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Abstract

We study an optimal control problem for a hybrid system exhibiting several internal
switching variables whose discrete evolutions are governed by some delayed thermostatic
laws. By the dynamic programming technique we prove that the value function is the unique
viscosity solution of a system of several Hamilton-Jacobi equations, suitably coupled. The
method involves a contraction principle and some suitably adapted results for exit-time
problems with discontinuous exit cost.
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1 Introduction

In this paper we address the following model problem of optimal control. We consider the
following hybrid controlled system





y′(t) = f(y(t), w1(t), . . . , wm(t), α(t)) t > 0
wj(t) = hρj [y(·) · Sj ;w0

j ](t) t > 0, ∀j = 1, . . . ,m
y(0) = x
(x,w0

1, . . . , w
0
m) ∈M,

(1.1)

where f is the controlled dynamics; y(·) ∈ Rn is the continuous evolution with initial datum
x ∈ Rn; wj(·) ∈ {−1, 1} is the scalar discontinuous output of the delayed thermostat hρj

applied to the continuous input y(·) · Sj where Sj is a unit vector of Rn; w0
j ∈ { − 1, 1} is

the initial state of the thermostat; M ⊂ Rn × Rm is a suitable set; and finally α(·) is the
measurable control. We also consider the following cost functional

J(x,w0
1, . . . , w

0
m, α) =

∫ +∞

0

e−λt`(y(t), w1(t), . . . , wm(t), α(t))dt, (1.2)

where ` is a suitable running cost, λ > 0 is the discount factor, and (y(·), w1(·), . . . , wm(·))
is the evolution in Rn × Rm given by (1.1). The optimal control problem is then given by
the minimization of J over all measurable controls α.

A delayed thermostat hρ (or delayed relay) is, in general, a relationship between a time-
continuous scalar input u and a time-discontinuous scalar output w ∈ {−1, 1}. It is charac-
terized by the couple of thresholds ρ = (ρ1, ρ2), with ρ1 < ρ2, which governs the switching
law of the output between 1 and −1. Such a law presents a particular kind of memory,
namely hysteresis. In particular, if u(t) > ρ2 (respectively u(t) < ρ1) then w(t) = 1 (respec-
tively w(t) = −1), otherwise, i. e. if ρ1 ≤ u(t) ≤ ρ2, the value of w depends on the past
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evolution of u (see Figure 1). We refer the reader to the next section for more details on the
delayed thermostat and to the book by Visintin [20] (and to the references therein), for the
general theory of the mathematical models for hysteresis phenomena.

The control problem (1.1), (1.2) can be seen as an optimal control problem for a hybrid
evolution (y(·), w1(·), . . . , wm(·)) ∈ Rn×{−1, 1}m ⊆ Rn×Rm, where the last m components
are the outputs of m thermostats, each one of them respectively subject to the continuous
input y · Sj , j = 1, . . . m. Such switching components may be then interpreted as inter-
nal variables of a system whose external observable state is represented by the continuous
evolution y. In the applications, this kind of hybrid thermostatic evolution naturally arises
in several phenomena: whenever an evolution may have more than one modes for evolv-
ing, and such modes change from one to another by a sort of internal feedback law. Some
examples of such situations are: in biology, for instance when the mode of activity of a
colony of bacteria depends on the quantity of nutrient at disposal (see Lenhart-Seidman-
Yong [17]); in economics, where the mode of production of a good by a firm depends on the
cost of production compared with some thresholds depending on the price of the good on the
market (see Göcke [16]); again in biology, concerning cross-inhibition networks for the inter-
action between genes, proteins and other small molecules (see Batt-Belta-Weiss [11]). In [12]
Benmansour-Benalia-Djemai-de Leon study the dynamics of a control problem for a so-called
“multicellular converter” given by two cells in series, representing some electronic switching
circuits. The switching dynamics of that model, consisting on four modes of operation, is
very similar to the one considered in the present work. In general, whenever a particular
evolution presents multistability, i.e. several (but finite) stable-states, the rules for switching
among such states frequently behave as (or can be profitable approximated by) delayed ther-
mostatic rules (see, also for applications to biology, Angeli-Sontag [1], Angeli-Ferrell-Sontag
[2]). On the other side, the delayed thermostatic switching rules can be also artificially in-
serted in the mechanical systems (think of course to the “real” thermostat itself), in order
to prevent undesirable behaviors such as fast oscillations in infinitesimal times (the so-called
Zeno phenomenon). Moreover, also from an analytical point of view, the artificial insertion
of a thermostatic switching rule may be useful. This happens, in optimal control problems
for instance, whenever we are facing spatially discontinuous dynamics and/or costs, whose
discontinuities are “jumps” through particular surfaces. Such discontinuities may lead to
nonexistence of trajectories and (in a dynamic programming framework) to discontinuous
Hamilton-Jacobi equations. The insertion of thermostatic approximations of such disconti-
nuities may certainly help in treating such problems (see for instance Liberzon [18] and, for
applications to a problem with uncertainty, Bagagiolo-Bauso [7]).

Our goal is to use the dynamic programming technique in order to characterize the value
function

V (x,w0
1, . . . , w

0
m) = inf

α
J(x,w0

1, . . . , w
0
m, α)

as the unique viscosity solution of a suitable Hamilton-Jacobi problem. Such a problem
consists of a system of Hamilton-Jacobi equations, one for every value of the switching
variable w = (w1, . . . , wm) ∈ {−1, 1}m ⊂ Rm, and defined on a suitable subset Mw ⊂ Rn.
These equations are then linked each other by some “implicit” boundary conditions: i.e.
boundary conditions which are given by the values of the unknown function itself on other
“branches” Mξ, Mζ . Using a suitable version of the dynamic programming principle, we
first prove that the value function is a continuous viscosity solution on every branch Mw

with that “implicit” boundary condition. This is done by recognizing, on every branch, our
thermostatic problem as a suitable exit-time problem. Then we construct a suitable operator
of contraction type and we prove that every solution of the system is a fixed point of that
operator, from which the desired uniqueness follows. However, the boundary data could be
discontinuous, since they are given by the glue of the values of the unknown function on
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Figure 1: Delayed thermostat with thresholds ρ = (ρ1, ρ2).

other branches. Hence, in order to implement our method, we have also to slightly adapt
some results for exit-time problems to the case of discontinuous exit costs.

We refer the reader to the book by Bardi and Capuzzo Dolcetta [8] for the theory of vis-
cosity solutions and applications to optimal control problems. Other thermostatic problems
of this type, but with only one switching variable w ∈ {−1, 1}, are studied, with similar
techniques, for instance in Bagagiolo [4]. In the present case, the presence of more than
one thermostatic switching variables leads to some new problems to be treated, such as
the discontinuity of the boundary data and the more complex geometry of the branches.
These facts also reflect on the construction of the fixed-point operator. For other approaches
to hybrid control problems via dynamic programming techniques we refer for instance to
Bensoussan-Menaldi [13], Dharmatti-Ramaswamy [15], and Zhang-James [21].

As already said, the presence of more than one switching variables leads to a rather
geometrical complexity of the branches Mw ∈ Rn, indeed they are essentially given by the
intersection of m half-spaces. This fact also leads to possible hard notations and hence
complicated statements. In order to overcome this fact, in this paper we are going to focus
our attention to the case where n = m = 2 (i.e. two-dimensional space-state and two
thermostats) and S1 = e1, S2 = e2 (the unit vectors of the canonical basis of R2). We refer
the reader to Remark 5.2 for comments on a more general case.

