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Abstract
In this paper, we study the task of source-free domain adaptation (SFDA), where the source data are not available during
target adaptation. Previous works on SFDA mainly focus on aligning the cross-domain distributions. However, they ignore
the generalization ability of the pretrained source model, which largely influences the initial target outputs that are vital to
the target adaptation stage. To address this, we make the interesting observation that the model accuracy is highly correlated
with whether attention is focused on the objects in an image. To this end, we propose a generic and effective framework based
on Transformer, named TransDA, for learning a generalized model for SFDA. First, we apply the Transformer blocks as the
attention module and inject it into a convolutional network. By doing so, the model is encouraged to turn attention towards
the object regions, which can effectively improve the model’s generalization ability on unseen target domains. Second, a
novel self-supervised knowledge distillation approach is proposed to adapt the Transformer with target pseudo-labels, further
encouraging the network to focus on the object regions. Extensive experiments conducted on three domain adaptation tasks,
including closed-set, partial-set, and open-set adaption, demonstrate that TransDA can significantly improve the accuracy
over the source model and can produce state-of-the-art results on all settings. The source code and pretrained models are
publicly available at: https://github.com/ygjwd12345/TransDA.
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1 Introduction

Deep learning has enabled several advances in various com-
puter vision tasks, such as image classification, object
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detection and semantic segmentation. However, deep mod-
els suffer from significant performance degradation when
applied to an unseen target domain due to the well-
documented domain shift problem. To solve this prob-
lem, domain adaptation was introduced, aiming to transfer
knowledge from a fully labeled source domain to a target
domain [1–3]. A common strategy in domain adaptation is
to align the feature distributions between the source and
target domains by minimizing the domain shift through
various metrics. These metrics include Maximum Mean
Discrepancy [4, 5], Sliced Wasserstein Discrepancy [6],
and Enhanced Transport Distance [7]. Another popular
paradigm leverages the idea of adversarial learning to mini-
mize cross-domain discrepancy [8–12].

Despite the success of current domain adaptation
methods, they work under the strict condition that the source
data are always available during training. However, this
condition has two drawbacks that hinder the application
of these methods. First, the source datasets, such as
VisDAand GTAV, usually are large and thus require high
saving and loading costs. This restricts their usage on
specific platforms, especially portable devices. Second,
fully accessing the source data may violate data privacy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10489-022-04364-9&domain=pdf
http://orcid.org/0000-0002-5324-3642
https://github.com/ygjwd12345/TransDA
mailto: zhun.zhong@unitn.it
mailto: yangguanglei@hit.edu.cn
mailto: dingml@hit.edu.cn
mailto: niculae.sebe@unitn.it
mailto: e.ricci@unitn.it


G. Yang et al.

policies. Considering these two factors, companies or
organizations prefer to provide the learned models rather
than the data. Therefore, designing a domain adaptation
method without requiring source datasets has great practical
value. To this end, in this paper, we aim to address
the recently introduced problem of source-free domain
adaptation [13] (SFDA), in which only the model pretrained
on the source and the unlabeled target dataset are provided
for target adaptation.

Today, amount of works [9, 13, 14] have been proposed
for SFDA, aiming to align the source and target distributions
by learning with underlying constraints, such as information
maximization and label consistency. However, all of these
methods perform adaptation with a model pretrained on
the source data, while neglecting the source model’s
generalization ability. In SFDA, the adaptation process
largely relies on the accuracy of the source model on the
target domain. Without a source model that generalizes well,
the generated pseudo-labels may contain significant noise,
and learning with them will undoubtedly harm the model’s
performance.

In this paper, we attempt to improve the generalization
ability of the source model for SFDA. Different from
the existing out-of-domain generalization methods [15,
16], which aim to improve the model generalization by
augmenting the diversity of the source samples, in this
paper, we introduce a new perspective for building a robust
source model motivated by the following observation.
In Fig. 1, we directly apply the source model to the
unseen target samples (A→W and A→D on Office-31)
and produce the heatmaps by Grad-CAM. We use Amazon
Mechanical Turk and ask annotators to label the samples
with “focused / non-focused” according to whether the
heatmap (red region) is localized on the object. Examples
are shown in Fig. 1(a). We observe that the accuracy of
the focused samples is much higher than that of the non-
focused samples (see Fig. 1(b, c)). The indicates that when a
network can effectively focus on the objects in the images, it
commonly can provide a high prediction accuracy on these
images. This finding is intuitive, since the model can capture
more informative and domain-invariant feature when the
object in the image is focused by the model. Otherwise, the
model will tend to capture unhelpful information of noise
and background, which may hamper the performance.

