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Abstract

    Gene regulatory networks (GRNs) are crucial for understanding complex biological processes

and disease mechanisms, particularly in cancer. However, GRN inference remains challenging due

to the intricate nature of gene interactions and limitations of existing methods. Traditionally, prior

knowledge in  GRN inference  simplifies  the  problem by reducing the  search space,  but  its  full

potential is unrealized. This research aims to develop a method that uses prior knowledge to guide

the  GRN  inference  process,  enhancing  accuracy  and  biological  plausibility  of  the  resulting

networks.

    We extended the Fused Sparse Structural Equation Models (FSSEM) framework to create the

Fused Lasso Adaptive Prior (FLAP) method. FSSEM incorporates gene expression data and genetic

variants in the form of expression quantitative trait  loci (eQTLs) perturbations.  FLAP enhances

FSSEM by integrating prior knowledge of gene-gene interactions into the initial network estimate,

guiding the selection of relevant gene interactions in the final inferred network.

    We evaluated FLAP using synthetic data to assess the impact of incorrect prior knowledge and

real  lung  cancer  data,  using  prior  knowledge  from  various  gene  network  databases  (GIANT,

TissueNexus,  STRING,  ENCODE,  hTFtarget).  Our  findings  demonstrate  that  integrating  prior

knowledge improves the accuracy of inferred networks, with FLAP showing tolerance for incorrect

prior  knowledge.  Using  real  lung  cancer  data,  functional  enrichment  analysis  and  literature

validation confirmed the biological plausibility of the networks inferred by FLAP. Different sources

of  prior  knowledge impacted the results,  with GIANT providing the most  biologically  relevant

networks, while other sources showed less consistent performance.

    FLAP improves  GRN inference  by  effectively  integrating  prior  knowledge,  demonstrating

robustness  against  incorrect  prior  knowledge.  The  method’s  application  to  lung  cancer  data

indicates that high-quality prior knowledge sources like GIANT enhance the biological relevance of

inferred networks. Future research should focus on improving the quality and integration of prior

knowledge,  possibly  by  developing  consensus  methods  that  combine  multiple  sources.  This

approach has potential applications in cancer research and drug sensitivity studies, offering a more

accurate understanding of gene regulatory mechanisms and potential therapeutic targets.
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Chapter 1: INTRODUCTION

    Gene regulatory networks (GRNs) are complex systems of interconnected genes within cells,

governing the regulation of  gene expression and coordinating various  cellular  processes.  These

networks  represent  the  causal  relationships  among  genes,  describing  how  the  activation  or

inhibition of one gene can influence the expression of others. 

    Understanding the structure of GRNs is particularly valuable in life sciences and systems biology.

It  helps  reveal  the  biological  mechanisms  driving  cellular  functions  and  enables  the  study  of

complex diseases like cancer. In these diseases, dysfunction is not solely dependent on individual

genes but on the rewiring of gene interactions, which drive pathological processes.

    Understanding  the  biological  mechanisms  and  dysfunctions  within  cells  begins  with

comprehending the cell state. High-throughput technologies enable the capture of snapshots of the

cell state, providing data like gene expression, protein abundance, genetic variations, etc. Through

bioinformatic methods, it is possible to analyze and interpret these omics data to extract meaningful

evidence.  This information can then be used to infer GRNs by reverse-engineering through the

construction of mathematical models which allow to retrieve the structure of gene interactions that

generated the observed data.

    Although the problem of GRN inference has gained attention for the past twenty years, the

absence of a comprehensive method proficient in all aspects of the task underscores the complexity

of GRN inference. As a result, existing methods frequently target specific aspects or subsets of the

problem.

    Over the years,  the Dialogue for Reverse Engineering Assessment and Methods (DREAM)

challenges [1], [2], [3], [4] have served as a benchmarking competition for gene regulatory network

inference methods. These challenges unveiled the limitations of methods relying solely on gene

expression  data,  prompting  subsequent  research  efforts  to  develop  state-of-the-art  inference

methods that  integrate  multiple omic data,  perturbations,  and prior knowledge. Among the best

performing methods, Structural Equation Models (SEMs) became a successful framework to infer

GRNs using multi omics and perturbations. In particular Fused Sparse SEM (FSSEM) [5] is able to

infer two GRNs for paired datasets that share similar gene regulations, i.e. tumor samples vs healthy

samples.

    While  the  integration  of  multiple  omics  data  and perturbations  has  a  clear  definition  and

application, the same cannot be said for prior knowledge. Prior knowledge, referring to a priori

information  assumed  to  hold  some  degree  of  truth,  is  incorporated  variably  depending  on  the

specific assumptions and implementation of each method.
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    In our review of state-of-the-art methods, we observed that prior knowledge is primarily utilized

to reduce the complexity of the problem. Each method employs its own set of prior knowledge,

reflecting different assumptions and strategies for addressing the complexity of gene regulatory

networks.

    In contrast to existing approaches, we questioned whether prior knowledge could be used to

guide and enhance the inference process rather than merely reducing its complexity. In our project,

we  explored  a  novel  application  of  prior  knowledge,  aiming  to  enrich  the  inference  process.

Specifically, we investigated how prior knowledge could be effectively integrated with omics data

to guide the inference process, acknowledging the imperfection inherent in prior knowledge.

    From this exploration, we developed Fused Lasso Adaptive Prior (FLAP), a GRN inference

method designed to leverage prior knowledge of the GRN structure to guide the inference process

and improve its accuracy. FLAP integrates prior knowledge to enhance the inference process and

steer it toward more biologically plausible results.

    This thesis is structured in the following way: Chapter 1 introduces GRN inference, providing a

review of the methods developed over the years, from which we derive the motivations for our

work. Chapter 2 describes in detail the use of Structural Equation Modeling (SEM) methods applied

to GRN inference, along with the linear models used to solve them. We also explain FSSEM and

how our FLAP method extends it by incorporating prior knowledge. In Chapter 3, we test FLAP on

synthetic data to calibrate the integration of prior knowledge. Subsequently, we test FLAP on real

data along with prior knowledge retrieved from databases, validating the plausibility of the inferred

GRNs. Chapter 4 provides a summary of our work key points and future directions.

1.1 Biological background

    The biology of living organisms can be described by the central dogma of molecular biology,

which outlines the flow of genetic information within a biological system: information is stored in

DNA in the form of genes. Genes are expressed through their transcription into mRNA, which is

subsequently translated into proteins. These proteins perform various biological functions that are

essential  for  maintaining  life  by  controlling  biochemical  reactions,  regulating  the  levels  of

compounds, and more.
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   These  biological  processes  are  fundamentally  based  on  gene  interactions.  In  particular,

transcription factors (TFs) are proteins that help turn specific genes 'on' or 'off' by recognizing and

binding to specific DNA sequences,  known as DNA motifs,  located in the promoter regions of

target genes. By binding to these motifs, TFs can either activate or repress the transcription of target

genes, thereby modulating their expression levels.

    The interactions between genes and transcription factors form complex networks of regulatory

relationships. These networks, known as gene regulatory networks (GRNs), define the structure and

dynamics of gene expression within a cell.

    Reconstructing GRNs is especially relevant in the life sciences, such as medicine and biological

research, because it can reveal the underlying rules of conditions affecting cells, such as metabolic

dysfunction, cancer replication, and drug sensitivity or resistance.

    However, the direct observation of gene interactions within organisms is often impractical. To

address this challenge, researchers turn to high-throughput technologies that allow for the retrieval

of  large-scale  measurements  of  the  components  of  these  regulatory  processes,  such  as  DNA,

mRNA, proteins, and metabolites.

    When these measurements are considered individually, they are referred to as single omics data.

Genomics  pertains  to  DNA,  transcriptomics  refers  to  the  gene  expression  levels  of  mRNA,

proteomics pertains to the abundance of proteins, and metabolomics refers to the concentration of

metabolites.  When  single  omics  measurements  are  integrated,  they  form multi-omics  datasets,

which provide a more comprehensive view of biological systems by considering different molecular

layers.

    The task of reverse-engineering a GRN from high-throughput data is a hot topic in the fields of

bioinformatics and systems biology. Reverse-engineering a GRN involves inferring the underlying

network  structure  that  governs  gene  interactions  from  experimental  data.  This  process  uses

computational  and  mathematical  approaches  to  model  complex  gene  interactions,  aiming  to

describe the regulatory mechanisms that generate the observed gene expression patterns.
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1.1.1 Types of Data

    To construct gene regulatory networks, various types of biological data can be utilized, each

providing unique insights into the regulatory processes within cells. This section will focus on the

primary types of data used in this thesis, while also acknowledging other relevant data types in the

field.

Primary data types used in this thesis:

Gene Expression Data:

  Microarray  Data: This  technology  measures  the  expression  levels  of  thousands  of  genes

simultaneously by hybridizing cDNA to DNA probes fixed on a solid surface. It provides a snapshot

of gene expression under specific conditions and is valuable for identifying co-expression patterns

and differential gene expression.

    RNA Sequencing (RNA-seq): RNA-seq offers a detailed and quantitative measurement of gene

expression by sequencing cDNA derived from RNA samples. It captures the entire transcriptome,

including rare and novel transcripts, providing high-resolution data on gene expression levels.

    Single-cell RNA Sequencing (scRNA-seq): scRNA-seq measures gene expression at the single-

cell level, allowing for the analysis of cellular heterogeneity and the identification of distinct cell

populations within a sample.

Genomic Data:

    Single  Nucleotide  Polymorphisms  (SNPs): SNP microarrays  reveal  genetic  variations  at

specific nucleotide positions in the genome. These variations can influence gene regulation and

expression. Specifically, it  is possible to focus on condition-specific or tissue-specific GRNs by

using a combination of transcriptomics data (gene expression levels) and genomics data,  which

contains information about SNPs, variations of single DNA bases at specific loci in the genome.

These genetic variations can affect gene expression by altering non-coding regulatory elements of

genes, such as promoters and enhancers, and are referred to as expression quantitative trait loci

(eQTLs). eQTLs can be categorized as cis-eQTLs when they are close to the gene they regulate,
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typically within 1 megabase (1 Mb), or trans-eQTLs when they are located far from the gene or on a

different  chromosome.  Usually,  cis-eQTLs  are  more  informative  since  their  effect  on  gene

expression is stronger, and thus trans-eQTLs are often not considered.

Epigenomic Data:

    Chromatin Immunoprecipitation Sequencing (ChIP-seq): ChIP-seq identifies binding sites of

DNA-associated  proteins,  such  as  transcription  factors  and  histone  modifications,  across  the

genome.  This  data  helps  map  regulatory  elements  and  understand  the  mechanisms  of  gene

regulation.

  ChIP on  Chip: This  technique  combines  chromatin  immunoprecipitation  with  microarray

technology to identify protein-DNA interactions and histone modifications. It provides insights into

the regulatory regions of the genome.

Gene Perturbation Data:

    RNA Interference (RNAi): RNAi is used to knock down gene expression by degrading mRNA

transcripts. Perturbation of gene expression through RNAi can help identify the functional roles of

specific genes and their regulatory interactions.

   CRISPR/Cas9: This technology is used for gene knockout (KO), allowing precise deletion of

gene  function.  CRISPR/Cas9-induced  gene  perturbations  help  elucidate  gene  functions  and

regulatory networks.

    CRISPR Interference (CRISPRi): CRISPRi uses a catalytically inactive Cas9 (dCas9) fused to

a repressor domain to specifically inhibit gene transcription, resulting in gene knockdown. It is a

powerful tool for studying gene regulation by selectively repressing target genes.

    Gene Overexpression: This involves increasing the expression of a gene to study its effect on

cellular processes. Overexpression studies help determine the impact of elevated gene activity and

identify regulatory interactions.
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Other Data Types Used in the Field:

    While not the primary focus of this thesis, other types of omics data can also be instrumental in

constructing GRNs:

    Proteomic Data: Quantitative measurements of protein levels provide insights into the functional

state of the cell.  Proteomics can reveal post-transcriptional  regulatory mechanisms and protein-

protein interactions.

   Metabolomic  Data: Metabolomics  involves  the  analysis  of  metabolites  within  a  biological

sample. Metabolite profiles reflect the biochemical activity and metabolic state of cells, providing

additional information for GRN construction.

    Chromatin Accessibility Data: Techniques like ATAC-seq identify regions of open chromatin,

indicating active regulatory regions. This data can be linked to gene expression to infer regulatory

elements and interactions.

1.2 Mathematical Definition of a Network

    To understand the structure and analysis of Gene Regulatory Networks (GRNs), it is essential to

define the mathematical framework used to represent these networks. A network, in the context of

biological systems, is a collection of nodes (representing genes, proteins, or other molecules) and

edges (representing interactions between these nodes).

    A network can be mathematically represented as a graph G = (V , E) , where V is a set of

nodes (vertices), V = {v1 , v2 , ... , vn} , and E  is a set of edges,  E ⊆ V ×V , where each

edge represents an interaction between nodes.

    Graphs can be categorized based on the type of edges they contain. In an undirected graph, an

edge is defined as a two-element subset of the set of nodes  V . This means the edge does not

have  a  direction.  We  can  describe  an  undirected  edge  as  an  undordered  pair  of  vertices

e = {v i , v j } , which connects node v i  with node v j . Here, {v i , v j}={v j , v i} , indicating
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the bidirectional nature of the interaction. Undirected edges are typically drawn as simple lines

connecting the nodes.

    In a directed graph, an edge is defined as an ordered pair of nodes. This means the edge has a

direction, indicating the interaction goes from one node to another. We describe a directed edge as

an ordered pair e = (vi , v j) , where node v i  precedes node v j . Here, (v i , v j)≠(v j , v i) ,

reflecting the unidirectional nature of the interaction. 

Directed edges are typically drawn as arrows pointing from the source node v i  to the target node

v j .

    An adjacency matrix  A  is a square matrix used to represent a graph. The elements of the

matrix indicate whether pairs of nodes are adjacent (i.e., directly connected) in the graph. For a

graph with n nodes, the adjacency matrix A  is an n×n  matrix defined as follows:

A ij = {1 if there is an edge from nodev i to node v j

0  otherwise                                                

For undirected graphs, the adjacency matrix is symmetric ( A ij= A ji ).

For directed graphs, the adjacency matrix is not necessarily symmetric ( A ij≠ A ji )

   In  some networks,  edges  are  assigned  weights  to  represent  the  strength,  capacity,  or  other

attributes of the interactions between nodes. A weighted edge between nodes v i  and v j  can be

represented as (v i , v j ,w ij) , where w ij  is the weight of the edge. In the adjacency matrix, this

is reflected as:

W ij = {wij if there is an edge from node v i to node v j with weight wij

0   otherwise                                                                         

   Weighted edges provide more information than unweighted edges and are essential  in many

applications, such as modeling the strength of gene interactions in gene regulatory networks.
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    A path in a graph is a sequence of edges that connects a sequence of distinct nodes. Formally, a

path P  from node v i  to node v j  is represented as:

P={(v i , v k) , (v k , v l) , ... , (vm , v j)}

   In  the  context  of  gene  regulatory  networks,  a  pathway  represents  a  series  of  regulatory

interactions through which genes influence one another. For example, a pathway might involve a

sequence  of  transcription  factors  that  activate  or  repress  a  series  of  target  genes,  ultimately

controlling a biological process.

    A cycle in a graph is a path that starts and ends at the same node without traversing any edge

more than once. Formally, a cycle C is defined as a path where the starting node and the ending

node are the same, i.e., 

C={(v i , vk) , (vk , v l) , ... , (vm , v i)}

    A graph that contains at least one cycle is called a cyclic graph. These graphs are important in

biological systems where feedback loops are common, such as in metabolic networks or regulatory

circuits. A graph that contains no cycles is called an acyclic graph. When a directed graph is acyclic,

it is referred to as a Directed Acyclic Graph (DAG). DAGs are particularly important in modeling

hierarchical relationships, such as those found in certain gene regulatory networks where genes are

regulated in a cascading manner without feedback loops.

The degree of a node in a network describes the number of connections a node has with other

nodes. The degree of a node  v i , denoted as  deg (v i) , is the number of edges connected to

v i

deg (v i) = ∑
j

Aij

where A  is the adjacency matrix of the graph, and A ij  indicates the presence (1) or absence 

(0) of an edge between nodes v i  and v j .
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1.3 Review of gene regulatory network inference methods

1.3.1     Early methods for gene regulatory network inference using gene expression data  

    In the early days of systems biology, researchers sought to unravel the complexities of gene

regulatory networks using gene expression data as their primary source of information. With the

advent of high-throughput technologies such as microarrays and later, RNA sequencing, large-scale

gene expression data became readily available, sparking the development of computational methods

for gene network inference. 

    In this section, we explore some of the early methods used for gene network inference, their

underlying principles, and their limitations.

Correlation and relevance networks:

    Early methods for inferring gene regulatory networks from gene expression data constructed their

networks  using  co-expression  similarity  measures  based  on  correlation  coefficients  (such  as

Pearson's  or Spearman's)  or  Mutual  Information-based measures.  These approaches are  broadly

categorized into correlation networks and relevance networks.

    Correlation networks utilize co-expression similarity measures based on correlation coefficients

to identify relationships between genes based on their expression patterns. Methods like Weighted

correlation network analysis  (WGCNA), partial correlation, and Gaussian Graphical Models fall

into this category.

    Relevance networks, however, rely on Mutual Information-based measures to identify direct

regulatory  relationships  between  genes,  without  assuming  linear  relationships.  Approaches  like

Algorithm  for  the  Reconstruction  of  Accurate  Cellular  Networks  (ARACNE)  [6] ,  Context

Likelihood  of  Relatedness  (CLR)  [7] and  Minimum  Redundancy  NETwork  (MRNET)  [8] ,

conservative causal core (C3NET) [9] belong to this category.

     Correlation and relevance networks are symmetrical, with undirected edges. Causal relationships

between genes can only be assumed if the regulator genes are known in advance. Their primary use

is to explore the co-regulation of genes. These networks are often employed in combination with

clustering approaches to identify coherent gene modules.

9



Bayesian Networks:

    Bayesian Networks were among the first methods to allow the inference of gene regulatory

networks where edges represented putative causal dependencies between genes [10][11]. 

In this network, the structure is represented by a directed acyclic graph (DAG) where genes are

random variables drawn from conditional probability distribution where there is a set of parents for

each node.

    This structure defines the decomposition of the joint distribution over all random variables into

the conditional distribution of each gene. It is based on the Markov assumption, which states that

each gene is independent of its non-descendants.

    The inference process consists  of two parts.  Firstly,  there's  model selection,  which aims to

identify the network structure that best explains the observed data. This is done using Bayesian

scoring metrics such as Akaike’s Information Criterion (AIC) and Bayesian Information Criterion

(BIC) to penalize complex models and select the simplest ones  [12]. Secondly, there's parameter

learning. This part estimates the probabilities associated with each gene in the network.

    The  fundamental  limitation  of  Bayesian  Networks  lies  in  model  selection.  The number  of

topologies increases super-exponentially with the number of genes, making it infeasible to compute

the likelihood of all networks. For this reason, they are applicable only to small networks. However,

this  limitation  can  be  partly  compensated  for  by using  heuristics  or  locally  constrained search

techniques. Another limitation is the inability to model cycles (i.e., feedback loops). This issue is

addressed in dynamic Bayesian networks [13].

Regression based models:

    Regression methods are widely employed in gene regulatory network (GRN) inference due to

their ability to model the relationships between gene expression levels. In gene regulatory networks,

genes  often  regulate  the  expression  of  other  genes,  and  regression  methods  offer  a  means  to

quantify and comprehend these regulatory relationships. By considering the expression level of a

gene as the dependent  variable  and the expression levels  of its  regulator  genes  as  independent

variables, regression methods allow us to describe how changes in the expression levels of regulator

genes influence the expression level of the target gene.

