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Abstract

Estimating 3D human poses from images is an ill-posed regression problem,

which is usually tackled by viewpoint-invariant convolutional neural networks

(CNNs). Recently, capsule networks (CapsNets) have been introduced as a

viable alternative to CNNs, ensuring viewpoint-equivariance and drastically re-

ducing both the dataset size and the network complexity, while retaining high

output accuracy. We propose a real-time end-to-end human pose estimation

(HPE) network which employs state-of-the-art matrix capsules [1] and a fast

variational Bayesian capsule routing, without relying on pre-training, complex

data augmentation or multiple datasets. We achieve comparable results to the

HPE state-of-the-art, and the lowest error among methods using CapsNets,

while at the same time achieving other desirable properties, namely greater gen-

eralization capabilities, stronger viewpoint equivariance and highly decreased

data dependency, allowing for our network to be trained with only a fraction of

the available datasets and without any data augmentation.
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Figure 1: CapsulePose’s network architecture. From left to right: Encoder with residual

convolutions; Capsule layers with matrix capsules (primary, convolutional and class capsules)

and fast variational Bayes routing; Decoder with multi-task loss and interpretable capsule

latent space.

1. Introduction

The literature on human pose estimation (HPE) has received an increasing

number of contributions with applications to many different domains, includ-5

ing motion capture and tracking [2], virtual and augmented reality [3], robotics

[4], sports analysis [5], camera calibration [6, 7], activity recognition [8] and

ambient-assisted living [9, 10], to name a few. Some crucial aspects that concern

real-world applications are reliability, generalization, and real-time compliance

of the employed architectures. However, it is known that, in order to maximize10

performance in many deep learning applications, including HPE, a huge amount

of labelled data is required. Moreover, annotating 3D human pose data is not

feasible without specific expensive equipment, such as 3D motion capture sys-

tems; since generalization greatly depends on the quantity and quality of data,

HPE networks have grown in complexity, in proportion to the growth of the15

datasets. To further push the accuracy of the estimation, many methods take

into consideration the usage of multiple datasets, which often rely on different

joint labelling, non-standard data augmentation, biometric models and the us-

age of 2D ground truth during training or even testing. However, in real-world

applications, 2D ground truth data is not always available, and estimating 2D20

data to use it as a pseudo-ground truth is time-consuming and leads to error
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propagation. For this reason, end-to-end methods are usually preferable and

more reliable than two-stage methods relying on 2D estimations. Nonetheless,

still today, end-to-end 3D human pose estimation architectures are very com-

plex and hard to train, especially when using a single dataset, and they usually25

rely on additional data and non-standard data augmentation in order to reach

state-of-the-art performance. Additionally, there are other factors to be consid-

ered when dealing with real-world applications, such as, for example, crowding

and unconventional camera positions or occlusions. These factors make gen-

eralization on unseen data harder, thus requiring more complex networks and30

increasing the risk of overfitting.

A novel learning system has been presented in recent literature by Hinton

et al. [1]. Capsule networks (CapsNets) address some of the issues of tradi-

tional convolutional neural networks (CNNs), such as poor information routing

through max-pooling and the limits of scalar activation values for generalization,35

by replacing them with routing-by-agreement algorithms and capsule activation

values, respectively. CapNets have already shown excellent results on simple

datasets, such as MNIST, smallNORB and CIFAR-10, proving to have superior

generalization capabilities across unseen viewpoints and better interpretability,

thanks to the embedded inverse graphics capabilities, while at the same time re-40

quiring significantly fewer parameters compared to traditional CNNs. All these

qualities elicited a growing interest in the research community. However, de-

spite their major advantages, CapsNets are not a popular choice when dealing

with high-resolution datasets, because of the longer training times of the capsule

routing algorithms.45

In the long run, what we would like to achieve is to train neural networks

which can jointly satisfy the following conditions:

• Simple network architecture design

• Small number of trainable parameters

• High generalization to different datasets and viewpoints50
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• Easy upgradability in terms of architecture

• Fast, real-time inference performance

We believe that capsule-like architectures are a good candidate to respect

these constraints and greatly improve human pose estimation, at least in the long

run. We present the first neural network based on matrix capsules that tackles55

the problem of view-independent human pose estimation. Compared to other

state-of-the-art solutions, our network has a simple architecture with a very

small number of parameters. CapsulePose obtains good results on benchmarks

while training only on one dataset, with no data augmentation or additional

training-time tricks such as learning rate scheduling and warm-up. Additionally,60

we achieve very fast inference, which is a welcome requirement for real-time

applications. With this paper, our aim is to propose a simple yet effective

baseline for human pose estimation using capsules, encouraging the development

of better and more accurate methods using matrix capsules.

