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Abstract. The acoustic camera is an established and highly effective
device for localising acoustic sources by the use of a number of simulta-
neously acquired signals from an array of pressure sensors (microphones).
The acoustic camera essentially provides for a highly directional sensor in
which the signals arriving from the noise source in the steered main beam
of the array are highly amplified relative to the background noise, which
arrives at the camera from all directions outside the main beam and is
therefore suppressed. The underlying principle of the acoustic camera
is the beamforming data processing method which is widely applied in
sensor array configurations and acts as a spatial filtering operation. The
long term vision of the team is to develop an analogous device, termed
here seismic camera, which allow to locate the direction of the noise
sources generated from water leaks. This is an array of 3-axis geophones
distributed on the ground in the vicinity of the suspected leak to localise
and quantify water leaks with significantly greater accuracy and reliabil-
ity than conventional methods that use just two sensors either side of the
leak. The seismic camera differs from the acoustic camera since the array
of data is vectorial (three axis geophones provide velocities instead of a
scalar pressure field), two or more wave types (compressional, shear and
surface waves) propagate simultaneously and the soil properties varies
greatly with location, type and condition. In this preliminary feasibility
study a time-domain solution calculated from the analytical elasticity
equations is considered to generate the numerical data. The wave field
is composed by spherical compressional waves radiating directly from
the leak which is modelled here as a spherical cavity of radius a. The
obtained numerical data is elaborated in order to look at the implemen-
tation of the Delay-and-Sum beamforming algorithm for the detection of
the leak. Finally, the effects of wave reflection caused by a free surface and
the sensor direction of measurement are discussed and it is shown that
the beamforming algorithm works better and more precisely in infinity
medium models, although the half-space model still presents satisfactory
result.

Keywords: water leak source detection · buried pipelines · seismic cam-
era.
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1 Introduction

The acoustic camera, often referred to as the acoustic beamforming methods,
is a standard method for localising sources of sound waves in free space and
has been widely used in different acoustic applications for the past hundred
years [1, 2]. The technique is often performed in engineering applications that
involves moving objects localisation such as air-crafts, submarines and vehicles
and is commonly applied in signals that describes scalar wave fields from pressure
fluctuations measurements through microphones. The beamforming algorithms
can be interpreted as a spatial filtering operation to map the distribution of sound
sources at a certain distance of an array of sensors [2]. However, the technique
is yet to be analysed in applications that involves detection of buried sound
sources through the use of vector wave field measurements performed by state-
measuring sensors such as geophones or accelerometers. Through this approach,
the feasibility of the seismic camera and its usage for the localisation of buried
leaks in pipes is investigated. The actual state of the art in leak detection is the
cross-correlation techniques that involves estimating the leak position [3, 4].

The application of the beamforming method requires prior information on
the free-field wave velocity, although this information can either be calculated
from theoretical models and ground properties measurements or estimated in-
situ with other types of experimental techniques [5]. Zheng et al. [6] applied the
beamforming algorithm to estimate the wave speed and then detect leak position
along a gas pipeline for different number of sensors. The measurements were
made directly on the pipe wall by accelerometers in a no-buried condition. The
technique showed good estimates for both the wave velocity and the leak position
for all tested cases, although the algorithm required a high computational cost
to iterate through the estimates of wave speed and leak position with good
resolution. However, no investigation on the beamforming method performance
to detect leaks in buried pipes through an array of directional sensors has been
made.

