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Abstract

The study, development, and analysis of innovative inversion techniques for the
detection and imaging of buried objects is addressed in this thesis. The proposed
methodologies are based on the use of microwave radiations and radar techniques
for subsurface prospecting, such as, for example, the Ground Penetrating Radar
(GPR). More precisely, the reconstruction of shallow buried objects is firstly ad-
dressed by an electromagnetic inverse scattering method based on the integration
of the inexact Newton (IN) method with an interative multiscaling approach.
The performances of such an inversion approach are analyzed both when consid-
ering the use of a second-order Born approximation (SOBA) and when exploiting
the full set of non-linear equations governing the scattering phenomena for the
buried scenario. The presented methodologies are particularly suitable for ap-
plications such as demining (e.g., for the detection of unexploded ordnances,
UXOs, and improvised explosive devices, I EDs), for civil engineering applica-
tions (e.g., for the investigation of possible structural damages, voids, cracks or
water infiltrations in walls, pillars, bridges) as well as for biomedical imaging
(e.g., for early cancer detection).
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Chapter 1

Introduction

In recent years, there has been a growing interest in the development of imag-
ing systems based on the use of microwave radiations [1]-[5]. Due to the compa-
rable values of the incident wavelength and object linear dimensions, the phys-
ical phenomenon involved in these systems is the scattering of electromagnetic
waves. Approaches based on microwaves can be profitably employed in several
diagnostic scenarios, such as nondestructive testing and evaluation (NDT /NDE)
of materials in civil engineering [6]-[9], medical imaging for breast cancer detec-
tion [10]-[12], shallow investigation of Earth’s subsurface [13] as well as retrieval
of electromagnetic and geometrical characteristics of scatterers buried under the
air-soil interface [14][18].

One of the key instruments for subsurface monitoring and imaging is the ground
penetrating radar (GPR) [13|[19] which can be used, for example, for verifying
the structural stability of concrete structures and for crack detection inside inac-
cessible materials. Although very good results have been obtained by using GPR,
the solution of inverse scattering problems for buried detection is still a challeng-
ing issue, especially considering the need for fast and accurate apparatuses for
illuminating the target under test and measuring the scattered radiation, as well
as for efficient procedures to retrieve the geometrical and dielectric properties of
objects buried under ground with an acceptable level of resolution. In partic-
ular, concerning the inversion procedures, it seems that further researches are
required in order to overcome the limitations arising from the well known issues
of non-linearity and ill-posedness characterizing the basic electromagnetic formu-
lation [5]. The non-linearity is directly linked to the dependence of the unknown
total field inside the investigation area on the scatterer properties [20]|, while
the ill-posedness causes the solution to be extremely sensitive to noise affecting
available data for the inversion. Moreover, the available measured data are lim-
ited and practical measurements are carried out from limited transmitter-receiver
positions, resulting in limited data diversity [20]. For these reasons, efficient reg-
ularization techniques [21]-[23] capable to mitigate the above mentioned issues
are needed. Approaches based on Rytov [24] and Tikhonov strategies [2] have



been exploited, along with numerical approximations such as first-order [25][26]
and second-order [27]-[29] Born approximations.

In this context, it has also been proved that deterministic inversion procedures
[30]-[32] can provide very accurate reconstruction results, although they suffer
from a strong dependence on the initialization phase. On the other hand, the use
of stochastic techniques has also been proposed [33]-[38]. Stochastic approaches
can efficiently overcome the above limitation, but they exhibit a significantly
higher computational cost [41][42].

Among deterministic approaches, inexact-Newton (/N) methods [28][29][43]-[49]
have been proven to be effective as linearization and regularization tools for solv-
ing inverse-scattering problems, both numerically and experimentally [44]. Ba-
sically, these methods provide a linearization of the imaging equations by means
of a Newton’s expansion through the Fréchet derivative, and solve them in an
approximate way [29]. However, the application of such an approach has been
mainly limited to the free-space scenario, while a more complex formulation is
needed when dealing with subsurface prospecting [50]. The I N method has been
preliminary applied to retrieve buried objects in [28] within the second-order
Born approximation (SOBA) [27|. By exploiting such a second-order approx-
imation, a significant reduction of the computational burden can be achieved,
thanks to a reduction of the problem unknowns (the dielectric parameters), since
the internal total electric field is written as the sum of the known incident field
and the internal linearized scattered field (which is also expressed in terms of the
transmitted field) [29].

It must be also noticed that multi-resolution approaches [51|-[53| have been
proven to be very effective in reducing the amount of local minima arising from
the non-linearity of the free-space inverse-scattering problem, bringing a bet-
ter exploitation of the available information from collected data and yielding
both accurate reconstructions and high computational efficiency. The synergetic
integration of a direct regularization technique, such as the I N method, and
the iterative multi-scaling approach (IMSA) [54] has been shown to effectively
tackle both the non-linearity and the ill-posedness /ill-conditioning of microwave
imaging problems by exploiting the best properties of the two strategies and
mutually overcoming their intrinsic limitations in tomographic imaging [48]-[47].
As a matter of fact the exploitation of such an approach leads to a strong simpli-
fication of the problem, thanks its capability to enforce a higher resolution only
in the so-called regions-of-interest (Rols) [54].

Moreover, a significant advantage in using GPR as the subsurface prospecting
tool is represented by the availability of wide-band measurements [59], covering
a wide range of the microwave radiation spectrum. In fact, pulsed GPR systems
are based on the transmission of short electromagnetic pulses in time-domain
[59], which penetrate inside the host medium and are partially reflected towards
the receiving antennas each time a discontinuity of the dielectric characteristics
is found. Given that, the capabilities of standard single-frequency inverse scat-
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tering approaches can be further extended by introducing additional information
coming from the intrinsic frequency diversity of the collected data. In such a way,
the exploitation of wide-band GPR measurements requires the development of
multi-frequency techniques which are able to profitably exploit the information
associated to different components of the measured spectrum.

Following the above considerations, this thesis presents two efficient single-
frequency techniques based on the integration of the inexact-Newton (I N) method
with a multifocusing technique, and then a multi-frequency approach which is
able to effectively exploit the frequency diversity of GP R measurements through
a Frequency-Hopping (F'H) scheme.

Thesis outline

The thesis is organized as follows. Firstly, the basic equation governing in fre-
quency domain the scattering phenomena in subsurface problems are introduced
in Chapter 2. Then, a single-frequency approach based on the /N method under
the second order Born approximation (SOBA) is presented in Chapter 3. An
improved version of this technique, treating the full non-linear inverse scatter-
ing problem is shown in Chapter 4, extending to strong scatterers the imaging
capabilities of the first approximated approach. Finally, Chapter 5 presents an
innovative microwave inverse-scattering nested approach combining a Frequency-
Hopping (F H) procedure and a Multi-Focusing (M F') technique for dealing with
multi-frequency GPR measurements. Finally, a comparison among the different
presented techniques is given and some final conclusions are drawn in Chapter
6.






Chapter 2

Inverse Scattering Equations for
the Subsurface Problem

In this chapter, the basic equations mathematically modeling the subsurface
inverse scattering problem in frequency domain are presented. More precisely,
the two equations completely describing the fields measured within and outside
the buried investigation domain are referred to as “state” and “data” equations.
It is shown that the problem of retrieving the electromagnetic characteristics
of unknown objects buried below the interface in a half space scenario can be
reformulated as the minimization of a suitable cost function. Such a cost function
accounts for both the mismatch between the measured and computed scattered
field over a given observation domain and for the mismatch between the measured
and the computed incident field within the investigation domain.



2.1. GEOMETRY OF THE PROBLEM

2.1 Geometry of the Problem

Let us consider a set of cylindrical scatterers buried in a homogeneous, isotropic
and non-magnetic half space medium [Fig. 2.1]. The upper medium (i.e., y > 0)
is supposed to be air, with dielectric properties equal to those of the vacuum
(g0 = 8.85 x 107!2 Farad/m, po = 1.26 x 107% Henry/m and oy = 0 S/m). The
lossy lower half space of background relative permittivity €,.5 and background
conductivity op S/m, contains a set of scatterers located within the known in-
vestigation domain D;,, [Fig. 2.1| and described by discontinuous (wrt the back-
ground) profiles of permittivity ¢, (r) and conductivity o (r), where the position
vector r denotes a point in the transverse plane (i.e., r = (z,y)).
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Figure 2.1: Geometry of a subsurface imaging problem. (a) Cross-borehole and
(b) half space setup. A, is the wavelength in the background material.

2.2 Mathematical Formulation

In the following, we assume that the unknown buried targets are illuminated by a
set of V' incident monochromatic waves produced by a set of infinite line currents
oriented along the z axis, which can be arranged in both half space [Fig. 2.1(a)]
or cross-borehole [Fig. 2.1(b)]| setup!. Given that, the generated incident waves
are of transverse magnetic (T'M) type, such that

Ej)(r) = EL(0)2 v=1,.,V. (2.1)

wmc mc

'Hybrid configurations can exist, too, where the sources of em waves are displaced both
above and below the interface separating the two homogeneous media.
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Moreover, we assume that for each v-th illumination the longitudinal compo-
nent of the scattered electric field vector is collected at M measurement points
located at position rgﬁ), m =1, ..., M defining the observation domain D ;.
Following the classical inverse scattering approach [5], the problem of retrieving
the shape, the position and the electromagnetic characteristics of the targets
buried within D,,, is formulated as the problem of reconstructing the so-called
contrast function, defined as

_ Eeq (r) — €Beq

7(r) = I (2.2)
where
e (r) = 202, (r) — j"i‘") (2.3)
and on
€B,eq = €0€rB — JU : (2.4)

Given (2.3) and (2.4), it is easy to verify that the real part of the contrast is
given by

R{T (@)} = () — 2p (2.5)

while the imaginary part depends on the frequency via the angular speed
w=27f as

S {r(r)y = 22— (2.6)

WEo

Denoting with v() the cross-section of the j-th target buried within Dy, (j =
1,...,J, being J the total number of scatterers), we then have
0 r¢ ijl o)
7(r) = (2.7)
7(r) re¢ ijl )

since outside the support of the J buried targets the equivalent permittivity
and the conductivity is that of the background medium (i.e., ., (r) = €, and
o (r) = op) and no discontinuity can be observed by the propagating impinging
waves.
As a matter of fact, the total field measured at position r when the J targets
are buried inside the investigation domain can be decomposed as the sum of
two separate contributions, represented by the incident field and by the so-called
scattered field, respectively

Bl (r) =Ej) (1) + EQ, (1), v=1,...V. (2.8)

Given the cylindrical symmetry of the problem [Fig. 2.1] and the isotropic
characteristics of the medium at hand, also the total field and the scattered
field result z-oriented (i.e., E\Y) (r) = E{“ (r)Z and E),, (r) = E), (r)Z, for

scatt scatt

7
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v = 1,..,V). If on the one hand the incident field EEZ)C (r) is referred to the
half space scenario when no objects are located below the interface [Fig. 2.1],
on the other hand the scattered field is the contribution to the total field due to
the presence of scatterers buried within D;,,. More precisely, the total field is
completely described by means of the following set of Maxwell equations [59]

(7 xE{ (r) = —jwucHL (r)

v x Hip) (r) = jwe, (1) Bl (v) + 1od (2 = 20)) 6 (y — y) 2

(2.9)
V ey (r) Bigy (r) = 0
\ \VAS /’LOHI(;Q (I') =0
where H,Ejjz (r) is the total magnetic field at position r
Hij) () = Higl, (1) %+ Hig), (1) (2.10)
tot \I tot,e \I') X tot,y \F)Y .

and the impressed current for the v-th illumination is expressed in explicit
form as

Jo(r) = 1o (x —2™) 6 (y —y™)Z (2.11)

where [ is the amplitude of the current flowing along an infinite z-oriented
(v)

line located at position (z(*),y™). In (2.9), the divergence of e, (r) Ey;} is set

to null (i.e., g¢, (1) E!") is solenoidal) since it is easily verified that

v 8 v
V : 5eq (I‘) Ez(tozz = % {Eeq (l’, y) Et(ot) ("L‘a y)} = O (212)

Similarly, in absence of targets within Dj;,,, the incident field satisfies the
following set of equations [59]

(7 x EY (r) = —jwpoHY) (r)

v x H (1) = jwen B (1) + 1od (x — ) 6 (y — y) 2

(2.13)
V - B (1) = 0
[ - o (1) =0
where HEZ)C (r) is the incident magnetic field at position r
HL () = Hip, (1) X+ Hi, (05 (2.14)

8
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and e, is a piece-wise constant function defining the (possibly complex)
dielectric permittivity of the half space scenario at hand

€0 y>0
Ehs = (2.15)
€B,eq y < 0.

Given that, it follows that the scattered field satisfies the following set of equa-
tions [59]

V X Esc?ztt( ) = _jwl’LOH'(SCZLtt (r)

7 x HY, (v) = jwens L, (v) + jwle (r) B (r)

(2.16)
YA EhSEgc)att (r)=0
V /’LOchatt< ) =0
where Hscltt( ) is the scattered magnetic field at position r
ngzltt (r) = Hs(;}itt,z (r)x + Hs(cc)ztt Y (r)y (2.17)

and Ae (r) models the discontinuity between the dielectric permittivity of the
scatterers and the surrounding homogeneous medium

Ac (1) = €¢q (T) — ps- (2.18)

By looking at (2.16) we can observe that the scattered field is due to an equivalent
source that models the presence of the unknown scatterers inside D;,,, defined
as |59

Jeq (r) = jwAe (r) EY) (r) . (2.19)

By re-arranging (2.16) and imposing the continuity of the tangential components
of both the electric and magnetic fields at the interface (i.e., at y = 0), eventually
[59] the z-component of the scattered field for points located below the interface
li.e., y <0, Fig. 2.1] can be computed as

EL), (r) = k2, / 7 (t') By (v') Goupica (v, ") dr’ (2.20)
D

while the scattered field for points located above the interface [i.e., y > 0,
Fig. 2.1] is expressed as

Eﬁf;)m (r) = k?_a / T (r/) Et(;}t) (r/) Ghalf—space (r, IJ) dr’. (2.21)
D

inv

9
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In (2.20) the integral Green’s function Gpypieq (r,1’) relates points below the
interface to points below the interface (i.e., ¥y < 0 and y’ < 0) and, according to
Eq. (4.42) in [59] and to the definition of the contrast function given in (2.2), it
is defined as

Gburied <r7 IJ) - Gburied (SL’, Y, .T}/, y/) =

. 400 exp(—ju(z’—z :
# () [ == e Cibly = w0+ o)

kyB—wok .
e eap (~jkys (v + )| du

while the function Gpaif—space (r, ') links points below the interface to points
above the interface (i.e., y > 0 and v’ < 0) and is defined as

ghalf—space (I‘, I'/) - ghalf—space (l‘, Y, xla yl) =
(2.23)

Cjuo =g\ oo eap(—ikysy)exp(ikyoy)ep(—jula’ ~x))
27T0 <5Bf)eq> f*OO HokyB+Hiokyo du.

In (2.22) and (2.23) ko and k,p are functions of the integration variable u
and are defined as follows

kio = koo (u) = ki —u*> 3y >0
(2.24)
kip=kp(u) =kp —u*> y<O0

where ko = wy/Eopto and kp = w,/Ep ¢ofto are the wave-number in free-space
and in the lossy background medium, respectively. Finally, the following scalar
integral equations can be retrieved, mathematically modeling the buried scatter-
ing problem

B (v) = Byl (v) = k% [, 7 (¢) By (¥') Gy (r, ') dr’
(2.25)
rc Dinv
By (x) =k [, 7 () E) (v') Gege (x,1) d’
(2.26)
rc Dobs

in which Dy € Dy, is the observation domain, where both sources and measure-
ment points are supposed to be located [Fig. 2.1|. The former integral equation
is called “state equation”, while the latter is the so-called “data equation”, and
both need to be solved in a numerical way in order to retrieve the unknown
contrast function 7 (r) and the unknown total field inside D;,,. Clearly, since
Gint (r,1’) (commonly known as the “internal” Green’s function) relates points
which are located inside Dj,,, it will always coincide with Gyypicq (r,1’). On the

10
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other hand, G.,; (r,r’) (commonly known as the “ezternal” Green’s function) re-
lates points inside Dj,, to points outside it (i.e., belonging to the observation
domain D,ys ¢ D). Then, if a half space setup is considered, where mea-
surement points are located above the interface (i.e., y,(fi) >0, forv=1,..,V
and m = 1,.., M [Fig. 2.1(a)]), we will have that G.; (v,1") = Gharf—space (T, T').
Otherwise, if a cross-borehole setup is considered, where measurement points are
located below the interface (i.e., yff{) <0, forv=1,....,Vand m =1,.., M [Fig.
2.1(b)]), we will have that G..; (r,r") = Gpuriea (r, 7).