The contribution of this paper is manifold: we propose a simple yet effec-65

tive baseline network for end-to-end and real-time 3D human pose estimation.

To our knowledge, it is the first architecture to employ state-of-the-art matrix

capsules with 4× 4 3D pose matrices. We achieve state-of-the-art performance

on the Human3.6M dataset without employing additional data or non-standard

data augmentation. We employ a Variational Bayes (VB) capsule routing paired70

with an optimized and modular codebase, to minimize both training and testing

times. We consider two of the most important novelties of this work to be the

embedding of viewpoint-equivariance as frames of reference for greater gener-

alization capabilities and the unprecedented usage of matrix capsules and VB

routing for HPE. During testing, our network is almost twice as fast as other75

capsule-based architectures1.

The paper is organized as follows: in Section 2 we propose an overview of

1The code, dataset and pre-trained models will be made available for fair comparison and

replicability upon acceptance
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the state-of-the-art for both capsule networks and HPE; in Section 3 we dissect

our proposed architecture down to its core, commenting on the design choices

and their reasons; finally, in Section 4, we discuss our experiments, showing80

quantitative and qualitative results, commenting on the improved generalization

capabilities of the proposed architecture.

2. Related work

In this section, we will explore the existing literature for both capsule net-

works and 3D human pose estimation.85

2.1. Capsule networks

Capsule networks have been proposed in literature with the purpose of mod-

elling a system capable of learning part-whole relationships between so-called

entities across different viewpoints, similarly to how our visual cortex system

operates, according to the recognition-by-components theory [11].This problem

is also known as the viewpoint invariance problem, namely, how the network

activations change with the change of the viewpoint, usually after a transforma-

tion (translation, scaling, rotation, shearing). CNNs’ scalar activations are not

suited to efficiently manage these kinds of viewpoint transformations, thus need-

ing to often rely on max-pooling and aggressive data augmentation. However,

by doing so, CNNs achieve viewpoint-invariance, meaning that a slight modifi-

cation of the input image would lead to the same activation value. Hinton et al.

in [12] extensively discuss the drawbacks and issues of CNNs and how to address

them using capsules. A more desirable property would be to capture and retain

the transformation applied to the input image, in order for the network activa-

tions to be aware of the different transformations applied to the input. Being

able to model network activations that change in a structured way according to

the input viewpoint transformations is also called viewpoint-equivariance (Eq.

2), which is what CapsNets propose to achieve. In viewpoint-invariance (Eq.

1), a viewpoint transformation T does not change the outcome of the network
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activations. On the other hand, in viewpoint-equivariance (Eq. 2), the network

activations change according to the applied viewpoint transformation T. Unlike

traditional CNNs, which usually retain viewpoint-invariance (Eq. 1), capsule

networks can explicitly model and jointly preserve a viewpoint transformation

T through the network activations, drastically reducing the number of trainable

parameters, depending on the application.

f(Tx) = f(x) (1)

f(Tx) = Tf(x) (2)

This is achieved by introducing the concept of capsules: groups of neurons,

which explicitly encode the intrinsic viewpoint-invariant relationship that exists

between different parts of the same object. As of today, three official capsule

network iterations have been presented [13, 1, 14]. The first one, by Sabour et90

al., introduces for the first time a routing algorithm for vector capsules (Fig. 2),

called routing-by-agreement as a better max-pooling substitute, achieving very

promising results on simple datasets such as MNIST, CIFAR10 and smallNORB.

Presence +
pose vector u

Figure 2: The first iteration of a capsule’s structure (vector capsules), suitable for dynamic-

like routing, as described in [13]. Classic CNNs scalar-output feature detectors are replaced

by vector-output capsules. Each capsule contains a single vector which describes both the

pose and the presence of an entity.