The paper is organized in the following way. In Section 2 we say something about the
input/output relationship given by the delayed relay (thermostat). In Section 3 we recall
something about exit-time problems and in particular we give some new results for a case
with a discontinuous exit cost. In Section 4 we say something about the trajectories of an
ODE system with thermostatic variables, and give the rigorous formulation of our problem;
we address the continuity of the value function, the validity of the Dynamic Programming
Principle, and we interpret the value function as the value function of a suitable exit-time
problem. In Section 5 we derive the suitable system of Hamilton-Jacobi equations and we
prove that it is uniquely solved by the value function in the viscosity sense. In the Appendix
we give the proofs of some of the statements in Section 3 and in Section 4.

2 On the thermostat and thermostatic dynamics

For more details on this subject we refer to Visintin [20]. Let us consider a continuous input
u : [0,+∞[→ R, a discontinuous output w : [0, +∞[→ {−1, 1}, and two different thresholds
for the values of u, let us say ρ1 and ρ2, with ρ1 < ρ2, for which w respectively switches
“down” from +1 to −1, and “up” from −1 to +1. We define

O := (]−∞, ρ2]× {−1}) ∪ ([ρ1, +∞[×{1}) ⊂ R2 =: O−1 ∪ O1,

and we can think to the delayed switching as the evolution of the couple (u(·), w(·)) on the
set O with a suitable switching rule for switching from one branch to the other (see Figure
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1). More in details, we say that w is the output of the delayed switching rule (or “delayed
thermostat”, or “delayed relay”) with couple of thresholds ρ = (ρ1, ρ2), input u, and initial
state w0 ∈ {−1, 1}, and we write w(t) = hρ[w,w0](t) ∀t ≥ 0, if (here δ is any positive
number)

i) (u(t), w(t)) ∈ O ∀t ≥ 0, w(0) = w0, (u(0), w0) ∈ O
ii) w(t) = 1, u(·) ≥ ρ1 in [t, t + δ] =⇒ w(·) ≡ 1 in [t, t + δ],
iii) w(t) = −1, u(·) ≤ ρ2 in [t, t + δ] =⇒ w(·) ≡ −1 in [t, t + δ].

Such conditions say that w switches if and only if the couple (u,w) is on one of the two
switching points (ρ1, 1) and (ρ2,−1), and the input u crosses the threshold ρi, i = 1, 2
(decreasing if the threshold is ρ1, increasing if it is ρ2). According to this rule, we call
a “switching instant” any instant t ≥ 0 such that w(t) = w ∈ {1,−1}, and w ≡ −w
immediately after t (for instance in ]t, t + δ]). In particular note that, for instance, the fact
that w(s) = 1 for every s ∈ [t, t] and that u(t) = ρ1, does not implies any switching if the
threshold is not crossed (i.e. if there not exists a sequence tn → t

+ such that u(tn) < ρ1).
This in particular means that the switching only occurs “just after” the switching instant.

After any switching instant t, w cannot immediately switch back, because u has to reach
the other threshold. This implies the existence of exactly one output, even for fast oscillating
inputs, i.e. no Zeno phenomenon may appear.

Remark 2.1 Given a continuous input u : [0, T ] → R and a compatible initial state w0 (i.e.
(u(0), w0) ∈ O), a possible characterization of the corresponding output w(·) = hρ[u,w0](·) is
given by the following “variational principle”: the output w is the unique measurable function
of bounded variation (i.e. w ∈ BV (0, T )) w : [0, T ] → R such that

i) w ∈ X(u,w0) =
{

ξ ∈ BV (0, T )
∣∣∣ (u(t), ξ(t)) ∈ O ∀t ∈ [0, T ], ξ(0) = w0

}
,

ii) V ar[0,t](w) = min
ξ∈X(u,w0)

V ar[0,t](ξ) ∀ t ∈ [0, T ],

where V ar[0,t](ξ) means the total variation of ξ in the time interval [0, t]. Also note that,
for a function ξ ∈ X(u,w0) with a finite number of switching in [0, T ], as certainly the output
w is, such a total variation is exactly given by the number of switchings divided by 2 (the
amplitude of the switching). Hence, to minimize the total variation is equivalent to minimize
the number of switchings.

Remark 2.2 Referring to exit-time problems (see the next section), we can say that, if at
a time t we have, for instance, (u(t), w(t)) = (u(t), 1) then certainly u(t) ∈ [ρ1, +∞[ and a
possible subsequent switching time τ ∈ [t,+∞[ is exactly the first exit time of the trajectory
u(·) from the closed set [ρ1, +∞[, and it can be similarly defined as in (3.15).

Hence, our switching rule is linked to the definition of exit from a closed set. Indeed, in
the next sections we are going to fit our switching thermostatic control problem in a system
of exit-time problems from closed sets. Other possible switching rules may be adopted, for
instance the one that refer to the exit-time from the open half lines ] − ∞, ρ2[, ]ρ1, +∞[,
which corresponds to the fact that w switches exactly when the input u reaches the thresh-
old. However we prefer the switching rule as exit-time from the closed half lines since the
corresponding exit-time control problems, with exit-time from a closed set, are in some sense
“more stable” and more suitable to be studied by dynamic programming techniques. See
Remark 5.3 for considerations on problems with other thermostatic switching rules.

The following ”semigroup property” is often useful.

Proposition 2.3 For every input u, initial state w0 and instant τ ≥ 0 we have
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hρ[u,w0](t) = hρ

[
u(·+ τ), hρ[u,w0](τ)

]
(t− τ) ∀ t ≥ τ, (2.3)

where u(·+ τ) : [0, +∞[→ R is the translation t 7→ u(t + τ).

3 Exit-time problems with discontinuous exit costs

For the general theory and results concerning viscosity solutions for Hamilton-Jacobi equa-
tions see Bardi-Capuzzo Dolcetta [8]. Let Ω ⊂ Rn be an open set, and Ω its closure. We
say that Ω satisfies a uniform cone property if there exists a constant c > 0 and a bounded
uniformly continuous function η : Ω → Rn such that

B(x + sη(x), cs) ⊆ Ω ∀x ∈ Ω, 0 < s ≤ c, (3.4)

where B(x + sη(x), cs) is the Rn-ball centered in x + sη(x) with radius cs.
Let us now suppose and/or define that

Ω ⊂ Rn satisfies the uniform cone property (3.4) :
F : Rn × Rn → R is a continuous function,
ξ : ∂Ω → R is a bounded function,
A ⊂ Rp is compact, A = {α : [0, +∞[→ A, measurable},
f : Rn ×A → Rn is bounded and Lipschitz continuous,
` : Rn ×A → [0, +∞[ is bounded and Lipschitz continuous,
λ > 0,

(3.5)

where, as usual, “Lipschitz continuous” means Lipschitz with respect to x ∈ Rn uniformly
with respect to a ∈ A (compare with (4.19)).

A continuous function v : Ω → R is said a viscosity solution of the Hamilton-Jacobi
equation

λv(x) + F (x,∇v(x)) = 0 in Ω, (3.6)

if, for every C1-function ϕ : Ω → R and for every x0 ∈ Ω we have the following:

v − ϕ has a local maximum in x0 =⇒ λv(x0) + F (x0,∇ϕ(x0)) ≤ 0,
v − ϕ has a local minimum in x0 =⇒ λv(x0) + F (x0,∇ϕ(x0)) ≥ 0.