In order to solve the inverse scattering problem, both the unknowns and
the state and data equations need to be discretized. A common choice is to
use rectangular basis functions [56| partitioning the investigation domain into N
subdomains

T (I‘) = ZnNzl T (rn) (2 (I‘)

(2.27)
Ejsl () = 0L, Erot (1) v (1)
resulting in the following vector of unknowns
O - {T (t): B9 (r)in=1,..N;v=1,.., v} . (2.28)

Given that, the discretized form of the “state equation” (2.25) becomes

B (vy) = Bl (va) = k5520 7 (r) B () Gine (Y1)
(2.29)
Iy, rp S Dinv

while the data equation in (2.26) becomes

Eézzztt (r(mv)> = k% 25:1 T (rn) Et(;)t) (rn) Geut (r(mv)v rn)

r(mv) S D0b87 r, € Dinv-

Solving the inverse scattering problem is then reformulated as the estimation
of the unknown coefficients ® via the minimization of the following cost function

o {é} = BdataPdata {é} + Bstate Pstate {é} (2.30)

where Syu1a and Bsqare are constant weights. In (2.30) the “data” term D g4y, {@}

quantifies the mismatch between the known scattered field collected at M points
belonging to D, to the scattered field computed for the retrieved versions of the

unknowns (i.e., © = {f' (rn); E};’g (rp);n=1,..N;v=1,.., V}) according to
(2.26)

11
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2
\%4 M v v v v
D {@} szl Zmzl ‘Egct)ztt (I'1(n)) Eéa)ztt < ( )>‘
data -
SV S [ ()]

where Egcfm ( (mv)> is the computed scattered field for the m-th probe under

(2.31)

the v-th illumination. Similarly, the “state” term of the cost function defined in
(2.30) measures the difference between the known incident field inside D;,, to the
retrieved incident field computed according (2.25) on the basis of the estimated
©

2

A Zv 1 Zn 1 )Ezsi I'n EZ(':L}()Z (I'n)
state {8} (232)

PONED DA

where Ef:;i (r,) is the computed scattered field for the n-th point in D;,,
under the v-th illumination.

E(U) (rn)

mc
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Chapter 3

Multi-Focusing Inexact Newton
Method within the Second-Order
Born Approximation

In this chapter, the reconstruction of a shallow buried object is addressed by an
electromagnetic inverse scattering method based on combining different imag-
ing modalities. In particular, the proposed approach integrates the inexact-
Newton method with an iterative multi-scaling approach. Moreover, the use of
the second-order Born approximation (SOBA) is exploited. A numerical val-
idation is provided concerning the potentialities arising by combining the reg-
ularization capabilities of the inexact-Newton method and the effectiveness of
the multi-focusing strategy to mitigate the non-linearity and ill-posedness of the
inversion problem. Comparisons with the standard "bare" approach in terms of
accuracy, robustness, noise levels, and computational efficiency are also included.

13
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3.1 Introduction

The aim of this chapter is to reformulate the integrated IMSA — IN inver-
sion technique [48] in order to deal with subsurface imaging and to evaluate the
effectiveness of such an approach when the second-order Born approximation
(SOBA) is applied. Moreover, a direct comparison in terms of accuracy, ro-
bustness against different conditions and noise levels, as well as computational
efficiency is given when directly comparing the proposed IMSA — IN — SOBA
approach with its standard “bare” implementation (BARE — IN — SOBA), as
described in [28].

Towards this end, section 3.2 provides the basic mathematical formulation used to
model the buried problem under the SOBA. In Sect. 3.3 the combined IMSA—
IN — SOBA is described. An in-depth numerical validation is then provided in
Sect. 3.4 in order to analyze the performance of the proposed approach and to
demonstrate its effectiveness and advantages over the BARE — IN — SOBA,
under monochromatic transverse magnetic (TM) illumination conditions in a
cross-borehole setup similar to that used in [37]. Finally, some conclusions are
drawn (Sect. 3.5).

3.2 Problem Formulation

Let us consider a cylindrical scatterer buried in a homogeneous half space medium.
A cross-borehole measurement configuration is assumed [Fig. 3.1]. Let 7 (r) de-
note the contrast function inside the inspected area Dj,,, as defined in equation
(2.2). The upper medium is supposed to be air, with dielectric properties equal
to those of the vacuum and the position vector r denotes a point in the transverse
plane, i.e., r = (z,y).

The target, whose cross section is included in the inspected area D, is illu-
minated by V incident waves, which are produced by a set of infinite line cur-
rents. They generate incident waves of transverse magnetic type, such that
E"(r) = E®(r)2, v=1,...,V. Due to the cylindrical geometry, the scattered
and total fields results to be z-polarized, too.

The basic equation for this inverse problem is therefore the following scalar in-
tegral one

B (v) = Eig) (r) = Ejpa(r) = ki, / ™ () Eig) (t') Gourica (x, ') ', (3.1)
Diny

which is a nonlinear ill-posed Lippman-Schwinger equation, whose kernel is the

Green’s function for the half space [55] with definition given in equation (2.22).

In equation (3.1), E() and E"),, are the z-components of the total and scat-

tered electric fields (for the v-th illumination), respectively. Such equation is

approximated by using a second-order Born expansion [27], i.e.,

14
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WITHIN THE SECOND-ORDER BORN APPROXIMATION
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Figure 3.1: Geometry of the problem and imaging setup.

B, (1) = FO7 (r) + 12, / r () FO7 () Gouriea (0,1') dt’ = ) () (1)
D'an

(3.2)
where F](;l) denotes the first order Born operator defined as
)7 (v) = k3, / 7 (v') B (v') Ghuriea (x, 1) ', (3.3)
Diny

Consequently, since the contrast function is independent of v, the inverse scat-
tering problem can be formulated as the solution of the following set of equations
with respect to the unknown 7

1 1
F éQ)(T) Egct)ztt
FB2 (T) = = - Escatt (34)
\% \%
FéQ) (T) Eicazft

The discrete counterparts of the above equations can be obtained by partitioning
them in square subdomains in order to obtain pixelated images of the retrieved
distributions of the dielectric parameters inside the inspected area.

3.3 Reconstruction Method

In order to solve equation (3.4), an inner/outer iterative scheme based on an I N
method is applied [28|. The operator equation (3.4) is iteratively linearized by
using the Frechét derivative of the operator Fgo. This step leads to the following
linear operator equation

FLu= Eyuu — Fpa (7)) (3.5)

15
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where 7; is the contrast function at the ¢-th iteration and F; denotes the Frechét
derivative of the operator Figy at ;. As detailed in [29], F.. is given by

F;i(l)u
Flu= : (3.6)
F;i(v)u
where
FVu(r) = Filu(e) + 1 [, 7 (1) F§Ju () Guurica (v, 1) dr’ (3.7)

kg fDm u (r') FJ(Bvl 7i (') Gouried (1, 1) dr’

As it is well known, equation (3.5) turns out the be ill-posed. Consequently,
its solution can be obtained in a regularization sense by using a regularization
method. In particular, following the approach in [44], a good choice seems to be
the use of the Landweber iterative method [61]. In this case, a second loop is
obtained by means of the following scheme
Ui 0 = 0
Ui g1 = Ujq — PZFT,Z* (F;—iui,q — Escatt + Fp2 (1)) (3:8)
where F* is the the adjoint of . and 0 < p; < 2 HFT' HS_Q, being -], the spectral
norm. A regularized solution u; is obtained by truncating the iterations after a
predefined number of steps (). After the linearized problem is solved, the current
contrast function is updated as

Tiv1 = T -+ U; (39)

and the algorithm is iterated until a predefined stopping criteria is fulfilled. It
requires of course an initialization phase, in which an estimate of the dielectric
properties of the inspected area is chosen. In most cases, an empty domain is
used as initial guess.

As mentioned in Section 3.1, the effectiveness of an integrated procedure that
profitably exploits the regularization capabilities of the /N method and the ca-
pability of the iterative multi-scaling approach (IMSA) [54] to reduce the occur-
rence of local minima has been already assessed in [48][49] for free-space imaging.
Issues such as numerical instabilities caused by the presence of noise on measured
data, as well as the ill-conditioned and non-linear nature of the inversion prob-
lem are thus jointly addressed, throughout the synergetic combination of both
techniques.

In particular, at each s-th step of the IMSA (s = 1,...,S; s being the step
index), the Rol Q®) (QM") coinciding with D;,,) is defined and partitioned ac-
cording to the Richmond’s procedure [56] into N square sub-domains (N being
the estimated number of degrees of freedom of the measured data [57][58|) cen-
tered at r' (rgf) € QB n=1,..,N). Following the I N method formulation, the
non-linear equation (3.4) is iteratively linearized in order to obtain the following
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linear operator equation (note the addition of the superscript ) with respect to
(3.5) to indicate the iterative nature of the multi-scaling approach)

(FY 4 = By — FS) ( Z.(S)) (3.10)
As previously detailed, at each I N step, equation (3.10) is solved in a regularized

sense by means of an inner truncated Landweber loop, composed by the following
loop (initialized with u§0 =0)

Wy = ul?) = o (F) " [(F) ) = B+ P (7)) 4= 00— 1
(3.11)
The current solution is updated as T(Jr)l = () + Q and the IN method is
iterated (i.e., by letting ¢ = ¢ + 1) until a su1table predeﬁned stop criterion is
reached. Once the I N loop has been terminated, a new [ MSA step is initialized
(i.e., by letting s = s 4 1), throughout the update of Q) and its discretization
with a finer resolution. This step requires to update the barycenters ) € Q)
n=1,.. N.
The multi-step process is iterated until the verification of a suitable termination
condition (e.g., s = S), and u®) = 79 is finally assumed as the IMSA — IN —
SOBA solution.
It has been pointed out in [49] the importance of defining an efficient stopping
criterion for the IMSA — IN — SOBA when no a-priori information on the
object under test is available. To monitor the evolution of the reconstruction
residual, a parameter is introduced, which is defined at each I N iteration ¢ as the
discrepancy between measured and retrieved scattered field at M measurement

locations: ,

zv LM B (e — B ()

Zv IZm 1 E:gzc)att( (U))H2
where E® (1)) and E“

st scatt.i(T (U)) denote the measured and estimated scattered
fields at the measurement point m (m = 1,..., M) for the v-th illumination
(v=1,..., V), while ||.]|, denotes the I*-norm operator. The following stationary
condition, based on successive observations of the estimated residual, can then
be defined in order to adaptively terminate the I N procedure at each s-th step
of the multi-focusing scheme:

2 (3.12)

Wo, - >0 @,

G = o) <7 (3.13)

where 17 and W denote a fixed numerical threshold and a fixed number of IN
iterations, respectively. The definition of suitable values for both n and W has
clearly a critical impact on the overall performances of the IMSA—IN —SOBA,
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since both parameters are essential to identify a stagnating behaviour of the
residual, which is actually strongly linked to the semiconvergence property of the
IN method when dealing with the regularization of noisy data [29]. Concerning
the regularization capability of /N method algorithm, the number of iterations
@ for the Landweber method should also be carefully chosen, as well as the
number of multi-scaling iterations S should be set in order to successfully balance
computational efficiency and overall quality of the retrieved images.

3.4 Numerical Assessment

This section is aimed at illustrating the potentialities of the proposed IMSA —
IN—SOBA method when dealing with the processing of synthetic data produced
by both homogeneous and inhomogeneous scatterers buried in a lossy homoge-
neous half space medium. The significant advantage of the IMSA — IN over
the standard I N method has been already highlighted and well documented in
[48][49] for the free-space scenario. The applicability of the IN method within
the second-order Born approximation to the retrieval of buried objects has been
successfully demonstrated in [28], as well. The analysis will thus focus on the
advantages of employing the iterative multi-resolution inversion scheme over the
“bare” IN method implementation within the SOBA (BARE — IN — SOBA),
both in terms of accuracy, robustness when dealing with different scatterers and
different noise conditions. Besides the pictorial representation of the retrieved
dielectric distributions, the following error indexes will be used in the following
to give a quantitative evaluation of the reconstruction accuracy:

N?"e A~
= _ 1 2 |T(1‘m?/n) - T("Emyn”
g Nreg - |T<xn7 yn> + 1‘

reg = tot, ext,int (3.14)

where NN,., indicates the number of cells covering the whole inspected area D,
(reg = tot, Nyw = N), or belonging to the background region (reg = ext), or to
the support of the buried scatterer (reg = int; Nyoy = Newt+ Ning). Moreover, the
terms 7 and 7 in equation (3.14) indicate the retrieved and the actual contrast
function for the n-th cell belonging to the investigation domain.

The first part of this Section is devoted to a sensitivity analysis of the IMSA —
IN — SOBA algorithm, aimed at investigating the effect of each control param-
eter on the final quality of the retrieved distributions when dealing with noisy
data, in order to define a suitable and general setup.

3.4.1 Calibration of the IMSA — IN — SOBA

It should be stressed that, as already discussed in Section 3.3, the choice of the
control parameters n, W, ) and S should be carefully performed in order to
profitably exploit the capabilities of the IMSA — IN — SOBA.
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Figure 3.2: Sensitivity Analysis (Homogeneous Square Scatterer - { ~ %, T = 1.5,
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Towards this end, an exhaustive sensitivity analysis on the impact of each con-
trol parameter has been performed on noisy field data (SNR = 20 dB) collected
for an homogeneous lossy off-centered “square” cylinder, with side [ ~ \;/3,
Ay being the wavelength inside the background, and 7 = 0.5 [Fig. 3.3 (a)].
Moreover, a square investigation domain of side 1.6\, located 0.1\, under the
air-soil interface has has been assumed as reference scenario (Fig. 3.1). The
homogeneous half space medium, inside which the scatterer is buried, is char-
acterized by a relative dielectric permittivity €,5 = 4.0 and by a conductivity
op = 1072 S/m. The investigation domain D;,, is sequentially illuminated by a
set of V' = 16 transverse-magnetic (T'M) monochromatic plane waves generated
by two vertical rows of field sources configured in a cross-borehole setup [Fig.
3.1] working at the frequency of f = 300 MHz. For each view, the synthetically
generated scattered field is collected at M = 15 equally spaced measurement
points (with +0.2)\, offset along = with respect to the investigation domain [Fig.
3.1]). It is worthwhile to notice that that the values of V' and M have been
chosen following the guidelines in [57][58] to collect all the available information
on D;,, from the measured scattered radiation. Moreover, the investigation area
has been partitioned into N = 100 square sub-domains.

In order to investigate the impact of n and W on the achievable performances
of the IMSA — IN — SOBA, Fig. 3.2(a) reports the total reconstruction error
Ziot as a two dimensional function of both parameters, when the number of
Landweber and IMSA iterations are respectively set to their optimal values QQ*
and S*.
As it can be observed, a low value of the threshold n (e.g., n = 107%) results
completely inappropriate, leading to a significant degradation of the quality of
the reconstructions, due the so-called semiconvergence property of the I' N regu-
larization technique [29).
Actually, the best reconstruction is obtained after a given number of I N iter-
ations, while subsequent iterations give rise to worse solutions, since data are
affected by noise [28]. Similarly, an high value of 7 also leads to inaccurate re-
sults, causing the premature termination of the inversion procedure. Therefore,
a good choice for 7 is

Nt =102 (3.15)
and it has been assumed hereinafter for the IMSA — IN — SOBA inversions.
Even if less critical, a suitable value for W should also be carefully selected. As
shown in equation (3.13), W defines the number of I N iterations which should
be taken into account for the identification of a stagnating behaviour on the
residual ®. Although a small value of W can reduce the capability of filtering
out numerical errors affecting the computation of the residual, high values of W
give rise to a remarkable degradation of the performances, as depicted in Fig.
3.2(a), whatever the value of the threshold 7. Given the above considerations,
the optimal value of W has been set to

W* =5 (3.16)
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Figure 3.3: Sensitivity Analysis (Homogeneous Square Scatterer - { ~ %, T =1.5,
SNR =20 dB, S = Sx) - Actual (a) and retrieved (b)(c) contrast profiles when
L) Q=Q* W=W*n=10"% (¢) K = K*, W =40, n = n*.

and it will be used in the following of the discussion. For completeness, and
to give the reader a pictorial example of what is the impact of a wrong choice
of n and W on the IMSA — IN — SOBA performances, the retrieved profiles
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for the “square” cylinder of Fig. 3.3(a) are shown for n = 10™* [Fig. 3.3(b)]
and W = 40 |Fig. 3.3(¢)], being the other parameters fixed to their optimal
values. The computed total error indexes are EtOtJn:10*4,W:W* ~ 1.27 x 107!
and Etotann*,Wzm ~ 2.12 x 107!, while a reduction of more than one order of
magnitude on Z;,; can be achieved when jointly setting n and W to their optimal
values (Zsor |, _pe oy~ & 7.92 x 107?) [Fig. 3.2(a)].

Concerning the dependence of the inversion quality on the number of Landweber
iterations, Fig. 3.2(b) shows the behaviour of =, as a function of @), when all
remaining parameters are set to their optimal values. As a matter of fact, the
number of iterations plays the role of a regularization parameter in the iterative
Landweber regularization method, representing a heuristic compromise between
fast convergence of the IN method (for low values of @) and noise filtering
(for high values of @) [28|. Therefore, given the above considerations and also
following the outcome of the performed sensitivity analysis (Fig. 3.2(b)), the
number of inner iterations has been to

Q" = 60 (3.17)

an it will be considered for the successive analysis of the algorithm performances.

Concerning the stop criterion for the iterative multi-zooming scheme, Fig. 3.2(¢)
reports the computed error indexes as a function of the IMSA step s (s = 1, ..,6)
in the case n =n*, W =W" and Q = Q*.

