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Abstrat

The study, development, and analysis of innovative inversion tehniques for the

detetion and imaging of buried objets is addressed in this thesis. The proposed

methodologies are based on the use of mirowave radiations and radar tehniques

for subsurfae prospeting, suh as, for example, the Ground Penetrating Radar

(GPR). More preisely, the reonstrution of shallow buried objets is �rstly ad-

dressed by an eletromagneti inverse sattering method based on the integration

of the inexat Newton (IN) method with an interative multisaling approah.

The performanes of suh an inversion approah are analyzed both when onsid-

ering the use of a seond-order Born approximation (SOBA) and when exploiting
the full set of non-linear equations governing the sattering phenomena for the

buried senario. The presented methodologies are partiularly suitable for ap-

pliations suh as demining (e.g., for the detetion of unexploded ordnanes,

UXOs, and improvised explosive devies, IEDs), for ivil engineering applia-

tions (e.g., for the investigation of possible strutural damages, voids, raks or

water in�ltrations in walls, pillars, bridges) as well as for biomedial imaging

(e.g., for early aner detetion).

Keywords

Ground Penetrating Radar (GPR), Inverse Sattering, Mirowave Imaging, Iter-

ative Multi-Saling Approah, Inexat Newton, Conjugate Gradient, Frequeny
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Chapter 1

Introdution

In reent years, there has been a growing interest in the development of imag-

ing systems based on the use of mirowave radiations [1℄-[5℄. Due to the ompa-

rable values of the inident wavelength and objet linear dimensions, the phys-

ial phenomenon involved in these systems is the sattering of eletromagneti

waves. Approahes based on mirowaves an be pro�tably employed in several

diagnosti senarios, suh as nondestrutive testing and evaluation (NDT/NDE )

of materials in ivil engineering [6℄-[9℄, medial imaging for breast aner dete-

tion [10℄-[12℄, shallow investigation of Earth's subsurfae [13℄ as well as retrieval

of eletromagneti and geometrial harateristis of satterers buried under the

air-soil interfae [14℄[18℄.

One of the key instruments for subsurfae monitoring and imaging is the ground

penetrating radar (GPR) [13℄[19℄ whih an be used, for example, for verifying

the strutural stability of onrete strutures and for rak detetion inside ina-

essible materials. Although very good results have been obtained by usingGPR,
the solution of inverse sattering problems for buried detetion is still a halleng-

ing issue, espeially onsidering the need for fast and aurate apparatuses for

illuminating the target under test and measuring the sattered radiation, as well

as for e�ient proedures to retrieve the geometrial and dieletri properties of

objets buried under ground with an aeptable level of resolution. In parti-

ular, onerning the inversion proedures, it seems that further researhes are

required in order to overome the limitations arising from the well known issues

of non-linearity and ill-posedness haraterizing the basi eletromagneti formu-

lation [5℄. The non-linearity is diretly linked to the dependene of the unknown

total �eld inside the investigation area on the satterer properties [20℄, while

the ill-posedness auses the solution to be extremely sensitive to noise a�eting

available data for the inversion. Moreover, the available measured data are lim-

ited and pratial measurements are arried out from limited transmitter-reeiver

positions, resulting in limited data diversity [20℄. For these reasons, e�ient reg-

ularization tehniques [21℄-[23℄ apable to mitigate the above mentioned issues

are needed. Approahes based on Rytov [24℄ and Tikhonov strategies [2℄ have
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been exploited, along with numerial approximations suh as �rst-order [25℄[26℄

and seond-order [27℄-[29℄ Born approximations.

In this ontext, it has also been proved that deterministi inversion proedures

[30℄-[32℄ an provide very aurate reonstrution results, although they su�er

from a strong dependene on the initialization phase. On the other hand, the use

of stohasti tehniques has also been proposed [33℄-[38℄. Stohasti approahes

an e�iently overome the above limitation, but they exhibit a signi�antly

higher omputational ost [41℄[42℄.

Among deterministi approahes, inexat-Newton (IN) methods [28℄[29℄[43℄-[49℄

have been proven to be e�etive as linearization and regularization tools for solv-

ing inverse-sattering problems, both numerially and experimentally [44℄. Ba-

sially, these methods provide a linearization of the imaging equations by means

of a Newton's expansion through the Fréhet derivative, and solve them in an

approximate way [29℄. However, the appliation of suh an approah has been

mainly limited to the free-spae senario, while a more omplex formulation is

needed when dealing with subsurfae prospeting [50℄. The IN method has been

preliminary applied to retrieve buried objets in [28℄ within the seond-order

Born approximation (SOBA) [27℄. By exploiting suh a seond-order approx-

imation, a signi�ant redution of the omputational burden an be ahieved,

thanks to a redution of the problem unknowns (the dieletri parameters), sine

the internal total eletri �eld is written as the sum of the known inident �eld

and the internal linearized sattered �eld (whih is also expressed in terms of the

transmitted �eld) [29℄.

It must be also notied that multi-resolution approahes [51℄-[53℄ have been

proven to be very e�etive in reduing the amount of loal minima arising from

the non-linearity of the free-spae inverse-sattering problem, bringing a bet-

ter exploitation of the available information from olleted data and yielding

both aurate reonstrutions and high omputational e�ieny. The synergeti

integration of a diret regularization tehnique, suh as the IN method, and

the iterative multi-saling approah (IMSA) [54℄ has been shown to e�etively

takle both the non-linearity and the ill-posedness/ill-onditioning of mirowave

imaging problems by exploiting the best properties of the two strategies and

mutually overoming their intrinsi limitations in tomographi imaging [48℄-[47℄.

As a matter of fat the exploitation of suh an approah leads to a strong simpli-

�ation of the problem, thanks its apability to enfore a higher resolution only

in the so-alled regions-of-interest (RoIs) [54℄.

Moreover, a signi�ant advantage in using GPR as the subsurfae prospeting

tool is represented by the availability of wide-band measurements [59℄, overing

a wide range of the mirowave radiation spetrum. In fat, pulsed GPR systems

are based on the transmission of short eletromagneti pulses in time-domain

[59℄, whih penetrate inside the host medium and are partially re�eted towards

the reeiving antennas eah time a disontinuity of the dieletri harateristis

is found. Given that, the apabilities of standard single-frequeny inverse sat-
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CHAPTER 1. INTRODUCTION

tering approahes an be further extended by introduing additional information

oming from the intrinsi frequeny diversity of the olleted data. In suh a way,

the exploitation of wide-band GPR measurements requires the development of

multi-frequeny tehniques whih are able to pro�tably exploit the information

assoiated to di�erent omponents of the measured spetrum.

Following the above onsiderations, this thesis presents two e�ient single-

frequeny tehniques based on the integration of the inexat-Newton (IN) method

with a multifousing tehnique, and then a multi-frequeny approah whih is

able to e�etively exploit the frequeny diversity of GPR measurements through

a Frequeny-Hopping (FH) sheme.

Thesis outline

The thesis is organized as follows. Firstly, the basi equation governing in fre-

queny domain the sattering phenomena in subsurfae problems are introdued

in Chapter 2. Then, a single-frequeny approah based on the IN method under

the seond order Born approximation (SOBA) is presented in Chapter 3. An

improved version of this tehnique, treating the full non-linear inverse satter-

ing problem is shown in Chapter 4, extending to strong satterers the imaging

apabilities of the �rst approximated approah. Finally, Chapter 5 presents an

innovative mirowave inverse-sattering nested approah ombining a Frequeny-

Hopping (FH) proedure and a Multi-Fousing (MF ) tehnique for dealing with
multi-frequeny GPR measurements. Finally, a omparison among the di�erent

presented tehniques is given and some �nal onlusions are drawn in Chapter

6.
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Chapter 2

Inverse Sattering Equations for

the Subsurfae Problem

In this hapter, the basi equations mathematially modeling the subsurfae

inverse sattering problem in frequeny domain are presented. More preisely,

the two equations ompletely desribing the �elds measured within and outside

the buried investigation domain are referred to as �state� and �data� equations.

It is shown that the problem of retrieving the eletromagneti harateristis

of unknown objets buried below the interfae in a half spae senario an be

reformulated as the minimization of a suitable ost funtion. Suh a ost funtion

aounts for both the mismath between the measured and omputed sattered

�eld over a given observation domain and for the mismath between the measured

and the omputed inident �eld within the investigation domain.
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2.1. GEOMETRY OF THE PROBLEM

2.1 Geometry of the Problem

Let us onsider a set of ylindrial satterers buried in a homogeneous, isotropi

and non-magneti half spae medium [Fig. 2.1℄. The upper medium (i.e., y > 0)
is supposed to be air, with dieletri properties equal to those of the vauum

(ε0 = 8.85× 10−12
Farad/m, µ0 = 1.26× 10−6

Henry/m and σ0 = 0 S/m). The

lossy lower half spae of bakground relative permittivity εrB and bakground

ondutivity σB S/m, ontains a set of satterers loated within the known in-

vestigation domain Dinv [Fig. 2.1℄ and desribed by disontinuous (wrt the bak-

ground) pro�les of permittivity εr (r) and ondutivity σ (r), where the position
vetor r denotes a point in the transverse plane (i.e., r = (x, y)).
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Figure 2.1: Geometry of a subsurfae imaging problem. (a) Cross-borehole and

(b) half spae setup. λb is the wavelength in the bakground material.

2.2 Mathematial Formulation

In the following, we assume that the unknown buried targets are illuminated by a

set of V inident monohromati waves produed by a set of in�nite line urrents

oriented along the z axis, whih an be arranged in both half spae [Fig. 2.1(a)℄

or ross-borehole [Fig. 2.1(b)℄ setup

1

. Given that, the generated inident waves

are of transverse magneti (TM) type, suh that

E
(v)
inc (r) = E

(v)
inc (r) ẑ, v = 1, ..., V. (2.1)

1

Hybrid on�gurations an exist, too, where the soures of em waves are displaed both

above and below the interfae separating the two homogeneous media.
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CHAPTER 2. INVERSE SCATTERING EQUATIONS FOR THE

SUBSURFACE PROBLEM

Moreover, we assume that for eah v-th illumination the longitudinal ompo-

nent of the sattered eletri �eld vetor is olleted at M measurement points

loated at position r
(v)
m , m = 1, ...,M de�ning the observation domain Dobs.

Following the lassial inverse sattering approah [5℄, the problem of retrieving

the shape, the position and the eletromagneti harateristis of the targets

buried within Dinv is formulated as the problem of reonstruting the so-alled

ontrast funtion, de�ned as

τ (r) =
εeq (r)− εB,eq

ε0
(2.2)

where

εeq (r) = ε0εr (r)− j
σ (r)

ω
(2.3)

and

εB,eq = ε0εrB − j
σB
ω

. (2.4)

Given (2.3) and (2.4), it is easy to verify that the real part of the ontrast is

given by

ℜ{τ (r)} = εr (r)− εrB (2.5)

while the imaginary part depends on the frequeny via the angular speed

ω = 2πf as

ℑ{τ (r)} = σB − σ (r)
ωε0

. (2.6)

Denoting with υ(j) the ross-setion of the j-th target buried within Dinv (j =
1, ..., J , being J the total number of satterers), we then have

τ (r) =





0 r /∈
∑J

j=1 υ
(j)

τ (r) r ∈∑J
j=1 υ

(j)

(2.7)

sine outside the support of the J buried targets the equivalent permittivity

and the ondutivity is that of the bakground medium (i.e., εeq (r) = εB,eq and

σ (r) = σB) and no disontinuity an be observed by the propagating impinging

waves.

As a matter of fat, the total �eld measured at position r when the J targets

are buried inside the investigation domain an be deomposed as the sum of

two separate ontributions, represented by the inident �eld and by the so-alled

sattered �eld, respetively

E
(v)
tot (r) = E

(v)
inc (r) + E

(v)
scatt (r) , v = 1, ..., V. (2.8)

Given the ylindrial symmetry of the problem [Fig. 2.1℄ and the isotropi

harateristis of the medium at hand, also the total �eld and the sattered

�eld result z-oriented (i.e., E
(v)
tot (r) = E

(v)
tot (r) ẑ and E

(v)
scatt (r) = E

(v)
scatt (r) ẑ, for
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2.2. MATHEMATICAL FORMULATION

v = 1, ..., V ). If on the one hand the inident �eld E
(v)
inc (r) is referred to the

half spae senario when no objets are loated below the interfae [Fig. 2.1℄,

on the other hand the sattered �eld is the ontribution to the total �eld due to

the presene of satterers buried within Dinv. More preisely, the total �eld is

ompletely desribed by means of the following set of Maxwell equations [59℄





▽×E
(v)
tot (r) = −jωµ0H

(v)
tot (r)

▽×H
(v)
tot (r) = jωεeq (r)E

(v)
tot (r) + I0δ

(
x− x(v)

)
δ
(
y − y(v)

)
ẑ

▽ · εeq (r)E(v)
tot (r) = 0

▽ · µ0H
(v)
tot (r) = 0

(2.9)

where H
(v)
tot (r) is the total magneti �eld at position r

H
(v)
tot (r) = H

(v)
tot,x (r) x̂+H

(v)
tot,y (r) ŷ (2.10)

and the impressed urrent for the v-th illumination is expressed in expliit

form as

J0 (r) = I0δ
(
x− x(v)

)
δ
(
y − y(v)

)
ẑ (2.11)

where I0 is the amplitude of the urrent �owing along an in�nite z-oriented
line loated at position

(
x(v), y(v)

)
. In (2.9), the divergene of εeq (r)E

(v)
tot is set

to null (i.e., εeq (r)E
(v)
tot is solenoidal) sine it is easily veri�ed that

▽ · εeq (r)E(v)
tot =

∂

∂z

{
εeq (x, y)E

(v)
tot (x, y)

}
= 0. (2.12)

Similarly, in absene of targets within Dinv, the inident �eld satis�es the

following set of equations [59℄





▽×E
(v)
inc (r) = −jωµ0H

(v)
inc (r)

▽×H
(v)
inc (r) = jωεhsE

(v)
inc (r) + I0δ

(
x− x(v)

)
δ
(
y − y(v)

)
ẑ

▽ · εhsE(v)
inc (r) = 0

▽ · µ0H
(v)
inc (r) = 0

(2.13)

where H
(v)
inc (r) is the inident magneti �eld at position r

H
(v)
inc (r) = H

(v)
inc,x (r) x̂+H

(v)
inc,y (r) ŷ (2.14)

8
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SUBSURFACE PROBLEM

and εhs is a piee-wise onstant funtion de�ning the (possibly omplex)

dieletri permittivity of the half spae senario at hand

εhs =





ε0 y > 0

εB,eq y < 0.
(2.15)

Given that, it follows that the sattered �eld satis�es the following set of equa-

tions [59℄





▽×E
(v)
scatt (r) = −jωµ0H

(v)
scatt (r)

▽×H
(v)
scatt (r) = jωεhsE

(v)
scatt (r) + jω∆ε (r)E

(v)
tot (r)

▽ · εhsE(v)
scatt (r) = 0

▽ · µ0H
(v)
scatt (r) = 0

(2.16)

where H
(v)
scatt (r) is the sattered magneti �eld at position r

H
(v)
scatt (r) = H

(v)
scatt,x (r) x̂ +H

(v)
scatt,y (r) ŷ (2.17)

and ∆ε (r) models the disontinuity between the dieletri permittivity of the

satterers and the surrounding homogeneous medium

∆ε (r) = εeq (r)− εhs. (2.18)

By looking at (2.16) we an observe that the sattered �eld is due to an equivalent

soure that models the presene of the unknown satterers inside Dinv, de�ned

as [59℄

Jeq (r) = jω∆ε (r)E
(v)
tot (r) . (2.19)

By re-arranging (2.16) and imposing the ontinuity of the tangential omponents

of both the eletri and magneti �elds at the interfae (i.e., at y = 0), eventually
[59℄ the z-omponent of the sattered �eld for points loated below the interfae

[i.e., y < 0, Fig. 2.1℄ an be omputed as

E
(v)
scatt (r) = k2B

∫

Dinv

τ (r′)E
(v)
tot (r

′)Gburied (r, r′) dr′ (2.20)

while the sattered �eld for points loated above the interfae [i.e., y > 0,
Fig. 2.1℄ is expressed as

E
(v)
scatt (r) = k2B

∫

Dinv

τ (r′)E
(v)
tot (r

′)Ghalf−space (r, r
′) dr′. (2.21)
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2.2. MATHEMATICAL FORMULATION

In (2.20) the integral Green's funtion Gburied (r, r′) relates points below the

interfae to points below the interfae (i.e., y < 0 and y′ < 0) and, aording to

Eq. (4.42) in [59℄ and to the de�nition of the ontrast funtion given in (2.2), it

is de�ned as

Gburied (r, r′) = Gburied (x, y, x′, y′) =

−j
4π

(
ε0

εB,eq

) ∫ +∞

−∞
exp(−ju(x′−x))

kyB
[exp (−jkyB |y − y′|)+

µ0kyB−µ0ky0
µ0kyB+µ0ky0

exp (−jkyB (y′ + y))
]
du

(2.22)

while the funtion Ghalf−space (r, r
′) links points below the interfae to points

above the interfae (i.e., y > 0 and y′ < 0) and is de�ned as

Ghalf−space (r, r
′) = Ghalf−space (x, y, x

′, y′) =

−jµ0

2π

(
ε0

εB,eq

) ∫ +∞

−∞

exp(−jkyBy′)exp(jky0y)exp(−ju(x′−x))

µ0kyB+µ0ky0
du.

(2.23)

In (2.22) and (2.23) ky0 and kyB are funtions of the integration variable u
and are de�ned as follows





k2y0 = k2y0 (u) = k20 − u2 y > 0

k2yB = k2B (u) = k2B − u2 y < 0
(2.24)

where k0 = ω
√
ε0µ0 and kB = ω

√
εB,eqµ0 are the wave-number in free-spae

and in the lossy bakground medium, respetively. Finally, the following salar

integral equations an be retrieved, mathematially modeling the buried satter-

ing problem

E
(v)
inc (r) = E

(v)
tot (r)− k2B

∫
Dinv

τ (r′)E
(v)
tot (r

′)Gint (r, r′) dr′

r ∈ Dinv

(2.25)

E
(v)
scatt (r) = k2B

∫
Dinv

τ (r′)E
(v)
tot (r

′)Gext (r, r′) dr′

r ∈ Dobs

(2.26)

in whih Dobs /∈ Dinv is the observation domain, where both soures and measure-

ment points are supposed to be loated [Fig. 2.1℄. The former integral equation

is alled �state equation�, while the latter is the so-alled �data equation�, and

both need to be solved in a numerial way in order to retrieve the unknown

ontrast funtion τ (r) and the unknown total �eld inside Dinv. Clearly, sine

Gint (r, r′) (ommonly known as the �internal � Green's funtion) relates points

whih are loated inside Dinv, it will always oinide with Gburied (r, r′). On the

10



CHAPTER 2. INVERSE SCATTERING EQUATIONS FOR THE

SUBSURFACE PROBLEM

other hand, Gext (r, r′) (ommonly known as the �external � Green's funtion) re-

lates points inside Dinv to points outside it (i.e., belonging to the observation

domain Dobs /∈ Dinv). Then, if a half spae setup is onsidered, where mea-

surement points are loated above the interfae (i.e., y
(v)
m > 0, for v = 1, ..., V

and m = 1, ..,M [Fig. 2.1(a)℄), we will have that Gext (r, r′) = Ghalf−space (r, r
′).

Otherwise, if a ross-borehole setup is onsidered, where measurement points are

loated below the interfae (i.e., y
(v)
m < 0, for v = 1, ..., V and m = 1, ..,M [Fig.