(3.7)

A continuous function v : Ω → R is said a viscosity solution of the boundary value
problem, with boundary condition in the viscosity sense,

{
λv(x) + F (x,∇v(x)) = 0 in Ω,
v = ξ on ∂Ω,

if v is a viscosity solution of the Hamilton-Jacobi equation in Ω (i.e. the first line) and, for
every x ∈ ∂Ω and for every C1-function ϕ : Ω → R we have

v − ϕ has a local maximum in x with respect to Ω =⇒
min

(
v(x)− ξ∗(x), λv(x) + F (x,∇ϕ(x))

)
≤ 0;

v − ϕ has a local minimum in x with respect to Ω =⇒
max

(
v(x)− ξ∗(x), λv(x) + F (x,∇ϕ(x))

)
≥ 0,

(3.8)

where ξ∗ and ξ∗ are respectively the lower and upper semicontinuous envelopes:

ξ∗(x) = lim inf
y→x,y∈∂Ω

ξ(y), ξ∗(x) = lim sup
y→x,y∈∂Ω

ξ(y), ∀x ∈ ∂Ω.
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Now we suppose that Ω and ξ are as in (3.5), but we further assume that there exist r
C2-functions θi, i = 1, . . . , r, such that

Ω =
{

x ∈ Rn
∣∣∣θi(x) > 0 ∀i = 1, . . . , r

}
. (3.9)

Moreover, we use the following notation

(∂Ω)i =
{

x ∈ Ω
∣∣∣θi(x) = 0

}
⊆ ∂Ω, ∀ i = 1, . . . , r, (3.10)

and we suppose that every (∂Ω)i is a regular (n−1)-manifold (possibly with boundary), and
that every possible intersection of different (∂Ω)i is “transversal” i.e.

x ∈ (∂Ω)i1
∩ · · · ∩ (∂Ω)is

=⇒ {∇θi1(x), . . . ,∇θis
(x)} linearly independent. (3.11)

We also suppose that the boundary function ξ : ∂Ω → R is defined as follows: for every
i = 1, . . . , r, there exists a continuous and bounded function ξi : (∂Ω)i → R, such that ξ
satisfies

ξ(x) = min
{

ξi(x)
∣∣∣x ∈ (∂Ω)i

}
∀ x ∈ ∂Ω. (3.12)

Note that (3.12) means that the discontinuities of ξ only occur on “corner points” given by
the intersection of some (∂Ω)i, and that on those points the discontinuity is, in some sense,
of “jump type”. Moreover, ξ is lower semicontinuous, that is ξ = ξ∗.

We now consider the controlled dynamical system in Rn

{
y′(t) = f(y(t), α(t)) t > 0,
y(0) = x ∈ Ω,

(3.13)

and the payoff (note that, by continuity, ξ∗(x) = ξ∗(x) = ξ(x) if x 6∈ (∂Ω)i ∩ (∂Ω)j , with
i 6= j)

J(x, α) =
∫ t(x,α)

0

e−λt`(y(t), α(t))dt + e−λt(x,α)ξ∗(y(t(x, α))), (3.14)

where y(·) is the unique trajectory of (3.13) with α ∈ A, and t(x, α) is the first exit time of
the trajectory from Ω:

t(x, α) = inf
{

t ≥ 0
∣∣∣y(t) 6∈ Ω

}
, (3.15)

with the convention inf ∅ = +∞ (and e−∞ξ = 0).

Proposition 3.1 Let (3.5), (3.9), (3.12) hold, let the dynamics be totally controllable on
∂Ω, i.e.:

∀x ∈ ∂Ω, ∃a1, a2 ∈ A such that
f(x, a1) is strictly entering in Ω at x,
f(x, a2) is strictly entering in the complementary of Ω at x,

(3.16)

and moreover let us suppose that, for every i 6= j, for every x ∈ (∂Ω)i ∩ (∂Ω)j, there exists
a neighborhood U of x such that, for every z ∈ U ∩ (∂Ω)i there exists a control α ∈ A whose
corresponding trajectory starting from z reaches (∂Ω)j in a lap of time t satisfying

t ≤ Cdist(z, (∂Ω)j), (3.17)

with C > 0 independent on z and α.
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Then, the value function v of the minimization problem

v(x) = sup
α∈A

J(x, α)

is continuous in Ω, and it is the unique bounded viscosity solution of the Hamilton-Jacobi-
Bellman boundary value problem (with boundary condition in the viscosity sense)

{
λv(x) + max

a∈A
{−f(x, a) · ∇v(x)− `(x, a)} = 0 in Ω

v = ξ∗ on ∂Ω,
(3.18)

Proof. See the Appendix. ut
Remark 3.2 Note that condition (3.17) means that, from any point around a “corner”
(∂Ω)i1

∩(∂Ω)i2
∩ . . .∩(∂Ω)is

, we can always reach each one of the boundary-branches (∂Ω)ik
,

and that we can do it even controlling the time by the initial distance from that boundary-
branch.

4 The optimal bi-thermostatic problem

In this section we are going to study a bidimensional infinite horizon problem with two
thermostatic switchings respectively acting on the “main” directions of R2, e1, e2 (i.e. the
unit vectors of the canonical basis of R2). Let us consider a compact set of constant controls
A ⊂ Rp and A the set of measurable control functions

A =
{
α : [0, +∞[→ A|α is measurable

}

Let also f : R2×{−1, 1}×{−1, 1}×A → R2 and ` : R2×{−1, , 1}×{−1, 1}×A → [0,+∞[
be two continuous functions such that:

∃ M > 0, ∃ L > 0,
such that ∀x, y ∈ R2, ∀w, z ∈ {−1, 1}, ∀a ∈ A,
|f(x,w, z, a)| ≤ M, |`(x,w, z, a)| ≤ M,
|f(x,w, z, a)− f(y, w, z, a)| ≤ L |x− y| ,
|`(x,w, z, a)− `(y, w, z, a)| ≤ L |x− y| .

(4.19)

We then consider a discount factor λ > 0; two delayed relays defined as described in Section
2:

w(t) = hρ [·; w0] (t) and z(t) = hη [·; z0] (t), (4.20)

where ρ := (ρ1, ρ2) and η := (η1, η2); and the following controlled thermostatic dynamic
system:





y′(t) = f(y(t), w(t), z(t), α(t)) t > 0
w(t) = hρ[y(·) · e1; w0](t) t ≥ 0
z(t) = hη[y(·) · e2; z0](t) t ≥ 0
y(0) = x

(4.21)

and the problem of minimizing the following cost functional:

J(x,w0, z0, α) =
∫ +∞

0

e−λs`(y(s), w(s), z(s), α(s))ds (4.22)
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Figure 2: Geometrical representations of the projections of H(w,z), on (the first) R2 .

4.1 The controlled bi-thermostatic system.

In (4.21) the initial state is the tern (x,w0, z0) ∈ R2 × {−1, 1} × {−1, 1} ⊂ R4, which is
admissible if it satisfies the following conditions:

w0 = 1 and z0 = 1 ⇒ x · e1 ≥ ρ1 and x · e2 ≥ η1

w0 = 1 and z0 = −1 ⇒ x · e1 ≥ ρ1 and x · e2 ≤ η2

w0 = −1 and z0 = 1 ⇒ x · e1 ≤ ρ2 and x · e2 ≥ η1

w0 = −1 and z0 = −1 ⇒ x · e1 ≤ ρ2 and x · e2 ≤ η2

(4.23)

We define the subset H ⊂ R4, given by the following four connected components (see Figure
2),

H := H(1,1) ∪H(1,−1) ∪H(−1,1) ∪H(−1,−1),
H(1,1) =

{
(y, 1, 1) ∈ R4 | y · e1 ≥ ρ1, y · e2 ≥ η1

}
H(1,−1) =

{
(y, 1,−1) ∈ R4 | y · e1 ≥ ρ1, y · e2 ≤ η2

}
H(−1,1) =

{
(y,−1, 1) ∈ R4 | y · e1 ≤ ρ2, y · e2 ≥ η1

}
H(−1,−1) =

{
(y,−1,−1) ∈ R4 | y · e1 ≤ ρ2, y · e2 ≤ η2

}
(4.24)

We then take as admissible initial states for the system (4.21) the states (x,w0, z0) ∈ H.
Hence, in this setting, H is the set M and the sets H(w,z) are the branches Mw, as in the
Introduction.