Inspired by the above observation, we propose
TransDA for SDFA by equipping a convolutional model
with a Transformer [17] module, which can effectively
encourage the network to focus on the objects and thus
improve the performance on target samples. Specifically,
by injecting the Transformer after the last convolutional
layer of ResNet-50, we can leverage its long-range depen-
dence to force the model to pay more attention to the

objects. In this way, the model can produce more infor-
mative representation captured on the objects, which can
significantly improve the generalization ability of the
source model. In addition, during the target adaptation,
we propose a self-supervised knowledge distillation on
generated pseudo-labels, further leading the Transformer to
learn to focus on the objects of target samples. We evaluate
our TransDA on three domain adaptation tasks, includ-
ing closed-set, partial-set [18], and open-set [19] domain
adaptation. Extensive results demonstrate that TransDA is
competitive with state-of-the-art methods on all tasks.

To summarize, this work provides the following three
contributions:

– We reveal for the first time the importance of network
attention for SFDA, through an in-depth empirical
study. This provides a new perspective for improving
the generalization ability of the source model.

– We propose a Transformer-based network for SFDA,
which can effectively lead the model to pay attention
to the objects and thus significantly increase the model
generalization ability. To our knowledge, we are the
first to propose a Transformer for solving the domain
adaptation task.

– We introduce a novel self-supervised knowledge
distillation approach to further help the Transformer to
focus on target objects.

2 Related work

Traditional domain adaptation Domain adaptation aims
to improve moedel’s performance on the target domain
by using a labeled source domain that belongs to
a different distribution. With the recent advancement
in deep convolutional neural networks, a number of
methods have been proposed for unsupervised domain
adaptation. One common solution in the previous works
is to guide the model to learn a domain-invariant
representation by minimizing the domain discrepancy [5, 7,
20, 21]. For example, CAN [5] optimizes the network by
considering the discrepancy between the intra- and inter-
class domains. In a similar way, ETD [7] employs an
enhanced transport distance to reflect the discriminative
information. Different with learning a domain-invariant
representation, several methods have focused on the feature
discrimination ability during domain adaptation. They
introduce different normalization or penalization strategies
to boost the feature discrimination ability on the target
domain, such as batch normalization [22], batch spectral
penalization [23], batch nuclear-norm maximization [24],
and transferable normalization [25]. Another branch of
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Fig. 1 Evaluation of attention for the source model on the Office-31 dataset. (a) Examples of Grad-CAM visualization and prediction results in
A→W. (b) The distribution and (c) accuracy of the source model on focused and non-focused samples in A→W , A→D, W→A and D→A

methods exploit a generative adversarial network to address
the domain confusion [2]. BDG [8] and GVB-GD [26]
use bi-directional generation to construct domain-invariant
representations. Despite the large success of the above
methods, they typically require access to source data
when learning from the target domain. This may lead to
personal information leakage and thus violate data privacy
requirements.

Source-free domain adaptation To alleviate the issue of
data privacy, recent works [9, 13, 14] have turned their
attention to the problem of source-free domain adaptation,
where only the pretrained source model and the target
samples are provided during the target adaptation stage.
C3-GAN [9] introduces a collaborative class conditional
generative adversarial net to produce target-style training
samples. Clustering-based regularization is also used to
obtain more discriminative features in the target domain.
Meanwhile, SHOT [13] freezes the classifier module and
learns the target-specific feature extractor with information
maximization and self-supervised pseudo-labeling, which
can align the target feature distribution with the source
domain. DECISION [14] extends SHOT to a multi-source
setting by learning different weights for each source model.
Different from the above methods, in this paper, we attempt
to improve the generalization ability of the source model
by injecting a Transformer module into the network. Our
approach can be readily incorporated into most existing
frameworks to boost the adaptation accuracy.

Vision transformers The Transformer was first proposed
by [27] for machine translation and has been used to

establish state-of-the-art results in many natural language
processing tasks. Recently, the Vision Transformer (ViT)
[17] achieved state-of-the-art results on the image classifi-
cation task by directly applying Transformers with global
self-attention on full-sized images. Since then, Transformer-
based approaches have been shown to be efficient in
many computer vision tasks, including object detection
[28, 29], image segmentation [30], video inpainting [31],
video classification [32], pose estimation [33], object re-
identification [34] and depth estimation [35]. Different from
these approaches, in this paper, we adopt a Transformer-
based network to address the source-free domain adaptation
task. To this end, we propose a generic yet straightforward
TransDA framework for domain adaptation to encourage the
model to focus on the object regions, leading to improved
domain generalization.

