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1.  INTRODUCTION

The difference in Zeeman energy levels which endows 
Nuclear Magnetic Resonance (MR) with observable sig-
nals is inherently small, typically associated with frequen-
cies in the MHz-GHz range. In MR imaging (MRI), these 
low-energy resonances ensure the safety of the methodol-
ogy, as strong irradiation is not required to excite spins. 

However, due to the smallness of the ensuing signal, ther-

mal noise in the receiver coils (Constantinides et al., 1997; 

Henkelman, 1985) is a significant component of detected 

data and effectively limits MRI’s spatiotemporal resolution. 

Furthermore, the potential usefulness of MRI contrasts is 

often signal-to-noise limited. For example, in diffusion MRI 

(dMRI) and relaxometry, the already inherently low signals 
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are exacerbated by the need to attenuate the signal for 
contrast, leading to even more significant losses of spatio-
temporal resolution. In functional MRI and methods based 
on image difference methods (e.g., Magnetization Transfer, 
Chemical exchange saturation transfer), the contrast to 
noise is low, and in Magnetic Resonance Spectroscopy 
(MRS), signals with five orders of magnitude smaller than 
that of the concentrated water protons are being sought. 
Thus, the suppression of thermal noise effects is of general 
interest in MRI.

Hardware improvements, such as more efficient coil 
designs, provide higher signal-to-noise ratio (SNR) from 
the coil (Kaza et  al., 2011; Rodríguez & Medina, 2005; 
Roemer et  al., 1990; Schmitt & Rieger, 2021). More 
recently, the introduction of cryogenic coils has shown 
how suppression of thermal noise by a factor of ~2-5 can 
produce improvements in image quality (Hall et al., 1991; 
Kwok & You, 2006; Niendorf et  al., 2015; Poirier-Quinot 
et al., 2008); however, these coils are expensive and diffi-
cult to handle (Labbé et  al., 2020, 2021). On the other 
hand, suppression of noise via image processing is a very 
active field of research, which can potentially provide sig-
nificant gains in SNR, synergistically with improved coil 
designs. Several such techniques have been proposed, 
including standard image-domain smoothing and filtering 
(Friston et  al., 1995; Jones & Cercignani, 2010; Jones 
et  al., 2005), edge-preserving anisotropic filters (Gerig 
et  al., 1992), wavelet transformations (Nowak, 1999; 
Pižurica et  al., 2003), total variation minimization (Knoll 
et  al., 2011), and non-local means (Coupé et  al., 2008; 
Manjón et  al., 2010, 2008). However, since these tech-
niques rely on assumptions on spatial features of the data, 
such methods can compromise anatomical details by 
introducing spatial smoothing, blurring, staircase artifacts, 
and other types of image intensity bias (K. Kay, 2022; Tax 
et  al., 2022; Veraart, Fieremans, Jelescu, et  al., 2016; 
Veraart, Novikov, et al., 2016).

Denoising strategies based on Principal component 
analysis (PCA) had previously been used to provide a 
more optimal compromise between noise suppression 
and preservation of signal information by exploring signal 
redundancy (Deledalle et al., 2011; Hansen et al., 2014; 
Murali Mohan Babu et al., 2012). Redundancy exists in 
many types of MRI methods where larger amount of data 
samples are acquired relative to the relevant degrees of 
freedom. This is the case for diffusion MRI data that are 
acquired for, for example, different diffusion gradient 
directions, different b-values, and/or different diffusion 
times (Manjón et al., 2013, 2015; Pai et al., 2011; Veraart, 
Novikov, et  al., 2016). In MRI relaxometry, signals are 

acquired for multiple echoes (Bazin et  al., 2019; Does 
et  al., 2019), and, in functional MRI or functional MRS 
(Adhikari et  al., 2019; Mosso et  al., 2022), redundancy 
arises from repeating the scans along the paradigm.

In such acquisitions, the denoising procedure is based 
on a reshaping of data as an M × N dimensional matrix, 
where M represents voxels (which can correspond to all 
image voxels or selected voxels according to a sliding win-
dow (Manjón et al., 2013; Veraart, Novikov, et al., 2016)) 
and N corresponds to the redundant dimension (e.g., 
along different diffusion gradient acquisitions, echoes, or 
functional MRI/MRS time points). Following a PCA, a rela-
tively small number of principal components typically carry 
mainly signal information while the remaining components 
carry mainly noise (Manjón et  al., 2013) (n.b., the signal 
components are also perturbed by the noise). In diffusion 
MRI, for example, it was shown that PCA eigenvalues 
mainly corresponding to noise can be removed using a 
threshold calculated based on an a-priori noise variance 
estimate (Pai et al., 2011), typically, in addition to empiri-
cally adjusted conversion factor according to different 
acquisition schemes (Manjón et al., 2013, 2015).

Later, the PCA component classification was objecti-
fied by Veraart, Fieremans, and Novikov (2016) and 
Veraart, Novikov, et  al. (2016) using concepts from ran-
dom matrix theory and assuming that PCA noise-related 
eigenvalues are characterized by a Marčenko-Pastur dis-
tribution (Marčenko & Pastur, 1967). The Marčenko-Pastur 
PCA (MPPCA) denoising has since become one of the 
most employed algorithms for diffusion MRI pre-
processing. The MPPCA denoising has shown promising 
results not only for diffusion MRI (Ades-Aron et al., 2018; 
Gurney-Champion et  al., 2019; Henriques et  al., 2021; 
Moeller et al., 2021; Olesen et al., 2023; Pai et al., 2011; 
Shemesh, 2018; Tournier et  al., 2019; Veraart, Novikov, 
et al., 2016), but also for other MRI modalities such as MRI 
relaxometry (Bazin et al., 2019; Does et al., 2019), func-
tional MRI (Ades-Aron et al., 2020; Adhikari et al., 2019; 
Diao et  al., 2021; Fernandes et  al., 2022; Vizioli et  al., 
2021), MRS (Froeling et al., 2021; Simões et al., 2022), and 
functional MRS (Mosso et al., 2022). However, it is import-
ant to note that MPPCA denoising schemes assume that 
noise is identically distributed, spatially uniform, and spa-
tially uncorrelated—which can be violated significantly in 
real-life data and lead to poor denoising performance 
(Cordero-Grande et al., 2019; Moeller et al., 2021).

In typical MRI acquisitions, noise is non-central distrib-
uted, spatially varying, and spatially correlated as a conse-
quence of different reconstruction steps such as coil 
combination and parallel imaging (Aja-Fernández & 
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Tristán-Vega, 2012; Aja-Fernández et  al., 2011, 2014, 
2015; Constantinides et  al., 1997; Pruessmann et  al., 
1999), k-space gridding, zero-filling and partial Fourier 
acquisitions (Landman, Bazin, Smith, et al., 2009), spatial 
smoothing and interpolation during the image reconstruc-
tion (Jezzard & Balaban, 1995), and wrapped phase 
(Cordero-Grande et al., 2019; Moeller et al., 2021; Vizioli 
et  al., 2021), among others. In many cases, data are 
obtained after multiple pre-processing steps, sometimes 
irreversibly (e.g., vendor reconstruction), and so these 
noise characteristics can be an important confounding 
factor for MPPCA denoising. To improve the performance 
of MPPCA denoising, recent studies suggested the use of 
additional pre-processing steps to ensure that noise is 
identically distributed, spatially uniform, and uncorrelated 
before denoising (Cordero-Grande et  al., 2019; Moeller 
et al., 2021; Vizioli et al., 2021). These approaches used 
the information from complex data to ensure data recon-
struction with zero-mean and identically distributed noise 
and to correct for spatial variance and correlated noise.

Here, we focus on understanding how noise spatial 
correlations impact PCA denoising and how different 
threshold criteria for PCA component classification can 
still provide robust denoising performance, even in typical 
magnitude reconstructed data. Particularly, we show that 
a significant improvement in the classification of signal 
and noise components can be achieved by adding prior 
information on the noise variance. Based on this, two 
novel PCA denoising strategies are developed: 1) the 
General PCA (GPCA) denoising uses noise variance esti-
mates determined a-priori without assuming specific 
noise distribution functions; and 2) the Threshold PCA 
(TPCA) denoising combines the noise variance prior esti-
mate with MP distribution characteristics to define a 
threshold for noise component removal. We present the 
relevant theory, and demonstrate the advantages of these 
two novel denoising strategies in simulations where 
ground truth is known, and diffusion MRI data acquired 
using pre-clinical (16.4T) and a clinical (3T) scanners (all 
code used to produce the figures of this paper is freely 
available at https://github​.com​/RafaelNH​/PCAdenoising).

2.  METHODS

2.1.  Theory

2.1.1.  PCA denoising

Let us define an M × N matrix X  that contains the N 
redundant measurements (in the case of our dMRI data, 
these correspond to the different diffusion-weighted sig-

nals acquired for different gradient directions and b-val-
ues) for M neighboring voxels typically selected in a 
sliding window. Each column of X  is subtracted by its 
mean. Without loss of generality, we consider here matri-
ces with M ≥ N, but the theory presented below can eas-
ily be rewritten for matrices with M < N. The principal 
component analysis of X can be performed from the 
eigen-decomposition of its covariance matrix:

	
UΛΛUT = 1

M
XT X

	
(1)

where U is an N × N matrix that contains all PCA eigen-
vectors, and ΛΛ is an N × N diagonal matrix containing the 
respective eigenvalues λ. PCA denoising can be achieved 
by excluding C components mainly associated with noise 
in the eigenvalue spectrum—the expected SNR gain 

depends on both N and C (SNR gain = N N −C( ) , 
Veraart, Novikov, et al., 2016). In pioneering work using 
PCA to denoise MRI data (Manjón et al., 2013, 2015), this 
was performed by zeroing eigenvalues lower than a given 
threshold τ calculated by:

	 τ = υ2σ̂2	 (2)

where σ̂2 is the noise variance (typically estimated a-pri-
ori) and υ is an empirically defined correction factor 
(Manjón et  al., 2013, 2015). Denoised signals for each 
sliding window are then reconstructed from the eigenval-
ues (and eigenvectors) surviving the thresholding in PCA 
space. Denoised datasets can then be fully reconstructed 
from the middle voxel of each sliding window, or by com-
bining the denoised signals from overlapping voxels from 
adjacent sliding windows by using, for example, the over-
complete averaging procedure (Katkovnik et  al., 2009; 
Manjón et al., 2013). Due to its previous reported advan-
tages (Katkovnik et al., 2009), overcomplete averaging is 
used for all denoising strategies explored in this study.