2.1(b)℄), we will have that Gext (r, r′) = Gburied (r, r′).
In order to solve the inverse sattering problem, both the unknowns and

the state and data equations need to be disretized. A ommon hoie is to

use retangular basis funtions [56℄ partitioning the investigation domain into N
subdomains

τ (r) =
∑N

n=1 τ (rn)ψn (r)

E
(v)
tot (r) =

∑N
n=1Etot (rn)ψn (r)

(2.27)

resulting in the following vetor of unknowns

Θ =
{
τ (rn) ; E

(v)
tot (rn) ; n = 1, ..., N ; v = 1, ..., V

}
. (2.28)

Given that, the disretized form of the �state equation� (2.25) beomes

E
(v)
inc (rn) = E

(v)
tot (rn)− k2B

∑P
p=1 τ (rp)E

(v)
tot (rp)Gint (rn, rp)

rn, rp ∈ Dinv

(2.29)

while the data equation in (2.26) beomes

E
(v)
scatt

(
r
(v)
m

)
= k2B

∑N
n=1 τ (rn)E

(v)
tot (rn)Gext

(
r
(v)
m , rn

)

r
(v)
m ∈ Dobs, rn ∈ Dinv.

Solving the inverse sattering problem is then reformulated as the estimation

of the unknown oe�ients Θ via the minimization of the following ost funtion

Φ
{
Θ̂
}
= βdataΦdata

{
Θ̂
}
+ βstateΦstate

{
Θ̂
}

(2.30)

where βdata and βstate are onstant weights. In (2.30) the �data� termΦdata

{
Θ̂
}

quanti�es the mismath between the known sattered �eld olleted atM points

belonging to Dobs to the sattered �eld omputed for the retrieved versions of the

unknowns (i.e., Θ̂ =
{
τ̂ (rn) ; Ê

(v)
tot (rn) ; n = 1, ..., N ; v = 1, ..., V

}
) aording to

(2.26)

11



2.2. MATHEMATICAL FORMULATION

Φdata

{
Θ̂
}
=

∑V
v=1

∑M
m=1

∣∣∣E(v)
scatt

(
r
(v)
m

)
− Ê(v)

scatt

(
r
(v)
m

)∣∣∣
2

∑V
v=1

∑M
m=1

∣∣∣E(v)
scatt

(
r
(v)
m

)∣∣∣
2 (2.31)

where Ê
(v)
scatt

(
r
(v)
m

)
is the omputed sattered �eld for the m-th probe under

the v-th illumination. Similarly, the �state� term of the ost funtion de�ned in

(2.30) measures the di�erene between the known inident �eld insideDinv to the

retrieved inident �eld omputed aording (2.25) on the basis of the estimated

Θ̂

Φstate

{
Θ̂
}
=

∑V
v=1

∑N
n=1

∣∣∣E(v)
inc (rn)− Ê

(v)
inc (rn)

∣∣∣
2

∑V
v=1

∑N
n=1

∣∣∣E(v)
inc (rn)

∣∣∣
2 (2.32)

where Ê
(v)
inc (rn) is the omputed sattered �eld for the n-th point in Dinv

under the v-th illumination.
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Chapter 3

Multi-Fousing Inexat Newton

Method within the Seond-Order

Born Approximation

In this hapter, the reonstrution of a shallow buried objet is addressed by an

eletromagneti inverse sattering method based on ombining di�erent imag-

ing modalities. In partiular, the proposed approah integrates the inexat-

Newton method with an iterative multi-saling approah. Moreover, the use of

the seond-order Born approximation (SOBA) is exploited. A numerial val-

idation is provided onerning the potentialities arising by ombining the reg-

ularization apabilities of the inexat-Newton method and the e�etiveness of

the multi-fousing strategy to mitigate the non-linearity and ill-posedness of the

inversion problem. Comparisons with the standard "bare" approah in terms of

auray, robustness, noise levels, and omputational e�ieny are also inluded.
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3.1. INTRODUCTION

3.1 Introdution

The aim of this hapter is to reformulate the integrated IMSA − IN inver-

sion tehnique [48℄ in order to deal with subsurfae imaging and to evaluate the

e�etiveness of suh an approah when the seond-order Born approximation

(SOBA) is applied. Moreover, a diret omparison in terms of auray, ro-

bustness against di�erent onditions and noise levels, as well as omputational

e�ieny is given when diretly omparing the proposed IMSA− IN − SOBA
approah with its standard �bare� implementation (BARE − IN − SOBA), as
desribed in [28℄.

Towards this end, setion 3.2 provides the basi mathematial formulation used to

model the buried problem under the SOBA. In Set. 3.3 the ombined IMSA−
IN − SOBA is desribed. An in-depth numerial validation is then provided in

Set. 3.4 in order to analyze the performane of the proposed approah and to

demonstrate its e�etiveness and advantages over the BARE − IN − SOBA,
under monohromati transverse magneti (TM) illumination onditions in a

ross-borehole setup similar to that used in [37℄. Finally, some onlusions are

drawn (Set. 3.5).

3.2 Problem Formulation

Let us onsider a ylindrial satterer buried in a homogeneous half spae medium.

A ross-borehole measurement on�guration is assumed [Fig. 3.1℄. Let τ (r) de-
note the ontrast funtion inside the inspeted area Dinv, as de�ned in equation

(2.2). The upper medium is supposed to be air, with dieletri properties equal

to those of the vauum and the position vetor r denotes a point in the transverse

plane, i.e., r = (x, y).

The target, whose ross setion is inluded in the inspeted area Dinv is illu-

minated by V inident waves, whih are produed by a set of in�nite line ur-

rents. They generate inident waves of transverse magneti type, suh that

E
(v)
inc(r) = E

(v)
inc(r)ẑ, v = 1, . . . , V . Due to the ylindrial geometry, the sattered

and total �elds results to be z-polarized, too.

The basi equation for this inverse problem is therefore the following salar in-

tegral one

E
(v)
scatt (r) = E

(v)
tot (r)− E(v)

inc(r) = k2B

∫

Dinv

τ (r′)E
(v)
tot (r

′)Gburied (r, r′) dr′, (3.1)

whih is a nonlinear ill-posed Lippman-Shwinger equation, whose kernel is the

Green's funtion for the half spae [55℄ with de�nition given in equation (2.22).

In equation (3.1), E
(v)
tot and E

(v)
scatt are the z-omponents of the total and sat-

tered eletri �elds (for the v-th illumination), respetively. Suh equation is

approximated by using a seond-order Born expansion [27℄, i.e.,

14
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WITHIN THE SECOND-ORDER BORN APPROXIMATION
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Figure 3.1: Geometry of the problem and imaging setup.

E
(v)
scatt (r)

∼= F
(v)
B1 τ (r) + k2B

∫

Dinv

τ (r′)F
(v)
B1 τ (r

′)Gburied (r, r′) dr′ = F
(v)
B2 (τ) (r) ,

(3.2)

where F
(v)
B1 denotes the �rst order Born operator de�ned as

F
(v)
B1 τ (r) = k2B

∫

Dinv

τ (r′)E
(v)
inc (r

′)Gburied (r, r′) dr′. (3.3)

Consequently, sine the ontrast funtion is independent of v, the inverse sat-

tering problem an be formulated as the solution of the following set of equations

with respet to the unknown τ

FB2 (τ) =



F

(1)
B2 (τ)
.

.

.

F
(V )
B2 (τ)


 =



E

(1)
scatt
.

.

.

E
(V )
scatt


 = Escatt (3.4)

The disrete ounterparts of the above equations an be obtained by partitioning

them in square subdomains in order to obtain pixelated images of the retrieved

distributions of the dieletri parameters inside the inspeted area.

3.3 Reonstrution Method

In order to solve equation (3.4), an inner/outer iterative sheme based on an IN
method is applied [28℄. The operator equation (3.4) is iteratively linearized by

using the Frehét derivative of the operator FB2. This step leads to the following

linear operator equation

F
′

τi
u = Escatt − FB2 (τi) (3.5)
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3.3. RECONSTRUCTION METHOD

where τi is the ontrast funtion at the i-th iteration and F
′

τi
denotes the Frehét

derivative of the operator FB2 at τi. As detailed in [29℄, F
′

τi
is given by

F
′

τi
u =



F

′(1)
τi u
.

.

.

F
′(V )
τi u


 (3.6)

where

F
′(v)
τi u (r) = F

(v)
B1 u (r) + k2B

∫
Dinv

τi (r
′)F

(v)
B1 u (r

′)Gburied (r, r′) dr′
+k2B

∫
Dinv

u (r′)F
(v)
B1 τi (r

′)Gburied (r, r′) dr′
(3.7)

As it is well known, equation (3.5) turns out the be ill-posed. Consequently,

its solution an be obtained in a regularization sense by using a regularization

method. In partiular, following the approah in [44℄, a good hoie seems to be

the use of the Landweber iterative method [61℄. In this ase, a seond loop is

obtained by means of the following sheme

ui,0 = 0
ui,q+1 = ui,q − ρiF

′∗
τi

(
F

′

τi
ui,q − Escatt + FB2 (τi)

)
,

(3.8)

where F
′∗
τi
is the the adjoint of F

′

τi
and 0 < ρi < 2

∥∥F ′

τi

∥∥−2

s
, being ‖·‖s the spetral

norm. A regularized solution ui is obtained by trunating the iterations after a

prede�ned number of steps Q. After the linearized problem is solved, the urrent

ontrast funtion is updated as

τi+1 = τi + ui (3.9)

and the algorithm is iterated until a prede�ned stopping riteria is ful�lled. It

requires of ourse an initialization phase, in whih an estimate of the dieletri

properties of the inspeted area is hosen. In most ases, an empty domain is

used as initial guess.

As mentioned in Setion 3.1, the e�etiveness of an integrated proedure that

pro�tably exploits the regularization apabilities of the IN method and the a-

pability of the iterative multi-saling approah (IMSA) [54℄ to redue the our-
rene of loal minima has been already assessed in [48℄[49℄ for free-spae imaging.

Issues suh as numerial instabilities aused by the presene of noise on measured

data, as well as the ill-onditioned and non-linear nature of the inversion prob-

lem are thus jointly addressed, throughout the synergeti ombination of both

tehniques.

In partiular, at eah s-th step of the IMSA (s = 1, ..., S; s being the step

index), the RoI Ω(s)
(Ω(1)

oiniding with Dinv) is de�ned and partitioned a-

ording to the Rihmond's proedure [56℄ into N square sub-domains (N being

the estimated number of degrees of freedom of the measured data [57℄[58℄) en-

tered at r
(s)
n (r

(s)
n ∈ Ω(s)

, n = 1, ..., N). Following the IN method formulation, the

non-linear equation (3.4) is iteratively linearized in order to obtain the following

16



CHAPTER 3. MULTI-FOCUSING INEXACT NEWTON METHOD

WITHIN THE SECOND-ORDER BORN APPROXIMATION

linear operator equation (note the addition of the supersript

(s)
with respet to

(3.5) to indiate the iterative nature of the multi-saling approah)

(
F (s)
τi

)′

u(s) = Escatt − F (s)
B2

(
τ
(s)
i

)
(3.10)

As previously detailed, at eah IN step, equation (3.10) is solved in a regularized

sense by means of an inner trunated Landweber loop, omposed by the following

loop (initialized with u
(s)
i,0 = 0)

u
(s)
i,q+1 = u

(s)
i,q − ρ

(s)
i

(
F (s)
τi

)′∗
[(
F (s)
τi

)′

u
(s)
i,q −Escatt + F

(s)
B2

(
τ
(s)
i

)]
, q = 0, ..., Q− 1

(3.11)

The urrent solution is updated as τ
(s)
i+1 = τ

(s)
i + u

(s)
i,Q and the IN method is

iterated (i.e., by letting i = i + 1) until a suitable prede�ned stop riterion is

reahed. One the IN loop has been terminated, a new IMSA step is initialized

(i.e., by letting s = s + 1), throughout the update of Ω(s)
and its disretization

with a �ner resolution. This step requires to update the baryenters r
(s)
n ∈ Ω(s)

,

n = 1, ..., N .

The multi-step proess is iterated until the veri�ation of a suitable termination

ondition (e.g., s = S), and u(S) = τ (S) is �nally assumed as the IMSA− IN −
SOBA solution.

It has been pointed out in [49℄ the importane of de�ning an e�ient stopping

riterion for the IMSA − IN − SOBA when no a-priori information on the

objet under test is available. To monitor the evolution of the reonstrution

residual, a parameter is introdued, whih is de�ned at eah IN iteration i as the
disrepany between measured and retrieved sattered �eld at M measurement

loations:

Φi =

∑V
v=1

∑M
m=1

∥∥∥E(v)
scatt(r

(v)
m )− Ê(v)

scatt,i(r
(v)
m )

∥∥∥
2

2

∑V
v=1

∑M
m=1

∥∥∥E(v)
scatt(r

(v)
m )

∥∥∥
2

2

(3.12)

where E
(v)
scatt(r

(v)
m ) and Ê

(v)
scatt,i(r

(v)
m ) denote the measured and estimated sattered

�elds at the measurement point m (m = 1, ...,M) for the v-th illumination

(v = 1, ..., V ), while ‖.‖2 denotes the l2-norm operator. The following stationary

ondition, based on suessive observations of the estimated residual, an then

be de�ned in order to adaptively terminate the IN proedure at eah s-th step

of the multi-fousing sheme:

ζi =

∣∣∣WΦi −
∑W

j=1Φi−j

∣∣∣
Φi

≤ η (3.13)

where η and W denote a �xed numerial threshold and a �xed number of IN
iterations, respetively. The de�nition of suitable values for both η and W has

learly a ritial impat on the overall performanes of the IMSA−IN−SOBA,
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3.4. NUMERICAL ASSESSMENT

sine both parameters are essential to identify a stagnating behaviour of the

residual, whih is atually strongly linked to the semionvergene property of the

IN method when dealing with the regularization of noisy data [29℄. Conerning

the regularization apability of IN method algorithm, the number of iterations

Q for the Landweber method should also be arefully hosen, as well as the

number of multi-saling iterations S should be set in order to suessfully balane

omputational e�ieny and overall quality of the retrieved images.

3.4 Numerial Assessment

This setion is aimed at illustrating the potentialities of the proposed IMSA−
IN−SOBAmethod when dealing with the proessing of syntheti data produed

by both homogeneous and inhomogeneous satterers buried in a lossy homoge-

neous half spae medium. The signi�ant advantage of the IMSA − IN over

the standard IN method has been already highlighted and well doumented in

[48℄[49℄ for the free-spae senario. The appliability of the IN method within

the seond-order Born approximation to the retrieval of buried objets has been

suessfully demonstrated in [28℄, as well. The analysis will thus fous on the

advantages of employing the iterative multi-resolution inversion sheme over the

�bare� IN method implementation within the SOBA (BARE − IN − SOBA),
both in terms of auray, robustness when dealing with di�erent satterers and

di�erent noise onditions. Besides the pitorial representation of the retrieved

dieletri distributions, the following error indexes will be used in the following

to give a quantitative evaluation of the reonstrution auray:

Ξreg =
1

Nreg

Nreg∑

n=1

|τ̂ (xn, yn)− τ(xn, yn)|
|τ(xn, yn) + 1| reg = tot, ext, int (3.14)

where Nreg indiates the number of ells overing the whole inspeted area Dinv

(reg = tot, Ntot = N), or belonging to the bakground region (reg = ext), or to
the support of the buried satterer (reg = int; Ntot = Next+Nint). Moreover, the

terms τ̂ and τ in equation (3.14) indiate the retrieved and the atual ontrast

funtion for the n-th ell belonging to the investigation domain.

The �rst part of this Setion is devoted to a sensitivity analysis of the IMSA−
IN − SOBA algorithm, aimed at investigating the e�et of eah ontrol param-

eter on the �nal quality of the retrieved distributions when dealing with noisy

data, in order to de�ne a suitable and general setup.

3.4.1 Calibration of the IMSA− IN − SOBA
It should be stressed that, as already disussed in Setion 3.3, the hoie of the

ontrol parameters η, W , Q and S should be arefully performed in order to

pro�tably exploit the apabilities of the IMSA− IN − SOBA.
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Figure 3.2: Sensitivity Analysis (Homogeneous Square Satterer - ℓ ≈ λb

3
, τ = 1.5,

SNR = 20 dB) - Behaviour of the integral error Ξtot versus η and W when

Q = Q∗
, S = S∗

(a), and versus K when η = η∗, W = W ∗
, and S = S∗

(b).

Plot of the total, internal, and external error as a funtion of S when Q = Q∗
,

η = η∗, and W = W ∗
().
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3.4. NUMERICAL ASSESSMENT

Towards this end, an exhaustive sensitivity analysis on the impat of eah on-

trol parameter has been performed on noisy �eld data (SNR = 20 dB) olleted
for an homogeneous lossy o�-entered �square� ylinder, with side l ≈ λb/3,
λb being the wavelength inside the bakground, and τ = 0.5 [Fig. 3.3 (a)℄.

Moreover, a square investigation domain of side 1.6λb loated 0.1λb under the
air-soil interfae has has been assumed as referene senario (Fig. 3.1). The

homogeneous half spae medium, inside whih the satterer is buried, is har-

aterized by a relative dieletri permittivity εrB = 4.0 and by a ondutivity

σB = 10−2
S/m. The investigation domain Dinv is sequentially illuminated by a

set of V = 16 transverse-magneti (TM) monohromati plane waves generated

by two vertial rows of �eld soures on�gured in a ross-borehole setup [Fig.

3.1℄ working at the frequeny of f = 300 MHz. For eah view, the synthetially

generated sattered �eld is olleted at M = 15 equally spaed measurement

points (with ±0.2λb o�set along x with respet to the investigation domain [Fig.

3.1℄). It is worthwhile to notie that that the values of V and M have been

hosen following the guidelines in [57℄[58℄ to ollet all the available information

on Dinv from the measured sattered radiation. Moreover, the investigation area

has been partitioned into N = 100 square sub-domains.

In order to investigate the impat of η and W on the ahievable performanes

of the IMSA− IN − SOBA, Fig. 3.2(a) reports the total reonstrution error

Ξtot as a two dimensional funtion of both parameters, when the number of

Landweber and IMSA iterations are respetively set to their optimal values Q∗

and S∗
.

As it an be observed, a low value of the threshold η (e.g., η = 10−4
) results

ompletely inappropriate, leading to a signi�ant degradation of the quality of

the reonstrutions, due the so-alled semionvergene property of the IN regu-

larization tehnique [29℄.

Atually, the best reonstrution is obtained after a given number of IN iter-

ations, while subsequent iterations give rise to worse solutions, sine data are

a�eted by noise [28℄. Similarly, an high value of η also leads to inaurate re-

sults, ausing the premature termination of the inversion proedure. Therefore,

a good hoie for η is

η∗ = 10−2
(3.15)

and it has been assumed hereinafter for the IMSA− IN − SOBA inversions.

Even if less ritial, a suitable value for W should also be arefully seleted. As

shown in equation (3.13), W de�nes the number of IN iterations whih should

be taken into aount for the identi�ation of a stagnating behaviour on the

residual Φ. Although a small value of W an redue the apability of �ltering

out numerial errors a�eting the omputation of the residual, high values of W
give rise to a remarkable degradation of the performanes, as depited in Fig.