    Linear regression models are commonly utilized for this analysis due to their simplicity. These

models assume that the relationship between the expression levels of genes can be captured by a
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linear equation. In this equation, the expression level of the target gene is a linear combination of

the expression levels of its regulator genes, with some noise.

    Fitting a regression model to gene expression data enables the identification of regulator genes

that are most strongly associated with the expression of a target gene. Since each gene is typically

regulated by only a small number of other genes  [14] [15], regularized linear regression methods

reframe  the  inference  problem as  a  feature  selection  problem.  Feature  selection  strategies  are

stepwise  selection  [16] ,  least  angle  regression  [17] ,  ridge  regression  [18] and  least  absolute

shrinkage and selection operator (LASSO)  [19] . Among these methods, LASSO has become the

most popular in gene network inference, due to its ability to shrink less relevant coefficients to set

them to exactly zero, thus leading to a sparser linear model with fewer predictors per target gene.

    Another category of regression approaches for GRN inference includes tree-based ensemble

regression  methods.  In  contrast  to  regularized  linear  regression,  these  methods  do  not  make

assumptions about gene regulation, allowing them to infer both linear and non-linear interactions.

    Random forest regression, exemplified by methods like GENIE3 [20] , is a tree-based approach.

In this method, the gene expression profile dataset is bootstrapped over samples, and a decision tree

is constructed over each bootstrapped dataset. This process results in separate rankings of genes as

potential regulators of a target gene. The final network is obtained by averaging the rankings over

all the decision trees. While this approach shares the concept of selecting a set of genes as potential

regulators with linear regression, it differs in that the user defines the maximum rank threshold to

include regulators that best explain the target gene expression profile.

    The main limitation of linear models is their effectiveness in situations where the gene expression

experiment is conducted within a slowly changing system or around a steady state. Linear models

tend to  provide  more  accurate  predictions  when applied  to  such data,  as  they  may struggle  to

capture  the  dynamics  of  gene  regulatory  networks  in  rapidly  changing  or  non-steady  state

conditions [21] .

Differential equation models:

    Approaches based on differential  equations represent  regression models aim to emulate the

biological mechanism of transcriptional regulation  [22][23][24] .  They are based on systems of

ordinary  differential  equations  (ODEs)  for  deterministic  modeling  and  stochastic  differential

equations  (SDEs)  for  stochastic  modeling.  A gene  network  is  described  by a  set  of  first-order

differential equations, which detail the rate of change of the gene expression of a target gene as a

function  of  the  expression  profiles  of  other  genes.  In  general,  differential  equations  are  a
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combination of nonlinear functions because all concentrations become saturated at some point in

time.

    ODE methods can be highly computationally demanding since they model multiple solutions to

explain observed expression profiles fluctuations in the data. Introducing constraints, such as known

kinetic  parameters  or  prior  knowledge  of  GRN structure,  can  significantly  benefit  ODE-based

methods.

1.3.2 DREAM challenges

    The Dialogue on Reverse Engineering Assessment and Methods  (DREAM) challenges [1][2][3],

[4] represent an important contribution to the research of GRN inference methods. DREAM was a

series  of  community-based  open  challenges  aimed  at  comparing  the  existing  GRN  inference

methods with a standardized evaluation and assess the best  performing methods,  understanding

their  advantages,  limitations,  and  biases.  The  knowledge  acquired  in  the  challenge  enabled

researchers to choose the best tool to use to address a specific problem.

    This need for benchmarking came from the lack of experimental validation of the inferred

networks, which were often tested on synthetic datasets or on real datasets in specific scenarios.

The series of DREAM challenges used in silico datasets, and real datasets of E.coli (prokaryotic),

S.cervisae (eukaryotic) and S.aureus (human pathogen). For the benchmarks in silico networks were

compared to their gold standard network that generated the gene expression dataset, while for the

real data they either used well known networks, like for E.coli, or the RegulonDB database.

    The DREAM5  [4] was especially important for methods that inferred causal gene regulatory

networks  because  it  allowed  to  benchmark  35  different  methods,  grouped  in  six  categories:

Regression,  Mutual  Information,  Correlation,  Bayesian  Networks,  Other  approaches  and  Meta

predictors. Overall, no category outperformed all the other ones, because withing each method there

was  a  mix  of  poorly  and  well  performing  methods,  and  even  among  the  well  performing  the

precision levels achieved were incredibily low. Of particular interest it was observed that among all

the categories, methods that made explicit use of direct transcription factor perturbations (knockout

or  overexpression)  or  used  the  information  about  TF-binding  sites  improved  their  prediction

accuracy for downstream targets. This founding led to the more recent GRN inference approaches

which integrated perturbations or chromatin immunoprecipitation data with gene expression.
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1.3.3 Multi omic and perturbation methods

Learning  from  the  conclusion  of  the  DREAM5  challenge  the  new  GRN  inference  methods

developed in two directions, the first was to use multi omics by using high throughput data of gene

expression and chromatin immunoprecipitation (ChIP-chip or ChIP-seq) and the second was to use

perturbations and the knowledge of the perturbation design (which genes were perturbed).

Multi omics methods:

    Multi omics methods, use chromatin immunoprecipitation (ChIP) to identify binding sites of

DNA-associated proteins near genes that are regulated by transcription factors. 

This information is combined with databases of TFs binding motifs (i.e. Joint Analysis of Sequence

Profiles  for  Unbiased  Recognition  of  Transcription  Factor  Binding  Sites  (JASPAR)  [25] ,

TRANScription FACtor database (TRANSFAC) [26], Encyclopedia of DNA Elements (ENCODE)

[27] , ChIP-X Enrichment Analysis (CHEA)  [28] to construct a connectivity network of all the

possible TF-target regulations. 

    Then this connectivity network is used as a prior knowledge for the inference methods.

Inferelator3.0  [29] performs  a  linear  regression  of  the  gene  expression  matrix  against  the

connectivity network to estimate a matrix of coefficients called transcription factor activity (TFA)

matrix,  which should reflect  the latent  activity of the transcription factors,  then uses clustering

algorithms to group TF-target edges, keep the edges in the cluster with the best score and discard

the  rest  to  obtain  the  GRN.  CellOracle  [30] instead  uses  Bayesian  bagging  to  select  relevant

connections. SCENIC  [31] uses the connectivity network as a set of candidate TF-target edges,

which are scored based on their area under the recovery curve (AUC) enrichment of all genes, then

follows a clustering step on each sample/cell and select for each cluster a GRN consisting of the

reoccurring edges. MERLIN  [32] which extends the expression based GRNs inference algorithm

MERLIN, a Bayesian framework of learning a probabilistic graphical model integrating additional

structure  prior  such  as  sequence-motifs,  ChIP  data  or  gene  knockout  expriments  PANDA

[33] integrates  the  prior  connectivity  networks  together  with  another  prior  protein-protein

interaction (PPI) network from STRING  [34] using gene expression. This is used to identify co-

regulated transcription factors and co-expressed target genes.

    Those methods have two main limitations, the first is that the accessibility to a DNA motif does

not necessarily imply the binding of a transcription factors since regulation often involve complexes
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of multiple transcription factors that may not be affecting the system, and second, the identification

of TF-target regulations relies on database annotations, which may be incorrect.

Perturbation methods:

    The  DREAM5  challenge  showed  that  the  use  of  known-target  perturbations,  also  called

perturbation design, allows inference methods to achieve higher accuracy. 

    In the work by Seçilmiş 2022  [35]  such GRN inference methods where further evaluated.

Benchmarks showed that even the worst method that uses perturbation design outperform those that

do not, like GENIE3 and TIGRESS which ranked first and second place in the DREAM5 challenge.

    However,  a  few  limitations  were  identified.  These  methods  cannot  function  without  a

perturbation  design,  and  their  performance  can  deteriorate  easily  if  the  perturbation  design  is

incorrect. This can happen either because the perturbation failed to work, or due to the high noise

level, making the perturbation signal difficult to detect in genes downstream of the perturbed gene.

1.3.4 Methods using gene expression and genetic variants

    To address the limitations of perturbation experiments, such as knockdown and knockout studies,

new gene regulatory network inference methods leverage naturally occurring genetic variations.

These methods operate under the assumption that genetic makeup influences transcription levels.

For instance, single nucleotide polymorphisms (SNPs) can affect the regulatory regions of genes,

giving rise to what is known as expression quantitative trait loci (eQTLs). The primary advantage of

using eQTLs is that genetic variants are free from external confounders, making them ideal for

inferring causal relationships within gene regulatory networks.

    Among those methods, Bayesian networks incorporating eQTLs [36] , likelihood test approaches

QDG [37] , and methods that rely on Structural Equation Model (SEM) were developed. The first to

use SEM for gene network reconstruction using only gene expression data were Xiong et al. (2004)

[38], followed by work such as Encompassing Directed Network (EDN) [39] , which incorporated

gene expression and eQTLs.

    More recently, Logsdon et al. (2010) [40] improved EDN by incorporating Adaptive Lasso linear

regression,  an enhanced version of regularized LASSO regression.  This  work was followed by
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further improvements with the introduction of Sparse Maximum Likelihood [41] (Cai et al, 2013),

Fused Sparse SEM (FSSEM) [5] and BFDSEM [42] .    

    FSSEM  is  particularly  relevant  as  one  of  the  state-of-the-art  methods  capable  of  jointly

estimating two networks (i.e., case vs. control, tumor vs. normal) and optimizing the inference to

identify the differential network. This optimization highlights differential gene regulations, making

FSSEM  a  powerful  tool  for  deciphering  gene  regulatory  networks  in  the  context  of  different

conditions or disease states.

1.3.5 Repositories of gene networks

    In addition to inference methods, there are databases that provide resources for the study of

GRNs. The first type are the transcription factors (TFs) databases, which collect TFs binding motifs

like ENCODE, TRANSFAC, CHEA and JASPAR. These TF-motifs are used by multi omics GRN

inference methods to pair the expression profiles of transcription factors with those of their potential

target genes that present the DNA motif in their sourrounding region.

    Search Tool for the Retrieval of Interacting Genes/Proteins (STRING)  is a database of protein-

protein interaction networks for a wide range of organisms, from bacteria to humans. It integrates

several types of data sources, including experimental data, curated databases (Biological General

Repository for Interaction Datasets (BioGRID) [43] , Kyoto Encyclopedia of Genes and Genomes

(KEGG)  [44] ,  Reactome  Pathway  Database  (Reactome)  [45] ,  Gene  Ontology  (GO)  [46] ,

Molecular INTeraction Database (MINT)  [47] , and Human Protein Reference Database (HPRD)

[48] ), text mining of scientific literature (Online Mendelian Inheritance in Man (OMIM)  [49] ,

PubMed), and computational predictions.

    Harmonizome 3.0  [50] is  a web-based tool designed to explore the functional relationships

between genes and proteins. It serves as a collector of genomic databases (i.e. TRANSFAC, KEGG,

MotifMap  [51] ,  Molecular Signatures Database(MsigDB)  [52] ),  aggregating and standardizing

functional genomics data. Users can explore gene functions, protein-protein interactions, and gene-

disease associations through this platform.

    The Genome-wide Integrated Analysis of gene Networks in Tissues  (GIANT) [53] database is a

collection  of  144 tissue-specific  functional  gene  networks.  These are  constructed  using  a  data-

driven  Bayesian  integration  method  that  incorporates  a  collection  of  datasets  from  14,000

publications  while  automatically  assessing  their  relevance  to  each  of  the  144  tissues  and  cell

lineage-specific functional contexts.
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    TissueNexus  [54] is a database of tissue-specific functional gene networks created using the

XGBoost machine learning method to integrate RNA-seq gene expression data from Genotype-

Tissue Expression (GTEx) [55] , cancer gene expression patterns from The Cancer Genome Atlas

(TCGA), regulatory elements like transcription factors and enhancer regions from ENCODE and

NIH Roadmap Epigenomics, functional annotations from Gene Ontology and pathway information

from the KEGG database. This database comprises of 49 tissue-specific human gene networks.

1.4 Motivations and objectives

    In our review of methods, we observed that despite the numerous research efforts invested over

the  last  twenty  years,  inferring  gene  regulatory  networks  remains  a  significant  challenge.  As

demonstrated in the DREAM5 challenge, the performance of these methods heavily depends on

their implementation rather than the specific approach category.

    In addition, the DREAM5 challenge revealed that no single gene regulatory network inference

method outperformed the others. This highlights the limitations inherent in inference methods, as

they tend to confine the problem to the parts they can handle well with their respective methods.

    Building on lessons learned from DREAM5, recent methods have incorporated multi-omics data,

gene expression perturbations, and prior knowledge to enhance the inference process. Moreover, the

latest  models  have  focused  on expanding  the  size  of  inferred  networks,  with  SEM employing

regularized linear regression emerging as the state-of-the-art data-driven method.

    We observed that while the use of multi-omics data and perturbations has a clear definition and

application, the utilization of prior knowledge depends on the assumptions and implementation of

each method. Generally, prior knowledge refers to "a priori" information with some degree of truth,

mainly used to reduce the complexity of the problem. In the methods we reviewed, prior knowledge

was employed to define a set of candidate regulators, identify genes that received perturbations, or

establish a fixed “seed” network of transcription factors with their target genes from which the

inference method selected the best-scoring edges.

    Then, we questioned whether it could be possible to use prior knowledge of gene interactions to

guide the inference process of a data-driven method towards more plausible gene interactions that

were already known, instead of solely reducing the complexity of the problem.

    To address this, we developed a novel approach called Fused Lasso Adaptive Prior (FLAP).

FLAP is an extension of the FSSEM method, which is based on structural equation models (SEM).
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While FSSEM is primarily data-driven, FLAP integrates prior knowledge about gene interactions to

guide the GRN inference process and improve the results.

    FSSEM, based on adaptive lasso linear regression, has proven to be among the best-performing

state-of-the-art methods. This method integrates multi-omic data of gene expression and genotypes

(SNPs) with genetic variant perturbations of eQTLs. Particularly noteworthy is FSSEM's capability

to  jointly  infer  two GRNs for  different  conditions  (e.g.,  tumor  vs  healthy)  and simultaneously

optimize the identification of their differential network, obtained by subtracting the two inferred

gene networks.

    FLAP, however, extends FSSEM by incorporating prior knowledge of gene interactions into the

inference process. This allows FLAP to not only rely on data but also leverage existing knowledge

to improve the accuracy of the inferred gene regulatory networks.

    We tested FLAP on synthetic data to assess its ability to account for the imperfections in prior

knowledge,  such  as  incorrect  or  missing  edges.  Subsequently,  we  applied  FLAP to  real  data

obtained  from  patients  with  lung  cancer  tissue  and  adjacent  healthy  tissue  for  control.  Prior

knowledge for these real data was obtained from various databases of gene interactions. We ran

FLAP on  these  real  datasets  using  different  prior  gene  interactions  to  infer  gene  regulatory

networks.  Finally,  we  validated  the  resulting  networks  obtained  with  FLAP by  assessing  their

biological  plausibility  using  over-representation  analysis  (ORA)  and  through  validation  against

existing literature.
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Chapter 2: METHODS

2.1 Structural Equation Model

    Structural Equation Model (SEM) is a linear model framework used by researchers to analyze

complex relationships  among variables.  It  encompasses  various  modeling  techniques,  including

linear regression, multivariate regression, path analysis, confirmatory factor analysis, and structural

regression. In fact, these models can be considered as particular cases of SEM, each with its own set

of assumptions and applications.

    SEM allows researchers to test hypotheses about how variables are related to each other and

estimate causal relationships between them. Variables in SEM can be classified into two types:

observed variables  and latent  variables.  Observed  variables  are  directly  measured,  while  latent

variables  represent  underlying  constructs  or  concepts  that  cannot  be  directly  observed  and  are

inferred from the observed variables. For instance, the latent variable "intelligence" can be inferred

from observed intelligence test scores.

    Furthermore,  variables  in  SEM  can  be  categorized  as  either  endogenous  or  exogenous.

Endogenous variables  are  dependent  variables  and influenced by other  variables  in the system,

while  exogenous  variables  are  independent  variables  not  influenced  by  other  variables  in  the

system.

    While SEM is most used in economics, sociology, and psychology, it has also found application

in the field of biology to infer causal relationships. 

    In biology, a special case of SEM is often employed where all variables are observed, and there

are no latent variables. This allows the SEM to not need a measurement equation model that infers

latent variables from the observed ones, and it is simplified into having only a structural model of

the form:

Y i = BY−i + FX i + ϵi

{
Y 1 = B Y−1 + F X1 + ϵ1

Y 2 = βY −2 + F X2 + ϵ2

...
Y p = B Y − p + F X p + ϵ p
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where

Y i  is the i-th endogenous variables

Y−i represents all the endogenous variables except Y i

X i  represents the exogenous variables assumed to influence Y i

B   is a matrix of regression coefficients for the endogenous variables Y−i

F   is a matrix of regression coefficients for the exogenous variables X i

ϵi    is the error term for the i-th equation, defined as a Gaussian vector of mean 0 and variance

σ
2 and are independent and identically distributed (i.i.d.)

    By including the exogenous variables in the model and estimating their effects using the matrix F,

we are controlling for the effects of these external factors on the endogenous variables, thus the

estimation of matrix B represents causal relationships and not a correlation.

Because  the  error  terms  are  assumed  to  be  uncorrelated,  the  SEM can  be  solved  as  a  set  of

independent linear regressions, typically using maximum likelihood estimation (MLE).

2.1.1 GRN inference with SEM

    In the context of inferring gene regulatory networks (GRNs), Structural Equation Model can be

used to infer causal relationships between genes.

These causal relationships between genes are represented as a GRN by the regression coefficients in

matrix B, while the causal relationships between perturbations and gene expression are represented

by regression coefficients in matrix F. For instance, the coefficient  βi , j indicates an edge from

gene i to gene j, whereas β j ,i indicates an edge in the opposite direction. The absolute value of

the coefficient indicates the magnitude of the regulatory effect, while its sign indicates whether the

regulation of the target gene expression is positive (promotion) or negative (inhibition).

    In SEM-based GRN inference methods, the data consist of endogenous variables representing

gene expression and exogenous variables representing gene expression perturbations.

    Common  types  of  perturbations  include  gene  knockouts/knockdowns,  which  involve  the

deliberate  manipulation  of  gene  expression  through  techniques  like  CRISPR/Cas9  or  RNA

interference (RNAi); drug treatments, where specific drugs targeting gene expression are introduced

to observe their effects on gene expression profiles; environmental perturbations, such as changes in

temperature,  pH,  or  exposure  to  specific  substances;  and  expression  Quantitative  Trait  Loci
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(eQTLs), which are genetic variants (SNPs) in non-coding DNA regions affecting the expression of

one or more genes (e.g., transcription factors binding sites, enhancers).

    Among these perturbations, eQTLs are preferred for several reasons. Firstly, eQTLs are part of an

individual’s DNA sequence and are determined at birth, making them unaffected by environmental

factors or other variables in the model. Secondly, they segregate in populations due to Mendelian

inheritance, ensuring their independence from other variables within the model.

In SEM, these characteristics make eQTLs ideal as exogenous variables for inferring causality and

were used in the works of (Cai et al., 2013)  [41], (Logsdon and Mezey, 2010)  [40] , (Liu et al.,

2008) [39] and (Zhou et al. 2020) [5].