3Method

3.1 Problem definition

In traditional domain adaptation (DA), the models are
trained on an unlabeled target domain Xt={xi

t }Mi=1 and

a source domain Xs={xj
s }Nj=1 along with corresponding

labels Ys={yj
s }Nj=1, where y

j
s belongs to the set of K

classes. The distributions of the source and target data are
denoted as xs∼pdata(xs) and xt∼pdata(xt ), respectively,
where pdata(xt )�=pdata(xs). The goal is to learn a target
network φt using the labeled source data and unlabeled
target data that can accurately recognize the target samples.
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In SFDA, (1) the labeled source data are only used to
pretrain a source model φs , and (2) the target network φt

is learned with the pretrained source model φs and the
unlabeled target data Xt .

3.2 Overview

The overall framework of the proposed method, which
consists of (1) source training and (2) target adaptation, is
shown in Fig. 2. First, we train the source model φs with
samples from the source domain using cross-entropy loss.
The source model φs is composed of two modules: the
feature extractor fs :X→Rd and the classifier gs :Rd→RK ,
where d indicates the dimension of the feature extractor
output and K refers to the number of categories in the source
data. Therefore, we have φs=fs◦gs . Different from existing
methods that use a convolutional neural network (CNN) as
the feature extractor (e.g., ResNet), we propose injecting
a Transformer module [17] after the last CNN layer. With
the help of the innate self-attention mechanisms injected in
Transformer, the model is encouraged to capture foreground
regions instead of background factors. As a result, the
feature extractor can pay more attention to the objects and
thus produce a more robust representation.

Second, we aim to learn a network φt in the target
domain, given the pretrained φs . Specifically, we maintain
a teacher model φT ea

t and a student model φStu
t , which are

both initialized by the parameters of φs . Following [13], we

fix the classifiers and only update the feature extractors. The
updating strategies for the feature extractors are different.
We update f Stu

t with the gradients produced by the target
adaptation losses. f T ea

t is updated with an exponential
moving average of the parameters of f Stu

t . The teacher
model φT ea

t is used to produce a hard pseudo-label ŷt and
soft pseudo-label ȳt for calculating the self-labeling loss
and knowledge distillation loss, respectively. In addition,
the information maximization loss is computed with the
outputs of φStu

t . The above three losses are used to update
f Stu

t , where the information maximization and self-labeling
losses are employed to align the cross-domain feature
distributions and the knowledge distillation loss is designed
to force the model to focus on objects.

3.3 Model pretraining on the source
with a transformer

In this stage, we aim to learn a source model with the labeled
source data. Generally, given a network φs initialized on
ImageNet, we train it with the label smoothing cross-
entropy loss [36]:

Lce = −Exs∈Xs

K∑

k=1

ŷk log σ(φs(xs)), (1)

where ŷk=(1 − α) yk+α/K . α is the smoothing factor and
is empirically set to 0.1. σ(.) is the softmax operation.
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Fig. 2 Overview of the proposed method. The model includes a fea-
ture extractor f and a classifier g. We inject a Transformer module
(structure is shown on the right) into f to obtain a representation with
improved generalization capability. First, we train the model with the
labeled source data. Then, we create a teacher model (T ea) and a
student (Stu), cloned from the source model, for target adaptation.

The teacher model is used to produce pseudo-labels for computing the
self-labeling loss (Lsl) and knowledge distillation loss (Lkd ). We also
calculate the information maximization loss (Lim) based on the out-
puts of the student model: sg: stop gradient, EMA: exponential moving
average, FC: fully connected layer, BN: batch normalization layer
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In SFDA, the target adaptation stage greatly relies on
the target outputs obtained by the source model. Hence, it
is important to learn a robust source model, to counteract
with domain bias. As shown in Fig. 1, the model can
effectively classify the target samples if it can localize the
object regions. This observation is reasonable because the
model learns to capture the common object patterns instead
of domain-specific information (e.g., background, color
distribution) if it can always focus on the objects. Therefore,
one solution for improving the generalization ability is
forcing the model to focus on objects during training.
Existing approaches typically select a CNN model as the
feature extractor of φs . However, due to the intrinsic locality
of the convolution operation (i.e., small receptive fields),
the CNN model prefers to capture local information, which
may lead it to overfit on domain-specific information and
thus fail to focus on objects, especially when encountering
a large domain shift.

To address the drawback of CNNs in SFDA, in this
paper, we propose injecting a Transformer module after the
convolutional network [17]. By doing so, we can leverage
the property of the Transformer to capture long-range
dependencies and explicitly encourage the model to pay
more attention to the objects. This enables us to reduce the
impact of domain-specific information and produce more
robust and transferable representations.

