1
R−1(qv(q))

(with a slight notational abuse).
After recalling that � ψ ∨ ⊥ ↔ ψ, we remove from the formula above all the
disjuncts which are inconsistent formulas of LνP and we conclude that

�
∨

ω∈	

(∧
ω
)

.

(2) From (1), we get � ψ ↔ ψ ∧ ∨
ω∈	(

∧
ω). Hence � ψ ↔ ∨

ω∈	(ψ ∧ ∧
ω).

Recalling Remark 6 and applying same argument used at the end of (1), we get
the required result. ��

Let

F = {[ϕ] : ϕ ∈ P}.

It is straightforward to verify that F is a σ -algebra. In particular, [ϕ]C = [¬ϕ] and⋂
n∈N [ϕn] = [∧

n∈N ϕn
]
.

We define

v : V ∪ {⊥} −→ F
q �−→ [q]

Clearly, v(⊥) = ∅.

Let ω ∈ 	. We define

T (ω) : F −→ [0, 1]
[ϕ] �−→ ϕω
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First of all we notice that T (ω) is well-defined. For if [ϕ] = [ψ] , from Proposi-
tion 8(2) we get � ϕ ↔ ψ and, by N rule and axiom P6, we conclude that ϕω = ψω.

Also, T (ω)([¬⊥]) = 1 follows from � ¬⊥ and from N rule.
In the following we often omit brackets and we write T (ω) [ϕ] for T (ω)([ϕ]).
Next, we verify that T is a measurable function. Let ϕ ∈ P. As is well known, it

suffices to prove that, for all r ∈ Q∩[0, 1] , the set T−1({μ ∈ P(	,F) : μ([ϕ]) ≥ r})
is measurable. We have:

T−1({μ ∈ P(	,F) : μ([ϕ]) ≥ r}) = {ω ∈ 	 : T (ω) [ϕ] ≥ r}
=
⋂{[

P≥sϕ
] : s ∈ Q ∩ [0, 1] and s < r

}

and the latter intersection is in F . Actually, by axiom P7 (Archimedean property), the
intersection above is equal to

[
P≥rϕ

]
, but we point out that P7 is not really necessary

here.
We show that T (w) is finitely additive. First of all, it is worth noticing that [ϕ] ∪

[ψ] = [ϕ ∨ ψ] . We begin by proving that

T (ω)([ϕ] ∪ [ψ]) ≤ T (ω) [ϕ] + T (ω) [ψ]

holds under no additional assumption. We treat the nontrivial case when T (ω) [ϕ] +
T (ω) [ψ] < 1.

By recalling Proposition 7, we have

T (ω) [ϕ] + T (ω) [ψ] = inf{s : P≤sϕ ∈ ω} + inf{t : P≤tψ ∈ ω}
= inf{s + t : P≤sϕ ∈ ω and P≤tϕ ∈ ω}
= inf{s + t ≤ 1 : P≤sϕ ∈ ω and P≤tϕ ∈ ω}.

(Notice that the set in the last line is nonempty because of the assumption T (ω) [ϕ]+
T (ω) [ψ] < 1.)

By axiom P4 we get

{s + t ≤ 1 : P≤sϕ ∈ ω and P≤tϕ ∈ ω} ⊆ {r : P≤r (ϕ ∨ ψ) ∈ ω}.

Therefore

inf{s + t ≤ 1 : P≤sϕ ∈ ω and P≤tϕ ∈ ω} ≥ inf{r : P≤r (ϕ ∨ ψ) ∈ ω}.

Hence T (ω) [ϕ]+T (ω) [ψ] ≥ T (ω) [ϕ ∨ ψ] and the latter is equal to T (ω)([ϕ]∪[ψ]).
Next, we assume that ϕ,ψ ∈ P satisfy [ϕ] ∩ [ψ] = ∅ and we prove T (ω) [ϕ] +

T (ω) [ψ] ≤ T (ω)([ϕ] ∪ [ψ]).
From Proposition 8(2) we get � ϕ ∧ ψ ↔ ⊥ (we follow the standard convention

that an empty disjunction stands for the formula ⊥). Application of N rule yields
� P≥1(¬(ϕ ∧ ψ)). We deal with the nontrivial case when T (ω)([ϕ] ∪ [ψ]) < 1.

T (ω) [ϕ] + T (ω) [ψ] = sup{s : P≥sϕ ∈ ω} + sup{t : P≥tψ ∈ ω}

123



An infinitary propositional probability logic 301

= sup{s + t : P≥sϕ ∈ ω and P≥tψ ∈ ω}.

By axiom P5 and by the assumption T (ω)([ϕ] ∪ [ψ]) < 1, we get that {s + t :
P≥sϕ ∈ ω and P≥tψ ∈ ω} ⊆ [0, 1[. So, again by P5,

{s + t : P≥sϕ ∈ ω and P≥tψ ∈ ω} ⊆ {r : P≥r (ϕ ∨ ψ) ∈ ω}.

Therefore

sup{s + t : P≥sϕ ∈ ω and P≥tψ ∈ ω} ≤ sup{r : P≥r (ϕ ∨ ψ) ∈ ω}
= T (ω)([ϕ] ∪ [ψ]),

as required.
Next, we prove that, for all ω ∈ 	, T (ω) is continuous at the empty set. This is the

point where we use axiom P8. Let {ϕn}n∈N ⊆ P. We show that

lim
n→∞ T (ω)

([
∧

m≤n

ϕm

]

∩
[

¬
∧

m∈N

ϕm

])

= 0.

Being an instance of axiom P8, formula

∧

0<n∈N

∨

k∈N

P≤1/n

⎛

⎝
∧

m≤k

ϕm ∧ ¬
∧

m∈N

ϕm

⎞

⎠

is in the deductive closure ω� of ω. It follows that, for all 0 < n ∈ N, the P-formula

ψn :
∨

k∈N

P≤1/n

⎛

⎝
∧

m≤k

ϕm ∧ ¬
∧

m∈N

ϕm

⎞

⎠

is in ω�.
If for some 0 < n and all k, the formula P≤1/n(

∧
m≤k ϕm ∧ ¬∧

m∈N ϕm) is not in
ω, then, for all k, the formula ¬P≤1/n(

∧
m≤k ϕm ∧ ¬∧

m∈N ϕm) is in ω.