The second official iteration of capsule networks [1], by Hinton et al., fur-

ther improves accuracy, reducing the number of test errors on the smallNORB95

dataset by 45%. This is achieved through a more complex capsule structure

(Fig. 3) and an Expectation-Maximization routing (EM-routing) for capsules.

Unfortunately, the EM-routing and the 4× 4 pose matrix embedded in the cap-

sule contribute to increasing the training time, when compared to both CNNs

and [13].100

The third official capsule network [14] by Kosiorek et al., constitutes a big
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Presence probability a
Pose matrix M

Figure 3: The second iteration of a capsule’s structure (matrix capsules) is suitable for

expectation-maximization-like routing, as described in [1]. It contains both a scalar value

and a 4X4 matrix, respectively describing the presence probability and a more robust 3D pose

compared to the first capsule iteration.

leap forward, introducing for the first time an unsupervised capsule-based au-

toencoder. Ribeiro et al. in [15] build up on the EM-routing version of capsules

by proposing for the first time a VB capsule routing for fitting a mixture of

transforming Gaussians. They present state-of-the-art results on smallNORB105

by using ∼ 50% fewer capsules, thus unlocking additional possibilities both in

terms of performance gain and network complexity reduction. Recent works in

literature explore the possibility of further reducing capsule network complexity

through quaternions [16] while increasing performance as well. However, all the

mentioned works only consider small datasets for benchmarking.110

2.2. Human pose estimation

Estimating the human pose from images can be seen as an ill-posed regression

problem. Once semi-parametric [17] and model-based or, learning-based human

pose estimation (HPE) methods have recently gained a lot of interest in the

research community, particularly real-time 2D HPE approaches [18], and only115

recently 3D HPE and human mesh recovery (HMR) approaches.

3D HPE usually relies on additional cues, such as 2D predictions [19, 20, 21],

multiple images [22], pre-trained autoencoders [23] and pose dictionaries [24].

Other recent works aim at end-to-end, learning-based 3D HPE [25, 26, 27] or

at designing architectures that make better use of multi-view data [28].120

Bogo et al. in [29] considered the possibility of improving the human pose

modelling via skinned multi-person linear models (SMPL), and in literature

end-to-end 3D HMR approaches can be found [30, 31, 32]. Among the most

recent HPE developments, many good works have been focusing on video mesh
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recovery [33], fast on-device inference [34] and multi-camera approaches without125

3D supervision [35]. To our knowledge, only a recent work from Ramı́rez [36]

tackles the problem of using capsule networks to solve the ill-posed 3D HPE

problem in an end-to-end fashion. They propose a Bayesian formulation of the

original version of the capsule network (with dynamic routing, as described in

[13]) and benchmark it for the ill-posed problem of 3D HPE from single images,130

obtaining very promising results and showing how CapsNets can be used even

with complex, big datasets. In this paper, we adhere to certain choices adopted

by [36], in order to allow fair comparisons. In particular, we both train on the

same dataset (Human3.6M dataset) and with the same training-testing protocol

(protocol #1). Moreover, we even keep our loss calculation as similar as possible.135

Nonetheless, the network we present is fairly different to what is described in

[36], namely that we employ a different capsule paradigm (matrix capsules [1]

instead of dynamic capsules [13]), and thus a different capsule routing algorithm,

that can work with matrix capsules, a renewed encoding-decoding pipeline with

GELU activations and in general a completely redesigned network architecture.140

In a recent work [37] similar to the one presented here, we show how to use

matrix capsules to generalize to unseen viewpoints at testing time, namely the

top viewpoint, both from depth and RGB input images. In this work we instead

focus on building a simple yet robust baseline for human pose estimation using

capsules, which offers good inference-time speed and that can be extended to145

multiple datasets and scenarios.

3. Proposed architecture

We present a novel capsule network architecture with Variational Bayes rout-

ing [15] for real-time end-to-end 3D human pose estimation from a single image.

We aim at keeping a simple network structure, which can be summed up into150

three main blocks:

1. Encoding: residual convolutional encoder with GELU activations [38].
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2. Encapsulation: matrix capsules (primary, convolutional, class capsules)

with VB routing [15].