Actually, it is not obvious what a solution of (4.21) is. If we pretend that the thermostatic
relationships given by the second and the third lines be satisfied for every time, then the
solution may even not exist. Remember that by our definition the switching occurs just
after the switching instant, that is when the input has already crossed the threshold: if the
input does not cross the threshold, then no switching can occur. Now, if t∗ is a switching
instant, let us say for the first thermostat hρ from 1 to −1, this means that y(t∗) · e1 = ρ1,
y · e1 ≥ ρ1 before t∗ and, just after t∗, we should have y · e1 < ρ1. But just after t∗ the new
dynamics is given by f(y,−1, z, α) instead of f(y, 1, z, α) and it may happen that such a new
dynamics makes the trajectory y · e1 immediately come back, that is not cross the threshold
ρ1 (whereas, the old dynamics f(y, 1, z, α) makes certainly cross the threshold, otherwise t∗

cannot be a switching instant). Hence, in such a particular case, if the thermostat does not
switch then we must have a switching (since we cross the threshold), on the contrary if the
thermostat switches then we cannot have switching (since we do not cross the threshold).
The solution definitely does not exist.

However, it is obvious that, in the previous example, t∗ must be a switching instant for
any possible definition of solution (y(·), w(·), z(·)) of (4.21). Moreover, it is also obvious that
any possible solution of (4.21) must evolve inside the set H. Hence, inspired by the varia-
tional principle satisfied by the thermostat, see Remark 2.1, we use the following Proposition
to define a solution of (4.21). In the sequel, PCBVloc(τ, +∞) means the set of functions on
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[τ, +∞[ which are piecewise constant and of bounded variation on every compact set. More-
over, for any couple (w, z) ∈ PCBVloc(0, +∞)× PCBVloc(0, +∞), we define t0(w,z) = 0 and
denote by {ti(w,z)}i∈N\{0} the (possibly finite) sequence of the discontinuity instants of (w, z).
Finally, for any point (x,w0, z0) ∈ H, for any control α ∈ A, and for any instant τ ≥ 0, we
define the set

X(x,w0,z0,α,τ) =
{

(y, w, z) ∈ C0([τ, +∞[)× PCBVloc(τ, +∞)× PCBVloc(τ, +∞)
∣∣∣

y(t) = x +
∫ t

τ

f(y(s), w(s), z(s), α(s))ds ∀ t ∈ [τ, +∞[,

w(τ) = w0, z(τ) = z0, (y(t), w(t), z(t)) ∈ H ∀ t ∈ [τ, +∞[
}

.

Proposition 4.1 Given an initial state (x,w0, z0) ∈ H and a control α ∈ A, there exists at
least one tern (y, w, z) ∈ X(x,w0,z0,α,0) such that, for any i ∈ N,

ti+1
(w,z) − ti(w,z) = max

{
t1(ξ,ζ)

∣∣∣(φ, ξ, ζ) ∈ X(y(ti
(w,z)),w(ti

(w,z)),z(ti
(w,z)),α,ti

(w,z))

}
.

Proof. Let us note that Proposition 4.1 just says that there exists at least one trajectory
(y, w, z) which, whenever it belongs to one of the connected components ofH, then it remains
on it as long as possible (note that t1(ξ,ζ) is the first switching instant of the trajectory (φ, ξ, ζ)
which starts at the instant t̃ = ti(w,z) with initial condition (y(t̃), w(t̃), z(t̃))). Here we only
show how to (almost obviously) construct such a required tern (y, w, z).

We first consider the following system, denoting by y1 its unique trajectory defined in
[0, +∞[

{
y′1(t) = f(y1(t), w0, z0, α(t)), t > 0,
y1(0) = x.

Let t1 ≥ 0 be the first switching instant of (at least one of) the two thermostats hρ[y1 ·e1, w0],
hη[y1 · e2, z0] (if they never switch, then the tern (y1, w0, z0) is the searched one). Let us
define w1 = w0 if t1 is not a switching instant for hρ[y1 · e1, w0] and w1 = −w0 otherwise.
Let us similarly define z1. Hence we consider the following system, denoting by y2 its unique
trajectory in [t1, +∞[

{
y′2(t) = f(y2(t), w1, z1, α(t)), t > t1,
y2(t1) = y1(t1).

Again, let t2 ≥ t1 be the first switching instant for hρ[y2 · e1, w1] or for hη[y2 · e2, z1], and
define w2 = w1 if t2 is not a switching instant for hρ[y2 · e1, w1] and w2 = −w1 otherwise.
Do the same for defining z2 and consider the system

{
y′3(t) = f(y3(t), w2, z2, α(t)), t > t2,
y3(t2) = y2(t2).

We proceed in this way, whenever ti < +∞ and consider the tern (y, w, z) constructed by
gluing the pieces (yi, wi−1, zi−1) each one of them defined in ]ti−1, ti]. We are done if we
cover all times [0, +∞[. This is true since the switchings are delayed. Indeed, let us define

δ =
min{ρ2 − ρ1, η2 − η1}

M
> 0, (4.25)

which represents the minimum necessary time for the trajectory y passing from one threshold
to the other of at least one thermostat (here M is a bound for f (4.19)). Hence, whenever
we consider three consecutive instants ti−1, ti, ti+1 we have

ti+1 − ti−1 ≥ δ,

since, after three switchings, at least one of the two thermostats has switched two times. ut
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Definition 4.2 For any initial state (x, w0, z0) ∈ H and for every control α ∈ A, as solution
of (4.21) we mean the function constructed in the proof of Proposition 4.1, and generally we
denote it by

(y, w, z)(x,w0,z0)(·; α) =
(
y(x,w0,z0)(·;α), w(x,w0,z0)(·;α), z(x,w0,z0)(·; α)

)
.

Remark 4.3 Uniqueness is not guaranteed by Proposition 4.1. Indeed, it does not in gen-
eral hold. Let (ỹ, w̃, z̃) be the solution as in Definition 4.2. If t is a switching instant for
(ỹ, w̃, z̃) and if the state (ỹ(t), w̃(t), z̃(t)) is on the corresponding corner point of H(w̃(t),z̃(t)),
then it may happen that after t we may construct other trajectories than (ỹ, w̃, z̃) satisfy-
ing the maximality requirement. Such a possibility depends on the directions of the four
vectors f(ỹ(t), w̃(t), z̃(t)), f(ỹ(t),−w̃(t),−z̃(t)), f(ỹ(t), w̃(t),−z̃(t)), and f(ỹ(t),−w̃(t), z̃(t))
(in particular, on the possible directions of the vectors after switching; see Bagagiolo [3] for
some more details). In such particular cases, we may then choose other switchings (i.e other
commutations between w,−w and between z,−z) than those chosen for (ỹ, w̃, z̃).

However, the switchings chosen for (ỹ, w̃, z̃) are always possible (that is such a maximizing
trajectory always exists), whereas other possibilities do not always hold, in general. Moreover,
the trajectory (ỹ, w̃, z̃) chooses the switchings in a sort of non-anticipative way, that is they
do not depend on the direction of the field f after the switching. Also, the switchings of
(ỹ, w̃, z̃) are in some sense intrinsic (as our real models are: the switching obeys to an
internal feedback law): they only depend, via the delayed thermostat, by the evolution on the
actual connected component H(w̃,z̃); whereas other choices seem to more strongly depend on
a possible external agent.