Hence

ηn :
∧

k∈N

¬P≤1/n

⎛

⎝
∧

m≤k

ϕm ∧ ¬
∧

m∈N

ϕm

⎞

⎠

is in ω�. Since ψn is provably equivalent to the negation of ηn , the consistency of ω�
would be contradicted.
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Therefore, for every 0 < n there exists kn such that formula

P≤1/n

⎛

⎝
∧

m≤kn

ϕm ∧ ¬
∧

m∈N

ϕm

⎞

⎠

is in ω. It follows that

T (ω)

⎛

⎝

⎡

⎣
∧

m≤kn

ϕm

⎤

⎦ ∩
[

¬
∧

m∈N

ϕm

]⎞

⎠ = T (ω)

⎡

⎣
∧

m≤kn

ϕm ∧ ¬
∧

m∈N

ϕm

⎤

⎦ ≤ 1/n.

By N rule and by P6, we immediately get that, for all 0 < n and kn < k,

T (ω)

⎛

⎝

⎡

⎣
∧

m≤k

ϕm

⎤

⎦ ∩
[

¬
∧

m∈N

ϕm

]⎞

⎠ ≤ 1/n.

Hence the conclusion.
Finally, we let

v : V ∪ {⊥} −→ F
q �−→ [q]

We summarise the results above in the following:

Proposition 9 For every ω ∈ 	 the triple (ω,F , T (ω)) is a probability space. Fur-
thermore, (	,F , T , v) forms a type structure.

Proof For every ω ∈ 	 the measure T (ω) is finite, finitely additive and continuous
at the empty set. As we already remarked just after introducing the axioms, it follows
that T (ω) is σ -additive.

As for the second part, we have shown above that map T is measurable and map v

satisfies the required properties. ��
We call canonical structure the type structure of Proposition 9.

Proposition 10 With reference to the canonical structure, it holds that, for every F-
formula ψ,

ψ	 = [ψ].

Proof By induction on formulas. The cases relative to P-formulas are straightforward,
possibly with the exception when ψ of the form P≥rϕ. We deal with the latter case in
some detail. Let us assume that the statement of the theorem holds for ϕ ∈ P. Then,
for every ω ∈ 	,

	,ω |� P≥rϕ ⇔ T (ω)(ϕ	) ≥ r ⇔ T (ω)[ϕ] ≥ r ⇔
⇔ sup{s : P≥sϕ ∈ ω} ≥ r ⇔ P≥rϕ ∈ ω,
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where the left-to-right implication in the bottom right equivalence holds by axiom
(P7). Then the statement holds for ψ.

Cases relative to formulas in F \ P are trivial. ��
Notice that, throughout the paper, we use axiom P7 in the previous proof only.

Corollary 11 Let � be a consistent set of F-formulas. Then � is satisfiable in the
canonical structure.

Proof By contraposition. Let us assume that � is unsatisfiable in the canonical struc-
ture. Then, for each ω ∈ 	 there exists γω ∈ � (depending on ω) such that
	,ω |� ¬γω.

The following argument applies to each ω ∈ 	: by applying Proposition 10 to ¬γω

we get ¬γω ∈ ω�. Hence ω� ∪ {γω} is inconsistent. Since ω� is the closure under
provability of ω, it follows that ω∪{γω} is inconsistent, hence so is the set {∧ω, γω}.
The latter is equivalent to γω � ¬(

∧
ω).

Therefore we get {γω : ω ∈ 	} � ∧
ω∈	 ¬(

∧
ω). A fortiori, � � ∧

ω∈	 ¬(
∧

ω)

and , by the infinitary de Morgan laws, � � ¬∨
ω∈	(

∧
ω). Finally, it follows from

Proposition 8(1) that � is inconsistent. ��
Corollary 12 Every consistent set of F-formulas extends to some maximal consistent
set.

Proof Let � be consistent. By Corollary 11 there exists ω ∈ 	 such that 	,ω |� �.

The set {ϕ ∈ F : 	,ω |� ϕ} is maximal consistent and extends �. ��
Notice that in Corollaries 11 and 12 there is no limitation on the cardinality of the set

ofF-formulas. The same holds for the strong completeness theorem below. Differently
from [13, Theorem 1], the proof of strong completeness is straightforward.

Theorem 13 Let � ∪ {ψ} be a set of F-formulas. Then

� |� ψ ⇒ � � ψ.

Proof Suppose� � ψ. Then�∪{¬ψ} is consistent, hence satisfiable by Corollary 11.
Therefore � �|� ψ. ��

Eventually, we summarize the technical reasons for choosing ν = (2ג)
+. As

remarked in Sect. 2, so doing we limit the cardinality of P-formulas to .1ג It follows
that the type structure 	 defined at the very beginning of this section has cardinality
≤ .2ג See Remark 5. In the latter remark, we also explain why we need to go up to
(2ג)

+. Furthermore, in the background, there is another reason for dealing a regular
cardinal (as ν is): regularity of ν is a necessary assumption in the proof of strong
completeness of logic P(Lν) which is mentioned at the beginning of Sect. 2). Such
completeness result is needed in the proof of key Proposition 8.

Remark 14 The following axiom schemas axiomatize the phenomenon of agent intro-
spection that Harsanyi type spaces want capture (in this regard, see [13, Definition
8]):
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I1 P≥rϕ → P≥1P≥rϕ, for ϕ ∈ P

I2 ¬P≥rϕ → P≥1(¬P≥r )ϕ, for ϕ ∈ P

Clearly, expanding our set of axioms amounts to restricting the class of type struc-
tures to those satisfying the additional axioms.

Quite interestingly, if include I1 and I2 on our list of axioms, the above defined
canonical structure validates those two schemas. We provide the details for I1, the
same argument applies to I2. To begin with, we notice that, by Proposition 10 and by
definition of [ψ], for each formulas ψ, it holds that

(�) {ν ∈ 	 : 	, ν |� ψ} = {ν ∈ 	 : ψ ∈ ν�}.

Let ω ∈ 	 and let us assume that 	,ω |� P≥rϕ. It follows from (�) that P≥rϕ ∈
ω�. Being I1 an axiom, it belongs to ω� as well. Hence ω� � P≥1P≥rϕ and, by
closure under provability of ω�, (P≥1P≥rϕ) ∈ ω�. From (�), we finally get 	,ω |�
P≥1P≥rϕ.

Being ω ∈ 	 arbitrarily chosen, we conclude that the canonical structure validates
schema I1.