Although the pioneering work mentioned above had 
already used a-prior noise variance estimates, latter 
studies proposed alternative strategies for component 
classification to avoid the use of the subjective correction 
factor (see section  2.1.2). In this study, we show that 
a-priori noise variance estimates can be used with PCA 
denoising without employing empirically defined correc-
tion factors (see sections 2.1.3 and 2.1.4).

2.1.2.  MPPCA denoising

According to Marčenko and Pastur (1967), a matrix X  
populated entirely by pure Gaussian random noise with 

https://github.com/RafaelNH/PCAdenoising
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variance σ̂2 in the limit of M,N( )→∞, with γ = N M  fixed, 
propagates to the PCA eigenvalues λ with the following 
probability distribution (Marčenko & Pastur, 1967):

	

p λ( ) =
λ+ − λ( ) λ − λ−( )

2πγλσ2 ifλ−− < λ < λ+

0 otherwise

⎧

⎨
⎪

⎩
⎪

	

(3)

where

	 λ± = σ2 1± γ( )2 	 (4)

Note that this Marčenko-Pastur (MP) distribution pro-
duces non-zero probabilities only between λ− and λ+. 
From Eq. 4, the width of the MP distribution λ+ − λ− can 
be related to the noise variance as

	 λ+ − λ− = 4 γσ2.	 (5)

Veraart, Novikov, et  al. (2016) proposed to classify 
eigenvalues mostly related to noise as the maximum 
number of the smallest eigenvalues λc that best fits the 
probability distribution in Eq.  3. In practice, this is 
achieved by a moment-matching method in which larger 
eigenvalues (carrying significant signal information) are 
iteratively removed until the mean of the lowest intensity 
eigenvalues λc is higher than a noise variance estimated 
from the MP distribution ( σ̂MP

2
), that is:

	 λc ≥ σ̂MP
2

	 (6)

where the noise variance estimate σ̂MP
2 is computed 

from the MP distribution bandwidth (estimated by the dif-
ference between the lower and larger eigenvalues kept in 
λc ) according to Eq. 5:

	
σ̂MP

2 =
max λc( )−min λc( )

4 γ c 	
(7)

with γC = C
M  and C being the number of eigenvalues 

classified as being mostly related to noise. Note that 
MPPCA denoising does not require prior knowledge 
about the noise variance since σ̂MP

2 is iteratively calcu-
lated by Eq. 7.

As an alternative to the moment-matching fitting pro-
cedure described above, the MP distribution can also be 
iteratively fitted to the measured PCA eigenvalue spec-
trum (Ding et  al., 2010; Veraart, Fieremans, & Novikov, 
2016). However, in this study, we show that this algorithm 
does not only require much longer computation times but 

also suffers from similar spatially correlated noise issues 
compared to the moment-matching algorithm (results 
reported in Supplementary Material).

2.1.3.  General PCA denoising

The denoising approach described above assumes that 
the eigenvalue mean λc is only larger than σ̂MP

2 when all 
components containing relevant signal information are 
removed from the group of eigenvalues λc. This assump-
tion holds for independent, uncorrelated entries in the X 
matrix. However, this assumption would be violated in 
typical MRI acquisitions where spatial correlations are 
introduced by reconstruction in X. In that case, as will 
also be shown below, the original MPPCA denoising con-
siderably underperforms because it provides an incorrect 
classification of principal components containing mostly 
noise and signal information.

Therefore, instead of trying to iteratively estimate the 
noise variance σ̂2 from the Marčenko-Pastur distribution 
(an estimate that can be corrupted by spatially correlated 
noise), we introduce here the general PCA denoising 
approach, which is designed to use an a-priori noise vari-
ance estimate σ̂prior

2 that is obtained independently from 
the denoising procedure without, however, using empiri-
cal conversion factors (Manjón et al., 2013, 2015). In this 
study, σ̂prior

2 is calculated from MRI data repetitions, but 
the denoising approaches developed here can be 
adapted to other σ̂prior

2 estimation strategies (Aja- 
Fernández et  al., 2015; Koay et  al., 2009; Landman, 
Bazin, & Prince, 2009; Landman, Bazin, Smith, et  al., 
2009; Liu et  al., 2014; Manjón et  al., 2013, 2015; 
Samsonov & Johnson, 2004; St-Jean et al., 2020)—see, 
however, the considerations in section 2.1.5.

According to random matrix theory, the mean of PCA 
eigenvalues is only smaller than the ground-truth noise 
variance σ̂2 when no eigenvalue of significant signal 
components is improperly classified as noise (Ding et al., 
2010; Manjón et  al., 2015)—see also the derivations in 
Supplementary Material Appendix A. Given this, a way to 
directly use the noise variance prior is to classify eigen-
values of components containing mostly noise by select-
ing the highest number of smallest eigenvalues whose 
mean is smaller than σ̂prior

2, that is:

	 λc ≤ σ̂prior
2

	 (8)

Note that this eigenvalue classification procedure is 
more general than the criteria used in conventional 
MPPCA since it does not rely on specific assumptions of 
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the Marčenko-Pastur distribution (see Supplementary 
Material Appendix A)—which is why we refer to this 
denoising approach as General PCA (GPCA) denoising.

2.1.4.  Threshold PCA denoising

As an alternative to GPCA, the noise variance estimate 
σ̂prior

2 can also be used with an MP distribution-like con-
cept to obtain an objective threshold for PCA component 
classification (Cordero-Grande et al., 2019; Moeller et al., 
2021; Pai et  al., 2011; Vizioli et  al., 2021). Here, this is 
achieved by inserting σ̂prior

2 directly into Eq. 4. According 
to this equation, all noise eigenvalues of a random matrix 
X should be smaller than λ+, and thus an eigenvalue 
threshold criterion for the threshold PCA denoising 
(TPCA) is here defined as:

	 λt = 1+ γ( )2 σ̂prior
2

	 (9)

This strategy uses the upper bound λ+ of the MP dis-
tribution, but it does not require the entire distribution to 
follow exactly the MP distribution itself. In other words, 
the full shape of the eigenvalue probability spectrum is 
less critical than the upper bound itself. This approach 
avoids the deleterious effects of spatially correlated noise 
by avoiding the iterative calculation of two parameters 
σ̂MP

2 and λc of MPPCA (c.f. Eq. 6), and rather using the 
upper bound as the more important metric. Indeed, c.f. 
Eq. 9, where it is evident that TPCA avoids iterative com-
putation by directly thresholding principal components 
using the new information from σ̂prior

2 which, in a way, 
accounts for these effects (see considerations below). It 
is important to note that this approach is similar to the 
eigenvalue thresholding approach used by Noise Reduc-
tion with Distribution Corrected (NORDIC) PCA method 
(Moeller et al., 2021; Vizioli et al., 2021) in which eigenval-
ues are classified based on an eigenvalue upper bound 
also computed for a noise variance estimate. However, 
while NORDIC uses Monte-Carlo simulations, here the 
analytical solution from the MP distribution is used (i.e., 
Eq.  9) to avoid Monte-Carlo stochastic errors—more 
details are given in the Discussion (section 4.3).

2.1.5.  Noise variance estimation

In modern MRI acquisitions, the noise level may not be 
uniformly constant across the entire volume (Aja-Fernández 
et al., 2015; Landman, Bazin, Smith, et al., 2009; Pieciak 
et  al., 2017). Therefore, the noise variance maps in this 
study are computed at the voxel level. Several techniques 

have been proposed to calculate these maps from single 
MRI images (Aja-Fernández et al., 2009, 2015; Liu et al., 
2014; Pieciak et al., 2017; Tabelow et al., 2015); however, 
to compute the effective noise variance after image recon-
struction avoiding any assumption about how noise varies 
spatially across adjacent voxels (Constantinides et  al., 
1997; Landman, Bazin, & Prince, 2009; Landman, Bazin, 
Smith, et  al., 2009; Sodickson et  al., 1999), here, noise 
variance maps were computed from independent images 
acquired with identical acquisition parameters. For the dif-
fusion MRI datasets analyzed in this study, we used multi-
ple b-value  =  0 acquisitions and calculated the signal 
variance across the repetitions, that is, σ̂prior

2 x, y, z( ) =
Si x, y, z,b = 0( ) − S x, y, z,b = 0( )( )2 r −1( )

i=1

r∑ , where r  

is the number of b-value = 0 acquisitions, Si x, y, z,0( )  is 
the signal acquired for a b-value = 0 acquisition at voxel 
position x, y, z, and S x, y, z,b = 0( ) is the averaged signal 
acquired from all b-value = 0 acquisitions at voxel position 
x, y, z,. Given the relatively high SNR of b-value = 0 images,  
this noise estimation strategy is expected to provide  
accurate noise variance estimates in tissue voxels 
(Constantinides et al., 1997; Dietrich et al., 2007; Landman, 
Bazin, & Prince, 2009; Landman, Bazin, Smith, et al., 2009; 
Sodickson et al., 1999); however, in voxels near boundar-
ies (e.g., brain tissues near regions containing cerebrospi-
nal fluid), these noise variance maps may be corrupted 
(typically overestimated) by image artifacts such as invol-
untary motion, cardiac pulsation, or image intensity drifts 
(Hansen et  al., 2019; Landman, Bazin, & Prince, 2009; 
Landman, Bazin, Smith, et al., 2009; Tournier et al., 2011; 
Vos et al., 2017). These artifacts can be mitigated in TPCA 
and GPCA denoising by taking the median of σ̂prior

2 esti-
mates from all voxels of each sliding window instance to 
achieve an “effective” noise variance estimate, assuming 
that noise is relatively uniform across each sliding window 
instance. Computing the final noise maps by the median 
of all the voxels of each sliding window instances has the 
advantage of improving the σ̂prior

2 estimation precision at 
a voxel level.