The aim of this paper is to investigate the beamforming algorithm perfor-
mance in detecting a buried noise radiator spatially measured by a geophones
array. The analytical solution for the displacements of a spherical wave propa-
gating in an infinite medium is calculated to generate the numerical data. The
propagating wave is radiated as an impulse by a symmetrical spherical source of
constant radius. As spherical symmetry is assumed, the spatial solution is given
only in terms of the radial coordinate which is decomposed in two perpendic-
ular directions to further investigate the effect of the direction of measurement
of the wave fields (perpendicular and parallel to the ground surface) and to in-
vestigate the method applicability in situations limited by 1D-axis sensors. The
infinite medium solution is obtained from the theory of elasticity equations by
applying a time pulse in the boundary condition for the radial stress around
the spherical source. The half-space medium solution is obtained by considering
reflection coefficients and wave mode conversion effects that are calculated from
the no-stress boundary conditions at the free-surface. The array of sensors is
considered to be a one-dimensional horizontal line of evenly distributed sensors.
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A spherical source is placed in any position in relation to any one of the sen-
sors, and the numerical signals are generated from the analytical solutions. At
last, the generated data is performed through the Delay-and-Sum beamforming
algorithm to generate the signal amplitude map for different trial points in the
array surroundings.

The paper is organised as follows. Section 2 presents the beamforming algo-
rithm and review some of its applications. Section 3 presents the propagating
spherical wave solution radiated by an impulsive spherical cavity. Then, the
formulation that gives the wave reflection coefficients is presented and the ex-
pressions for the sensor displacements under reflecting conditions are calculated.
Numerical results are presented in Section 4 and the effects of the measurement
direction and the reflection on the surface are highlighted. At last, Section 5
presents the concluding remarks of the preliminary study and suggests future
analysis.

2 The beamforming algorithm

The beamforming methods refers to a family of array signal processing algo-
rithms that act as a spatial filtering process of the spatially measured signals
within an array of sensors. Different variations and strategies of the beamforming
algorithm may be found in the literature [2, 7]. Differences between the wide va-
riety of beamforming algorithm strategies include the sensor distribution in the
arrays aperture and the deconvolution, inverse and acoustic imaging methods [8].
For a initial feasibility study, the time-domain beamforming Delay-and-Sum al-
gorithm is chosen for the numerical data processing.

The Delay-and-Sum is a simple yet robust beamforming algorithm for source
localisation. The algorithm consists in applying a delay to the measured signals of
an array and then stacking up the phased signals to obtain an equivalent signal
which is amplified in the directions where a source is present. The technique
works either if the array is in the far-field or in the near-field with respect to the
source, although for the far-field case only the source direction is obtained [2].
Through the delaying process, a main beam of the array is formed and can be
mathematically steered acting as if the aperture of the array of sensors was an
antenna amplifying signals arriving from sources and suppressing background
noise arriving from other directions.

The phase centre is defined as a mean geometric position of the array of
sensors, and the time delay applied in each sensors is done in such a way that all
the signals would be received there. The distance between the phase-centre and
the source trial position is called the main beam of the array. The equivalent
signal measured by the phase-centre is mathematically described as [7]

z(t) = ΣM−1
m=0 wmym(t−∆m) (1)

where M is the number of sensors in the array, wm is a weight function
that is also interpreted as a spatial windowing coefficient useful to relieve spatial
aliasing and the leakage effects common to all digital signals, ym(t−∆m) is the
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signal measurement of the m-th sensor which is phased by a time delay of ∆m.
The time delay that phases each sensor depends on the propagating wave, its
wave speed and its propagation path. For the case of a spherical wave front, the
delay for each sensor can be calculated using the expression

∆m =
r0 − r0m

cl
(2)

where r0 is the distance between the phase centre and the source trial posi-
tion, r0m is the distance between the m-th sensor and the source trial position
and cl is the longitudinal wave velocity in the medium. When the source trial
position coincides with the source actual position, the signal is amplified to its
maximum, pinpointing the noise source location.

3 Elastic Wave Propagation in Free Space

This section presents the solution for the displacements field in an infinite elastic
medium given a radial step-pressure stress excitation around a spherical cavity.
Moreover, longitudinal incident wave reflection and wave mode conversion on a
free-surface are discussed and the amplitude ratio between reflected and incident
waves are derived from a no-stress boundary condition at the free-surface.