However, for our control problem, the possible multiplicity of the solution is not a problem.
Indeed we are going to assume some suitable controllability hypotheses on the corner points
from which we may approximate any possible other solution by our solution as defined in
Definition 4.2.

4.2 The infinite horizon problem

For each couple (w, z) ∈ {(1, 1), (1,−1), (−1, 1), (−1,−1)}, we will use the following nota-
tions:

i) H(w,z) for the set defined as in (4.24), but with strict inequalities (i.e. the two-
dimensional manifold H(w,z) ⊂ R4 without its boundary);

ii) ∂H(w,z) for the set defined as in (4.24) where at least one equality holds (i.e the
boundary of the manifold H(w,z) ⊂ R4).

iii) ∂H for the set
⋃

w,z=1,−1 ∂H(w,z).
iv) ∂eiH(w,z) (respectively ∂eiH(w,z)) i = 1, 2 for the open (respectively closed) half line

along the direction ei contained in the boundary of H(w,z) (i.e. the part of the boundary
which is parallel to ei without or with the corner point).
In Figure 2, the four connected components of H are represented. Each one is composed by
an “interior space”, H(w,z) and two boundary half lines (each one along the two directions
of R2), ∂e1H(w,z) and ∂e2H(w,z), which have in common only one “corner point”. We denote
by σ(w,z) such a corner point, for every H(w,z):

σ(1,1) = (ρ1, η1, 1, 1), σ(1,−1) = (ρ1, η2, 1,−1),
σ(−1,1) = (ρ2, η1,−1, 1), σ(−1,−1) = (ρ2, η2,−1,−1).

The value function of the infinite horizon problem is defined as

V (x, w, z) := inf
α∈A

J(x, w, z, α) ∀(x,w, z) ∈ H.
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We suppose the following controllability properties hold on the switching boundaries:

∀(x,w, z) ∈ ∂e2H(w,z) ∃ a1, a2 ∈ A such that :
f(x,w, z, a1) · e1 < −c < 0 < c < f(x,w, z, a2) · e1,

∀(x,w, z) ∈ ∂e1H(w,z) ∃ a3, a4 ∈ A such that :
f(x,w, z, a3) · e2 < −c < 0 < c < f(x,w, z, a4) · e2.

(4.26)

where c > 0 is independent from (x,w, z). Condition (4.26) means that, on the points of the
boundary (i.e. on the switching points) we can always cross the boundary as well as do not
cross it (i.e. we can always make the corresponding variable switch as well as not switch).

We also consider the following hypotheses on the four corner points:

∀(w, z) ∃a, a1, a2 ∈ A such that
wf(σ(w,z), a) · e1 > 0 and zf(σ(w,z), a) · e2 > 0,
wf(σ(w,z), a1) · e1 < 0 < zf(σ(w,z), a1) · e2,
zf(σ(w,z), a2) · e2 < 0 < wf(σ(w,z), a2) · e2.

(4.27)

Note that (4.27) means that on every corner point we have at disposal a direction which per-
mits to remain inside the branch H(w,z) (i.e. to not cross any threshold), and two directions,
one per threshold, which make cross only one threshold. Also, the second two lines of (4.27)
imply:

∀ (w, z) ∃C > 0 and U neighborhood of σ(w,z) such that
∀ i, j = 1, 2, , i 6= j, ∀ (x,w, z) ∈ ∂eiH(w,z) ∩ U
∃ α ∈ A, ∃t ≤ Cdist

(
(x,w, z), ∂ejH(w,z)

)
such that (y, w, z)(x,w,z)(t; α) ∈ ∂ejH(w,z).

(4.28)

Note that (4.28) means that, around any corner, starting from any border point in a suitable
neighborhood, we can reach points in the other boundary line with a lap of time infinitesimal
as the distance from that portion of boundary (compare with (3.17)).

4.3 Continuity and DPP

We always assume the standard hypotheses on the dynamics f and on the cost `, (4.19), and
the controllability hypotheses (4.26), (4.27). For the proof of the following proposition see
the Appendix.

Proposition 4.4 The value function V is bounded and continuous in H.

Proposition 4.5 The Dynamic Programming Principle (DPP) holds:

V (x,w, z) = inf
α∈A

{∫ t

0

e−λs`(y(x,w0,z0)(s; α), w(x,w0,z0)(s; α), α(s))ds

e−λtV (y(x,w0,z0)(t; α), w(x,w0,z0)(t;α), z(x,w0,z0)(t; α))
}

, ∀t ≥ 0, ∀(x,w, z) ∈ H(w,z).

(4.29)

Proof. The proof is almost standard (see Bardi-Capuzzo Dolcetta [8]) and follows from
usual properties of trajectories and the semigroup property of the delayed thermostat, Propo-
sition 2.3. ut

4.4 The exit time problem

Let the hypotheses on f and `, (4.19), and the controllability ones (4.26), (4.27) hold.
Our aim is to describe the bi-thermostatic optimal control problem as a family of exit-time
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problems, suitably coupled. Given an initial state (x,w0, z0) ∈ H, and a control α ∈ A, we
define the first switching time as

t(x,w0,z0)(α) = inf
{

t ≥ 0
∣∣∣(w, z)(x,w0,z0)(t; α) 6= (w0, z0)

}
,

where we convey inf ∅ = +∞. Note that the first switching time is, in other words, the first
exit-time from the initial closed connected component H(w0,z0), and also that, by the swith-
cing definition of the delayed thermostat, we have (w, z)(x,w0,z0)(t(x,w0,z0)(α); α) = (w0, z0)
and (w, z)(x,w0,z0)(t + δ; α) 6= (w0, z0) for any sufficiently small δ > 0.

Now, for any bounded and continuous function u : H → R, we define the function
ψ[u] : ∂H → R:

ψ[u](x,w, z) =





u(x,w,−z) if (x, w, z) ∈ ∂e1H(w,z),
u(x,−w, z) if (x, w, z) ∈ ∂e2H(w,z),
min {u(x,−w, z), u(x,w,−z)} if (x, w, z) = σ(w,z).

Note that, on a single branch-boundary ∂H(w,z), the value of ψ[u] on a point (x,w, z) 6= σ(w,z)

is exactly the value of u in a suitable point of another branch, which is nothing but the point
where a possible trajectory switches on, when it exits fromH(w,z) through (x,w, z). If instead
(x,w, z) is the corner point σ(w,z), then ψ[u](σ(w,z)) is the minimum of the two values given
by u evaluated on the two points where a possible trajectory may respectively switch on,
when it exits from H(w,z) through σ(w,z) making one threshold only switch.

By the continuity of the function u and by the definition of ψ[u] on the corner points σ(w,z),
we immediately get the continuity of ψ[u] on the sets ∂eiH(w,z) and its lower semicontinuity
on ∂H (i.e. the “gluing” of ψ[u] on the corner points is “lower semicontinuous”).

Proposition 4.6 For every fixed couple (w, z) = (±1,±1), the restriction of V to the con-
nected component H(w,z), i.e. the function

{
x ∈ R2

∣∣∣(x,w, z) ∈ H(w,z)

}
3 x 7→ V (x,w, z),

coincides with the value function of the exit-time problem from the closed set H(w,z), with
exit-cost given by ψ[V ](·, w, z); which is equivalent to say that

V (x,w, z) = inf
α∈A

{∫ t(x,w,z)(α)

0

e−λt`(y(x,w,z)(t; α), w, z)dt

+e−λt(x,w,z)(α)ψ[V ](y(x,w,z)(t(x,w,z)(α); α), w, z)
}

.