3. Decoding: custom DDGELU decoding with transposed convolutions and155

multi-task self-balanced loss.

For training and evaluation, we rely on the Human3.6M dataset [2], showing

that capsule networks should be able to correctly learn 3D pose representations

without the need for multiple datasets. As for the optimizer, we conducted some

tests with both the Adam [39] and the improved AdamW [40] optimizer with160

decoupled weight decay regularization. We observed that the latter provides

faster overall loss convergence and comparable performance when training with

a learning rate of 1e−10, a weight decay value of 1e−2 and a batch size of 32.

An overview of the proposed architecture can be seen in Fig. 1 and a more

detailed layer-wise pipeline is shown in Algorithm 1.165

3.1. Initialization

We start by normal-initializing all the loss register buffers s3D, s2D, sH , sW

to 1 and every convolutional, capsule and dense weight wc with values sampled

from U(−α, α), where

α = gain×

√
6

ni + ni+1
(3)

according to the Xavier initialization [41]. This kind of initialization was demon-

strated to achieve quicker convergence and higher accuracy on CIFAR10 [41].

We define the capsule pose matrix size P = 4 and assign capsule parameters

[A,B,C,D,E, F ] the values [64, 8, 16, 16, 17, 13]. The number of input channels170

for the primary capsules is defined by A, while B,C,D are the numbers of output

channels for primary, convolutional (first and second) capsules respectively; E

defines the number of classes, which in our case is the number of joints. Finally,

F defines the size of the feature space during encapsulation.
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Algorithm 1: CapsulePose network overview: from RGB images to

2D, 3D human poses and E = 17 joints heatmaps

CapsulePose (x)
inputs : A batch x = x0 . . . xBS , #BS = batch size of

bounding-box RGB images containing a person

outputs: ŷ3D ∈ RBS×E×3,

ŷ2D ∈ RBS×E×2,

ŷH ∈ RBS×E×256×256

s3D, s2D, sH , sW ← 1;

wc ← xavieruniform() ∀c ∈ ConvLayers;

foreach i ∈ ConvLayers do

x← Conv2di(x) +Residuali(x);

x← GELU(x);

x← InstanceNorm2di(x);

x← Dropout0.3(x);

a, x← PrimaryCapsules2d(x);

foreach j ∈ ConvCapsuleLayers do

a, x← ConvCapsules2dj(a, x);

a, x← V BRouting2dj(a, x);

a, x, ŷW ← ClassCapsules(a, x);

a, x← ClassRouting(a, x);

x← Entities(x);

ŷ3D ← tanh(DDGELU0.3(DDGELU0.3(x)));

ŷ2D ← sigm(DDGELU0.3(DDGELU0.3(x)));

ŷH ← ReLU6(DDGELU0.3(DDGELU0.3(x)));

ŷH ← ConvTranspose2d(reshape(ŷH));

return [ŷ3D, ŷ2D, ŷH , ŷW ];
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3.2. Encoding175
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Figure 4: CNN encoder with residual convolutions and GELU [38] activations. The input

image (256X256X3) is transformed by 4 convolutional layers into 32-channels, 64-channels,

128-channels and A-channels embeddings. After the convolutions, the dimensionality of the

embedding is defined by A.

For the first block, we accept as input BS × 3× 256× 256 (BS=batch size)

previously-cropped RGB images and sequentially apply 4 convolutional steps to

obtain a BS×A×F ×F feature space, which will be eventually converted into

matrix capsules. Each convolutional layer is composed of residual convolutions,

to prevent vanishing gradients, as detailed in [42]. As for the activation function,180

we employ the Gaussian Error Linear Unit (GELU, Eq. 4) [38].

GELU(x) = xP (X ≤ x)

= xφ(x)

≈ 0.5x(1 + tanh
√

2/π(x+ 0.044715x3))

(4)

GELU activation functions have been used in many recent Transformer net-

works and have been proven to perform better in many learning tasks, including

computer vision.
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As for normalization, we adopted a combination of instance normalization185

followed by a dropout layer with rate 0.3. We chose instance normalization

over batch normalization because the latter combined with dropout may lead to

anomalous behaviour during training. On the other hand, dropout can serve as

additional normalization, as well as a means to capture the model uncertainty,

as detailed in [43]. Each convolutional layer has a kernel of size 9× 9 and stride190

2, except the last one which has stride 3 and additional padding.