As it can be observed, the total error shows a rapid descent until step s = 4
is reached (=551 ~ 9.73 x 1072 vs. =5,* ~ 7.92 x 107?), while a progressive
degradation of the accuracy characterizes the remaining successive steps, as ver-
ified by the error indexes (255° ~ 2.15 x 1072 and =35 ~ 3.52 x 1072). It is
worth noticing that, although the external error reaches its null even before step
s = 4, the suppression of artifacts inside the background region comes at the
cost of a slight increment of the internal error. Given the above considerations,
the optimal number of IMSA steps has been identified as

S*=4 (3.18)

and it will be employed as a good compromise for successive test cases. Fig-
ures 3.4(b)-3.4(e) illustrate the evolution of the reconstruction throughout the
IMSA—IN — SOBA steps, when the optimal values of each control parameter
is set to its optimal value. As shown by the single plots, the retrieved profile
improves step-by-step, starting from a rough estimation of the buried object
support and dielectric characteristics [s = 1 - Fig. 3.4(b)] until a satisfactory
reconstruction is reached [s = 4 = S* - Fig. 3.4(e)|]. A pictorial representation
of the evolution of the residual (equation (3.12)) and of the stationary index
(equation(3.13)) throughout the multi-zooming steps is given Fig. 3.4(a).
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3.4.2 Homogeneous “Square” and “L-shaped” Cylinders

The first set of numerical experiments deals with two off-centered lossy homoge-
neous scatterers having different cross-sections and characterized by a contrast
7 = 1.5 ["Square” and “ L-shaped” profiles, - Fig. 3.5]. The BARE—IN—-SOBA
reconstructions have been carried out by setting @@ = 20 and I = 20 [28|,
while for the IMSA — IN — SOBA the following parameters have been cho-
sen, according to the previously discussed sensitivity analysis: n = 1072 = n*,
W=5=W" Q =060=Q" and S =4 = S*. Moreover, the investigation do-
main D;,, has been partitioned into N = 400 and N = 100 square sub-domains
for BARE — IN — SOBA and IMSA — IN — SOBA inversion techniques, re-
spectively. All remaining parameters are kept equal to those employed in the
previous paragraph.

Figs. 3.5(b)-3.5(¢) show the retrieved profiles by the BARE—IN—SOBA, while
Figs. 3.5(d)-3.5(e) the corresponding IMSA — IN — SOBA reconstructions,
in case the scattered field data is corrupted by an additive zero mean complex
(Gaussian noise, raising a signal-to-noise ratio equal to SN R = 10 dB. As it can be
observed, the IMSA—IN —SOBA is able to provide a remarkable improvement
in terms of accuracy over the “bare” counterpart even in the presence of a strong
noisy component on measurements, as quantitatively confirmed by the lower

— |BARE—IN-SOBA _ 1 — (IMSA—IN-SOBA _ 1
error (‘_‘tOtJ”Square” ~ 1.46 x 107" vs. Sy > Square” ~ 1.24 x 10
— | BARE—IN-SOBA _ 1 — (IMSA—IN-SOBA _ 1

and o) 5N 7123 X 1070 vs. Spoq) D150 ~ 119 x 107Y).

To further validate these outcomes, the results from a more exhaustive set of
noisy cases have been summarized in Fig. 3.5(a), showing the achieved total
reconstruction error =;,; for different values of SNR for both the considered
homogeneous scatterers. The result is that the IMSA —IN — SOBA overcomes
the “bare” IN method implementation in terms of reconstruction accuracy, as
pointed out by the error curves in Fig. 3.5(a). Although the reconstruction
quality degrades for both BARE — IN — SOBA and IMSA — IN — SOBA for
lower signal-to-noise ratios, it turns out that Z/2/SA-IN=50BA o ZBARE-IN=SOBA
whatever the noise condition.

3.4.3 “O-shaped” Cylinder

In order to prove the general validity of the previously discussed outcomes on
the IMSA — IN — SOBA approach when dealing with the retrieval of more
complex dielectric shapes with different values of 7, an homogeneous hollow
square cylinder (“ O-shaped” profile) with an outer side equal to [ ~ \,/2 has been
chosen as a more challenging benchmark geometry. In order to give the reader a
full picture on the performance improvement of the IMSA — IN — SOBA over
the BARE — IN — SOBA, Fig. 3.6 illustrates the behaviour of the total error
Zit as a function of 7, for different signal-to-noise ratios on scattered data.
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Figure 3.6: Performance Assessment (“O-Shaped” Scatterer { = %, SNR €
[10, 30] dB) - Behaviour of the Z;, as a function of 7 obtained by BARE —IN —
SOBA and IMSA — IN — SOBA.

Although the reconstruction accuracy degrades as 7 increases, the IMSA —
IN — SOBA always provides the lowest error (e.g., ZBARE-IN-50BA

2.14 x 107! vs. Z/SATINIOBA| x~ 442 X 1072).

It is also worth to notice that, as reported in Fig. 3.6, the error index of the
IMSA—IN—SOBA for SNR = 10 dB is always lower than the error provided
by the “bare” IN method implementation for a significantly higher signal-to-
noise ratio (SN R = 30 dB). For completeness, the error indexes in Fig. 3.6 are
also reported in Tab. 3.1.

~

JT=2.2 ~

BARE — IN — SOBA
SNR dB 7=02 7=0.6 7=10 T=14 T=128 T=22
30 1.98 x 1072 | 5.68 x 1072 | 9.18 x 1072 | 1.22 x 1071 | 1.56 x 1071 | 1.92 x 10!
20 220x 1072 16.12x 1072 1979 x 1072 | 1.37 x 107! | 1.74 x 107! | 2.14 x 107!
10 352x 1072|874 x 1072 | 887 x 1072 [ 2.01 x 1071 [ 2.69 x 10! | 3.15 x 107!
IMSA—-IN —-SOBA
SNR dB 7=0.2 7=0.6 7=1.0 T=14 T=138 T=22
30 1.18 x 1072 | 3.59 x 1072 | 5.63 x 1072 | 6.24 x 1072 | 8.03 x 1072 | 9.06 x 1072
20 1.20 x 1072 [ 2.72 x 1072 | 3.64 x 1072 | 4.88 x 1072 | 5.20 x 1072 | 4.42 x 1072
10 1.28 x 1072 [ 3.95 x 1072 | 826 x 1072 | 9.21 x 1072 | 1.15 x 10~ | 1.54 x 10!

Table 3.1: Performance Assessment (“O-Shaped” Scatterer ¢ ~ %, SNR €
[10,30] dB) - Error values and computational indexes.
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To further confirm the above considerations and provide a qualitative picture
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of the retrieved profiles, Fig. 3.7 shows a direct comparison between the recon-
structions provided by both BARE — IN — SOBA and IMSA — IN — SOBA
for different values of contrast [Figs. 3.7(a)-3.7(b) - 7 = 0.2, Figs. 3.7(¢)-3.7(d)
-7 = 1.0, Figs. 3.7(e)-3.7(f) - 7 = 2.2|], when SNR = 20 dB. As it can be
observed, thanks to the increased level of resolution inside the correctly identi-
fied Rol, the IMSA —IN — SOBA outperforms its “bare” counterpart, showing
not only the capability of better retrieving the external boundaries of the scat-
terer, suppressing the undesired artifacts inside the background region, but also
of recognizing position and shape of the internal cavity.

3.4.4 Inhomogeneous Cylinders

To assess the performances of the IMSA—IN—SOBA when dealing with buried
objects characterized by non-homogeneous dielectric distributions, this Section
considers the analysis of the two reference profiles in Figs. 3.8(a)-3.8(b). The first
inhomogeneous geometry (Fig. 3.8(a), “Double-L” cylinder) is characterized by
Tup = 0.5 and 750, = 1.5 in the upper and lower portions, respectively, while the
second reference distribution (Fig. 3.8(b), “ Concentric” cylinder) is characterized
by Tzt = 0.5 and 7;, = 1.0. The second and third rows of Fig. 3.8 illustrate the
retrieved dielectric distributions by the BARE — IN — SOBA |Figs. 3.8(¢)-(d)]
and by the IMSA — IN — SOBA |Fig. 3.8(e)-(f)|, when SNR = 20 dB. As
a matter of fact, the “bare” IN method implementation provides much more
“smoothed” profiles than the multi-scaling scheme.

Considering the retrieved profiles for the “Double-L” scatterer, the improvement
in terms of accuracy provided by the IMSA — IN — SOBA |Fig. 3.8(¢e)]| is con-

firmed by a remarkable reduction of the reconstruction error (EZARE-IN=S0BA

1.03 x 10~ vs. ZIMSAIN=SOBA 3 35 % 10~2). Still considering this particular
example, it is quite interesting to notice that the BARE — IN — SOBA seems
almost completely unable to identify the presence of two distinct geometrically
adjacent distributions of the contrast [Fig. 3.8(¢)].

Similar conclusions can be also formulated for the “Concentric” configuration
[Figs. 3.8(d)-(f)]. Differently from the “bare” counterpart, the IMSA — IN —
SOBA correctly identifies the squared shape and the contrast of the inner core, as

verified by the lower internal reconstruction error (EZARF-IN=SOBA 1 19510~

vs. SIMSA-IN=SOBA 7 45 % 1072).
Besides the discussed aspects, it is important to remark that the improved accu-
racy showed by the IMSA—IN —SOBA comes together with an increased com-
putational efficiency, as emphasized by the evaluation of the inversion times on a
standard laptop with 3.20 GHz CPU clock and 4GB of RAM memory. The total
time required to obtain the reconstructions in Fig. 3.8 are A¢/MSA-IN=SOBA _
80 [s] and AMSA-IN=SOBA — 57 [4] for “Double-L” and “Concentric” pro-
files, respectively, while the time required by the BARE — IN — SOBA is

AtBARE-IN=SOBA — 956 [g] for both distributions.
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3.4. NUMERICAL ASSESSMENT

3.4.5 “Square” Cylinder with strong conductivity

The last test case is aimed at further assessing whether the previously discussed
performances of the IMSA—IN—SOBA are still valid when the unknown object
is characterized by a conductivity o. higher than the surrounding background
medium. As for the previous results, the geometry and measurement setup of
Sect. 3.4 have been maintained, while different values of conductivity o. > op =
1072 have been considered for the “Square” cylinder in Fig. 3.3(a). Considering
this specific test case, the real part of the scatter contrast is thus kept constant
to R {7} = 1.5, while the effect of considering different values of the imaginary

part Z{r} = [%} is hereinafter investigated. In order to give the reader a full

overview of the effectiveness of the IMSA—IN—SOBA and to provide a pictorial
comparison in terms of accuracy with respect to the BARE — IN — SOBA, Fig.
3.9(a) depicts the behaviour of Z;,; as a function of the object conductivity o..

In accordance to what has been already observed when considering different val-
ues of R{r} [Fig. 3.6], the error increases for both methods as the scatterer
becomes stronger (i.e., the value of o, is increased with respect to the con-
ductivity of the background medium). However, the error curves in Fig. 3.6
clearly highlight the advantages of the IMSA — IN — SOBA when applied to
the detection of buried scatterers with strong conductivity, whatever the con-
sidered SN R on measured field data. Moreover, the performance gap between
the two implementations becomes even more evident as the value of o, is in-
creased (EZMP| L~ 972 x 1077 vs. EQ/] 1, ~ 1.83 x 1072 and
B o =312 x 107 v, IS~ 7.33 x 1072, for SNR = 20
dB). For completeness, the retrieved distributions when o, = 107! (Z {7} =
—5.39) are also reported for both BARE — IN — SOBA [Fig. 3.9(b)-(d)] and
IMSA —IN — SOBA |Fig. 3.9(c)-(e)], for blurred data with SNR = 20 dB.
As confirmed by the presented outcomes, the linearization properties of the I N
are enhanced when exploiting a multi-resolution approach intrinsically devoted
to mitigate the undesired effects of a high-nonlinearity (e.g., the occurrence of
local minima), as for the case of strong scatterers. The artifacts characteriz-
ing the reconstructions of the “bare” IN method (both present in the real [Fig.
3.9(b)] and imaginary [Fig. 3.9(d)| parts of the retrieved contrast) are almost
completely suppressed by the IMSA — IN — SOBA, as verified by a reduction
of the external error by an order of magnitude (ng?RE—IN—SOBAJ ~1.73x 107!
vs. ELSATINTSOBA) & 2.25 x 1072). Moreover, the total inversion time needed
by the multi-zooming technique is significantly reduced when compared to the
single-step counterpart (AtPARE-IN=SOBA — 959 [g] vs. ApIMSA-IN=SOBA _ 79

[s)-
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3.5. DISCUSSIONS

3.5 Discussions

In this chapter, a new microwave imaging method for subsurface prospecting has
been proposed. The approach combines a multi-focusing strategy with a regu-
larization solution based on the use of an inexact-Newton method. In particular,
the inverse problem has been addressed by numerically solving the Lippmann-
Schwinger equation under the second-order Born approximation (SOBA). The
proposed reconstruction method has been validated through an extended set
of numerical results involving different types of scatterers and noise conditions.
Simulations have highlighted the following key results:

e the proposed technique is able to profitably combine the well assessed reg-
ularization capabilities of the adopted local search technique (the inexact-
Newton method) with the enhanced exploitation of available information
provided by the multi-focusing strategy, which is able to reduce the prob-
lem of local minima arising from the non-linearity of the involved set of
equations.

e Moreover, the combined strategy exhibits advantages over its standard
"bare" implementation in terms of achieved accuracy and resolution, what-
ever the contrast distribution (homogeneous/inhomogeneous), the cross-
section geometry and the noise level on measured data.

e Furthermore, the proposed multi-focusing approach overcomes the stan-
dard "bare" implementation also in terms of the computational efficiency,
thanks to the significant reduction of the problem unknowns at each itera-
tive step, which arises from the use of an adaptive coarse-to-fine discretiza-
tion of the investigation areas at different levels of resolution.
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Chapter 4

Electromagnetic Subsurface
Prospecting by a Fully Nonlinear
Multi-focusing Inexact Newton
Method

In this chapter, an electromagnetic inverse scattering procedure for the recon-
struction of shallow buried objects in a homogeneous half-space is proposed. The
approach is based on the numerical solution of the integral equations modelling
the inverse scattering relationships and it extends to strong scatterers the imag-
ing capabilities of the approach presented in Chapter 3 relying on approximated
formulations (i.e., the SOBA). The inversion is based on the synergic application
of a multi-focusing strategy based on the iterative multi-scaling approach (IMSA)
along with an efficient regularization scheme based on the inexact-Newton (IN)
method. Numerical results corroborate the mathematical description to assess
capabilities and current limitations of the proposed fully-nonlinear technique.
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4.1. INTRODUCTION AND MOTIVATION

4.1 Introduction and motivation

Microwave methods for retrieving buried objects are a key topic of the research
area concerned with inversion methods as confirmed by the scientific literature
[1]-[4]. Applications range from civil and industrial non-destructive testing [6]-
[9] to medical imaging [10]-[12] as well as geophysical applications [13|-[18]. As
for these latter, inverse scattering techniques have been widely proposed for the
shallow investigation of the Earth’s subsurface to extend /better-exploit the capa-
bilities/features of ground penetrating radars (GPRs) [13]-[19]. However, despite
several and important results, microwave methods are still quite challenging and
far from a real-life use mainly due to the ill-posedness and the nonlinearity of the
mathematical relationships that relate the scattered fields to the unknown dis-
tributions of the dielectric parameters of the investigation region. Moreover, the
information content available from scattered-field data is low [70], especially when
dealing with aspect-limited configurations such as those in subsurface prospect-
ing, leading to a reduced data diversity [20]. To properly address these issues,
many inversion strategies, both stochastic [34][36][37][40][42][62]|71] and deter-
ministic [26][32][63]-[68], have been proposed along with approximate models
(e.g., based on Rytov [48] and [26] Born linearizations).

In a recent paper, the authors have introduced the use of a multi-focusing ap-
proach associated with an inexact-Newton (IN) method [48]. Indeed, the use of
multi-resolution methods has been found to be an effective way to reduce the
number of local minima arising in electromagnetic inverse problems due to the
severe ill-posedness of the integral equations at hand [54][72]. On the other hand,
the IN method has proven to be a regularization approach efficient in several
electromagnetic applications, mainly related to tomography in free-space condi-
tions [44][43]. In Chapter 3, the synergic combination of the two methods has
been exploited in an effective approach for the reconstruction of buried targets
in a shallow subsurface under the second-order Born approximation (SOBA)
condition [73]| by assuming the scattering field nonlinearly depending on the di-
electric parameters of the object under test, but independent on the internal
total electric field. While such an approximation resulted in a non-negligible
computational saving because of the reduction of the problem unknowns (i.e.,
the dielectric distribution only), the reliability of the reconstruction turns out
limited to weak scatterers. Moreover, it is worth pointing out that in practical
applications the SOBA extends only partially the range of retrievable dielectric
permittivities compared to the classic first order Born approximation where the
scattered electric field is expressed in terms of the known incident field (i.e., the
field radiated by the source in the background without the unknown scatterer).

In this chapter, the integrated multi-focusing-IN (IMSA — IN) strategy is ap-
plied for the first time to the exact equations of the inverse scattering problem
for buried objects by extending the range of validity of the formulation presented
in Chapter 3 as well as the possibility to retrieve strong scatterers. The outline of
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A FULLY NONLINEAR MULTI-FOCUSING INEXACT NEWTON
METHOD

the chapter is as follows. In Sect. 4.2, the approach is mathematically described.
Section 4.3 reports representative results from several numerical simulations de-
voted to validate the proposed approach illustrating its potentials and current
limitations. Finally, some conclusions are drawn (Sect. 4.4).