Hence, even if it may not satisfy the characteristic property of a Harsanyi type space
(see [13, Definition 8]), the above defined canonical structure validates the instances
of introspection that are formalized by schemas I1 and I2.

5 A short categorial detour

In the following we recall the notion of morphism in the category of type structures
given in [13]. Such definition is a natural extension of the notion of morphism in the
category, to be denoted by P, of probability spaces and measure preserving maps.
More precisely, a morphism in P between the probability spaces (	1,F1, P1) and
(	2,F2, P2) is a measurable map f : 	1 → 	2 with the property that

(∗) for all E ∈ F2, P1( f
−1(E)) = P2(E).

The following is taken from [13].

Definition 15 Let (	1,F1, T1, v1) and (	2,F2, T2, v2) be type structures. A map
f : 	1 → 	2 is a morphism if

(1) f is a measurable function;
(2) for all ω1 ∈ 	1 and all q ∈ V ,

ω1 ∈ v1(q) ⇔ f (ω1) ∈ v2(q);

(3) for all ω1 ∈ 	1 and all E ∈ F2,

T2( f (ω1))(E) = T1(ω1)( f
−1(E)).
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Notice that all conditions imposed on f in Definition 15, with the exception of (2),
refer to the inverse image map f −1 : P(	2) → P(	1).

Let us denote by id	1 the identity morphism on a type structure (	1,F1, T1, v1).
Let (	1,F1, T1, v1), (	2,F2, T2, v2) and f be as in Definition 15. By a straight-

forward induction on formulas one shows that

(∗∗) for all ϕ ∈ F and all ω1 ∈ 	1, 	1, ω1 |� ϕ ⇔ 	2, f (ω1) |� ϕ.

Set-theoretic composition of morphisms yields a morphism and the identity map is
a morphism. Therefore type structures and morphisms form a category that we denote
by T S.

A morphism f from the type structure (	1,F1, T1, v1) to the type structure
(	2,F2, T2, v2) is an isomorphism if there exists a morphism g : 	2 → 	1 such that
f ◦ g = id	2 and g ◦ f = id	1 . In particular, an isomorphism of type structures is a
bijection between the underlying spaces of events, but this condition alone does not
suffice in general.

Next we show that the canonical structure is a terminal object in T S. In our opinion,
our proof is simpler than Meier’s in [13].

Theorem 16 The canonical structure (	,F , T , v) defined before Proposition 9 is a
terminal object in the category T S.

Proof Let (	1,F1, T1, v1) be an arbitrary type structure. We claim that the map

f : 	1 −→ 	

ω1 �−→ {ϕ ∈ P : 	1, ω1 |� ϕ}

is a morphism. Let ϕ ∈ P. From Proposition 10 we get

for all ω1 ∈ 	1, 	, f (ω1) |� ϕ ⇔ ϕ ∈ f (ω1) ⇔ 	1, ω1 |� ϕ,

namely

(◦) f −1(ϕ	) = ϕ	1 .

In particular, for all ω1 ∈ 	1 and all q ∈ V ,

ω1 ∈ v1(q) ⇔ 	1, ω1 |� q ⇔ 	, f (ω1) |� q ⇔ f (ω1) ∈ v(q).

Moreover, f −1([ϕ]) = f −1(ϕ	) = ϕ	1 and the latter is in F1 (see Remark 2).
Hence f is measurable.

It remains to verify that (3) of Definition 15 is satisfied by f . Let ϕ ∈ P and
ω1 ∈ 	1. From (◦) above we get, for all r ∈ Q ∩ [0, 1],

T ( f (ω1))([ϕ]) ≥ r ⇔ 	, f (ω1) |� P≥rϕ ⇔ 	1, ω1 |� P≥rϕ ⇔
⇔ T1(ω1)(ϕ

	1) ≥ r ⇔ T1(ω1)( f
−1(ϕ	)) ≥ r
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⇔ T1(ω1)( f
−1([ϕ])) ≥ r .

Hence T ( f (ω1))([ϕ]) = T1(ω1)( f −1([ϕ])), as required.
Furthermore, let g : (	1,F1, T1, v1) → (	,F , T , v) be a morphism and let

ω1 ∈ 	1. From (∗∗) above we get

for all ϕ ∈ F, 	, f (ω1) |� ϕ ⇔ 	, g(ω1) |� ϕ.

From Proposition 10 it follows that

f (ω1)� = g(ω1)�

and so f (ω1) = g(ω1), by Remark 6.
Therefore f is the only morphism from (	1,F1, T1, v1) to (	,F , T , v).

We conclude that (	,F , T , v) is a terminal object in the category T S. ��
Notice that morphism f defined in the proof of Theorem 16 identifies any two

points in 	1 that satisfy the same formulas. This admittedly strong property reflects
the economic and game-theoretic intuition behind type indistinguishability.

6 Amodel-theoretic perspective

We begin with some considerations which may lead to an investigation of type struc-
tures from an algebraic perspective.

We notice that (3) of Definition 15 is the counterpart of (∗) in the category P of
probability spaces (for the latter, see Sect. 5). It is well-known that P does not have
products in categorical sense, simply because, in general, projections do not preserve
probability. Also, category P has a very restrictive notion of subobject: a natural
candidate for a subobject of a probability space turns out to be isomorphic mod 0 to
the original space (see, for instance, [5] for the latter notion). We explain what we
mean: let (	,F , P) be a probability space and let B ∈ F . We let

FB = {A ∩ B : A ∈ F}.

Assuming P(B) �= 0, we let

PB(A ∩ B) = P(A/B),

where P(A/B) is the conditional probability of A given B. Probability space
(B,FB, PB) is a natural candidate for being a subobject of (X ,F , P). This requires
the inclusion map ι : B → X being a (mono)morphism. Measurability of ι is straight-
forward. Condition (∗) above becomes

PB(A ∩ B) = P(A), for all A ∈ F .
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In particular, we get P(B) = 1 and so the spaces (B,FB, PB) and (	,F , P) are
isomorphic mod 0. As pointed out by [5], in ergodic theory the latter is the standard
notion of isomorphism between probability spaces. Thus, inP, the notion of subobject
is extremely restrictive.

For this reason, one may want to drop condition (∗) in the definition of morphism,
but then two probability spaces (	,F , P1) and (	,F , P2), with P1 �= P2, would be
indistinguishable.

Similar considerations apply to the category T S.