3.3. Encapsulation
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Figure 5: Capsules layers. From left to right: primary, convolutional and class capsules.

Primary capsules transform the A outputs of convolutions into B primary capsules. The B

primary capsules are then forwarded to capsule convolution layers, producing first C and then

D capsules. Finally, E primary capsules are produced by the Class Capsules layer.

The BS × A × F × F output coming from the convolutional layers is now

‘encapsulated’ into B primary capsules, resulting in a shape of BS×B×P×P×

F ×F . Each primary capsule is a matrix capsule (Fig. 3), and thus is composed195

of an activation value ai and a pose matrix Mi. To our knowledge, this is the

first work in literature that uses matrix capsules [1] to tackle the human pose

estimation problem. A brief overview of the capsule layers is shown in Fig. 5.

Primary capsules are followed by 3 convolutional capsules (ConvCaps) layers,

of which the last one is a class capsules (ClassCaps) layer. The first ConvCaps200
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layer outputs capsules of shapeBS×C×P×P×6×6, while the second has output

BS×D×P×P×4×4. They both employ a 3×3 convolutional kernel, with strides

2 and 1 respectively. Finally, the ClassCaps layer gives as output E capsules

of BS × E × P × P by sharing weights matrices W across spatial dimensions

and using a kernel of size 1 with stride 1. For both convolutional and class205

capsule voting, we use the VB matrix capsule routing procedure detailed in [15].

Additionally, during capsule convolutions, we learn an inverse graphics matrix

ŷW , similarly to what Ramı̀rez et al. introduce in chapter 3 of [36], but working

with matrix capsules and the VB routing. Given each lower-level capsule i and

the corresponding higher-level capsule j, we define Mi as the lower level pose210

matrix and Wij ∈ R4×4 a trainable viewpoint-invariant transformation matrix

such that:

Vj|i = MiWij (5)

where Vj|i is the vote coming from lower capsules i for higher capsules j, as

we show in Eq. 5.

The output of the ClassCaps layer will be flattened into a BS×272 latent space215

vector representation, which contains compressed 3D, 2D and joint heatmaps

data for the entire batch.
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3.4. Decoding

256
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Figure 6: Decoding phase: from a shared e Entities vector to 2D, 3D joints and 256 × 256

joint feature maps using a multi-task loss and three separate linear decoders.

The final part of the proposed architecture deals with decoding the BS×272

latent space coming from capsule layers, to obtain 2D, 3D and heatmaps joints220

representations. During the joints reconstruction, we employ three separate

dense sub-networks, without sharing any layer between the three. This is crucial

because the 2D information is not used to ‘lift’ the 3D joints, and vice-versa.

For every dense sub-network, we introduce a DDGELU (Dense Dropout GELU),

which we define as a sequential combination of a dense linear layer, followed by225

a GELU activation and finally dropout, as shown in Eq. 6.

DDGELU0.3(x) = Dropout0.3(GELU(Linear(x))) (6)

During training, we noticed both an increment in convergence speed and a

decrease in the train-test loss gap, which should lead to better generalization

of the model. As shown in Algorithm 1, we iterate 2 DDGELU layers for each

desired output, and choose three different activation functions, depending on230

the output:

• sigm activation for the 2D joints
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• tanh activation for the 3D joints, which extended range between -1 and 1

better suits the considered 3D domain

• ReLU6 activation for the joint heatmaps, which provides a good conver-235

gence during training for the reconstruction task

Finally, we reshape the heatmaps vector into BS×E×64×64 feature maps,

which are given as input to the final transposed convolution layer; this will

produce full-size BS×E×256×256 feature maps. During training, transposed

convolutions have shown better results and faster convergence when compared240

to simple bilinear or bicubic interpolation. A summary of the three final outputs

is shown in Fig. 6.