4.2 Mathematical formulation

Let us consider the same cylindrical geometry already considered in Chapter 3
whose description is just summarized here. By assuming transmitting and mea-
surement points arranged in a cross-borehole configuration (Fig. 4.1), let V' be
the set of time-harmonic line currents that generate the incident fields prob-
ing the investigation region D,,,. For each v-th illumination, the longitudinal
component of the scattered electric field vector is collected at M measurements
locations (Dézz,, v = 1,...,V, being the set of measurement points at the v-th
view).

0.5
Measurement points "o
Source locations B
0
® ®
® O]
-0.5
® O]
6-9 1 ® Diny ®
>
® O]
-1.5 | ® O]
® O]
_2 -
® ®
25 . . . . .
-1.5 -1 -0.5 0 0.5 1 1.5
Xy

Figure 4.1: Cross-borehole imaging configuration.

To retrieve the unknown dielectric properties of the investigation domain, the
inverse scattering problem mathematically described in terms of the following
two integral equations of first- (called “state equation”) and second-kind (called
“data equation”), respectively [2],

Bl (v.y) = Byl (2,9) + K [, 7 (@ 9) EQ) (2, 3) Gint (29,2 ) da'dy’

(SL’,y) S Dinv
(4.1)
ES(ZZLtt (l‘, y) = kZB fDinv T (l‘,, y,) Ezfgt) (i’,, y,) gea:t (l‘, ya xla y/) dl‘,dy, (4 2)
(w,y) € DY)
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need to be solved. In (4.1) and (4.2), E, EY) and EY), denote the z-
components of the total, incident, and scattered field vectors for the v-th view,
respectively. Moreover, G.,; is the Sommerfeld’s Green’s function for the half
space [55], while the contrast function 7 is defined in equation (2.2).

Unlike the theory presented in Chapter 3, where the SOBA approximated for-
mulation has been assumed, the two scattering equations are contemporarily
exploited to inspect buried strong scatterers. Towards this end, let us put (4.1)

and (4.2) in a functional form as
A® <T; Egg) — ) y=1,..,V (4.3)

where (") includes the known terms (i.e., the incident field in the state equation
and the measured scattered electric field in the data equation)

E(U)

scatt

EY

mc

b = , (4.4)

and let us combine the V' equations (4.3) to recast the inverse problem as the
solution of the following functional equation

El
E(l) b(l)
AW (7‘; E§01,2, ,Et(;?) = : = : : (4.5)
14
Egcazft b(V)
B

By discretizing (4.5) with square sub-domains and point matching, a nonlinear
systems of discrete equations is yielded

A(TEw) =b (4.6)

where 7 is an array whose n-th entry (n = 1,..., N) is the value of the contrast
function at the n-th sub-domain in which the investigation domain D, has been
partitioned, E;,; is an array containing the V' x N values of the electric field in the
investigation area, and b is an array of size V' x (N + M) containing the values
of the known samples of the incident and scattered electric fields (see Appendix
A).

To properly and efficiently solve (4.6), some challenging computational issues
have to be carefully addressed. To reduce the computational burden and there-
fore focusing the attention only on parts of the investigation domain where scat-
terers are supposed to be present, the IMSA approach is adopted. Such a multi-
focusing technique has been firstly developed by A. Massa and co-workers in [54|
and successively deeply analyzed in other papers [48][72][74][75]. At each step
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of the IMSA (s =1,...,5), a zoomed investigation domain 2, composed by the
combination of the region of interests defined at step s — 1, is considered (€
coincides with the whole investigation area - see Fig. 4.1). Equation (4.6) is
then solved by using the IN method [44][43] for reconstructing the distributions
of the dielectric properties in €2,. Such an inversion method is composed by two
nested loops. In the external loop, (4.6) is first linearized by means of a Newton
approximation, whereas the resulting linear system of equations is solved in a
regularized sense with a truncated Landweber method [61]. A maximum number
of iterations, I,,4s s, is set for the external loop, while the number of iterations,
@, of the inner loop is fixed for any reconstruction process. A complete discus-
sion on the application of the IN method can be found in [45] where it has been
shown that the number of external iterations plays the role of a regularization
parameter controlling the so-called semi-convergence. Therefore, it is necessary
to define a suitable strategy for terminating the iterations in order to guarantee
convergence towards the global solution of the functional problem at hand. To
this end, let us first define the following residual function

Zv 1 Zm 1 sZatt <.§L’£}1}), y7(n)> - E(v) (37571)7 yr(:)) )
Zv 1 Zm 1 ‘E:EZ()ztt <l‘m ay(v))‘

(4.7)

where B

catt (x(mv), Y ) denotes the scattered field component measured at the

m-th measurement point (a:(mv),y,(ﬁ)) (m=1,..., M) for the v-th illumination

(v=1,..,V), and Ei(v) <x£ﬁ), yr(f{)> indicates the same quantity estimated at the

i-th iteration of the imaging process. Then, at each IMSA step, s (s > 1), the
IN solver is stopped when one of the following conditions holds true:

e the fitness goes below the threshold computed at the step s (i.e., ¢i < ¢);
e the number of outer iterations reaches its maximum (i.e., [yaz s51)-
As for the threshold at the s-th step, ®", it is obtained as
O < agl™t s =2 ..,8 (4.8)

where <I>f "“l is the final residual at the step s — 1, « is a setup scaling factor, and

S is the total number of IMSA steps. Concernlng the first ITMSA step (s = 1),
the stopping criterion is only determined by the user-defined number of outer
iterations (i.e., Laz.s—1)-

4.3 Numerical Results

The proposed approach has been validated by means of several numerical sim-
ulations referring to the following benchmark scenario. The investigation area
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has been chosen as a square domain of side 1.6 \, centered at (0.0, —0.9 \,) with
the dielectric properties of the lower half space set to €,5 = 4.0 and o = 0.01
S/m. A set of V= 16 TX/RX antennas, modeled as line-current sources with
unit amplitude, has been considered at a working frequency of 300 MHz. The
antennas have been supposed to be located into two boreholes beside D, (as
shown in Fig. 4.1) at positions

(—A,,, 0.1 ) — 2)\b”‘1) if v <

T
2
(—)\b, 0.1 Ab—mb“"jl) it o>

kil
2

(Tos Yo) = v=1,..,V. (4.9)

SIASERNIES

When a radiator acted as transmitter, the remaining M = V — 1 collected the
scattered electric field. The number of views and measurement points has been
chosen as suggested in [57][58|.

The scattering field samples (i.e., the data of the inversion procedure) have been
numerically computed by using a forward solver based on the Method of Moments
[76] with a mesh of Ny,s = 40 x 40 square subdomains. To simulate a more
realistic measurement setup, a Gaussian noise with zero mean value has been
added to the computed data. Unless otherwise specified, the signal-to-noise ratio
on the total electric field data has been set to SN R = 20 dB. As for the inversion
procedure, a coarser mesh has been used to avoid inverse crimes. More in detail,
NIMSA — 10 x 10 subdomains have been adopted at each s-th scaling step of the
IMSA, whereas the number of partitions has been set to N2¢ = 20 x 20 pixels

for the bare IN approach.

To quantitatively evaluate the performance of the approach, the same error fig-
ures used in Chapter 3 have been adopted and are here reported, for completeness

NTS A
. 1 S |T(xnayn) - T(xnayn”

—reg — Nreg |T("L‘na yn) + 1|

reg = tot, ext,int (4.10)
n=1

where 7 and 7 are the actual and reconstructed values of the contrast function in
the n-th sub-domain' and N,y indicates the number of cells covering the whole
inspected area Dy,, (reg = tot, Ny,; = N), or belonging to the background
region (reg = ext), or to the support of the buried scatterer (reg = int; Ny =
Nezt + Nznt)

!The reconstructions have been obtained by averaging the results over 100 different noise
realizations.
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4.3.1 Calibration

Y/,
Re{t(xy)}

-0.8 -04 0 0.4 0.8
XAy

Figure 4.2: Calibration (Square Scatterer - L = 0.32 Ay, (z, = —0.16 N\, y. =
—0.58)\), & = 5.5,0 = 0.01 S/m [r = 1.5], 5 =4.0, 05 =0.01 S/m, SNR = 20
dB) - Actual target used for the algorithm calibration.

As already stated in Chapter 3, the choice of the correct parameters of the in-
version procedure is of fundamental importance, thus an analysis of the per-
formances versus such parameters has been firstly performed to identify the
best setup. The goal of this calibration has been that of determining the op-
timal (@, «) pair for the IMSA-IN approach, while the other parameters have
been set according to the guidelines already devised in previous works [43][69],
namely [z s=1 = 20, Lnezs>1 = 1000, and S = 4. More in detail, ) and
the fitness scaling factor a have been varied within the range 10 — 100 and be-
tween 0.1 and 0.9, respectively. As a reference target, a square cylinder located
at (—0.16 \y, —0.58 \;) with side L = 0.32),, relative dielectric permittivity
e, = 5.5, and electric conductivity o = 0.01 S/m (i.e., 7 = 1.5) has been consid-
ered (Fig. 4.2).
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Figure 4.3: Calibration (Square Scatterer - L = 0.32 )\, (x. = —0.16 Xy, y. =
—0.58)\), & = 5.5, 0 = 0.01 S/m [r = 1.5], 5,5 =4.0, 0 =0.01 S/m, SN R = 20
dB) - Total reconstruction error vs. « (a € [0.1, 0.9]) for different values of @) in
the range @ € [10, 100].
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Figure 4.4: Calibration (Square Scatterer - L = 0.32 )\, (x. = —0.16 Xy, y. =
~0.58\y), &, = 5.5, 0 = 0.01 S/m [r = 1.5], &5 =4.0, 0 =0.01 S/m, SNR = 20
dB) - Best fitness value for different (Q, «) pairs.
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Figure 4.5: Calibration (Square Scatterer - L = 0.32 )\, (z, = —0.16 \y, y. =
—0.58 ), £, = 5.5, 0 = 0.01 S/m [r = 1.5], .5 =4.0, 75 =0.01 S/m, SNR = 20
dB) - (a) Real and (b) imaginary parts of the reconstructed distribution of the
contrast function when Q = Q" = 50 and o = " = 0.9.

The results of the IMSA-IN reconstructions are summarized in Fig. 4.3, which
reports the values of the total error =;, versus the fitness scaling factor and
for different values of the inner iterations of the IN algorithm when setting
Ipaz s=1 = 20 and S = 4, being SNR = 20 dB. Since the best pair of parameters
is defined as that with the minimum value of the total reconstruction error =,
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the optimal setup turned out to be: ) = 50 and o = 0.9. For completeness,
Figure 4.4 reports the values of the residual ® on the data, while Figure 4.5 shows
the distribution of the contrast function [real part - Fig. 4.5(a); imaginary part
- Fig. 4.5(b)] reconstructed with the optimal parameters.

As it can be observed, the scatterer is faithfully reconstructed with a careful
identification of the target shape as well as an estimation of the contrast very
close to the actual one.
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Figure 4.6: Calibration (Square Scatterer - L = 0.32 )\, (x. = —0.16 Xy, y. =
—0.58)), &, = 5.5, 0 = 0.01 S/m [r = 15|, e, =4.0, o5 =0.01 S/m, SNR = 20
dB) - Reconstruction errors for different values of Ae, p.

To assess the robustness of the optimal calibration setup against the uncertain-
ties in the medium electromagnetic parameters, the same target has been imaged
by assuming that the relative dielectric permittivity &,.5 used by the inversion
method is different from its actual value ,5. The behaviour of the total recon-
struction error versus Ae,p = €, 5 — &, shows that the accuracy of the proposed

approach smoothly degrades as the uncertainty increases (e.g., % ~ 2.83
—totiAe, p=0.2

- Fig. 4.6), and that the total error is below 7% even in the worst case conditions
(i.e., when Ae,.p ~ —1.0 - Fig. 4.6).

4.3.2 Effects of Noise

To evaluate the effect of the noise on the reconstructions and the robustness of
the proposed approach, a set of simulations with levels of noise varying from
SNR =5 dB down to oo has been performed.
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SNR Lot PJinal ] Stot Sint Eext | At [s] |
BARFE
oo (Noiseless) | 600 [ 1.28 x 1073 [ 9.46 x 1072 [ 2.17 x 1071 [ 6.94 x 1072 | 4041
30 [dB] 600 | 1.80 x 1073 | 9.44 x 1072 | 2.17 x 1071 | 7.04 x 1072 | 4045
20 [dB] 600 | 4.07 x1073 [ 9.83 x 1072|221 x 107! | 7.25 x 10-2 | 4042
10 [dB] 600 | 1.25 x 1072 [ 1.35 x 1071 | 2.17 x 107 | 1.00 x 10~ | 4038
5 |dB| 600 | 2.20 x 1072 | 1.91 x 107 [ 2.31 x 107 | 1.37 x 1071 | 4023
IMSA
oo (Noiseless) | 450 | 4.45 x 1073 | 5.61 x 1073 | 1.36 x 107! 0.00 211
30 [dB] 461 | 4.53 x 1073 { 5.60 x 1072 | 1.36 x 107! 0.00 212
20 [dB] 827 [5.39 x 1073 | 2.89 x 1073 | 6.87 x 1072 0.00 288
10 [dB] 3020 | 141 x 1072 | 521 x 1073 | 1.17 x 10! 0.00 795
5 [dB] 3020 | 2.43 x 1072 | 1.46 x 1072 | 1.97 x 107! [ 5.96 x 1072 | 776
Table 4.1: Performance vs. Noise (Square Scatterer - L = 0.32 )\, (z. =

—0.16 Ay, yo = —0.58 \p), &, = 5.5, 0 = 0.01 S/m |1 = 1.5], e,5 =4.0, o =0.01
S/m) - Total number of performed outer iterations, final fitness values, and re-
construction errors for the BARE and the IMSA (s = S = 4) IN approaches.
Total execution time on a PC with Intel(R) Core(TM)2 CPU 6600 @ 2.40GHz,
2GB RAM.

Still considering the same target of the previous Section, the inversion results
are summarized in Tab. 4.1 where the total number of outer iterations needed
to reach the convergence?, the final residual on the data ®/% and the recon-
struction errors Z,., are given along with the inversion time®. For comparison
purposes, the outcomes from the application of the bare IN approach (i.e., the
single-step uniform resolution IN) is also reported. It is worth noticing that for
a fair comparison, the calibration of the control parameters has been carried out
for the bare algorithm, as well, with the identification of the following optimal
values: I,,,,, = 600 and ) = 100.

As it can noticed (Tab. 4.1), the IMSA-IN approach proves to be quite robust
to the noise on the data since, even for heavy noise conditions, the arising er-
rors turns out to be quite small and the multi-resolution implementation always
outperforms its corresponding single-step uniform resolution counterpart. These
indications are also confirmed by the reconstructed distributions of the contrast
function (real part - Fig. 4.7; imaginary part - Fig. 4.8).

2As for the IMSA, this number corresponds to the sum of the outer iterations performed
on the whole set of iterative scaling steps.

3The IMSA inversion time is computed as the sum of the execution time for each iterative
scaling step.
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Figure 4.7: Performance vs. Noise (Square Scatterer - L = 0.32 )\, (x. =
—0.16 \p, yo = —0.58\y), &, = 5.5, 0 = 0.01 S/m [r = 15|, £, =4.0, oy =0.01
S/m, SNR =10 dB) - Reconstructed distributions of the contrast function (real
part) when using (a)(c¢) IMSA-IN and (b)(d) IN under (a)(b) full-nonlinear and
(¢)(d) approximate conditions (SOBA).

As a representative example, let us refer to the plots in Fig. 4.7 concerned with
the inversion of scattering data blurred with a noise characterized by SNR = 10
dB. In particular, Figures 4.7(a) and 4.8(a) show the result yielded with the
IMSA-IN algorithm, while Figures 4.7(b) and 4.8(b) plot the reconstruction from
the bare approach. Figures 4.7(¢)-4.7(d) and 4.8(¢)-4.8(d) complete the overview
by presenting the results under second order Born approximation (i.e., SOBA
method). As expected, the IMSA-IN better shapes the target and the estimated
values of the contrast function are closer to the actual ones. On the other hand,
the full-approach significantly improves the performance of the approximated
one in both IMSA [Fig. 4.7(a) vs. Fig. 4.7(c) - ZSAIN = 5921 x 1073
vs. ZIMSA=SOBA _ 1 83 % 107?] and single-step [Fig. 4.7(b) vs. Fig. 4.7(d) -
S =135 x 1071 vs. 29984 =1.46 x 107 versions.
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Figure 4.8: Performance vs. Noise (Square Scatterer - L = 0.32 )\, (z, =
016N, ye = —0.58N), & = 5.5, 0 = 0.01 S/m [r = 1.5], e, =4.0,
op =0.01 S/m, SNR =10 dB) - Reconstructed distributions of the contrast
function (imaginary part) when using (a)(¢) IMSA-IN and (b)(d) IN under
(a)(b) full-nonlinear and (c¢)(d) approximate conditions (SOBA).

