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Abstra
t

The study, development, and analysis of innovative inversion te
hniques for the

dete
tion and imaging of buried obje
ts is addressed in this thesis. The proposed

methodologies are based on the use of mi
rowave radiations and radar te
hniques

for subsurfa
e prospe
ting, su
h as, for example, the Ground Penetrating Radar

(GPR). More pre
isely, the re
onstru
tion of shallow buried obje
ts is �rstly ad-

dressed by an ele
tromagneti
 inverse s
attering method based on the integration

of the inexa
t Newton (IN) method with an interative multis
aling approa
h.

The performan
es of su
h an inversion approa
h are analyzed both when 
onsid-

ering the use of a se
ond-order Born approximation (SOBA) and when exploiting
the full set of non-linear equations governing the s
attering phenomena for the

buried s
enario. The presented methodologies are parti
ularly suitable for ap-

pli
ations su
h as demining (e.g., for the dete
tion of unexploded ordnan
es,

UXOs, and improvised explosive devi
es, IEDs), for 
ivil engineering appli
a-

tions (e.g., for the investigation of possible stru
tural damages, voids, 
ra
ks or

water in�ltrations in walls, pillars, bridges) as well as for biomedi
al imaging

(e.g., for early 
an
er dete
tion).

Keywords

Ground Penetrating Radar (GPR), Inverse S
attering, Mi
rowave Imaging, Iter-

ative Multi-S
aling Approa
h, Inexa
t Newton, Conjugate Gradient, Frequen
y
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Chapter 1

Introdu
tion

In re
ent years, there has been a growing interest in the development of imag-

ing systems based on the use of mi
rowave radiations [1℄-[5℄. Due to the 
ompa-

rable values of the in
ident wavelength and obje
t linear dimensions, the phys-

i
al phenomenon involved in these systems is the s
attering of ele
tromagneti


waves. Approa
hes based on mi
rowaves 
an be pro�tably employed in several

diagnosti
 s
enarios, su
h as nondestru
tive testing and evaluation (NDT/NDE )

of materials in 
ivil engineering [6℄-[9℄, medi
al imaging for breast 
an
er dete
-

tion [10℄-[12℄, shallow investigation of Earth's subsurfa
e [13℄ as well as retrieval

of ele
tromagneti
 and geometri
al 
hara
teristi
s of s
atterers buried under the

air-soil interfa
e [14℄[18℄.

One of the key instruments for subsurfa
e monitoring and imaging is the ground

penetrating radar (GPR) [13℄[19℄ whi
h 
an be used, for example, for verifying

the stru
tural stability of 
on
rete stru
tures and for 
ra
k dete
tion inside ina
-


essible materials. Although very good results have been obtained by usingGPR,
the solution of inverse s
attering problems for buried dete
tion is still a 
halleng-

ing issue, espe
ially 
onsidering the need for fast and a

urate apparatuses for

illuminating the target under test and measuring the s
attered radiation, as well

as for e�
ient pro
edures to retrieve the geometri
al and diele
tri
 properties of

obje
ts buried under ground with an a

eptable level of resolution. In parti
-

ular, 
on
erning the inversion pro
edures, it seems that further resear
hes are

required in order to over
ome the limitations arising from the well known issues

of non-linearity and ill-posedness 
hara
terizing the basi
 ele
tromagneti
 formu-

lation [5℄. The non-linearity is dire
tly linked to the dependen
e of the unknown

total �eld inside the investigation area on the s
atterer properties [20℄, while

the ill-posedness 
auses the solution to be extremely sensitive to noise a�e
ting

available data for the inversion. Moreover, the available measured data are lim-

ited and pra
ti
al measurements are 
arried out from limited transmitter-re
eiver

positions, resulting in limited data diversity [20℄. For these reasons, e�
ient reg-

ularization te
hniques [21℄-[23℄ 
apable to mitigate the above mentioned issues

are needed. Approa
hes based on Rytov [24℄ and Tikhonov strategies [2℄ have

1



been exploited, along with numeri
al approximations su
h as �rst-order [25℄[26℄

and se
ond-order [27℄-[29℄ Born approximations.