3.4.1. Loss

Multi-tasks network training has shown multiple advantages in learning effi-

ciency and prediction accuracy over the years. For this reason, we encourage the245

network to jointly learn multiple tasks (3D, 2D, and heatmaps) by employing a

self-balancing loss that takes into account the contribution of each task (Eq. 7).

To clarify, we stress the fact that during joints reconstruction we employ three

separate reconstruction sub-networks so that the network is forced to learn a

multi-task enabled latent space.250

L(x) =
∑
τ∈T

(
sτ + e−sτLτ

)
=
(
s3D + e−s3DL3D

)
+
(
s2D + e−s2DL2D

)
+
(
sH + e−sHLH

)
+
(
sW + e−sWLW

)
T = {3D, 2D,R,W}

(7)

The proposed loss L is able to self-balance through trainable register buffers

s3D, s2D, sH , sW which dynamically change their value to weight the contri-

butions for each task, at the same time mitigating overfitting for single con-

tributions. To demonstrate the positive effects of multi-task learning in the
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considered training scenario, we experimented with different sub-networks com-255

binations for the decoder, as well as with only one sub-network. The overall

convergence at training time was slower and worse in every test involving less

than 3 tasks, while the best results were obtained when enforcing at least 3

tasks (2D joints estimation, 3D joints estimation, joint heatmaps reconstruc-

tion). The main explanation is that by forcing the network to perform multiple260

tasks, it is encouraged to organize its latent space in a more efficient way, lead-

ing to a more coherent and less cluttered feature representation. We stress the

fact that every sub-network does not share any parameter with each other, to

further promote this effect. Multi-task learning also enforces a better represen-

tation of data points in the latent space (Fig. 7). Same class joints tend to265

cluster together better when enforcing the multi-task constraints, while at the

same time reducing the number of outliers.

Figure 7: Organization of the latent space after t-SNE: the colour of each sample point

corresponds to a joint class.

4. Results

In the next sections we briefly describe the full experimental setup, some

implementation details, as well as quantitative and qualitative results.270
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4.1. Setup description

For training and evaluation, we follow the default protocol #1 from Hu-

man3.6M [2]. In more details, we employ all the data from subjects 9 and 11 for

evaluation, while only training on data from subjects 1, 5, 6, 7, 8. The employed

metric is the Mean Per Joint Position Error (MPJPE) in millimeter between275

the ground-truth and the prediction. This metric is applied across all joints and

cameras. We also consider two scenarios: one in which the poses are aligned

using the Procrustes transformation and another one in which we do not align

the poses, as shown in Table 1.

4.2. Implementation details280

Our architecture is fully end-to-end, requiring as input just one image and

no additional information such as 2D joints ground truth, multiple sequential

frames, or non-standard data augmentation. Compared to the majority of meth-

ods present in literature, we don’t rely on additional datasets for training, at

the same time showing high generalization capabilities even after training on a285

subset of the available data. The metrics we use for comparison are the Mean

Per Joint Position Error (MPJPE) in millimetres for each of the 15 activities in

the Human3.6M dataset and the average by activity MPJPE, for each camera in

the dataset. As for the implementation, the network we present is written using

Pytorch Lightning, focusing on high modularity, allowing for real-time joint 3D290

and 2D predictions, achieving over 229 FPS (0.00436s/frame) on an Nvidia

GeForce 1080Ti (desktop) and over 52 FPS (0.01913s/frame) on and Nvidia

GeForce 1050 Mobile (laptop), almost twice as fast as what is reported in [36].

All the results were conducted on the same exact hardware and in the same

conditions. In Fig. 8 we show the activity-wise and mean frames per second of295

our architecture compared to the other capsule-based networks [36] on a high-

end, desktop-grade GPU. In this scenario, our architecture allows for a 2.33×

speed-up. Even in more resource-constrained scenarios (laptop-grade GPU, Fig.