Specifically, as shown in the right part of Fig. 2 we
construct the feature extractor by injecting the Transformer
after the last convolutional layer of ResNet-50. Since the
input of the Transformer should be a sequence, we first

reshape the output of the ResNet-50 backbone F∈Rh×w×d̂

to F̂∈Ru×d̂ , where h, w, and d̂ indicate the height, width,
and dimension of F , respectively. u is the product of h and
w. Then, F̂ is regarded as the input sequence with patch
embeddings for the Transformer.

In the first layer of the Transformer, we map the
dimension of the patch embeddings F̂ from d̂ to d̄ with a
linear projection layer, producing Z0∈Ru×d̄ . Then, Z0 is
fed into L Transformer layers, which include multi-headed
self-attention (MSA) and multi-layer perceptron (MLP)
blocks.

Given the feature Zl−1 obtained from the l−1-th
Transformer layer, MSA (Zl−1) is defined as:

MSA(Zl−1) = Zl−1 + cont(AH1(LN(Zl−1));
AH2(LN(Zl−1)); · · · ; AHm(LN(Zl−1))) × W, (2)

where AH represents a self-attention head [27], cont(·)) is
the concentration operation, LN(·) is the layer normaliza-
tion, and m indicates the number of self-attention heads.
W∈Rm·ď×d̄ are the learnable weight matrices, where ď is
the output dimension of each AH.

The output of MSA is then transformed into an MLP
block with a residual skip, formulated as:

Zl = MLP(LN(MSA(Zl−1))) + MSA(Zl−1). (3)

Given the output Zl∈Ru×d̄ of the Transformer, we obtain
the global feature by average pooling, which is fed into the
following layers, including one FC layer, one BN layer, and
the classifier gs .

3.4 Self-training on target with transformer

Information maximization In the target adaptation stage,
we are given a pretrained source model φs and the unlabeled
target domain. We first initialize the target model φt with
the parameters φs . Following [13], we fix the classifier
gt to maintain the class distribution information of the
source domain and update the feature extractor ft using the
information maximization (IM) loss [37]. This enables us
to reduce the feature distribution gap between the source
and target domains. The IM loss consists of a conditional
entropy term and a diversity term:

Lim = −Ext∈Xt

K∑

k=1

σ(φt (xt )) log σ(φt (xt ))+
K∑

k=1

p̄k log p̄k,

(4)

where p̄=Ext∈Xt [σ(φt (xt ))] is the mean of the softmax
outputs for the current batch.

Self-labeling Although the IM loss can make the predic-
tions on the target domain more confident and globally
diverse, it is inevitably affected by the noise generated by
incorrect label matching. To address this issue, one solution
is to utilize a self-labeling strategy to further constrain the
model. In this paper, we use self-supervised clustering [9,
13, 14] to generate pseudo-labels for target samples. Specif-
ically, we first compute the centroid for each class in the
target domain similar to weighted k-mean clustering,

μ
(0)
k =

∑
xt∈Xt

σ (φt (xt ))ft (xt )∑
xt∈Xt

σ (φt (xt ))
. (5)

Then, the initial pseudo-labels are generated by the nearest
centroid classifier:

ŷt = arg min
k

1 − ft (xt ) · μ
(0)
k

||ft (xt )||2||μ(0)
k ||2

, (6)

where || ∗ ||2 denotes the L2-norm. Finally, the class
centroids and pseudo-labels are updated as follows:

μ
(1)
k =

∑
xt∈Xt

ξ(ŷt = k)ft (xt )∑
xt∈Xt

ξ(ŷt )
,

ŷt = arg min
k

1 − ft (xt ) · μ
(1)
k

||ft (xt )||2||μ(1)
k ||2

, (7)
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where ξ(∗) is an indicator that produces 1 when the
argument is true. Although the pseudo-labels and centroids
can be updated by (7) multiple times, we find that one round
of updating is sufficient. Given the generated pseudo-labels,
the loss function for self-labeling is calculated using the
cross-entropy loss, formulated by:

Lsl = −Ext∈Xt

K∑

k=1

ξ(ŷt = k) log σ(φt (xt )). (8)

Self-knowledgedistillation Recall that we aim to encourage
the network to focus on the objects to produce more robust
feature representations. Although we inject a Transformer
module into the model to achieve this goal, we hope to
further improve object attention ability by learning with the
target samples. The above loss functions (Lim and Lsl) are
designed to align the feature distribution of the domain,
but do not explicitly consider the attention constraint.
Therefore, they cannot further improve object attention
ability of the Transformer. DINO [38] showed that learning
with a self-knowledge distillation strategy can lead the
Transformer to capture more semantic information, i.e., pay
more attention to objects. Inspired by this observation, we

propose adopting the self-knowledge distillation strategy to
force the model to turn more attention to objects in the target
samples.