For completeness, Figures 4.9(a)-4.9(b) show the residual on the data and the
reconstruction errors versus the outer iteration number, while the behavior of the
reconstruction errors at each resolution step of the scaling process is reported in
Fig. 4.9(c). As it can be observed, the multi-resolution procedure allows a
significant improvement of the reconstruction quality throughout the iterative
zooming.
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Noise (Square Scatterer - L = 0.32 )\, (z, =
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Finally, it is worth pointing out that the IMSA-IN approach requires less CPU
time than the bare method to reach the convergence solution (Tab. 4.1) since a
smaller problem has to be solved at each resolution step.

4.3.3 Effects of the Dielectric Properties of the Target

This Section is aimed at giving some insights on the dependence of the recon-
struction accuracy of the proposed approach on the contrast values of the imaged
target.

SNR=20 [dB]

Zot- BARE-IN —e— -
Eint - BARE-IN —eo—
Zext - BARE-IN —e—
10-4 - Etot' IMSA-IN ---3¢---- ]
Zint - IMSA-IN -3¢+~
Zext - IMSA-IN —-temee

Reconstruction Errors

0.2 0.6 1 1.4 1.8 2.2
Reft(x,y)}

Figure 4.10: Performance vs. Target Permittivity (Hollow Cylinder - Loy =
0.48 )\b, Lmt = 0.16 )\b; (SL’C = 0.08 )\b, Ye = —0.48 )\b), o = 0.01 S/rn, ErB :40,
op =0.01 S/m, SNR = 20 dB) - Reconstruction errors for different values of 7.

A hollow square cylinder has been considered [Fig. 4.11(a)| centered at

(0.08 \p, —0.48 \y) with external side L.,; = 0.48 A\, and internal side L;,; =
0.16 \p. The values of the contrast have been changed in the range 7 € [0.2, 2.2].
Figure 4.10 gives the inversion results in terms of the total reconstruction error
for both the bare and the IMSA-IN approaches. It turns out that the two
implementations are quite robust against the contrast even though the IMSA-
IN is able to provide a smaller value of reconstruction error. For illustrative
purposes, Figs. 4.11(b) and 4.11(¢) show the real part of the contrast function
retrieved by the IMSA-IN and the bare approaches when 7 = 2.2, while Figs.
4.11(d) and 4.11(e) show the imaginary parts. The plots outline the effectiveness
of the multi-resolution approach in both qualitatively and quantitatively imaging
the target, while the single-step technique only localizes the target.
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Figure 4.11: Performance vs. Target Permittivity (Hollow Cylinder - Loy =
0.48 Ny, Ling = 0.16 Ny, (w0 = 0.08 Ny, g = —0.48\y), &, = 6.2, ¢ = 0.01 S/m
[T =2.2], .5 =4.0, 05 =0.01 S/m, SNR = 10 dB) - Reconstructed distribution
of the contrast function. (a) Actual configuration and (b) real and (d) imaginary
parts provided by the IMSA-IN strategy and (c¢) real and (e) imaginary parts
obtained by the BARE-IN.
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Figure 4.12: Performance vs. Target Scales (E-Shaped Scatterer - . = 5.5,
0=0.01S/m|[r =1.5], .5 =4.0, o =0.01 S/m, SN R =20 dB) - Reconstructed
distribution of the contrast function (real part). (a) Actual configuration and
reconstructions with (b)(d) IMSA-IN and (c)(e) IN under (b)(c) full-nonlinear

and (d)(e) approximate conditions (SOBA).
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4.3.4 Reconstruction of Targets with Small Details

The capabilities of the approach in reconstructing target details at dimensions
comparable to the inversion grid of the bare technique have been assessed then
by considering the object in Fig. 4.12(a). The contrast function retrieved by the
IMSA-IN algorithm is shown in Fig. 4.12(b) and Fig. 4.13(a) and compared to
that from the IN method [Fig. 4.12(c¢) and Fig. 4.13(b)].

IN IN — SOBA

0.5 0.1 0.5
0.25 05 0.25
0 0.9
-0.25 1.3 -0.25
-0.5 1.7 -0.5
-0.8 -0.4 0 0.4 0.8
XIN

b

(c)
0.5 0.1 0.5
0.25 .05 0.25
0 -0.9
-0.25 1.3 -0.25
-0.5 1.7 -0.5
-0.8 -0.4 0 0.4 0.8

XNy

() (d)

o

Im{T(xy)}
YAy

IMSA
72

BARE
YAy
Im{t(x,y)}
Yy
o

Figure 4.13: Performance vs. Target Scales (E-Shaped Scatterer - . = 5.5,
o = 0.0l S/m [r = 1.5], e,p =4.0, op =0.01 S/m, SNR =20 dB) - Recon-
structed distribution of the contrast function (imaginary part) with (a)(c) IMSA-
IN and (b)(d) IN under (a)(b) full-nonlinear and (¢)(d) approximate conditions
(SOBA).

As expected, the multi-scaling strategy provides a quite good reconstruction
of the long arms of the E-shaped target because of its intrinsic multi-resolution
nature, although the smallest detail in the internal region is not detected probably
due to the masking effects of the external region of the scatterer. On the contrary,
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the single-step reconstruction significantly gets worse loosing all the object details
[Fig. 4.12(¢) and Fig. 4.13(b)|. For completeness, the corresponding SOBA
implementations are reported in Figs. 4.12(d)-4.12(e) and Figs. 4.13(¢)-4.13(d),
as well.

4.3.5 Reconstruction of Targets with Higher Conductivity

Finally, the effects of the conductivity of the target have been evaluated. The
square object imaged in Sects. 4.3.1 and 4.3.2 has been again considered, but its
electric conductivity has been increased to o = 0.1 (i.e., Z {7} = —5.39).
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Figure 4.14: Performance vs. Target Conductivity (Square Scatterer - L =
0.32 Ny, (10 = —0.16 \p, 4o = —0.58X\,), &, = 5.5, 0 = 0.1 S/m [r = 1.5 — 55.39],
erp =4.0, op =0.01 S/m, SNR =10 dB) - Reconstructed distribution of the
contrast function. (a) Real and (b) imaginary parts provided by the IMSA-IN
strategy and (c¢) real and (d) imaginary parts obtained with the bare IN.
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4.4. DISCUSSIONS

| SNR | Eit BARE | Z1y IMSA |
oo (Noiseless) | 3.07 x 107" | 4.01 x 1072
30 [dB] 3.07 x 107! | 3.98 x 1072
20 |dB] 3.14 x 107! | 1.61 x 1072
10 [dB] 3.60 x 1071 | 2.26 x 102
5 [dB] 421 x 1071 [ 3.97 x 1072

Table 4.2: Performance vs. Target Conductivity (Square Scatterer - L = 0.32 Xy,
(xe = —0.16 A\p, y. = —0.58 \p), &, = 5.5, 0 = 0.1 S/m |7 = 1.5—35.39], &,5 =4.0,
op =0.01 S/m) - Reconstruction errors for the bare IN and the IMSA-IN (at
step s = S = 4) approaches.

The reconstruction errors for different values of the signal-to-noise ratio are re-
ported in Tab. 4.2 to assess in this case, too, the IMSA-IN strategy improve-
ments over to the bare method. This is also visually confirmed by the representa-
tive distributions of the contrast function shown in Fig. 4.14, which refer to the
case SNR = 10 dB. Indeed, both real and imaginary parts of the contrast func-
tion are successfully retrieved by the IMSA-IN strategy |Figs. 4.14(a)-4.14(b)]
being closer to the actual ones. The same accuracy is not achieved by the bare
implementation [Figs. 4.14(c)-4.14(d)|.

4.4 Discussions

In this chapter, a microwave imaging technique for the reconstruction of shallow
buried objects has been presented. The proposed approach extends the strat-
egy presented in Chapter 3 by employing the full non-linear formulation of the
scattering problem. In this way, the method is potentially able to deal with
strong scatterers, too. The reconstruction performances have been evaluated by
means of several numerical simulations. It has been found that the proposed
approach provides quite good reconstructions of the considered targets showing
a good robustness to the noise, as well. Moreover, the results from the multi-
focusing strategy turned out to be better both in terms of reconstruction errors
and computational resources than the standard bare inexact-Newton algorithm
when applied to the same scattering configurations. Future works will be devoted
to an experimental validation of the proposed inversion algorithm.
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Chapter 5

G PR Prospecting through an
Inverse Scattering
Frequency-Hopping Multi-Focusing
Approach

In this chapter, an innovative information-acquisition approach to 2D Ground-
Penetrating Radar (GPR) prospecting is presented. A microwave inverse-scattering
nested approach combining a frequency-hopping (FH) procedure and a multi-
focusing (MF) technique is proposed. On the one hand, the FH scheme ef-
fectively handles multi-frequency GPR data, while mitigating the non-linearity
issues. On the other, MF techniques have proved to be effective tools for re-
ducing the occurrence of multi-local-minima affecting GPR investigations then
allowing the use of a local search technique based on the Conjugate Gradient
(CG) method to iteratively solve the inverse problem at hand. Selected results
are reported and analyzed to give some insights to the interested readers on the
advantages and the limitations of such an approach when handling synthetically-
generated and experimental GPR data, as well.

53



5.1. INTRODUCTION AND RATIONALE

5.1 Introduction and Rationale

In the last decades, ground penetrating radars (GPRs) have been widely used
in subsurface non-destructive testing (NDT') problems [1][13][77][78] arising in
archaeology, geology, demining, pavement survey, tunnel detection, and police
investigation [59]|[79]-[83]. Such a popularity mainly derives from the superior
performance in terms of resolution, depth of investigation, speed, and costs com-
pared to other NDT technologies [59][79][80][83]. Unfortunately, retrieving the
dielectric properties of buried object from GPR data, usually collected in the
time domain, is a very challenging task because of the theoretical properties of
the associated inverse problems (i.e., ill posedness and non-linearity [84][85]) as
well as the dimensionality of the problem at hand [86]. To face such challenges,
several GPR prospecting algorithms have been proposed in the state-of-the-art
literature. Approximate formulations of the complete non-linear problem have
been often taken into account [84][86]-[88]. More specifically, weak scatterers
have been successfully retrieved through Born [84][86][88][89] or distorted-Born
GPR approximations [87] by solving the arising linear problem with truncated
singular value decomposition (7SVD) algorithms [84][86]-[88|. Nevertheless, the
derivation of GPR prospecting techniques able to faithfully handle strong and /or
extended scatterers and deal with related multi-minima issues is still an open
challenge [83]. Indeed, even though global search strategies based on Evolution-
ary Algorithms (EAs) could, in principle, successfully address nonlinear problems
[34][41], their “bare” use is generally prevented in subsurface imaging because of
the size of the domains under investigations and the arising convergence and
computational loads.

On the other hand, the generalization of multi-focusing (MF') inversion tech-
niques borrowed from “free-space” imaging [54][72||75] is a potentially appealing
approach to be adopted since GPR time-domain signals are intrinsically multi-
frequency data. Historically, MF iterative strategies have been specifically intro-
duced to mitigate local minima problems in inverse scattering [51][54][72]. By
keeping at each MF iteration the number of unknowns as close as possible to the
available data information [90], the original complex imaging problem is recast
to a sequence of simpler data-mismatching cost function minimizations where
the occurrence of local minima is strongly reduced [54][72]. This latter enables
as an interesting by-product the possibility to use local optimization strategies
that allow a significant computational saving with respect to EAs [34][41].

This chapter is then aimed at introducing a robust and efficient complement
to existing GPR prospecting strategies based on the multi-minima mitigation
capabilities of MF procedures. Towards this end, subsurface imaging from
time-domain GPR data is firstly recast to a multi-frequency inversion then a
frequency-hopping (FH) [91]-[93] iterative scheme is adopted. Since each GPR
frequency data is associated to a different level of spatial resolution [92|, the FH
approach is suitably integrated in a hierarchical multi-resolution scheme that ex-
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ploits a Conjugate Gradient (CG) [30][94] local strategy as optimization solver.

The outline of the chapter is as follows. After the formulation of the GPR
prospecting problem (Sect. 5.2), the proposed FHMF-CG method is introduced
and discussed (Sect. 5.3). It is then assessed against synthetic data generated
through GprMazx software [95] and comparisons with state-of-the-art techniques
[87][96] are also discussed, while experimental validations [97] follow (Sect. 5.4).
Eventually, some conclusions are reported (Sect. 5.5).

5.2 GPR Prospecting - Inverse Scattering For-
mulation

Let us consider the GPR transverse-magnetic problem sketched in Fig. 5.1(a)
where two homogeneous, isotropic, and non-magnetic half-spaces are separated
by an interface at y = 0. The lower half space of background relative permittivity
erp and background conductivity og, contains a set of scatterers located within
the investigation domain Dj,, [Fig. 5.1(a)] and described by discontinuous (wrt
the background) profiles of permittivity e, (r) and conductivity o (r). The free-
space (g9 and op = 0) upper half space comprises a set of V' z-directed ideal
line sources located at r, = (z,,y, > 0), v = 1,..,V and excited with the time-
domain current x (t) [Fig. 5.1(b)| to generate in free space the radiated field
[98][99]

w, (r,1)% = {;5(15—|r_rv|)*h(r—rv,t)*ax<t) (1)

21 r —1r,| co Co ot

where t stands for the time variable, * is the convolution operator, ¢g is the free-
space speed of light, ¢ (-) the Dirac’s delta, and h (r,t) is the transient response
of the antenna source located in r [99].

From the interactions between the V' line sources and the lower half space (i.e.,
the background and the scatterers) the signal (i.e., the GPR radargram) collected
by the M ideal probes located in the upper half-space at r,, = (2, ym > 0),
m=1,.., M, [Fig. 5.1(d)| is given by

av (rma t) = uv (rmat) + Qv (rmat) = &y rma t) + SU (I’m,t) + qv (I’m,t) (5 2)
m=1 ’

e
e Miv=1,..,V

where s, is the scattered electric field, g, is a zero-mean additive Gaussian noise
term modelling the measurement/environment noise, and e, is the incident (i.e.,
the electromagnetic field of the same scenario but without the scatterers) electric
field.
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In order to retrieve the scatterers profile starting from the GPR radargrams,
the scattered field data [88] [3, (T, t) = Ty (Tp,t) — €y (T, t) - Fig. 5.1(e)] are
firstly determined by temporal muting the first part of the GPR trace u, (r,,,t),
m=1,.... M, v =1,...,V, that accounts for the direct coupling between the
transmitting source antenna and the air-soil interface [Fig. 5.1(d)]

Sy (T, t) =T [y (v, t)] v=1,..,V, (5.3)

['[] being the gating operator [Fig. 5.1(e)]. Indeed, such a pre-processing pro-
cedure is equivalent, for the half-space scenario at hand, to the subtraction of
the incident (or unperturbed) field, e,, from the total field, w,, which is a cus-
tomary operation in microwave inverse scattering experiments under controlled
conditions.

Afterwards, the Fourier transform of the time scattered data is computed in K
frequency samples

a(k) 00~ )
S (t) = f_oo Sy (T, 1) exp (jQWf(k)t) dt (5.4)
_]_’...,M; 'U:]_’,“’V; ]{/':]_’“.’K

to avoid both ’insufficiency’ and redundancy in the data as well as reducing the
computational costs and the measurement burden, thus making it possible to
investigate wider domains Dj,,. In (5.4), f® € [fuin, fmax] is the k-th sam-
pling frequency, [fmin, fmax] being the 3dB bandwidth of the spectrum of the
illuminating pulse X (f) = [*°_x (¢) exp (j27 ft) d¢ [Fig. 5.1(c)] [88].

In frequency-domain framework the original retrieval problem becomes then that
of retrieving, in the investigation domain D;,,, the object function [84][?]

(er(r) — &) —J 27(;0)(;)053;

€0

70 (p) & L k=1,..,K (5.5)

and the total field

U® (r) £ / u, (v, t)exp (j2nf®t)dt v=1,..Vik=1,.K (5.6)
starting from the scattered, SiP (rp),m=1,... . Mv=1,...V k=1 .., K, and
the radiated, E® (r) £ ffooo €y (T, t) exp (j27Tf(k)t) dt,v=1,.. V,k=1,... K,
field frequency samples. Mathematically, such a problem can be recast to the
minimization of the data-mismatch cost function [84]

SV S 5P )-8 )| S S, B ) E““)(r)fdr

SV S )| SV S|P 0] e (5.7)
k=1, K

Pk =

where S (r) and E® (r) stand for the retrieved versions of S5 (r) and EY (r),
respectively, and they are related to the estimated quantities 7*) (r) and U (r)
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through the data [84]

ak) (k) 77F) -~
55 (tm) =k [, Gent (T ¥) U (2) 70 (x7) d! (5.8)
m = 7.,7M,]€:1, ,K7U:17 7V
and the state equations [84]
(k) (k) (k) (k) -~
By (r) = Uy (v) — kj fDmv Ging (1,7) U () 70 (') dr’ (5.9)

re Dy, k=1,... K,v=1,..V

Ql(ffz (r,r') and Qé’;i (r,r') being the 2D internal and external half-space Green’s

functions for the k-th frequency [84], respectively.
The problem of interest can be now summarized /stated as follows

GPR Inverse Scattering Prospecting Problem - Given E” (r)
and SO (r), m=1,..,M,v=1,..,V, k= 1,.., K, find 7 (r)
and UM (r),v=1,..,V, k=1, .., K, within D;,, such that (5.7) is
minimized.