9) we manage to gain an additional ∼ 15FPS on average. According to our

experiments, the biggest improvements in terms of speed mostly come down300
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to a combination of simplified network structure, the usage of the improved

capsule paradigm and faster routing. In the following sections, we show some

quantitative and qualitative results as well, both from the Human3.6 dataset

and in-the-wild.
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Figure 8: Activity-wise and average inference speed comparison on the same hardware (Nvidia

GeForce 1080Ti).
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Figure 9: Activity-wise and average inference speed comparison on the same hardware (Nvidia

GeForce 1050 Mobile).
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4.3. Quantitative results305

In Table 1 we show our results compared to the state-of-the-art methods,

both the ones using Procrustes transformation (right) and the ones reporting

results without Procrustes (left). We achieve the lowest average MPJPE in both

the categories and on most of the activities, without using additional informa-

tion or non-standard data augmentation. Works using additional data, such as310

2D-to-3D lifting, ground truth 2D joints, multiple datasets or temporal informa-

tion are marked in Table 1 with a * symbol. We achieve similar or better results

even with those methods, without relying on additional information, dataset or

data augmentation, as shown in Table 2. Even considering other similar works

that employ additional information, we obtain the lowest average MPJPE scores315

(yellow row). Compared to the only other work in literature using CapsNet [36],

our model achieves better MPJPE in almost every activity.

For the sake of completeness, we selected the top recent works in literature

(2019-2020) with the lowest average MPJPE on the Human3.6M dataset, work-

ing on monocular data (Table 2). However, as Table 2 shows, most of the works320

are aided by 2D ground truth information, meaning that they cannot be prop-

erly considered end-to-end. Additionally, many of them even exploit temporal

frame sequences to refine joint predictions, thus non-working with single im-

ages. Others use additional datasets and hand-crafted data augmentation of

biometric models during training. We stress the fact that a big advantage of325

employing capsule networks is the increased generalization capabilities, which

highly reduce the need for additional training data, and at the same time boost

network efficiency. Nonetheless, even considering the more recent results that

use additional information or datasets, our results remain comparable.
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No Procrustes Procrustes

Activity
Zhou *

[22]

Tekin *

[21]

Tome, I *

[19]

Ramı̀rez, I

[36]

Tome, II *

[19]

Ramı̀rez, II

[36]

Ramı̀rez, III

[36]
Ours, I

Sanzari *

[24]

Bogo *

[29]

Ramı̀rez, IV

[36]
Ours, II

Directions 87.36 85.03 68.55 79.42 64.98 73.15 73.33 70.16 48.82 62 57.55 55.02

Discussion 109.31 108.79 78.27 83.73 73.47 84.95 83.45 76.67 56.31 60.2 61.32 58.06

Eating 87.05 84.38 77.22 84.01 76.82 85.87 85.33 78.41 95.98 67.8 66.48 60.91

Greeting 103.16 98.94 89.05 83.15 86.43 80.12 79.08 76.87 84.78 76.5 64.49 61.69

Phoning 116.18 119.39 91.63 86.42 86.28 91.44 89.99 87.99 96.47 92.1 68 66.49

Photo 143.32 95.65 110.05 112.38 110.67 109.42 109.95 109.49 105.58 77 83.16 80.02

Posing 106.88 98.49 74.92 81.34 68.93 76.40 76.08 72.23 66.3 73 56.05 54.94

Purchases 99.78 93.77 83.71 77.65 74.79 76.72 73.61 73.12 107.41 75.3 54.85 52.89

Sitting 124.52 73.76 115.94 105.10 110.19 105.54 104.12 108.84 116.89 100.3 77.65 80.11

SittingDown 199.23 170.40 185.72 135.55 173.91 130.15 136.27 149.53 129.63 137.3 97.32 99.84

Smoking 107.42 85.08 88.25 88.25 84.95 88.07 87.59 87.29 97.84 83.4 67.31 67.86

Waiting 118.09 116.91 88.73 79.24 85.78 80.25 79.19 75.14 65.94 77.3 59.63 57.71

WalkDog 114.23 113.72 92.37 87.45 86.26 88.75 87.13 87.70 130.46 79.7 64.76 65.28

Walking 79.39 62.08 76.48 67.56 71.36 66.10 66.31 65.38 92.58 86.8 49.96 51.19

WalkTogether 97.70 94.83 77.95 80.45 73.14 76.84 76.88 75.76 102.21 81.7 60.47 61.04

Avg, by activity 112.91 100.08 93.26 88.78 88.53 87.58 87.22 86.17 93.15 82.03 65.93 64.98