The analytical solution that generates the numerical data is based on the
theory of elasticity which are derived from the stress-strain relationship in a con-
tinuous solid and may be rewritten in terms of potentials through the Helmholtz
decomposition of a vector quantity. The main assumptions of the formulation
are that the solid is elastic, isotropic and continuous and the Lamè constants
are the only material properties considered [9]. From this assumptions, it can be
shown that two basic wave types can exist in the elastic medium, namely the
longitudinal and shear waves. Such waves propagate independently from each
other with their own specific velocities that in turn depends only on the medium
elastic properties.

The stress equation in terms of the spherical scalar potential ϕ in an infinite
medium is given as [9]

τrr = λ∇2ϕ+ 2µ
∂2ϕ

∂r2
, (3)

where τrr is the normal stress in the radial direction in N/m2, λ and µ are the
first and second Lamè parameters, both in units of N/m2, and they are both
function of the shear and bulk moduli of the surrounding medium. and ∇ is the
space differential vector operator reduced to ∂/∂r due to the spherical symmetry.

In practical applications the arriving wave fronts detected by the sensors
in the array often carry a wide-band frequency energy, and thus, impulse stress
boundary condition is considered to obtain the analytical solution that generates
the numerical data. The analytical solution for a longitudinal spherical impulse
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radiated by a spherical cavity of radius a is obtained by considering the following
stress condition around the cavity’s surface

τrr(a, θ, t) = −p0δ(t), (4)

where p0 is the pressure amplitude in N/m2 and δ(t) is the Dirac Delta function.
The initial conditions are considered to be homogeneous and are written as
u(r, 0) = u̇(r, 0) = 0. Also, the spherical symmetry of the problem is exploited
so that the displacements are described only in terms of the radial component of
the coordinate system. The radial component of the displacement will be further
decomposed in two perpendicular directions to simulate the sensor direction of
measurement. By applying the stress condition around the cavity in Eq. (4) in
Eq. (3), the displacement field for the medium is obtained as

ur(r, τ) =
1

r

a2

ρcl

(1− ν)√
1− 2ν

exp (ξτ)

[(
1

r
+

a

cl

)
sinωτ + cosωτ

]
(5)

where r is the radial distance from the spherical source in metres, τ corresponds
to the difference between a reference time and the flight duration of the radiated
wave and is related to the position of the wave front for all time. For a pulsating
sphere of radius a, the time delay may be written as τ = t − (r − a)/cl, where
cl is the longitudinal wave speed in m/s. The frequency parameters ξ and ω are
function of the medium Poisson’s ratio and the source radius and are expressed
as ξ = (1− 2ν)cl/(1− ν)a and ω = ξ(1− 2ν)−1/2.

Fig. 1 illustrates the described model showing a spherical longitudinal wave
propagating with velocity cl. The wave is radiated by a spherical pulsating source
and the medium properties are known. When a free-surface is added to the
model, both wave reflection and mode conversion may occur. Upon arrival onto
the free-surface, the incident wave energy may be distributed between a reflected
shear and/or reflected longitudinal wave whose energy distribution depends on
the boundary condition and incident angle θ1.

To calculate the energy distribution between the reflected waves in terms
of the reflection coefficients, the free-surface is set to have a no-stress boundary
condition. Then the general D’Alambert solution of the wave equation is assumed
for the potentials. This is consistent with the impulse formulation since the
system is observed to be non-dispersive and thus no distortion of the wave shape
occurs. The boundary condition on the free surface is modelled as the no-stress
condition and may be expressed as

τyy = τyx = τyz = 0. (6)

The amplitude ratio between the incident and the reflected waves may be
obtained by considering the D’Alambert solution for the scalar and the vector
potentials as [9]

ϕ = A1f(kp(x sin θ1 + y cos θ1 − cpt)) +A2f(kp(x sin θ1 − y cos θ1 − cpt)), (7)
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Fig. 1: A compressional wave with amplitude A1 is emitted by a spherical cavity
of radius a and then is reflected upon arrival in the free surface with incidence
angle θ1. Because of wave mode conversion, a shear wave of amplitude B2 is
reflected with reflection angle θ2 in conjunction with a compressional wave of
amplitude A2 with reflection angle θ1.