From property (∗∗) above we see that a morphism of type structures behaves
“locally” like an isomorphism, even if “globally” it is not injective, in general. A
natural question is whether there is a weaker notion of morphism with related notions
of embedding, type substructure, etc…Even if existence of a universal type structure
possibly fails, the resulting framework might be of interest. In this regard, we make a
parallel with the category of sets where each singleton is a terminal object, but such
property is not as relevant as other set-theoretic properties.

In light of the previous considerations, we suggest shifting the focus from categor-
ical to algebraic properties of type structures. We first introduce a natural notion of
type substructure.

6.1 Substructures

Let (	,F , T , v) be a type structure and let 	1 ∈ F be such that, for all ω1, ω2 ∈ 	1,

T (ω1)(	1) = T (ω2)(	2) �= 0. Let s be the common value. We let F1 be the σ -
algebra {A ∩ 	1 : A ∈ F} on 	1 and, for ω ∈ 	1, we define T1(ω) ∈ �(	1,F1) as
follows:

T1(ω)(A ∩ 	1) = s−1T (ω)(A ∩ 	1), A ∈ F .

For all q ∈ V , we let v1(q) = v(q) ∩ 	1 and v1(⊥) = ∅.

We claim that (	1,F1, T1, v1) is a type structure. It needs only to be verified that
T1 is a measurable map. Let r ∈ [0, 1] and A ∈ F1. We have:

T−1
1 ({μ ∈ �(	1,F1) : μ(A) ≥ r}) = 	1 ∩ {ω ∈ 	 : T (ω)(A) ≥ sr} ∈ F1.

Hence T1 is measurable.

6.2 Products

Despite category T S does not have products in categorical sense, we can also form
the product of an arbitrary family of type structures. For simplicity, we deal with the
product of two structures (	1,F1, T1, v1) and (	2,F2, T2, v2).The product of finitely
many type structures can be defined by induction on natural numbers. Later we will
deal with infinite products.

We denote the product as follows: (	1 × 	2,F1 × F2, T1 × T2, v1 × v2), where

(1) 	1 × 	2 is the cartesian product of the two sets;
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(2) F1×F2 is the productσ -algebra, namely theσ -algebra generated by the rectangles
B × C, with B ∈ F1 and C ∈ F2;

(3) for all ω1 ∈ 	1 and all ω2 ∈ 	2, (T1 × T2)(ω1 × ω2) is the product probability
of T1(ω1) and T2(ω2);

(4) for all q ∈ V , (v1 × v2)(q) is the cartesian product of v1(q) and v2(q) and
(v1 × v2)(⊥) = ∅.

We only need to prove that T1×T2 is a measurable map. It suffices to verify that, for
all B ∈ F1,C ∈ F2 and r ∈ Q∩ ]0, 1], (T1×T2)−1({μ ∈ P(	1×	2) : μ(B×C) >

r}) ∈ F1 ×F2. Case r = 0 follows by taking a countable union: r > 0 ⇔ (r > 1/n,

for some n > 0).
For B,C, r as above, we have:

(T1 × T2)
−1({μ ∈ P(	1 × 	2) : μ(B × C) > r})

= {(ω1, ω2) ∈ 	1 × 	2 : T1(ω1)(B) · T2(ω2)(C) > r}
=

⋃

{s,t∈Q ∩[0,1]: st>r}
({ω1 ∈ 	1 : T1(ω1)(B) ≥ s}

×{ω2 ∈ 	2 : T2(ω2)(C) ≥ t}),

and the latter countable union is in F1 × F2.

As for the product (	,F , T , v) of a countable family {(	i ,Fi , Ti , vi )}i∈N of type
structures, we proceed as in the construction of a countably infinite product of prob-
ability spaces. See, for instance, [6, §38]. In particular, for all (ωi ) ∈ 	 we define
T ((ωi )) as the unique probability measure S such that, for each generator

∏
i∈N Ai of

F ,

S((ωi ))

(
∏

i∈N

Ai

)

=
∏

i∈N

Ti (ωi )(Ai ).

Measurability of T follows as in the finite product case after recalling that, for all
generators

∏
i∈N Ai of F , Ai �= 	i for finitely many i’s only.

Regarding the generalization to uncountable products, see Exercise (2) at the end
of [6, §38].

6.3 Ultraproducts

We develop a notion of ultraproduct of type structures. For the pertinent set-theoretic
and topological notions we refer the reader to [1].

The notation and conventions previously introduced are in force.
Let U be an ultrafilter on a set I .
Let {(	i ,Fi , Ti , vi )}i∈I be a family of type structures and let	 be the set-theoretic

ultraproduct of the 	i ’s with respect toU . Wewrite ωU for the equivalence class with
respect toU of the sequence ω = (ωi )i∈I ∈ ∏

i∈N 	i . Let (Ei )i∈I be a sequence such
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that, for all i ∈ I , Ei ⊆ 	i . We let

(Ei )U = {ωU ∈ 	U : {i ∈ I : ωi ∈ Ei } ∈ U }.

Notice that (Ei )U is just a convenient notation for the set-theoretic ultraproduct
(
∏

i∈I Ei )/U .

It is easy to verify that the family

(◦) F• = {(Ei )U : for all i ∈ N, Ei ∈ Fi }

is a boolean algebra on 	. We denote by F be the σ -algebra generated by F• and by
�(	,F•) the family of pre-measures on (	,F•).

We define a map T ′ : ∏i 	i → �(	,F•) as follows: for (Ei )U ∈ F• we let

T ′(ω)((Ei )U ) = lim
U

Ti (ωi )(Ei ),

where limU stands for the limitwith respect to the ultrafilterU of the bounded sequence
(Ti (ωi )(Ei ))i∈I (see [1]). By [1, Proposition 1.3, Ch.2], for all ω ∈ ∏

	i ,map T ′(ω)

is well-defined and σ -additive, hence it can be uniquely extended to a probability
measure T ′′(ω) on F .

Furthermore, if ω,ψ ∈ ∏
i∈N 	i are such that ωU = ψU , by the filter properties

we get T ′′(ω) = T ′′(ψ). Therefore T ′′ induces a well-defined map

T : 	 → �(	,F)

ωU �→ T ′′(ω)

We turn �(	,F) into a measurable space as described before Definition 1 and we
prove the following:

Proposition 17 The map T defined above is measurable.