In this 
ontext, it has also been proved that deterministi
 inversion pro
edures

[30℄-[32℄ 
an provide very a

urate re
onstru
tion results, although they su�er

from a strong dependen
e on the initialization phase. On the other hand, the use

of sto
hasti
 te
hniques has also been proposed [33℄-[38℄. Sto
hasti
 approa
hes


an e�
iently over
ome the above limitation, but they exhibit a signi�
antly

higher 
omputational 
ost [41℄[42℄.

Among deterministi
 approa
hes, inexa
t-Newton (IN) methods [28℄[29℄[43℄-[49℄

have been proven to be e�e
tive as linearization and regularization tools for solv-

ing inverse-s
attering problems, both numeri
ally and experimentally [44℄. Ba-

si
ally, these methods provide a linearization of the imaging equations by means

of a Newton's expansion through the Fré
het derivative, and solve them in an

approximate way [29℄. However, the appli
ation of su
h an approa
h has been

mainly limited to the free-spa
e s
enario, while a more 
omplex formulation is

needed when dealing with subsurfa
e prospe
ting [50℄. The IN method has been

preliminary applied to retrieve buried obje
ts in [28℄ within the se
ond-order

Born approximation (SOBA) [27℄. By exploiting su
h a se
ond-order approx-

imation, a signi�
ant redu
tion of the 
omputational burden 
an be a
hieved,

thanks to a redu
tion of the problem unknowns (the diele
tri
 parameters), sin
e

the internal total ele
tri
 �eld is written as the sum of the known in
ident �eld

and the internal linearized s
attered �eld (whi
h is also expressed in terms of the

transmitted �eld) [29℄.

It must be also noti
ed that multi-resolution approa
hes [51℄-[53℄ have been

proven to be very e�e
tive in redu
ing the amount of lo
al minima arising from

the non-linearity of the free-spa
e inverse-s
attering problem, bringing a bet-

ter exploitation of the available information from 
olle
ted data and yielding

both a

urate re
onstru
tions and high 
omputational e�
ien
y. The synergeti


integration of a dire
t regularization te
hnique, su
h as the IN method, and

the iterative multi-s
aling approa
h (IMSA) [54℄ has been shown to e�e
tively

ta
kle both the non-linearity and the ill-posedness/ill-
onditioning of mi
rowave

imaging problems by exploiting the best properties of the two strategies and

mutually over
oming their intrinsi
 limitations in tomographi
 imaging [48℄-[47℄.

As a matter of fa
t the exploitation of su
h an approa
h leads to a strong simpli-

�
ation of the problem, thanks its 
apability to enfor
e a higher resolution only

in the so-
alled regions-of-interest (RoIs) [54℄.

Moreover, a signi�
ant advantage in using GPR as the subsurfa
e prospe
ting

tool is represented by the availability of wide-band measurements [59℄, 
overing

a wide range of the mi
rowave radiation spe
trum. In fa
t, pulsed GPR systems

are based on the transmission of short ele
tromagneti
 pulses in time-domain

[59℄, whi
h penetrate inside the host medium and are partially re�e
ted towards

the re
eiving antennas ea
h time a dis
ontinuity of the diele
tri
 
hara
teristi
s

is found. Given that, the 
apabilities of standard single-frequen
y inverse s
at-

2



CHAPTER 1. INTRODUCTION

tering approa
hes 
an be further extended by introdu
ing additional information


oming from the intrinsi
 frequen
y diversity of the 
olle
ted data. In su
h a way,

the exploitation of wide-band GPR measurements requires the development of

multi-frequen
y te
hniques whi
h are able to pro�tably exploit the information

asso
iated to di�erent 
omponents of the measured spe
trum.

Following the above 
onsiderations, this thesis presents two e�
ient single-

frequen
y te
hniques based on the integration of the inexa
t-Newton (IN) method

with a multifo
using te
hnique, and then a multi-frequen
y approa
h whi
h is

able to e�e
tively exploit the frequen
y diversity of GPR measurements through

a Frequen
y-Hopping (FH) s
heme.