    Under  the  assumption  that  each  gene  has  at  least  one  eQTL,  the  “Recovery”  Theorem in

(Logsdon and Mezey, 2010) guarantees that the network is uniquely identifieable. The presence of

associations between eQTLs and genes (but not their effects) needs to be identified using methods

like MatrixEQTL [56], which we will illustrate in the following section.

2.1.2 eQTL analysis with MatrixEQTL

    The process of identifying SNPs significantly associated with the expression of genes is known

as  eQTL analysis.  It  enables  the  discovery  of  genetic  factors  (SNPs)  involved  in  biological

processes,  diseases, and phenotypes,  and helps in constructing causal networks.  Causal variants

often occur in noncoding DNA regions, where they can alter gene expression by affecting gene

enhancers and binding sites for transcription factors.

    The most common approach to eQTL analysis is to perform separate testing for each SNP-gene

pair using linear or non-linear regression. Due to the size of the datasets, comprising millions of

SNPs for the genotype and tens of thousands of gene transcripts, the number of SNP-gene pairs to

test can reach into the billions, making the problem computationally intensive.

Applying non-linear methods has been shown to be too slow for even medium size datasets in the

order of ten thousand SNP-gene pairs [57] [58] , thus it is often preferred the use of linear models.

    MatrixEQTL is  software  developed  to  perform  fast  eQTL analysis  using  a  simple  linear

regression model  or  the ANOVA model.  This  method allows for the identification of  both cis-

eQTLs and trans-eQTLs. Cis-eQTLs are genetic variants located close to the gene they regulate,

often within the same chromosome (approximately 1 million base pairs) of their target gene. In

contrast,  trans-eQTLs are located farther away from the gene they regulate, sometimes even on
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different chromosomes. Among these two types, cis-eQTLs perturb the gene expression of their

target genes more significantly than trans-eQTLs and are often preferred as perturbations.

The MatrixEQTL simple linear regression model is defined as

Y =α+β1 X+β2 C+ϵ

where 

Y is the expression level of the gene  

X is the SNP value of the genotype, encoded as {0, 1, 2} for the homozigous dominant (AA),

heterozigous (aA and Aa) and homozigous recessive (aa) haplotypes.

α is the intercept of the model

β1 is the regression coefficient reflecting the effect of the SNP on the gene expression

C are the covariates that may affect the gene expression (e.g. gender, age)

β2 is the coefficient reflecting the effect of the covariates on gene expression

ϵ is the error term, a Gaussian random variable with zero mean and variance σ
2

    Then, using this simple linear regression, the significance of the SNP X using test statistics can

be calculated from the likelihood ratio (LR),  t-statistic or the F-test and obtaining a p-value by

testing for the hypothesis β1≠0 from the test statistics.

    The Matrix EQTL ANOVA (ANalysis of VAriance) model tests the significance of a SNP-gene

pair  by  assessing  whether  there  is  significant  difference  in  gene  expression  levels  among  two

different genotype groups. It can be seen as a linear regression 

Y =α+β1 x1+β2 x2+ϵ

where:

Y is the gene expression level of the gene 

x1 is a dummy variable that is equal to 1 when the individual has the homozigous dominant

genotype (AA) and 0 otherwise 
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x2 is a dummy variable that is equal to 1 when the individual has teh heterozigous genotype (Aa)

and 0 otherwise

α is the intercept of the model

β1 ,β2 are  regression  coefficients  representing  the  association  of  the  SNP  with  the  gene

expression level

ϵ is the error term, a Gaussian random variable with zero mean and variance σ
2

    Here, the genotype variables are treated as categorical, assuming only two values: 1 and 0. Then

it tests for a significant difference in the mean gene expression levels across these two different

genotypic groups by testing for the null hypothesis that βi≠0 , i=1,2 , with an F-test from which

it derives a p-value.

    Both linear regression and ANOVA model compute the Benjamini-Hochberg method to control

the false discovery rate (FDR) of SNP-gene associations.
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2.2 Evolution of regression methods for GRN inference

    As GRN inference methods evolved, those based on linear regression models also improved by

incorporating different assumptions into their regression models. These assumptions were tailored

to the biological characteristics of the GRN, leading to improved inference results. In this chapter,

we explore the evolution of linear regression methods and their utilization within GRN inference

(Fig. 1).

Fig. 1: Evolution of linear regression methods in GRN inference. Each successive method improves upon the previous

one by incorporating a new concept to better define the model. FLAP aims to advance the state of the art by guiding the

inference process through the integration of prior information.

Simple Linear Regression:

    The simplest form of linear regression used in GRN inference is the simple linear regression

model. It assumes a linear relationship between gene expression levels. Therefore, the network of

interactions is derived by solving the linear regression between each gene g and the other (p – 1)

genes, in the form:

Y g= ∑
i=1, i≠g

p

βiY i+ϵg

where 

Y g is the expression level of the gene g

Y i=[Y 1 i ,Y 2i , ... ,Y ni ]
T is the expression levels of gene i for n individuals.
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βi is the strength of the interaction between gene i  and gene g  , indicating an edge

ϵg is the error term representing the deviation from the observed value of Y g

p is the total number of genes

The solution is given by minimizing the objective function:

argmin
βi ,i=1 ,... , p ,i≠ g

‖Y g− ∑
i=1 , i≠g

p

βi X i‖2

2

By gathering all the βgi coefficients in a p x p  matrix B  we obtain our GRN.

    The  limitation  of  simple  linear  regression is  that  large coefficients  can lead  to  overfitting.

Overfitting occurs when the model learns the noise in the training data along with the underlying

pattern, resulting in poor performance on new, unseen data. Regularized linear regression methods

solve this  problem by adding a penalty term to the simple linear regression objective function,

penalizing  large  coefficients.  This  introduces  sparsity  in  the  results  by  shrinking  some  of  the

regression  coefficients  toward  zero,  as  in  Ridge  regression,  or  exactly  to  zero,  as  in  LASSO

regression.

    In the context of gene regulatory network inference, where there may be thousands of potential

predictor variables (e.g. gene expression levels), sparsity is a desirable property. Sparsity allows the

identification of a subset of regulator genes that have a significant impact on the expression of the

target gene, leading to a more interpretable and precise model.

Ridge regression:

    Ridge regression, performs linear regression by adding a L2 norm (also called Euclidean norm)

penalty term to the simple linear regression objective function. This penalty term is proportional to

the square of the magnitude of the coefficients, causing the estimated coefficients to shrink towards

zero. This form of sparsity helps in reducing the impact of less important features (genes) while still

retaining them in the model.

24



The Ridge regression objective function is expressed as: 

argmin
βi ,i=1 ,... , p ,i≠ g

‖Y g− ∑
i=1 , i≠g

p

βi X i‖2

2
+λ ∑

i=1 ,i≠ g

p

‖ βi ‖2

where  λ is the regularization parameter of the ridge penalty term that controls the amount of

shrinkage to be applied to the coefficients.

LASSO regression:

    LASSO (Least Absolute Shrinkage and Selection Operator) regression, like Ridge regression,

adds an L1 norm penalty term to the simple linear regression objective function. The penalty term is

proportional  to  the  absolute  value  of  the  coefficients,  enforcing  exact  sparsity  by  setting  less

relevant  coefficients  to  zero.  This  property  makes  LASSO particularly  useful  in  solving  GRN

inference as a feature selection problem, identifying gene regulators among many other genes.

The LASSO regression objective function is expressed as:

argmin
βi ,i=1 ,... , p ,i≠ g

‖Y g− ∑
i=1 , i≠g

p

βi X i‖2

2
+λ ∑

i=1 ,i≠ g

p

‖ βi ‖1

where λ is the regularization parameter of the penalty term that controls the amount of shrinkage

to be applied to the coefficients.

Adaptive LASSO regression:

    As mentioned earlier, LASSO regression improves upon simple linear regression by finding

sparse solutions and shrinking many of the βi  coefficients to zero, while allowing the model to

make predictions based on the few coefficients that are not zero. This reduces the prediction error of

the model by decreasing the model complexity (i.e., the number of non-zero variables). However, as

a side effect, it increases the bias of the estimation of  βi , known as the variance-bias tradeoff.

The variance-bias tradeoff means that by reducing the variance, LASSO provides sparse solutions

that  are  biased,  so  the  variables  that  LASSO  selects  as  meaningful  can  differ  from the  truly

meaningful variables.
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    To address bias in the solution, the Adaptive LASSO [59] was developed as an "oracle" estimator.

An estimator is considered oracle if it can correctly select the nonzero coefficients in a model with a

probability converging to one (it identifies the right subset of true variables) and if the nonzero

coefficients are asymptotically normally distributed (it achieves an optimal estimation rate).

This means tha given a set of p  variables {β1 ,β2 , ...,βp} , if we consider two subsets

A={i :βi≠0 }→Truly significant variables

Â={i : β̂i≠0 }→Variables selected by the model

an  oracle  estimator  selects  the  truly  significant  variables  with  probability  tending  to  one.

Asymptotically, both subsets coincide.

The Adaptive LASSO objective function is

argmin
βi ,i=1 ,... , p ,i≠ g

‖Y g− ∑
i=1 , i≠g

p

βi X i‖2

2
+λ ∑

i=1 ,i≠ g

p

ŵi‖ βi ‖1

where λ is the regularization parameter and ŵi is the adaptive weight that performs a different

penalization for coefficient βi to correct the bias in LASSO.

The adaptive weights are defined as 

wi=
1

| ^βi
initial |

γ

where ^
βi

initial is the initial estimate of the coefficients, usually obtained with Ridge regression

and more rarely from Ordinary Least Squares (OLS) or LASSO regression and γ is a positive

constant for adjustment of the adaptive weight (the authors suggest the possible values of 0.5, 1 and

2).
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    In the context of GRN inference, using Adaptive LASSO with its oracle property leads to better

selection  of  truly  significant  coefficients  representing  gene  interactions  (network  edges),  thus

reducing the number of false positives and false negatives. However,  the exact impact on false

positives and false negatives also depends on the specific dataset and the strength of the signals

from the relevant  predictors.  Examples of works solving SEM using Adaptive LASSO to infer

GRNs are (Cai et al., 2010) [41] and [40] (Logsdon and Mezey, 2010).

Adaptive Generalized Fused LASSO regression for joint modeling:

    The assumption of sparsity characterizes Ridge, LASSO, and Adaptive LASSO regression, and

holds for data that have samples from the same homogeneous group. However, in many real-world

scenarios, data collected for analysis often exhibit structures that can be categorized into different

strata, which are subsets of samples that share certain characteristics.

    For instance, in epidemiological studies, data might be stratified based on factors such as age,

gender, and ethnicity. In such scenarios, constructing independent sparse regression models for each

stratum would not take advantage of the common structure. Conversely, constructing a single model

for the entire dataset would mask the differences.

    The work of [60] combined the adaptive LASSO and the generalized fused LASSO [61] into the

adaptive  generalized  fused  LASSO regression,  a  framework  that  enables  the  joint  estimate  of

multiple sparse regression models for different strata.

The penalty is defined as follows:

penalty=∑
c=1

C

{ λ1∑
j=1

p

w j
(1 )

| βc , j | } + λ2∑
j=0

p

∑
c1 >c2

wc 1 ,c 2 , j
(2)

| βc 1 , j − βc 2 , j |

where  different  strata  are  (C1 , C2 , ...,C n) and  each  stratum C can  assume categorical  values

c ∈ { 1, ... ,C } , with C≥1 the total number of strata. 

The  first  term  enforces  the  lasso  sparsity  assumption  of  the  adaptive  LASSO  with  weights

w j
(1)

=| β̂ j | − γ and  the  second  term  is  the  fused  penalty  with  weights

w c1 , c2 , j
(2)

=| ^βc 1 , j − ^βc 2 , j | −γ ,  represents the sparsity  for coefficient  β j  from two different

strata  c1 and  c2  .  Unlike lasso sparsity, the fused penalty does not shrink the coefficients;

instead,  it  encourages  pairs  of  coefficients  to  have  similar  values  by  penalizing  their  absolute
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difference. Parameters  λ1 and λ2  govern the shrinkage for the lasso and fused lasso penalty

terms.

    The adaptive generalized fused lasso finds an application in the GRN inference method called

Fused  Sparse  Structural  Equation  Model  (FSSEM)  [5] which  can  jointly  infer  GRNs  for  two

different conditions (e.g. tumor vs healthy) and optimize the estimate for their difference network.

2.3 Fused Sparse Structural Equation Modeling (FSSEM)

The Fused Sparse Structural Equation Modeling (SEM) algorithm (Zhou et al., 2020) is designed to

infer Gene Regulatory Networks (GRNs) across two different conditions simultaneously. It utilizes

SEM with all observable variables of gene expression and gene perturbations, solving the inference

problem by employing an adaptive generalized fused LASSO regression model.

The  method  utilizes  gene  expression  levels  under  two different  conditions  (e.g.,  microarray  or

RNA-seq) along with gene perturbations (e.g., eQTLs or copy number variations). It particularly

focuses on using cis-eQTLs as perturbations, leveraging the "Recovery" Theorem (Logsdon and

Mezey, 2010). This theorem guarantees the identifiability of the network for both directed acyclic

graphs (DAGs) and directed cyclic graphs (DCGs) when at least one eQTL is associated with each

gene.

FSSEM uses the following SEM:

y i
(k )

= B(k) y i
(k )

+ F (k ) x i
(k )

+ μ i
(k)

+ ϵi
(k )

where 

k=1,2 are the two different conditions considered by the model

i=1 ,... , nk is the index of the considered gene for each condition k=1,2

B(k)
=[ B(1) ,B(2)

] is a n xn  matrix of p genes representing the unkown network structure under 

condition k
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F(k)
=[F (1 ), F(2)

]  is a n xq  matrix of p genes and q cis-eQTLs that captures the effect of of cis-

eQTLs on gene expression.

μi
(k) is a n x1  vector that accounts for the model bias in the SEM 

ϵi
(k) is a n x1 the vector the Gaussian noise with mean zero and variance σ

2

    This SEM makes common assumptions found in GRN inference methods. First, it assumes no

self-loops, meaning that the diagonal entries B i ,i
(k) are set to 0. Secondly, it assumes independent

Gaussian noise ϵi
(k) .

    Additionally, the SEM assumes that the  q  cis-eQTLs associated with each gene have been

identified using eQTL analysis tools (e.g. MatrixEQTL), providing the SEM with the positions of

the nonzero values of matrix F(k) but not their effects, which are estimated from the data. Lastly,

the SEM assumes no prior knowledge about the inferred network B(k) and imposes no restrictions

on the structure.

2.3.1 Joint inference of GRN in FSSEM

FSSEM defines the SEM as a negative log-likelihood function of the data 

L(B ,F ,μ ,σ2
) = −log∏

k=1

2

∏
i=1

nk

P( y i
(k)

∣x i
(k) ,μi

(k) ,B(k ), F(k)
)

= −∑
k=1

2 nk

2
log|I−B(k)|

2
+

(n1+n2)n
2

log(2π σ
2
)

+
1

2σ
2 ∑

k=1

2

‖( I−B(k )
)Y (k)

−F(k) X (k )
−μi

(k)
‖F

2

 ( 1 )

where 

Y (k )
=[ y1

(k) ,... , ynk

(k)
] are the gene expression profiles 

X (k)
=[x1

(k) ,... , xnk

(k)
] are the genotype profiles

nk is the number of samples for condition k

The  objective  function  is  obtained  by  minimizing  with  respect  to μ which  yelds  to

μ̂
(k)

=( I−B(k )
)
~Y (k )

−F(k) X (k) ,  where  data  are  centered  around  the  mean  with
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~Y (k)
=Y (k )

−1/nk∑
i=1

nk

y i
(k )1 , ~X (k)

= X(k)
−1/nk∑

i=1

nk

x i
(k) 1 and  integrating  the  adaptive  generalized

fused lasso penalty to obtain the following penalized negative log-likelihood function:

J (B , F) = −∑
k=1

2

nk log|1−B(k )|

+
1

2σ̂
2 ∑

k=1

2

‖( I−B(k)~Y (k)
−F(k) ~X (k)

)‖F
2

+λ∑
k=1

2

‖B(k)
‖1 , w(k )+ρ‖B(2)

−B(1)
‖1 , r

 ( 2 )

where 

‖B(k )
‖1 ,w(k)=∑

i
∑

j

w ij
(k)|Bij

(k)|  is the adaptive lasso penalty term with weights w ij
(k)

=1/|B̂ ij
(k)|

‖B(2)
−B(1)

‖1 , r=r ij|Bij
(2 )

−B ij
(1)| is the adaptive generalized fused lasso penalty for two conditions

with weight r ij=1/|B̂ij
(2 )

−B̂ij
(1)|

λ and ρ are the regularization parameters

The initial estimate of B=[B(1 ), B(2)
] is obtained from the Ridge regression:

{ B̂ , F̂ } = argmin
{ B, F }

∑
k=1

2
1
2

‖( I−B(k)
)
~Y (k)

−F(k)~X(k )
‖F

2
+λ‖B(k)

‖F
2  ( 3 )

from which is also obtained the estimate of σ
2 , σ̂

2 for the previous objective function

σ̂
2 =

∑
k=1

2

‖(I−B(k )
)
~Y (k )

−F(k)~X (k)
‖F

2

(n1+n2)n
 ( 4 )

    This ridge regression problem can be decomposed into single ridge regressions, where each gene

i  is regressed against the other  (n−1) genes, and each gene i has a set of associated cis-

eQTLs  ~
X Sq (i) where  Sq(i) is the index of SNPs found to be associated with gene  i by the

eQTL analysis tool (e.g. MatrixEQTL)
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argmin
{ Bi,−i , Fi ,S

q
(i) }
∑
k=1

2
1
2

‖
~Y i−Bi ,−i

(k ) ~Y−i
(k )

−Fi , Sq (i)
(k) ~XSq (i )

(k)
‖F

2
+λ‖Bi ,−i

(k)
‖F

2  ( 5 )

Minimizing the objective function in ( 5 ) w.r.t. Fi , Sq (i )

(k) yelds to the closed form solution 

Fi , Sq (i )

(k) =(
~Y i

(k)
−B̂i ,−i

(k)~Y−i
(k )

)
~X Sq( i)

(k)T
(
~XSq (i )

(k) ~X Sq(i)
(k)T

)
−1  ( 6 )

Substituting  Fi , Sq (i )

(k) into  (5)  and minimizing  w.r.t.  B i ,−i
(k)  gives  the  initial  estimate  of  GRN

B̂(k)  

B i ,−i
(k) =~Y i

(k)P i
(k)~Y−i

(k )T
(
~Y −i

(k) Pi
(k)~Y−i

(k)T
+λ I )

−1  ( 7 )

where Pi
(k )= I−

~XS q(i)
(k)T

(
~XSq (i )

(k) ~XSq (i )

(k)T
)
−1 ~XS q(i)

(k)

and when B i ,−i
(k) is substituted in Fi , Sq (i )

(k) gives the solution for the initial estimate F̂(k)

Fi , Sq (i )

(k) =~Y i
(k )

Γi
(k )~X Sq (i)

(k)T
(
~XSq ( i)

(k )~X Sq (i )

(k)T
)
−1 ( 8 )

where Γi
(k) = I−Pi

(k)~Y−i
(k)T

(
~Y−i

(k ) Pi
(k)~Y −i

(k)T
+λ I )

−1~Y−i
(k )

After B̂(k) and F̂(k) are estimated, the estimate of σ̂
2 is given in (4). 

The tuning parameter λ for the ridge regression is selected by 5-fold cross-validation.

Now the objective function J (B , F )  for the the SEM in (2) can be solved. 