Proof It suffices to show that, for all E = (Ei )U ∈ F• and all r ∈ [0, 1] ∩ Q, the set

T−1({μ ∈ �(	,F) : μ(E) ≥ r}) =
{

ωU ∈ 	 : lim
U

Ti (ωi )(Ei ) ≥ r

}

is in F . First of all we notice that the following are equivalent for ωU = (ωi )U :

(1) limU Ti (ωi )(Ei ) ≥ r;
(2) for all 0 < k ∈ N, {i ∈ N : Ti (ωi )(Ei ) ≥ r − 1/k} ∈ U ;
(3) for all 0 < k ∈ N, ωU ∈ (Fk,i )U , where

Fk,i = {u ∈ 	i : Ti (u)(Ei ) ≥ r − 1/k} ;

(4) ωU ∈ ⋂
0<k∈N(Fk,i )U .
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Hence

{ωU ∈ 	 : lim
U

Ti (ωi )(Ei ) ≥ r} =
⋂

0<k∈N

(Fk,i )U .

For all 0 < k ∈ N and all i ∈ I , by measurability of Ti we have (Fk,i )U ∈ F•.
Therefore

T−1 ({μ ∈ �(	,F) : μ(E) ≥ r}) =
⋂

0<k∈N

(Fk,i )U ,

and the latter intersection is in F . ��
Finally, we define

v : V → F
q �→ (vi (q))U

Summing up: the 4-tuple (	,F , T , v) defined above is a type structure. We call it
the ultraproduct of the family {(	i ,Fi , Ti , vi )}i∈I with respect to the ultrafilter U .

Next we investigate whether a Łoś-like theorem holds for the ultraproduct of type
structures. We recall that an ultrafiter U on a set I is ω1-complete if any countable
intersection of elements from U belongs to U . Principal ultrafilters are ω1-complete,
but the existence of a nonprincipalω1-complete ultrafilter is equivalent to the existence
of a measurable cardinal (see [4, Theorem 1.11, Ch.6]). The latter is unprovable in
ZFC. Actually, it cannot even be proved that the existence of a measurable cardinal is
consistent with ZFC. See [10].

In classical first-order logic, ultraproducts with respect to principal ultrafilters are
trivial, in a sense made precise by [4, Corollary 2.3, Ch.6]. An analogous result holds
in the framework of type structures, as we show next.

Let 	 be the set theoretic ultraproduct of the family of sets {	i }i∈I with respect
to the principal ultrafilter U generated by {k}, for some k ∈ I . An easy verification
shows that the map

h : 	k → 	

defined by h(η) = (ωi )U , where ωk = η and ωi ∈ 	i , for all i �= k, is a well-defined
bijection. In particular, h(η) does not depend on the choice of the coordinatesωi ∈ 	i ,

for i �= k.

Proposition 18 Let (	,F , T , v) be the ultraproduct of the family {(	i ,Fi , Ti , vi )}i∈I
of type structures with respect to the principal ultrafilter U on I generated by {k}, for
some k ∈ I . Let h : 	k → 	 be the bijection defined above. The following hold:

(1) for all (Ei )U , (Xi )U in
∏

i∈I Fi ,

(Ei )U = (Xi )U ⇔ Ek = Xk;
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(2) the boolean algebra F• defined in (◦) is a σ -algebra, hence F• = F;
(3) map h is bijective and induces a σ -complete isomorphism of σ -algebras h× :

Fk → F•;
(4) for all ωk ∈ 	k and all Ek ∈ Fk, Tk(ωk)(Ek) = T (h(ωk))(h(Ek)).

(5) map h is an isomorphism of type structures.

Proof

(1) Straightforward.
(2) Let {(En

i )U : n ∈ N} ⊆ F•. Then
⋂

n∈N(En
i )U = (Xi )U , where Xk = ⋂

n∈N En
k

and, for i �= k, Xi = 	i (equivalently, by (1), any Xi ∈ Fi would do).
(3) For E ∈ Fk, we let h×(E) = (Ei )U , where Ek = E and, for i �= k, Ei = 	i .

Notice that h×(E) = {h(η) : η ∈ E}. It follows from the proof of (2) that h×
respects countable intersections.
The rest of the proof that h× is a morphism of σ -algebras is straightforward.
Moreover, map g : F• → Fk defined by g((Ei )U ) = Ek is a morphism, which is
the inverse of h.

(4) Since U is generated by {k}, for all bounded sequences (ri ) of reals it holds that
limU ri = rk . The conclusion follows by definition of T .

(5) Conditions (1) and (2) in Definition 15 are easily verified. Condition (3) in the
same definition follows from (4). Finally, the set-theoretic inverse h−1 of h is also
the inverse of morphism h. ��

Thus, in analogy with [4, Corollary 2.3, Ch.6], we see that, under the assumptions
of Proposition 18, the ultraproduct (	,F , T , v) is an isomorphic copy of the fiber
(	k,Fk, Tk, vk).

Finally, we prove the following Łoś-like theorem:

Theorem 19 Let {(	i ,Fi , Ti , vi )}i∈I be a family of type structures and let U be an
ω1-complete ultrafilter on I . Let (	,F , T , v) be the corresponding ultraproduct.

Then, for all F-formulas ϕ and all ω ∈ ∏
i∈I 	i ,

	, ωU |� ϕ ⇔ {i ∈ I : 	i , ωi |� ϕ} ∈ U .

Proof By induction. We begin with P-formulas. If ϕ is ⊥, the equivalence is trivial. If
ϕ is the variable q, we have

	,ωU |� q ⇔ ωU ∈ v(q) ⇔ ωU ∈ (vi (q))U ⇔ {i ∈ I : ωi ∈ vi (q)} ∈ U ⇔
⇔ {i ∈ I : 	i , ωi |� q} ∈ U }.

Cases relative to negation and to countable conjunctions are straightforward (countably
infinite conjunctions are taken care by the assumption of ω1-completeness). If ϕ is of
the form P≥rη, for some η ∈ P, the inductive assumption on η is equivalent to the
following:

{ψU ∈ 	 : 	,ψU |� η} = ({ψ ∈ 	i : 	i , ψ |� η})U .