5.3 FHMF-CG Inversion Procedure

The proposed solution procedure is a nested iterative algorithm composed by an
external loop (k = 1,..., K) implementing the FH strategy, while the internal
loop (s =1, ...,.5) performs the MF (Fig. 5.2).

The external FFH scheme is essentially an information acquisition process con-
sisting of K successive solutions of (5.7), each cycle being related to the k-th
frequency. Although the contrast is a dispersive quantity whether lossy mate-
rials are at hand' (5.5), the reconstruction yielded at the (k — 1)-th step can
be exploited to provide a profitable initialization for the successive k-th one
[91]192][93] (e.g., the scatterer support generally does not change):

{ 70 (r)] 7 =0 k=1

A~ UeESS o~ . o~ - 5-10
A0 ()| = R G ()} S (P (0} L2 p =, k. 10

In (5.10) the contrast function retrieved at the (k—1)-th step is rescaled to the k-
th frequency by multiplying its imaginary part by the ratio f#=1/f(*)_ Moreover,
the guess total field distribution at the k-th external iteration is computed, unlike
state-of-the-art FH methods [91], as follows

Aék) (r) guess _ z(}k) (I‘) E—=1
iy ) |ouess © puess (5.11)
oo o = [E (r), 70 (r)| ] k=2 .. K

!Lossy scenarios are common in GPR applications because of the conductive nature of the
materials and the soils at hand [79][80][81][82][83].
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where W [-] stands for the 2D direct solver operator numerically computed by
means of the Method of Moments (MoM)[91].

GPR Data . Fourier
Acquisition Transform
FHMF-CG Method
______________ Frmmmm - - o - - S TEITEEN
1 ‘ Inputfoutput
External foop
FHMF-CG ) (=S
il For Function MF loop . ”
. - ' Definition | | initialization nternal loop
(Step1) (Step2) [s=1] {Step 3)

|
!

I 1
| 1
1 1
I |
I |
I 1
1 |
1 1
: |
1
: MF discretization M:D':II::::E !
I (Step 4) {Step 5) (Step 6) :
1 |
I |
I |
1 1
| 1
1 |
I |
I |
: 1
I
I
I

[ No [ e
1 | s=8? |
MF update Rol
(Step 7) Yes
MF check FH Check
corvergence Convergence
[ No | {Step 8) Yes {Step9) Yes | | FHMF-CG
Retum
[TTTTTTTTTI T 7 [ |
E Rol Area converged? l=K?

Figure 5.2: FHMF-CG Inversion Procedure - Flowchart of the GPR prospecting
method.

The internal MF loop (Fig. 5.2), carried out at each k-th frequency step, is aimed
at solving the k-th monochromatic GPR problem by numerically minimizing
the cost function ®* (5.7) in S zooming steps starting from the initial (s =
1) distributions of the unknowns (5.10)(5.11). Towards this end, the problem
unknowns, 7*) (r) and US" (r) in (5.8) and (5.9), are discretized at each s-
th step according to a multi-focusing scheme that automatically enhances the
spatial resolution in correspondence with the Regions of Interest (Rols) of Dy,
[54][72] where the scatterers have been detected. More in detail, the s-th Rol Q
(€21 = D;py) is partitioned into N square subdomains centered at r,|, (r,|, € £,
n=1,...,N), N being the number of degrees of freedom (DoF's) of the scattered

field S [57], to yield

~

v ()], (5.12)

s

N
-y

n=1

" (x)

(2
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5.3. FHMF-CG INVERSION PROCEDURE

and
N

7 ( 7B P (r)], (5.13)
n=1
where " (r)| is the n-th rectangular pulse basis function at the s-th MF step

(k)

of the k-th frequency, while (/]\51’2 and 7, are the corresponding field and

contrast unknown coefficients, respsectively. B}Sf substituting (5.12) and (5.13) in
(5.8) and (5.9), the following discretized form of the data

SI (r,,) = 25 . O ) 0 ()
M k=1,. K v—l,...,V

/
o (5.14)

and the state equations

EY (r,]) = U85 =N U8 28 [, gil (ral, ) ol ()| dr’
I'ED”W,]{Z:L 7K7U:17 7V
(5.15)

are obtained to deduce the discretized version of (5.7), ®®| | to be minimized
with a numerically efficient local search algorithm. Owing to the suitable choice
of the ratio between measurement data and unknowns according to the DoF
criterion [57] and the (consequent) reduced occurrence of local minima [90], a
CG-based deterministic optimization strategy [30][94] is here adopted. Starting
from (5.10) and (5.11), such a minimization technique is defined through by the
following update equations [30][94]

[+ i

all

Js s 5.16
L (5.16)

U

oW ﬁ(k" (k)
(k)

v

ﬁu

S S S

where ¢ = 1, ..., I is the minimization iteration index,

Uk 2 {(75?,3 n=1, N} (5.17)
and , ,

20| & {ﬁgk)}; n=1, N} (5.18)
are the unknown total field and contrast vectors, respectively, aq()k) and bS,"“))

are the corresponding search directions proportional to the gradient of é(k)}s
30][94]), while o{”| and 8

Once ¢ = I or the cost function stagnation arises[54]), the minimization loop
(5.16) is stopped and a new internal MF step is performed (s < s+ 1) to up-
date the localization and the size of € through filtering and clustering [54].

(2
are the associated step lengths.
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Successively, the spatial resolution is enhanced within the detected Rol by up-
dating r,|, (s = 2,...,5, r,|, € Q5, n = 1,...,N), and the CG-based process
is carried out again and again until the MF process terminates (i.e., s = S or
the extension of the Rol does not change significantly) [54]. Successively, the

I N
estimated coefficients vectors, 7" ; and U o are substituted in (5.12) and
(5.13) and then passed to the successive FH step according to (5.10) and (5.11).
The whole FHMF-CG procedure iterates until the local minimization of the last
multi-focusing iteration (s = S) of the highest frequency (k = K) is completed
(i =1).

In short, the proposed G PR prospecting inverse scattering method can be sum-
marized as follows (Fig. 5.2):

1. Initialization. Determine E." (r) and S5 (tp), m = 1,.. M, v =
1

1,..,V, k = 1,...,K from GPR radargrams, u, (r,,,t), m = 1,... M
v=1,..,V (see Sect. 5.2). Set k = 1;

2. FH Loop. Define ®* (5.7) and initialize the unknowns by setting (5.10)
and (5.11);

3. MF Loop. Set s = 1,92, = D;,,. Compute N according to the DoF
criterion [57];

4. MF Loop. Discretize the s-th Rol by computing the cell centers, r,|, €
Qg, n=1,...,N. Deduce the MF cost function by substituting (5.14) and
(5.15) in (5.7);

I

yv=1,..V,

S

ENY
5. Deterministic Minimization. Update Ug,k)‘ and 7P

according to (5.16) until convergence (i = I);

PN
6. MF Loop. If s = S then return Uq(,k)

goto Step 7;

I
and ?—5’“)5 and goto Step 9, else

S
7. MF Loop. Set s < s+ 1 and update €5 with “filtering” and “clustering”
procedures [54];

k|1

S

! ~(
and 7, and

S

8. MF Loop. If ‘area{?;j;?gf}ﬁﬂkl}‘ < ~ then return U

goto Step 9, else goto Step 4;

—~ 1
(k)
v,n

9. FH Loop. If £k = K then substitute the final coefficients [75,2 = &
I

n=1,.N, v=1,..V, and ?5’“)’5 = A v = 1V i (512)

and (5.13) to determine 7% (r) = 7% (r)|; and o @) = OP (1)
k=1,..., K. Otherwise, set k < k + 1 and goto Step 2.

)

S
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It is worth observing that the FHMF-CG approach turns out very flexible since
each procedural block (i.e., FH scheme, MF technique, minimizer) can be easily
modified, updated, or substituted without altering the other ones. Analogously,
the cost function (5.7) can be easily adapted to take into account additional reg-
ularization terms (e.g., multiplicative [101] or sparseness terms |?][23]). However,
these investigations are beyond the scope of the current research work and they
will be properly addressed in future investigations.

5.4 Numerical and Experimental Validation

5.4.1 Rationale and Figures of Merit

In this section, a set of illustrative experiments is presented to assess the features
and the potentialities of the proposed FHMF-CG inversion procedure in terms of
accuracy, numerical efficiency, and robustness both considering synthetic (Sect.
5.4.2) and measured data (Sect. 5.4.3). Towards this end, the application of
the proposed MF scheme has been carried out by preprocessing the GPR time-
domain signals® [Fig. 5.1(b)] through a discrete Fourier transform (Fig. 5.2),
and then extracting the data sets at K equispaced frequencies within the 3dB
bandwidth of the illuminating pulse [Fig. 5.1(c)]. As regards the numerical
examples, time-domain synthetic data generated by means of GprMax software
[95] have been corrupted by zero-mean additive Gaussian noise, and the signal-
to-noise ratio (SN R) has been referred to the total field as [102]

21‘)/:1 Zn]\le Zszl Tyﬁ) (rm))2

.
k
S o S [N )|

SNR = (5.19)

To assess the quality and efficiency of the method, beyond the visual represen-
tation of the retrieved contrast profiles, the integral error figures [54]

N’I‘E A
—w _ 1 Z #8) (1) — 78 (,,)] (5.20)
—reg Nreg — |,7_(k) (rn) + 1| .

[where reg indicates if the error computation covers the overall investigation
domain (reg = tot), the actual scatterer support (reg = int) or the back-
ground region (reg = ext)| have been reported, along with the inversion time
At. Furthermore, the control parameters of the MF and CG procedures have
been selected according to the guidelines in [30][54][72].

2Tt is worth remarking that GPR time-domain data, usually available in radargrams, have
been considered in both synthetic and experimental examples.
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5.4.2 Numerical Validation

5.4.2.1 Performance Assessment

The first set of examples is devoted to assess the performance of the proposed
FHMF-CG method when processing synthetic data. The benchmark 2D GPR
scenario consists of a square investigation domain of side 0.8 m centered at
(0.00, —0.4) m which is illuminated by V' = 20 sources radiating a time-domain
Gaussian monocycle pulse [Fig. 5.1(b)| with spectrum centered at 300 MHz and
3 dB bandwidth covering the [200.0, 600.0] MHz range [Fig. 5.1(c¢)|. The sources
are equally spaced on a 1 m line which is located at y = 0.1 m above the soil
[Fig. 5.1(a)], which is characterized by e,5 = 4.0, op = 107% S/m. A set of
M = 19 probes [co-located with the sources® - Fig. 5.1(a)] collect the total field,
and the Fourier transform is carried out assuming K = 5 frequencies.

In order to illustrate the FHMF-CG procedure (Sect. 5.3) on a step-by-step basis,
a “hollow square” profile (internal side 0.08 m, external side 0.24 m) centered at
(0.12,—-0.36) m and characterized by 7 = 1.0 [Fig. 5.3(a)| has been imaged in
noiseless conditions (Fig. 5.3). The reconstructions obtained at the k = 1 FH
iteration (corresponding to the lowest frequency, fr = 200 MHz - Fig. 5.3) show
that the multi-focusing procedure starts from the rough s = 1 reconstruction
[Fig. 5.3(b)], and then progressively zooms on the scatterer support [s = 2, Fig.
5.3(c); s = 3, Fig. 5.3(d)] until the convergence of the MF loop is reached [i.e.,
s =8 =4, Fig. 5.3(e)|]. Afterwards, the FH loop iterates on the subsequent
frequency (k = 2, fr = 300 MHz), performing the same iterative process [but
exploiting the gathered information from the k& — 1 step - see (5.10) and (5.11)]
to yield the k& = 2 retrieved profile [Fig. 5.4(b)]. The procedure is then repeated
[k = 3 - Fig. 54(d); k = 4 - Fig. 5.4(f)] until ¥ = K = 5 |Fig. 5.4(h)|. As
regards the accuracy evolution during the FH steps, the reconstructions obtained
for each k shows that the GPR image quality improves as successive iterations
are performed le.g., k = 1, Fig. 5.3(e) vs. k = 5, Fig. 5.4(h)], as it is also
confirmed by the corresponding total error figures (i.e., Eglgg‘k = 3.96 x 1072

VS. ngt)‘ = 1.81 x 1072 - Tab. 5.1). Indeed, the size and permittivity of the
k=5

internal “hollow” region is correctly detected only at the highest frequency [i.e.,
k =5, fr = 600 MHz - Fig. 5.4(h)], while it appears distorted at the previous
FH steps [e.g., it seems narrower at k = 2, fi, = 300 MHz - Fig. 5.4(b)| despite
the noiseless scenario.

3The GPR multi-view multi-static setup operates so that when one source is active, the
remaining V' — 1 = M = 19 act as ideal field probes [Fig. 5.1(a)].
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Figure 5.3: Illustrative Example [“Hollow square” profile, ,5 = 4.0, o5 = 1073
S/m, 7 = 1.0, Noiseless data, f; = 200 MHz, k = 1| Actual (a) and FHMF-CG
retrieved dielectric profiles when (b) s =1, (b) s=2, (b) s=3,(e) s=5=4.
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Figure 5.4: Illustrative Erample [“Hollow square” profile, €,5 = 4.0, o = 1073
S/m, Noiseless data| Dielectric profiles retrieved by (a)(c)(e)(g) FH-CG and
(b)(d)(f)(h) FHMF-CG when (a)(b) ¢ = 2 (f» = 300 MHz), (a)(b) ¢ = 3
(fs = 400 MHz), (a)(b) ¢ = 4 (f4 = 500 MHz), (a)(b) ¢ =5 (fs = 600 MHz).
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Figure 5.5: Performance Assessment |“Hollow square” profile, e,5 = 4.0, op =
1073 S/m, 7 = 1.0] Behaviour of the integral error vs. the SNR (a), and
dielectric profiles retrieved by (b)(d) FH-CG and (c)(e) FHMF-CG when (b)(c)
SNR =30 dB, (d)(e) SNR = 10 dB.
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The reconstructions obtained with a “bare” FH approach (i.e., FH-CG), re-
ported in Fig. 5.4 for comparison purposes, remark the effectiveness of the MF
paradigm. Indeed, even exploiting all the frequency data [i.e., k = K], the single-
resolution method is only able to roughly detect the location of the scatterer,
but completely misses its shape and contrast [i.e., Fig. 5.4(g) vs. Fig. 5.4(h)].

o ' (k)| FHMF—CG
This is further remarked by the corresponding total (e.g., Z;.;

FH-CG

=1.81x
FHMF-CG

- —=(k
1072 vs. :§02

= 1.11 x 107! - Tab. 5.1), internal (e.g., EZ(ZZ =
FH-CG
1.24x 10! vs. 2 =2.81x 107! - Tab. 5.1), and external integral errors

k) FHMF-CG , k) [FH-CG ,
(e.g., Zeut e =871 x 1072 vs. =,y = 8.78 x 10~* - Tab. 5.1).
Even more impressively, the reconstruction obtained at the k = 1 step of the

FHMF-CG are significantly better than those achieved at the £ = K step of the
=(k) FH-CG

— Pt & 2.8 - Fig. 5.3(e) vs. Fig. 5.4(g)]. These results

k=K

bare method [i.e.,

k=1
support the previous claim concerning the capability of multifocusing approaches

to reduce non-linearity issues arising in GPR imaging (see Sect. 5.3).

To assess proposed method against noisy data, the same scenario has been inves-
tigated assuming SNR € [10, 50] dB (Fig. 5.5). The plots of the total integral

error vs. the noise level show that the FHMF-CG provides an accuracy equal to
.:(K) SNR=40dB

—tot
=(K)
—tot

that of the noiseless case until SNR ~ 40 dB |[i.e., ~ 1.01 - Fig.

Noiseless

_(K)|SNR=30dB
Stot
~

—(K) Noiseless ~
—tot

1.2 - Fig. 5.5(a)], as it is also confirmed by the profile retrieved when SNR = 30
dB [Fig. 5.5(¢) vs. Fig. 5.4(h)]. Moreover, the proposed method is able to de-
tect the presence and position of the scatterer even in extreme noise conditions

[i.e., SNR =10 dB - Fig. 5.5(e)], although the shape turns out distorted in this
SNR=10dB
case [Z5) ~ 2.31 x 107! - Fig. 5.5(a)]. On the contrary, the FH-CG

single-resolution approach provide unsatisfactory profiles even with moderate
SNR=30dB

5.5(a)], while it smoothly degrades for lower SN R values [e.g.,

noise [Z5) ~ 1.1 x 107! - Fig. 5.5(b)], and it becomes completely
_ fr-ce _ ()| SNE=10dB e
unreliable for lower SN R values [Z;,, o 7.4 x 107" - Fig. 5.5(d)].
FH-

The robustness of the proposed FHMF-CG scheme is then evaluated against a
variation of the scatterer contrast. Towards this end, a “square” profile of side
0.16 m centered at (—0.08,—0.24) m has been simulated assuming 7 € [1.0,2.2]
for different SN R values (Fig. 5.6).