3.2(a), whatever the value of the threshold η. Given the above onsiderations,

the optimal value of W has been set to

W ∗ = 5 (3.16)
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Figure 3.3: Sensitivity Analysis (Homogeneous Square Satterer - ℓ ≈ λb

3
, τ = 1.5,

SNR = 20 dB, S = S∗) - Atual (a) and retrieved (b)() ontrast pro�les when

(b) Q = Q∗
, W = W ∗

, η = 10−4
; () K = K∗

, W = 40, η = η∗.

and it will be used in the following of the disussion. For ompleteness, and

to give the reader a pitorial example of what is the impat of a wrong hoie

of η and W on the IMSA − IN − SOBA performanes, the retrieved pro�les
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for the �square� ylinder of Fig. 3.3(a) are shown for η = 10−4
[Fig. 3.3(b)℄

and W = 40 [Fig. 3.3()℄, being the other parameters �xed to their optimal

values. The omputed total error indexes are Ξtot⌋η=10−4,W=W ∗ ≈ 1.27 × 10−1

and Ξtot⌋η=η∗,W=40 ≈ 2.12 × 10−1
, while a redution of more than one order of

magnitude on Ξtot an be ahieved when jointly setting η andW to their optimal

values (Ξtot⌋η=η∗ ,W=W ∗ ≈ 7.92× 10−3
) [Fig. 3.2(a)℄.

Conerning the dependene of the inversion quality on the number of Landweber

iterations, Fig. 3.2(b) shows the behaviour of Ξtot as a funtion of Q, when all

remaining parameters are set to their optimal values. As a matter of fat, the

number of iterations plays the role of a regularization parameter in the iterative

Landweber regularization method, representing a heuristi ompromise between

fast onvergene of the IN method (for low values of Q) and noise �ltering

(for high values of Q) [28℄. Therefore, given the above onsiderations and also

following the outome of the performed sensitivity analysis (Fig. 3.2(b)), the

number of inner iterations has been to

Q∗ = 60 (3.17)

an it will be onsidered for the suessive analysis of the algorithm performanes.

Conerning the stop riterion for the iterative multi-zooming sheme, Fig. 3.2()

reports the omputed error indexes as a funtion of the IMSA step s (s = 1, .., 6)
in the ase η = η∗, W = W ∗

and Q = Q∗
.

As it an be observed, the total error shows a rapid desent until step s = 4
is reahed (Ξs=1

tot ≈ 9.73 × 10−2
vs. Ξs=4

tot ≈ 7.92 × 10−3
), while a progressive

degradation of the auray haraterizes the remaining suessive steps, as ver-

i�ed by the error indexes (Ξs=5
tot ≈ 2.15 × 10−2

and Ξs=6
tot ≈ 3.52 × 10−2

). It is

worth notiing that, although the external error reahes its null even before step

s = 4, the suppression of artifats inside the bakground region omes at the

ost of a slight inrement of the internal error. Given the above onsiderations,

the optimal number of IMSA steps has been identi�ed as

S∗ = 4 (3.18)

and it will be employed as a good ompromise for suessive test ases. Fig-

ures 3.4(b)-3.4(e) illustrate the evolution of the reonstrution throughout the

IMSA− IN −SOBA steps, when the optimal values of eah ontrol parameter

is set to its optimal value. As shown by the single plots, the retrieved pro�le

improves step-by-step, starting from a rough estimation of the buried objet

support and dieletri harateristis [s = 1 - Fig. 3.4(b)℄ until a satisfatory

reonstrution is reahed [s = 4 = S∗
- Fig. 3.4(e)℄. A pitorial representation

of the evolution of the residual (equation (3.12)) and of the stationary index

(equation(3.13)) throughout the multi-zooming steps is given Fig. 3.4(a).
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Figure 3.4: Sensitivity Analysis (Homogeneous Square Satterer - ℓ ≈ λb

3
, τ = 1.5,

SNR = 20 dB, Q = Q∗
, W = W ∗

, η = η∗) - Behaviour of Φ and ζ versus the

IMSA − IN iteration number (a). Plot of the retrieved ontrast pro�les when

(b) S = 1, () S = 2, (d) S = 3, (e) S = 4 = S∗
.
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3.4.2 Homogeneous �Square� and �L-shaped� Cylinders

The �rst set of numerial experiments deals with two o�-entered lossy homoge-

neous satterers having di�erent ross-setions and haraterized by a ontrast

τ = 1.5 [�Square� and �L-shaped � pro�les, - Fig. 3.5℄. The BARE−IN−SOBA
reonstrutions have been arried out by setting Q = 20 and I = 20 [28℄,

while for the IMSA − IN − SOBA the following parameters have been ho-

sen, aording to the previously disussed sensitivity analysis: η = 10−2 = η∗,
W = 5 = W ∗

, Q = 60 = Q∗
, and S = 4 = S∗

. Moreover, the investigation do-

main Dinv has been partitioned into N = 400 and N = 100 square sub-domains

for BARE − IN − SOBA and IMSA− IN − SOBA inversion tehniques, re-

spetively. All remaining parameters are kept equal to those employed in the

previous paragraph.

Figs. 3.5(b)-3.5() show the retrieved pro�les by the BARE−IN−SOBA, while
Figs. 3.5(d)-3.5(e) the orresponding IMSA − IN − SOBA reonstrutions,

in ase the sattered �eld data is orrupted by an additive zero mean omplex

Gaussian noise, raising a signal-to-noise ratio equal to SNR = 10 dB. As it an be
observed, the IMSA−IN−SOBA is able to provide a remarkable improvement

in terms of auray over the �bare� ounterpart even in the presene of a strong

noisy omponent on measurements, as quantitatively on�rmed by the lower

error (Ξtot⌋BARE−IN−SOBA
”Square” ≈ 1.46× 10−1

vs. Ξtot⌋IMSA−IN−SOBA
”Square” ≈ 1.24× 10−1

and Ξtot⌋BARE−IN−SOBA
”L−shaped” ≈ 1.23× 10−1

vs. Ξtot⌋IMSA−IN−SOBA
”L−shaped” ≈ 1.19× 10−1

).

To further validate these outomes, the results from a more exhaustive set of

noisy ases have been summarized in Fig. 3.5(a), showing the ahieved total

reonstrution error Ξtot for di�erent values of SNR for both the onsidered

homogeneous satterers. The result is that the IMSA− IN −SOBA overomes

the �bare� IN method implementation in terms of reonstrution auray, as

pointed out by the error urves in Fig. 3.5(a). Although the reonstrution

quality degrades for both BARE − IN − SOBA and IMSA− IN − SOBA for

lower signal-to-noise ratios, it turns out that ΞIMSA−IN−SOBA
tot < ΞBARE−IN−SOBA

tot

whatever the noise ondition.

3.4.3 �O-shaped� Cylinder

In order to prove the general validity of the previously disussed outomes on

the IMSA − IN − SOBA approah when dealing with the retrieval of more

omplex dieletri shapes with di�erent values of τ , an homogeneous hollow

square ylinder (�O-shaped � pro�le) with an outer side equal to l ≈ λb/2 has been
hosen as a more hallenging benhmark geometry. In order to give the reader a

full piture on the performane improvement of the IMSA− IN − SOBA over

the BARE − IN − SOBA, Fig. 3.6 illustrates the behaviour of the total error

Ξtot as a funtion of τ , for di�erent signal-to-noise ratios on sattered data.
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Figure 3.5: Performane Assessment (τ = 1.5, SNR ∈ [10, 40] dB) - Behaviour
of the Ξtot as a funtion of SNR when dealing with �Square� or �L-Shaped� targets

(a). Plot of the ontrast pro�les retrieved by (b)() BARE − IN − SOBA and

(d)(e) IMSA − IN − SOBA when SNR = 10 dB. (b)(d) �Square� satterer;

()(e) �L-Shaped� satterer.

25



3.4. NUMERICAL ASSESSMENT

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.2  0.6  1  1.4  1.8  2.2

Ξ t
ot

τ

O-Shaped - l ≈ λb/2

BARE-IN - SNR=10[dB]
IMSA-IN - SNR=10[dB]

BARE-IN - SNR=20[dB]
IMSA-IN - SNR=20[dB]

BARE-IN - SNR=30[dB]
IMSA-IN - SNR=30[dB]
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[10, 30] dB) - Behaviour of the Ξtot as a funtion of τ obtained by BARE−IN−
SOBA and IMSA− IN − SOBA.

Although the reonstrution auray degrades as τ inreases, the IMSA −
IN − SOBA always provides the lowest error (e.g., ΞBARE−IN−SOBA

tot

⌋
τ=2.2

≈
2.14× 10−1

vs. ΞIMSA−IN−SOBA
tot

⌋
τ=2.2

≈ 4.42× 10−2
).

It is also worth to notie that, as reported in Fig. 3.6, the error index of the

IMSA− IN −SOBA for SNR = 10 dB is always lower than the error provided

by the �bare� IN method implementation for a signi�antly higher signal-to-

noise ratio (SNR = 30 dB). For ompleteness, the error indexes in Fig. 3.6 are

also reported in Tab. 3.1.

BARE − IN − SOBA
SNR dB τ = 0.2 τ = 0.6 τ = 1.0 τ = 1.4 τ = 1.8 τ = 2.2

30 1.98× 10−2 5.68× 10−2 9.18× 10−2 1.22× 10−1 1.56× 10−1 1.92× 10−1

20 2.20× 10−2 6.12× 10−2 9.79× 10−2 1.37× 10−1 1.74× 10−1 2.14× 10−1

10 3.52× 10−2 8.74× 10−2 8.87× 10−2 2.01× 10−1 2.69× 10−1 3.15× 10−1

IMSA− IN − SOBA
SNR dB τ = 0.2 τ = 0.6 τ = 1.0 τ = 1.4 τ = 1.8 τ = 2.2

30 1.18× 10−2 3.59× 10−2 5.63× 10−2 6.24× 10−2 8.03× 10−2 9.06× 10−2

20 1.29× 10−2 2.72× 10−2 3.64× 10−2 4.88× 10−2 5.20× 10−2 4.42× 10−2

10 1.28× 10−2 3.95× 10−2 8.26× 10−2 9.21× 10−2 1.15× 10−1 1.54× 10−1

Table 3.1: Performane Assessment (�O-Shaped� Satterer ℓ ≈ λb

2
, SNR ∈

[10, 30] dB) - Error values and omputational indexes.
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Figure 3.7: Performane Assessment (�O-Shaped� Satterer ℓ ≈ λb

2
, SNR = 20

dB) - Plot of the ontrast pro�les retrieved by (a)()(e) BARE − IN − SOBA
and (b)(d)(f ) IMSA − IN − SOBA when (a)(b) τ = 0.2, ()(d) τ = 1.0, and
(e)(f ) τ = 2.2.

To further on�rm the above onsiderations and provide a qualitative piture
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of the retrieved pro�les, Fig. 3.7 shows a diret omparison between the reon-

strutions provided by both BARE − IN − SOBA and IMSA− IN − SOBA
for di�erent values of ontrast [Figs. 3.7(a)-3.7(b) - τ = 0.2, Figs. 3.7()-3.7(d)
- τ = 1.0, Figs. 3.7(e)-3.7(f ) - τ = 2.2℄, when SNR = 20 dB. As it an be

observed, thanks to the inreased level of resolution inside the orretly identi-

�ed RoI, the IMSA− IN −SOBA outperforms its �bare� ounterpart, showing

not only the apability of better retrieving the external boundaries of the sat-

terer, suppressing the undesired artifats inside the bakground region, but also

of reognizing position and shape of the internal avity.

3.4.4 Inhomogeneous Cylinders

To assess the performanes of the IMSA−IN−SOBA when dealing with buried

objets haraterized by non-homogeneous dieletri distributions, this Setion

onsiders the analysis of the two referene pro�les in Figs. 3.8(a)-3.8(b). The �rst

inhomogeneous geometry (Fig. 3.8(a), �Double-L� ylinder) is haraterized by

τup = 0.5 and τlow = 1.5 in the upper and lower portions, respetively, while the

seond referene distribution (Fig. 3.8(b), �Conentri� ylinder) is haraterized

by τext = 0.5 and τin = 1.0. The seond and third rows of Fig. 3.8 illustrate the

retrieved dieletri distributions by the BARE− IN −SOBA [Figs. 3.8()-(d)℄

and by the IMSA − IN − SOBA [Fig. 3.8(e)-(f )℄, when SNR = 20 dB. As

a matter of fat, the �bare� IN method implementation provides muh more

�smoothed� pro�les than the multi-saling sheme.

Considering the retrieved pro�les for the �Double-L� satterer, the improvement

in terms of auray provided by the IMSA− IN − SOBA [Fig. 3.8(e)℄ is on-

�rmed by a remarkable redution of the reonstrution error (ΞBARE−IN−SOBA
tot ≈

1.03× 10−1
vs. ΞIMSA−IN−SOBA

tot ≈ 3.35× 10−2
). Still onsidering this partiular

example, it is quite interesting to notie that the BARE − IN − SOBA seems

almost ompletely unable to identify the presene of two distint geometrially

adjaent distributions of the ontrast [Fig. 3.8()℄.

Similar onlusions an be also formulated for the �Conentri� on�guration

[Figs. 3.8(d)-(f )℄. Di�erently from the �bare� ounterpart, the IMSA − IN −
SOBA orretly identi�es the squared shape and the ontrast of the inner ore, as

veri�ed by the lower internal reonstrution error (ΞBARE−IN−SOBA
int ≈ 1.19×10−1

vs. ΞIMSA−IN−SOBA
int ≈ 7.45× 10−2

).

Besides the disussed aspets, it is important to remark that the improved au-

ray showed by the IMSA−IN−SOBA omes together with an inreased om-

putational e�ieny, as emphasized by the evaluation of the inversion times on a

standard laptop with 3.20 GHz CPU lok and 4GB of RAM memory. The total

time required to obtain the reonstrutions in Fig. 3.8 are ∆tIMSA−IN−SOBA =
80 [s℄ and ∆tIMSA−IN−SOBA = 57 [s℄ for �Double-L� and �Conentri� pro-

�les, respetively, while the time required by the BARE − IN − SOBA is

∆tBARE−IN−SOBA = 256 [s℄ for both distributions.
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Figure 3.8: Performane Assessment (Inhomogeneous Satterers, SNR = 20
dB) - Plot of the atual (a)(b) and retrieved ()-(f ) ontrast pro�les by ()(d)

BARE−IN−SOBA and (e)(f ) IMSA−IN−SOBA for (a)()(e) �Double-L�

and (b)(d)(f ) �Conentri� targets.
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3.4.5 �Square� Cylinder with strong ondutivity

The last test ase is aimed at further assessing whether the previously disussed

performanes of the IMSA−IN−SOBA are still valid when the unknown objet

is haraterized by a ondutivity σc higher than the surrounding bakground

medium. As for the previous results, the geometry and measurement setup of

Set. 3.4 have been maintained, while di�erent values of ondutivity σc ≥ σB =
10−2

have been onsidered for the �Square� ylinder in Fig. 3.3(a). Considering

this spei� test ase, the real part of the satter ontrast is thus kept onstant

to R{τ} = 1.5, while the e�et of onsidering di�erent values of the imaginary

part I {τ} =
[
σB−σc

2πfε0

]
is hereinafter investigated. In order to give the reader a full

overview of the e�etiveness of the IMSA−IN−SOBA and to provide a pitorial

omparison in terms of auray with respet to the BARE− IN −SOBA, Fig.
3.9(a) depits the behaviour of Ξtot as a funtion of the objet ondutivity σc.

In aordane to what has been already observed when onsidering di�erent val-

ues of R{τ} [Fig. 3.6℄, the error inreases for both methods as the satterer

beomes stronger (i.e., the value of σc is inreased with respet to the on-

dutivity of the bakground medium). However, the error urves in Fig. 3.6

learly highlight the advantages of the IMSA − IN − SOBA when applied to

the detetion of buried satterers with strong ondutivity, whatever the on-

sidered SNR on measured �eld data. Moreover, the performane gap between

the two implementations beomes even more evident as the value of σc is in-

reased (ΞBARE
tot

⌋
σc=10−2 ≈ 9.72 × 10−2

vs. ΞIMSA
tot

⌋
σc=10−2 ≈ 1.83 × 10−2

and

ΞBARE
tot

⌋
σc=10−1 ≈ 3.12 × 10−1

vs. ΞIMSA
tot

⌋
σc=10−1 ≈ 7.33 × 10−2

, for SNR = 20

dB). For ompleteness, the retrieved distributions when σc = 10−1
(I {τ} =

−5.39) are also reported for both BARE − IN − SOBA [Fig. 3.9(b)-(d)℄ and

IMSA − IN − SOBA [Fig. 3.9()-(e)℄, for blurred data with SNR = 20 dB.

As on�rmed by the presented outomes, the linearization properties of the IN
are enhaned when exploiting a multi-resolution approah intrinsially devoted

to mitigate the undesired e�ets of a high-nonlinearity (e.g., the ourrene of

loal minima), as for the ase of strong satterers. The artifats harateriz-

ing the reonstrutions of the �bare� IN method (both present in the real [Fig.

3.9(b)℄ and imaginary [Fig. 3.9(d)℄ parts of the retrieved ontrast) are almost

ompletely suppressed by the IMSA− IN − SOBA, as veri�ed by a redution

of the external error by an order of magnitude (ΞBARE−IN−SOBA
ext

⌋
≈ 1.73× 10−1

vs. ΞIMSA−IN−SOBA
ext

⌋
≈ 2.25× 10−2

). Moreover, the total inversion time needed

by the multi-zooming tehnique is signi�antly redued when ompared to the

single-step ounterpart (∆tBARE−IN−SOBA = 259 [s℄ vs. ∆tIMSA−IN−SOBA = 79
[s℄).
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Figure 3.9: Performane Assessment (Homogeneous Square Satterer - ℓ ≈ λb

3
,

R{τ} = 1.5, SNR ∈ [10, 30] dB) - Behaviour of the Ξtot as a funtion of σc
(a). Plot of the real (b)() and imaginary (d)(e) parts of the ontrast pro�les

retrieved by (b)(d) BARE − IN − SOBA and ()(e) IMSA − IN − SOBA
when SNR = 20 dB.
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3.5 Disussions

In this hapter, a new mirowave imaging method for subsurfae prospeting has

been proposed. The approah ombines a multi-fousing strategy with a regu-

larization solution based on the use of an inexat-Newton method. In partiular,

the inverse problem has been addressed by numerially solving the Lippmann-

Shwinger equation under the seond-order Born approximation (SOBA). The
proposed reonstrution method has been validated through an extended set

of numerial results involving di�erent types of satterers and noise onditions.

Simulations have highlighted the following key results:

• the proposed tehnique is able to pro�tably ombine the well assessed reg-

ularization apabilities of the adopted loal searh tehnique (the inexat-

Newton method) with the enhaned exploitation of available information

provided by the multi-fousing strategy, whih is able to redue the prob-

lem of loal minima arising from the non-linearity of the involved set of

equations.

• Moreover, the ombined strategy exhibits advantages over its standard

"bare" implementation in terms of ahieved auray and resolution, what-

ever the ontrast distribution (homogeneous/inhomogeneous), the ross-

setion geometry and the noise level on measured data.