Std, Dev, 27.78 24.21 27.63 16.28 26.21 15.86 17.15 20.97 23.97 17.9 11.74 12.55

Table 1: Activity-wise MPJPE scores for comparable works (with and without Procrustes

transformation), including the top-3 in CVPR’17 Human 3.6 challenge and the top-3 IJCVm

Jan’18. Columns marked with * make use of additional information or datasets, among the

ones depicted in Table 2. Results in bold show the best MPJPE score among methods not

relying on multiple datasets or additional information at training time. Underlined results

show the best MPJPE score among all the methods, including the ones employing additional

training time information.
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Year L. T. M.D. D.A.

Cheng [44] 2020 X X X

Pham [45] 2019 X X X

Zhao [46] 2019 X X

Chen [47] 2020 X X

Lin [48] 2019 X X

Sharma [49] 2019 X X X

Tripathi [50] 2020 X X X

Wandt [51] 2019 X X

Arnab [52] 2019 X X X

Mehta [53] 2019 X X X

Ours 2020

Table 2: Comparison of the most relevant competing methods from 2019-2020 (top Average

MPJPE on Human3.6M). L.: using 2D joints ground truth and/or lifting from 2D joints,

T.: using temporal information, M.D.: using multiple training datasets, D.A.: using non-

standard data augmentation techniques or biometric models. In the table we did not include

works with lower Average MPJPE than ours.

4.4. Qualitative results330

In Figs. 10a, 10b we show some qualitative results for the Walking and

Sitting Down activities from test examples of the Human3.6 dataset. Starting

from the upper left: input RGB image, predicted 3D pose, ground truth 3D

pose, a combination of the 17 ”attention” heatmaps, predicted 2D pose and

ground truth 2D pose. In Fig. 10c we show some in-the-wild results (no ground335

truth is present in this case).

4.5. Generalization capabilities and the effects of data augmentation

One of the main issues that we address in this paper is the promotion of gen-

eralization and viewpoint-equivariance capabilities in deep networks. A huge

drawback of using deep networks is their intrinsic data dependency, meaning340

that the task of learning a dataset almost always leads to some degree of over-

fitting of the network to the underlying data. For this reason, even the best

performing HPE methods in Table 2, completely fail when dealing with previ-

ously unseen novel viewpoints. As we show in Fig. 11 our network is capable to

cope with novel and extreme viewpoints, such as the top-view viewpoint, thus345

proving the advanced generalization capabilities of our network. Even when
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(a) Results from ’Walking’ activity.

(b) Results from ’Sitting Down’ activity.

(c) In-the-wild results.

Figure 10: Qualitative results on the Human3.6M dataset (a, b) and in-the-wild (c)

.
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Figure 11: CapsulePose working on rasterized top-view images of the Panoptic Dataset [54]

point clouds. Assigned tasks: depth estimation, 2D and 3D top-view pose estimation.

training on data coming from a single viewpoint (e.g. front-view) and testing

with data from a completely different viewpoint (e.g. top-view, Fig. 11), our

network shows very good generalization capabilities, which are achieved through

the hierarchical representation of joints as capsule entities in the latent space.350

Moreover, in our tests we experienced little to no benefit from using classic

data augmentation during training, effectively showing how implicitly learning

frame of references and viewpoints has a broader impact on vanilla networks

during training time, allowing to greatly reduce the training dataset size, simul-

taneously simplifying the network complexity and boosting its generalization355

capabilities.

5. Conclusions

We presented the first human pose estimation architecture based on matrix

capsules [1]. The method is real-time and operates in an end-to-end fashion with

single images. The simple, modular architecture, paired with a fast Variational360

Bayes routing and modern frameworks, contributes to achieving very fast per-

formance, running almost twice as fast as other CapsNet-based methods, while

at the same time performing better on Human3.6M benchmarks. We show how

the presented architecture is competitive with respect to state-of-the-art net-

works, even by not relying on any additional information or data augmentation365
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at training time, making it a simple yet effective baseline network.

As for future work, we are interested in employing unsupervised capsule autoen-

coders [14] for human pose estimation and developing a similar model for 3D

human mesh recovery.
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