2.1.6.  Summary of the main differences between  
PCA denoising procedures

The denoising algorithms described above differ in the 
way they identify PCA components carrying (predomi-
nantly) noise and signal. The different algorithms identify 
the noise by removing the largest eigenvalues until:

	 1)	� MPPCA: λc ≥
max λc( )−min λc( )

4 γ c
;
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	 2)	� GPCA: λc ≤ σ̂prior
2;

	 3)	� TPCA: max λc( ) 1+ γ( )2 < σ̂prior
2

Note that, altogether, the performance of these three 
different algorithms relies on four quantities which can be 
related to different variance estimates: 1) σ̂mean

2 = λc 
(variance estimated from mean of eigenvalues containing 

mostly noise); 2) σ̂MP
2 =

max λc( )−min λc( )
4 γ c

 (variance 

estimates from MP bandwidth); 3) σ̂prior
2 (a-priori vari-

ance estimate), and 4) σ̂max
2 =max λc( ) 1+ γ( )2  (vari-

ance estimate from the maximum eigenvalue containing 
mostly noise). The effects of spatially correlated noise in 
these quantities are here explored using simulations  
(vide infra).

In addition to these three algorithms, we also test the 
performance of MPPCA denoising (in Supplementary 
Material) by iteratively fitting the MP distribution to the 
measured PCA eigenvalue spectrum (Ding et  al., 2010; 
Veraart, Fieremans, & Novikov, 2016)—referred to as 
MPPCA-slow due to its expected long processing times. 
Here, the MPPCA-slow algorithm is implemented accord-
ing to the details described by Veraart, Fieremans, and 
Novikov (2016)—this implementation was also made freely 
available at https://github​.com​/RafaelNH​/PCAdenoising.

2.2.  Simulations

In this study, we first show that GPCA and TPCA denois-
ing strategies are more robust to violations of MPPCA 
denoising assumptions using simulations where the 
ground-truth number of principal components is known 
a-priori. Two experiments were performed:

Experiment 1: A synthetic phantom comprising 12 × 12 
voxels. Signals in this 12 × 12 grid were generated for 110 
different synthetic diffusion-weighted signals, comprising 
20 b-value = 0 signals and 90 diffusion weighted signals 
with b-values of 1, 2, and 3 ms/μm2 shells with 30 diffu-
sion gradient directions in each shell. This phantom was 
sub-divided into 9 portions (4 ×  4 voxel regions each), 
and diffusion-weighted signals were generated using the 
Diffusion in Python (DIPY (Garyfallidis et  al., 2014; 
Henriques et al., 2021)) package according to a forward 
model containing two compartment types with different 
axially symmetric diffusion tensors with fixed axial and 
radial diffusivities (AD1 = 1.8 μm2/ms, AD2 = 1.5 μm2/ms, 
RD1 = 0 μm2/ms and RD2 = 0.5 μm2/ms). To produce a 
phantom with different signals across voxels, the relative 
volume fractions between compartment type 1 and 2 

were set to a different value at each phantom portion (0.3, 
0.35, 0.4 for the top portions, 0.6, 0.65, 0.7 for the middle 
portions, and 0.45, 0.50, and 0.55 for the bottom por-
tions). For the three top and three bottom portions, sig-
nals were generated for well-aligned replicas of 
compartment 1 and 2 (different direction for each data 
portion), while for the three middle phantom portions, 
signals were produced for two orthogonal crossing repli-
cas of each compartment type (i.e., total of four compart-
ment replicas) to consider voxels containing crossing 
compartments.

After generating diffusion-weighted signals for each 
voxel, the phantom is corrupted with synthetic Gaussian 
noise at an SNR level of 30. All voxels were denoised 
simultaneously (i.e., M = 144, N = 110 for all algorithms) 
for all denoising approaches explored in this study 
(MPPCA (Veraart, Fieremans, & Novikov, 2016; Veraart, 
Novikov, et  al., 2016), GPCA, TPCA). Since synthetic 
noise was uniform across voxels and uncorrupted by  
artifacts, the noise variance for both GPCA and TPCA 
was set to the voxel averaged σ̂prior

2  calculated as  

the variance of b-value  =  0 signals σ̂prior x, y, z( )2 =

Si x, y, x,0( ) − S x, y, z,0( )( )2 r −1( )
i=1

r∑  —here the an

gle brackets represent the average across all phantom 
voxels. To assess the robustness of the denoising 
towards biases in σ̂prior

2, GPCA and TPCA were also run 
for artificially changing σ̂prior

2 from 50% lower to 400% 
higher values than the true variance. In addition, the pro
pagation of σ̂prior

2 errors into TPCA and GPCA was asse
ssed in Supplementary Figure S1.

Experiment 2: We then assessed the situation in which 
spatially correlated noise is present. Spatially correlated 
noise (and signal) was generated by zero-filling three col-
umns of the matrices at Fourier space. After corrupting 
the numerical phantoms with spatially correlated noise, 
data were denoised using the three denoising approaches. 
As for the previous experiment, noise variance for both 
GPCA and TPCA was calculated from the average of the 
unbiased sampled variance estimation across all image 
voxels.

To assess the generalizability of our results toward a) 
different types of spatially correlated noise, b) non-central 
mean distributed correlated noise, c) larger phantom 
sizes, and d) smaller number of diffusion MRI experiments, 
additional simulations were performed for spatially cor-
related noise due to Gaussian smoothing (Supplementary 
Fig. S2), for spatially correlated Rician noise (Supplemen-
tary Fig. S3), for a synthetic phantom comprising 66 × 66 
voxels (Supplementary Fig. S4), and for a phantom with 

https://github.com/RafaelNH/PCAdenoising
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synthetic signals (generated for b-value = 2 ms/μm2) along 
30 diffusion gradient direction together with 5 b-value = 0 
signals (Supplementary Fig. S5). For 66 × 66 voxel phan-
toms, the spatially correlated noise was generated by 
zero-filling 16 columns of the matrices in Fourier space to 
maintain a similar zero-filling factor to the phantoms with 
12 × 12 voxels.

Since diffusion MRI is typically used to compute para-
metric maps of diffusion properties, we also assessed the 
impact of the different denoising strategies on standard 
Diffusional Kurtosis imaging (DKI) (Jensen et  al., 2005; 
Tabesh et al., 2011) metrics reconstructed from both raw 
and denoised signals using the DKI modules imple-
mented in the open-source package Diffusion in Python 
(DIPY) (Henriques et al., 2021).

Note that, for all simulations above, the optimal num-
ber of signal components preserved by denoising is 
known a-priori to be exactly 8 since the phantom was 
fully constructed from 9 different portions with fixed diffu-
sivities, directions, and volume fractions (one signal com-
ponent must be removed since we subtract the mean of 
X before denoising). Moreover, for these simulations, the 
denoising performance can be directly assessed by com-
paring signal maps for individual diffusion gradient direc-
tion and b-values to their corresponding ground-truth 
maps. The ground-truth signals for Experiment 1 corre-
sponded to the synthetic phantom signal before noise 
corruption, while the ground-truth signals for Experiment 
2 were computed by zero-filling columns of the original 
noise free matrices in Fourier space.

2.3.  Preclinical MRI experiments

All animal experiments were preapproved by the institu-
tional and national authorities, and carried out according 
to European Directive 2010/63. A mouse brain (C57BL/6J) 
was extracted via transcardial perfusion with 4% Parafor-
maldehyde (PFA), immersed in 4% PFA solution for 24 h, 
washed in Phosphate-Buffered Saline (PBS) solution for 
at least 24 h, and then placed on a 10 mm NMR tube 
filled with Flourinert (Sigma Aldrich, Lisbon, PT), which 
was sealed using paraffin film.