Specifically, we employ a teacher model φT ea
t and a stu-

dent model φStu
t to implement self-knowledge distillation.

We use the teacher model φT ea
t to generate pseudo-labels

and optimize the parameters of the student model φStu
t with

training losses. Hence, (5), (6), and (7) are reformulated by
replacing ft and gt with f T ea

t and gT ea
t , respectively. Sim-

ilarly, Lim and Lsl are re-formulated by replacing φt with
φStu

t .
For the self-knowledge distillation, we generate the soft

pseudo-labels by

ȳt = exp(δ(f T ea
t (xt ), μ

(1)
k )/τ )

∑K
k=1 exp(δ(f T ea

t (xt ), μ
(1)
k )/τ

, (9)

where δ(a, b) indicates the cosine distance between a and
b. Then, our knowledge distillation loss is formulated as:

Lkd = −Ext∈Xt

K∑

k=1

ȳt log φStu
t (xt ). (10)

Table 1 Accuracy (%) on Office-31 for closed-set domain adaptation (ResNet-50)

Method Source-free A→D A→W D→W W→D D→A W→A Avg

ETD [7] × 88.0 92.1 100.0 100.0 71.0 67.8 86.2

Hou et al. [43] � 89.9 91.8 98.7 99.9 73.9 72.0 87.7

BDG [8] × 93.6 93.6 99.0 100.0 73.2 72.0 88.5

CDAN+BSP [23] × 93.0 93.3 98.7 100.0 73.6 72.6 88.5

CDAN+BNM [24] × 92.9 92.8 98.8 100.0 73.5 73.8 88.6

BDCA [44] × 93.8 94.0 99.0 100.0 73.5 73.0 88.9

f-DAL [45] × 93.8 95.4 98.8 100.0 74.9 74.2 89.5

CDAN+TransNorm [25] × 94.0 95.7 98.7 100.0 73.4 74.2 89.3

ILA-DA [46] × 93.4 95.7 99.3 100.0 72.1 75.4 89.3

NRC [47] � 96.0 90.8 99.0 100.0 75.3 75.0 89.4

GVB-GD [26] × 96.1 93.8 98.8 100.0 74.9 72.8 89.4

GSDA [48] × 94.8 95.7 99.1 100.0 73.5 74.9 89.7

SHOT [13] � 94.0 90.1 98.4 99.9 74.7 74.3 88.6

3C-GAN [9] � 92.7 93.7 98.5 99.8 75.3 77.8 89.6

HCL[49] � 94.7 92.5 98.2 100.0 75.9 77.7 89.8

D-MCD [50] � 94.1 93.5 98.8 100.0 76.4 76.4 89.9

SCDA [51] × 95.2 94.2 98.7 99.8 75.7 76.2 90.0

A2Net [52] � 94.5 94.0 99.2 100.0 76.7 76.1 90.1

RSDA [53] × 95.2 95.3 99.3 100.0 75.5 76.0 90.2

CAN [5] × 95.0 94.5 99.1 99.8 78.0 77.0 90.6

TSA [54] × 95.4 96.0 98.7 100.0 76.7 76.8 90.6

TransDA (Ours) � 97.2 95.0 99.3 99.6 73.7 79.3 90.7
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Table 3 Accuracy (%) on Digits for closed-set domain adaptation

Method Source-free S→M U→M M→U avg

CDAN+E [59] × 89.2 98.0 95.6 94.3

CyCADA [40] × 90.4 96.5 95.6 94.2

KL [60] × 98.2 97.3 92.5 96.0

SWD [6] × 98.9 97.1 98.1 98.0

SHOT [13] � 98.9 98.4 98.0 98.4

TransDA (Ours) � 99.1 98.7 98.3 98.7

S: SVHN, M:MNIST, U: USPS

In summary, the final objective of self-training on the
target domain is given by

Ltgt = Lim + αLsl + βLkd , (11)

where α and β are the weights of self-labeling loss and self-
knowledge distillation loss, respectively. We update φStu

t

with Ltgt . Additionally, we update φT ea
t with an exponential

moving average of the parameters of φStu
t . Note that the

classifiers of φT ea
t and φStu

t are both fixed during training.