67



5.4. NUMERICAL AND EXPERIMENTAL VALIDATION

35 Iy
— s
T il
<
> A J
k] 25 \
N \‘
©
g 2 Ss
<] Qs
S 15+ «~
N ~~~
S 1 o
X Sop
s L
[l 05 .~..---
(T FeessEElEREE
1 1.2 1.4 1.6 1.8 2 2.2

T [arbitrary unit]

FH-CG, Noiseless
FH-CG, SNR=30 [dB]
FH-CG, SNR=20 [dB] —

(a)

FH-CG

12

@]
— 0.8 0.8
I 3 2
- X = X
. € 0.6 E E 0.6 E
> o > o
0.4 0.4
0.2 0.2
0 0
0.4 0.2 0 0.2 0.4
x[m]
25 2.5
2 2
N I
a L 1
15 15
I = =
— - X
= £ £ g £
> & > &

-0.4 -0.2 0 0.2 0.4

x[m]

(d)

FHMF-CG, Noiseless = m m
FHMF-CG, SNR=30 [dB]
FHMF-CG. SNR=20 [dB] = = =

FHMF-CG

12

Figure 5.6: Performance Assessment |‘Square” profile, ,5 = 4.0, o5 = 1073
S/m| Behaviour of the integral error vs. 7 (a), and dielectric profiles retrieved
by (b)(d) FH-CG and (c)(e) FHMF-CG when (b)(c) 7 = 1.0, (d)(e) 7 = 2.2
when SNR = 30 dB.
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The behaviour of Egg) obtained by the FHMF-CG in the noiseless case [dashed
blue line - Fig. 5.6(a)] shows that an extremely good fidelity is achieved whatever

the target contrast [i.e., =\ € [8.7x107%,1.2 x 107?] - Fig. 5.6(a)],
FHMF-CG
which is always significantly better than that shown by the single-resolution

thod [e.g., ity ~ 8.2 x 1072 when 7 = 2.2 - Fig. 5.6(a)]. H
method [e.g., Z;; I when 7 ig (a)]. However,

the FHMF-CG accuracy significantly worsens when low 7 with moderate noise
levels are at hand [SNR = 30 dB - green lines, Fig. 5.6(a)].

More in detail, the integral error increases of almost one order of magnitude

—(K) 7=1.0
Stot

# ~ 9.1 when SNR = 30 dB- Fig. 5.6(a)],

when 7 =2.2 — 1.0 [i.e.,

FHMF-CG
reaching a value which is even above that of the corresponding single-resolution

. —(K) 7=1.0 1 —(K) 7=1.0 _g .
method [i.e., Z;; ~1.16 x 107 vs. =, ~ 9.8 x 1072 - Fig.
FHMF-CG FH-CG

5.6(a)]. This behaviour, which is also confirmed when lower SN R values are at
hand [SNR = 20 dB - red lines, Fig. 5.6(a)|, suggests that the multifocusing
procedure can exhibit sub-optimal performance when handling low contrast scat-
terers in high noise scenarios. By analyzing the corresponding reconstructions
[SNR = 30 dB, 7 = 1.0 - Fig. 5.6(c)], it turns out that in this case the MF
procedure is not able to correctly locate the Rol because the artifacts have a
contrast whose magnitude is close to that of the actual target [Fig. 5.6(c)|. Ac-
cordingly, the FHMF-CG method does not effectively allocate the DoF's within
the domain, resulting in a fidelity similar to that of the single-resolution tech-
nique [Fig. 5.6(c) vs. Fig. 5.6(b)]. On the contrary, higher contrast targets
are accurately retrieved by the FHMF-CG method, since the zooming procedure
correctly identifies the Rol [e.g., SNR = 30 dB, 7 = 2.2 - Fig. 5.6(e) vs. Fig.
5.6(d)].

The next set of numerical experiments is devoted to the analysis of the FHMF-
CG sensitivity to the number of available measurements M (Fig. 5.7). To
this end, the retrieval of a “two-bar” profile centered in (0.16,—0.24) m and
characterized by 7 = 1.4 [Fig. 5.8(a)] has been carried out assuming an increasing
number of probes (i.e., M € [19, 76]) in different noise conditions. By observing
the plots of the total integral error obtained by the FHMF-CG method [Fig.

5.7(b)] for a fixed number of measurements, it turns out that, as expected, the
SNR=20dB

accuracy improves as the SNR enhances [e.g., Eg? ~ 89 x 1072
FHMF—-CG

~ 3.2 x 1072 when M = 38 - Fig. 5.7(b)]. Analogously,
FHMF-CG

increasing the number of measurements reduces the error for a fixed SNR [e.g.,
()| M=19 () | M=T6

Eiot ~5.1x 1072 vs. T,y ~ 2.9 x 1072 when SNR = 30
FHMF-CG FHMF-CG

dB - Fig. 5.7(b).

SNR=50dB
VS =)
© =tot
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Figure 5.7: Performance Assessment [“Two-bar” profile, e,5 = 4.0, o = 1073

S/m, 7 = 1.4] Behaviour of the total integral error versus M and SNR for (a)
FH-CG and (b) FHMF-CG.
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Figure 5.8: Performance Assessment [“Two-bar” profile, e,5 = 4.0, op = 1073
S/m, 7 = 1.4, SNR = 20 dB| Actual (a) and dielectric profiles retrieved by
(b)(d) FH-CG and (c)(e) FHMF-CG when (b)(c) M =19, (d)(e) M = 76.

Moreover, the plots in Fig. 5.7 show that (i) the FHMF-CG approach never
exceeds a ~ 10% reconstruction error, even in the worst conditions [i.e., SNR =
20 dB, M = 19 - Fig. 5.7(b)], and (i7) whatever the noise level and M value,
the multifocusing procedure outperforms the FH-CG one [Fig. 5.7(b) vs. Fig.
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5.7(a)]. Furthermore, the reconstructions in Fig. 5.8 suggest that the FHMF-

CG is able to exploit the additional measurements to significantly enhance its

fidelity especially in low SNR conditions [i.e., SNR = 20 dB - Fig. 5.8(¢) vs.
(k)| SNR=20dB

Fig. 5.8(e)], therefore achieving a satisfactory accuracy [i.e., Z;,, A
FHMF-CG

4.2 x 1072 when M = 76 - Fig. 5.8(e)]. On the contrary, the FH-CG technique
does not exhibit a sensible performance improvement in this case [Fig. 5.8(b) vs.
Fig. 5.8(d)].

FH-CG FHMF-CG
e MH | =i E Een Eit E Ein
2000 [ 1I8x 10 1 [3.61x10 ' [524x10 ° [3.96 x 10 * [ 1.31 x 10 ' [ 298 x 10 °
3000 | 1.06x 10 ' [351x10 ' | 632x10 ° [ 279x 10 ° | 1.44x 10 ' [ .73 x 10 °
400.0 [[1.02x 107" [3.01x 10" [711x 102 [[1.85x 102  1.72x 10" | 5.00 x 10~
500.0 | 9.56x 1072 [ 2.86 x 10~ | 718 x 1072 | 1.84 x 10% | 1.61 x 10~ | 450 x 10~
6000 | LI11x 107" [281x 107" [878x107% | 1.81x 107 | 1.24x 107 [871x 10°°
At 7.0 x 10° [§] [ 2.5 x 10°[s] |

Table 5.1: Tllustrative Ezample [“Hollow square” profile, e, = 4.0, op = 1073
S/m, 7 = 1.0, Noiseless data| Figures of merit.

Finally, as for the computational issues, Tab. 5.1 also reports the inversion time
At required when handling the “hollow-square” scatterer in Fig. 5.3(a). For the
sake of fairness, all simulations have been performed assuming non-optimized
Fortran implementations of the procedures running on a standard Linux laptop
(with single-core 2.1 GHz CPU). As it can be noticed, despite the multi-frequency
nature of the considered GPR prospecting problem, the proposed FHMF-CG
approach is able to provide the final reconstruction in less than 42 minutes (i.e.,
At =~ 2.5x10% s - Tab. 5.1), while the single resolution method (which has to solve
a larger problem at each FH step [91]) requires above 116 minutes to complete.
This result, which does not depend on the target features (similar At values have
been obtained in all the numerical examples), highlights the efficiency of the
considered multi-focusing scheme, which depends on its capability to decompose
a large inversion problem in a sequence of smaller ones with reduced nonlinearity
[54].

5.4.2.2 Comparisons with State-of-the-Art Methods
The next set of numerical experiments is aimed at assessing the proposed FHMF-

CG method with respect to comparable state-of-the-art approaches. Towards
this end, the setup in [96] has been considered as the first benchmark.
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Figure 5.10: Comparative Assessment [“Large square” profile [87], .5 = 9.0,
op =10"2S/m, 7 = 3.0, k = K = 6] (a) Behaviour of the integral error vs. the
SNR and (b) actual and (¢) FHMF-CG retrieved profiles when SNR = 50 dB.

More specifically, a “circle-shaped” target centered at (0.0,—1.0) m and with
radius 0.23 m [Figs. 5.9(a)-5.9(b)], characterized by ¢ = 9.05 and o = 0.0,
has been placed in a square investigation domain of side 1.6 m, centered at
(0.0,—0.9) m (i.e., with a —0.1 m offset with respect to the air-soil interface)
with background dielectric properties e,5 = 9.0, op = 1072 S/m [96]. The
scenario has been illuminated by V' = 21 sources equispaced on a 2 m line placed
on the air-soil interface, and the obtained field has been sampled by M = 25
probes equally spaced on the same line [96].

The plots of the real [Fig. 5.9(¢)] and imaginary part [Fig. 5.9(d)] of the contrast
profile obtained at the k = K = 3 step assuming the same SNR levels of [96]"
point out that the proposed approach is able to correctly retrieve the number and

4Since the SN R in [96] is not defined as in (5.19), the “translation” of the employed SN R
numerical values has been carried out before performing the numerical simulations, for consis-
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position the scatterers, and to approximatively yield also its shape and contrast
le.g., Fig. 5.9(d) vs. Fig. 5.9(b)] despite the significant losses in the soil (i.e.,
op = 1072 S/m). By comparing these results with the one obtained with the
linear TSVD-based inversion approach discussed in [96], it turns out that the
proposed method yield a more accurate estimation of the size and location of the
target, as well as a less blurred background [i.e., Fig. 12 in [96] vs. Fig. 5.9(d)|.
Indeed, the scatterer center is reliably approximated by the FHMF-CG |Figs.
5.9(¢)-5.9(d)|, while a non-negligible offset was shown in [96]. Moreover, a similar
accuracy can be obtained in a wide set of noise conditions [i.e., SNR > 40 dB
- Fig. 5.9(e)]. These results suggests that using a fully non-linear methodology
(handled through a multi-focusing approach) can provide an improved accuracy
with respect to approximated formulations (i.e., distorted Born [96]) even in
scenarios where these approximations are acceptable.

Analogous considerations arise when applying the FHMF-CG method to the test
case presented in [87]. In this case, a square scatterer of side 0.5 m centered at
(0.0,—1.45) m [7 = 3.0 - Fig. 5.10(b)| has been imaged assuming V' = 21 sources
and M = 20 probes displaced on a 3 m-long line on the air-soil interface [87].
Towards this end, a 1.5 x 2.0 m D (eg, = 9.0, o = 1072 S/m) centered at
(0.00, —1.25) m (0.5 m depth) has been considered [87|. By comparing the plot
of the retrieved profile at the k = K = 6 FH step [SNR = 50 dB - Fig. 5.10(¢)]
with the corresponding reconstruction shown obtained with a linear inversion
algorithm under the Distorted Born Approzimation (i.e., Fig. 7 in [87]) it turns
out that both the shape and the size of the target are more accurately retrieved
by the FHMF-CG method.

Moreover, the plot of the integral errors vs. the SN R show that the obtained
performance is quite stable with respect to the noise level |i.e., Egg) <21x107!
when SNR > 50 dB - Fig. 5.10(a)], and it smoothly degrades for lower and
lower SN Rs [Fig. 5.10(a)|. The reduced FHMF-CG accuracy when SNR < 50
dB [Fig. 5.10(a)] is actually caused by the depth of the considered investigation
domain (i.e., y € [—2, —0.5] m) and by the lossy nature of the soil (i.e., o5 = 1072
S/m), which cause a very low scattered field to be received by the probes (i.e.,
at SNR = 30 dB, the signal-to-noise ratio computed over the scattered field
turns out equal to ~ 10 dB in this case), despite the non-negligible contrast [i.e.,
T = 3.0 - Fig. 5.10(b)|.

5.4.3 Experimental Validation

The last validations are concerned with the inversion of experimental data. To-
wards this end, the measured GPR radargrams in Area 5 of the Near Surface
Geophysical Group (NSGG) Test Site 2 [97] using the MalaX3M GPR equipment
[103] have been considered [Fig. 5.11(¢)].

tency.
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Figure 5.11: Ezperimental Validation - Dataset |97] - Photo of the experimental
setup (courtesy of Prof. M. Guy) (a), geometry of the problem (b), and full
measured radargram available in [97] (¢).
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inary parts (b)(d)(f) of the FHMF-CG retrieved profiles when (a)(b) V = 5,
(¢)(d) V =11, and (e)(f) V = 41.

The experimental data refer to the setup in Fig. 5.11(a), in which an empty box
(e, =1.0,0 = 0.0 S/m) of size 0.32x 0.25x 0.15 m is buried 0.15 m below the soil
surface [104], which is assumed to be characterized by €,5 = 5.0, o5 = 38 x 1073
S/m. The scenario is investigated through a single pair of transmitting-receiving
antennas positioned at the air-soil interface, which is moved over the investigation
domain [one trace every 0.02 m - Fig. 5.11(b)]. The transmitter radiates a
Gaussian monocycle pulse with [100, 300] MHz 3 dB bandwidth [97][104], and the
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resulting field is collected by the built-in receiver (M = 1) which is horizontally
separated by 0.2 m [Fig. 5.11(b)]. A square investigation domain D of side 0.8
m and centered at (0.00, —0.45) m is considered for the inversion [Fig. 5.11(b)].
The plot of the retrieved real [Fig. 5.12(a)| and imaginary parts of the contrast
[Fig. 5.12(b)] obtained using V' = 21source positions [uniformly placed over a 0.8
m range - Fig. 5.11(b)| show that the proposed FHMF-CG approach is able to
correctly identify the presence, horizontal extension, and depth of the target [e.g.,
Fig. 5.12(a)|, while the vertical extension is overestimated [e.g., Fig. 5.12(b)].
However, this behaviour is mainly related to low number of measurements (M =
1), and to the fact that the method does not account for the non-ideal nature of
the source/probe antennas (i.e., shielded bowties [97|[104]), and well as for any
roughness or non-homogeneity in the soil.

In order to assess the variation in the retrieval accuracy with the number of ac-
quisitions, the same experiment has been repeated considering V' = {5,11,41}
source positions uniformly distributed in the 0.8 m range (Fig. 5.13). By com-
paring the plots of the retrieved profiles when V' = 11 [Figs. 5.13(¢)-5.13(d)]
and V' = 41 [Figs. 5.13(e)-5.13(f)] it turns out that the number of views does
not significantly affect the GPR prospecting accuracy, unless a very few data are
used [V =5 - Figs. 5.13(a)-5.13(b)]. Moreover, it is worth observing that V' = 11
measurements, corresponding to a spatial sampling rate of 0.08 m, are sufficient
for the FHMF-CG method to retrieve the dielectric properties, horizontal size,
and depth of the buried target illuminated through standard GPR instruments.

5.5 Discussions

An innovative information acquisition approach based on a nested frequency-
hopping multi-focusing inversion technique has been introduced for the solution
of 2D G'PR prospecting problems. Towards this end, an external iterative FH
procedure has been proposed to handle multi-frequency GPR data, and its com-
bination with an internal multi-resolution loop able to mitigate local minima
issues in the associated inverse scattering problem has been presented. To min-
imize the arising multi-focusing cost function, a local search strategy based on
CG has been implemented and integrated. The proposed FHMF-CG method
has been validated against synthetic and measured GPR data, and a compara-
tive assessment has been discussed.

From the methodological viewpoint, the main contributions of the present work
include (i) the derivation of a multi-focusing scheme that, unlike state-of-the-art
methods [54][72], is suitable for GPR prospecting and can handle time-domain
data through Fourier processing, and (i) the introduction of a frequency-hopping
technique which, at each frequency step, suitably initializes both the total field
[Eq. (5.11)] and the contrast [Eq. (5.10)| using the acquired information, unlike
[91]-[93].

The numerical and experimental validation has pointed out the following main
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outcomes:

e the FHMF-CG method outperforms its single-resolution counterpart in
terms of accuracy whatever the noise level, contrast, measurement setup,
and target properties, except for very weak scatterers in low SN R scenarios
in which the two methods provide comparable fidelities;

e thanks to its multi-focusing nature, the proposed approach is significantly
more numerically efficient than a bare FH-CG technique (Tab. 5.1);

e the introduced algorithm favourably compares with state-of-the-art tech-
niques based on linear formulations and T'SVD solvers (Sect. 5.4.2.2);

e the FHMF-CG technique can be effectively used to detect the position,
depth, and dielectric properties of buried objects starting from few raw
GPR experimental measurements without the need to accurately model
the actual soil properties and antenna geometries (Sect. 5.4.3).