The MRI experiments were performed on a 16.4T 
Bruker Aeon Ascend scanner (Bruker, Karlsruhe, Ger-
many), interfaced with an Avance IIIHD console, and 
equipped with a gradient system capable of producing 
up to 3000 mT/m in all directions. A constant tempera-
ture of 37oC was maintained throughout the experiments 
using the probe’s variable temperature capability. Two 
distinct diffusion-weighted datasets were then acquired 

using Bruker’s standard “Diffusion Tensor Imaging EPI” 
sequence for the following diffusion-weighted para
meters: 30 gradient directions for b-values 1, 2, and 
3 ms/μm2 (Δ = 15 ms, δ = 1.5 ms), and 20 consecutive 
b-value  =  0 acquisitions. Data reconstructed from EPI 
acquisitions are expected to be corrupted by spatially 
correlated noise from multiple sources (regridding, partial 
Fourier factor, multiple shots, including k-space sam-
pling during gradient ramp, etc.). We modulated the 
amount of spatial correlations by acquiring EPI datasets 
with parameters optimized to mitigate noise spatial cor-
relations, particularly avoiding k-space undersampling 
acquisition during EPI’s gradient ramps and without 
using partial Fourier. Then, a second dataset was 
acquired with identical resolution, number of acquisi-
tions, and so on, but with large factors inducing spatial 
correlations, including k-space sampling during gradient 
ramps (default Bruker’s acquisition and reconstruction 
procedures for acquisition speed) and with a significant 
phase partial Fourier factor of 6/8 (note for partial Fourier 
acquisitions, EPI data are reconstructed with zero-
padding, according to the default reconstruction proce-
dures by Bruker’s pre-clinical reconstruction software 
Paravision 6.0.1). All other acquisition parameters were 
kept constant: TR/TE  =  3000/50  ms, 9 coronal slices, 
Field of View = 12 × 12 mm2, matrix size 80 × 80, in-plane 
voxel resolution of 150  ×  150  μm2, slice thickness 
= 0.7 mm, number of averages = 2, number of segments 
= 1, and double sampling acquisition. For a gold stan-
dard reference, the second dataset was also repeated for 
20 averages.

Spatial drifts in the image domain were first corrected 
using a sub-pixel registration technique (Guizar-Sicairos 
et  al., 2008). Due to the anisotropic voxel sizes (slice 
thickness > in-plane resolution), MPPCA, GPCA, and 
TPCA were then applied for each coronal slice sepa-
rately using a 2D sliding window with 11  ×  11 voxel 
(M = 121, N = 110). For all denoising approaches, signals 
from overlapping windows were combined using the 
overcomplete averaging procedure described in 
Katkovnik et al. (2009) and Manjón et al. (2013). Noise 
variance maps for both GPCA and TPCA were computed 
from all 20 consecutive b-value  =  0 acquisitions—final 
σ̂prior

2 values for each sliding window iteration were 
taken as the median σ̂prior

2 value across all sliding win-
dow voxels. As for the simulations, in addition to the 
assessment of the denoising performance of individual 
diffusion-weighted signals, we also computed standard 
Diffusional Kurtosis Imaging (DKI) metrics from both raw 
and denoised data.
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2.4.  MRI experiments using a clinical scanner

Experiments were approved by the Ethical Committee of 
the University of Trento, and the participant signed an 
informed consent form. MRI data were acquired for a 
healthy control (male, 54 years) using a 3T MAGNETOM 
PRISMA scanner (Siemens Healthcare, Erlangen, Ger-
many) equipped with a 64-channel head-neck RF 
receive coil. Diffusion MRI data were acquired using a 
monopolar single diffusion encoding EPI PGSE (Feinberg 
et al., 2010; Moeller et al., 2010; Xu et al., 2013) along 30 
diffusion gradient directions for 5 non-zero b-values = 1, 
2, 3, 4.5, and 6 ms/μm2 (Δ = 39.1 ms, δ = 26.3 ms) and 
17 interspersed b-value = 0 acquisitions. Other acquisi-
tion parameters were the following: TR/TE = 4000/80 ms, 
63 axial slices, Field of View = 220 × 220 mm2, matrix 
size 110 × 110, isotropic resolution of 2 mm, 6/8 phase 
partial Fourier, parallel imaging with GRAPPA 2, and 
simultaneous multi-slice factor 3. All diffusion MRI data 
were reconstructed using zero-padding, which is the 
default procedure for data acquired with partial Fourier 
above 70%.

MPPCA, GPCA, and TPCA denoising were applied 
with a 3D sliding window of 9 × 9 × 3 voxels to perform 
PCA denoising on a number of voxels (M = 242) similar to 
the number of diffusion experiments (N  =  167), while 
maintaining matrices with M  >  N to achieve higher 
denoising SNR gains. Higher sliding windows were not 
considered to minimize the effects of spatially varying 
noise level across the voxels of different sliding window 
instances (c.f. discussion in section 4.4). To minimize the 
effects of image artifacts on interspersed b-value  =  0 
acquisitions, initial σ̂prior

2 estimates for both GPCA and 
TPCA were computed from the first five b-value  =  0 
images, and final σ̂prior

2 estimates were taken as the 
median σ̂prior

2 value for each sliding window.
As for the pre-clinical data, denoising performance 

was assessed on individual diffusion-weighted signals 
and on diffusion parametric maps. Since DKI fails to rep-
resent the diffusion signal decays at high b-values 
(Chuhutin et al., 2017; Jensen & Helpern, 2010), its maps 
are reconstructed from the raw/denoised signal for 
b-value ≤3 ms/μm2. Additionally, to inspect the preserva-
tion of the diffusion MRI angular information at high 
b-value data, the data for b-values = 4.5 and 6 ms/μm2 
and respective interspersed b-value  =  0 acquisitions 
were subsampled and used to reconstruct Q-ball diffu-
sion orientation distribution functions (dODFs) using the 
constant solid angle procedure (Aganj et al., 2010) also 
implemented in DIPY.

3.  RESULTS

3.1.  Numerical simulations

3.1.1.  Scenario A: Spatially uncorrelated noise

To provide ground truth and validate that all methods 
perform similarly under ideal conditions, simulations for 
a phantom with spatially uncorrelated noise are shown in 
Figure 1. Ground truth, raw noisy, and denoised diffusion-
weighted signals for the first diffusion gradient direction 
of the highest diffusion gradient magnitude simulated 
(b = 3 ms/μm2) are shown in upper panels (Fig. 1A-E). In 
Figure 1F (and Fig.  1G for zoomed plotted), the quan

tities λc, σ̂MP
2
, σ̂prior

2, and σ̂max
2 =max λc( ) 1+ ϑ( )2 

evaluated by the denoising algorithms to classify PCA 
eigenvalues are plotted. In Figure 1E and Figure 1G, the 
number of noise components classified by the denoising 
algorithms are marked by the vertical lines (cyan, green, 
and orange vertical lines for MPPCA, GPCA, and TPCA, 
respectively). All algorithms successfully classified the 
102 components containing mostly noise and the 8 sig-
nal components when noise was spatially uncorrelated 
as evident by the coincidence of the vertical lines (c.f. 
black arrows in Fig.  1A3). Figure 1H shows the eigen-
value spectrum reconstructed by repeating the simula-
tions 1000 times and the theoretical MP distribution  
with equal eigenvalue variance (plotted in log scale for 
better visalization of the lower probabilities for higher 
eigenvalues). As expected, the reconstructed spectrum 
matches the theoretical MP distribution when noise is 
spatially uncorrelated. For all PCA denoising algorithms, 
the threshold median across the 1000 simulation repeti-
tions approaches the distribution upper bound (vertical 
lines in Fig. 1H). Since all algorithms classified identical 
number of signal components, their performances are 
qualitatively indistinguishable from each other (c.f. 
Fig. 1A-E). To test how these methods perform in case of 
σ̂prior  overestimation, the number of components class
ified as mostly containing noise are plotted in Figure 1I 
for different σ̂prior underestimation and overestimation 
factors. TPCA is more robust to σ̂prior misestimation  
than GPCA.

3.1.2.  Scenario B: Spatially correlated noise

Next, we investigate the phantom with spatial correla-
tions (Fig. 2) by zero-filling 1/4 data columns in Fourier 
space, which interpolates the data in image domain and 
creates strong spatial correlations. Equivalent results 
with another means of creating spatial correlations are 
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shown in Supplementary Figure S2, and Supplementary 
Figure S3, where correlated noise is generated by Gauss-
ian smoothing and zero-filling correlated Rician noise, 
respectively. Ground truth, raw noisy, and denoised 
diffusion-weighted signals for a selected diffusion gradi-

ent direction of the highest diffusion gradient magnitude 
simulated (b = 3 ms/μm2) are presented in Figure 2A-E. 
The MPPCA denoising classification criterion λc ≥ σ̂MP

2( )  
identified only a small number of PCA eigenvalues as 
mostly carrying noise (solid cyan line in Fig. 2F). That is, 

Fig. 1.  Simulations of denoising performance in a phantom with uncorrelated noise. Representative ground truth, 
noise free (A), and noise corrupted signals (B), for the first diffusion gradient direction of the highest diffusion gradient 
intensity are shown in panels respectively, while denoised signals for the MPPCA (C), GPCA (D), and TPCA (E) denoising 
algorithms. (F) Parameters assessed by the denoising algorithms plotted as a function of the number of lower eigenvalues 
potentially considered as noise. Thresholds for the MPPCA, GPCA, and TPCA are plotted by the cyan solid, green dashed, 
and orange vertical lines respectively (black arrow points to the ground-truth number of signal components, i.e., 102). 
(G) Zoomed plot of the parameters assessed by the denoising algorithms. (H) Reconstructed eigenvalue spectrum for 
1000 trials and respective theoretical MP distribution for identical eigenvalue variances are shown in panel—the median 
thresholds for the MPPCA, GPCA, and TPCA computed as the threshold median across the 1000 repetitions are plotted 
by the cyan solid, green dashed, and orange vertical lines respectively. (I) The number of classified noise components for 
both GPCA and TPCA as a function of the percentage overestimation of noise standard deviation. All algorithms produced 
identical denoising performances when noise is spatially uncorrelated.
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the classification procedure underestimated the number 
of noise components, thereby negatively impacting 
denoising performance.