4 Experiments

4.1 Experimental setup

Datasets We conduct experiments on three datasets, includ-
ing Office-31, Office-Home, VisDA [39] and Digits [40].
Office-31 includes 4,652 images and 31 categories from
three domains, i.e., Amazon (A), Webcam (W), and DSLR
(D). Office-Home consists of around 15,500 images from

65 categories. It is composed of four domains: Artistic
images (Ar), Clip Art (Cl), Product images (Pr), and Real-
World images (Rw). VisDA contains 152K synthetic images
(regarded as the source domain) and 55K real object images
(regarded as the target domain), which are divided into 12
shared classes. Digits contains three subsets: SVHN (S),
MNIST (M), and USPS (U). Following the evaluation proto-
col of CyCADA [40], the three directions, USPS to MNIST
(U → M), MNIST to USPS (M → U), and SVHN to
MNIST (S → M), are chosen.

Evaluation settings We evaluate the proposed method on
three DA settings, including closed-set DA, partial-set
DA [41], and open-set DA [42]. Closed-set DA is a standard
setting that assumes that the source and target domains share
the same class set. Partial-set DA assumes that the target
domain belongs to a subclass set of the source domain.
In contrast, open-set DA assumes that the target domain
includes unknown classes that are absent in the source
domain. For closed-set DA, we evaluate our method on all

Table 4 Accuracy (%) on VisDA for closed-set domain adaptation (ResNet-50)

Method Source-free airplane bicycle bus car horse knife motorcycle person plant skateboard train truck Avg

KL [60] × − − − − − − − − − − − − 70.6

MDD [61] × − − − − − − − − − − − − 74.6

RSDA [53] × − − − − − − − − − − − − 75.8

GSDA [48] × 93.1 67.8 83.1 83.4 94.7 93.4 93.4 79.5 93.0 88.8 83.4 36.7 81.5

Hou et al. [43] � 94.3 79.0 84.9 63.6 92.6 92.0 88.4 79.1 92.2 79.8 87.6 43.0 81.4

SHOT [13]† � 94.5 85.7 77.3 52.2 91.6 15.7 82.6 80.3 87.8 88.0 85.1 58.8 75.0

TSA [54] × − − − − − − − − − − − − 82.0

TransDA (Ours) � 97.2 91.1 81.0 57.5 95.3 93.3 82.7 67.2 92.0 91.8 92.5 54.7 83.0

SWD [6]∗ × 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4

3C-GAN [9]∗ � 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6

CGDM [67]∗ × 93.4 82.7 73.2 68.4 92.9 94.5 88.7 82.1 93.4 82.5 86.8 49.2 82.3

STAR [68]∗ × 95.0 84.0 84.6 73.0 91.6 91.8 85.9 78.4 94.4 84.7 87.0 42.2 82.7

SHOT [13]∗ � 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9

∗ indicates the methods that use ResNet-101 as the backbone. † indicates reproduction using the official code
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three datasets. For partial-set and open-set DA, we evaluate
our method on Office-Home. Following [13], for partial-set
DA, we choose 25 classes for the target domain, while all
65 classes are used for the source domain. For open-set DA,
we select 25 classes as the shared classes while the other
classes make up the unknown class in the target domain.

Implementation details We use a ResNet-50 pretrained on
ImageNet as the feature extractor backbone. Moreover, the
Transformer [17] layers are injected after the backbone,
followed by a bottleneck layer with batch normalization and
a task-specific classifier layer. Different from [13, 14], we
adopt a teacher-student structure for target adaptation. We
use stochastic gradient descent(SGD) with momentum 0.9
and weight decay 10−3 to update the network. The learning
rates are set to 10−3 for the backbone and Transformer
layers and set to 10−2 for the bottleneck and classifier
layers. For source training, we train the model over 100, 50,
30 and 10 epochs for Office-31, Office-Home, Digits and
VisDA, respectively. For target adaptation, the number of
epochs is set to 15 for all settings. We set α and β in (11)
to 0.3 and 1, respectively, which yields consistently high
performance across all settings. The batch size is set to 64,
and the size of the input image is reshaped to 224×224.

User study To evaluate the importance of the model atten-
tion, we conduct a user study based on Amazon Mechanical
Turk. Specifically, given the Grad-CAM samples generated
by a model, we invite 120 participants to label the sam-
ples with “focused / non-focused” according to whether the
heat map is localized on the object. Each sample is anno-
tated by all participants and the final label of it is the one
selected by the most participants. Given the labels of atten-
tion, we then compute the true and false predictions based
on the ground-truth class labels for focused samples and
non-focused samples, respectively.