By Minimizing (2) w.r.t. F(k) yelds to Fi , Sq (i )

(k) in (8). Substituting Fi , Sq (i )

(k) (8) in J (B ,F ) (2)

gives an objective function for J (B)

J (B)=H (B)+∑
i=1

Ng

f i(Bi ,−i)  ( 9 )

Ng number of genes
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where 

H (B) = −∑
k=1

2 nk

2
log|I−B(k)|

2

+
1

2σ̂
2 ∑

i=1

Ng

∑
k=1

2

‖
~Y i

(k) Pi
(k)

−B i ,−i
(k ) ~Y −i

(k) P i
(k)

‖2
2

 ( 10 )

and

f i(Bi ,−i) = λ(‖B i ,−i
(1)

‖1 , w(1 )+‖B i ,−i
(2)

‖1 , w(2 ))+ρ‖Bi ,−i
(1)

−Bi ,−i
(2)

‖1 , r  (11)

    Because the function J (B) is non-convex and non-smooth, the FSSEM algorithm minimizes it

using the inertial version of the proximal alternating linearized minimization (iPALM) method [62].

This  method  employs  block  coordinate  descent  (BCD)  optimization,  which  decomposes  the

objective function into blocks of variables. These blocks are optimized successively, with one block

of variables optimized at a time while holding the others fixed. The hyper-parameters λ and ρ

can be computed using grid search cross-validation (CV) or Bayesian Information Criterion (BIC).

                Network B(1)          Network B(2)                 Differential network Δ B

Fig. 2: Example of gene regulatory networks B(k)  obtained with FSSEM from synthetic datasets. From left to right

we have Network B(1) , Network B(2) for the two cases k = 1 and k = 2, then we have the Differential Network
Δ B = B(2)

− B(1 ) .  Blue edges  represent  positive  regulation  (promotion),  while  red edges  represent  negative
regulation (inhibition).
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2.4 Fused Lasso Adaptive Prior (FLAP)

    In our project, we developed the Fused LASSO Adaptive Prior (FLAP) method as an extension

of the FSSEM method for GRN inference. FLAP utilizes prior knowledge of gene interactions by

providing a flexible guide for the inference process, accounting for imperfections such as missing

and incorrect interactions.

    To achieve this, we modified the FSSEM method by directly incorporating prior knowledge into

the ridge regression process, which forms the initial estimate. This initial estimate, obtained using

ridge regression, is then used to create adaptive weights to guide the feature selection of relevant

edges in the network. By integrating prior knowledge at this stage, the feature selection step is

guided not only by the data but also by known gene interactions.

    To integrate prior knowledge into ridge regression, we make use of penalty factors. Penalty

factors are weights that determine the extent to which each coefficient is penalized during the model

fitting process.

In ridge regression, the penalty term with penalty factors is given by:

penalty term = λ∑
j=1

Ng

p j‖β j‖
2

where

λ  is the regularization parameter

Ng  is the number of genes in the dataset

p j  is the penalty factor associated with the j-th predictor. 

β j  is the coefficient of the j-th predictor

    By assigning penalty factors to individual coefficients, we can adjust the regularization applied to

each variable in the model. This is particularly useful when certain variables are believed to be more

or less important, or when there is prior knowledge suggesting that specific variables should be

included or excluded from the regularization process.

    For instance, assigning a higher penalty factor to certain variables implies that these variables

will be more heavily penalized during the estimation process, effectively reducing their impact on

the model predictions. On the other hand, assigning a penalty factor of zero to a variable means that
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it will not be penalized at all, allowing it to be included in the model without any regularization. A

common example is to not penalize demographic variables like sex and age in medical studies to

include them in the final model.

    Thus,  in  our  FLAP method,  integrating  prior  knowledge  through  penalty  factors  in  ridge

regression allows us to tailor the regularization to better account for the importance of different

edges of the network. By improving the initial  estimate we aim to improve the GRN inference

process which heavily reliy on the definition of the penality term used during feature selection.

    An important observation is that we designed FLAP to only integrate prior knowledge about the

presence of interactions. This is because databases usually collect known interactions rather than

their absence. Additionally, since every source of prior knowledge weights their edges differently,

we cannot use them to scale our penalty factors. Therefore, we decided to set all penalty factors to

the same chosen value. Next, we describe how we integrate the prior knowledge in FLAP. 

    

    The first step consists in creating an adjacency matrix A as a prior network of known edges of

size Ng x Ng  where Ng  is the number of genes in the dataset and A i , j=1  where it exists a

direct edge from gene i to gene j and A i , j=0 otherwise. 

    The second step generates the matrix of penalty factors P from the prior network A and a choosen

value for the penalty factors 

P = ( 1 − A )+( penalty factor value * A )

where:

( 1 − A ) is  the  opposite  matrix  of  A,  which  creates  the  penalty  factors  =  1  of  for  the

coefficients that will be fully penalized

( penalty factor value * A ) is the matrix that defines the penalty factors for the edges that are

present in the prior network A and that will be penalized with the penalty factor value chosen by the

user.
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Reminding the solution of the initial estimate in the ridge regression step of FSSEM defined in

formula (7)

B i ,−i
(k) =~Y i

(k) P i
(k)~Y−i

(k )T
(
~Y −i

(k) Pi
(k)~Y−i

(k)T
+λ I )

−1

where the ridge regression had an uniform  λ I  penalization and  I is the identity matrix, we

modified (7) to include penalty factors. 

B i ,−i
(k) =~Y i

(k) P i
(k)~Y−i

(k )T
(
~Y −i

(k) Pi
(k)~Y−i

(k)T
+λ Di

(k )
)
−1

where Di
(k )

=diag(Pi ,−i)={ p1,1, p1,2 ,... , p1 ,i−1 , p1 , i+1 ,... , p1 ,Ng } is the diagonal matrix obtained for

gene i,  without the column i  since like in FSSEM we do not consider self-loops where gene i

regulates itself. 

    Notice that we define Di
(k ) with k = 1,2 the two different cases, allowing the user to define two

separate prior networks. This feature can be useful in scenarios where there are different known

interactions, such as paired data of tumor samples and healthy samples.

             Network B(1)                     Network B(2)                 Differential network Δ B

Fig. 3: Example of gene regulatory networks B(k)  obtained with FLAP from synthetic datasets. From left to right we

have Network  B(1) , Network  B(2) for the two cases k = 1 and k = 2, then we have the Differential Network

Δ B = B(2)
− B(1 ) .  Blue edges  represent  positive  regulation  (promotion),  while  red edges  represent  negative

regulation (inhibition).
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2.4.1 Challenges in Integrating Prior Knowledge

    Integrating prior knowledge into FLAP presented several challenges due to the possibility of

incomplete or imperfect information. In particular, the prior knowledge about edges in the gene

regulatory  network  could  contain  missing  or  erroneous  information,  which  needed  to  be

appropriately addressed. 

    The first challenge we encountered was determining the appropriate values for penalty factors to

encode the prior knowledge about edges in the initial estimate of FLAP. This was crucial because

penalty factor values range from 0, where the edge is always included in the result (no penalty), to

less than 1, where the edge is favored to appear in the result (partial penalty). Thus, it was essential

to find the optimal penalty factor values.

    The  second challenge was  to  determine  whether  integrating  prior  knowledge in  the  initial

estimate effectively guided the inference process compared to integrating it as penalty factors in the

second  step  of  feature  selection.  We compared  FLAP's  performance  in  these  two  scenarios  to

evaluate which approach performed better when prior knowledge was imperfect.

  

     step 1: penalty term in initial estimate                        step 2: penalty term in feature selection

      (ridge regression) (adaptive generalized fused lasso)

λ∑
k =1

2

∑
i
∑

j

pij
(k)

‖βij‖
2      VS λ∑

k =1

2

∑
i
∑

j

w ij
(k )

∗ p ij
( k)|Bij

(k)|+ρ‖B(2)
−B(1)

‖1 , r

    We obtained the adaptive weights combined with the penalty factors w ij
(k)

∗p ij
(k) by multiplyaing

the adaptive weights matrix  W (k)
=1/|B(k)| with the penalty factors matrix  P , which can be

expressed as (W (k)
)

T P(k) .

    In the next chapter we address these challenges, testing our FLAP method on synthetic datasets

and  evaluated  the  performance  by  comparing  the  results  with  the  gold  standard  network  that

generated the synthetic data. This allowed us to assess how well FLAP performed in the presence of

incomplete or imperfect prior knowledge.
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Chapter 3: Testing and Validation of FLAP on Synthetic and Real Data

3.1 Synthetic Data Simulations

    In this section we present the tests with FLAP on syntetic data to solve the two challenges in

integrating  prior  knowledge,  we  evaluate  FLAP robustness  to  noise  and  compare  FLAP with

FSSEM and BDFSEM, the other two state-of-the-art methods for joint inference of GRNs.

3.1.1 Generation of Synthetic Dataset

    Following the setup of SML [41] and FSSEM [5], we generated data for directed acyclic graphs

(DAGs). However, we chose not to simulate synthetic directed cyclic graphs (DCGs) because this

setup generates the network structure edges by adding random edges without controlling for the

presence or number of cycles. Therefore, we limited our study to the DAG case.

Fig. 4: Scheme of synthetic dataset generation. Gene expression data are generated from a random reference network

and random SNPs using the SEM equation. Imperfect prior networks are generated by modifying the reference network

that  generated  the  data.  FLAP takes  in  input  gene  experssion,  SNPs,  SNPs-gene associations  and  prior  networks

encoded as penalty factors. The resulting networks are evaluated by comparison with the reference network.
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    First,  the  two  reference  gene  networks B(k) for  k=1,2 are  constructed  by  randomly

generating their structure in the form of adjacency matrices A p× p
(k)  for k=1,2 and p  is the

number of genes. In these matrices, a value of 1 indicates the presence of an edge between two

genes, and a value of 0 indicates the absence of an edge.

    The structure is built starting from the adjacency matrix A (1) . Given the number of genes p

and the desired average number of edges s , the total number of edges for A (1)  is generated

using a random binomial distribution defined as

total number of edges ∼ Bin (d= p× p ,
s

( p−1)
)

where 

d= pxp  is the number of possible edges in the network

s
( p−1)

 is the probability of success, meaning the probability of a gene to have an edge with any

of the other ( p−1)  genes

The adjacency matrix A (1) is initially filled with zeros and a new edge is iteratively added until

reaching the  previously  generated  total  number  of  edges.  Each  new edge is  represented  as  an

additional 1 in one of the  d= p×p possible indexes  of the adjacency matrix  A (1) and this

position is generated using a uniform random distribution U (1 , d) .

    Then,  the  adjacency  matrix  A (2 )  for  condition  2  is  obtained  by  randomly  changing  a

percentage df  of the 0 and 1 entries of A (1) . By default df  is set to 10%.

    From the adjacency matrices A (1)  and A (2 )  representing the GRN structure, the weights of

the network edges  B(1)  and  B(2)  are generated as follows: for any entry  A ij=1 , a value

B ij  is assigned from a random variable uniformly distributed over the interval [0.5, 1] or [-1, -

0.5].

    The genotypes of k SNPs were simulated using the R package “qtl”, selecting second filial

generation  cross  (F2  cross),  with  values  of  1  and  3  representing  the  dominant  and  recessive

homozygous genotypes, and 2 representing the heterozygous genotype. 

Subsequently, two genotype data matrices, X (1 )  and X (2) , were generated for conditions 1 and

2, respectively, by randomly sampling {1, 2, 3} with corresponding probabilities {0.25, 0.5, 0.25}.
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The regulatory effects of the corresponding eQTLs were assumed to be 1 (and 0 otherwise) and

were stored as matrices F(1) and F(2) of size p×k . For the synthetic dataset we assumed that

each gene has the same number of eQTLs 
k
p

.

    The error terms E(1 )  and E(2 )  of the SEM simulate the noise in the generated data that can

arise from various sources such as measurement errors, environmental factors, or other unexplained

variability. Because we are in the context of linear regression the error terms are assumed to be

normally distributed.

Each error term E(k) for k=1,2 is obtained from a multivariate normal distribution

En× p
(k)

∼N (μ=0 , Σ=σ
2 Ip)

where 

n  is the number of samples for the generated data

p  is the number of genes

μ=0  is the mean equal to zero

Σ is the covariance matrix

I p is the identity matrix of size p

σ
2 is the noise variance, it quantifies the spread or dispersion of the random error term. A high 

          value indicates more variability in the noise, while a lower value indicates that the noise is 

          more tightly clustered around the mean, which is zero.

At last, the gene expression level Y (1)  and Y (2)  are calculated using the formula of the SEM 

Y (k )
=(I−B(k)

)
−1

(F(k) X (k )
+ E(k )

)    

where k=1,2  are condition 1 and condition 2.

In summary a synthetic dataset is generated by setting the number of samples n , the number of

genes  p ,  the number of SNPs  k ,  the average number of edges  per gene  s ,  the noise

variance σ
2 and the percentage of differential edges among the two networks df .
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3.1.2 Generation of Synthetic Prior Network

    The prior networks we generated utilize the gold standard gene regulatory networks used to

generate  the  data,  represented  by  the  weighted  edge matrices  B(1)  and  B(2)  for  case  and

control, respectively.

    From each gold standard network, we converted it into an adjacency matrix of zeros and ones,

representing a perfect prior network. 

    Subsequently, we generated imperfect prior networks by modifying the perfect prior network.

The prior network with correct and missing edges was generated by randomly converting a chosen

percentage of the adjacency matrix values from 1 to 0. This type of prior network will be used in

sections 3.1.4 and 3.1.5. 

    We then generated two types of prior networks with correct and additional wrong edges. The first

type (type1) was created by adding to the perfect prior network a number of random edges equal to

a percentage of the perfect prior edges. For example, given a perfect prior network of 100 edges, an

imperfect prior with additionally 20% of wrong edges would have 20 more wrong edges. This type

of prior network will be used in section 3.1.4. The second type (type2) is generated by adding to the

perfect prior network a number of random edges equal to a percentage of perfect prior edges while

also  removing the  same number  of  correct  edges.  This  generates  a  prior  with  a  constant  total

number  of  edges.  At  a  percentage  of  100% additional  wrong edges,  the prior  network  will  be

comprised solely of wrong edges, matching the count of the edges in the perfect prior. Percentages

above 100% remove all the correct edges but add more wrong edges than were originally present in

the perfect prior. This type of prior will be used in section 3.1.5.

3.1.3 Classification and performance metrics

    In network analysis, edges can be classified by comparing an evaluated network to a reference

network  that  represents  the  true  set  of  interactions.  These  edges  are  categorized  into  four

classifications: true positives (TP),  false positives (FP),  true negatives (TN) and false negatives

(FN).

    True positives (TP) are edges that are present in both the evaluated network and the reference

network, representing correct interactions.
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    False positives (FP) are edges that are present in the evaluated network but not in the reference

network, indicating interactions that do not actually exist.

    True negatives (TN) are edges that are absent in both the evaluated network and the reference

network, representing correctly identified non-interactions.

   False  negatives  (FN)  are  edges  that  are  absent  in  the  evaluated  network  but  present  in  the

reference network, representing missed interactions.

    In this thesis, these classifications are used to describe imperfect prior networks in relation to the

reference  perfect  prior  network.  Imperfect  prior  networks  have  missing  edges  that  are  false

negatives, wrong edges that are false positives, and correct interactions and non-interactions that are

true positives and true negatives, respectively.

    In addition to using classification metrics to describe prior networks, we also utilize them to

evaluate the accuracy of inferred networks. When comparing an inferred network (the evaluated

network) to a gold standard network that generated the synthetic data (the reference network), we

use classification metrics (TP, FP, TN, FN) to compute performance metrics. These performance

metrics,  which  include  precision,  recall,  and accuracy,  provide  an  assessment  of  the  network's

accuracy.

    Precision measures the proportion of correctly predicted interactions among the total positive

predicted interactions. It shows how often the model is correct when predicting the positive class.

Precision =
TP

TP+FP

   Recall  measures  the  proportion  of  correctly  predicted  interactions  among  the  total  true

interactions in the gold standard network. 

Recall =
TP

TP+FN
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    Accuracy measures the proportion of correctly predicted interactions (both positive and negative)

among all interactions.

Accuracy =
TP+TN

TP+TN +FP+FN

3.1.4 Challenge 1: Calibration of penalty factors

    To determine the appropriate values for the penalty factors to use in the ridge regression for the

initial estimate, we tested FLAP on synthetic datasets (see section 3.1.1) and their associated prior

networks with different levels of imperfect information.

    For each dataset, we generated 20 replicates, each comprising of n=50  samples and p=50

genes.  Each  gene  was  associated  with  3  eQTLs,  totaling  k=150  eQTLs  considered.  The

underlying  reference  network was generated  to  have  an  average  number  of  edges  per  gene  of

s =1.5 and a noise variance  σ
2
=0.25 .

    For each dataset, we generated the following prior networks: one perfect prior network identical

to the structure of the reference network, three prior networks with 75%, 50%, and 25% of missing

edges, and six prior networks with 25%, 50%, 75%, 100%, 150%, and 200% of incorrect edges

added to the perfect prior network.

    The penalty factor values ranged from 0, where the prior edges are not penalized, to 1, where the

prior edges are fully penalized. Additionally, we considered intermediate values of 0.25, 0.5, and

0.75,  where  the  prior  edges  are  partially  penalized.  Subsequently,  we  tested  FLAP with  each

combination of prior network and penalty factors.

    To evaluate the performances of the resulting networks, we compared them with their  gold

standard  counterparts  using  the  Edge  Difference  Distance  (EDD)  method  from the  R  package

"NetworkDistance" [63] . The resulting network distances were averaged over the 20 replicates for

each dataset.

    This method measures the distance between two networks by computing the Frobenius norm of

their difference, considering the weights of the edges of the networks.
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We calculated the difference between the networks obtained from the results

Δ Binferred=B 2inferred – B 1inferred

and their corresponding gold standard networks 

Δ Bgold standard=B 2gold standard – B 1gold standard  

for each combination of prior and penalty factor values.

distanceEDD(Δ Bgold standard ,Δ B inferred)=‖Δ Bgold standard−Δ Binferred‖F

The resulting network distances are illustrated in the following 3D barplot.

Fig. 5: Network distance evaluated by comparing the inferred differential network with the gold standard differential

network. The smaller the distance the better the result. The plot shows the performance of FLAP at the varying of

penalty factors value for the perfect prior and imperfect prior with missing or additional wrong edges.

    From the resulting network distances, we found that the network distance was minimal when the

edges of the prior network were encoded as zeros. Additionally, we observed that the distance for

the same prior network increased as the penalty factor value increased.

43



This was expected because, as the penalty factor value increased, the impact of the prior edges

became smaller, and the resulting network became more dependent on the data. Eventually, with

penalty factors equal to 1, the network relied solely on the data.

    Based on these observations, we conclude that the most effective way to integrate prior network

information  in  the  ridge  regression  step is  to  set  the  penalty  factors  to  0,  thus  removing their

penalization in the initial estimation step.

3.1.5 Challenge 2: Evaluating the optimal step to integrate prior knowledge

    To assess whether integrating prior knowledge as penalty factors into the initial estimate of the

ridge regression step was more effective than using penalty factors in the second step of the feature

selection,  we  compared  the  performance  of  the  two  approaches  using  the  following  synthetic

datasets (see section 3.1.1) and synthetic prior networks. 

    The synthetic dataset we used is defined like the previous case, comprising of n=50  samples,

p=50  genes, with 3 eQTLs associated with each gene, resulting in a total of k=150  eQTLs.