(4.30)

Proof. We are going to directly prove (4.30). Let us fix (x, w, z) ∈ H and α ∈ A, and
denote t = t(x,w,z)(α). Hence, by the Dynamic Programming Principle, we have

V (x,w, z) ≤
∫ t

0

e−λt`(y(x,w,z)(t; α), w, z)dt + e−λtV (y(x,w,z)(t; α), w, z). (4.31)

By the controllability hypotheses, on (ξ, w, z) = (y(x,w,z)(t; α), w, z) ∈ ∂H(w,z), we have

V (ξ, w, z) ≤ V (ξ,−w, z) if (ξ, w, z) ∈ ∂e2H(w,z),

V (ξ, w, z) ≤ V (ξ, w,−z) if (ξ, w, z) ∈ ∂e1H(w,z),

V (ξ, w, z) ≤ min{V (ξ,−w, z), V (ξ, w,−z), V (ξ,−w,−z)} if (ξ, w, z) = σ(w,z).
(4.32)
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The inequalities in the first and in the second lines of (4.32) come from the fact that
if we start from a switching point (ξ, w, z), then we have more trajectories at our disposal
than the ones from the point we “drop on” after the switching: we have all the trajectories
starting from the latter point (by controllability) and also all the possible non-switching
trajectories starting from (ξ, w, z). The inequality in the third line comes again by the
controllability on the corner points (4.27), noting that, all the trajectories starting from
(ξ,−w,−z) are easily approximated by trajectories starting from anyone of the three points
(ξ, w, z), (ξ,−w, z), (ξ, w,−z). Similarly, on the corner points we have

min{V (ξ,−w, z), V (ξ, w,−z), V (ξ,−w,−z)} = min{V (ξ,−w, z), V (ξ, w,−z)}.
By (4.32) we then definitely conclude that

V (x,w, z) ≤ ψ[V ](x,w, z) ∀(x, w, z) ∈ H(w,z). (4.33)

By (4.31) and (4.33), we then get

V (x,w, z) ≤
∫ t

0

e−λt`(y(x,w,z)(t;α), w, z)dt + e−λtψ[V ](ξ, w, z),

from which, by the arbitrariness of α ∈ A we get the “≤” inequality in (4.30).
To obtain the reverse inequality, let us fix ε > 0 and take αε ∈ A such that J(x,w, z)−ε ≤

V (x, w, z), and denote by (yε, wε, zε) the corresponding trajectory starting from (x,w, z).
Again, we also denote t = t(x,w,z)(αε), and suppose that t < +∞ (which is not restrictive).
Moreover, let us take δ > 0 such that the trajectory does not switch again in the time interval
]t, t + δ]. We get

V (x,w, z) ≥
∫ +∞

0

e−λt`(yε(t), wε(t), zε(t), αε(t))dt− ε

=
∫ t+δ

0

e−λt`(yε(t), wε(t), zε(t), αε(t))dt +
∫ +∞

t+δ

e−λt`(yε(t), wε(t), zε(t), αε(t))dt− ε

≥
∫ t+δ

0

e−λt`(yε(t), wε(t), zε(t), αε(t))dt + e−λ(t+δ)V (yε(t + δ), wε(t + δ), zε(t + δ))− ε.

By the continuity of V , and by (4.32), letting δ → 0+, we then get

V (x,w, z) ≥
∫ t

0

e−λt`(yε(t), wε(t), zε(t), αε(t))dt + e−λtψ[V ](yε(t), w, z)− ε.

By the arbitrariness of ε > 0 we finally get the conclusion. ut

5 The Hamilton-Jacobi system

For an unknown function u : H → R, we consider the following Hamilton-Jacobi problem





for every fixed w, z ∈ {1,−1}, u is a viscosity solution of{
λu(x,w, z) + sup

a∈A
{−∇u(x,w, z) · f(x,w, z)− `(x,w, z)} = 0 in H(w,z),

u = ψ[u] on ∂H(w,z),
with boundary condition in the viscosity sense,

(5.34)

where the symbol “∇” means the gradient with respect to the spatial variable only, x ∈ Rn.
Let us note that every H(w,z) is defined as Ω in (3.9) (with two boundary-branches ∂eiH(w,z),
i = 1, 2), and that, when u is continuous, ψ[u] plays the same role as ξ∗ with ξ as in (3.12).
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By Proposition 4.6, and by Proposition 3.1, we immediately get that the value function
V solves (5.34). Moreover note that Proposition 3.1 also speaks about uniqueness. In the
present setting, this means that, once we know V and have calculated ψ[V ], then V is
indeed the unique solution of every sub-problems on H(w,z), with boundary condition given
by ψ[V ] itself. However, this (sub-) uniqueness, does not immediately imply the uniqueness
of V as solution of (5.34), since in the whole problem on H, the boundary conditions are
of course intrinsically given through the solution. Uniqueness is the subject of the following
proposition.

Proposition 5.1 The value function V is the unique bounded and continuous function from
H to R which solves problem (5.34).

Proof. For every function v : H → R, and for every fixed w, z ∈ {1,−1}, we will denote
by HJ(w,z)[v] the corresponding (sub-) Hamilton-Jacobi problem

{
λu(x, w, z) + sup

a∈A
{−∇u(x,w, z) · f(x, w, z)− `(x,w, z)} = 0 in H(w,z),

u = ψ[v] on ∂H(w,z),

where u : H(w,z) → R is the unknown function. Moreover, let us denote by X the space of
bounded and continuous functions from H to R. This is a complete space when endowed by
the sup-norm

‖u‖ = sup
(x,w,z)∈H

|u(x,w, z)| ∀ u ∈ X.

Our aim is to construct an operator T : X → X which has a unique fixed point (i.e.
T [u] = u), and such that any solutions of (5.34) which belongs to X is a fixed point of
T . This will conclude the proof. Given a function u ∈ X, then T [u] ∈ X is constructed
as follows: for every w, z ∈ {1,−1}, the restriction of T [u] to the component H(w,z) is the
unique bounded and continuous solution of HJ(w,z)[u]. By Proposition 3.1, we know that,
on every component H(w,z), T [u] coincides with the value function of the exit-time problem
from H(w,z) with exit-cost given by ψ[u], and with dynamics, running cost and discount
factor given by f , ` and λ respectively. In other words, for every fixed w, z ∈ {1,−1}, and
for every x ∈ Rn such that (x,w, z) ∈ H(w,z),

T [u](x,w, z) = inf
α∈A

(∫ t(x,w,z)(α)

0

e−λt`(y(x,w,z)(t;α), w, z)dt

+e−λt(x,w,z)(α)ψ[u](y(x,w,z)(t(x,w,z)(α); α), w, z)
)
.

(5.35)

It is obvious that any bounded and continuous viscosity solution of (5.34) is a fixed point
of T . Moreover, we already know that V solves (5.34) and hence it is a fixed point (a fixed
point exists). To prove that T has a unique fixed point we prove that T 3 = T ◦ T ◦ T is a
contraction on X.