4.2 Comparison with state-of-the-art methods

We first compare the proposed TransDA with state-of-the-art
methods under closed-set, partial-set, and open-set DA.

– For closed-set DA, the compared methods include:
ETD [7], BDG [8], BSP [23], BNM [24],
TransNorm [25], GVB-GD [26], GSDA [48], CAN [5],
SHOT [13], GSDA [48], RSDA [53], MDD [61],
f-DAL [45], ILA-DA [46], CKB [55], and 3C-GAN [9].

– For partial-set DA and open-set DA, we compare with
ETN [41], SAFN [62], SHOT [13], TIM [63], STA
[42], DCC [64], AR+LS [65], and BA3US [66]. In
these methods, only SHOT [13] , 3C-GAN [9], and
Hou et al. [43] are designed for source-free domain
adaptation.
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Table 6 Ablation study on the Transformer, teacher-student structure (EMA) and self-knowledge distillation (KD)

Method Office-31 Office-Home VisDA

Source Only 78.6 65.7 46.7

+ Transformer 80.8 67.6 48.0

Baseline 88.6 71.8 75.0

+ Transformer 90.0 78.8 81.0

+ Transformer + EMA 90.2 78.7 81.2

+ Transformer + EMA + KD 90.7 79.3 83.0

Results are evaluated for the closed-set DA under Office-31, Office-Home, and VisDA

Results on Closed-Set DA We report the results on Office-
31, Office-Home, Digits and VisDA in Tables 1, 2, 3
and 4, respectively. We can make the following five
observations. (1) Our TransDA outperforms all compared
methods on all datasets, yielding state-of-the-art accuracies
for closed-set DA. (2) When using the same backbone, our
TransDA surpasses the source-free method (SHOT [13])
by a large margin. Specifically, when using ResNet-50
as the backbone, TransDA outperforms SHOT [13] by
2.1%, 7.5%, 0.3% and 8.0% on Office-31, Office-Home,
and VisDA, respectively. This verifies the effectiveness of
the proposed TransDA for source-free DA. (3) Although
existing methods already obtain very high performance
on Digits, our method still achieves better results on all
directions. (4) On VisDA, TransDA with ResNet-50 can
produce competitive results compared to the methods that
use ResNet-101 as the backbone, further demonstrating the
superiority of the proposed TransDA . (5) For VisDA, our
method produces lower performance on car and motorcycle
classes. One possible reason is that these two classes include
many samples and the diversity of them are richer than other
classes. In our method, we generate one prototype for each
class. However, using only one prototype to represent these
diverse classes may not be enough and thus leads to lower
performance on them.

Results on Partial-Set and Open-Set DA To verify the
versatility of TransDA , we evaluate it on two more
challenging tasks, i.e., partial-set DA [18] and open-set
DA [42]. For fair comparison, we follow the protocols
proposed by [18] and [42] to set the evaluation settings for

partial-set DA and open-set DA, respectively. Specifically,
we first rank the classes in alphabetical order and select the
first 25 classes as the shared classes. For partial-set DA,
the target domain includes the samples of the shared 25
classes while the source domain includes the samples of all
65 classes. For open-set DA, the source domain consists
of the samples of the shared 25 classes while the target
domain includes the samples of all 65 classes where the
non-overlapped 40 classes are regarded unknown classes.

The results on Office-Home are reported in Table 5.
The advantage of TransDA is similar to that for closed-set
DA. That is, TransDA clearly outperforms the compared
methods on both settings. Specifically, TransDA is 2.0% and
4.0% better than SHOT [13] on partial-set DA and open-set
DA, respectively. This demonstrates that our Transformer-
based structure is effective under various domain adaptation
settings.

4.3 Ablation study

Accuracy comparison In Table 6, we study the effectiveness
of the proposed Transformer structure and self-knowledge
distillation. We first explain the components in Table 6:
Source Only indicates the pretrained source model; Baseline
denotes further training the model on the target data
with the information maximization and self-labeling losses;
+Transformer means injecting the Transformer module
into the model; +EMA refers to using the teacher-student
structure; and +KD indicates using the self-knowledge
distillation loss. From Table 6, we can draw the following
conclusions. (1) Injecting the Transformer into the network

Table 7 Accuracy (%) on Office-Home for comparison to different attention modules

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw P→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

Baseline 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8

w/ SE [70] 57.3 78.4 81.8 68.3 78.5 78.4 67.7 55.1 82.5 73.6 59.0 84.7 72.1

w/ Non-local [71] 61.7 76.2 78.6 67.7 76.6 77.2 70.4 62.2 79.5 73.6 63.9 82.3 72.5

w/ Transformer 67.5 83.3 85.9 74.0 83.8 84.4 77.0 68.0 87.0 80.5 69.9 90.0 79.3
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(a) Baseline (b) Baseline + Transformer (c) Baseline + Transformer + KD