The expected average number of edges per gene was set  at  s =1.5 and the noise variance at

σ
2
=0.25 .

    We created two types of prior networks: a prior network with correct and missing edges, and a

prior network with correct and additional wrong edges (type2) (see section 3.1.2).

Prior networks with missing edges  :  

    We created five types of priors with missing edges. In each new prior, the proportion of correct

edges (True Positives) decreased by 25%, while the missing edges (False Negatives) increased by

25%. These priors ranged from a 100% correct prior with 0% missing edges (perfect prior) to a 0%

correct prior with 100% missing edges (no prior).

Prior networks with additional wrong edges:

    Similarly, we created seven types of priors with false positive edges. In each new prior, the

proportion of correct edges (True Positives) decreased by 25%, while the false positive edges (False

Positives) increased by 25%. These priors ranged from a 100% correct prior with 0% false positive

edges (perfect prior) to a 0% correct prior with 200% false positive edges (no prior).

    We then evaluated the performance using precision and accuracy metrics to compare the resulting

differential network with the gold standard differential network.
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Fig. 6: Precision and accuracy values for the integration of prior knowledge in the initial estimate of the network using

ridge regression (blue) and in the feature selection step using adaptive generalized fused lasso (red). The performance of

FSSEM is shown in yellow for comparison. The plots show that integrating prior knowledge in the initial estimate with

ridge regression is more robust in the presence of false positives in the prior network, resulting in better precision.

    The results show that the presence of false positive edges in the prior network noticeably affects

precision and accuracy. Integrating the prior network in the first step of the initial estimate yields

better results compared to integrating it in the second step of feature selection. The performance

deteriorates more rapidly with an increased proportion of false positive edges.

    For instance, the values for precision fall below the level of not using any prior information when

the prior network is integrated in the first step of the initial estimate, specifically at 0% correct

edges and 100% false positives. Similarly, when using prior knowledge in the second step of feature

selection, precision falls below the level of not using any prior information at 75% correct prior and

25% false positives.

    This result demonstrates that integrating prior knowledge in the initial estimate of the network

works as a flexible guide for the inference process, providing our FLAP method with robustness in

case of incorrect priors, both for missing edges and false positives.
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3.1.6 Robustness to noise

    In this test, we evaluated the robustness of our FLAP gene network inference method to noise.

We tested the performance of the method using synthetic datasets generated with various levels of

noise variance: σ
2
=0.01 (low), σ

2
=0.1 (medium), and σ

2
=0.25 (high). 

    Three datasets were generated, each with n=50  samples,  p=50  genes, with 3 eQTLs

associated with each gene, making a total of k=150  eQTLs and an expected average number of

edges per gene s=1.5 . The datasets were created using the same seed to ensure that they differ

only in their noise levels.

    

   For each dataset, we ran FLAP twice with two different priors. The first prior was the perfect

prior, while the second was a random prior obtained by bootstrapping the perfect prior 100 times.

The bootstrapping of the prior network was performed using the R package “igraph”  [64] .  We

utilized the function “rewire” with the option “keeping_degseq(niter=100)”, which executes 100

iterations of the rewiring algorithm. In each iteration, the rewiring algorithm selects two arbitrary

edges ((a,b) and (c,d)) and substitutes them with (a,d) and (c,b) if they do not already exist in the

graph.

    Once again, we evaluated the performances of the resulting networks, by comparing the inferred

differential networks with the gold standard differential network using the Edge Difference Distance

(EDD) method from the R package "NetworkDistance".

Fig.  7: Network  distance  for  the  differential  network  using  data  with  varying  level  of  noise  variance

σ
2 = 0.01 ,0.1 ,0.25 and comparing the use of perfect prior network (blue) and a randomly rewired prior network

(red) with the same connectivity. The plot shows that the performance of FLAP do not depend on the connectivity of the

network used but on the correct prior information.
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    The results show that at low noise variance ( σ
2
=0.01 ), both the perfect prior and rewired

prior resulted in small network distances, with the rewired prior showing slightly higher (worse)

values. As noise variance increased to medium ( σ
2
=0.1 )  and high ( σ

2
=0.25 )  levels,  the

difference  in  network  distance  between  the  perfect  prior  and  rewired  prior  became  more

pronounced. In both cases, the perfect prior consistently outperformed the rewired prior, resulting in

significantly lower network distances.

    These results suggest that the FLAP method is robust to noise, and its performance is attributed to

the information provided by the prior rather than the properties of the prior network used. This

conclusion is supported by the fact that the rewired prior, while having the same properties as the

perfect prior, had different edges.

3.1.7 Comparing FLAP with FSSEM and BDFSEM

    We compared the performance of our method, FLAP, with two other methods: FSSEM and its

Bayesian version, BDFSEM.

    For this comparison, we used the same synthetic datasets and gold standard networks as in the

previous sections. FLAP was tested with both data and a perfect prior network, while FSSEM and

BDFSEM relied solely on data.

    Additionally, we conducted tests on synthetic data with varying numbers of samples. FSSEM and

BDFSEM showed improved performance with an increased number of samples, as reported in their

original papers. Therefore, we tested FLAP in the "small n large p" scenario, where the number of

samples is smaller than the number of features, as well as when the number of samples was equal to

or greater than the number of features, to determine if our method had the potential to outperform

them under these conditions. 

    The synthetic dataset consisted of  p=50  genes,  k=150  SNPs, and had noise variance

σ
2

= 0.25 . Sample sizes n tested were 40, 50, 80, 100, and 150.
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Fig.  8: Performance comparison of  FLAP (green),  FSSEM (blue),  and BDFSEM (red).  The x-axis  represents  the

number of samples in the datasets, ranging from 40 to 150, while the y-axis represents the values for precision and

recall for the average of the single networks of case and control (B1,B2) and their differential network (ΔB = B2 - B1). 

    From  the  resulting  plot  we  conclude  that  FLAP with  the  perfect  prior  achieves  better

performances compared to FSSEM and BDFSEM. BDFSEM requires a higher number of samples

to achieve comparable performance to FLAP and FSSEM.
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3.2 Real data analysis

    After testing our method on synthetic data, we proceeded with our research to assess its capacity

in inferring gene networks using real biological data. This step allowed us to evaluate its practical

applicability and to validate whether the inferred gene networks can effectively identify relevant

biological processes.

    For our study, we utilized data sourced from the Gene Expression Omnibus (GEO) database 

under the accession number GSE33356  [65] . This dataset provides genome-wide screening results 

of genotype profiles and microarray gene expression profiles from non-smoking female lung cancer

patients in Taiwan. It is comprised of two subseries datasets: one for gene expression data and one 

for genotype data. Details are reported in the following table:

Data Type Platform SubSeries Number
of Probes

Numper of Paired
Samples

Gene Expression GPL570: [HG-U133_plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array

GSE19804 54,675 60 pairs of cancer and
normal lung tissue

samples

Genotype (SNP) GPL6801: [GenomeWideSNP_6]
Affymetrix Genome-Wide Human SNP 6.0

Array

GSE33355 906,551 61 pairs of cancer and
normal lung tissue

samples

Table 1: SubSeries composing the dataset GSE33356. SubSeries GSE19804 contains the gene expression profiles, 

while SubSeries GSE33355 contains the genotype (SNP) profiles.

    For our analysis, we considered only the subjects that had paired samples in both the gene 

expression and genotype datasets. This resulted in a total of 42 patients, each with 4 profiles: a pair 

of gene expression profiles (one for cancer tissue and one for normal tissue) and a pair of genotype 

profiles (one for cancer tissue and one for normal tissue).

    The raw microarray gene expression data of 54,675 probes were normalized using the R package

affy [66] with custom Brainarray CDF version 25 (released on Jan 5, 2021) [67] . The normalization

method applied was the robust multi-array average (RMA) method [68] to derive gene expression

levels.

In  total,  we  acquired  gene  expression  levels  for  20,422  genes  along  with  their  Entrez  IDs.

Subsequently,  we  retrieved  gene  annotations  from the  Ensembl  database  using  the  R  package

biomaRt  [69] , querying the Entrez IDs on the Genome Reference Consortium Human Build 37
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(hg19).  Following filtration for protein-coding genes,  we were left  with 16,925 genes and their

respective locations.

    The  genotypes  of  906,551  SNP probes  were  converted  into  SNP identifiers  utilizing  the

annotation  file  “GenomeWideSNP_6.na35_annot.csv.zip”  obtained  from the  Affymetrix  official

site. This annotation file also provided the positions of the SNPs on the chromosomes.

The raw genotype data were converted from unphased haplotypes into numerical values using the

mapping  AA:  0  ,  AB:  1,  BB:  2.  Any  missing  genotypes  were  imputed  using  the  R  package

Synebreed (version 0.12-14) [70] using the Beagle imputation method [71] .

SNPs were filtered to keep those with minor allele frequency (MAF) above 0.05 [72] , aiming to

enhance the statistical power of the SNPs potentially associated with gene expression level. 

    Next, we utilized the R package MatrixEQTL to detect cis-eQTLs within a 1 M base pair (bps)

range from the open reading frame (ORF) of the gene. MatrixEQTL was run as linear regression

model  for  each  gene-SNP pair,  including  covariates  for  patient  sex  and  tissue  type  (tumor  or

normal). From the resulting cis-eQTLs, we selected those with p-value < 1e^-4 and FDR < 0.05.

Additionally, we filtered those with SNPs having a MAF > 0.05 in both tumor and control samples,

ensuring genetic variability within each condition.

This process yielded a total of 3002 cis-eQTLs, involving 1100 genes and 1848 SNPs.

Given the algorithm's primary objective of identifying differential gene networks between tumor

and normal tissues, we focused on differentially expressed genes likely to be biologically relevant

in  distinguishing  between  the  two  conditions.  Consequently,  we  conducted  a  differential  gene

expression analysis using the R package limma [73] , selecting differential genes with adjusted p-

values < 0.01.     

Subsequently, filtering our dataset for differential genes that have at least one cis-eQTL associated,

we obtained a dataset of 289 genes and 463 cis-eQTLs.

After generating the dataset, we used the list of genes within it to extract the necessary networks of

prior knowledge required to guide the gene network inference process. The prior knowledge was

obtained from the databases of GIANT, TissueNexus, STRING, hTFtarget and Harmonizome 3.0.
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GIANT database: 

    The  Genome-wide Integrated  Analysis  of  Networks  in  Tissues  (GIANT) database provides

tissue-specific  gene  networks  for  a  collection  of  144  human  tissues.  These  networks  feature

weighted undirected edges that represent functional associations among genes. The edges connect

genes involved in the same pathway or biological process, with the edge weights indicating the

confidence of the connection in terms of probability (e.g., an edge weight of 0.8 means there is an

80% confidence in the existence of the edge).

    Since our dataset comes from lung cancer patients, we retrieved the network for lung tissue (file:

“lung_top.tsv”) from the GIANT download section. This network initially comprised 25,825 genes

and 59,798,192 edges. We then filtered this network for the 289 genes in our dataset, resulting in a

network of 232 genes and 3,037 edges. These undirected edges were split into 6,074 directed edges.

    To generate a high-confidence prior network, we subset this network to include only edges with

weights above the threshold of 0.2, removing low-confidence edges.  This filtering resulted in a

network comprised of 119 genes and 416 undirected edges,  which were split  into 832 directed

edges.

TissueNexus database: 

    The TissueNexus database comprises 49 tissue-specific human gene networks for a collection of

49  human  tissues.  These  networks  feature  weighted  undirected  edges  that  represent  functional

associations among genes, where edges connect genes involved in the same pathway or biological

process. The edge weights indicate the confidence of the connection in terms of probability.

    We obtained the gene network specific to lung tissue (file: “lung.zip”) from the download section

of the TissueNexus site (https://www.diseaselinks.com/TissueNexus/download.php). This network

initially comprised 16,889 genes and 5,171,074 edges. We then filtered this network for the 289

genes in our dataset, resulting in a network of 271 genes and 1,704 edges. These undirected edges

were split into 3,480 directed edges.

    To generate a high-confidence prior network, we subset this network to include only edges with

weights above the threshold of 0.6, removing low-confidence edges.  This filtering resulted in a

network comprised of 242 genes and 653 undirected edges, which were split into 1,306 directed

edges.
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STRING database:

    The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) is a database that

enables  users  to  construct  protein-protein  interaction  networks.  It  integrates  information  from

various sources to build network interactions and calculates confidence scores for the identified

protein-protein interactions.

    In our study, we utilized STRING to query our dataset of 289 genes using their Entrez IDs,

specifying the organism as "human." We filtered the resulting network to include only experimental

sources  and  a  confidence  level  above  0.150  (low)  to  ensure  an  adequate  number  of  gene

interactions.  This  filtering  process  yielded  a  network  of  181  genes  and  249  undirected  edges.

Subsequently, we converted these undirected edges into directed ones, resulting in a total of 498

directed edges.

hTFtarget database:

    The hTFtarget is a comprehensive database of human transcription factors (TFs) and their targets,

constructed  by  integrating  resources  from  ChIP-seq  experiments  of  659  TFs,  high-confidence

binding sites of 699 TFs, and epigenetic modification information.

    From the hTFtarget site download section (http://bioinfo.life.hust.edu.cn/hTFtarget#!/download),

we  obtained  the  list  of  all  1,342,129  TF-target  regulations  (file:  “TF-Target-information.txt”),

involving 495 TFs and 38,183 targets. These regulations are directed from TFs to their targets and

do not have weights representing their confidence.

    Next, we filtered the list of regulations to include only the 289 genes in our dataset, resulting in a

list  of  399 TF-target  regulations  involving 8 TFs and 191 targets.  We then constructed a  prior

network, considering the regulations as directed edges from the TFs to their corresponding targets.

Harmonizome 3.0 database:

  The  Harmonizome  3.0  is  a  collector  of  genomic  databases  aggregating  and  standardizing

functional genomics data and genes interactions.

    From the Harmonizome 3.0 site, we retrieved TF-target regulations from three distinct sources:

TRANSFAC,  CHEA,  and  ENCODE.  TRANSFAC provides  100,562 interactions,  CHEA offers

386,777 interactions,  and ENCODE supplies  1,655,385 interactions.  Upon filtering for  the  289

genes in our dataset, no interactions from TRANSFAC remained. Only 94 interactions persisted

from  CHEA,  all  involving  the  same  3  TFs.  Consequently,  both  sources  were  disregarded  as

potential  priors.  Similarly,  after  filtering  the  same 289 genes,  ENCODE yielded 914 TF-target
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interactions, involving 270 genes (6 TFs and 264 targets), meeting our requirements sufficiently,

and thus retained as prior knowledge.

Table 2: The dimensions of the prior networks used in the inference process.

    Once we had the dataset and priors from the different databases,  I tested the algorithm by

combining the preprocessed dataset of 289 genes and 463 cis-eQTLs with a different prior for each

run. Additionally, to establish a comparison, we conducted a run without incorporating any prior

network (equivalent to the FSSEM method). 

The runs produced the following gene regulatory networks. 

Table 3: The table displays the dimensions of the gene regulatory networks inferred through FLAP using different

priors.  Three  types  of  GRNs  are  considered:  normal  tissue  (NormalGRN),  tumor  tissue  (TumorGRN),  and  the

difference network (DifferenceGRN) obtained from the difference between the tumor tissue network and the normal

tissue network.
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    However, it is noteworthy that when using the GIANT and TissueNexus prior networks without

filtering for edge weights, the method did not converge to a conclusive result within the defined

parameters. Conversely, the subsetted versions of the GIANT and TissueNexus networks, which

were  filtered  by  gene  weights  above  a  threshold,  produced  results.  This  suggests  that  the

effectiveness of our method may vary depending on the characteristics of the prior network used.

    We observed that the prior networks utilized for our dataset exhibited minimal overlap in terms of

gene interactions. 

Fig.  9: This  figure  illustrates  two  Venn  diagrams  representing  the  intersection  of  prior  gene  regulatory  networks

obtained  from various  sources.  The left  Venn diagram shows the  common edges  among the  prior  networks  from

GIANT, TissueNexus, and STRING. On the right,  the Venn diagram displays the common TF-target  edges among

ENCODE, hTFtarget, and CHEA.

    Therefore, we opted to expand our prior networks by identifying gene interactions that were

consistent across multiple databases: GIANT and TissueNexus (considering all edges as well as

edges weighted > 0.2 and > 0.6 respectively), along with ENCODE and hTFtarget. By focusing on

the intersections of these databases, we aimed to enhance the reliability of our prior information,

selecting only those interactions that agreed across multiple sources.
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Table 4: The dimensions of the prior gene regulatory networks obtained from the intersection of different databases.

Resulting in the following networks:

Table 5: This table presents the dimensions of the gene regulatory networks (GRNs) inferred through FLAP using the

intersection  of  prior  networks  from  two  different  databases.  Three  types  of  GRNs  are  considered:  normal  tissue

(Normal), tumor tissue (Tumor), and the difference network (Differential) obtained from the difference between the

tumor tissue network and the normal tissue network.

3.2.1 Validation with Over-representation analysis

    To validate the inferred networks and their relevance in the context of lung cancer, we performed

an  over-representation  analysis  (ORA).  ORA is  a  type  of  functional  analysis  used  to  identify

pathways or biological processes that are significantly enriched in a list of genes that have been

identified as relevant based on prior analysis or experimental results. 

  This  method  evaluates  whether  predefined  sets  of  genes  representing  pathways,  biological

processes, or functional categories are over-represented in a given list of genes more than would be

expected by chance. In other words, the given list of genes is enriched for the gene sets and the

biological processes they represent.

    In our case, we are validating our inferred gene regulatory networks (GRNs) by evaluating if the

genes present in the differential network are enriched for gene sets related to lung cancer. We used
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curated gene sets from the Molecular Signature Database (MSigDB) C2 collection, which includes

gene sets obtained from various sources such as online pathway databases, biomedical literature,

and individual domain experts. This collection comprises 7,233 gene sets. We filtered this collection

for gene sets containing the keywords “lung cancer,” “lung tumor,” “lung carcinoma,” and “LUCA”

in their descriptions, resulting in a subset of 200 gene sets related to lung cancer.

Then to evaluate the over-representation, for each gene set we construct a 2x2 contigency table:

In Gene Set Not in Gene Set 

In Gene list a b

Not in Gene List c d

where 

a : the number of genes in the list of genes of the differential network that are also present in the

gene set

b : the number of genes in the list of genes of the differential network that are not in the gene set

c : the number of genes not in the list of genes of the differential network but that are present in the

gene set

d : the number of genes that are neither in the list of genes of the differential network nor in the

gene set

    We then applied Fisher’s exact test to determine whether the proportion of genes in the gene list

that are also in the gene set is significantly different from what would be expected by chance. The

test  calculates the probability of observing the given overlap under the null  hypothesis that the

genes in the differential network gene list are randomly distributed with respect to the gene sets. 
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The formula for Fisher’s exact test is:

p-value =
(a+b)!(c+d)!(a+c )! (b+d )!

a !b ! c !d !n !

where n = a+b+c+d is the total number of genes considered. 

    The p-value obtained indicates the likelihood that the observed overlap between the gene list and

the gene set is due to random chance. We chose a p-value threshold of < 0.05 to consider gene sets

as significantly enriched in the gene list of our differential network (Table 6 and Table 7).

Table 6: Significantly enriched gene sets for FSSEM (not using priors) and FLAP using prior information from a single

source, namely ENCODE, hTFtarget, STRING, TissueNexus and GIANT. For each gene set we highlighted in yellow

the best p-value.