The following are equivalent:
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(1) 	,ωU |� P≥rη

(2) T (ωU )(({ψ ∈ 	i : 	i , ψ |� η})U ) ≥ r
(3) limU T (ωi )({ψ ∈ 	i : 	i , ψ |� η) ≥ r
(4) for all 0 < k ∈ N, {i ∈ I : T (ωi )({ψ ∈ 	i : 	i , ψ |� η}) ≥ r − 1/k} ∈ U
(5) (

⋂
0<k∈N{i ∈ I : T (ωi )({ψ ∈ 	i : 	i , ψ |� η} ≥ r − 1/k}) ∈ U

(6) {i ∈ I : T (ωi )({ψ ∈ 	i : 	i , ψ |� η}) ≥ r} ∈ U
(7) {i ∈ I : 	i , ωi |� P≥rη} ∈ U ,

where the equivalence of (4) and (5) holds by ω1-completeness of U .

We are left with the formulas in F. The only nontrivial case is that of an infinite
conjunction of formulas (recall that each conjunction involves less than ν-many for-
mulas). We just notice that, if U is principal, then it is κ-complete for any cardinal κ,

namely an arbitrary intersection of elements from U lives in U . If U is nonprincipal,
then |I | is a measurable cardinal. Clearly, |I | > ν and so the intersection over an
arbitrary family of cardinality < ν of elements from U lives in U . ��

Admittedly, the assumption of existence of a nonprincipal ω1-complete ultrafilter
in Theorem 19 is very strong. It might be interesting to investigate whether weaker
set-theoretic assumptions do ensure validity of that theorem.

6.4 Upward Löwenheim-Skolem theorem

We prove the following:

Proposition 20 Let (	,F , T , v) be a type structure and let κ > |	| be a cardinal.
Then there exists a probability structure (	1,F1, T1, v1) such that:

(1) 	 ⊂ 	1 and F ⊂ F1;
(2) |	1| = κ;
(3) for all ω ∈ 	 and all ϕ ∈ F,

	, ω |� ϕ ⇔ 	1, ω |� ϕ.

Proof We pick a set X of cardinality κ disjoint from 	 and we let 	1 = 	 ∪ X;
v1 = v. Let F1 be the σ -algebra generated by F ∪ {X}. We fix ω̄ ∈ 	 and we define
T1 : 	1 → �(	1,F1) as follows:

– for all ω ∈ 	 and all E ∈ F1 we let T1(ω)(E) = T (ω)(E ∩ 	);
– for all ω ∈ X , we let T1(ω) = T1(ω̄).

It is straightforward to verify that each T1(ω) is a probability measure on (	1,F1).

To complete the proof that (	1,F1, T1, v1) is a type structure it remains to prove
that T1 is a measurable map. It suffices to show that, for all E ∈ F ∪ {X} and all
r ∈ [0, 1] ∩ Q, the set

A = T−1
1 ({μ ∈ �(	1,F1) : μ(E) ≥ r})

is in F1.

123



An infinitary propositional probability logic 313

If E ∈ F , then

A = {ω ∈ 	1 : T1(ω)(E) ≥ r}
= {ω ∈ 	 : T (ω)(E) ≥ r} ∪ {ω ∈ X : T (ω̄)(E) ≥ r}.

Therefore {ω ∈ 	 : T (ω)(E) ≥ r} ∈ F and {ω ∈ X : T (ω̄)(E) ≥ r} is either ∅ or
X . In any case A ∈ F1.

If E = X then A = 	1 for r = 0 and A = ∅ for r > 0.
It remains to prove that (3) holds. We proceed by induction on ϕ. Since the other

cases are trivial, we assume thatϕ is of the form P≥rψ andwework under the inductive
assumption ψ	1 ∩ 	 = ψ	, for all ω ∈ 	.

Let ω ∈ 	. Then

	1, ω |� ϕ ⇔ T1(ω)(ψ	1) ≥ r ⇔ T (ω)(ψ	1 ∩ 	) ≥ r ⇔ T (ω)(ψ	) ≥ r

⇔ 	,ω |� ϕ. ��
We leave as an open problem whether a Downward Löwenheim-Skolem theorem

hold for type structures.
In the next two sections we provide partial results relative to the existence of inverse

and direct limits of systems of type structures. We begin each section by dealing with
limits of systems of probability spaces. Surprisingly for this author, their construction
seems to require very specific assumptions.

6.5 Inverse limits

Inverse limits of systems of probability spaces are known to exist only under suitable
topological assumptions. See, for instance, the Introduction in [17]. In the latter work,
the author introduces a purelymeasure-theoretic condition, called ε-completeness, that
suffices for existence and uniqueness of inverse limits when the index set is the set of
natural numbers. We exploit ε-completeness to extend the inverse limit construction
to inverse families of type structures.

We suitably extend the framework in [17]. For coherence, we stick to the notation
used so far. Let

(	i , ( fi j ))i≤ j,i, j∈N

be an inverse system of sets and maps. Namely, for all i ≤ j ≤ k in N, the following
hold:

– fi j : 	 j → 	i is a function (note the order);
– fii = id	i ;
– fi j ◦ f jk = fik .

The inverse limit (	, (pi : 	 → 	i )i∈N) of the system above is defined as follows:

	 =
{

ω ∈
∏

i∈N

	i : ωi = fi j (ω j ), for all i ≤ j ∈ N

}
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and the pi ’s are the projection maps.
Next, we consider an inverse system ((	i ,Fi , Ti , vi ), ( fi j ))i≤ j,i, j∈N of type struc-

tures. By this we mean that, for all i ≤ j ≤ k,

(1) (	i ,Fi , Ti , vi ) is a type structure;
(2) fi j is a measurable function;
(3) for all ω ∈ 	 j , Ti ( fi j (ω)) = Tj (ω) ◦ f −1

i j , where f −1
i j denotes the restriction to

Fi of the pre-image function associated to fi j .

(Compare with [17, Definition 2.2].)
Since we are mostly concerned with the measure-theoretic features of the inverse

limit construction, we forget about the assignments of values to the propositional
variables vi : V ∪ {⊥} → Fi , i ∈ N. Thus we deal with the inverse system
((	i ,Fi , Ti ), ( fi j ))i≤ j,i, j∈N. We call each (	i ,Fi , Ti ) a type pre-structure. We will
see that the vi ’s play no role in the construction below.

It can be shown that F• = ⋃
i∈N p−1

i (Fi ) is a Boolean algebra. Indeed, if A ∈ Fi ,

we have 	 \ p−1
i (A) = p−1

i (	i \ A) ∈ F•. Moreover, if i ≤ j, A ∈ Fi and
B ∈ F j , we first notice that p

−1
i (A) = p−1

j ( f −1
i j (A)). Hence p−1

i (A) ∩ p−1
j (B) =

p−1
j ( f −1

i j (A)) ∩ B) ∈ F•.
We let F be the σ -algebra generated by F•. Clearly, F is the coarsest σ -algebra

on 	 for which all pi ’s are measurable.
For all i ∈ N and all ω ∈ 	i , let Ti (ω)∗ : P(	i ) → [0, 1] be the outer measure

defined by

Ti (ω)∗(A) = inf{Ti (ω)(B) : A ⊆ B ∈ Fi }.