Hz = B2f(ks(x sin(θ2)− y cos(θ2)− cst)), (8)

where kp and ks are the compressional and shear wavenumbers respectively in
unit of rad/m and θ1 is the incident and reflection angle for the compressional
wave whereas θ2 is the reflection angle for the shear wave. The angles θ1 and
θ2 are defined as the angles between the surface normal direction, defined in
Fig. 1 as y, and the wave direction of propagation. For the present paper, it
is considered that only compressional waves impinge in the surface and thus
only the reflected shear waves exist in the solution. Consequently, only the shear
amplitude B2 is considered in Eq. (8). By substituting Eqs. (7)-(8) in Eq. (6),
the amplitude ratios between the incident and reflected compressional waves are
obtained as

A2

A1
=

sin 2θ1 sin 2θ2 − k2 cos2 2θ2
sin 2θ1 sin 2θ2 + k2 cos2 2θ2

, (9)

and for shear wave, the amplitude ratio is defined by

B2

A1
=

2 sin 2θ1 cos 2θ2
sin 2θ1 sin 2θ2 + k2 cos2 2θ2

. (10)

Note that, since the reflection coefficients and purely real, they may be used
directly in the displacement equation described in Eq. (5). Therefore, Eqs. (9)
and (10) describes how the energy of the incident wave is distributed between
the reflected longitudinal and shear waves, respectively. Note that the energy
distribution is a function of both the angle of incidence θ1 and of the medium
material properties that appear as k2 in Eqs (9)-(10) and represents the ratio
between the longitudinal and shear wave velocities, i.e., k = cl/cs. Therefore,
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Eqs. (9) and (10) are considered to calculate the reflected waves amplitudes and
their contributions for the total displacements.

Through the Helmholtz decomposition, the total displacement in the x and y
directions are written in terms of the scalar potential field ϕ which is related to
the compressional waves and the vector potential field Hz which is related to the
shear waves. The relationship between the potential fields and the displacements
may be written as

ux =
∂ϕ

∂x
+

∂Hz

∂y
, uy =

∂ϕ

∂y
− ∂Hz

∂x
. (11)

Note that, since shear waves direction of propagation is perpendicular to the
particles motion, the horizontal and vertical contributions of the shear wave are
inverted in relation to those of the longitudinal wave. This behaviour may also be
observed in Eq. (11) in the partial derivatives of the vector potential Hz. Finally,
the x and y components of the displacement in the surface of a half-medium are
obtained by substituting the D’Alambert solutions in Eqs. (7)-(8) in Eq. (11) as

ux = sin θ1(A1ui +A2ur) +B2 cos θ2us, (12)

uy = cos θ1(A1ui −A2ur) +B2 sin θ2us, (13)

where ui, ur and us are the radial displacement component of the incident,
reflected and converted waves respectively, as shown in Fig. 1.

4 Results and Discussion

The numerical data is generated by the analytical solution of the pressure im-
pulse discussed in Section 3. The array is considered to contain four sensors
that measure the displacements in the horizontal and the vertical directions.
The vector component along the radial direction is calculated through vector
decomposition and summation of the orthogonal measurements. The sensors are
distributed in the array one meter apart from each other and a spherical source
(magenta circle) with radius of 5 cm is placed in the point (-0.75,-2) of the co-
ordinate system as represented in Fig. 2. The phase-centre is represented as the
green dot and the sensors as red dots in Fig. 3. The pressure amplitude of the
impulse is of the order of 1 MPa. The soil has properties of 2000 kg/m3 density
and a bulk and shear moduli of 0.053 GPa and 0.02 GPa respectively which re-
sults in longitudinal and shear wave speeds of 200 m/s and 100 m/s respectively.
The soil properties were chosen based on the typical sand soil properties de-
scribed in the work presented in [10]. The sensor distribution through the array
and the source position were chosen arbitrarily. The source localisation occur
by mapping an arbitrary parameter of the algorithm output and for this analy-
sis the maximum absolute value of the output signal was selected to avoid sign
problems with the signal phase. At this step of the algorithm implementation, it
is necessary to define a grid of possible source positions from which the delay in
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Eq. 2 is calculated for each sensor. For the present work, a square grid of a 29x29
trial points distant 0.25 m apart is chosen to calculate the beamforming delay
for the sensors. Note that the choice of the distance between the trial points only
limits the source location error, thus a 0.25 m precision is satisfactory for the
purpose of this paper. Fig. 3 presents the mapping for the source location for
the infinite space (left) and the half space (right) cases for the radial (top row),
vertical (middle row) and horizontal (bottom row) components.