Future works, beyond the scope of this thesis, will be aimed at extending the
proposed methodology to full 3D GPR scenarios. Moreover, the possibility to
improve the method accuracy through accurate modelling of the employed trans-
mitting/receiving antennas within the inversion process is currently under inves-
tigation.
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Chapter 6

Conclusions

In this chapter, a final numerical set of simulations is provided and commented
with the aim of comparing the different inversion strategies presented in this
thesis. Moreover, some final considerations on the presented methodologies for
subsurface imaging are drawn, highlighting potentialities and limits of each tech-
nique.
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6.1 Comparison Between Different Approaches

In order to assess what are the potentialities as well as the limits of the proposed
inversion techniques presented in this thesis, a final numerical assessment is here
presented. The considered benchmark scenario consists of a square investigation
domain of side 0.8 m centered at (0.00, —0.4) m which is illuminated by V' = 16
sources radiating a time-domain Gaussian monocycle pulse |[Fig. 5.1(b)| with
spectrum centered at 300 MHz and 3 dB bandwidth covering the [200.0, 600.0]
MHz range [Fig. 5.1(¢)|. The lower half space is occupied by soil, with &,5 = 4.0
and op = 1072 S/m.
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Figure 6.1: Comparative Assessment (Square Scatterer at Different Depths - L =
0.16m, (x. =0.0m, ¢, =5.5, 0 = 0.01 S/m |1 = 1.5], e,5 =4.0, 05 =0.01 S/m,
SNR = 20 dB) - Location of the illuminating sources and of the measurement
points for the (a) cross-borehole and (b) half space configurations.

For comparison purposes, two measurement configurations are considered,
both considering a set of M = 15 probes !, co-located with the sources to form
a cross-borehole [Fig. 6.1(a)| and a half space [Fig. 6.1(b)| setup. Concerning
the cross-borehole setup [Fig. 6.1(a)|, the sources/probes are equally spaced
along two vertical lines at coordinates x = +0.5 m, starting from a depth of
Ymin = —1.0 [m] up to a depth of y,,.. = 0.0 m. For the half space setup [Fig.
6.1(b)| the sources/probes are equally spaced on a 1 m line which is located at
y = 0.04 m above the interface. As a benchmark profile, a “square” profile of
side 0.16 m |Fig. 6.2] centered at z. = 0.0 m and located at different depths
inside D,,, has been simulated assuming a contrast function of 7 = 1.5. More
precisely, the target barycentre is located at a depth of y. = —0.16 m for the “top”
configuration [Fig. 6.2(a)], y. = —0.4 m for the “intermediate” configuration [Fig.
6.2(b)] and y. = —0.64 m for the “bottom” configuration.

!The GPR multi-view multi-static setup operates so that when one source is active, the
remaining V — 1 = M = 15 act as ideal field probes.
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Figure 6.2: Comparative Assessment (Square Scatterer at Different Depths -
L=0.16m, (z. = 0.0m, g, = 5.5, ¢ = 0.01 S/m [r = 1.5], &,5 =4.0, o5 =0.01
S/m, SNR = 20 dB) - Actual target used for the comparison for (a) “top” (y. =
—0.16m), (b) “intermediate” (y. = —0.4m) and (c¢) “bottom” (y. = —0.64m)
configurations.

The SNR computed according to (5.19) is such that a resulting SNR = 20
dB can be estimated on the scattered field at the central frequency of 300 MHz.
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As a first analysis, we consider the retrieved profiles when the single-frequency
IMSA—IN technique presented in Chapter 4 is employed in order to recover the
electromagnetic distributions of the investigated targets [Fig. 6.3]. The IMSA—
IN — SOBA method presented in Chapter 3 will not be considered here, since it
has been already widely verified in Chapter 4 that its performances are lower wrt
the full non-linear approach (i.e., without the SOBA approximation). Moreover,
the same parameters considered for the numerical results shown in Chapter 4
are considered (i.e., N = 100, Q = 50, a = 0.9, Lnazs—1 = 20, Lpazs>1 =
1000 and S = 4). In particular, the retrieved profiles are shown when using
both a cross-borehole [Fig. 6.3(a)(b)(c)|] and a half space [Fig. 6.3(d)(e)(f)]
measurement configuration. By looking at the retrieved profiles in Fig. 6.3, it is
clear that the performances achievable with a cross-borehole setup significantly
overcome those obtainable with a half space setup. Moreover, if on the one
hand the performances for the cross-borehole setup seem quite constant when
changing the depth of the unknown target, on the other hand the retrieved
contrasts when using a half space setup undergo a significant and progressive
degradation when increasing the depth of the scatterer inside D;,, [i.e., passing
from Fig. 6.3(d) to Fig. 6.3(e) and to Fig. 6.3(f)]. As a matter of fact, when
the scatterer is at a depth of y. = —0.64 m [i.e., corresponding to 1.28\, at the
considered frequency of 300 MHz, Fig. 6.3(f)], the inversion technique turns
out to be absolutely uncapable to recover the shape and the electromagnetic
characteristics of the target. Such a behaviour can be motivated by the fact
that half space setups are strongly aspect-limited, given the fact that sources
and measurement points are both located only above the interface [Fig. 6.1(b)],
thus allowing the collection of a very limited amount of information to perform
the inversion. On the contrary, a cross-borehole setup [Fig. 6.1(a)|, even if still
aspect-limited, allows the collection of a larger amount of information with the
same number of sources V' and measurements M, since transmissions can “cross”
the investigation domain D;,, and hence the targets buried within it. Moreover,
sources and measurement points are located at different depths inside the soil, so
that more information can be collected for targets which are buried at significant
depths inside D;,,. The above considerations are further confirmed by the total
reconstruction error Z;,; obtained by the IMSA—IN method for the two setups.

In fact, we have for the “top” configuration [Fig. 6.2(a)] Et0t|27t"?)i’:3—borehole ~

8.66 x 107% |Fig. 6.3(a)| vs. Zum|, .~ 1.83 x 1072 [Fig. 6.3(d)|, for

hal f space

the “intermediate” configuration [Fig. 6.2(b)] Etot|c:f;izr_",j§f£iele ~ 3.72 x 1073

[Fig. 6.3(D)] vs. Sy, nirmediae ~ 291 x 10~2 [Fig. 6.3(e)], while for the

hal f space
“pottom” configuration [Fig. 6.2(c)] Syl 20 ~ 4.12 x 107? [Fig. 6.3(c)]

cross—borehole

vS. Etotlf;ﬁ(;;’i;e ~ 4.22 x 1072 |Fig. 6.3(f)]. The reconstruction error obtained
for this latter configuration appears more that one order of magnitude larger

when considering an half space setup wrt a cross-borehole setup.
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Figure 6.3: Comparative Assessment (Square Scatterer at Different Depths -
L=016m, (x.=0.0m, &, = 5.5, 0 = 0.01 S/m [r = 1.5], £, =4.0, oy =0.01
S/m, SNR = 20 dB) - Final reconstruction obtained by the IMSA—IN method
when considering a (a)(b)(c) cross-borehole and (d)(e)(f) an half space setup.

It is however mandatory to remember that cross-borehole setups (as the one
depicted in Fig. 6.1(a)) require in real applications the drilling of the background
medium in order to displace the probes below the interface. However, there are
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a lot of practical scenarios when drilling is actually impossible (e.g., for the
investigation of ancient ruins or historical buildings) or, even more, it can cause
severe safety problems to the involved operators in critical applications such as
demining [16]|. For these reasons, in a lot of practical scenarios a half space |Fig.
6.1(b)| is not only preferrable but it is also the only possible choice. Given that,
the strongly limited amount of information that can be collected by using such
a prospecting configuration should be improved by trying to “add” information
coming from other “information sources”. In this thesis, this is effectively done by
exploiting the available frequency diversity of real GPR measurements through
the use of the FHMF — CG technique presented in Chapter 5. In order to
give the reader a more clear idea of what is the achievable performance when
using the multi-frequency FHMF — C'G method, the same benchmark scenario
considered for the previous analysis is used hereinafter (i.e., by keeping the same
position and number of the V' sources and M probes), but focusing the attention
only on the half space setup [Fig. 6.1(b)]. More in details, Figs. 6.4(a)(b)(c)
show the reconstructions obtained by using the single-frequency version of this
technique, denoted as M F — CG?. As it can be observed, the overall quality
of the reconstructions obtained for different depths of the unknown scatterer
is higher wrt that of the reconstructions obtained by the IMSA — IN |[Figs.
6.3(d)(e)(f)|- Tt is also evident that, even for the “bottom” scenario, the single-
frequency M F — CG is able to correctly identify the location of the target,
even if it fails in properly reconstructing its electromagnetic characteristics [Fig.
6.4(c)]. These considerations are confirmed by the lower internal reconstruction
erTor St Bt i, 2 4.21 x 1071 [Fig. 6.4(c)] vs. Sl ren’ n ~ 6.04 x
107! [Fig. 6.3(f)]. The performance improvement in this case is due to the
approximated nature of the I N method, as the “inexact” word suggests, while
the C'G approach handles the full derivation of the cost function without any
kind of approximation.

Last but not least, the remarkable improvement in terms of reconstruction
accuracy coming from the exploitation of multi-frequency data is visually con-
firmed by the reconstructions obtained by the FHMF — CG method (Chapter
5) shown in Figs. 6.4(d)(e)(f). Thanks to the exploitation of K = 5 equally
spaced frequency components of the GPR measured spectrum via the Frequency-
Hopping (F'H) scheme, the FHMF — CG technique is able to correctly deter-
mine both the shape and the dielectric characteristics of the buried target [Figs.
6.4(d)(e)(f)| with an overall reconstruction accuracy significantly higher wrt its
single-frequency counterpart [Figs. 6.4(a)(b)(c)]. Moreover, the information
coming from different frequencies is able to “balance” the loss of information due
to the use of a half space measurement configuration, as verified by the recon-
struction obtained for the deepest target [*bottom”, Fig. 6.4(f)]. In this case,

2In order to allow a fair comparison between the different inversion approaches, the same
number of discretization cells N = 100 has been assumed for all the test cases presented in
this section.

86



CHAPTER 6. CONCLUSIONS

the internal error is Emt|;§§${ca ~ 2.21 x 107!, which is significantly lower if

compared to the reconstruction obtained by the single-frequency IMSA — IN
[Fig. 6.3(f)] and by the single-frequency M F — CG [Fig. 6.4(c)|.
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6.2 Final Remarks

In this thesis, a new set of microwave imaging methods for subsurface prospect-
ing has been introduced. Chapters 3 and 4 presented two single-frequency ap-
proaches based on the use of an inexact-Newton method. In particular, the
inverse problem has been addressed in Chapter 3 by numerically solving the
Lippmann-Schwinger equation under the second-order Born approximation. The
proposed IMSA—IN—SOBA reconstruction method has been validated through
an extended set of numerical results involving different types of scatterers and
noise conditions. Simulations have highlighted the following key results

e the proposed technique is able to profitably combine the well assessed reg-
ularization capabilities of the adopted local search technique (the inexact-
Newton method) with the enhanced exploitation of available information
provided by the multi-focusing strategy, which is able to reduce the prob-
lem of local minima arising from the non-linearity of the involved set of
equations.

e Moreover, the combined strategy exhibits advantages over its standard
"bare" implementation in terms of achieved accuracy and resolution, what-
ever the contrast distribution (homogeneous/inhomogeneous), the cross-
section geometry and the noise level on measured data.

e Furthermore, the proposed multi-focusing approach overcomes the stan-
dard "bare" implementation also in terms of the computational efficiency,
thanks to the significant reduction of the problem unknowns at each itera-
tive step, which arises from the use of an adaptive coarse-to-fine discretiza-
tion of the investigation areas at different levels of resolution.

The approach presented in Chapter 4 extends this approximated strategy by
employing the full non-linear formulation of the scattering problem. In this
way, the IMSA — IN method is potentially able to deal with strong scatterers,
too. The reconstruction performances have been evaluated by means of several
numerical simulations. It has been found that

e the proposed approach provides quite good reconstructions of the consid-
ered targets showing a good robustness to the noise, as well;

e a significant performance improvement in terms of reconstruction accuracy
can be observed wrt the SOBA-based approach presented in Chapter 3,
especially for the retrieval of targets characterized by high values of the
contrast function;

e the results from the multi-focusing strategy turned out to be better both in
terms of reconstruction errors and computational resources than the stan-
dard bare inexact-Newton algorithm when applied to the same scattering
configurations.
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Finally, Chapter 5 presented an innovative information acquisition approach
based on a nested frequency-hopping multi-focusing inversion technique for the
solution of 2D GPR prospecting problems. Towards this end, an external itera-
tive FH procedure has been proposed to handle multi-frequency GPR data, and
its combination with an internal multi-resolution loop able to mitigate local min-
ima issues in the associated inverse scattering problem has been presented. To
minimize the arising multi-focusing cost function, a local search strategy based
on CG has been implemented and integrated. The proposed FHMF-CG method
has been validated against synthetic and measured GPR data, and a compar-
ative assessment has been discussed. From the methodological viewpoint, the
main contributions of this thesis include

1. the derivation of a multi-focusing scheme that, unlike state-of-the-art meth-
ods [54]|72], is suitable for GPR prospecting and can handle time-domain
data through Fourier processing;

2. the introduction of a frequency-hopping technique which, at each frequency
step, suitably initializes both the total field [Eq. (5.11)] and the contrast
[Eq. (5.10)] using the acquired information, unlike [91]-[93].

The numerical and experimental validation has pointed out the following main
outcomes:

e the FHMF-CG method outperforms its single-resolution counterpart in
terms of accuracy whatever the noise level, contrast, measurement setup,
and target properties, except for very weak scatterers in low SN R scenarios
in which the two methods provide comparable fidelities;

e thanks to its multi-focusing nature, the proposed approach is significantly
more numerically efficient than a bare FH-CG technique;

e the introduced algorithm favourably compares with state-of-the-art tech-
niques based on linear formulations and TSVD solvers;

e the FHMF-CG technique can be effectively used to detect the position,
depth, and dielectric properties of buried objects starting from few raw
GPR experimental measurements without the need to accurately model
the actual soil properties and antenna geometries.

Moreover, it has been demonstrated that exploiting different frequency compo-
nents of the measured GPR spectrum can effectively counterbalance the loss of
information due to a strongly aspect-limited measurement setup, where sources
and probes are both located above the interface. In practical scenarios where
the drilling of the background medium for installing a cross-borehole measure-
ment system is forbidden or simply prohibitive, an half space is the only possibile
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choice. Given that, it has been proven that the capabilities of single-frequency
approaches can be significantly enhanced by using multi-frequency strategies, as
confirmed by the numerical results in Sect. 6.1.

Future works, beyond the scope of this thesis, will be aimed at extending the
proposed methodologies to full 3D GPR scenarios, as well as at further assess
their potentialities and limitations in dealing with experimental data of different
nature. Moreover, the possibility to improve the accuracy of the methods through
accurate modelling of the employed transmitting/receiving antennas within the
inversion process is currently under investigation.
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Appendix A

Derivation of Eq. (4.5) and Eq. (4.6)

This appendix reports the details of the discretized version of the functional Eq.
(4.5) [i.e., Eq. (4.6)]. In order to numerically solve the inverse problem at hand,
the investigation area at a given scale s, (), is partitioned into N square sub-
domains. In each n-th cell, both the contrast function and the incident field are
assumed to be piecewise constant such as their distributions in €, turn out to

be
N

= Z T (2, 7) (A1)

N
EZ(':L}()Z/tOt ("L‘ y) Z Ez(nc/tot nw" (l‘ y) (AQ)

n=1

where v, (x,y) is a rectangular pulse basis function [56]. By testing the scatter-
ing equations using Dirac’s delta functions centered at the measurement points

(azgﬁ),yfﬁ)), m=1,...,M,v=1,..,V, equations (4.1) and (4.2) become

Ezfgt),n - Eznc n + Z TEIS;}H / gznt IL‘n, Yn, l‘ Y ) dl‘,dy (AS)

EiZattm Z TlEt(:)}tl/ ge:vt ( L, 7y7(n)7 T,y ) d'r/dy (A4)

where Es(ca)tttm = EY, (:c(mv),yg)) and (z,,y,) is the center of the n-th sub-

domain of € (i.e., Qs.,).
By considering all the measurement points and rewriting the equations in a
matrix form, the following equation is obtained

A(u) <7.. E(U)) — Gg;mdzag( )ESQ _ 1) Eggztt (A.5)
e (I = Gaatediag (T)) Egg EEZ)C
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where T = [rq, ..., TN]t is an array containing the values of the contrast function in
the N subdomains, diag (7) is a diagonal matrix whose diagonal elements are the

values of the array 7, B{Y) = [Et(;’gl, o Eé;’gN} and E\") = [E?”)

(v)
inc inc,1) "t Einc,N are

two arrays containing the values of the total and incident electric fields in the N

sub-domains, and B, = [Es(ﬁim, . Es(:()m M] is an array with the values of the

scattered electric field at the M measurement points of the v-th view. Moreover,
Gg;ia and G are two matrices of sizes M x N and N x N, respectively, whose
elements are the integrals of the Green’s function.

Finally, Equation (4.6) is yielded by combining all the V' views as follows

Gt(iz)tadmg (1) Eﬁz ] Eggztt |
(I — Gyratediag (7-)) Egg Egrlz)c
A (1 BEp) = : =b= : (A.6)
Gé‘;t)adiag (1) Ez(t(‘)/t) Eg‘c/a)tt
L (I - Gstatediag (T)) quojz ] | ESm/c) i

¢ ak
where E;,; = [(EEQ) 3y (Ez(tgt)> ] .
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