• Furthermore, the proposed multi-fousing approah overomes the stan-

dard "bare" implementation also in terms of the omputational e�ieny,

thanks to the signi�ant redution of the problem unknowns at eah itera-

tive step, whih arises from the use of an adaptive oarse-to-�ne disretiza-

tion of the investigation areas at di�erent levels of resolution.
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Chapter 4

Eletromagneti Subsurfae

Prospeting by a Fully Nonlinear

Multi-fousing Inexat Newton

Method

In this hapter, an eletromagneti inverse sattering proedure for the reon-

strution of shallow buried objets in a homogeneous half-spae is proposed. The

approah is based on the numerial solution of the integral equations modelling

the inverse sattering relationships and it extends to strong satterers the imag-

ing apabilities of the approah presented in Chapter 3 relying on approximated

formulations (i.e., the SOBA). The inversion is based on the synergi appliation
of a multi-fousing strategy based on the iterative multi-saling approah (IMSA)

along with an e�ient regularization sheme based on the inexat-Newton (IN )

method. Numerial results orroborate the mathematial desription to assess

apabilities and urrent limitations of the proposed fully-nonlinear tehnique.

33



4.1. INTRODUCTION AND MOTIVATION

4.1 Introdution and motivation

Mirowave methods for retrieving buried objets are a key topi of the researh

area onerned with inversion methods as on�rmed by the sienti� literature

[1℄-[4℄. Appliations range from ivil and industrial non-destrutive testing [6℄-

[9℄ to medial imaging [10℄-[12℄ as well as geophysial appliations [13℄-[18℄. As

for these latter, inverse sattering tehniques have been widely proposed for the

shallow investigation of the Earth's subsurfae to extend/better-exploit the apa-

bilities/features of ground penetrating radars (GPRs) [13℄-[19℄. However, despite

several and important results, mirowave methods are still quite hallenging and

far from a real-life use mainly due to the ill-posedness and the nonlinearity of the

mathematial relationships that relate the sattered �elds to the unknown dis-

tributions of the dieletri parameters of the investigation region. Moreover, the

information ontent available from sattered-�eld data is low [70℄, espeially when

dealing with aspet-limited on�gurations suh as those in subsurfae prospet-

ing, leading to a redued data diversity [20℄. To properly address these issues,

many inversion strategies, both stohasti [34℄[36℄[37℄[40℄[42℄[62℄[71℄ and deter-

ministi [26℄[32℄[63℄-[68℄, have been proposed along with approximate models

(e.g., based on Rytov [48℄ and [26℄ Born linearizations).

In a reent paper, the authors have introdued the use of a multi-fousing ap-

proah assoiated with an inexat-Newton (IN ) method [48℄. Indeed, the use of

multi-resolution methods has been found to be an e�etive way to redue the

number of loal minima arising in eletromagneti inverse problems due to the

severe ill-posedness of the integral equations at hand [54℄[72℄. On the other hand,

the IN method has proven to be a regularization approah e�ient in several

eletromagneti appliations, mainly related to tomography in free-spae ondi-

tions [44℄[43℄. In Chapter 3, the synergi ombination of the two methods has

been exploited in an e�etive approah for the reonstrution of buried targets

in a shallow subsurfae under the seond-order Born approximation (SOBA)
ondition [73℄ by assuming the sattering �eld nonlinearly depending on the di-

eletri parameters of the objet under test, but independent on the internal

total eletri �eld. While suh an approximation resulted in a non-negligible

omputational saving beause of the redution of the problem unknowns (i.e.,

the dieletri distribution only), the reliability of the reonstrution turns out

limited to weak satterers. Moreover, it is worth pointing out that in pratial

appliations the SOBA extends only partially the range of retrievable dieletri

permittivities ompared to the lassi �rst order Born approximation where the

sattered eletri �eld is expressed in terms of the known inident �eld (i.e., the

�eld radiated by the soure in the bakground without the unknown satterer).

In this hapter, the integrated multi-fousing-IN (IMSA − IN) strategy is ap-

plied for the �rst time to the exat equations of the inverse sattering problem

for buried objets by extending the range of validity of the formulation presented

in Chapter 3 as well as the possibility to retrieve strong satterers. The outline of
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the hapter is as follows. In Set. 4.2, the approah is mathematially desribed.

Setion 4.3 reports representative results from several numerial simulations de-

voted to validate the proposed approah illustrating its potentials and urrent

limitations. Finally, some onlusions are drawn (Set. 4.4).

4.2 Mathematial formulation

Let us onsider the same ylindrial geometry already onsidered in Chapter 3

whose desription is just summarized here. By assuming transmitting and mea-

surement points arranged in a ross-borehole on�guration (Fig. 4.1), let V be

the set of time-harmoni line urrents that generate the inident �elds prob-

ing the investigation region Dinv. For eah v-th illumination, the longitudinal

omponent of the sattered eletri �eld vetor is olleted at M measurements

loations (D
(v)
obs, v = 1, ..., V , being the set of measurement points at the v-th

view).

y/
λ b

x/λb

Measurement points
Source locations

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

-1.5 -1 -0.5  0  0.5  1  1.5

Dinv

Figure 4.1: Cross-borehole imaging on�guration.

To retrieve the unknown dieletri properties of the investigation domain, the

inverse sattering problem mathematially desribed in terms of the following

two integral equations of �rst- (alled �state equation�) and seond-kind (alled

�data equation�), respetively [2℄,

E
(v)
tot (x, y) = E

(v)
inc (x, y) + k2B

∫
Dinv

τ (x′, y′)E
(v)
tot (x

′, y′)Gint (x, y, x′, y′) dx′dy′
(x, y) ∈ Dinv

(4.1)

E
(v)
scatt (x, y) = k2B

∫
Dinv

τ (x′, y′)E
(v)
tot (x

′, y′)Gext (x, y, x′, y′) dx′dy′
(x, y) ∈ D(v)

obs

(4.2)
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need to be solved. In (4.1) and (4.2), E
(v)
tot , E

(v)
inc, and E

(v)
scatt denote the z-

omponents of the total, inident, and sattered �eld vetors for the v-th view,

respetively. Moreover, Gext is the Sommerfeld's Green's funtion for the half

spae [55℄, while the ontrast funtion τ is de�ned in equation (2.2).

Unlike the theory presented in Chapter 3, where the SOBA approximated for-

mulation has been assumed, the two sattering equations are ontemporarily

exploited to inspet buried strong satterers. Towards this end, let us put (4.1)

and (4.2) in a funtional form as

A(v)
(
τ ;E

(v)
tot

)
= b(v) v = 1, ..., V (4.3)

where b(v) inludes the known terms (i.e., the inident �eld in the state equation

and the measured sattered eletri �eld in the data equation)

b(v) =

[
E

(v)
scatt

E
(v)
inc

]
, (4.4)

and let us ombine the V equations (4.3) to reast the inverse problem as the

solution of the following funtional equation

A(v)
(
τ ;E

(1)
tot , ..., E

(V )
tot

)
=




E
(1)
scatt

E
(1)
inc
.

.

.

E
(V )
scatt

E
(V )
inc



=



b(1)

.

.

.

b(V )


 . (4.5)

By disretizing (4.5) with square sub-domains and point mathing, a nonlinear

systems of disrete equations is yielded

A (τ ;Etot) = b (4.6)

where τ is an array whose n-th entry (n = 1, ..., N) is the value of the ontrast

funtion at the n-th sub-domain in whih the investigation domainDinv has been

partitioned, Etot is an array ontaining the V ×N values of the eletri �eld in the

investigation area, and b is an array of size V × (N +M) ontaining the values
of the known samples of the inident and sattered eletri �elds (see Appendix

A).

To properly and e�iently solve (4.6), some hallenging omputational issues

have to be arefully addressed. To redue the omputational burden and there-

fore fousing the attention only on parts of the investigation domain where sat-

terers are supposed to be present, the IMSA approah is adopted. Suh a multi-

fousing tehnique has been �rstly developed by A. Massa and o-workers in [54℄

and suessively deeply analyzed in other papers [48℄[72℄[74℄[75℄. At eah step
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of the IMSA (s = 1, ..., S), a zoomed investigation domain Ωs, omposed by the

ombination of the region of interests de�ned at step s − 1, is onsidered (Ω1

oinides with the whole investigation area - see Fig. 4.1). Equation (4.6) is

then solved by using the IN method [44℄[43℄ for reonstruting the distributions

of the dieletri properties in Ωs. Suh an inversion method is omposed by two

nested loops. In the external loop, (4.6) is �rst linearized by means of a Newton

approximation, whereas the resulting linear system of equations is solved in a

regularized sense with a trunated Landweber method [61℄. A maximum number

of iterations, Imax,s, is set for the external loop, while the number of iterations,

Q, of the inner loop is �xed for any reonstrution proess. A omplete disus-

sion on the appliation of the IN method an be found in [45℄ where it has been

shown that the number of external iterations plays the role of a regularization

parameter ontrolling the so-alled semi-onvergene. Therefore, it is neessary

to de�ne a suitable strategy for terminating the iterations in order to guarantee

onvergene towards the global solution of the funtional problem at hand. To

this end, let us �rst de�ne the following residual funtion

Φi
s =

∑V
v=1

∑M
m=1

∣∣∣E(v)
scatt

(
x
(v)
m , y

(v)
m

)
−E(v)

i

(
x
(v)
m , y

(v)
m

)∣∣∣
∑V

v=1

∑M
m=1

∣∣∣E(v)
scatt

(
x
(v)
m , y

(v)
m

)∣∣∣
(4.7)

where E
(v)
scatt

(
x
(v)
m , y

(v)
m

)
denotes the sattered �eld omponent measured at the

m-th measurement point

(
x
(v)
m , y

(v)
m

)
(m = 1, ...,M) for the v-th illumination

(v = 1, ..., V ), and E
(v)
i

(
x
(v)
m , y

(v)
m

)
indiates the same quantity estimated at the

i-th iteration of the imaging proess. Then, at eah IMSA step, s (s > 1), the
IN solver is stopped when one of the following onditions holds true:

• the �tness goes below the threshold omputed at the step s (i.e., φi
s ≤ φth

s );

• the number of outer iterations reahes its maximum (i.e., Imax,s>1).

As for the threshold at the s-th step, Φth
s , it is obtained as

Φth
s ≤ αφfinal

s−1 , s = 2, ..., S (4.8)

where Φfinal
s−1 is the �nal residual at the step s−1, α is a setup saling fator, and

S is the total number of IMSA steps. Conerning the �rst IMSA step (s = 1),
the stopping riterion is only determined by the user-de�ned number of outer

iterations (i.e., Imax,s=1).

4.3 Numerial Results

The proposed approah has been validated by means of several numerial sim-

ulations referring to the following benhmark senario. The investigation area
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has been hosen as a square domain of side 1.6 λb entered at (0.0, −0.9 λb) with
the dieletri properties of the lower half spae set to εrB = 4.0 and σB = 0.01
S/m. A set of V = 16 TX/RX antennas, modeled as line-urrent soures with

unit amplitude, has been onsidered at a working frequeny of 300 MHz. The

antennas have been supposed to be loated into two boreholes beside Dinv (as

shown in Fig. 4.1) at positions

(xv, yv) =





(
−λb, −0.1 λb − 2 λb

v−1
v
2
−1

)
if v ≤ V

2(
−λb, −0.1 λb − 2 λb

v−− v
2
−1

v
2
−1

)
if v > V

2

, v = 1, ..., V. (4.9)

When a radiator ated as transmitter, the remaining M = V − 1 olleted the

sattered eletri �eld. The number of views and measurement points has been

hosen as suggested in [57℄[58℄.

The sattering �eld samples (i.e., the data of the inversion proedure) have been

numerially omputed by using a forward solver based on the Method of Moments

[76℄ with a mesh of Nfwd = 40 × 40 square subdomains. To simulate a more

realisti measurement setup, a Gaussian noise with zero mean value has been

added to the omputed data. Unless otherwise spei�ed, the signal-to-noise ratio

on the total eletri �eld data has been set to SNR = 20 dB. As for the inversion
proedure, a oarser mesh has been used to avoid inverse rimes. More in detail,

N IMSA
inv = 10×10 subdomains have been adopted at eah s-th saling step of the

IMSA, whereas the number of partitions has been set to N bare
inv = 20 × 20 pixels

for the bare IN approah.

To quantitatively evaluate the performane of the approah, the same error �g-

ures used in Chapter 3 have been adopted and are here reported, for ompleteness

Ξreg =
1

Nreg

Nreg∑

n=1

|τ̂ (xn, yn)− τ(xn, yn)|
|τ(xn, yn) + 1| reg = tot, ext, int (4.10)

where τ and τ̂ are the atual and reonstruted values of the ontrast funtion in

the n-th sub-domain

1

and Nreg indiates the number of ells overing the whole

inspeted area Dinv (reg = tot, Ntot = N), or belonging to the bakground

region (reg = ext), or to the support of the buried satterer (reg = int; Ntot =
Next +Nint).

1

The reonstrutions have been obtained by averaging the results over 100 di�erent noise

realizations.
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4.3.1 Calibration
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Figure 4.2: Calibration (Square Satterer - L = 0.32 λb, (xc = −0.16 λb, yc =
−0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m, SNR = 20
dB) - Atual target used for the algorithm alibration.

As already stated in Chapter 3, the hoie of the orret parameters of the in-

version proedure is of fundamental importane, thus an analysis of the per-

formanes versus suh parameters has been �rstly performed to identify the

best setup. The goal of this alibration has been that of determining the op-

timal (Q,α) pair for the IMSA-IN approah, while the other parameters have

been set aording to the guidelines already devised in previous works [43℄[69℄,

namely Imax,s=1 = 20, Imax,s>1 = 1000, and S = 4. More in detail, Q and

the �tness saling fator α have been varied within the range 10 − 100 and be-

tween 0.1 and 0.9, respetively. As a referene target, a square ylinder loated

at (−0.16 λb, −0.58 λb) with side L = 0.32 λb, relative dieletri permittivity

εr = 5.5, and eletri ondutivity σ = 0.01 S/m (i.e., τ = 1.5) has been onsid-

ered (Fig. 4.2).
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Figure 4.3: Calibration (Square Satterer - L = 0.32 λb, (xc = −0.16 λb, yc =
−0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m, SNR = 20
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Figure 4.4: Calibration (Square Satterer - L = 0.32 λb, (xc = −0.16 λb, yc =
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Figure 4.5: Calibration (Square Satterer - L = 0.32 λb, (xc = −0.16 λb, yc =
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dB) - (a) Real and (b) imaginary parts of the reonstruted distribution of the

ontrast funtion when Q = Qopt = 50 and α = αopt = 0.9.

The results of the IMSA-IN reonstrutions are summarized in Fig. 4.3, whih

reports the values of the total error Ξtot versus the �tness saling fator and

for di�erent values of the inner iterations of the IN algorithm when setting

Imax,s=1 = 20 and S = 4, being SNR = 20 dB. Sine the best pair of parameters

is de�ned as that with the minimum value of the total reonstrution error Ξtot,
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the optimal setup turned out to be: Q = 50 and α = 0.9. For ompleteness,

Figure 4.4 reports the values of the residual Φ on the data, while Figure 4.5 shows

the distribution of the ontrast funtion [real part - Fig. 4.5(a); imaginary part

- Fig. 4.5(b)℄ reonstruted with the optimal parameters.

As it an be observed, the satterer is faithfully reonstruted with a areful

identi�ation of the target shape as well as an estimation of the ontrast very

lose to the atual one.
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Figure 4.6: Calibration (Square Satterer - L = 0.32 λb, (xc = −0.16 λb, yc =
−0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m, SNR = 20
dB) - Reonstrution errors for di�erent values of ∆εrB.

To assess the robustness of the optimal alibration setup against the unertain-

ties in the medium eletromagneti parameters, the same target has been imaged

by assuming that the relative dieletri permittivity ε̂rB used by the inversion

method is di�erent from its atual value εrB. The behaviour of the total reon-
strution error versus ∆εrB , εrB− ε̂rB shows that the auray of the proposed

approah smoothly degrades as the unertainty inreases (e.g.,

Ξtot|∆εrB=0.8

Ξtot|∆εrB=0.2
≈ 2.83

- Fig. 4.6), and that the total error is below 7% even in the worst ase onditions

(i.e., when ∆εrB ≈ −1.0 - Fig. 4.6).

4.3.2 E�ets of Noise

To evaluate the e�et of the noise on the reonstrutions and the robustness of

the proposed approah, a set of simulations with levels of noise varying from

SNR = 5 dB down to ∞ has been performed.
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SNR Itot Φfinal Ξtot Ξint Ξext ∆t [s℄

BARE
∞ (Noiseless) 600 1.28× 10−3 9.46× 10−2 2.17× 10−1 6.94× 10−2 4041

30 [dB℄ 600 1.80× 10−3 9.44× 10−2 2.17× 10−1 7.04× 10−2 4045
20 [dB℄ 600 4.07× 10−3 9.83× 10−2 2.21× 10−1 7.25× 10−2 4042
10 [dB℄ 600 1.25× 10−2 1.35× 10−1 2.17× 10−1 1.00× 10−1 4038
5 [dB℄ 600 2.20× 10−2 1.91× 10−1 2.31× 10−1 1.37× 10−1 4023

IMSA
∞ (Noiseless) 450 4.45× 10−3 5.61× 10−3 1.36× 10−1 0.00 211

30 [dB℄ 461 4.53× 10−3 5.60× 10−3 1.36× 10−1 0.00 212
20 [dB℄ 827 5.39× 10−3 2.89× 10−3 6.87× 10−2 0.00 288
10 [dB℄ 3020 1.41× 10−2 5.21× 10−3 1.17× 10−1 0.00 795
5 [dB℄ 3020 2.43× 10−2 1.46× 10−2 1.97× 10−1 5.96× 10−3 776

Table 4.1: Performane vs. Noise (Square Satterer - L = 0.32 λb, (xc =
−0.16 λb, yc = −0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01
S/m) - Total number of performed outer iterations, �nal �tness values, and re-

onstrution errors for the BARE and the IMSA (s = S = 4) IN approahes.

Total exeution time on a PC with Intel(R) Core(TM)2 CPU 6600 � 2.40GHz,

2GB RAM.

Still onsidering the same target of the previous Setion, the inversion results

are summarized in Tab. 4.1 where the total number of outer iterations needed

to reah the onvergene

2

, the �nal residual on the data Φfinal
, and the reon-

strution errors Ξreg are given along with the inversion time

3

. For omparison

purposes, the outomes from the appliation of the bare IN approah (i.e., the

single-step uniform resolution IN ) is also reported. It is worth notiing that for

a fair omparison, the alibration of the ontrol parameters has been arried out

for the bare algorithm, as well, with the identi�ation of the following optimal

values: Imax = 600 and Q = 100.

As it an notied (Tab. 4.1), the IMSA-IN approah proves to be quite robust

to the noise on the data sine, even for heavy noise onditions, the arising er-

rors turns out to be quite small and the multi-resolution implementation always

outperforms its orresponding single-step uniform resolution ounterpart. These

indiations are also on�rmed by the reonstruted distributions of the ontrast

funtion (real part - Fig. 4.7; imaginary part - Fig. 4.8).

2

As for the IMSA, this number orresponds to the sum of the outer iterations performed

on the whole set of iterative saling steps.

3

The IMSA inversion time is omputed as the sum of the exeution time for eah iterative

saling step.
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IN IN − SOBA
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Figure 4.7: Performane vs. Noise (Square Satterer - L = 0.32 λb, (xc =
−0.16 λb, yc = −0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01
S/m, SNR =10 dB) - Reonstruted distributions of the ontrast funtion (real

part) when using (a)() IMSA-IN and (b)(d) IN under (a)(b) full-nonlinear and

()(d) approximate onditions (SOBA).