In contrast to the MPPCA, GPCA denoising correctly 
classified all 102 components containing mostly noise 

and 8 signal components (dashed orange line in Fig. 2F 
and Fig.  2G) based on the criterion λc ≤ σ̂prior

2. TPCA 
misclassified 2 ground-truth noise components as being 
significant signal components (σ̂max

2 =< σ̂prior
2, dashed 

green line in Fig.  2F and Fig.  2G), but still exhibited  

Fig. 2.  Simulations of denoising performance in a phantom with correlated noise. Correlations were induced by zero 
filling in k-space. Representative ground-truth noise free (A) and noise corrupted (B) signals for the first diffusion gradient 
direction of the highest diffusion gradient intensity alongside denoised signals for the MPPCA (C), GPCA (D), and TPCA 
(E). (F) Parameters assessed by the denoising algorithms are plotted as a function of the number of lower eigenvalues 
potentially considered as noise. Thresholds for the MPPCA, GPCA, and TPCA are plotted by the cyan solid, green dashed, 
and orange vertical lines respectively (black arrow points to the ground-truth number of signal components, i.e., 102). 
(G) Zoomed plot of the parameters assessed by the denoising algorithms. (H) Reconstructed eigenvalue spectrum for 
1000 instantiations and respective theoretical MP distribution for identical eigenvalue variances. The median thresholds 
for the MPPCA, GPCA, and TPCA computed as the threshold median across the 1000 repetitions are plotted by the cyan 
solid, green dashed, and orange vertical lines respectively. (I) The number of classified noise components for both GPCA 
and TPCA as a function of the percentage overestimation of noise standard deviation. Thus, GPCA and TPCA denoising 
algorithms outperform MPPCA denoising when noise is spatially correlated.
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good denoising performance without removing signal 
components.

Figure 2H shows that the bandwidth of the eigenvalue 
spectrum for eigenvalues of spatially correlated noise is 
increased relative to the theoretical MP distribution with 
equal eigenvalue variance. Qualitatively, while the 
denoised signals from the MPPCA (Fig. 2C) were nearly 
identical to the raw non-denoised signals (Fig. 2B), the 
denoised signals from GPCA (Fig. 2D) and TPCA (Fig. 2E) 
corresponded much better to their respective ground 
truth maps (Fig. 2A). As for the previous scenario, TPCA 
is more robust to σ̂prior  misestimation than GPCA, even 
for spatially correlated noise (Fig. 2I). The performance of 
GPCA and TPCA was shown to be stable even for larger 
phantom with spatially correlated noise (Supplementary 
Fig. S4) and for phantoms with smaller number of diffu-
sion MRI experiments (Supplementary Fig. S5).

3.1.3.  Diffusion parametric maps

Next, we assess the impact of different denoising strate-
gies on extracted DKI parameters. For the sake of sim-
plicity, only the results for FA and MK estimates extracted 
from the phantoms corrupted by spatially correlated 
noise are presented in Figure 3A-B. As for the synthetic 
diffusion-weighted signal, FA and MK maps from the 
denoised data for both GPCA and TPCA (Fig. 3A4-5 and 
Fig.  3B4-5) show a better resemblance to the ground-
truth maps (Fig. 3A1 and Fig. 3B1) than the FA and MK 
maps obtained from the raw and MPPCA denoised data 
(Fig. 3A2-3 and Fig. 3B2-3). For a quantitative character-
ization of denoising performance of DKI estimates, simu-
lations were repeated over 100 noise instances, and 
histograms of errors were computed by subtracting FA 
and MK estimates from their ground-truth values 
(Fig. 3A6-9 and Fig. 3A6-9). As expected, smaller error 
amplitudes are seen for FA and MK estimates with the 
GPCA and TPCA denoised data.

The above analysis was repeated for FA and MK esti-
mates extracted from GPCA and TPCA denoised data 

when σ̂prior is overestimated by 200% of its original val-
ues (Fig. 3C-D). Maps obtained for GPCA denoised data 
show voxels with biased FA and MK (red arrows in 
Fig. 3C1 and Fig. 3D1). This observation is confirmed by 
the larger residual histogram widths in Figure  3C3 and 
Figure 3D3. As for Figure 1 and Figure 2, TPCA is seen to 
be robust to σ̂prior  overestimations (Fig. 3C2, Fig. 3C4, 
Fig.  3D2, and Fig.  3D4). Root-mean-squared errors for 
FA/MK and other DKI estimates are reported in Supple-
mentary Table S1. Angular errors of compartment direc-
tion estimates extracted from Q-ball orientation 
distribution function reconstructions using the highest 
b-value signals (together with b-value = 0 signal repeti-
tions) are shown in Supplementary Figure S6. As for the 
FA and MK quantities, smaller angular errors are observed 
for data denoised by GPCA and TPCA when the noise 
variance is accurately estimated; however, larger angular 
errors are present for data denoised by GPCA when the 
noise variance is overestimated.

3.2.  Preclinical MRI experiments

3.2.1.  Data acquired with small spatial correlations

Results for the diffusion-weighted data acquired with 
parameters adjusted to minimize noise spatial correla-
tions are presented in Figure 4A. From left to right, the 
upper panel (Fig. 4A1) shows a raw representative image 
acquired with a b-value of 3  ms/µm2, the initial noise 
standard deviation (σ̂prior) map before performing the 
median filtering across the voxels of the PCA denoising 
sliding windows, and the final noise standard deviation 
(σ̂prior ) map after selecting the median value of each slid-
ing window, which was used in the subsequent denoising 
procedures. The initial noise standard deviation map 
(middle image of Fig. 4A1) was spatially uniform across 
the brain, except for higher values near brain edges likely 
due to small image intensity drifts and residual spatial 
drifts (yellow arrows in Fig. 4A1). These higher noise vari-
ance values were successfully attenuated after selecting 

Fig. 3.  Simulated denoising performance in FA and MK estimates. In panels (A) and (B), upper panels show the maps 
computed from ground truth (A1, B1), noise corrupted (A2, B2), MPPCA denoised (A3, B3), GPCA denoised (A4, B4), and 
TPCA denoised (A5, B5) signals, while lower panels show the FA/MK residual histograms computed by repeating 100 
noise instances (corresponding to a total of 14400 = 144 voxels per phantom × 100 noisy phantom instances) for raw and 
all denoising strategies. In panels (C) and (D), upper panels show the maps computed from GPCA (C1, D1) and TPCA (C2, 
D2) denoised signals and respective residuals histograms (C3, D3, C4, D4) when overestimated noise variance (200% of 
its original value) is used. Red arrow in panels (C1, D1) indicates regions with biased FA/MK estimates. This figure shows 
that GPCA provides optimal denoising performance in this case where the noise variance is accurately estimated, while 
TPCA provides the optimal performance in this case where the noise variance is overestimated.
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the median values across sliding windows (right image of 
Fig. 4A1).

The lower panel (Fig. 4A2) shows the corresponding 
denoised diffusion-weighted image, the denoising resid-
uals computed as the subtraction between the denoised 
and raw representative image, and the number of classi-
fied signal components for all three denoising algorithms 
tested—MPPCA, GPCA, and TPCA from top to bottom. 
For this dataset with a few spatial correlations, all denois-
ing algorithms performed similarly. For instance, all strat-
egies uniformly classified around 10 PCA signal 
components across the brain (Fig.  4A2 and Fig.  4A3), 
except in regions near the brain ventricles and boundar-
ies in which the MPPCA classified a larger number of sig-
nal components (Fig.  4A2). Still, the residual maps are 
clearly similar and show no structure (Fig. 4A2).

3.2.2.  Dataset acquired with large noise correlations

Figure 4B shows the results for diffusion-weighted data 
acquired with factors inducing significant spatial correla-
tions, including partial Fourier and signal acquisition 
during EPI’s gradient ramp (no ramp compensation). 
These are much more commonly used settings than 
those shown in Figure  4A. Representative images are 
shown in Figure 4B1 left, while noise standard deviation 
maps (σ̂prior) before and after selecting the median values 
across the voxels of PCA denoising sliding windows are 
shown in the middle and right images of Figure 4B1.

In this type of data with spatial noise correlations, the 
MPPCA denoising failed: residuals are close to zero 
across all brain voxels and more than 40 components 
were classified as significant signal components (upper 
middle and right images of Fig. 4B2 and Fig. 4B3). We 
then tested whether GPCA and TPCA could outperform 
the MPPCA. Indeed, a uniform denoising performance 
across the brain and background regions was clearly 
observed for these two algorithms (lower rows of panels 
in Fig. 4B2). As the previous dataset in Figure 4A, GPCA 
and TPCA preserve around 10 PCA components across 
the brain (Fig. 4B2 right panels and Fig. 4B3).

3.2.3.  DKI parametric maps

Figure 5 shows the parametric maps for four DKI maps 
computed from the data acquired with factors inducing 
significant spatial correlations (DKI maps for the dataset 
acquired with less spatial correlations are presented in 
Supplementary Fig. S7). Fractional Anisotropy (FA) results 
are shown for an entire representative data slice (panel A) 

and for the zoomed area marked by the red box (panel B), 
while maps for Mean Kurtosis (MK), Radial Kurtosis (RK), 
and Axial Kurtosis (AK) are only shown for the zoomed 
area for the sake of simplicity (panels C-E). For the left 
panels, DKI maps were separately computed from the 
raw data, data denoised by MPPCA, GPCA, TPCA, and 
the raw data acquired for 10 times more averages (gold 
standard reference). The right panels on the right of Fig-
ure  5 show the difference between maps from raw/
denoised data and their respective gold standard refer-
ences. Since MPPCA failed to effectively suppress noise 
for this dataset (c.f. Fig. 4B), DKI maps appear very simi-
lar between the non-denoised and MPPCA denoised 
data. By contrast, DKI maps computed from data 
denoised by the GPCA and TPCA algorithms evidence 
better maps, decreases in spurious fluctuations (orange 
arrows in Fig. 5B-E), and preservation of contrast between 
white and gray matter tissues (cyan arrows in Fig. 5B-E). 
Better performance of GPCA and TPCA is also supported 
by the lower differences observed between their respec-
tive DKI maps and gold standard results. Qualitatively, 
GPCA and TPCA evidenced very similar denoising per-
formances.