 
Table 7: Significantly enriched gene sets for FSSEM (not using priors) and FLAP using prior information from an

intersection of sources, GIANT and TissueNexus, GIANT with edge weights > 0.2 and TissueNexus edge weights >

0.6), ENCODE and hTFtarget. For each gene set we highlighted in yellow the best p-value.

    Among all methods, those with more enriched gene sets are FLAP with GIANT (>0.2) and FLAP

with  the  combined  prior  of  GIANT (>0.2)  ∩  TissueNexus  (>0.6),  with  5  enriched  gene  sets,

compared to the 4 of the method without the use of priors.

This  could be explained by GIANT being tissue-specific  for lung and of  better  quality  overall

compared to TissueNexus, which is also specific for lung.
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    FLAP with prior networks from STRING, hTFtarget, and TissueNexus only had 2 enriched gene

sets, suggesting they may be of lesser quality as sources of prior information.

    ENCODE seems to perform only slightly worse than the method without prior, with 3 enriched

gene  sets.  This  may  indicate  better  data  quality  compared  to  other  TF-target  databases  like

hTFtarget.

    The ORA results show that the biological plausibility of the inferred networks on real lung cancer

data depend on the quality of the prior knowledge used. 

    Compared with the  original  method FSSEM and its  enrichment  in  4  gene  sets,  ENCODE

performed sligly worse with 3 enriched gene sets of which 1 with better  p-value than FSSEM.

Meanwhile GIANT performed better than FSSEM, with 5 enriched gene sets of which 3 out of 5

had also better p-value (Table 6). 

    The use of priors obtained through the intersection of the single ones did not achieve better

results than their single prior counterparts, with GIANT ∩ Tissuenexus being the best one with 5

enriched gene sets, 2 of which had better p-value than FSSEM.

    Considering the low consensus on the gene interaction among the prior knowledge sources

shown in  Fig.  9,  these  results  suggest  that  those  databases  contains  a  high  number  of  wrong

informations about gene interactions. This underscores the importance of using high-quality prior

knowledge in network inference.

3.2.2 Validation with literature

    One limitation of using functional enrichment analysis,  such as ORA, for the validation of

inferred gene regulatory networks is that it focuses solely on the list of genes, without considering

the interactions or edges between them. As a result,  important regulatory relationships between

genes may be overlooked, hindering the comprehensive understanding of gene regulatory networks.

    To address this limitation, it is beneficial to validate the inferred gene regulatory networks by

comparing them with existing literature. In our case, validation with literature can focus on the

differential gene network, where relevant genes are identified as dysregulated due to the different

sets of edges that connect them in the tumor and control cases.

    To validate our results, we focused on the genes within the inferred differential networks, as these

are  the  ones  identified  as  dysregulated.  We  ranked  these  genes  based  on  their  degree,  which

represents the number of edges connected to each gene and is considered a measure of the level of
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their  dysregulation.  Genes  with  more  differential  edges  are  considered  more  dysregulated.

Subsequently,  we extracted  the  top  ten  ranked genes  as  a  signature  of  each network.  We then

conducted a literature search using PubMed to evaluate the involvement of these signature genes in

"Lung  Adenocarcinoma"  (LUAD) or  "Non-Small  Cell  Lung Cancer"  (NSCLC),  given  that  the

dataset focuses on patients affected by LUAD, which is a type of NSCLC.

    Here in Table 8 we summarize the research in literature for the differential networks. In the first

column are listed the resulting network obtained with each prior, in the second column we report

how many of the genes in the top ten signatures have been reported to be involved with LUAD or

NSCLC. In the third column is the total number of relevant papers involving those genes.

Table 8: Summary of the validation with literature for the top ten signature genes.

In the following tables (Table 9 - Table 16), we present in detail the top ten signature genes for each

differential network. The list of relevant publications can be found in the supplementary material

S1. 
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Table 9: Top 10 signature genes for the FSSEM method, equivalent to FLAP without prior network. For each gene, we

list their Entrez ID, gene name, degree in the differential network, and the number of publications involving the gene

with LUAD or NSCLC.

Table 10: Top 10 signature genes for the FLAP method with a prior network from GIANT with edge weights above 0.2.

For each gene, we list their Entrez ID, gene name, degree in the differential network, and the number of publications

involving the gene  with LUAD or NSCLC. Genes that  also appear in  the top 10 signature genes of  FSSEM are

highlighted in yellow.
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Table 11: Top 10 signature genes for the FLAP method with a prior network from TissueNexus with edge weights

above 0.6. For each gene, we list their Entrez ID, gene name, degree in the differential network, and the number of

publications involving the gene with LUAD or NSCLC. Genes that also appear in the top 10 signature genes of FSSEM

are highlighted in yellow.

Table 12: Top 10 signature genes for the FLAP method with a prior network from STRING. For each gene, we list their

Entrez ID, gene name, degree in the differential  network, and the number of publications involving the gene with

LUAD or NSCLC. Genes that also appear in the top 10 signature genes of FSSEM are highlighted in yellow.
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Table 13: Top 10 signature genes for the FLAP method with a prior network from ENCODE. For each gene, we list

their Entrez ID, gene name, degree in the differential network, and the number of publications involving the gene with

LUAD or NSCLC. Genes that also appear in the top 10 signature genes of FSSEM are highlighted in yellow.

Table 14: Top 10 signature genes for the FLAP method with a prior network from hTFtarget. For each gene, we list

their Entrez ID, gene name, degree in the differential network, and the number of publications involving the gene with

LUAD or NSCLC. Genes that also appear in the top 10 signature genes of FSSEM are highlighted in yellow.
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Table 15: Top 10 signature genes for the FLAP method with a prior network from the intersection of the prior networks

of GIANT and TissueNexus. For each gene, we list their Entrez ID, gene name, degree in the differential network, and

the number of publications involving the gene with LUAD or NSCLC. Genes that also appear in the top 10 signature

genes of FSSEM are highlighted in yellow.

Table 16: Top 10 signature genes for the FLAP method with a prior network from the intersection of the prior networks

of GIANT (edge weights above 0.2) and TissueNexus (edge weights above 0.6). For each gene, we list their Entrez ID,

gene name,  degree in  the differential  network,  and the number of  publications involving the gene with LUAD or

NSCLC. Genes that also appear in the top 10 signature genes of FSSEM are highlighted in yellow.
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Table 17: Top 10 signature genes for the FLAP method with a prior network from the intersection of the prior networks

of hTFtarget and ENCODE. For each gene, we list their Entrez ID, gene name, degree in the differential network, and

the number of publications involving the gene with LUAD or NSCLC. Genes that also appear in the top 10 signature

genes of FSSEM are highlighted in yellow.

   We observed that our FLAP method identified several signature genes relevant to LUAD or

NSCLC, comparable to those identified by the FSSEM method. Notably, FLAP revealed some new

genes not found by FSSEM, indicating that different sources of prior knowledge can uncover new

insights into gene regulations from the same data. For instance, the genes AURKA, identified using

functional gene networks like GIANT and TissueNexus, has 9 publications linking it to lung cancer.

Similarly, YTHDF1 was associated with lung cancer in 14 studies when the prior network from

STRING was used.  Additionally,  the transcription factors ATF and ELF1 were identified when

using prior networks from transcription factor databases. These findings suggest that the choice of

prior knowledge significantly influences the identification of relevant genes.
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Chapter 4: Conclusions and Discussion

    This study addresses the challenges inherent in inferring gene regulatory networks (GRNs) and

proposes a novel approach, Fused Lasso Adaptive Prior (FLAP), to enhance the inference process

by integrating prior knowledge of gene interactions.

    In Chapter 1, we reviewed GRN inference methods developed over the last two decades, aiming

to understand the challenges  of  the problem and the efforts  made to  overcome limitations.  We

discussed how the DREAM5 challenge marked a pivotal point after which modern state-of-the-art

inference methods emerged. Among these, Structural Equation Models (SEM) became a successful

framework,  allowing  the  use  of  multi-omics,  perturbations,  and  relatively  straightforward

regularized linear models with machine learning techniques.

    In Chapter 2: Methods, we explained how SEM could be used to infer GRNs and how linear

regression methods were used to incorporate assumptions to better reflect the biological nature of

the problem. We then introduced the Fused Lasso Adaptive Prior (FLAP) method, an extension of

Fused  Sparse  SEM (FSSEM),  and  demonstrated  how it  incorporates  prior  knowledge  of  gene

interactions to guide the GRN inference process.

    In Chapter 3, we tested FLAP on synthetic and real data. We used synthetic data to address two

challenges regarding the integration of imperfect prior knowledge. The first challenge involved the

calibration of penalty factors to encode the prior knowledge. We concluded that the most effective

way to integrate prior knowledge was to set the penalty factors to 0, thereby always including the

known gene interactions in the initial estimate. This ensures that the initial estimate can guide the

second step of feature selection based on data and prior knowledge.

    In the second challenge, we compared the effectiveness of integrating prior knowledge in the

ridge regression step with its integration in the adaptive fused lasso step. Our results indicated that

integrating prior knowledge in the ridge regression step is more robust, especially by having better

precision when the prior knowledge presents wrong gene interactions.

    We then tested FLAP robustness by comparing its performance with noise in the data and noise in

the prior network. To assess this, we used data with an increased level of noise along with a perfect

prior network and a randomly rewired prior network with the same connectivity. Our results showed

that while noise in the data degrades the performance of FLAP, its performance degraded twice as

fast with the randomly rewired prior network compared to the perfect prior network. This indicates
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that  FLAP performance  is  not  solely  dependent  on  the  characteristic  connectivity  of  the  prior

network but rather on the information contained in the prior network.

    Additionally, we compared our method, FLAP, with two other existing methods, FSSEM and

BFDSEM, under different sample size conditions. Our results showed that FLAP has the potential

to outperform FSSEM in terms of precision for various sample sizes, while maintaining similar

recall values. Although BFDSEM showed promising performance with increased sample sizes, our

method consistently outperformed both BFDSEM and FSSEM in terms of precision.

    To evaluate the biological relevance of the inferred networks, we utilized a dataset from the GEO

database and integrated multiple sources of prior knowledge to guide the gene network inference

process. Our results demonstrated that the quality of the inferred networks depends significantly on

the quality of the prior knowledge used. Using high-quality prior networks, such as GIANT and

ENCODE, resulted in more enriched gene sets related to lung cancer in the over-representation

analysis (ORA).

Furthermore, we validated FLAP's inferred networks by conducting a literature search on the top 10

signature genes. Our results showed that a similar number of signature genes were relevant for lung

cancer in FLAP as in FSSEM. However, FLAP identified additional signature genes relevant to lung

cancer  that  were  not  present  in  the  signature  genes  identified  by  FSSEM.  This  suggests  that

different prior knowledge sources may reveal new information about the same data.

    While our FLAP method shows promising results in inferring gene regulatory networks, it is

essential to acknowledge its limitations.

One of  the  main  challenges  inherent  in  utilizing  prior  knowledge for  network  inference  is  the

quality  of  the  available  information.  While  our  method  showed  some  tolerance  for  incorrect

information when tested on synthetic data (Chapter 3.1), the analysis on real data (Chapter 3.2)

revealed  that  databases  often  have  little  agreement  on  known  gene  interactions.  This  lack  of

consensus results in some prior knowledge sources containing a significant amount of erroneous

information, surpassing the tolerance level of our FLAP method. Consequently, this leads to worse

results compared to the data-driven FSSEM method.

    Another limitation is that FLAP does not utilize the weights of the edges in the prior networks.

The penalization of the edges in the networks is uniform, and all edges in the prior are not penalized

and are included in the initial estimate. This may not be optimal because it considers all interactions

to be equally important.
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    Incorporating the weights provided by different databases is challenging due to the variety of

metrics  used.  Some  databases  use  measures  of  strength,  others  use  confidence  levels  of  the

interactions,  while  some  simply  provide  a  ranking  of  interactions.  harmonizing  these  different

metrics into a unified framework remains a complex task.

    Future research may address these issues by focusing on enhancing the quality of the prior

knowledge.  One  approach could  involve  creating  a  consensus  among  multiple  high-confidence

databases.  Establishing  a  consensus  level  would  allow  for  the  refinement  of  penalization  by

implementing  a  non-uniform  penalization  of  the  prior  edges,  with  edges  being  more  or  less

penalized based on their confidence level.

    Another future extension of our work could involve testing FLAP on different types of data that

combine gene expression and perturbations. For example, CROP-seq datasets combine single-cell

RNA sequencing (scRNAseq) with CRISPR interference (CRISPRi) or RNA-seq with eQTLs. 

    Furthermore, exploring FLAP's performance on datasets related to various diseases and drug

sensitivity  would  provide  further  insights  into  its  applicability  and  robustness  across  different

experimental setups.
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SUPPLEMENTARY MATERIAL

Supplementary Material S1: Top Genes Related to Lung Adenocarcinoma (LUAD)

and Non-Small Cell Lung Cancer (NSCLC) with literature validation

    In this supplementary material, we provide a combined list of genes identified as top regulators in

the differential gene regulatory networks (GRNs) associated with Lung Adenocarcinoma (LUAD)

and Non-Small Cell Lung Cancer (NSCLC), This list is part of the section 3.2.2 “Validation with

Literature”, where we include references to studies and publications that link these genes to lung

cancer.

[Top Genes]

HLA-DQB2:

    HLA-DQB2 was identified as  one of  the genes  that  becomes upregulated during the early

invasion of LUAD, indicating an enhancement of antigen presentation ability during this stage of

cancer evolution [1].

HORMAD1:

    HORMAD1 plays a significant role in promoting LUAD progression by inducing epithelial-

mesenchymal transition (EMT) and activating the Wnt/β-catenin pathway, thereby enhancing lung

cancer cell proliferation, migration, and invasion [2].

    HORMAD1 is associated with resistance to oxidative stress and promotion of homologous

recombination (HR) in NSCLC and LUAD. HORMAD1 expression specifies a subtype of LUAD

that  has  adapted  to  mitigate  DNA damage,  suggesting  that  HORMAD1  could  be  a  potential

therapeutic  target  to  enhance  sensitivity  to  DNA-damaging agents  or  as  an  immunotherapeutic

target in patients with NSCLC and LUAD [3].
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LRRC31:

    LRRC31  is  identified  as  a  downstream  target  gene  regulated  by  β-hydroxybutyrate

dehydrogenase 1 (BDH1)  in  LUAD. LRRC31 is  implicated  in  LUAD progression  through the

H3K9bhb/LRRC31 axis, and targeting BDH1-high-expressing LUAD, including LRRC31, could be

a potential therapeutic strategy for LUAD treatment [4].

POU2AF1:

    POU2AF1 is identified as an inducible regulatory T (iTreg)-related gene associated with LUAD

prognosis. POU2AF1, along with other iTreg-related genes, is part of a prognostic signature used to

categorize patients into high- and low-risk subgroups. Patients with lower expression of POU2AF1

and other signature genes exhibit  better  prognosis and possibly greater  sensitivity  to traditional

chemotherapy, suggesting POU2AF1 as a potential therapeutic target for LUAD treatment [5].

RBP4:

    RBP4, is found to be positively associated with the risk of NSCLC. Serum RBP4 levels are

significantly  higher  in  NSCLC  patients  compared  to  healthy  controls,  suggesting  RBP4  as  a

potential biomarker for NSCLC risk [6].

MEOX2:

    MEOX2 is identified as a gene associated with chemoresistance and poor survival in NSCLC

patients. Despite the absence of copy number variations (CNVs), MEOX2 is overexpressed and

correlates with poor survival and chemoresistance in NSCLC. Its overexpression is significantly

dependent on decreased levels of the repressive histone mark H3K27me3, suggesting its potential as

a clinical marker for chemotherapy failure in NSCLC patients [7].

    MEOX2, is identified as a key factor in cancer drug resistance and poor clinical prognosis in

NSCLC  patients.  MEOX2  occupies  the  GLI-1  gene  promoter  region,  promoting  cancer  drug

resistance and tumor progression. Silencing MEOX2 reduces cellular resistance to cisplatinum and

inhibits cellular migration and proliferation. Elevated MEOX2-dependent GLI-1 protein expression
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is associated with poorer overall survival in NSCLC patients undergoing platinum-based therapy.

Therefore, MEOX2 may serve as a potential therapeutic target and prognostic marker in NSCLC

treatment [8].

HS3ST1:

    HS3ST1  is  implicated  in  the  progression  of  lung  adenocarcinoma  (LUAD)  by  promoting

glycolysis. HS3ST1 interacts with Glypican 4 (GPC4) to promote glycolysis, while hypoxia-derived

exosomal  long  non-coding  RNA (lncRNA)  OIP5-AS1  enhances  glycolysis  in  LUAD  cells  by

regulating miR-200c-3p. This leads to increased LUAD cell proliferation, metastasis, and tumor

size.  Therefore,  HS3ST1  plays  a  significant  role  in  promoting  LUAD progression  through  its

involvement in glycolysis regulation mediated by hypoxia-derived exosomal lncRNA OIP5-AS1

[9].

AURKA: 

    AURKA overexpression is linked to poor prognosis and increased radiotherapy resistance in

NSCLC.  The  AURKA-CXCL5  axis  is  identified  as  a  crucial  regulator  of  radiosensitivity  and

autophagy in NSCLC, providing potential therapeutic targets for combating NSCLC resistance to

radiotherapy [10].

    AURKA, along with other genes (KIAA0101, CDC20, MKI67, CHEK1, HJURP, and OIP5), is

identified as a critical gene in the development and prognosis of NSCLC. The study suggests that

these genes may serve as potential prognostic biomarkers and therapeutic targets for NSCLC [11].

    The expression of the mitosis-associated genes AURKA, DLGAP5, TPX2, KIF11, and CKAP5 is

associated  with  poor  prognosis  in  NSCLC  patients.  AURKA,  in  particular,  is  identified  as  a

significant prognostic marker for NSCLC [12].

    AURKA involvement in non-small cell lung carcinoma (NSCLC) was highlighted in a study

investigating the association between the expression profiles of mitotic spindle genes,  including

Aurora  kinases  (AURKA,  AURKB,  and  AURKC),  and  clinicopathological  characteristics  in

NSCLC  patients  [13].  The  study  revealed  that  increased  AURKA expression  is  significantly
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associated with poor prognosis in NSCLC patients, suggesting its potential as a therapeutic target

for NSCLC treatment.

    Increased AURKA expression was found to correlate with decreased time to progression and

overall survival in NSCLC patients. AURKA inhibition using MLN8237 (Alisertib) reduced cell

growth,  especially  in  P53-competent  NSCLC cells.  Additionally,  combining AURKA inhibition

with radiotherapy delayed tumor growth significantly in a mouse model. These findings suggest that

AURKA may be  a  promising  therapeutic  target  for  NSCLC,  particularly  when combined with

radiotherapy [14].

    AURKA was  identified  as  a  central  player  in  epithelial-to-mesenchymal  transition  (EMT),

invasion,  stemness,  and  drug  resistance  in  NSCLC.  Using  a  lung  tumor  tissue  model,  the

researchers found evidence suggesting a correlation between AURKA and drug resistance in cells

harboring KRASG12C or EGFR mutations. In silico analysis identified AURKA as a hub linking

EMT,  proliferation,  apoptosis,  LKB1,  and  c-MYC.  Experimental  testing  identified  an  AURKA

inhibitor as a promising candidate for targeted combination therapy in KRASG12C mutant lung

cancer models [15].

    AURKA was  identified  as  a  potential  disease  gene  associated  with  NSCLC.  Using  gene

expression profiling and network analysis, AURKA was selected multiple times in the shortest path

analysis,  indicating its  potential  significance in  NSCLC pathogenesis.  These findings offer new

insights into NSCLC development and may guide the development of novel therapeutic strategies

[16].