As a representative example, let us refer to the plots in Fig. 4.7 onerned with

the inversion of sattering data blurred with a noise haraterized by SNR = 10
dB. In partiular, Figures 4.7(a) and 4.8(a) show the result yielded with the

IMSA-IN algorithm, while Figures 4.7(b) and 4.8(b) plot the reonstrution from

the bare approah. Figures 4.7()-4.7(d) and 4.8()-4.8(d) omplete the overview

by presenting the results under seond order Born approximation (i.e., SOBA

method). As expeted, the IMSA-IN better shapes the target and the estimated

values of the ontrast funtion are loser to the atual ones. On the other hand,

the full-approah signi�antly improves the performane of the approximated

one in both IMSA [Fig. 4.7(a) vs. Fig. 4.7() - ΞIMSA−IN
tot = 5.21 × 10−3

vs. ΞIMSA−SOBA
tot = 1.83 × 10−2

℄ and single-step [Fig. 4.7(b) vs. Fig. 4.7(d) -

ΞIN
tot = 1.35× 10−1

vs. ΞSOBA
tot = 1.46× 10−1

℄ versions.
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Figure 4.8: Performane vs. Noise (Square Satterer - L = 0.32 λb, (xc =
−0.16 λb, yc = −0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0,
σB =0.01 S/m, SNR =10 dB) - Reonstruted distributions of the ontrast

funtion (imaginary part) when using (a)() IMSA-IN and (b)(d) IN under

(a)(b) full-nonlinear and ()(d) approximate onditions (SOBA).

For ompleteness, Figures 4.9(a)-4.9(b) show the residual on the data and the

reonstrution errors versus the outer iteration number, while the behavior of the

reonstrution errors at eah resolution step of the saling proess is reported in

Fig. 4.9(). As it an be observed, the multi-resolution proedure allows a

signi�ant improvement of the reonstrution quality throughout the iterative

zooming.
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Figure 4.9: Performane vs. Noise (Square Satterer - L = 0.32 λb, (xc =
−0.16 λb, yc = −0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01
S/m, SNR = 10 dB) - Fitness (a) and reonstrution errors (b) versus outer
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Finally, it is worth pointing out that the IMSA-IN approah requires less CPU

time than the bare method to reah the onvergene solution (Tab. 4.1) sine a

smaller problem has to be solved at eah resolution step.

4.3.3 E�ets of the Dieletri Properties of the Target

This Setion is aimed at giving some insights on the dependene of the reon-

strution auray of the proposed approah on the ontrast values of the imaged

target.
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Figure 4.10: Performane vs. Target Permittivity (Hollow Cylinder - Lext =
0.48 λb, Lint = 0.16 λb, (xc = 0.08 λb, yc = −0.48 λb), σ = 0.01 S/m, εrB =4.0,
σB =0.01 S/m, SNR = 20 dB) - Reonstrution errors for di�erent values of τ .

A hollow square ylinder has been onsidered [Fig. 4.11(a)℄ entered at

(0.08 λb, −0.48 λb) with external side Lext = 0.48 λb and internal side Lint =
0.16 λb. The values of the ontrast have been hanged in the range τ ∈ [0.2, 2.2].
Figure 4.10 gives the inversion results in terms of the total reonstrution error

for both the bare and the IMSA-IN approahes. It turns out that the two

implementations are quite robust against the ontrast even though the IMSA-

IN is able to provide a smaller value of reonstrution error. For illustrative

purposes, Figs. 4.11(b) and 4.11() show the real part of the ontrast funtion

retrieved by the IMSA-IN and the bare approahes when τ = 2.2, while Figs.

4.11(d) and 4.11(e) show the imaginary parts. The plots outline the e�etiveness

of the multi-resolution approah in both qualitatively and quantitatively imaging

the target, while the single-step tehnique only loalizes the target.
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Figure 4.11: Performane vs. Target Permittivity (Hollow Cylinder - Lext =
0.48 λb, Lint = 0.16 λb, (xc = 0.08 λb, yc = −0.48 λb), εr = 6.2, σ = 0.01 S/m

[τ = 2.2℄, εrB =4.0, σB =0.01 S/m, SNR = 10 dB) - Reonstruted distribution

of the ontrast funtion. (a) Atual on�guration and (b) real and (d) imaginary

parts provided by the IMSA-IN strategy and () real and (e) imaginary parts

obtained by the BARE-IN.
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Figure 4.12: Performane vs. Target Sales (E-Shaped Satterer - εr = 5.5,
σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m, SNR =20 dB) - Reonstruted
distribution of the ontrast funtion (real part). (a) Atual on�guration and

reonstrutions with (b)(d) IMSA-IN and ()(e) IN under (b)() full-nonlinear

and (d)(e) approximate onditions (SOBA).
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4.3.4 Reonstrution of Targets with Small Details

The apabilities of the approah in reonstruting target details at dimensions

omparable to the inversion grid of the bare tehnique have been assessed then

by onsidering the objet in Fig. 4.12(a). The ontrast funtion retrieved by the

IMSA-IN algorithm is shown in Fig. 4.12(b) and Fig. 4.13(a) and ompared to

that from the IN method [Fig. 4.12() and Fig. 4.13(b)℄.
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Figure 4.13: Performane vs. Target Sales (E-Shaped Satterer - εr = 5.5,
σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m, SNR =20 dB) - Reon-

struted distribution of the ontrast funtion (imaginary part) with (a)() IMSA-

IN and (b)(d) IN under (a)(b) full-nonlinear and ()(d) approximate onditions

(SOBA).

As expeted, the multi-saling strategy provides a quite good reonstrution

of the long arms of the E-shaped target beause of its intrinsi multi-resolution

nature, although the smallest detail in the internal region is not deteted probably

due to the masking e�ets of the external region of the satterer. On the ontrary,
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the single-step reonstrution signi�antly gets worse loosing all the objet details

[Fig. 4.12() and Fig. 4.13(b)℄. For ompleteness, the orresponding SOBA

implementations are reported in Figs. 4.12(d)-4.12(e) and Figs. 4.13()-4.13(d),

as well.

4.3.5 Reonstrution of Targets with Higher Condutivity

Finally, the e�ets of the ondutivity of the target have been evaluated. The

square objet imaged in Sets. 4.3.1 and 4.3.2 has been again onsidered, but its

eletri ondutivity has been inreased to σ = 0.1 (i.e., I {τ} = −5.39).
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Figure 4.14: Performane vs. Target Condutivity (Square Satterer - L =
0.32 λb, (xc = −0.16 λb, yc = −0.58 λb), εr = 5.5, σ = 0.1 S/m [τ = 1.5− j5.39℄,
εrB =4.0, σB =0.01 S/m, SNR =10 dB) - Reonstruted distribution of the

ontrast funtion. (a) Real and (b) imaginary parts provided by the IMSA-IN

strategy and () real and (d) imaginary parts obtained with the bare IN.
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SNR Ξtot BARE Ξtot IMSA

∞ (Noiseless) 3.07× 10−1 4.01× 10−2

30 [dB℄ 3.07× 10−1 3.98× 10−2

20 [dB℄ 3.14× 10−1 1.61× 10−2

10 [dB℄ 3.60× 10−1 2.26× 10−2

5 [dB℄ 4.21× 10−1 3.97× 10−2

Table 4.2: Performane vs. Target Condutivity (Square Satterer - L = 0.32 λb,
(xc = −0.16 λb, yc = −0.58 λb), εr = 5.5, σ = 0.1 S/m [τ = 1.5−j5.39℄, εrB =4.0,
σB =0.01 S/m) - Reonstrution errors for the bare IN and the IMSA-IN (at

step s = S = 4) approahes.

The reonstrution errors for di�erent values of the signal-to-noise ratio are re-

ported in Tab. 4.2 to assess in this ase, too, the IMSA-IN strategy improve-

ments over to the bare method. This is also visually on�rmed by the representa-

tive distributions of the ontrast funtion shown in Fig. 4.14, whih refer to the

ase SNR = 10 dB. Indeed, both real and imaginary parts of the ontrast fun-

tion are suessfully retrieved by the IMSA-IN strategy [Figs. 4.14(a)-4.14(b)℄

being loser to the atual ones. The same auray is not ahieved by the bare

implementation [Figs. 4.14()-4.14(d)℄.

4.4 Disussions

In this hapter, a mirowave imaging tehnique for the reonstrution of shallow

buried objets has been presented. The proposed approah extends the strat-

egy presented in Chapter 3 by employing the full non-linear formulation of the

sattering problem. In this way, the method is potentially able to deal with

strong satterers, too. The reonstrution performanes have been evaluated by

means of several numerial simulations. It has been found that the proposed

approah provides quite good reonstrutions of the onsidered targets showing

a good robustness to the noise, as well. Moreover, the results from the multi-

fousing strategy turned out to be better both in terms of reonstrution errors

and omputational resoures than the standard bare inexat-Newton algorithm

when applied to the same sattering on�gurations. Future works will be devoted

to an experimental validation of the proposed inversion algorithm.

52



Chapter 5

GPR Prospeting through an

Inverse Sattering

Frequeny-Hopping Multi-Fousing

Approah

In this hapter, an innovative information-aquisition approah to 2D Ground-

Penetrating Radar (GPR) prospeting is presented. A mirowave inverse-sattering

nested approah ombining a frequeny-hopping (FH ) proedure and a multi-

fousing (MF ) tehnique is proposed. On the one hand, the FH sheme ef-

fetively handles multi-frequeny GPR data, while mitigating the non-linearity

issues. On the other, MF tehniques have proved to be e�etive tools for re-

duing the ourrene of multi-loal-minima a�eting GPR investigations then

allowing the use of a loal searh tehnique based on the Conjugate Gradient

(CG) method to iteratively solve the inverse problem at hand. Seleted results

are reported and analyzed to give some insights to the interested readers on the

advantages and the limitations of suh an approah when handling synthetially-

generated and experimental GPR data, as well.
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5.1. INTRODUCTION AND RATIONALE

5.1 Introdution and Rationale

In the last deades, ground penetrating radars (GPRs) have been widely used

in subsurfae non-destrutive testing (NDT ) problems [1℄[13℄[77℄[78℄ arising in

arhaeology, geology, demining, pavement survey, tunnel detetion, and polie

investigation [59℄[79℄-[83℄. Suh a popularity mainly derives from the superior

performane in terms of resolution, depth of investigation, speed, and osts om-

pared to other NDT tehnologies [59℄[79℄[80℄[83℄. Unfortunately, retrieving the

dieletri properties of buried objet from GPR data, usually olleted in the

time domain, is a very hallenging task beause of the theoretial properties of

the assoiated inverse problems (i.e., ill posedness and non-linearity [84℄[85℄) as

well as the dimensionality of the problem at hand [86℄. To fae suh hallenges,

several GPR prospeting algorithms have been proposed in the state-of-the-art

literature. Approximate formulations of the omplete non-linear problem have

been often taken into aount [84℄[86℄-[88℄. More spei�ally, weak satterers

have been suessfully retrieved through Born [84℄[86℄[88℄[89℄ or distorted-Born

GPR approximations [87℄ by solving the arising linear problem with trunated

singular value deomposition (TSVD) algorithms [84℄[86℄-[88℄. Nevertheless, the

derivation of GPR prospeting tehniques able to faithfully handle strong and/or

extended satterers and deal with related multi-minima issues is still an open

hallenge [83℄. Indeed, even though global searh strategies based on Evolution-

ary Algorithms (EAs) ould, in priniple, suessfully address nonlinear problems

[34℄[41℄, their �bare� use is generally prevented in subsurfae imaging beause of

the size of the domains under investigations and the arising onvergene and

omputational loads.

On the other hand, the generalization of multi-fousing (MF ) inversion teh-

niques borrowed from �free-spae� imaging [54℄[72℄[75℄ is a potentially appealing

approah to be adopted sine GPR time-domain signals are intrinsially multi-

frequeny data. Historially,MF iterative strategies have been spei�ally intro-

dued to mitigate loal minima problems in inverse sattering [51℄[54℄[72℄. By

keeping at eah MF iteration the number of unknowns as lose as possible to the

available data information [90℄, the original omplex imaging problem is reast

to a sequene of simpler data-mismathing ost funtion minimizations where

the ourrene of loal minima is strongly redued [54℄[72℄. This latter enables

as an interesting by-produt the possibility to use loal optimization strategies

that allow a signi�ant omputational saving with respet to EAs [34℄[41℄.

This hapter is then aimed at introduing a robust and e�ient omplement

to existing GPR prospeting strategies based on the multi-minima mitigation

apabilities of MF proedures. Towards this end, subsurfae imaging from

time-domain GPR data is �rstly reast to a multi-frequeny inversion then a

frequeny-hopping (FH ) [91℄-[93℄ iterative sheme is adopted. Sine eah GPR

frequeny data is assoiated to a di�erent level of spatial resolution [92℄, the FH

approah is suitably integrated in a hierarhial multi-resolution sheme that ex-
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ploits a Conjugate Gradient (CG) [30℄[94℄ loal strategy as optimization solver.

The outline of the hapter is as follows. After the formulation of the GPR

prospeting problem (Set. 5.2), the proposed FHMF-CG method is introdued

and disussed (Set. 5.3). It is then assessed against syntheti data generated

through GprMax software [95℄ and omparisons with state-of-the-art tehniques

[87℄[96℄ are also disussed, while experimental validations [97℄ follow (Set. 5.4).

Eventually, some onlusions are reported (Set. 5.5).

5.2 GPR Prospeting - Inverse Sattering For-

mulation

Let us onsider the GPR transverse-magneti problem skethed in Fig. 5.1(a)

where two homogeneous, isotropi, and non-magneti half-spaes are separated

by an interfae at y = 0. The lower half spae of bakground relative permittivity

εrB and bakground ondutivity σB, ontains a set of satterers loated within

the investigation domain Dinv [Fig. 5.1(a)℄ and desribed by disontinuous (wrt

the bakground) pro�les of permittivity εr (r) and ondutivity σ (r). The free-
spae (ε0 and σ0 = 0) upper half spae omprises a set of V z-direted ideal

line soures loated at rv = (xv, yv > 0), v = 1, .., V and exited with the time-

domain urrent χ (t) [Fig. 5.1(b)℄ to generate in free spae the radiated �eld

[98℄[99℄

wv (r, t) ẑ =

[
1

2π |r− rv| c0
δ

(
t− |r− rv|

c0

)
∗ h (r− rv, t) ∗

∂χ (t)

∂t

]
ẑ (5.1)

where t stands for the time variable, ∗ is the onvolution operator, c0 is the free-
spae speed of light, δ (·) the Dira's delta, and h (r, t) is the transient response
of the antenna soure loated in r [99℄.

From the interations between the V line soures and the lower half spae (i.e.,

the bakground and the satterers) the signal (i.e., the GPR radargram) olleted

by the M ideal probes loated in the upper half-spae at rm = (xm, ym > 0),
m = 1, ...,M , [Fig. 5.1(d)℄ is given by

ũv (rm, t) = uv (rm, t) + qv (rm, t) = ev (rm, t) + sv (rm, t) + qv (rm, t)
m = 1, ...,M ; v = 1, ..., V

(5.2)

where sv is the sattered eletri �eld, qv is a zero-mean additive Gaussian noise

term modelling the measurement/environment noise, and ev is the inident (i.e.,
the eletromagneti �eld of the same senario but without the satterers) eletri

�eld.
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Figure 5.1: Problem de�nition - Geometry of the problem (a), plot of the exita-

tion signal in (b) time domain (i.e., χ (t)) and () frequeny domain (i.e., X (f)),
and of a typial GPR trae ũv (rm, t) (d) and assoiated sattered �eld s̃v (rm, t)
(e).
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In order to retrieve the satterers pro�le starting from the GPR radargrams,

the sattered �eld data [88℄ [s̃v (rm, t) , ũv (rm, t) − ev (rm, t) - Fig. 5.1(e)℄ are
�rstly determined by temporal muting the �rst part of the GPR trae ũv (rm, t),
m = 1, ...,M , v = 1, ..., V , that aounts for the diret oupling between the

transmitting soure antenna and the air-soil interfae [Fig. 5.1(d)℄

s̃v (rm, t) = Γ [ũv (rm, t)] v = 1, ..., V, (5.3)

Γ [·] being the gating operator [Fig. 5.1(e)℄. Indeed, suh a pre-proessing pro-

edure is equivalent, for the half-spae senario at hand, to the subtration of

the inident (or unperturbed) �eld, ev, from the total �eld, ũv, whih is a us-

tomary operation in mirowave inverse sattering experiments under ontrolled

onditions.

Afterwards, the Fourier transform of the time sattered data is omputed in K
frequeny samples

S̃
(k)
v (rm) ,

∫∞

−∞
s̃v (rm, t) exp

(
j2πf (k)t

)
dt

m = 1, ...,M ; v = 1, ..., V ; k = 1, ..., K
(5.4)

to avoid both 'insu�ieny' and redundany in the data as well as reduing the

omputational osts and the measurement burden, thus making it possible to

investigate wider domains Dinv. In (5.4), f (k) ∈ [fmin, fmax] is the k-th sam-

pling frequeny, [fmin, fmax] being the 3dB bandwidth of the spetrum of the

illuminating pulse X (f) =
∫∞

−∞
χ (t) exp (j2πft) dt [Fig. 5.1()℄ [88℄.

In frequeny-domain framework, the original retrieval problem beomes then that

of retrieving, in the investigation domain Dinv, the objet funtion [84℄[?℄

τ (k) (r) ,
(εr (r)− εrB)− j σ(r)−σB

2πf(k)ε0

ε0
, k = 1, ..., K (5.5)

and the total �eld

U (k)
v (r) ,

∫ ∞

−∞

uv (r, t) exp
(
j2πf (k)t

)
dt v = 1, ..., V ; k = 1, ..., K (5.6)

starting from the sattered , S̃
(k)
v (rm),m = 1, ...,M , v = 1, ..., V , k = 1, ..., K, and

the radiated , E
(k)
v (r) ,

∫∞

−∞
ev (rm, t) exp

(
j2πf (k)t

)
dt, v = 1, ..., V , k = 1, ..., K,

�eld frequeny samples. Mathematially, suh a problem an be reast to the

minimization of the data-mismath ost funtion [84℄

Φ(k) =
∑V

v=1

∑M
m=1

∣∣∣S(k)
v (rm)−Ŝ

(k)
v (rm)

∣∣∣
2

∑V
v=1

∑M
m=1

∣∣∣S̃(k)
v (rm)

∣∣∣
2 +

∑V
v=1

∫
Dinv

∣∣∣E(k)
v (r)−Ê

(k)
v (r)

∣∣∣
2
dr

∑V
v=1

∫
Dinv

∣∣∣E(k)
v (r)

∣∣∣
2
dr

k = 1, .., K

(5.7)

where Ŝ
(k)
v (r) and Ê

(k)
v (r) stand for the retrieved versions of S

(k)
v (r) and E

(k)
v (r),

respetively, and they are related to the estimated quantities τ̂ (k) (r) and Û
(k)
v (r)
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through the data [84℄

Ŝ
(k)
v (rm) = k2B

∫
Dinv
G(k)ext (rm, r

′) Û
(k)
v (r′) τ̂ (k) (r′) dr′

m = 1, ..,M, k = 1, ..., K, v = 1, ..., V
(5.8)

and the state equations [84℄

Ê
(k)
v (r) = Û

(k)
v (r)− k2B

∫
Dinv
G(k)int (r, r

′) Û
(k)
v (r′) τ̂ (k) (r′) dr′

r ∈ Dinv, k = 1, ..., K, v = 1, ..., V
(5.9)

G(k)int (r, r
′) and G(k)ext (r, r

′) being the 2D internal and external half-spae Green's

funtions for the k-th frequeny [84℄, respetively.