To better quantify these effects, QQ-plots (Wilk & 
Gnanadesikan, 1968) of the denoising diffusion-weighted 
residuals for the selected zoomed region of interest are 
shown in Figure 5F. For both GPCA and TPCA, the sam-
pled residual quantiles closely matched the theoretical 
quantiles of a Gaussian distribution, as evident from the 
linear nature of the plot. By contrast, substantial devia-
tions between MPPCA sampled residual quantile and the 
theoretical Gaussian distribution reference reflect the 
poor denoising performance of MPPCA for the pre-
clinical dataset acquired with no concerns on spatially 
correlated noise.

3.3.  MRI experiments using a clinical scanner

3.3.1.  Diffusion-weighted images

Figure 6 shows results from a healthy volunteer. Figure 6A 
shows the mean signal of the 5 repeating b = 0 acquisi-
tions (Fig.  6A1), the initial σ̂prior  map computed from 
these b = 0 acquisitions (Fig. 6A2), and the final “effective 
σ̂prior” map after selecting the median values from PCA 
denoising sliding windows (Fig. 6A3). Higher initial σ̂prior 
estimates are observed in regions near the ventricles and 
cortical boundaries (e.g., orange arrows in Fig.  6A2), 
likely an effect of signal fluctuations in these regions due 
to pulsation artifacts (Tournier et al., 2011). These higher 
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Fig. 4.  Denoising performance in preclinical datasets. (A) Uncorrelated noise scenario and (B) acquisition with much 
higher noise correlations. From left to right, the upper panels (A1/B1) show a representative diffusion MRI slice for a 
selected gradient direction acquired with b-value = 3 ms/µm2, the initial noise standard deviation (STD) maps computed as 
the standard deviation of the signals across the data for different b-value = 0 acquisitions, and finally the noise STD maps 
computed after selecting the median values across the voxels of the PCA sliding windows (yellow arrows point regions of 
high STD noise estimates). From left to right, the lower panels (A2/B2) show the denoised data for the selected diffusion 
MRI image, the denoising residuals computed as the difference between denoised and raw data, and the number of PCA 
signal components preserved by each denoising algorithm (upper to lower panels shows the results for MPPCA, GPCA, 
and TPCA respectively). (A3/B3) shows the relative frequencies of the number of PCA signal components preserved by 
each denoising algorithm across all brain voxels. The map intensities for raw and denoised data as well as noise STD 
estimates and denoising residuals are displayed in reference to the mean b = 0 signals across all brain voxels (a value of 
100% corresponds to values equal to that reference value). All denoising algorithms have similar performances on data 
with minimal spatially correlated noise (A); however, MPPCA fails to denoise data highly corrupted by spatially correlated 
noise while both GPCA and TPCA maintain their performance (B).
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noise variance estimates are suppressed but not com-
pletely removed upon median filtered σ̂prior maps (e.g., 
orange arrows in Fig. 6A3).

Representative images of the raw and denoised 
diffusion-weighted data for the 4 higher non-zero b- 
values (b-value = 2, 3, 4.5, and 6 ms/µm2) are shown in 
Figure 6B. The number of preserved signal component 
maps for all three denoising procedures is shown in  

Figure 6C, while histograms are shown in Figure 6D. For 
this dataset, GPCA and TPCA improved denoising per-
formance over MPPCA (Fig. 6B3/Fig. 6B4 vs. Fig. 6B2). 
Specifically, while MPPCA classified over 30 of the 167 
PCA components as significant signal components 
(Fig. 6C1 and Fig. 6D), GPCA and TPCA classified less 
than 20 signal components across all brain regions 
(Fig. 6C2 and Fig. 6C3). TPCA tended to classify slightly 

Fig. 5.  DKI maps for the pre-clinical dataset highly corrupted by spatially correlated noise and QQ-plots of the diffusion-
weighted signal denoising residuals: (A) Fractional Anisotropy for an entire representative axial slice; (B) Fractional 
Anisotropy for the zoomed area marked by the red box; (C) Mean Kurtosis for the zoomed area; (D) Radial Kurtosis for 
the zoomed area; (E) Axial Kurtosis for the zoomed area; and (F) QQ-plots of the denoising residuals. Left panels show 
the DKI maps computed from the raw data, data denoised by MPPCA, GPCA, TPCA, and the raw data acquired for 10 
times more averages (gold standard reference), while right panels show the difference between maps from raw/denoised 
data and their respective gold standard references. Orange arrows point to areas where noise estimate fluctuations are 
visually reduced, while blue arrows point to boundary areas between gray and white matter. QQ-plots of the denoising 
residuals for the selected zoomed region are show panel (F). Note that, even when noise is highly spatially correlated, 
reconstruction DKI is improved on data denoised by the GPCA and TPCA procedures.
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more signal components than GPCA (Fig.  6C2-3 and 
Fig.  6D). Denoising residuals for each procedure are 
shown in Supplementary Fig. S8. GPCA produced higher 
amplitude residuals. Qualitatively, no structural informa-
tion is observed in these residual maps.

3.3.2.  Diffusion parametric maps

Figure 7 shows sample DKI parametric maps computed 
from raw and denoised human brain data. As for the pre-
clinical data presented above, better noise suppression 
was observed in diffusional kurtosis quantities (i.e., MK, 
RK, AK) for data denoised by GPCA and TPCA proce-
dures compared with the MPPCA counterpart. Note, for 
example, the reduction of implausible negative kurtosis 
values in MK and RK maps for GPCA and TPCA denoised 
data (e.g., cyan arrows in the left panels of Fig. 7C and 
Fig.  7D). After a closer inspection of DKI estimates in 
regions near brain edges (regions of interest marked by 
the yellow boxes), decreases in FA, MK, RK, and AK were 
observed for the data denoised by the GPCA denoising 
strategy (red arrows in the right panels of Fig. 7B-E), sug-
gesting that some true signal was also removed. For both 
MPPCA and GPCA denoising, QQ-plots of the denoising 
residuals of all diffusion-weighted signals in this region of 
interest show substantial deviations between the sampled 
residual quantiles and the theoretical Gaussian distribu-
tion reference (Fig. 7F). While sampled residual quantile 
deviations for MPPCA reflect poor removal of compo-
nents mostly containing noise, deviations for GPCA indi-
cate loss of signal information in the selected region of 
interest. The closer match between sampled residual 
quantiles and the theoretical Gaussian quantiles for TPCA 
suggests that this algorithm provides a better compro-
mise between noise suppression and signal preservation.

To further examine the potential utility of these 
denoising schemes, general fractional anisotropies 

(GFA) maps and diffusion orientation distribution func-
tions (ODF) are separately computed for the two higher 
b-values of the from raw and denoised human brain 
data using constant solid angle Q-ball reconstruction 
(Fig. 8). Consistent with the DKI results presented above, 
MPPCA denoised the data quite poorly, while GPCA and 
TPCA removed noise efficiently, but with GPCA appar-
ently removing some signal components (c.f. regions 
marked by the orange boxes in the upper panels of 
Fig. 8A-B).

To visualize ODF reconstruction differences, the ODFs 
reconstructed from different version of raw and denoised 
data are displayed for the two regions of interest and are 
manually defined in upper panels of Figure  8A-B: 1) a 
region comprising voxels of lateral corpus callosum fiber 
projections where the previous FA, MK, AK, and aK for 
GPCA denoised data showed decreased values (ROI 1): 
and 2) a region comprising voxels where white matter 
fibers are expected to cross (ROI 2). The ODFs recon-
structed from the raw and MPPCA denoised data show 
implausible multiple lobes for both ROIs (two last rows of 
images in Fig.  8A-B). Consequently, these reconstruc-
tions poorly characterized the differences expected 
between ODFs in the lateral single fiber corpus callosum 
projections (ROI1) and in the crossing fiber region (ROI2). 
The ODF reconstructed from the GPCA and TPCA 
denoised data shows the expected single and multiple 
lobes for ROI 1 and ROI 2 respectively; ODFs recon-
structed from TPCA show, however, shaper profiles, 
indicating that this denoising procedure better conserves 
diffusion angular information. GPCA and TPCA exhibited 
higher reproducibility of ODF profiles across the data 
from the two independent b-values 4.5 and 6 ms/μm2. 
Note that ODF profiles between b-values 4.5 and 
6  ms/μm2 data are only consistent when denoised by 
GPCA and TPCA algorithms (Fig. 8A vs. Fig. 8B), but not 
with MPPCA.

Fig. 6.  Denoising performance in diffusion-weighted data acquired using a clinical scanner. (A) Images related to the 
noise prior estimation: (A1) representative slice of the averaged signals of the five first b-value = 0 acquisitions; (A2) initial 
noise standard deviation (STD) maps computed as the standard deviation of the 5 first b-value = 0 acquisitions; and (A3) 
the final noise STD maps computed after selecting the median values across the voxels of the PCA sliding windows—
orange arrows point regions of high STD noise estimates. (B) Representative slice of the diffusion-weighted data for a 
gradient direction near v = [1, 0. 0] and for b-value = 2, 3, 4.5, and 6 ms/µm2 (from left to right) before denoising (B1) and 
after denoising using the MPPCA (B2), GPCA (B3), and TPCA (B4) procedures. (C) Number of PCA signal components 
preserved by the four denoising algorithms: MPPCA (C1); GPCA (C2); and TPCA (C3). (D) Relative frequencies of the 
number of PCA signal components preserved by the four denoising algorithms. The map intensities for raw and denoised 
data as well as noise STD estimates and denoising residuals are displayed in reference to the mean b-value = 0 signals 
across all brain voxels (a value of 100% corresponds to values equal to that reference value). GPCA and TPCA have 
superior denoising performance over MPPCA in a typical high b-value diffusion-weighted dataset.
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4.  DISCUSSION

Denoising has become a critical component of data anal-

ysis in quantitative neuroimaging (Ades-Aron et al., 2018; 

Adhikari et al., 2019; Diao et al., 2021; K. Kay, 2022; K. N. 