To simplify notations, let us consider a point (x, 1, 1) ∈ H(1,1). Let us take u, v ∈ X,
ε > 0 and a control α1 ∈ A which is ε-optimal for T 3[v](x, 1, 1) (i.e. for the exit-time problem
from H(1,1), with initial point (x, 1, 1) and exit-cost ψ[T 2[v]]). Moreover, let us denote by
y1 the corresponding trajectory in Rn, and by t1 the first exit-time t(x,1,1)(α1). Then, by
(5.35), we have

(
T 3[u]− T 3[v]

)
(x, 1, 1) = e−λt1

(
ψ

[
T 2[u]

]
(y1(t1), 1, 1)− ψ

[
T 2[v]

]
(y1(t1), 1, 1)

)
+ ε.

Note that (y1(t1), 1, 1) is a point of the boundary ∂H(1,1) and hence
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Figure 3: Graphic explanation for part of the proof of Proposition 5.1

y1(t1) · S1 = ρ1 or y1(t1) · S2 = η1. (5.36)

Now, by definition of ψ, supposing for instance ψ
[
T 2[v]

]
(y1(t1), 1, 1) = T 2[v](y1(t1), 1,−1),

we obtain
(
T 3[u]− T 3[v]

)
(x, 1, 1) ≤ e−λt1

(
T 2[u](y1(t1), 1,−1)− T 2[v](y1(t1), 1,−1)

)
+ ε.

Repeating such an argument, we take α2 ∈ A ε-optimal for T 2[v](y1(t1), 1,−1) (as exit-
time problem from H(1,−1), starting from (y1(t1), 1,−1), with exit-cost given by ψ [T [v]]),
we correspondingly define y2 and t2, and suppose for instance that ψ [T [v]] (y2(t2), 1,−1) =
T [v](y2(t2),−1,−1). We then get

(
T 3[u]− T 3[v]

)
(x, 1, 1) ≤ e−λ(t1+t2) (T [u](y2(t2),−1,−1)− T [v](y2(t2),−1,−1)) + 2ε.

Also in this case let us note that (y2(t2), 1,−1) is a point of the boundary ∂H(1,−1) and
hence

y2(t2) · S1 = ρ1 or y2(t2) · S2 = η2. (5.37)

Again, with obvious notations, and supposing ψ[v](y3(t3),−1,−1) = v(y3(t3), 1,−1), we
finally have

(
T 3[u]− T 3[v]

)
(x, 1, 1) ≤ e−λ(t1+t2+t3) (u(y3(t3), 1,−1)− v(y3(t3), 1,−1)) + 3ε

≤ e−λ(t1+t2+t3)‖u− v‖+ 3ε,
(5.38)

noting again that (y3(t3),−1,−1) is a point of the boundary ∂H(−1,−1) and hence

y3(t3) · S1 = ρ2 or y3(t3) · S2 = η2. (5.39)

In Figure 3 a trajectory starts from (x, 1, 1) and evolves, with dynamcis f(·, 1, 1), in
H(1,1) until the time t1, at which it exits trhough a point (y1(t1), 1, 1) whose second coor-
dinate is η1. Then it restarts to move, with dynamics f(·, 1,−1), inside H(1,−1) from the
point (y1(t1), 1,−1) and, after a time t2 it exits through a point (y2(t2), 1,−1) whose first
coordinate is ρ1. After that, it moves inside H(−1,−1), with dynamics f(·,−1,−1), starting
from the point (y2(t2),−1, 1) and, after a time t3 it exits through a point (y3(t3),−1,−1)
whose second coordinate is ρ2.

Now, recalling (5.36), (5.37) and (5.39), we can note that in the lap of time t1 + t2 + t3
the trajectory given by the glue of (y1(·), 1, 1), (y2(·), 1,−1) and (y3(·),−1,−1) passes three
times through some points of the boundaries (the exit points) which also correspond to some

15



thresholds points of the thermostats. Since the thermostats are two, this implies that both
thresholds of at least one thermostat are reached by the trajectories. By (4.25), this implies
that

t1 + t2 + t3 ≥ δ > 0,

where δ is independent from the starting point (x, 1, 1) and from the ε-optimal controls
α1, α2, α3, but only depends on the dynamics f and on the thresholds of the thermostats.
Hence, from (5.38), by the arbitrariness of (x, 1, 1) and of ε > 0, we get

‖T 3[u]− T 3[v]‖ ≤ e−λδ‖u− v‖ ∀ u, v ∈ X,

where, since λ > 0, 0 < e−λδ < 1, and the proof is completed. ut
Remark 5.2 The two-dimensional model we have studied here may be seen as the prototype
for the n-dimensional case of m thermostats, with m ≤ n and S1, . . . , Sm linearly indepen-
dent.

A more general situation which can be studied with the same argumentation as here, but
obviously with a strongly more complicated geometrical description, is the case where m is
arbitrary and the unit vectors Sj are pair-wise non parallel (even if they may be linearly
dependent). Indeed, in such a case, every branch Mw (using the notations as in the Intro-
duction) is not empty, from every branch it is possible to switch on some other branches,
and every branch can be reached by a suitable switching from some other branches.

Otherwise, if some Si and Sj with i 6= j are parallel, then some branches may be empty
and also some non empty branches may be unreachable, that is it is impossible to switch on
it, but it is only possible to switch out from it. Hence it could happen that some internal
switching loops appear, which involve only a restricted number of branches. In such a case
the model is slightly different from the one here studied. A simpler situation like that, only for
a one-dimensional model, was studied in Bagagiolo [3]. However, such a situation (which
roughly speaking means: different thermostats applied to the same component) is probably
better suitable to approximate more general hysteresis-memory laws (as the Preisach one)
than to be applied to our switching model problems as described in the Introduction.

Remark 5.3 In this work we have assumed that the “switching thermostatic rule” is linked
to the “exit-rule” from a closed set (i.e. the switching occurs “just after” the switching time).
As said in Remark 2.2, other switching rules may be assumed. Let us consider the problem
where thermostats switch “exactly when” the threshold is reached. This corresponds to a
problem with state-space

H =
⋃

(w,z)

H(w,z),

which may be interpreted as the “interior” of H ⊂ R4. Let Ṽ be the value function of the
problem (with the same f , `, λ as before) with such a kind of switching rule. Then, by the
controllability hypotheses, we certainly have Ṽ = V on H, where V is the value function as
in the previous part of this work. Indeed, the inequality V ≤ Ṽ is almost immediate, since
any trajectory for Ṽ may be easily approximated by a trajectory for Ṽ . On the other hand,
the inequality Ṽ ≤ V can be obtained by suitably using the estimates (6.40)–(6.42), possibly
restricting the branch H(w,z) by cutting a small ε-strip around the boundary ∂H(w,z) (remem-
ber that the trajectories for V may run along the boundary ∂H, whereas the trajectories for
Ṽ may not (the boundary is not admissible for that problem)).

In the same way, other possible “mixed” switching rules lead to value functions which
coincide with V on the common sets of definition.