The problem of interest an be now summarized/stated as follows

GPR Inverse Sattering Prospeting Problem - Given E
(k)
v (r)

and S̃
(k)
v (rm), m = 1, ...,M , v = 1, ..., V , k = 1, ..., K, �nd τ̂ (k) (r)

and Û
(k)
v (r), v = 1, ..., V , k = 1, ..., K, within Dinv suh that (5.7) is

minimized.

5.3 FHMF-CG Inversion Proedure

The proposed solution proedure is a nested iterative algorithm omposed by an

external loop (k = 1, ..., K) implementing the FH strategy, while the internal

loop (s = 1, ..., S) performs the MF (Fig. 5.2).

The external FH sheme is essentially an information aquisition proess on-

sisting of K suessive solutions of (5.7), eah yle being related to the k-th
frequeny. Although the ontrast is a dispersive quantity whether lossy mate-

rials are at hand

1

(5.5), the reonstrution yielded at the (k − 1)-th step an

be exploited to provide a pro�table initialization for the suessive k-th one

[91℄[92℄[93℄ (e.g., the satterer support generally does not hange):

{
τ̂ (k) (r)

∣∣guess = 0 k = 1

τ̂ (k) (r)
∣∣guess = ℜ

{
τ̂ (k−1) (r)

}
+jℑ

{
τ̂ (k−1) (r)

}
f(k−1)

f(k) k = 2, ..., K.
(5.10)

In (5.10) the ontrast funtion retrieved at the (k−1)-th step is resaled to the k-
th frequeny by multiplying its imaginary part by the ratio f (k−1)/f (k)

. Moreover,

the guess total �eld distribution at the k-th external iteration is omputed, unlike

state-of-the-art FH methods [91℄, as follows





Û
(k)
v (r)

∣∣∣
guess

= E
(k)
v (r) k = 1

Û
(k)
v (r)

∣∣∣
guess

= Ψ
[
E

(k)
v (r) , τ̂ (k) (r)

∣∣guess
]

k = 2, ..., K
(5.11)

1

Lossy senarios are ommon in GPR appliations beause of the ondutive nature of the

materials and the soils at hand [79℄[80℄[81℄[82℄[83℄.
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where Ψ [·] stands for the 2D diret solver operator numerially omputed by

means of the Method of Moments (MoM )[91℄.

Figure 5.2: FHMF-CG Inversion Proedure - Flowhart of the GPR prospeting

method.

The internalMF loop (Fig. 5.2), arried out at eah k-th frequeny step, is aimed

at solving the k-th monohromati GPR problem by numerially minimizing

the ost funtion Φ(k)
(5.7) in S zooming steps starting from the initial (s =

1) distributions of the unknowns (5.10)(5.11). Towards this end, the problem

unknowns, τ (k) (r) and U
(k)
v (r) in (5.8) and (5.9), are disretized at eah s-

th step aording to a multi-fousing sheme that automatially enhanes the

spatial resolution in orrespondene with the Regions of Interest (RoI s) of Dinv

[54℄[72℄ where the satterers have been deteted. More in detail, the s-th RoI Ωs

(Ω1 = Dinv) is partitioned into N square subdomains entered at rn|s (rn|s ∈ Ωs,

n = 1, ..., N), N being the number of degrees of freedom (DoF s) of the sattered

�eld S
(k)
v [57℄, to yield

Û (k)
v (r)

∣∣∣
s
=

N∑

n=1

Û (k)
v,n

∣∣∣
s
ψ(k)
n (r′)

∣∣
s

(5.12)
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and

τ̂ (k) (r)
∣∣
s
=

N∑

n=1

τ̂ (k)n

∣∣
s
ψ(k)
n (r)

∣∣
s

(5.13)

where ψ
(k)
n (r)

∣∣∣
s
is the n-th retangular pulse basis funtion at the s-th MF step

of the k-th frequeny, while Û
(k)
v,n

∣∣∣
s
and τ̂

(k)
n

∣∣∣
s
are the orresponding �eld and

ontrast unknown oe�ients, respetively. By substituting (5.12) and (5.13) in

(5.8) and (5.9), the following disretized form of the data

Ŝ
(k)
v (rm) =

∑N
n=1 Û

(k)
v,n

∣∣∣
s
τ̂
(k)
n

∣∣∣
s

∫
Dinv
G(k)ext (rm, r

′) ψ
(k)
n (r′)

∣∣∣
s
dr′

m = 1, ..,M, k = 1, ..., K, v = 1, ..., V
(5.14)

and the state equations

Ê
(k)
v (rn|s) = Û

(k)
v,n

∣∣∣
s
−

∑N
n=1 Û

(k)
v,n

∣∣∣
s
τ̂
(k)
n

∣∣∣
s

∫
Dinv
G(k)int (rn|s , r′) ψ

(k)
n (r′)

∣∣∣
s
dr′

r ∈ Dinv, k = 1, ..., K, v = 1, ..., V
(5.15)

are obtained to dedue the disretized version of (5.7), Φ(k)
∣∣
s
, to be minimized

with a numerially e�ient loal searh algorithm. Owing to the suitable hoie

of the ratio between measurement data and unknowns aording to the DoF

riterion [57℄ and the (onsequent) redued ourrene of loal minima [90℄, a

CG-based deterministi optimization strategy [30℄[94℄ is here adopted. Starting

from (5.10) and (5.11), suh a minimization tehnique is de�ned through by the

following update equations [30℄[94℄





Û
(k)
v

∣∣∣
i+1

s
= Û

(k)
v

∣∣∣
i

s
+ α

(k)
v

∣∣∣
i

s
a
(k)
v

∣∣∣
i

s

τ̂
(k)
v

∣∣∣
i+1

s
= τ̂

(k)
v

∣∣∣
i

s
+ β

(k)
v

∣∣∣
i

s
b
(k)
v

∣∣∣
i

s

(5.16)

where i = 1, ..., I is the minimization iteration index,

Û(k)
v

∣∣∣
i

s
,

{
Û (k)
v,n

∣∣∣
i

s
, n = 1, ..., N

}
(5.17)

and

τ̂
(k)
v

∣∣i
s
,

{
τ̂ (k)n

∣∣i
s
, n = 1, ..., N

}
(5.18)

are the unknown total �eld and ontrast vetors, respetively, a
(k)
v

∣∣∣
i

s
and b

(k)
v

∣∣∣
i

s

are the orresponding searh diretions proportional to the gradient of Φ(k)
∣∣
s

[30℄[94℄), while α
(k)
v

∣∣∣
i

s
and β

(k)
v

∣∣∣
i

s
are the assoiated step lengths.

One i = I or the ost funtion stagnation arises[54℄), the minimization loop

(5.16) is stopped and a new internal MF step is performed (s ← s + 1) to up-

date the loalization and the size of Ωs through �ltering and lustering [54℄.
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Suessively, the spatial resolution is enhaned within the deteted RoI by up-

dating rn|s (s = 2, ..., S, rn|s ∈ Ωs, n = 1, ..., N), and the CG-based proess

is arried out again and again until the MF proess terminates (i.e., s = S or

the extension of the RoI does not hange signi�antly) [54℄. Suessively, the

estimated oe�ients vetors, τ̂
(k)
v

∣∣∣
I

S
and Û

(k)
v

∣∣∣
I

S
, are substituted in (5.12) and

(5.13) and then passed to the suessive FH step aording to (5.10) and (5.11).

The whole FHMF -CG proedure iterates until the loal minimization of the last

multi-fousing iteration (s = S) of the highest frequeny (k = K) is ompleted

(i = I).
In short, the proposed GPR prospeting inverse sattering method an be sum-

marized as follows (Fig. 5.2):

1. Initialization. Determine E
(k)
v (r) and S̃

(k)
v (rm), m = 1, ...,M , v =

1, ..., V , k = 1, ..., K from GPR radargrams, ũv (rm, t), m = 1, ...,M ,

v = 1, ..., V (see Set. 5.2). Set k = 1;

2. FH Loop. De�ne Φ(k)
(5.7) and initialize the unknowns by setting (5.10)

and (5.11);

3. MF Loop. Set s = 1,Ωs = Dinv. Compute N aording to the DoF

riterion [57℄;

4. MF Loop. Disretize the s-th RoI by omputing the ell enters, rn|s ∈
Ωs, n = 1, ..., N . Dedue the MF ost funtion by substituting (5.14) and

(5.15) in (5.7);

5. Deterministi Minimization. Update Û
(k)
v

∣∣∣
I

s
and τ̂

(k)
v

∣∣∣
I

s
, v = 1, ..., V ,

aording to (5.16) until onvergene (i = I);

6. MF Loop. If s = S then return Û
(k)
v

∣∣∣
I

S
and τ̂

(k)
v

∣∣∣
I

S
and goto Step 9 , else

goto Step 7 ;

7. MF Loop. Set s← s+ 1 and update Ωs with ��ltering� and �lustering�

proedures [54℄;

8. MF Loop. If

|area{Ωs}−area{Ωs−1}|
|area{Ωs}|

≤ γ then return Û
(k)
v

∣∣∣
I

s
and τ̂

(k)
v

∣∣∣
I

s
and

goto Step 9 , else goto Step 4 ;

9. FH Loop. If k = K then substitute the �nal oe�ients Û
(k)
v,n

∣∣∣
S
= Û

(k)
v,n

∣∣∣
I

S
,

n = 1, ..., N , v = 1, ..., V , and τ̂
(k)
v

∣∣∣
S

= τ̂
(k)
v

∣∣∣
I

S
, v = 1, ..., V , in (5.12)

and (5.13) to determine τ̂ (k) (r) = τ̂ (k) (r)
∣∣
S
and Û

(k)
v (r) = Û

(k)
v (r)

∣∣∣
S
,

k = 1, ..., K. Otherwise, set k ← k + 1 and goto Step 2 .
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It is worth observing that the FHMF -CG approah turns out very �exible sine

eah proedural blok (i.e., FH sheme, MF tehnique, minimizer) an be easily

modi�ed, updated, or substituted without altering the other ones. Analogously,

the ost funtion (5.7) an be easily adapted to take into aount additional reg-

ularization terms (e.g., multipliative [101℄ or sparseness terms [?℄[23℄). However,

these investigations are beyond the sope of the urrent researh work and they

will be properly addressed in future investigations.

5.4 Numerial and Experimental Validation

5.4.1 Rationale and Figures of Merit

In this setion, a set of illustrative experiments is presented to assess the features

and the potentialities of the proposed FHMF-CG inversion proedure in terms of

auray, numerial e�ieny, and robustness both onsidering syntheti (Set.

5.4.2) and measured data (Set. 5.4.3). Towards this end, the appliation of

the proposed MF sheme has been arried out by preproessing the GPR time-

domain signals

2

[Fig. 5.1(b)℄ through a disrete Fourier transform (Fig. 5.2),

and then extrating the data sets at K equispaed frequenies within the 3dB
bandwidth of the illuminating pulse [Fig. 5.1()℄. As regards the numerial

examples, time-domain syntheti data generated by means of GprMax software

[95℄ have been orrupted by zero-mean additive Gaussian noise, and the signal-

to-noise ratio (SNR) has been referred to the total �eld as [102℄

SNR ,

∑V
v=1

∑M
m=1

∑K
k=1

∣∣∣T (k)
v (rm)

∣∣∣
2

∑V
v=1

∑M
m=1

∑K
k=1

∣∣∣N (k)
v (rm)

∣∣∣
2 . (5.19)

To assess the quality and e�ieny of the method, beyond the visual represen-

tation of the retrieved ontrast pro�les, the integral error �gures [54℄

Ξ(k)
reg =

1

Nreg

Nreg∑

n=1

∣∣τ̂ (k) (rn)− τ (k) (rn)
∣∣

|τ (k) (rn) + 1| (5.20)

[where reg indiates if the error omputation overs the overall investigation

domain (reg ⇒ tot), the atual satterer support (reg ⇒ int) or the bak-

ground region (reg ⇒ ext)℄ have been reported, along with the inversion time

∆t. Furthermore, the ontrol parameters of the MF and CG proedures have

been seleted aording to the guidelines in [30℄[54℄[72℄.

2

It is worth remarking that GPR time-domain data, usually available in radargrams , have

been onsidered in both syntheti and experimental examples.
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5.4.2 Numerial Validation

5.4.2.1 Performane Assessment

The �rst set of examples is devoted to assess the performane of the proposed

FHMF-CG method when proessing syntheti data. The benhmark 2D GPR

senario onsists of a square investigation domain of side 0.8 m entered at

(0.00,−0.4) m whih is illuminated by V = 20 soures radiating a time-domain

Gaussian monoyle pulse [Fig. 5.1(b)℄ with spetrum entered at 300 MHz and

3 dB bandwidth overing the [200.0, 600.0]MHz range [Fig. 5.1()℄. The soures

are equally spaed on a 1 m line whih is loated at y = 0.1 m above the soil

[Fig. 5.1(a)℄, whih is haraterized by εrB = 4.0, σB = 10−3
S/m. A set of

M = 19 probes [o-loated with the soures

3

- Fig. 5.1(a)℄ ollet the total �eld,

and the Fourier transform is arried out assuming K = 5 frequenies.

In order to illustrate the FHMF-CG proedure (Set. 5.3) on a step-by-step basis,

a �hollow square� pro�le (internal side 0.08 m, external side 0.24 m) entered at

(0.12,−0.36) m and haraterized by τ = 1.0 [Fig. 5.3(a)℄ has been imaged in

noiseless onditions (Fig. 5.3). The reonstrutions obtained at the k = 1 FH

iteration (orresponding to the lowest frequeny, fk = 200 MHz - Fig. 5.3) show

that the multi-fousing proedure starts from the rough s = 1 reonstrution

[Fig. 5.3(b)℄, and then progressively zooms on the satterer support [s = 2, Fig.
5.3(); s = 3, Fig. 5.3(d)℄ until the onvergene of the MF loop is reahed [i.e.,

s = S = 4, Fig. 5.3(e)℄. Afterwards, the FH loop iterates on the subsequent

frequeny (k = 2, fk = 300 MHz), performing the same iterative proess [but

exploiting the gathered information from the k − 1 step - see (5.10) and (5.11)℄

to yield the k = 2 retrieved pro�le [Fig. 5.4(b)℄. The proedure is then repeated

[k = 3 - Fig. 5.4(d); k = 4 - Fig. 5.4(f )℄ until k = K = 5 [Fig. 5.4(h)℄. As

regards the auray evolution during the FH steps, the reonstrutions obtained

for eah k shows that the GPR image quality improves as suessive iterations

are performed [e.g., k = 1, Fig. 5.3(e) vs. k = 5, Fig. 5.4(h)℄, as it is also

on�rmed by the orresponding total error �gures (i.e., Ξ
(k)
tot

∣∣∣
k=1

= 3.96 × 10−2

vs. Ξ
(k)
tot

∣∣∣
k=5

= 1.81 × 10−2
- Tab. 5.1). Indeed, the size and permittivity of the

internal �hollow� region is orretly deteted only at the highest frequeny [i.e.,

k = 5, fk = 600 MHz - Fig. 5.4(h)℄, while it appears distorted at the previous

FH steps [e.g., it seems narrower at k = 2, fk = 300 MHz - Fig. 5.4(b)℄ despite

the noiseless senario.

3

The GPR multi-view multi-stati setup operates so that when one soure is ative, the

remaining V − 1 = M = 19 at as ideal �eld probes [Fig. 5.1(a)℄.
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Figure 5.3: Illustrative Example [�Hollow square� pro�le, εrB = 4.0, σB = 10−3

S/m, τ = 1.0, Noiseless data, f1 = 200 MHz, k = 1℄ Atual (a) and FHMF-CG

retrieved dieletri pro�les when (b) s = 1, (b) s = 2, (b) s = 3, (e) s = S = 4.
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Figure 5.4: Illustrative Example [�Hollow square� pro�le, εrB = 4.0, σB = 10−3

S/m, Noiseless data℄ Dieletri pro�les retrieved by (a)()(e)(g) FH-CG and

(b)(d)(f )(h) FHMF-CG when (a)(b) q = 2 (f2 = 300 MHz), (a)(b) q = 3
(f3 = 400 MHz), (a)(b) q = 4 (f4 = 500 MHz), (a)(b) q = 5 (f5 = 600 MHz).
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Figure 5.5: Performane Assessment [�Hollow square� pro�le, εrB = 4.0, σB =
10−3

S/m, τ = 1.0℄ Behaviour of the integral error vs. the SNR (a), and

dieletri pro�les retrieved by (b)(d) FH-CG and ()(e) FHMF-CG when (b)()

SNR = 30 dB, (d)(e) SNR = 10 dB.
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The reonstrutions obtained with a �bare� FH approah (i.e., FH-CG), re-

ported in Fig. 5.4 for omparison purposes, remark the e�etiveness of the MF

paradigm. Indeed, even exploiting all the frequeny data [i.e., k = K℄, the single-

resolution method is only able to roughly detet the loation of the satterer,

but ompletely misses its shape and ontrast [i.e., Fig. 5.4(g) vs. Fig. 5.4(h)℄.

This is further remarked by the orresponding total (e.g., Ξ
(k)
tot

∣∣∣
FHMF−CG

k=K
= 1.81×

10−2
vs. Ξ

(k)
tot

∣∣∣
FH−CG

k=K
= 1.11 × 10−1

- Tab. 5.1), internal (e.g., Ξ
(k)
int

∣∣∣
FHMF−CG

k=K
=

1.24×10−1
vs. Ξ

(k)
int

∣∣∣
FH−CG

k=K
= 2.81×10−1

- Tab. 5.1), and external integral errors

(e.g., Ξ
(k)
ext

∣∣∣
FHMF−CG

k=K
= 8.71 × 10−3

vs. Ξ
(k)
ext

∣∣∣
FH−CG

k=K
= 8.78 × 10−2

- Tab. 5.1).

Even more impressively, the reonstrution obtained at the k = 1 step of the

FHMF-CG are signi�antly better than those ahieved at the k = K step of the

bare method [i.e.,

Ξ
(k)
tot

∣∣∣
FH−CG

k=K

Ξ
(k)
tot

∣∣∣
FHMF−CG

k=1

≈ 2.8 - Fig. 5.3(e) vs. Fig. 5.4(g)℄. These results

support the previous laim onerning the apability of multifousing approahes

to redue non-linearity issues arising in GPR imaging (see Set. 5.3).

To assess proposed method against noisy data, the same senario has been inves-

tigated assuming SNR ∈ [10, 50] dB (Fig. 5.5). The plots of the total integral

error vs. the noise level show that the FHMF-CG provides an auray equal to

that of the noiseless ase until SNR ≈ 40 dB [i.e.,

Ξ
(K)
tot

∣∣∣
SNR=40 dB

Ξ
(K)
tot

∣∣∣
Noiseless ≈ 1.01 - Fig.

5.5(a)℄, while it smoothly degrades for lower SNR values [e.g.,

Ξ
(K)
tot

∣∣∣
SNR=30 dB

Ξ
(K)
tot

∣∣∣
Noiseless ≈

1.2 - Fig. 5.5(a)℄, as it is also on�rmed by the pro�le retrieved when SNR = 30
dB [Fig. 5.5() vs. Fig. 5.4(h)℄. Moreover, the proposed method is able to de-

tet the presene and position of the satterer even in extreme noise onditions

[i.e., SNR = 10 dB - Fig. 5.5(e)℄, although the shape turns out distorted in this

ase [Ξ
(K)
tot

∣∣∣
SNR=10 dB

≈ 2.31× 10−1
- Fig. 5.5(a)℄. On the ontrary, the FH-CG

single-resolution approah provide unsatisfatory pro�les even with moderate

noise [Ξ
(K)
tot

∣∣∣
SNR=30 dB

FH−CG
≈ 1.1 × 10−1

- Fig. 5.5(b)℄, and it beomes ompletely

unreliable for lower SNR values [Ξ
(K)
tot

∣∣∣
SNR=10 dB

FH−CG
≈ 7.4× 10−1

- Fig. 5.5(d)℄.

