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Abstract 
Chemotaxis is the ability of bacteria to locate high attractant sources in the environment. The extensive knowledge gained from the 

pathway in the model organism Escherichia coli shows that adaptation to stimuli is a hallmark underlying chemotaxis. Studies on 
certain mutant strains and other bacterial species, however, indicate that some form of chemotaxis could also be achieved without 
adaptation. It is not clear how efficient such chemotaxis is, how it could be mediated, and how widespread it is among different 
bacterial species.  

In order to explore alternative pathway structures and dynamics that can underlie chemotaxis, we employ an evolutionary 
approach. This approach starts with a population of bacteria that move in a virtual environment based on the dynamics of simple 
pathways they harbour. As mutations lead to changes in pathway structure and dynamics, bacteria with better ability to localize with 
high attractant sources gain a selective advantage. We find that chemotaxis via non-adaptive dynamics evolves consistently under 
different model assumptions and environments. These dynamics directly couple tumbling probability of the cell to increasing 
attractant levels. Further analyses of evolved pathway structures show that this alternative behaviour can be mediated with as few as 
two components.  

The non-adaptive mechanisms mediating chemotaxis provide an explanation for experimental observations made in mutant strains 
of E. coli and in wild type Rhodobacter sphaeroides and that could not be explained with existing knowledge. These mechanisms could 
allow a straightforward link between cell metabolism and chemotaxis. Furthermore, they could have acted as the origin of the 
conventional chemotaxis involving adaptation.     

INTRODUCTION 
Bacterial chemotaxis and the pathways mediating it 

are a model system for studying the molecular basis of 
behaviour. More than 30 years after the first studies of 
this behaviour in Escherichia coli [1,2], we now have 
extensive knowledge of the underlying pathway in this 
species [3,4]. Briefly, E. coli swims in a forward direction 
(undergoing some degree of rotational diffusion) when 
one or more of the reversible motor proteins on its outer 
membrane rotate counter-clockwise (CCW) and the 
attached flagella intertwine to form an effective propeller. 
When the motors reverse and rotate clockwise (CW), the 
flagella disassociate and cause the bacterium to tumble, 
resulting in a new swimming direction. The switching 
frequency of the motor is coupled to receptor activity by 
a series of proteins constituting a signalling pathway. 
With increasing attractant levels, the excitatory branch of 
the pathway causes direct suppression of CW rotation and 
tumbling, while the adaptation branch causes the cell to 
resume its original tumbling levels at constant attractant 
concentrations independently of this concentration level. 
The former branch involves the response regulator CheY, 
which in its phosphorylated form binds the motor and 
increases the probability of CW rotation. The adaptation 
is achieved via control of receptor methylation, and hence 
receptor sensitivity, through the proteins CheR and CheB. 
The combination of these two branches results in the 
tumbling frequency approximately following a time-
derivative of the attractant concentration [5]. Adaptation 
is the hallmark of this response, allowing bacteria to 
perform temporal comparisons of attractant with high 
sensitivity and achieve proper chemotaxis [5-9]. In fact, 

perfect adaptation is the most robust feature of the system 
in face of fluctuations in protein concentrations [10]. 

While the importance of adaptation in proper 
chemotaxis is well established, there are several 
indications that some form of chemotaxis could be 
possible without it. The earliest of these came from a 
mutant strain of E. coli that lacks CheR and CheB but is 
still capable of chemotaxis [11]. This ‘anomalous’ 
chemotaxis was suggested to result from random 
diffusion coupled with partial adaptation [12]. While 
there are possible mechanisms that could allow such 
receptor-independent adaptation [13,14], their relation to 
the chemotaxis seen in CheR-CheB mutant was not 
explored. Another observation involves the ‘gutted’ strain 
of E. coli, which lacks all proteins of the chemotaxis 
pathway except CheY [15]. While the dynamics 
mediating chemotaxis in this mutant is unknown, 
involvement of adaptation is highly unlikely. The most 
convincing case for non-adaptive chemotaxis comes from 
studies on Rhodobacter sphaeroides. In this species, 
adaptation to persisting stimuli seems to work much 
slower or not at all [16]. Interestingly, there are other 
observations from R. sphaeroides that cannot be 
explained by the knowledge gained from the E. coli 
system; cells grown under aerobic conditions give an 
‘inverted’ response with limited adaptation [17] and 
chemotaxis to certain attractants requires transporters 
[18]. Currently, we lack detailed understanding of the 
molecular systems mediating chemotaxis in this species, 
however, it is known that it has a large number of 
proteins involved in this chemotaxic behaviour and that 
these are arranged into several distinct pathways [19].  
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environmental conditions and model assumptions and 
allow bacteria to achieve chemotaxis. Further, we find the 
efficiency of such chemotaxis to be equal to a case where 
bacteria would accumulate in space proportional to local 
attractant concentration. This type of chemotaxis favours 
exploitation of attractant sources over searching and 
could be especially efficient in conditions of abundant 
attractant. The minimal system for achieving non-
adaptive dynamics mediating chemotaxis requires only 
two signalling components. 

These findings provide a possible explanation for the 
chemotaxic ability of gutted E. coli cells and the complex 
chemotaxis behaviour of wild-type R. sphaeroides. In 
both cases and possibly in other current-day bacteria, 
chemotaxis pathways with non-adaptive and inverted 
responses could work in conjunction with the 
conventional chemotaxis pathway. These pathways could 
be remnants of evolution or functional pathways. They 
could involve in the fine-tuning of chemotaxis under 
certain environmental conditions or in providing a link 
between cell metabolism and chemotaxis.  
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