Kay et al., 2013; Tax et al., 2022). The existing approaches 

vary from subjective (PCA thresholding) (Manjón et  al., 

2013, 2015) to more objective (MPPCA) approaches 

(Ding et al., 2010; Veraart, Fieremans, & Novikov, 2016; 

Veraart, Novikov, et al., 2016). The objectivity of the latter 

approach is a great advantage, ensuring that only noise 
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Fig. 7.  DKI maps for the diffusion-weighted human data computed for all data with b-value ≤3 ms/µm2 and QQ-plots of 
the diffusion-weighted signal denoising residuals. (A) Fractional Anisotropy for an entire representative slice; (B) Zoomed 
Fractional Anisotropy maps; (C) Zoomed Mean Kurtosis maps; (D) Zoomed Radial Kurtosis maps; (E) Zoomed Axial 
Kurtosis maps; and (F) QQ-plots of the denoising residuals in the selected yellow region of interest. In the left of panels 
(B-E), maps extracted from raw, MPPCA, GPCA, and TPA are displayed for the zoomed area marked by the red box in 
panel (A). Likewise, in the right of panels (B-E), maps extracted from GPCA and TPA are displayed for the zoomed area 
marked by the yellow boxes in left images of panels (B-E). GPCA and TPCA enhance the quality of DKI reconstruction 
for the human data (e.g., regions pointed by the cyan arrows in panels B, C, D, and E). However, while GPCA induces 
decreased FA, MK, RK, and AK estimates for regions near brain edges, TPCA provides an optimal compromise between 
noise suppression and signal preservation at these problematic regions.
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is removed while signal components are untouched, 
thereby leading to data that are denoised but not 
smoothed or otherwise corrupted. The existing recom-
mendations for the application of MPPCA denoising 
already acknowledge the issue of spatial correlations and 
suggest applying the denoising routing at the earliest 
step of signal reconstruction and processing (Ades-Aron 
et  al., 2020; Does et  al., 2019; Fernandes et  al., 2022; 

Moeller et  al., 2021; Mosso et  al., 2022; Olesen et  al., 
2023; Simões et al., 2022; Veraart, Novikov, et al., 2016; 
Vizioli et al., 2021). However, in practice, this is seldom 
possible, whether due to the vendor’s data output format 
(e.g., coil-combined magnitude images) and/or due to 
the relative difficulty in executing a complex image recon-
struction pipeline for many users. As shown explicitly in 
this study, correlations can exist in reconstructed 
datasets—whether due to commonly used partial Fourier 
encoding, interpolation, or gridding of data sampled in a 
non-cartesian way—and, as shown here (and anticipated 
in previous work), they can significantly degrade the per-
formance of the MPPCA algorithm. Hence, in this study, 
we sought to develop and explore PCA denoising 
approaches that increase the robustness of the classifi-
cation of components containing mostly noise or signal 
to the effects of spatially correlated noise. Using an addi-
tional explicit measurement of the noise variance (i.e., 
GPCA and TPCA denoising), our results suggest that the 
deleterious effects of spatial correlations can be miti-
gated significantly.

4.1.  Improved GPCA and TPCA performance over MPPCA

As expected, when spatial correlations are negligible, the 
novel denoising procedures described here have identi-
cal performance to MPPCA denoising (e.g., Fig. 1). How-
ever, when spatial correlations are introduced, our 
simulations and experiments clearly showed that GPCA 
and TPCA outperform MPPCA (Fig. 2 and Fig. 3A-B). The 
reason for the compromised MPPCA performance is that 
σ̂MP

2 is overestimated (Fig.  2F-G) as an effect of the 
increased eigenvalue spectral width in the presence of 
spatially correlated noise (Fig. 2H); consequently, the cri-
terion for MPPCA component classification λc ≥ σ̂MP

2 is 
met only when just a few components are considered as 
noise carrying (cyan solid vertical line in Fig. 2F-G). GPCA 
on the other hand, since λc is unaffected by spatial cor-
relations (c.f. derivations in Supplementary Material 
Appendix A, which show that λc  is an unbiased estimator 
of the noise variance for arbitrary uncorrelated/correlated 
noise eigenvalue spectrum distribution), λc ≤ σ̂prior

2  
is met as long as σ̂prior

2 is accurately estimated (green 
dashed vertical line in Fig.  2F-G). For TPCA, 

σ̂max
2 =max λc( ) 1+ γ( )2  is increased by spatially cor-

related noise but since the procedure compares σ̂max
2 to 

σ̂prior
2, the criterion σ̂max

2 < σ̂prior
2 is satisfied when only 

a few components carrying mostly noise are misclassi-
fied (orange dashed vertical line in Fig. 2F-G), and thus 
still providing good denoising performance (Fig. 2E).

Fig. 8.  Q-ball GFA maps and ODF reconstruction for the 
human diffusion-weighted data independently computed 
for the two higher b-values: (A) b-value = 4.5 ms/µm2; and 
(B) b-value = 6 ms/µm2. For the raw and denoised data 
(different image columns), each panel shows the GFA maps 
for the analogous zoomed region manually defined by the 
red box in Figure 7A (upper row of images), and the ODFs 
reconstructed from zoomed orange and cyan regions 
defined the GFA maps (middle and lower rows of images). 
GPCA and TPCA reduce implausible lobes in Q-ball ODF 
reconstructions. ODF reconstructions from TPCA, however, 
produce sharper profiles in regions near brain edges (ROI 1).
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The limitations of the MPPCA denoising are very 
clearly noticeable in the pre-clinical data (Fig.  4B and 
Fig.  5), where the introduction of spatially correlated 
noise is coupled to an accurate estimation of the noise 
variance. Therefore, both GPCA and TPCA successfully 
overcome the MPPCA limitations. In the human data, 
MPPCA also performs sub-optimally (Fig.  6) as high-
lighted by the larger number of PCA components pre-
served (Fig. 6C1 and Fig. 6D) and by deviations between 
sampled residual quantiles and the theoretical Gaussian 
quantiles (Fig.  7F). However, since here the noise vari-
ance is more difficult to estimate, TPCA provides a better 
compromise between noise removal and signal preserva-
tion. The better performance of GPCA/TPCA denoising 
over MPPCA was observed directly in diffusion-weighted 
images (Fig. 4 and Fig. 6), in parametric DKI maps (Fig. 5 
and Fig. 7), and in enhanced quantification of high angu-
lar information from the high b-value dMRI data (Fig. 8).

Although for our main analysis, MPPCA denoising was 
implemented based on the moment-matching algorithm 
proposed by Veraart, Novikov, et  al. (2016), in Supple-
mentary Figure S9 we show that MPPCA denoising by 
directly fitting the MP distribution to the PCA eigenvalue 
spectrum (MPPCA-slow, Veraart, Fieremans, & Novikov, 
2016) also classifies only a few components as mostly 
carrying noise when noise is spatially correlated. For this 
alternative MPPCA denoising algorithm, we notice that 
only a few noise components are classified due to the 
discrepancies between the measured eigenvalue spec-
trum shape and the expected ground-truth MP distribu-
tion (c.f. Supplementary Fig. S9, panels B4-5). Therefore, 
we show that the MPPCA limitations pointed here are 
general for both MPPCA moment-matching (Veraart, 
Novikov, et  al., 2016) and MPPCA-slow algorithms 
(Veraart, Fieremans, & Novikov, 2016).

Taken together, these results illustrate the general 
benefits of GPCA and TPCA in suppressing noise for 
advanced diffusion MRI techniques. We expect that 
these findings can be generalized to other advanced 
dMRI signal representations, microstructural models, 
ODF, and tractography reconstructions.

4.2.  Comparison between GPCA and TPCA denoising

Theoretically, GPCA provides a more general eigenvalue 
classification criteria than MPPCA and TPCA, since λc is 
still a good proxy to the noise variance when compo-
nents containing mostly noise are properly classified 
regardless of the specific assumption of the MP distribu-
tions (c.f. Supplementary Material Appendix A and Fig. 2), 

and thus, one may expect that GPCA would always pro-
duce more robust results. This clearly depends strongly 
on the quality of estimating σ̂prior . Indeed, when σ̂prior  
estimates are unbiased, our simulations show that GPCA 
is the only technique that exactly classifies the correct 
number of signal and noise components (Fig.  2 and 
Fig. 3A-B).

However, our work also demonstrates that the perfor-
mance of GPCA is more sensitive to σ̂prior  overestima-
tions than the TPCA approach (Fig. 1I, Fig. 2I, Fig. 3C-D 
and Supplementary Fig. S6B). This can be explained by 
the different degrees that the inclusion of eigenvalues 
related to relevant signal contribution affects the different 
quantities used by GPCA and TPCA. Larger σ̂prior  overes-
timations are better tolerated by the TPCA classification 
criterion ( σ̂max

2 < σ̂prior
2) than by the effect GPCA classi-

fication criterium (λc > σ̂prior
2)—note that a larger bias in 

σ̂max
2 (used by TPCA) than in λc (used by GPCA) is pres-

ent when signal components are included (c.f. Figs. 1F-G 
and Figs. 2F-G).