Of course, only V is the good one to be searched as solution of the Hamilton-Jacobi
problem, since it is the unique that has all the boundary values.
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6 Appendix

Proof of Proposition 3.1. v is continuous. The continuity of v comes from (3.16), (3.17),
from the fact that ξ is separately continuous on every (∂Ω)i, and also from the fact that ξ∗
is continuous on (∂Ω)1 ∩ (∂Ω)1̃ (see (3.12)). In particular note that (3.17) guarantees the
(controlled in time) reachability of (∂Ω)1, where the values of the exit cost ξ are (probably)
lower than the values on (∂Ω)1̃, at least for points near to (∂Ω)1∩ (∂Ω)1̃. Indeed, about con-
tinuity, adapting a result due to Soner [19] (see also Bagagiolo-Bardi [6] for a generalization
to a polytopic case as (3.9)), for every compact set K̃ ⊂ Ω there exist a time τK̃ > 0 and a
constant βK̃ > 0 (both depending only on K̃ and on f via (3.16)) such that, for every x ∈ K̃
and for every α ∈ A, there exists α ∈ A such that

yx(t) ∈ Ω, ∀0 ≤ t ≤ τ,∣∣JτK̃
(x, α)− JτK̃

(x, α)
∣∣ ≤ βK̃ sup

0≤t≤τ
dist

(
yx(t), Ω

)
, (6.40)

where yx(·) and yx(·) are respectively the trajectories of (3.13) with α and α as control and,
in general, for t ≥ 0, Jt is the corresponding cost given only by the integral part of (3.14) up
to the time t, independently whether the trajectory stays inside Ω or not. From (6.40), and
standard estimates on the trajectories, we get the following: for every compact set K̃ ⊂ Ω
and for every T > 0 there exists a constant CK̃,T > 0 such that, for every x, y ∈ K̃ and for
every α ∈ A such that yy(t) ∈ Ω for all t ∈ [0, T ], there exists α ∈ A such that

‖yx(t)− yx(t)‖ ≤ CK̃,T ‖x− y‖ ∀t ∈ [0, T ],
‖yx(t)− yy(t)‖ ≤ CK̃,T ‖x− y‖ ∀t ∈ [0, T ],∣∣∣JT (x, α)− JT (y, α)

∣∣∣ ≤ CK̃,T ‖x− y‖.
(6.41)

Now, from (6.41), from the reachability condition (3.17), and again from the controllabil-
ity condition (3.16), and finally from standard inequalities on the trajectories, we then get
the following

∀K ⊆ Ω compact ∀δ > 0 ∃ CK,δ > 0 such that
∀ x, y ∈ K, ∀α ∈ A, ∃ α ∈ A such that∣∣∣J(x, α)− J(y, α)

∣∣∣ ≤ CK,δ‖x− y‖+ δ.
(6.42)

To obtain (6.42), take T > 0 such that the possible remaining part of the cost J in the
time interval (T,+∞) is certainly less than δ/2 for every initial point x and control α ∈ A,
and let K̃ be a compact set in Rn containing, up to time T , any trajectory starting from
K. Then construct the control α by observing the trajectory yy(·) and making yx(·) have
suitable behavior and cost: use (3.16) to exit from Ω if necessary; use (6.41) to remain inside
Ω if necessary; use (3.17) to reach (∂Ω)1 as final exit point if necessary.

From (6.42), we easily get the continuity of v. It is sufficient to argue by absurd and
suppose that there exist a point x ∈ Ω, a sequence {yn}n ⊂ Ω converging to x, and ε > 0
such that |v(x)− v(yn)| ≥ ε for all n ∈ N.

v solves (3.18). This fact may be checked by standard techniques (see Bardi-Capuzzo
Dolcetta [8]).

v is the unique solution of (3.18). First of all observe that by the controllability hypothesis
(3.16), v certainly satisfies the condition

v(x) ≤ ξ∗(x) ∀x ∈ (∂Ω)1 ∩ (∂Ω)1̃ . (6.43)

Let us use the following notation: for every set of indices I ⊂ {1, 2, . . . , r} we define
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(∂Ω)I =
⋂

i∈I

(∂Ω)i , and, if (∂Ω)I 6= ∅,

ξI : (∂Ω)I → R, ξI(x) = min
{

ξi(x)
∣∣∣i ∈ I, x ∈ (∂Ω)i

}
,

ξI : (∂Ω)I → R, ξI(x) = max
{

ξi(x)
∣∣∣i ∈ I, x ∈ (∂Ω)i

}

We now argue as in Bardi-Capuzzo Dolcetta [8] and in particular as in Bardi-Soravia [9]
(to which the reader is strongly referred for details) which treats the unbounded domain
case. The only difference here is that the boundary datum is discontinuous. However, the
only possible discontinuity points are points in (∂Ω)I , where I ⊆ {1, . . . , r} has at least two
elements. But there, (3.12) and (6.43) guarantee the applicability of the argument. Indeed,
we may first prove a comparison result between a bounded continuous viscosity subsolution
v1 (i.e. a function satisfying the first implications in (3.7) and in (3.8)) and a bounded
continuous viscosity supersolution v2 (i.e. a function satisfying the second implications in
(3.7) and in (3.8)), the latter also satisfying (6.43). A little bit more precisely, adopting the
standard double variables technique and arguing as in [9], we are led to consider only the case
of sequences of maxima xβ

ε ∈ Ω and minima yβ
ε ∈ ∂Ω which, for every sufficiently small β > 0,

converge to a suitable point wβ ∈ (∂Ω)I , as ε → 0+, where I is the maximal set of indices,
Ĩ ⊆ {1, . . . , r}, such that wβ ∈ (∂Ω)Ĩ (note that in this case we have ξI(wβ) = ξ∗(wβ)).
We can also suppose that, for every small ε, yβ

ε ∈ (∂Ω)I′ with I ′ ⊆ I independent on ε.
Moreover, by virtue of (6.43), we may consider only the case v2(wβ) < ξ∗(wβ) − γ, where
γ > 0 makes the absurd hypothesis

sup
x∈Ω

{v1(x)− v2(x)} = 3γ

hold. Hence, for every β > 0 sufficiently small, denoting by ωβ a modulus of continuity for
v1, v2 in Ω ∩ Bβ and for ξi in (∂Ω)i ∩ Bβ , i = 1, . . . , r, where Bβ is a suitable ball in Rn

depending on β, we have
{

ξ∗(wβ)− γ > v2(wβ) ≥ v2(yβ
ε )− ωβ(ε),

ξ∗(wβ)− γ = ξI(wβ)− γ ≤ ξI′(wβ)− γ ≤ ξI′(yβ
ε )− γ + ωβ(ε) ≤ ξ∗(yβ

ε )− γ + ω(ε),

which, for ε small, gives v2(yβ
ε ) < ξ∗(yβ

ε ). This means that the boundary condition in
(3.18) implies the verification of the equation in yβ

ε , and hence, in a standard way, we get a
contradiction, eventually obtaining v1 ≤ v2.

Now, if we take the value function v as v2 in the preceding comparison then, for every v1

continuous and bounded viscosity solution of (3.18), we get that v1 ≤ v and that v1 satisfies
(6.43) too. Hence, changing the role, we also get v ≤ v1, which implies the uniqueness of v
as solution. ut
Remark 6.1 Since the boundary datum ξ satisfies the regularity property (ξ∗)∗ = ξ∗, then
the uniqueness of the value function v as continuous viscosity solutions may be also obtained
suitably adapting the techniques for discontinuous viscosity solution of Barles-Perthame [10]
and Blanc [14] (see also Bagagiolo [5]). Indeed, the general result in those articles is the fact
that all the discontinuous solutions have the same lower semicontinuous envelope; since we
already know that a continuous viscosity solution exists, then it obviously must be the unique
continuous solution. However, it is not excluded that other discontinuous solutions exist.

Proof of Proposition 4.4. The boundedness is obvious. Let us note that H consists of four
disjoint connected components and hence “continuity onH” means continuity on every closed
connected component H(w,z). Hence, using the controllability hypotheses (4.19), (4.26) and
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(4.27), the proof is similar to the first part of the proof of Proposition 3.1. In particular, note
that, whenever a finite time T > 0 is fixed, then any trajectories (starting from any point
of H) may switch (i.e. change connected component) only a finite number of times N(T )
depending only on T (and on the boundedness of the dynamics f). Hence, the argumentation
as in the proof of Proposition 3.1 has to be implemented only a finite number of times N(T ),
getting then the conclusion. ut
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