Fig. 3 t-SNE visualization for different methods on Office-31 (A→W). We use the outputs of the feature extractor as the features. Red/black
denote the source/target domains. Best viewed in color

can consistently improve the results, regardless of the model
as learned on the source data or the target data. Specifically,
when using the Transformer, the accuracy of Baseline
improves from 72.1% to 78.8% on Office-Home. This
demonstrates the effectiveness of the Transformer in domain
adaptation. (2) Adding the knowledge distillation loss can
further boost the performance, verifying the advantage of
the self-knowledge distillation. (3) Applying the teacher-
student structure fails to produce clear improvements,
indicating that the gains of +KD are mainly obtained by
knowledge distillation rather than by generating pseudo-
labels with the teacher model.

Comparisons of different attention modules In Table 7,
we compare different attention modules, including the SE
module [70], non-local module [71] and Transformer. We
can observe that the SE module and non-local modules
fail to improve the average accuracy significantly, while
the Transform obtains a 7.5% improvement, demonstrating
the effect of Transformer. According to Table 6, adding

transformer and EMA leads to amount of computing
consumption. However, taking computing consumption and
performance improvement, our TransDA holds the obvious
advantage among the different attention modules.

t-SNE visualization In Fig. 3, we show the t-SNE of features
for different methods. We find that adding the Transformer
and knowledge distillation can (1) make the intra-class
samples more compact and (2) reduce the distances between
source and target domain clusters. These findings reveal
that TransDA can encourage the model to be more robust
to intra-class variations and can decrease the cross-domain
distribution gap.

Visualization of Grad-cam and statistics study for focused
and non-focused samples In Fig. 4, we compare the Grad-
CAM visualizations for different variants of our method.
We obtain the following findings. (1) When adding the
Transformer into the network, the red regions on the objects

Images

Baseline

w/ T

w/ T+KD

Back Pack Bike Bottle Helmet Printer Puncher Headphones

Fig. 4 Visualization of Grad-CAM for different methods. The results are evaluated on Office-31 (A→W)
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Fig. 5 Visualization of statistics studies for different methods on Office-31 (A→W)

increase, indicating that the network is encouraged to pay
more attentions to the objects. (2) When training the model
with the knowledge distillation loss, the attention ability
of the network is further improved. In addition, we use
Amazon Mechanical Turk to estimate the “focused / non-
focused” samples for different methods (see Fig. 5). We
can observe that the focused samples and accuracy increase
when adding the Transformer and the knowledge distillation
loss. The above observations verify that 1) the proposed
Transformer structure and knowledge distillation loss can
effectively encourage the network to focus on objects,
and 2) improving the attention ability of the network can
consistently improve domain adaptation accuracy.

Discussion Indeed, our method with transformer backbone
and teacher-student structure increases the computation
cost. However, this increment is largely lower compared to
the costs of persistently keeping and using source domains
during training. In practice, the dataset commonly requires
high saving cost, e.g., the size of VisDA [39] dataset is

larger than 7 GB. However, the size of our backbone model
is less than 100 MB, which is largely lower than most of
the source domains. This indicates that using source-free
constraint can significantly reduce the saving and loading
costs, especially when using large-scale source domains.
Therefore, we believe it is appropriate to designing a source-
free method to achieve performance improvement at the cost
of using more complicated models.

5 Conclusion

In this paper, we proposed a generic yet straightforward
representation learning framework, named TransDA, for
source-free domain adaptation (SFDA). Specifically, by
employing a Transformer module and learning the model
with the self-knowledge distillation loss, the network is
encouraged to pay more attention to the objects in an
image. Experiments on closed-set, partial-set, and open-set
DA confirm the effectiveness of the proposed TransDA.
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Importantly, this work reveals that the attention ability of a
network is highly related to its adaptation accuracy. We hope
these findings will provide a new perspective for designing
domain adaptation algorithms in the future. In the future
work, we would like to study two reasonable and promising
directions to improve our method. First, we will investigate
more style-based augmentation technologies during the
source-training and self-training processes, which can
encourage the model be more robust to domain shifts.
Second, we attempt to design flexible clustering methods
that can generate robust prototypes to better handle the
intra-class variance.

Data Availability The datasets generated and analysed during this
study are available in the Github repository: https://github.com/
ygjwd12345/TransDA
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