Fig. 2: Schematic representation of the numerical analysis. An array of four sen-
sors (red dot) with the phase centre (green dot) at the origin measures the signal
radiated by a spherical source (magenta dot).

A preliminary analysis of Fig. 3 indicates that the beamforming algorithm
performance is sensible to the direction of measurement of the signal. Specifi-
cally, the horizontal component result in Figs. 3(e) and (f) presents a continuous
beam of possible positions for the source location, i.e., the algorithm is only
capable of estimating the direction of propagation of the noise. This behaviour
is due to the reference frame of the sensors pointing all to the positive x di-
rection of the phase-centre reference point. The reference frame of the sensor
defines the sign of the measured signal, thus the number of sensors either side
of the source defines the maximum amplitude of the beamforming output. If the
number of sensors were equal either side of the leak then the output would be
approximately zero and the horizontal coordinate of the source would be defined
by a vertical line representing a local minimum of the map. On the other hand,
the components r and y were able to pinpoint the source location by the super-
position of all the beams formed by the algorithm. As the vertical components
of the wave and of the sensors reference frame points to the same direction, no
interference occurs and the beamforming output is maximised when the assumed
source location coincides with its actual location. Also, it is possible to observe
that for the half space results the beam associated with the horizontal direction
measurement is reinforced in all directions of measurement along with other mi-
nor changes. This effect may be explained by the destructive wave interference
caused between the incident and the reflected longitudinal waves, consequently
reducing the relative amplitude between the vertical and the horizontal beam-
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Fig. 3: Source localisation mapping obtained through the application of the
beamforming. The left column are the results for the infinite medium and the
right column are the results for the half medium. The results are divided by the
direction of the components used in the algorithm, where the first row gives the
results for the radial component, the middle row for the vertical component and
the bottom row for the horizontal component.
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forming outputs. In addition, the half-space model considers reflection of shear
waves that also contribute for the sensors displacement in both orthogonal di-
rections, thus, depending on the angle of incidence and on the soil properties,
the shear displacement contribution in each direction may alter the algorithm
mapping.

The results suggest that the infinite medium x-component beamforming sim-
ulations may be representative of the half-space results. This possibility may
greatly simplify the modelling requirements for more realistic cases and it will
also be investigated in future research.

5 Concluding Remarks

The delay-and-sum beamforming technique has been proposed for locating un-
derground sources through an array of directional sensors. A numerical inves-
tigation was carried out to analyse the effects of the direction of measurement
of the sensor and of the wave reflection on the surface on the algorithm perfor-
mance. The results for the horizontal direction presented a particular behaviour
of estimating only the source direction rather than its approximate location.
This behaviour was attributed to the signal cancellation on the x components
of the displacements due to the sensors reference frame pointing all to the same
direction. In contrast, the results for the vertical and the radial components re-
sulted in the pinpointing of the source location due to the fact that no signal
cancelling occurs to signals measured on those directions since the source is lo-
cated beneath the array. The wave reflection effect did not have much influence
on the algorithm performance on locating the source but some output anomalies
were observed and correlated to the different contributions of the incident and
reflected waves on the signal. In conclusion, the numerical investigation results
suggests that the delay-and-sum beamforming algorithm may be a potential
alternative technique to remotely locate leaks in buried pipes. Further investiga-
tion regarding the beamforming algorithm variants and optimisations are to be
carried out in the future, considering more sensors for the array, a more precise
model for the wave propagation solution and the effect of the wave velocity esti-
mation on the algorithm performance as well as the soil properties and pressure
amplitude effects.
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