The robustness of the proposed FHMF-CG sheme is then evaluated against a

variation of the satterer ontrast. Towards this end, a �square� pro�le of side

0.16 m entered at (−0.08,−0.24) m has been simulated assuming τ ∈ [1.0, 2.2]
for di�erent SNR values (Fig. 5.6).
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Figure 5.6: Performane Assessment [�Square� pro�le, εrB = 4.0, σB = 10−3

S/m℄ Behaviour of the integral error vs. τ (a), and dieletri pro�les retrieved

by (b)(d) FH-CG and ()(e) FHMF-CG when (b)() τ = 1.0, (d)(e) τ = 2.2
when SNR = 30 dB.
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The behaviour of Ξ
(K)
tot obtained by the FHMF-CG in the noiseless ase [dashed

blue line - Fig. 5.6(a)℄ shows that an extremely good �delity is ahieved whatever

the target ontrast [i.e., Ξ
(K)
tot

∣∣∣
FHMF−CG

∈ [8.7× 10−3, 1.2× 10−2] - Fig. 5.6(a)℄,

whih is always signi�antly better than that shown by the single-resolution

method [e.g., Ξ
(K)
tot

∣∣∣
FH−CG

≈ 8.2 × 10−2
when τ = 2.2 - Fig. 5.6(a)℄. However,

the FHMF-CG auray signi�antly worsens when low τ with moderate noise

levels are at hand [SNR = 30 dB - green lines, Fig. 5.6(a)℄.

More in detail, the integral error inreases of almost one order of magnitude

when τ = 2.2→ 1.0 [i.e.,

Ξ
(K)
tot

∣∣∣
τ=1.0

FHMF−CG

Ξ
(K)
tot

∣∣∣
τ=2.2

FHMF−CG

≈ 9.1 when SNR = 30 dB- Fig. 5.6(a)℄,

reahing a value whih is even above that of the orresponding single-resolution

method [i.e., Ξ
(K)
tot

∣∣∣
τ=1.0

FHMF−CG
≈ 1.16 × 10−1

vs. Ξ
(K)
tot

∣∣∣
τ=1.0

FH−CG
≈ 9.8× 10−2

- Fig.

5.6(a)℄. This behaviour, whih is also on�rmed when lower SNR values are at

hand [SNR = 20 dB - red lines, Fig. 5.6(a)℄, suggests that the multifousing

proedure an exhibit sub-optimal performane when handling low ontrast sat-

terers in high noise senarios. By analyzing the orresponding reonstrutions

[SNR = 30 dB, τ = 1.0 - Fig. 5.6()℄, it turns out that in this ase the MF

proedure is not able to orretly loate the RoI beause the artifats have a

ontrast whose magnitude is lose to that of the atual target [Fig. 5.6()℄. A-

ordingly, the FHMF-CG method does not e�etively alloate the DoF s within

the domain, resulting in a �delity similar to that of the single-resolution teh-

nique [Fig. 5.6() vs. Fig. 5.6(b)℄. On the ontrary, higher ontrast targets

are aurately retrieved by the FHMF-CG method, sine the zooming proedure

orretly identi�es the RoI [e.g., SNR = 30 dB, τ = 2.2 - Fig. 5.6(e) vs. Fig.

5.6(d)℄.

The next set of numerial experiments is devoted to the analysis of the FHMF-

CG sensitivity to the number of available measurements M (Fig. 5.7). To

this end, the retrieval of a �two-bar� pro�le entered in (0.16,−0.24) m and

haraterized by τ = 1.4 [Fig. 5.8(a)℄ has been arried out assuming an inreasing

number of probes (i.e., M ∈ [19, 76]) in di�erent noise onditions. By observing

the plots of the total integral error obtained by the FHMF-CG method [Fig.

5.7(b)℄ for a �xed number of measurements, it turns out that, as expeted, the

auray improves as the SNR enhanes [e.g., Ξ
(K)
tot

∣∣∣
SNR=20 dB

FHMF−CG
≈ 8.9 × 10−2

vs. Ξ
(K)
tot

∣∣∣
SNR=50 dB

FHMF−CG
≈ 3.2 × 10−2

when M = 38 - Fig. 5.7(b)℄. Analogously,

inreasing the number of measurements redues the error for a �xed SNR [e.g.,

Ξ
(K)
tot

∣∣∣
M=19

FHMF−CG
≈ 5.1× 10−2

vs. Ξ
(K)
tot

∣∣∣
M=76

FHMF−CG
≈ 2.9 × 10−2

when SNR = 30

dB - Fig. 5.7(b)℄.
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Figure 5.7: Performane Assessment [�Two-bar� pro�le, εrB = 4.0, σB = 10−3

S/m, τ = 1.4℄ Behaviour of the total integral error versus M and SNR for (a)

FH-CG and (b) FHMF-CG .
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Figure 5.8: Performane Assessment [�Two-bar� pro�le, εrB = 4.0, σB = 10−3

S/m, τ = 1.4, SNR = 20 dB℄ Atual (a) and dieletri pro�les retrieved by

(b)(d) FH-CG and ()(e) FHMF-CG when (b)() M = 19, (d)(e) M = 76.

Moreover, the plots in Fig. 5.7 show that (i) the FHMF-CG approah never

exeeds a ≈ 10% reonstrution error, even in the worst onditions [i.e., SNR =
20 dB, M = 19 - Fig. 5.7(b)℄, and (ii) whatever the noise level and M value,

the multifousing proedure outperforms the FH-CG one [Fig. 5.7(b) vs. Fig.
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5.7(a)℄. Furthermore, the reonstrutions in Fig. 5.8 suggest that the FHMF-

CG is able to exploit the additional measurements to signi�antly enhane its

�delity espeially in low SNR onditions [i.e., SNR = 20 dB - Fig. 5.8() vs.

Fig. 5.8(e)℄, therefore ahieving a satisfatory auray [i.e., Ξ
(K)
tot

∣∣∣
SNR=20 dB

FHMF−CG
≈

4.2 × 10−2
when M = 76 - Fig. 5.8(e)℄. On the ontrary, the FH-CG tehnique

does not exhibit a sensible performane improvement in this ase [Fig. 5.8(b) vs.

Fig. 5.8(d)℄.

FH-CG FHMF-CG

fk [MHz℄ Ξ
(k)
tot Ξ

(k)
int Ξ

(k)
ext Ξ

(k)
tot Ξ

(k)
int Ξ

(k)
ext

200.0 1.18× 10−1 3.61× 10−1 5.24× 10−2 3.96× 10−2 1.31× 10−1 2.98× 10−2

300.0 1.06× 10−1 3.51× 10−1 6.32× 10−2 2.79× 10−2 1.44× 10−1 1.73× 10−2

400.0 1.02× 10−1 3.01× 10−1 7.11× 10−2 1.85× 10−2 1.72× 10−1 5.00× 10−3

500.0 9.56× 10−2 2.86× 10−1 7.18× 10−2 1.84× 10−2 1.61× 10−1 4.50× 10−3

600.0 1.11× 10−1 2.81× 10−1 8.78× 10−2 1.81× 10−2 1.24× 10−1 8.71× 10−3

∆t 7.0× 103 [s℄ 2.5× 103[s℄

Table 5.1: Illustrative Example [�Hollow square� pro�le, εrB = 4.0, σB = 10−3

S/m, τ = 1.0, Noiseless data℄ Figures of merit.

Finally, as for the omputational issues, Tab. 5.1 also reports the inversion time

∆t required when handling the �hollow-square� satterer in Fig. 5.3(a). For the

sake of fairness, all simulations have been performed assuming non-optimized

Fortran implementations of the proedures running on a standard Linux laptop

(with single-ore 2.1GHz CPU ). As it an be notied, despite the multi-frequeny

nature of the onsidered GPR prospeting problem, the proposed FHMF-CG

approah is able to provide the �nal reonstrution in less than 42 minutes (i.e.,

∆t ≈ 2.5×104 s - Tab. 5.1), while the single resolution method (whih has to solve

a larger problem at eah FH step [91℄) requires above 116 minutes to omplete.

This result, whih does not depend on the target features (similar∆t values have
been obtained in all the numerial examples), highlights the e�ieny of the

onsidered multi-fousing sheme, whih depends on its apability to deompose

a large inversion problem in a sequene of smaller ones with redued nonlinearity

[54℄.

5.4.2.2 Comparisons with State-of-the-Art Methods

The next set of numerial experiments is aimed at assessing the proposed FHMF-

CG method with respet to omparable state-of-the-art approahes. Towards

this end, the setup in [96℄ has been onsidered as the �rst benhmark.

72



CHAPTER 5. GPR PROSPECTING THROUGH AN INVERSE

SCATTERING FREQUENCY-HOPPING MULTI-FOCUSING APPROACH

Re Im

A



t

u

a

l

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

y 
[m

]

x [m]

 0

 0.02

 0.04

 0.06

 0.08

 0.1

R
e{

τ(
x,

y)
}

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

y 
[m

]

x [m]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Im
{τ

(x
,y

)}

(a) (b)

F

H

M

F

-

C

G

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

y 
[m

]

x [m]

 0

 0.02

 0.04

 0.06

 0.08

 0.1

R
e{

τ(
x,

y)
}

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

-0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8

y 
[m

]

x [m]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Im
{τ

(x
,y

)}

() (d)

10-3

10-2

10-1

100

∞ 40  50  60  70

[N
or

m
al

iz
ed

 v
al

ue
]

SNR [dB]

Ξ(K)
tot Ξ(K)

int Ξ(K)
ext

(e)

Figure 5.9: Comparative Assessment [�Cirle� pro�le [96℄, εrB = 9.0, σB = 10−2

S/m, ε = 9.05, σ = 0.0, k = K = 3℄ Real (a)() and imaginary parts (b)(d) of

the atual (a)(b) and FHMF-CG retrieved pro�le when SNR = 50 dB ()(d),

and (e) behaviour of the integral error vs. the SNR.
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Figure 5.10: Comparative Assessment [�Large square� pro�le [87℄, εrB = 9.0,
σB = 10−2

S/m, τ = 3.0, k = K = 6℄ (a) Behaviour of the integral error vs. the
SNR and (b) atual and () FHMF-CG retrieved pro�les when SNR = 50 dB.

More spei�ally, a �irle-shaped� target entered at (0.0,−1.0) m and with

radius 0.23 m [Figs. 5.9(a)-5.9(b)℄, haraterized by ε = 9.05 and σ = 0.0,
has been plaed in a square investigation domain of side 1.6 m, entered at

(0.0,−0.9) m (i.e., with a −0.1 m o�set with respet to the air-soil interfae)

with bakground dieletri properties εrB = 9.0, σB = 10−2
S/m [96℄. The

senario has been illuminated by V = 21 soures equispaed on a 2 m line plaed

on the air-soil interfae, and the obtained �eld has been sampled by M = 25
probes equally spaed on the same line [96℄.

The plots of the real [Fig. 5.9()℄ and imaginary part [Fig. 5.9(d)℄ of the ontrast

pro�le obtained at the k = K = 3 step assuming the same SNR levels of [96℄

4

point out that the proposed approah is able to orretly retrieve the number and

4

Sine the SNR in [96℄ is not de�ned as in (5.19), the �translation� of the employed SNR

numerial values has been arried out before performing the numerial simulations, for onsis-
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position the satterers, and to approximatively yield also its shape and ontrast

[e.g., Fig. 5.9(d) vs. Fig. 5.9(b)℄ despite the signi�ant losses in the soil (i.e.,

σB = 10−2
S/m). By omparing these results with the one obtained with the

linear TSVD-based inversion approah disussed in [96℄, it turns out that the

proposed method yield a more aurate estimation of the size and loation of the

target, as well as a less blurred bakground [i.e., Fig. 12 in [96℄ vs. Fig. 5.9(d)℄.

Indeed, the satterer enter is reliably approximated by the FHMF-CG [Figs.

5.9()-5.9(d)℄, while a non-negligible o�set was shown in [96℄. Moreover, a similar

auray an be obtained in a wide set of noise onditions [i.e., SNR ≥ 40 dB

- Fig. 5.9(e)℄. These results suggests that using a fully non-linear methodology

(handled through a multi-fousing approah) an provide an improved auray

with respet to approximated formulations (i.e., distorted Born [96℄) even in

senarios where these approximations are aeptable.

Analogous onsiderations arise when applying the FHMF-CG method to the test

ase presented in [87℄. In this ase, a square satterer of side 0.5 m entered at

(0.0,−1.45) m [τ = 3.0 - Fig. 5.10(b)℄ has been imaged assuming V = 21 soures
and M = 20 probes displaed on a 3 m-long line on the air-soil interfae [87℄.

Towards this end, a 1.5 × 2.0 m D (εRb = 9.0, σB = 10−2
S/m) entered at

(0.00,−1.25) m (0.5 m depth) has been onsidered [87℄. By omparing the plot

of the retrieved pro�le at the k = K = 6 FH step [SNR = 50 dB - Fig. 5.10()℄

with the orresponding reonstrution shown obtained with a linear inversion

algorithm under the Distorted Born Approximation (i.e., Fig. 7 in [87℄) it turns

out that both the shape and the size of the target are more aurately retrieved

by the FHMF-CG method.

Moreover, the plot of the integral errors vs. the SNR show that the obtained

performane is quite stable with respet to the noise level [i.e., Ξ
(K)
tot < 2.1×10−1

when SNR > 50 dB - Fig. 5.10(a)℄, and it smoothly degrades for lower and

lower SNRs [Fig. 5.10(a)℄. The redued FHMF-CG auray when SNR < 50
dB [Fig. 5.10(a)℄ is atually aused by the depth of the onsidered investigation

domain (i.e., y ∈ [−2,−0.5]m) and by the lossy nature of the soil (i.e., σB = 10−2

S/m), whih ause a very low sattered �eld to be reeived by the probes (i.e.,

at SNR = 30 dB, the signal-to-noise ratio omputed over the sattered �eld

turns out equal to ≈ 10 dB in this ase), despite the non-negligible ontrast [i.e.,

τ = 3.0 - Fig. 5.10(b)℄.

5.4.3 Experimental Validation

The last validations are onerned with the inversion of experimental data. To-

wards this end, the measured GPR radargrams in Area 5 of the Near Surfae

Geophysial Group (NSGG) Test Site 2 [97℄ using theMalaX3M GPR equipment

[103℄ have been onsidered [Fig. 5.11()℄.

teny.
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Figure 5.11: Experimental Validation - Dataset [97℄ - Photo of the experimental

setup (ourtesy of Prof. M. Guy) (a), geometry of the problem (b), and full

measured radargram available in [97℄ ().
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Figure 5.12: Experimental Validation - Dataset [97℄ [V = 21℄ Real (a) and

imaginary parts (b) of the FHMF-CG retrieved pro�le.
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Figure 5.13: Experimental Validation - Dataset [97℄ - Real (a)()(e) and imag-

inary parts (b)(d)(f ) of the FHMF-CG retrieved pro�les when (a)(b) V = 5,
()(d) V = 11, and (e)(f ) V = 41.

The experimental data refer to the setup in Fig. 5.11(a), in whih an empty box

(εr = 1.0, σ = 0.0 S/m) of size 0.32×0.25×0.15 m is buried 0.15 m below the soil

surfae [104℄, whih is assumed to be haraterized by εrB = 5.0, σB = 38×10−3

S/m. The senario is investigated through a single pair of transmitting-reeiving

antennas positioned at the air-soil interfae, whih is moved over the investigation

domain [one trae every 0.02 m - Fig. 5.11(b)℄. The transmitter radiates a

Gaussian monoyle pulse with [100, 300]MHz 3 dB bandwidth [97℄[104℄, and the
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resulting �eld is olleted by the built-in reeiver (M = 1) whih is horizontally

separated by 0.2 m [Fig. 5.11(b)℄. A square investigation domain D of side 0.8
m and entered at (0.00,−0.45) m is onsidered for the inversion [Fig. 5.11(b)℄.

The plot of the retrieved real [Fig. 5.12(a)℄ and imaginary parts of the ontrast

[Fig. 5.12(b)℄ obtained using V = 21soure positions [uniformly plaed over a 0.8
m range - Fig. 5.11(b)℄ show that the proposed FHMF-CG approah is able to

orretly identify the presene, horizontal extension, and depth of the target [e.g.,

Fig. 5.12(a)℄, while the vertial extension is overestimated [e.g., Fig. 5.12(b)℄.

However, this behaviour is mainly related to low number of measurements (M =
1), and to the fat that the method does not aount for the non-ideal nature of

the soure/probe antennas (i.e., shielded bowties [97℄[104℄), and well as for any

roughness or non-homogeneity in the soil.

In order to assess the variation in the retrieval auray with the number of a-

quisitions, the same experiment has been repeated onsidering V = {5, 11, 41}
soure positions uniformly distributed in the 0.8 m range (Fig. 5.13). By om-

paring the plots of the retrieved pro�les when V = 11 [Figs. 5.13()-5.13(d)℄

and V = 41 [Figs. 5.13(e)-5.13(f )℄ it turns out that the number of views does

not signi�antly a�et the GPR prospeting auray, unless a very few data are

used [V = 5 - Figs. 5.13(a)-5.13(b)℄. Moreover, it is worth observing that V = 11
measurements, orresponding to a spatial sampling rate of 0.08 m, are su�ient

for the FHMF-CG method to retrieve the dieletri properties, horizontal size,

and depth of the buried target illuminated through standard GPR instruments.

5.5 Disussions

An innovative information aquisition approah based on a nested frequeny-

hopping multi-fousing inversion tehnique has been introdued for the solution

of 2D GPR prospeting problems. Towards this end, an external iterative FH

proedure has been proposed to handle multi-frequeny GPR data, and its om-

bination with an internal multi-resolution loop able to mitigate loal minima

issues in the assoiated inverse sattering problem has been presented. To min-

imize the arising multi-fousing ost funtion, a loal searh strategy based on

CG has been implemented and integrated. The proposed FHMF-CG method

has been validated against syntheti and measured GPR data, and a ompara-

tive assessment has been disussed.

From the methodologial viewpoint, the main ontributions of the present work

inlude (i) the derivation of a multi-fousing sheme that, unlike state-of-the-art

methods [54℄[72℄, is suitable for GPR prospeting and an handle time-domain

data through Fourier proessing, and (ii) the introdution of a frequeny-hopping

tehnique whih, at eah frequeny step, suitably initializes both the total �eld

[Eq. (5.11)℄ and the ontrast [Eq. (5.10)℄ using the aquired information, unlike

[91℄-[93℄.

The numerial and experimental validation has pointed out the following main
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outomes:

• the FHMF-CG method outperforms its single-resolution ounterpart in

terms of auray whatever the noise level, ontrast, measurement setup,

and target properties, exept for very weak satterers in low SNR senarios

in whih the two methods provide omparable �delities;

• thanks to its multi-fousing nature, the proposed approah is signi�antly

more numerially e�ient than a bare FH-CG tehnique (Tab. 5.1);

• the introdued algorithm favourably ompares with state-of-the-art teh-

niques based on linear formulations and TSVD solvers (Set. 5.4.2.2);

• the FHMF-CG tehnique an be e�etively used to detet the position,

depth, and dieletri properties of buried objets starting from few raw

GPR experimental measurements without the need to aurately model

the atual soil properties and antenna geometries (Set. 5.4.3).