    AURKA was identified as one of the top 10 differentially expressed genes associated with

nNSCLC. High expression of AURKA was found to be significantly correlated with poorer overall

survival  in  NSCLC  patients.  Drug  target  analysis  suggested  the  potential  use  of  specific

antineoplastic agents to reverse the expression of these DEGs in NSCLC patients [17].

    AURKA was identified as a critical  gene associated with NSCLC diagnosis and prognosis.

AURKA, along with other genes such as BIRC5, CCNB1, DLGAP5, KIF11, and KIF15, showed

potential for lung cancer diagnosis and prognosis. In vitro experiments demonstrated that AURKA

significantly influenced the proliferation and migration of lung cancer cells by disrupting the cell
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cycle. These findings suggest that AURKA may play a crucial role in the occurrence, development,

and prognosis of NSCLC [18].

CAT:

    CAT was identified as one of the immune-associated genes (IAGs) associated with the prognosis

of  lung  adenocarcinoma  (LUAD).  A  signature  comprising  CAT  and  three  other  IAGs  was

established, and high-risk scores based on the expression levels of these genes were significantly

associated with poor survival outcomes in LUAD patients. CAT's involvement suggests its potential

as a prognostic marker for LUAD [19].

    CAT was  identified  as  one  of  the  metabolism-related  genes  (MRGs)  used  to  establish  a

prognostic signature for LUAD. The prognostic signature, comprising CAT along with five other

MRGs (ALDOA, ENTPD2, GNPNAT1, LDHA, TYMS), was validated using LUAD datasets. The

signature  showed  promise  as  a  prognostic  tool  for  LUAD,  potentially  aiding  in  diagnosis,

individualized therapy, and prognosis [20].

    CAT was identified as  one of  the  oxidative stress  (OxS)-related  genes  used to  construct  a

prognostic risk model for LUAD. The risk model, comprising CAT along with three other OxS-

related genes (CYP2D6, FMO3, GAPDH), showed good predictive power for LUAD prognosis.

High-risk patients exhibited shorter overall survival (OS) and higher tumor mutation burden. CAT

overexpression was found to decrease the proliferation, invasion, and migration of lung cancer cells.

The risk score based on this model could serve as an independent prognostic factor for LUAD and

may aid in individualized immunotherapeutic strategies [21].

    CAT was identified as one of the signature genes involved in reactive oxygen species (ROS)

regulation and DNA repair  in  LUAD. Analysis  of LUAD transcriptomic data  revealed that  the

expression of ROS-related genes and DNA repair genes had a significant impact on patient survival.

The study established a survival prognostic model including CAT along with other genes (TERT,

PRKDC, PTTG1, SMUG1, TXNRD1, H2AFX, and PFKP). The risk score derived from this model

could serve as an independent prognostic factor in LUAD patients [22].
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    CAT expression was significantly  down-regulated  in  lung adenocarcinoma (LUAD) tissues

compared to normal tissues, and low CAT expression was independently correlated with a worse

prognosis  in  LUAD. CAT down-regulation was associated  with an inhibition of  the  cell  cycle.

LUAD cases with a p53 mutation exhibited significantly lower CAT expression than those with

wild-type p53. CAT expression may serve as a potent favorable prognostic marker for LUAD and

could represent a potential drug target [23].

FANCL:

    FANCL, a key gene in the Fanconi anemia (FA) pathway, was found to play a crucial role in

cisplatin resistance in NSCLC. Knockdown of FANCL significantly increased the sensitivity of

cisplatin-resistant  NSCLC cells  to  cisplatin,  indicating  that  FANCL may contribute  to  acquired

cisplatin resistance by enhancing FA pathway capacities responsible for DNA inter-strand crosslink

repair[24].

RHOQ:

    In  lung adenocarcinoma (LUAD),  suppressing  RhoQ expression  promotes  TGF-β-mediated

Epithelial-to-Mesenchymal  Transition  (EMT)  and  invasion  in  cell  lines.  RhoQ  knockdown

increases Smad3 phosphorylation and Snail expression, indicating its involvement in TGF/Smad

signaling during the EMT process. Additionally, low RhoQ levels are associated with poor overall

survival in LUAD patients [25].

SMC4:

    SMC4, a core subunit of condensin complexes, is overexpressed in lung adenocarcinoma tissues

and  acts  as  an  independent  prognostic  factor.  Knockdown  of  SMC4 inhibits  proliferation  and

invasion of A549 cells, suggesting its role in lung adenocarcinoma progression [26].

    SMC4 is identified as one of the ten core dysregulated genes (DEGs) associated with NSCLC

and type 2 diabetes mellitus. The dysregulated immune cells associated with these core DEGs offer

a potential avenue for diagnosing and treating lung cancer combined with diabetes [27].
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SMC4 is identified as one of the genes present in modules associated with cell cycle progression in

lung adenocarcinoma [28].

DSTN:

    DSTN is highly expressed in lung adenocarcinoma tissues and is positively correlated with

cancer  development,  metastasis,  and  poor  prognosis  in  patients.  It  promotes  cell  proliferation,

invasion, and migration in vitro, as well as tumor formation and lung metastasis in vivo. DSTN

facilitates  β-catenin  nuclear  translocation,  inducing epithelial-to-mesenchymal  transition  (EMT),

and enhancing lung cancer malignancy. Therefore, DSTN might serve as a therapeutic target and an

independent prognostic marker for lung adenocarcinoma [29].

TGFBR2:

    TGFBR2 mutation  predicts  resistance  to  immune  checkpoint  inhibitors  (ICIs)  in  NSCLC.

Patients with TGFBR2 mutations show significantly shorter progression-free survival (PFS) and

overall survival (OS) when treated with ICIs compared to those with wild-type TGFBR2. TGFBR2

mutation is associated with upregulated expression of immune checkpoint-related genes, indicating

a link between TGFBR2 mutation and immune resistance in NSCLC [30].

FPR2:

    FPR2 was identified as one of the most significantly downregulated genes in NSCLC through

analysis  of  The Cancer  Genome Atlas  (TCGA) and Gene Expression  Omnibus  databases.  The

downregulation of FPR2 in NSCLC suggests its potential role as a biomarker or therapeutic target

for the disease [31].

    FPR2 was identified as an immune-stemness gene associated with poor prognosis in LUAD. The

findings suggest that FPR2 may play a significant role in LUAD development, potentially through

cytokine-cytokine receptor interaction and the JAK‒STAT pathway [32].
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    FPR2 was identified as one of the hub genes closely correlated with overall survival time in

LUAD patients. The study suggests that FPR2 could serve as a potential prognostic biomarker for

LUAD [33].

PLEKHG1:

    The gene PLEKHG1 was found to be associated with "dead with disease" outcome in lung

adenocarcinoma patients. This suggests its potential role in disease progression and may be used for

risk stratification and future treatment development [34].

    The  gene  PLEKHG1  was  part  of  a  seven-gene  signature  associated  with  the  tumor

microenvironment (TME) in advanced lung adenocarcinoma (LUAD). This gene signature could

serve as a prognosis stratification tool to predict survival outcomes of advanced LUAD patients

[35].

YTHDF1:

    YTHDF1 is amplified in NSCLC. Its deficiency inhibits NSCLC cell proliferation and tumor

formation. Conversely, high YTHDF1 expression correlates with a better clinical outcome, but its

depletion can render cancer cells resistant to cisplatin treatment [36].

    The m1A modification and its regulators play critical roles in tumorigenesis, including NSCLC.

YTHDF1,  an  m1A reader,  is  amplified  in  NSCLC and  regulates  cancer  cell  proliferation  and

response to cisplatin treatment [37].

    In  LUAD,  elevated  global  m6A  levels,  resulting  from  upregulation  of  METTL3  and

downregulation  of  ALKBH5,  are  associated  with  poor  patient  survival.  YTHDF1-mediated

mechanisms enhance the translation of enolase 1 (ENO1), stimulating tumorigenesis and glycolysis.

Targeting  this  m6A-dependent  pathway,  specifically  YTHDF1,  may  offer  a  potential  treatment

strategy for LUAD [38].

    In NSCLC, METTL3-mediated m6A modification of FRAS1 is associated with poor prognosis.

METTL3 regulates FRAS1 m6A modification, and this modification is recognized by YTHDF1.
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YTHDF1 cooperates with METTL3 to promote NSCLC cell proliferation, colony formation, and

tumor growth through CDON [39].

    In NSCLC, YTHDF1, along with other RNA-binding proteins like IGF2BP1/2/3, HuR, and FBL,

stabilizes target mRNAs, impacting various pathways such as the JAK-STAT and Hippo signaling

pathways, cytokine pathways, cell cycle regulation, and neovascularization. YTHDF1 may also be

involved in m6A modification of lncRNAs or target mRNAs [40].

    YTHDF1, along with eight other m6A regulators, showed differential expression between TP53-

mutant and wild-type NSCLC. ALKBH5 and HNRNPA2B1, in association with YTHDF1, were

linked  to  the  prognosis  of  TP53-mutant  NSCLC  patients.  These  findings  suggest  that  m6A

regulators, including YTHDF1, could serve as prognostic predictors in TP53-mutant NSCLC [41].

    In NSCLC, ALKBH5 inhibits tumor growth and metastasis by reducing YAP expression through

YTHDF1-mediated mRNA translation and YTHDF2-mediated mRNA decay. YTHDF1 promotes

YAP mRNA translation by interacting with eIF3a, regulated by m6A modification [42].

    In NSCLC, YTHDF1 and YTHDF2 expression is associated with favorable prognostic outcomes

and  increased  tumor-infiltrating  lymphocytes  (TILs).  YTHDF1  and  YTHDF2  downregulation

upregulates  PD-L1  expression  and alters  immune-related  gene  expression.  Thus,  YTHDF1 and

YTHDF2 could serve as prognostic markers and potential therapeutic targets in NSCLC [43].

    YTHDF1 expression is  upregulated in NSCLC and correlates with poor clinicopathological

features and survival.  YTHDF1, along with other m6A regulatory proteins, including METTL3,

ALKBH5, and YTHDC2, could serve as predictive markers for NSCLC, aiding in early detection

and  diagnosis.  Additionally,  YTHDF1,  along  with  METTL3,  ALKBH5,  and  YTHDC2,  is

significantly upregulated in NSCLC tissues compared to normal lung tissues [44].

    YTHDF1, along with other m6A and m5C regulators, contributes to the crosstalk function in

mRNA expression of early-stage LUAD. A seven-gene risk model, including METTL3, NPLOC4,

RBM15, YTHDF1, IGF2BP1, NSUN3, and NSUN7, helps stratify  the prognosis of early-stage

LUAD. High-risk scores are associated with poorer prognosis, indicating the potential of this model

as a critical prognostic tool for early-stage LUAD [45].
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    In NSCLC, YTHDF1 and YTHDF2 expression levels are negatively associated with CD8- and

CD4-positive T cells but positively associated with FOXP3-positive T cells.  Low expression of

YTHDF1  or  YTHDF2  is  correlated  with  immune  hot  tumor  gene  sets  and  better  prognosis.

YTHDF1 and YTHDF2 are predictive markers of response to PD-1/PD-L1 inhibitors, indicating

their potential as prognostic markers in NSCLC [46].

    In LUAD, YTHDF1 is found to be overexpressed, and its expression is associated with better

overall survival (OS) and recurrence-free survival (RFS). This suggests that YTHDF1 could serve

as a novel prognostic biomarker for LUAD [47].

    In  patients  with  LUAD  harboring  KRAS/TP53  co-mutations,  YTHDF1  is  significantly

upregulated and associated with poor overall survival. Elevated YTHDF1 promotes the translation

of cyclin B1 mRNA in an m6A-dependent manner, facilitating tumor proliferation and leading to an

adverse prognosis in LUAD with KRAS/TP53 co-mutations [48].

    Aberrant m6A modification was investigated in LUAD. YTHDF1, an m6A reader, was found to

be involved in this modification, highlighting its potential prognostic value in LUAD [49].

ELF1:

    ELF1 was found to be a promoter of CASC2, a long non-coding RNA (lncRNA) implicated in

chemoresistance  in  non-small  cell  lung cancer  (NSCLC).  The ELF1/CASC2/miR-18a axis  was

identified  as  a  regulatory  mechanism  affecting  the  proliferation,  migration,  and  invasion  of

cisplatin-resistant NSCLC cells, thus affecting patient survival [50].

    ELF1 was found to positively regulate miR-152-3p levels by directly interacting with the miR-

152-3p  promoter.  ELF1  inhibited  autophagy  and  reversed  cisplatin  resistance  in  NSCLC cells

through the miR-152-3p/NCAM1 pathway [51].

    ELF1 and survivin expression were positively correlated with intratumoral microvessel density

(iMVD) in  NSCLC.  Their  expression  levels  were  significantly  related  to  tumor  differentiation,

lymphatic  metastasis,  clinical  stage,  and postoperative  survival  time.  Additionally,  blocking the

activity of ELF1 and survivin may offer a new approach to inhibit angiogenesis in NSCLC [52].
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    ELF1 expression was detected in 72.46% of NSCLC specimens, and its levels were significantly

related  to  tumor  differentiation,  lymphatic  metastasis,  clinical  stage,  and  postoperative  survival

time. High ELF1 expression was correlated with poor prognosis in NSCLC patients. Additionally,

ELF1 expression was positively correlated with VEGF expression, suggesting a role for ELF1 in

NSCLC progression and angiogenesis [53].

KDM4A:

    KDM4A and KDM4D expression was associated with the presence of lymph node metastases in

lung carcinomas. Cytoplasmic KDM4A expression correlated with poor patient survival and shorter

recurrence-free interval. These findings suggest a significant role for KDM4A and KDM4D in the

metastatic spread of lung carcinomas, indicating their involvement in mechanisms associated with

cell proliferation, apoptosis, and DNA repair [54].

ATF3:

    Loss of CH25H in antigen-presenting cells isolated from human lung tumors is associated with

tumor  growth  and  lung  cancer  progression.  This  suppression  is  induced  by  tumor

microenvironment-derived  factors  that  activate  the  activating  transcription  factor-3  (ATF3)

transcription factor. Downregulation of CH25H stimulates lysosomal degradation, restricts cross-

presentation  of  tumor  antigens  in  intratumoral  dendritic  cells  (DCs),  and  hinders  long-term

immunity  against  malignant  cells  undergoing  chemotherapy-induced  immunogenic  cell  death.

These findings suggest that ATF3-mediated downregulation of CH25H in DCs contributes to tumor

immune evasion and resistance to therapy in lung cancer [55].

    Overexpression  of  NDRG1 in  lung  cancer  cells  reduces  cisplatin-induced  cytotoxicity  by

downregulating ATF3 expression. Conversely, overexpression of ATF3 promotes cisplatin-induced

cytotoxicity in lung cancer cells. These findings suggest that ATF3 plays a crucial role in regulating

cisplatin resistance in lung cancer [56].
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CBX8:

    CBX8 expression is significantly higher in lung adenocarcinoma (LUAD) tissues compared to

adjacent  nontumor  tissues.  It  promotes  LUAD cell  proliferation  and migration  in  vitro.  CBX8

directly binds to the promoters of CDKN2C and SCEL, repressing their transcription. Depletion of

CDKN2C and SCEL restores the repressed growth and invasion ability of LUAD cells caused by

CBX8 knockdown. These findings highlight CBX8's oncogenic role in LUAD progression [57]. 

CEMIP:

    ALKBH5 downregulation  in  paclitaxel  (PTX)  resistant  NSCLC cells  correlates  with  poor

prognosis in NSCLC patients. It modulates PTX sensitivity and epithelial-mesenchymal transition

(EMT) by regulating CEMIP expression. ALKBH5 reduces CEMIP mRNA stability, implicating the

ALKBH5/CEMIP axis in NSCLC chemoresistance [58].

RUVBL1: (6)

    RUVBL1/2 ATPase activity is overexpressed in NSCLC tumors, correlating with poor survival.

Inhibition of RUVBL1/2 ATPase activity induces S-phase arrest, leading to cancer cell death via

replication catastrophe.  Additionally,  RUVBL1/2 inhibition synergizes  with radiation therapy in

NSCLC, offering a potential therapeutic strategy [59].

    High levels of RUVBL1 and HNRNPU proteins and mRNA are associated with poor overall

survival (OS) in stage I and II NSCLC patients. Co-expression of RUVBL1 and HNRNPU (R + H

+)  further  exacerbates  poor  prognosis,  suggesting  their  potential  as  prognostic  biomarkers  and

therapeutic targets for NSCLC [60].

    RUVBL1 has been identified as a contributor to TRAIL resistance in NSCLC cells by repressing

c-Jun/AP-1  activity.  Knocking  down  RUVBL1  sensitizes  resistant  cells  to  TRAIL-induced

apoptosis, while its overexpression inhibits TRAIL-induced cell death. High RUVBL1 expression,

inversely correlated with low c-Jun levels,  is associated with poor overall  prognosis in LUAD.

These findings  suggest  that  targeting RUVBL1 in combination with TRAIL may offer  a  novel

therapeutic strategy for lung cancer treatment [61].
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    RUVBL1 is  overexpressed in  lung adenocarcinoma tissues  and cell  lines.  Knocking down

RUVBL1 inhibits lung adenocarcinoma cell proliferation by inducing G1/S phase cell cycle arrest

through multiple mechanisms. This suggests RUVBL1 as a potential therapeutic target for lung

adenocarcinoma [62].

    RUVBL1 is identified as one of the genes with concordant changes in DNA copy number and

expression levels in non-small cell lung cancer (NSCLC). It is overexpressed and located in an

amplified region, suggesting its potential role in lung cancer development and progression [63].

    RUVBL1 activates the RAF/MEK/ERK pathway by inhibiting phosphorylation of C-RAF at

serine 259, promoting lung cancer progression.  Its  elevated expression in  lung adenocarcinoma

tissues suggests its potential as a therapeutic target for lung cancer treatment [64].

NUP155:

    NUP155  expression  is  higher  in  grade  3  lung  adenocarcinoma,  suggesting  its  potential

involvement in tumor grading and chemoresistance [65].
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APPENDIX: Formulas and Notations

Bayesian Network:

Definition: A Bayesian Network is a probabilistic graphical model that represents a set of variables 

and their conditional dependencies via a directed acyclic graph (DAG). Each node in the graph 

represents a variable, and the edges represent the conditional dependencies between these variables.

Formula:

P(X1 , X2 ,... , Xn) = ∏
i=1

n

P (X i ∣ Parents (X i))

where  n  is the number of variables and P(X i∣Parents( X i)) is the conditional probability of

X i  given its parents in the graph.

Key characteristics: 

• Models the joint distribution of a set of variables.

• Useful for inferring causal relationships and predicting the effects of interventions.

• Can handle both discrete and continuous variables.

Applications: Gene  network  inference  to  model  causal  relationships  between  genes,  risk

assessment, diagnostic systems and decision support.

Context: Section 1.2.1 Bayesian networks.

Binomial Distribution:

Definition: The binomial distribution is a discrete probability distribution that describes the number

of successes in a fixed number of independent Bernoulli trials, each with the same probability of 

success. It is denoted as B (n , p) , where n is the number of trials, and p is the probability of 

success in each trial.
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Probability Mass Function (PMF): The probability of obtaining exactly k successes in n trials is 

given by:

P(X =k ) = (n
k ) pk

(1− p)
n−k

where (nk ) is the binomial coefficient, calculated as 
n!

k ! (n−k )!
.

Context: Section 3.1.1 Generation of Synthetic Dataset.