We give the following, inspired by [17, Definition 3.1]:

Definition 21 The inverse system ((	i ,Fi , Ti ), ( fi j ))i≤ j,i, j∈N of type pre-structures
is ε-complete if, for all ω ∈ 	, all i ≤ j and all A ⊆ 	i ,

Tj (p j (ω))∗( f −1
i j (A)) = Ti (pi (ω))∗(A).

Hence, ε-completeness of ((	i ,Fi , Ti ), ( fi j ))i≤ j,i, j∈N is equivalent to the condi-
tion that, for all ω ∈ 	, the inverse system of probability spaces

((	i ,Fi , Ti (pi (ω)), ( fi j ))i≤ j,i, j∈N,

is ε-complete according to [17, Definition 3.1].
Fromnowon,we assume that ((	i ,Fi , Ti ), ( fi j ))i≤ j,i, j∈N is an ε-complete inverse

system of type pre-structures.
From [17, Theorem 3.2] we get that, for allω ∈ 	, there exists a unique probability

measure T (ω) on (	,F) such that, for all i ∈ N,

T (ω) ◦ p−1
i = Ti (pi (ω)).

See condition (ii) in [17, Definition 2.4].
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We claim that map

T : 	 → �(	,F)

ω �→ T (ω)

is measurable. By [16, Lemma 2.3], we only prove that, for all A ∈ F• and all
r ∈ [0, 1] , T−1({μ ∈ �(	,F) : μ(A) ≥ r}) is measurable. The latter set is equal to
{ω ∈ 	 : T (ω)(A) ≥ r}. We recall the definition of T (ω) from [17]:

T (ω)(A) = Tn(pn(ω))( Â),

for some n ∈ N and some Â ∈ Fn such that p−1
n ( Â) = A. (It follows from [17,

Theorem 3.2] that T (ω) is well-defined.) We fix n and Â as above. By measurability
of Tn, we have:

{η ∈ 	n : Tn(η)( Â) ≥ r} = T−1
n ({μ ∈ �(	n,Fn) : μ( Â) ≥ r}) ∈ Fn .

Hence

p−1
n ({η ∈ 	n : Tn(η)( Â) ≥ r}) ∈ p−1

n (Fn) ⊆ F .

Since {ω ∈ 	 : T (ω)(A) ≥ r} = p−1
n ({η ∈ 	n : Tn(η)( Â) ≥ r}), we conclude

that T is measurable.
We call (	,F , T ) the inverse limit of the ε-complete inverse system

((	i ,Fi , Ti ), ( fi j ))i≤ j,i, j∈N

of type pre-structures.
Eventually, we may also want to define an assignment of values v to the proposi-

tional variables so to get a type structure. A natural choice is to let, for q ∈ V ,

v(q) =
⋂

i∈N

p−1
i (vi (q)).

Notice that v(q) ∈ F , as required by the definition of type structure.

6.6 Direct limits

As inverse limits, direct limits of systems probability spaces are known to exist under
suitable (mostly topological) assumptions. See, for instance, [18, Chapter III]. As for
their existence under purely measure-theoretic assumptions, we only know the partial
results obtained in [20]. Actually, [20] contains significant additional assumptions,
not just “remarks and alterations”, of results previously claimed by the same author
in [19]. A major problem already lies with the definition of the measurable space
underlying the direct limit. For such reason, in [20], the author is forced to introduce
the notions of pseudo σ -algebra and pseudo probability space.

123



316 S. Baratella

In this section, we first define the direct limit of a system of probability spaces. We
do it under stronger assumptions than those in [20]. The additional assumptions are
quite natural and allow to get rid of the above mentioned pseudo-notions. Eventually,
we discuss the extension of the direct limit to systems of type structures.

It seems quite awkward to refer the reader directly to [20], which, in turns, makes
systematic reference to [19]. For this reason, we set up the framework quite in detail.

Let (I ,≤ ) be a directed set and let ((	i , ( fi j ))i≤ j,i, j∈I be an injective direct system
of sets, namely, for all i ≤ j ≤ k,

– 	i is a nonempty set;
– fii = id	i ;
– fi j : 	i → 	 j is an injective function;
– f jk ◦ fi j = fik .

When writing ωi , we implicitly assume that ωi ∈ 	i .

The direct limit (	, ( fi )i∈I ) of the above system is defined as follows: 	 is the
quotient set of

⋃
i∈I (	i × {i}) with respect to the equivalence relation ∼ defined by

(ωi , i) ∼ (ω j , j) ⇔ there exists i, j ≤ k such that fik(ωi ) = f jk(ω j ).

We denote by ω∼ the equivalence class of ω ∈ ⋃
i∈I 	i .

Each fi : 	i → 	 is a map defined by: fi (ωi ) = (ωi , i)∼. It can be easily verified
that the fi ’s are injective. Furthermore,

for all i ≤ j, fi = f j ◦ fi j (�)

Next, we give the following:

Definition 22 An injective direct system of probability spaces

((	i ,Fi , μi ), ( fi j ))i≤ j,i, j∈I

is a structure such that ((	i , ( fi j ))i≤ j,i, j∈I is an injective direct system of sets and,
for all i ≤ j ≤ k and all A ∈ Fi ,

(1) (	i ,Fi , μi ) is a probability space;
(2) fi j (A) ∈ F j (for short: fi j (Fi ) ⊆ F j );
(3) μi (A) = μ j ( fi j (A)) (for short: μi = μ j ◦ fi j );

Definition 22 captures the setting in [20]. We point out the strength of condition
(3). For instance, it implies that, whenever i ≤ j,

μ j (	 j \ fi j (	i )) = 0.

Albeit rather strong, the previous assumptions do not suffice to define a σ -algebra
on 	 (as wrongly claimed in [19]). Hence the notion of pseudo probability space and
the statement of [20, Theorem 3].

From now on, we further assume that
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– I is countable;
– for all i ≤ j, fi j is a measurable function.