Future works, beyond the sope of this thesis, will be aimed at extending the

proposed methodology to full 3D GPR senarios. Moreover, the possibility to

improve the method auray through aurate modelling of the employed trans-

mitting/reeiving antennas within the inversion proess is urrently under inves-

tigation.
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Chapter 6

Conlusions

In this hapter, a �nal numerial set of simulations is provided and ommented

with the aim of omparing the di�erent inversion strategies presented in this

thesis. Moreover, some �nal onsiderations on the presented methodologies for

subsurfae imaging are drawn, highlighting potentialities and limits of eah teh-

nique.
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6.1. COMPARISON BETWEEN DIFFERENT APPROACHES

6.1 Comparison Between Di�erent Approahes

In order to assess what are the potentialities as well as the limits of the proposed

inversion tehniques presented in this thesis, a �nal numerial assessment is here

presented. The onsidered benhmark senario onsists of a square investigation

domain of side 0.8 m entered at (0.00,−0.4) m whih is illuminated by V = 16
soures radiating a time-domain Gaussian monoyle pulse [Fig. 5.1(b)℄ with

spetrum entered at 300 MHz and 3 dB bandwidth overing the [200.0, 600.0]
MHz range [Fig. 5.1()℄. The lower half spae is oupied by soil, with εrB = 4.0
and σB = 10−3

S/m.

y 
[m

]

x [m]

Measurement Points
Source Locations

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

-1 -0.5  0  0.5  1

Dinv y 
[m

]

x [m]

Measurement Points
Source Locations

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

-1 -0.5  0  0.5  1

Dinv

(a) (b)

Figure 6.1: Comparative Assessment (Square Satterer at Di�erent Depths - L =
0.16m, (xc = 0.0m, εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m,

SNR = 20 dB) - Loation of the illuminating soures and of the measurement

points for the (a) ross-borehole and (b) half spae on�gurations.

For omparison purposes, two measurement on�gurations are onsidered,

both onsidering a set of M = 15 probes

1

, o-loated with the soures to form

a ross-borehole [Fig. 6.1(a)℄ and a half spae [Fig. 6.1(b)℄ setup. Conerning

the ross-borehole setup [Fig. 6.1(a)℄, the soures/probes are equally spaed

along two vertial lines at oordinates x = ±0.5 m, starting from a depth of

ymin = −1.0 [m℄ up to a depth of ymax = 0.0 m. For the half spae setup [Fig.

6.1(b)℄ the soures/probes are equally spaed on a 1 m line whih is loated at

y = 0.04 m above the interfae. As a benhmark pro�le, a �square� pro�le of

side 0.16 m [Fig. 6.2℄ entered at xc = 0.0 m and loated at di�erent depths

inside Dinv has been simulated assuming a ontrast funtion of τ = 1.5. More

preisely, the target baryentre is loated at a depth of yc = −0.16m for the �top�

on�guration [Fig. 6.2(a)℄, yc = −0.4m for the �intermediate� on�guration [Fig.

6.2(b)℄ and yc = −0.64 m for the �bottom� on�guration.

1

The GPR multi-view multi-stati setup operates so that when one soure is ative, the

remaining V − 1 = M = 15 at as ideal �eld probes.
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Figure 6.2: Comparative Assessment (Square Satterer at Di�erent Depths -

L = 0.16m, (xc = 0.0m, εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01
S/m, SNR = 20 dB) - Atual target used for the omparison for (a) �top� (yc =
−0.16m), (b) �intermediate� (yc = −0.4m) and () �bottom� (yc = −0.64m)

on�gurations.

The SNR omputed aording to (5.19) is suh that a resulting SNR = 20
dB an be estimated on the sattered �eld at the entral frequeny of 300 MHz.
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As a �rst analysis, we onsider the retrieved pro�les when the single-frequeny

IMSA−IN tehnique presented in Chapter 4 is employed in order to reover the

eletromagneti distributions of the investigated targets [Fig. 6.3℄. The IMSA−
IN −SOBA method presented in Chapter 3 will not be onsidered here, sine it

has been already widely veri�ed in Chapter 4 that its performanes are lower wrt

the full non-linear approah (i.e., without the SOBA approximation). Moreover,

the same parameters onsidered for the numerial results shown in Chapter 4

are onsidered (i.e., N = 100, Q = 50, α = 0.9, Imax,s=1 = 20, Imax,s>1 =
1000 and S = 4). In partiular, the retrieved pro�les are shown when using

both a ross-borehole [Fig. 6.3(a)(b)()℄ and a half spae [Fig. 6.3(d)(e)(f )℄

measurement on�guration. By looking at the retrieved pro�les in Fig. 6.3, it is

lear that the performanes ahievable with a ross-borehole setup signi�antly

overome those obtainable with a half spae setup. Moreover, if on the one

hand the performanes for the ross-borehole setup seem quite onstant when

hanging the depth of the unknown target, on the other hand the retrieved

ontrasts when using a half spae setup undergo a signi�ant and progressive

degradation when inreasing the depth of the satterer inside Dinv [i.e., passing

from Fig. 6.3(d) to Fig. 6.3(e) and to Fig. 6.3(f )℄. As a matter of fat, when

the satterer is at a depth of yc = −0.64 m [i.e., orresponding to 1.28λb at the
onsidered frequeny of 300 MHz, Fig. 6.3(f )℄, the inversion tehnique turns

out to be absolutely unapable to reover the shape and the eletromagneti

harateristis of the target. Suh a behaviour an be motivated by the fat

that half spae setups are strongly aspet-limited, given the fat that soures

and measurement points are both loated only above the interfae [Fig. 6.1(b)℄,

thus allowing the olletion of a very limited amount of information to perform

the inversion. On the ontrary, a ross-borehole setup [Fig. 6.1(a)℄, even if still

aspet-limited, allows the olletion of a larger amount of information with the

same number of soures V and measurements M , sine transmissions an �ross�

the investigation domain Dinv and hene the targets buried within it. Moreover,

soures and measurement points are loated at di�erent depths inside the soil, so

that more information an be olleted for targets whih are buried at signi�ant

depths inside Dinv. The above onsiderations are further on�rmed by the total

reonstrution error Ξtot obtained by the IMSA−IN method for the two setups.

In fat, we have for the �top� on�guration [Fig. 6.2(a)℄ Ξtot|”top”cross−borehole ≈
8.66 × 10−3

[Fig. 6.3(a)℄ vs. Ξtot|”top”half space ≈ 1.83 × 10−2
[Fig. 6.3(d)℄, for

the �intermediate� on�guration [Fig. 6.2(b)℄ Ξtot|”intermediate”
cross−borehole ≈ 3.72 × 10−3

[Fig. 6.3(b)℄ vs. Ξtot|”intermediate”
half space ≈ 2.91 × 10−2

[Fig. 6.3(e)℄, while for the

�bottom� on�guration [Fig. 6.2()℄ Ξtot|”bottom”
cross−borehole ≈ 4.12 × 10−3

[Fig. 6.3()℄

vs. Ξtot|”bottom”
half space ≈ 4.22 × 10−2

[Fig. 6.3(f )℄. The reonstrution error obtained

for this latter on�guration appears more that one order of magnitude larger

when onsidering an half spae setup wrt a ross-borehole setup.
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IMSA− IN ross-borehole IMSA− IN half spae
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Figure 6.3: Comparative Assessment (Square Satterer at Di�erent Depths -

L = 0.16m, (xc = 0.0m, εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01
S/m, SNR = 20 dB) - Final reonstrution obtained by the IMSA−IN method

when onsidering a (a)(b)() ross-borehole and (d)(e)(f ) an half spae setup.

It is however mandatory to remember that ross-borehole setups (as the one

depited in Fig. 6.1(a)) require in real appliations the drilling of the bakground

medium in order to displae the probes below the interfae. However, there are
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a lot of pratial senarios when drilling is atually impossible (e.g., for the

investigation of anient ruins or historial buildings) or, even more, it an ause

severe safety problems to the involved operators in ritial appliations suh as

demining [16℄. For these reasons, in a lot of pratial senarios a half spae [Fig.

6.1(b)℄ is not only preferrable but it is also the only possible hoie. Given that,

the strongly limited amount of information that an be olleted by using suh

a prospeting on�guration should be improved by trying to �add� information

oming from other �information soures�. In this thesis, this is e�etively done by

exploiting the available frequeny diversity of real GPR measurements through

the use of the FHMF − CG tehnique presented in Chapter 5. In order to

give the reader a more lear idea of what is the ahievable performane when

using the multi-frequeny FHMF −CG method, the same benhmark senario

onsidered for the previous analysis is used hereinafter (i.e., by keeping the same

position and number of the V soures andM probes), but fousing the attention

only on the half spae setup [Fig. 6.1(b)℄. More in details, Figs. 6.4(a)(b)()

show the reonstrutions obtained by using the single-frequeny version of this

tehnique, denoted as MF − CG2

. As it an be observed, the overall quality

of the reonstrutions obtained for di�erent depths of the unknown satterer

is higher wrt that of the reonstrutions obtained by the IMSA − IN [Figs.

6.3(d)(e)(f )℄. It is also evident that, even for the �bottom� senario, the single-

frequeny MF − CG is able to orretly identify the loation of the target,

even if it fails in properly reonstruting its eletromagneti harateristis [Fig.

6.4()℄. These onsiderations are on�rmed by the lower internal reonstrution

error Ξint: Ξint|”bottom”
MF−CG ≈ 4.21 × 10−1

[Fig. 6.4()℄ vs. Ξint|”bottom”
IMSA−IN ≈ 6.04 ×

10−1
[Fig. 6.3(f )℄. The performane improvement in this ase is due to the

approximated nature of the IN method, as the �inexat� word suggests, while

the CG approah handles the full derivation of the ost funtion without any

kind of approximation.

Last but not least, the remarkable improvement in terms of reonstrution

auray oming from the exploitation of multi-frequeny data is visually on-

�rmed by the reonstrutions obtained by the FHMF − CG method (Chapter

5) shown in Figs. 6.4(d)(e)(f ). Thanks to the exploitation of K = 5 equally

spaed frequeny omponents of the GPR measured spetrum via the Frequeny-

Hopping (FH) sheme, the FHMF − CG tehnique is able to orretly deter-

mine both the shape and the dieletri harateristis of the buried target [Figs.

6.4(d)(e)(f )℄ with an overall reonstrution auray signi�antly higher wrt its

single-frequeny ounterpart [Figs. 6.4(a)(b)()℄. Moreover, the information

oming from di�erent frequenies is able to �balane� the loss of information due

to the use of a half spae measurement on�guration, as veri�ed by the reon-

strution obtained for the deepest target [�bottom�, Fig. 6.4(f )℄. In this ase,

2

In order to allow a fair omparison between the di�erent inversion approahes, the same

number of disretization ells N = 100 has been assumed for all the test ases presented in

this setion.
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the internal error is Ξint|”bottom”
FHMF−CG ≈ 2.21× 10−1

, whih is signi�antly lower if

ompared to the reonstrution obtained by the single-frequeny IMSA − IN
[Fig. 6.3(f )℄ and by the single-frequeny MF − CG [Fig. 6.4()℄.
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Figure 6.4: Comparative Assessment (Square Satterer at Di�erent Depths -

L = 0.16m, (xc = 0.0m, εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01
S/m, SNR = 20 dB) - Final reonstrution obtained by the (a)(b)() single-

frequenyMF−CG and by the (d)(e)(f ) multi-frequeny FHMF−CGmethods

when onsidering a half spae measurement setup.
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6.2 Final Remarks

In this thesis, a new set of mirowave imaging methods for subsurfae prospet-

ing has been introdued. Chapters 3 and 4 presented two single-frequeny ap-

proahes based on the use of an inexat-Newton method. In partiular, the

inverse problem has been addressed in Chapter 3 by numerially solving the

Lippmann-Shwinger equation under the seond-order Born approximation. The

proposed IMSA−IN−SOBA reonstrution method has been validated through

an extended set of numerial results involving di�erent types of satterers and

noise onditions. Simulations have highlighted the following key results

• the proposed tehnique is able to pro�tably ombine the well assessed reg-

ularization apabilities of the adopted loal searh tehnique (the inexat-

Newton method) with the enhaned exploitation of available information

provided by the multi-fousing strategy, whih is able to redue the prob-

lem of loal minima arising from the non-linearity of the involved set of

equations.

• Moreover, the ombined strategy exhibits advantages over its standard

"bare" implementation in terms of ahieved auray and resolution, what-

ever the ontrast distribution (homogeneous/inhomogeneous), the ross-

setion geometry and the noise level on measured data.

• Furthermore, the proposed multi-fousing approah overomes the stan-

dard "bare" implementation also in terms of the omputational e�ieny,

thanks to the signi�ant redution of the problem unknowns at eah itera-

tive step, whih arises from the use of an adaptive oarse-to-�ne disretiza-

tion of the investigation areas at di�erent levels of resolution.

The approah presented in Chapter 4 extends this approximated strategy by

employing the full non-linear formulation of the sattering problem. In this

way, the IMSA− IN method is potentially able to deal with strong satterers,

too. The reonstrution performanes have been evaluated by means of several

numerial simulations. It has been found that

• the proposed approah provides quite good reonstrutions of the onsid-

ered targets showing a good robustness to the noise, as well;

• a signi�ant performane improvement in terms of reonstrution auray

an be observed wrt the SOBA-based approah presented in Chapter 3,

espeially for the retrieval of targets haraterized by high values of the

ontrast funtion;

• the results from the multi-fousing strategy turned out to be better both in

terms of reonstrution errors and omputational resoures than the stan-

dard bare inexat-Newton algorithm when applied to the same sattering

on�gurations.
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Finally, Chapter 5 presented an innovative information aquisition approah

based on a nested frequeny-hopping multi-fousing inversion tehnique for the

solution of 2D GPR prospeting problems. Towards this end, an external itera-

tive FH proedure has been proposed to handle multi-frequeny GPR data, and

its ombination with an internal multi-resolution loop able to mitigate loal min-

ima issues in the assoiated inverse sattering problem has been presented. To

minimize the arising multi-fousing ost funtion, a loal searh strategy based

on CG has been implemented and integrated. The proposed FHMF-CG method

has been validated against syntheti and measured GPR data, and a ompar-

ative assessment has been disussed. From the methodologial viewpoint, the

main ontributions of this thesis inlude

1. the derivation of a multi-fousing sheme that, unlike state-of-the-art meth-

ods [54℄[72℄, is suitable for GPR prospeting and an handle time-domain

data through Fourier proessing;

2. the introdution of a frequeny-hopping tehnique whih, at eah frequeny

step, suitably initializes both the total �eld [Eq. (5.11)℄ and the ontrast

[Eq. (5.10)℄ using the aquired information, unlike [91℄-[93℄.

The numerial and experimental validation has pointed out the following main

outomes:

• the FHMF-CG method outperforms its single-resolution ounterpart in

terms of auray whatever the noise level, ontrast, measurement setup,

and target properties, exept for very weak satterers in low SNR senarios

in whih the two methods provide omparable �delities;

• thanks to its multi-fousing nature, the proposed approah is signi�antly

more numerially e�ient than a bare FH-CG tehnique;

• the introdued algorithm favourably ompares with state-of-the-art teh-

niques based on linear formulations and TSVD solvers;

• the FHMF-CG tehnique an be e�etively used to detet the position,

depth, and dieletri properties of buried objets starting from few raw

GPR experimental measurements without the need to aurately model

the atual soil properties and antenna geometries.

Moreover, it has been demonstrated that exploiting di�erent frequeny ompo-

nents of the measured GPR spetrum an e�etively ounterbalane the loss of

information due to a strongly aspet-limited measurement setup, where soures

and probes are both loated above the interfae. In pratial senarios where

the drilling of the bakground medium for installing a ross-borehole measure-

ment system is forbidden or simply prohibitive, an half spae is the only possibile
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hoie. Given that, it has been proven that the apabilities of single-frequeny

approahes an be signi�antly enhaned by using multi-frequeny strategies, as

on�rmed by the numerial results in Set. 6.1.

Future works, beyond the sope of this thesis, will be aimed at extending the

proposed methodologies to full 3D GPR senarios, as well as at further assess

their potentialities and limitations in dealing with experimental data of di�erent

nature. Moreover, the possibility to improve the auray of the methods through

aurate modelling of the employed transmitting/reeiving antennas within the

inversion proess is urrently under investigation.
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Appendix A

Derivation of Eq. (4.5) and Eq. (4.6)

This appendix reports the details of the disretized version of the funtional Eq.

(4.5) [i.e., Eq. (4.6)℄. In order to numerially solve the inverse problem at hand,

the investigation area at a given sale s, Ωs, is partitioned into N square sub-

domains. In eah n-th ell, both the ontrast funtion and the inident �eld are

assumed to be pieewise onstant suh as their distributions in Ωs turn out to

be

τ (x, y) =

N∑

n=1

τnψn (x, y) (A.1)

E
(v)
inc/tot (x, y) =

N∑

n=1

E
(v)
inc/tot,nψn (x, y) (A.2)

where ψn (x, y) is a retangular pulse basis funtion [56℄. By testing the satter-

ing equations using Dira's delta funtions entered at the measurement points(
x
(v)
m , y

(v)
m

)
, m = 1, ...,M , v = 1, ..., V , equations (4.1) and (4.2) beome

E
(v)
tot,n = E

(v)
inc,n +

N∑

l=1

τlE
(v)
tot,l

∫

Ωs,l

Gint (xn, yn, x′, y′) dx′dy′ (A.3)

E
(v)
scatt,m =

N∑

l=1

τlE
(v)
tot,l

∫

Ωs,l

Gext
(
x(v)m , y(v)m , x′, y′

)
dx′dy′ (A.4)

where E
(v)
scatt,m = E

(v)
scatt

(
x
(v)
m , y

(v)
m

)
and (xn, yn) is the enter of the n-th sub-

domain of Ωs (i.e., Ωs,n).

By onsidering all the measurement points and rewriting the equations in a

matrix form, the following equation is obtained

A

(v)
(
τ ;E

(v)
tot

)
=

[
G

(v)
datadiag (τ )E

(v)
tot

(I−Gstatediag (τ ))E
(v)
tot

]
= b

(v) =

[
E

(v)
scatt

E

(v)
inc

]
(A.5)

103



where τ = [τ1, ..., τN ]
t
is an array ontaining the values of the ontrast funtion in

the N subdomains, diag (τ ) is a diagonal matrix whose diagonal elements are the

values of the array τ , E
(v)
tot =

[
E

(v)
tot,1, ..., E

(v)
tot,N

]
and E

(v)
inc =

[
E

(v)
inc,1, ..., E

(v)
inc,N

]
are

two arrays ontaining the values of the total and inident eletri �elds in the N

sub-domains, and E

(v)
scatt =

[
E

(v)
scatt,1, ..., E

(v)
scatt,M

]
is an array with the values of the

sattered eletri �eld at the M measurement points of the v-th view. Moreover,

G

(v)
data and Gstate are two matries of sizesM×N and N×N , respetively, whose

elements are the integrals of the Green's funtion.

Finally, Equation (4.6) is yielded by ombining all the V views as follows

A (τ ;Etot) =




G

(1)
datadiag (τ )E

(1)
tot

(I−Gstatediag (τ ))E
(1)
tot

.

.

.

G

(V )
datadiag (τ )E

(V )
tot

(I−Gstatediag (τ ))E
(v)
tot



= b =




E

(1)
scatt

E

(1)
inc
.

.

.

E

(V )
scatt

E

(V )
inc




(A.6)

where Etot =

[(
E

(1)
tot

)t

, ...,
(
E

(V )
tot

)t
]t
.
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