Consequently, TPCA will be more robust to σ̂prior
2 mis-

estimation. This observation is relevant for real-life exper-
iments (especially for in vivo acquisitions in clinical 
scanners), since σ̂prior estimation is more likely to be 
compromised by image artifacts. For instance, in our 
human diffusion MRI data, (Fig.  6A) σ̂prior  is very likely 
overestimated, and thus, when GPCA is used, it clearly 
removes true signal components as indicated by the 
smaller number of signal components near the regions 
with higher σ̂prior  estimates (Fig.  6C3). In the diffusion 
parametric maps, the removal of true signal components 
was associated with the corruption of diffusion anisot-
ropy as revealed in both DKI FA maps (Fig. 7) and Q-ball 
GFA maps (Fig. 8), which is in line with the predictions 
from simulations (Fig.  3C-D). Simulations also revealed 
that fiber direction estimates may be compromised when 
overestimated σ̂prior is used (Supplementary Fig.  S6B). 
Hence, GPCA should be used mainly when σ̂prior is 
robustly estimated—for example, in ex-vivo data where 
no motion/flow effects exist and where then repetitions 
can be used more robustly to determine the variance.

It is worth noting that the loss of signal due to GPCA 
denoising can be challenging to observe qualitatively 
through residual maps (Supplementary Fig.  S8), which 
are commonly used for evaluating denoising performance 
in diffusion MRI. Our results emphasize the need for alter-
native methods of analysis, such as assessing the impact 
on diffusion parametric maps that capture non-Gaussian 
and anisotropic diffusion effects or using residual normal-
ity tests to assess denoising performance.
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4.3.  Relevance to other recent PCA denoising advances

To improve the robustness of MPPCA denoising in non-
central distributed, spatially varying, and correlated noise, 
recent studies proposed the use of complex MRI data in 
which noise can be approximately characterized by a 
Gaussian distribution (Cordero-Grande et  al., 2019; 
Moeller et al., 2021; Vizioli et al., 2021). Using the informa-
tion in complex data, these procedures also apply addi-
tional pre-processing steps to minimize noise correlations 
from parallel imaging reconstructions and to uniformize 
the spatial noise variation. In the present study, these 
additional pre-processing steps prior data denoising were 
not considered since we were interested in exploring strate-
gies applicable to typical magnitude reconstructed data.  
Therefore, we focused on the effects of spatially correlated 
noise and explored how different PCA threshold criteria for 
signal and noise component classification can still provide 
robust denoising performance of magnitude reconstructed 
MRI data. For this, the need for correcting spatially varying 
noise in GPCA and TPCA is bypassed by using local noise 
level estimation, while correction of non-central distrib-
uted noise of magnitude data is ignored assuming that 
SNR is sufficiently high in most imaging voxels (more 
details on this are discussed below, see section 4.4).

It is important to note that, in addition to the current 
study, alternative PCA threshold criteria for signal and 
noise component classification were also considered by 
the Noise Reduction with Distribution Corrected (NOR-
DIC) PCA method (Moeller et al., 2021; Vizioli et al., 2021), 
in which an upper bound for thresholding components 
containing mostly noise is computed with Monte-Carlo 
simulations of complex noisy matrices with a prior vari-
ance estimate. As mentioned in section  2.1.4, this 
approach is very similar to TPCA which also uses noise 
variance estimates to compute the noise eigenvalue 
upper band. TPCA uses, however, the analytical solution 
provided by the MP distribution (Eq. 9) instead of resort-
ing to Monte-Carlo simulations. Although TPCA avoids 
stochastic errors from Monte-Carlo simulations, due to 
their similar nature, the assessment of TPCA in this study 
is also representative of the NORDIC technique when 
excluding the spatial noise variation homogenization 
steps for compatibility to process magnitude data.

4.4.  Limitations and future work

To illustrate the poor performance of MPPCA on data 
with high spatially correlated noise, we only used partial 
Fourier data reconstructed using zero-filling. However, it 

is important to note that the use of more advanced pro-
cedures to reconstruct partial Fourier data may mitigate 
the effects of spatially correlated noise. In this study, 
more advanced data reconstruction procedures are not 
considered since our aim was to test PCA denoising 
strategies in data exhibiting highly correlated noise and 
since zero-filling data reconstruction is still nowadays a 
common approach adopted in the reconstruction pro-
cedures for both pre-clinical and clinical scanners.

As mentioned above, the “cost” of the new GPCA and 
TPCA denoising approaches is the need to estimate the 
noise variance a-priori. In many cases (such as ours), this 
information can be obtained from just a few repeated 
b = 0 images, which are quite commonly acquired in con-
ventional datasets. This approach has the advantage of 
computing the effective noise variance after image recon-
struction, avoiding strong assumptions on how noise spa-
tially varies across adjacent voxels (Constantinides et al., 
1997; Landman, Bazin, & Prince, 2009; Landman, Bazin, 
Smith, et al., 2009; Sodickson et al., 1999). Although in 
this study we used a relatively large number of b = 0 image 
repetitions to compute the noise variance prior (20 for the 
pre-clinical data and 5 for the clinical dataset), Supple-
mentary Figure S1 shows that GPCA and TPCA can still 
be used for just 2 b-value repetitions at the price of having 
less precise σ̂prior

2 estimates, which, when used by GPCA 
and TPCA, will induce only a slightly increase of the num-
ber of preserved components. In this scenario however, 
TPCA and GPCA still outperform MPPCA when the noise 
is spatially correlated (Supplementary Fig. S1).

In addition to σ̂prior precision issues, noise variance 
estimates obtained from repeated images can also be 
sensitive to artifacts which can bias σ̂prior and compro-
mise the correct classification of signal components by 
our denoising strategies, particularly by GPCA (as dis-
cussed above). In this study, these biases are minimized 
by taking the median of σ̂prior values across the voxels for 
each sliding window instance. However, in future studies, 
the exploration of alternative noise prior estimation strat-
egies (e.g., Aja-Fernández et al., 2009, 2015; Landman, 
Bazin, & Prince, 2009; Landman, Bazin, Smith, et  al., 
2009; Liu et al., 2014; Pieciak et al., 2017; Tabelow et al., 
2015) could be of interest to promote the general use of 
GPCA and TPCA procedures in different multidimen-
sional MRI datasets.

As mentioned above, in this study, pre-processing 
steps to correct for spatially varying noise prior to 
denoising as done by Moeller et  al. (2021) and Vizioli 
et al. (2021) are not considered. Instead, spatially vary-
ing noise is considered by using spatially varying noise 
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estimates (c.f. Fig.  4A1, Fig.  4B1, Fig.  6A3). Although 
this provides a simple way to deal with spatially varying 
noise in magnitude reconstructed data, the use of these 
noise maps is only appropriate if noise varies slowly 
across the image so that noise can be assumed to be 
relatively uniform across the sliding window. In practice, 
when spatially varying noise is observed (as the case of 
our clinical acquisitions, c.f. Fig. 6A2-3), this assump-
tion may not be satisfied for large sliding windows. In 
this case, reducing the dimensions of the sliding win-
dow must be balanced against the need for redundancy.

Here, our proposed methods are intentionally applied 
without incorporating any correction for the non-central 
distributed noise to allow the assessment of the robust-
ness of PCA denoising algorithms without imposing prior 
pre-processing steps that necessitate information from 
complex data. Although our PCA denoising strategies 
assume identically distributed noise (assumption that is 
violated by non-central distributed noise), GPCA and 
TPCA were shown to perform well even on magnitude 
data in which noise is non-central distributed. This is also 
supported by Supplementary Figure S3 in which the per-
formance of GPCA and TPCA was stable even in phan-
toms corrupted by synthetic spatially correlated Rician 
noise. It is important to note that although in this work we 
focus on denoising magnitude data, the eigenvalue clas-
sification criteria in GPCA and TPCA applies for complex 
MRI data. Therefore, in future studies, GPCA and TPCA 
can be integrated to other advanced denoising routines 
that use the complex data to ensure zero-mean distrib-
uted noise, homogenization of spatially varying noise, 
phase stabilization (Bazin et  al., 2019; Moeller et  al., 
2021; Vizioli et al., 2021), higher dimensional MRI data 
(Olesen et al., 2023), or into multi-coil image reconstruc-
tion procedures (Lemberskiy et al., 2021). For example, 
inserting TPCA into NORDIC could be advantageous to 
avoid any stochastic error of Monte-Carlo based 
approaches. Additionally, future studies could compare 
our approaches with other denoising strategies that have 
been emerging in the last years, for example, algorithms 
based on machine-learning procedures such as Fadnavis 
et al. (2020) and Muckley et al. (2021). These compari-
sons should be explored in dedicated studies due to the 
different nature of advantages and disadvantages across 
the different classes of denoising algorithms.

5.  CONCLUSION

The impact of spatially correlated noise on the perfor-
mance of PCA denoising was evaluated and found to 

corrupt the performance of the commonly used MPPCA 
denoising algorithm, especially when data are acquired 
with Partial Fourier and reconstructed by modern 
schemes. We proposed two new PCA strategies (GPCA 
and TPCA) that harness prior information on noise vari-
ance estimates to objectively denoise MRI data contam-
inated by spatially correlated noise. Our work shows that 
both GPCA and TPCA denoising can enhance the quality 
of diffusion maps and orientation distribution function 
estimates in both pre-clinical and clinical settings. TPCA 
is more robust from a practical perspective in clinical 
data since it is more immune to noise variance overesti-
mations, which are common in clinical settings. Both 
GPCA and TPCA denoising algorithms are readily gener-
alizable and can therefore be used for denoising other 
types of redundant data, thereby enabling higher resolu-
tion and better overall performance in MRI.
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