The latter is a quite natural assumption on maps between probability spaces.
Then we endow 	 with a structure of probability space.
We let fi (Fi ) = { fi (A) : A ∈ Fi } and R = ⋃

i∈I fi (Fi ). We claim that R is a
ring of subsets of 	. Clearly, ∅ ∈ R. Let X = fi (A),Y = f j (B), for some A ∈ Fi

and B ∈ F j and let i, j ≤ k. By (�) above, we have:

X ∪ Y = fk( fik(A)) ∪ fk( f jk(B)) = fk( fik(A) ∪ f jk(B)) ∈ fk(Fk) ⊆ R.

Similarly,

X \ Y = fk( fik(A)) \ fk( f jk(B)) = fk( fik(A)) \ fk( f jk(B)) ∈ fk(Fk) ⊆ R,

where the rightmost equality holds by injectivity of fk .
We define μ : R → [0, 1] as follows: for A ∈ Fi , we let

μ( fi (A)) = μi (A).

First, we show that μ is well-defined. Let us assume that fi (A) = f j (B). Let
i, j ≤ k. Then fk( fik(A)) = fi (A) = f j (B) = fk( f jk(B)) and, by injectivity of fk,
we get fik(A) = f jk(B). Hence, by Definition 22(3), we get

μi (A) = μk( fik(A)) = μk( f jk(B)) = μ j (B).

We notice that,

for all i ∈ I , μi = μ ◦ fi (��)

Second, we prove that μ is additive. Let fi (A) ∈ Fi and f j (B) ∈ F j be disjoint.
Let i, j ≤ k. The following hold:

μ( fi (A) ∪ f j (B)) = μ( fk( fik(A)) ∪ fk( f jk(B))

= μ( fk( fik(A) ∪ f jk(B))) = μk( fik(A) ∪ f jk(B))
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= μk( fik(A)) + μk( f jk(B)) = μi (A) + μ j (B)

= μ( fi (A)) + μ( f j (B)).

We need a preliminary result before proving that μ is actually a pre-measure on R.

Lemma 23 Under the assumptions above, let i, j ∈ I and let C ∈ Fi , B ∈ F j be
such that fi (C) ⊆ f j (B). Then there exists D ∈ F j such that fi (C) = f j (D).

Proof Let D = {ω j ∈ B : there exists ωi ∈ C with (ωi , i)∼ = (ω j , j)∼}. Clearly,
fi (C) = f j (D). It remains to prove that D ∈ F j . Let i, j ≤ k ∈ I . From fi (C) =
f j (D), we get fk( fik(C)) = fk( f jk(D)). Hence fik(C) = f jk(D), by injectivity
of fk . Therefore f −1

jk ( fik(C)) = D. Moreover, fik(C) ∈ Fk, by Definition 22(2).

Hence D = f −1
jk ( fik(C)) ∈ F j , by measurability of f jk . ��

Let { fin (An) : n ∈ N} ⊆ R be a family of pairwise disjoint sets such that⋃
n∈N fin (An) = fk(A), for some A ∈ Fk . By Lemma 23, for each n ∈ N there

exists Bn ∈ Fk such that fin (An) = fk(Bn). Notice that the Bn’s are pairwise dis-
joint. We have:

μ

(
⋃

n∈N

fin (An)

)

= μ

(
⋃

n∈N

fk(Bn)

)

= μ

(

fk

(
⋃

n∈N

Bn

))

= μk

(
⋃

n∈N

Bn

)

=
∑

n∈N

μk(Bn) =
∑

n∈N

μ( fk(Bn))

=
∑

n∈N

μ( fin (An)),

where the second-last equality holds by (��).
Hence μ is a pre-measure on R. By the Carathéodory’s extension theorem, μ

extends to a measure, that we denote by the same name, on the σ -algebraF generated
by R. We claim that μ is a probability measure.

First of all, since 	 = ⋃
i∈I fi (	i ) and I is countable, 	 belongs to F . Hence

F is actually a σ -algebra on 	. Therefore, in order to prove that μ is a probability
measure on F , it suffices to verify that the outer measure μ∗ associated to μ satisfies
the condition μ∗(	) ≤ 1.

The latter follows by fixing an enumeration {in}n∈N of I and by noticing that 	 is
the disjoint union of the family

{ fin (	in ) \
⋃

0≤ j<n

fi j (	i j ) : n ∈ N} ⊆ R.

Moreover, μ( fi0(	i0)) = 1 and, for all 0 < n,

μ( fin (	in ) \
⋃

0≤ j<n

fi j (	i j )) = 0.

Hence μ∗(	) ≤ 1.
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We call ((	,F , μ), ( fi )i∈I ) the direct limit of ((	i ,Fi , μi ), ( fi j ))i≤ j,i, j∈I .
Eventually, we briefly comment on the extension of the direct limit construction to

type pre-structures. Hence, as in Sect. 6.5, we forget about the assignments of values
to propositional variables. The notation introduced in the first part of this section is in
force.

We fix a direct system ((	i ,Fi , Ti ), ( fi j ))i≤ j,i, j∈I of type pre-structures, where
(	i , ( fi j ))i≤ j,i, j∈I is a countable injective direct system. We form the set-theoretic
direct limit (	, ( fi )i∈I ) and, as above, we denote by F the σ -algebra generated by⋃

i∈I fi (Fi ).

For all ω ∈ 	, let

Iω = {i ∈ I : there exists ωi ∈ 	i such that (ωi , i)
∼ = ω}.

The set Iω is a directed subset of I .
We may consider the direct subsystem ((	i ,Fi , Ti (ωi ), ( fi j ))i≤ j,i, j∈Iω of prob-

ability spaces. Assuming that the latter satisfies conditions (2) and (3) in Def-
inition 22 and that the fi j ’s are measurable, we denote its direct limit by
((	ω,Fω, μω), ( f ω

i )i∈Iω)). Therefore 	ω is the quotient set of
⋃

i∈Iω(	i × {i})
with respect to the restriction ∼ω of ∼ to

⋃
i∈Iω(	i × {i}). We define the map

T : 	 → ⋃
ω∈	 �(	ω,Fω) by letting

T (ω) = μω for all ω ∈ 	.

We notice that the structure (	,F , T ) is not a type pre-structure, simply because
each T (ω) is a probability measure onFω, not onF . Apart from the very special case
when, for all ω ∈ 	, Iω = I (the latter implies that (	,F) = (	ω,Fω)), there seems
to be no intuitive way of obtaining a direct limit pre-structure.
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