Fisher’s Exact Test:

Definition: Fisher’s  Exact  Test  is  a  statistical  significance  test  used  to  determine  if  there  are

nonrandom associations between two categorical variables. It is particularly useful for small sample

sizes and 2x2 contingency tables.

Purpose: It tests the null hypothesis that there is no association between the two variables, meaning

that the proportions of one variable are independent of the levels of the other variable.

Contingency  Table: The  test  uses  a  2x2  contingency  table  to  display  the  frequencies  of  the

variables.

In Variable B = 1 In Variable B = 2 

Variable A = 1 a b

Variable A = 0 c d

where

• a: Number of times both A = 1 and B = 1

• b: Number of times A = 1 and B = 0

• c: Number of times A = 0 and B = 1

• d: Number of times both A = 0 and B = 0
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Formula:

p-value =
(a+b)!(c+d)!(a+c )! (b+d )!

a !b ! c !d !n !

where n = a+b+c+d is the total number of genes considered. 

Context: Section 3.2.1 Validation with Over-representation analysis.

Fused Sparse Structural Equation Modeling (FSSEM):

Definition: The Fused Sparse Structural Equation Modeling (SEM) algorithm (Zhou et al., 2020) is

designed  to  infer  Gene  Regulatory  Networks  (GRNs)  across  two  different  conditions

simultaneously.  It  utilizes  SEM  with  all  observable  variables  of  gene  expression  and  gene

perturbations, solving the inference problem by employing an adaptive generalized fused LASSO

regression model.

Formula: 

y i
(k )

= B(k) y i
(k )

+ F (k ) x i
(k )

+ μ i
(k)

+ ϵi
(k )

where 

k=1,2 are the two different conditions considered by the model

i=1 ,... , nk is the index of the considered gene for each condition k=1,2

B(k)
=[ B(1) ,B(2)

] is a n xn  matrix of p genes representing the unkown network structure under 

condition k

F(k)
=[F (1 ), F(2)

]  is a n xq  matrix of p genes and q cis-eQTLs that captures the effect of of cis-

eQTLs on gene expression.

μi
(k) is a n x1  vector that accounts for the model bias in the SEM 

ϵi
(k) is a n x1 the vector the Gaussian noise with mean zero and variance σ

2

Context: Section 2.3 Fused Sparse Structural Equation Modeling (FSSEM).
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Gaussian Graphical Models (GGMs):

Definition:  GGMs  are  statistical  models  that  represent  the  conditional  independence  structure

between multiple Gaussian-distributed variables using a graph.

Key Concepts:

• Graph  Representation: Nodes  represent  variables,  and  edges  represent  conditional

dependencies between the variables.

• Precision Matrix: The inverse of the covariance matrix ( Θ=Σ
−1 ) is used to determine the

edges in the graph. An edge between nodes i and j exists if and only if Θij≠0 .

Formula:

p(x) =
1

(2π)k / 2
|Σ|

1 /2
exp (−1

2
(x−μ)

T
Σ

−1
(x−μ))

where Σ  is the covariance matrix and μ  is the mean vector

Key characteristics:

• Provides a way to visualize and analyze the conditional dependencies between variables.

• Particularly useful for high-dimensional data (i.e. gene expression, finance, etc).

Context: Section 1.2.1 correlation networks.

Gene Regulatory Network (GRN):

Definition: A Gene Regulatory Network (GRN) is a representation of the regulatory interactions 

between genes within a cell. It is modeled as a graph G=(V ,E) , where V represents the set of 

genes (vertices or nodes), and E represents the regulatory relationships (edges or links) between 

these genes. 

• Vertices (Nodes): Represent individual genes.

• Edges (Links): Represent the regulatory influences or interactions that one gene exerts on 

another.

96



Types of Relationships:

• Activation (positive regulation): One gene increases the expression of another gene.

• Repression (negative regulation): One gene decreases the expression of another gene.

Graph:

Definition: A graph is a mathematical structure used to model pairwise relationships between 

objects. It consists of a set of vertices (nodes) and a set of edges (links) that connect pairs of 

vertices. A graph is typically denoted as G=(V , E) , where V  represents the set of vertices 

and E  represents the set of edges. Vertices (nodes) are the fundamental units or points in a 

graph, and edges (links) are the connections between pairs of vertices.

Directed Graph: A graph in which edges have a direction, indicating a one-way relationship from 

one vertex to another.

Undirected Graph: A graph in which edges have no direction, indicating a mutual relationship 

between vertices.

Directed Acyclic Graph (DAG): A type of directed graph with no directed cycles, meaning there is

no way to start at any vertex and follow a consistently directed path that eventually loops back to 

the starting vertex.

Directed Cyclic Graph (DCG): A type of directed graph that contains at least one directed cycle, 

meaning there exists a path where one can start at a vertex, follow the directed edges, and return to 

the starting vertex.

Maximum Likelihood Estimation (MLE):

Definition: Maximum Likelihood Estimation is a statistical method used to estimate the parameters

of a statistical model. It aims to find the parameter values that maximize the likelihood function,

which represents the probability of observing the given data under the assumed model.

Key Concepts:

• Likelihood Function: The function that describes the probability of observing the data given

the parameter values of the model.
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• Log-Likelihood:  The  natural  logarithm  of  the  likelihood  function,  often  used  for

computational convenience and numerical stability.

Procedure:

• Specify the Model: Define the probability distribution that best describes the data.

• Formulate  the  Likelihood  Function:  Express  the  probability  of  observing  the  data  as  a

function of the model parameters.

• Maximize the Likelihood: Find the parameter values that maximize the likelihood function,

typically by taking derivatives and solving for the critical points.

• Interpretation: The estimated parameter values represent the most likely values given the

observed data and the assumed model.

Context: Solution method for Structural Equation Model (SEM), section 2.1.

Multivariate Normal Distribution:

Definition: The multivariate normal distribution is a generalization of the normal distribution to 

multiple variables. It describes a set of d  variables that are jointly normally distributed. Each 

variable has a normal distribution, and any linear combination of the variables also follows a normal

distribution.

Parameters:

• Mean Vector ( μ ):  A d-dimensional vector representing the means of each variable.

• Covariance Matrix ( Σ ) A d×d symmetric, positive-definite matrix representing the 

covariances between the variables.

Probability Density Function (PDF): 

The probability density function for a d-dimensional multivariate normal distribution is given by:

f (x) =
1

(2π)d / 2
|Σ|

1 /2
exp (− 1

2
(x−μ)

T
Σ

−1
(x−μ))
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where x  is a d-dimensional random vector, μ  is the mean vector, Σ  is the covariance 

matrix, |Σ|  is the determinant of Σ , and Σ
−1  is the inverse of Σ .

Context: Section 3.1.1 Generation of Synthetic Dataset.

Mutual Information:

Definition: Mutual  Information  (MI)  measures  the  amount  of  information  obtained  about  one

random  variable  through  another  random  variable.  It  quantifies  the  dependency  between  the

variables without assuming any specific type of relationship (linear or monotonic).

Formula:

I ( X ;Y ) = ∑
x∈ X

∑
y∈Y

p( x , y) log(
p (x , y )

p(x ) p( y))

where

• p(x , y )  : is the joint probability distribution of X  and Y

• p(x)  and  p( y )  are  the  marginal  probability  distributions  of  X  and  Y ,

respectively.

Key Characteristics:

• Type of relationship: measures any kind of dependency, not restricted to linear or monotonic

relationships

• Range: Non-negative values, I ( X ;Y )≥0

• I ( X ;Y )=0 : indicates X and Y are independent

• Higher values indicate a higher degree of dependency

• Data requirements: can be used with any type if data (continuous, discrete, ordinal)

• Sensitivity to outliers: less sensitive to outliers compared to Pearson correlation.

Context: Section 1.2.1  similarity measure for relevance networks.
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Ordinary Differential Equations (ODEs):

Definition:  Ordinary Differential Equations are mathematical equations that describe the rate of

change of a function with respect to one independent variable. They are used to model systems

where the rate of change of a quantity depends only on its current value and not on its history.

Key Concepts: 

• Dependent Variable: The function or quantity being modeled.

• Independent Variable: The variable with respect to which the function changes.

• Order:  The  highest  derivative  present  in  the  equation.  For  example,  a  first-order  ODE

involves only first derivatives.

First-Order ODE: 
dy
dx

= f (x , y)

Second-Order ODE: d2 y
dx2 = f (x , y ,

dy
dx )

Solution Methods:

• Analytical Methods: Exact solutions obtained through integration techniques, often feasible

for simple ODEs.

• Numerical Methods: Approximate solutions obtained through numerical techniques such as

Euler's method, Runge-Kutta methods, and finite difference methods.

Context: Section 1.2.1 Differential equation models.
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Partial correlation:

Definition:  Partial correlation measures the degree of association between two random variables,

with the effect of a set of controlling random variables removed.

Formula:

r xy⋅z =
r xy−rxz r yz

√(1−r xz
2

)(1−r yz
2

)

where r xy  is the correlation between x  and y , r xz  is the correlation between x  and

z , and r yz  is the correlation between y  and z .

Key characteristics: 

• Assesses  direct  relationship  between  two  variables  by  removing  the  influence  of  other

variables. 

• Useful in understanding the unique contribution of variables in multivariate settings.

Context: Section 1.2.1 similarity measure for correlation networks.

Pearson Correlation:

Definition: The Pearson correlation coefficient (denoted as r) measures the linear relationship 

between two continuous variables. It assumes that the relationship between the variables is linear 

and that the variables are approximately normally distributed.

Formula: 

r =
∑ (x i−x)( yi− y)

√∑ (x i−x )
2∑ ( y i− y )

2

where 

x i : individual sample point for variable x

x  : mean of variable x

y i : individual sample point for variable y

y  : mean of variable y
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Key characteristics: 

• Linear relationship: Measures the strength and direction of linear relationships between two

variables.

• Range: Values range from -1 to 1

• r=1  : perfect positive linear correlation

• r=−1  : perfect negative linear correlation

• r=0  : no linear correlation

• Sensitive to  outliers: Pearson correlation is  sensitive to  outliers,  which can significantly

affect the correlation coefficient.

Context: Section 1.2.1 similarity measure for correlation networks.

Penalized Negative Log-Likelihood:

Definition: The  Penalized  Negative  Log-Likelihood  is  an  extension  of  maximum  likelihood

estimation (MLE) used for parameter estimation in models with regularization.  It  combines the

negative  log-likelihood function  with a  penalty  term that  penalizes  complex models  to  prevent

overfitting.

Key Concepts:

• Negative Log-Likelihood (NLL): The negative of the logarithm of the likelihood function,

representing the measure of how well the model fits the observed data.

• Penalty  Term:  An  additional  term  added  to  the  NLL function  to  penalize  complexity,

typically based on the parameters or their magnitudes.

• Objective Function:

Penalized negative log−likelihood = −log−likelihood + penalty term

Penalty Types:

• L1 Penalty (Lasso): Penalizes the absolute values of the coefficients, encouraging sparsity

and feature selection.

• L2 Penalty (Ridge): Penalizes the squared magnitudes of the coefficients, discouraging large

coefficients and reducing multicollinearity.
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• Elastic Net Penalty: Combines both L1 and L2 penalties to leverage the benefits of both

regularization methods.

Optimization:

• Optimization  Algorithms:  Various  optimization  algorithms  such  as  gradient  descent,

coordinate descent, or proximal gradient methods are used to minimize the penalized NLL

function.

• Cross-Validation: Often used to select the optimal regularization parameter(s) and assess the

model's predictive performance.

Applications:

• Regression  Analysis:  Regularizing  regression  models  such  as  linear  regression,  logistic

regression, or Poisson regression.

• Machine  Learning:  Regularizing  machine  learning  models  like  support  vector  machines

(SVM), neural networks, or random forests.

• High-Dimensional Data: Handling datasets with a large number of predictors relative to the

sample size, reducing overfitting and improving model generalization.

Context: Section 2.3.1 Joint inference of GRN in FSSEM.

Performance Metrics:

Definitions:

• True Positives (TP): The number of instances correctly identified as positive.

• False Positives (FP): The number of instances incorrectly identified as positive.

• True Negatives (TN): The number of instances correctly identified as negative.

• False Negatives (FN): The number of instances incorrectly identified as negative.

Precision: Precision, also known as positive predictive value, is the ratio of true positives to the

total number of predicted positives. It measures the accuracy of the positive predictions.

Precision =
TP

TP+FP

Interpretation: High precision indicates that the model has a low false positive rate.
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Recall: Recall, also known as sensitivity or true positive rate, is the ratio of true positives to the

total  number  of  actual  positives.  It  measures  the  ability  of  the  model  to  identify  all  relevant

instances.

Recall =
TP

TP+FN

Interpretation: High recall indicates that the model has a low false negative rate.

Accuracy: Accuracy  is  the  ratio  of  correctly  predicted  instances  (both  true  positives  and  true

negatives) to the total number of instances. It measures the overall correctness of the model.

Accuracy =
TP+TN

TP+TN +FP+FN

Interpretation:  High  accuracy  indicates  that  the  model  makes  a  large  proportion  of  correct

predictions.

Context: Section 3.1.3 Classification and performance metrics.

Regression methods:

Definition: Regression methods are statistical techniques used to model and analyze the 

relationships between a dependent variable (response) and one or more independent variables 

(predictors). The primary goal is to understand the nature of these relationships and make 

predictions.

Key concepts:

• Dependent variable (Y): The outcome or variable being predicted or explained

• Independent Variables (X): The variables used to predict or explain the dependent variable

• Regression Coefficients: Parameters that quantify the relationship between the independent 

variables and the dependent variable.
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Common types:

• Linear Regression: Models the relationship using a linear equation.

Y = β0+β1 X1+β2 X2+...++βn Xn+ϵ

where β0  is the intercept, βi  are the coefficients, and ϵ  is the error term.

• Multiple Linear Regression: Extends linear regression to multiple predictors.

• Logistic Regression: Used for binary outcomes, modeling the probability of the dependent 

variable.

log(
P(Y =1)

P(Y =0)) = β0+β1 X1+β2 X2+...++βn Xn+ϵ

• Polynomial Regression: Models the relationship using a polynomial equation to capture 

non-linear patterns.

• Ridge and Lasso Regression: Regularized versions of linear regression that prevent 

overfitting by penalizing large coefficients.

• Ridge Regression: Adds an L2-norm penalty term.

• Lasso Regression: Adds an L1-norm penalty term.

Context: Section 1.2.1 Regression based models, Section 2.1.2 eQTL analysis with MatrixEQTL,  

Section 2.2 evolution of regression methods for GRN inference.
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Spearman Correlation:

Definition: The Spearman correlation coefficient  ρ measures the strength and direction of the

monotonic relationship between two variables. It does not assume that the relationship is linear and

can be used with ordinal data.

Formula: 

ρ = 1−
6∑ d i

2

n(n2
−1)

where 

d i : difference between the ranks of corresponding variables

n  : number of observations

Key Characteristics: 

• Monotonic Relationship: Measures how well teh relationship between two variables can be

descMeasures how well the relationship between two variables can be described using a

monotonic function.

• Rank-Based: Uses the ranks of the data rather than the raw data values, making it a non-

parametric measure. 

• Range: Values range from -1 to 1

• ρ=1     : perfect positive monotonic correlation

• ρ=−1  : perfect negative monotonic correlation

• ρ=0     : no monotonic correlation

• Robust to Outliers: Less sensitive to outliers compared to Pearson correlation because it is

based on ranks.

Context: Section 1.2.1  similarity measure for correlation networks.
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Stochastic Differential Equations (SDEs):

Definition: Stochastic  Differential  Equations  are  differential  equations  that  involve  both

deterministic and stochastic components. They describe the evolution of systems where randomness

or uncertainty plays a significant role.

Key Concepts:

• Deterministic Dynamics: Represents the system's deterministic behavior, typically described

by ordinary differential equations.

• Stochastic Perturbations: Incorporates random fluctuations or noise, often represented by

stochastic processes such as Brownian motion

• Ito's Lemma: A formula used to find the differential of a function of a stochastic process.

Formula: 

dX t=a (X t)dt+b(X t ,t )dW t

where

X t :  stochastic process.

a( X t , t) : drift term, representing the deterministic component.

b( X t , t) : diffusion term, representing the stochastic component.

Solution Methods:

• Numerical  Methods:  Stochastic  simulation  algorithms such  as  Euler-Maruyama method,

Milstein method, and Monte Carlo methods.

• Analytical  Methods:  Limited to  specific  cases where closed-form solutions  are  possible,

often involving Ito's calculus.

Context: Section 1.2.1 Differential equation models.
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Structural Equation Model (SEM):

Definition: Structural Equation Models are statistical models used to analyze the relationships 

between observed and latent variables. They combine factor analysis and multiple regression 

analysis to test complex hypotheses about the relationships between variables.

Key concepts: 

• Observed Variables: Measurable variables directly observed or measured in the study.

• Latent  Variables:  Variables  that  are  not  directly  observed  but  inferred  from  observed

variables, representing underlying constructs or factors.

• Paths: Represent the hypothesized relationships between variables, including direct effects

and indirect effects.

Components:

• Measurement Model: Describes the relationships between latent variables and their observed

indicators.

• Structural Model: Describes the relationships between latent variables themselves and any

direct relationships between observed variables.

Estimation Methods:

• Maximum  Likelihood  Estimation:  Most  common  method  used  to  estimate  model

parameters, assuming multivariate normality.

• Bayesian  Estimation:  Utilizes  Bayesian  inference  techniques  to  estimate  parameters,

allowing for incorporation of prior knowledge and handling of non-normal data.

Formula:

Y i = BY−i + FX i + ϵi

where

Y i  is the i-th endogenous variables

Y−i represents all the endogenous variables except Y i

X i  represents the exogenous variables assumed to influence Y i

B   is a matrix of regression coefficients for the endogenous variables Y−i
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F   is a matrix of regression coefficients for the exogenous variables X i

ϵi    is the error term for the i-th equation, defined as a Gaussian vector of mean 0 and variance

σ
2 and are independent and identically distributed (i.i.d.)

Context: Section 1.2.4 Methods using gene expression and genetic variants , section 2.1 Structural

Equation Model.

Weighted Correlation Network Analysis (WGCNA):

Definition: WGCNA is a systems biology method for describing the correlation patterns among

genes across microarray samples. It helps identify modules of highly correlated genes and relate

these modules to external sample traits.

Key Steps:

1. Construction of Weighted Network: 

• Correlation Matrix: Calculate the Pearson correlation matrix for all pairs of genes.

• Adjacency Matrix: Transform the correlation matrix into an adjacency matrix using a

soft-thresholding  power  to  emphasize  strong  correlations  while  penalizing  weak

correlations.

aij = |r ij|
β

where  aij  is  the  adjacency  between  genes  i  and  j ,  r ij  is  the  Pearson

correlation coefficient, and β  is the soft-thresholding power parameter.

2. Topological Overlap Matrix (TOM): Convert the adjacency matrix into a topological overlap

matrix, which measures the overlap in shared neighbors between pairs of genes, providing a

more robust measure of interconnectedness.

3. Module Detection: Use hierarchical clustering to group genes into modules based on the

TOM. Each module is a cluster of genes with high topological overlap.

4. Module Eigengene Calculation: Summarize each module with the first principal component

(module eigengene), representing the module’s gene expression profile.

5. Relating  Modules  to  External  Traits:  Correlate  module  eigengenes  with external  sample

traits to identify modules significantly associated with these traits.
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Applications: Identifying gene modules related to specific biological traits or conditions; studying

the interconnectedness and function of gene networks.

Context: Section 1.2.1 Early methods for gene regulatory network inference using gene expression

data.
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