Thesis outline

The thesis is organized as follows. Firstly, the basi
 equation governing in fre-

quen
y domain the s
attering phenomena in subsurfa
e problems are introdu
ed

in Chapter 2. Then, a single-frequen
y approa
h based on the IN method under

the se
ond order Born approximation (SOBA) is presented in Chapter 3. An

improved version of this te
hnique, treating the full non-linear inverse s
atter-

ing problem is shown in Chapter 4, extending to strong s
atterers the imaging


apabilities of the �rst approximated approa
h. Finally, Chapter 5 presents an

innovative mi
rowave inverse-s
attering nested approa
h 
ombining a Frequen
y-

Hopping (FH) pro
edure and a Multi-Fo
using (MF ) te
hnique for dealing with
multi-frequen
y GPR measurements. Finally, a 
omparison among the di�erent

presented te
hniques is given and some �nal 
on
lusions are drawn in Chapter

6.
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Chapter 2

Inverse S
attering Equations for

the Subsurfa
e Problem

In this 
hapter, the basi
 equations mathemati
ally modeling the subsurfa
e

inverse s
attering problem in frequen
y domain are presented. More pre
isely,

the two equations 
ompletely des
ribing the �elds measured within and outside

the buried investigation domain are referred to as �state� and �data� equations.

It is shown that the problem of retrieving the ele
tromagneti
 
hara
teristi
s

of unknown obje
ts buried below the interfa
e in a half spa
e s
enario 
an be

reformulated as the minimization of a suitable 
ost fun
tion. Su
h a 
ost fun
tion

a

ounts for both the mismat
h between the measured and 
omputed s
attered

�eld over a given observation domain and for the mismat
h between the measured

and the 
omputed in
ident �eld within the investigation domain.
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2.1. GEOMETRY OF THE PROBLEM

2.1 Geometry of the Problem

Let us 
onsider a set of 
ylindri
al s
atterers buried in a homogeneous, isotropi


and non-magneti
 half spa
e medium [Fig. 2.1℄. The upper medium (i.e., y > 0)
is supposed to be air, with diele
tri
 properties equal to those of the va
uum

(ε0 = 8.85× 10−12
Farad/m, µ0 = 1.26× 10−6

Henry/m and σ0 = 0 S/m). The

lossy lower half spa
e of ba
kground relative permittivity εrB and ba
kground


ondu
tivity σB S/m, 
ontains a set of s
atterers lo
ated within the known in-

vestigation domain Dinv [Fig. 2.1℄ and des
ribed by dis
ontinuous (wrt the ba
k-

ground) pro�les of permittivity εr (r) and 
ondu
tivity σ (r), where the position
ve
tor r denotes a point in the transverse plane (i.e., r = (x, y)).
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Figure 2.1: Geometry of a subsurfa
e imaging problem. (a) Cross-borehole and

(b) half spa
e setup. λb is the wavelength in the ba
kground material.

2.2 Mathemati
al Formulation

In the following, we assume that the unknown buried targets are illuminated by a

set of V in
ident mono
hromati
 waves produ
ed by a set of in�nite line 
urrents

oriented along the z axis, whi
h 
an be arranged in both half spa
e [Fig. 2.1(a)℄

or 
ross-borehole [Fig. 2.1(b)℄ setup

1

. Given that, the generated in
ident waves

are of transverse magneti
 (TM) type, su
h that

E
(v)
inc (r) = E

(v)
inc (r) ẑ, v = 1, ..., V. (2.1)

1

Hybrid 
on�gurations 
an exist, too, where the sour
es of em waves are displa
ed both

above and below the interfa
e separating the two homogeneous media.
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CHAPTER 2. INVERSE SCATTERING EQUATIONS FOR THE

SUBSURFACE PROBLEM

Moreover, we assume that for ea
h v-th illumination the longitudinal 
ompo-

nent of the s
attered ele
tri
 �eld ve
tor is 
olle
ted at M measurement points

lo
ated at position r
(v)
m , m = 1, ...,M de�ning the observation domain Dobs.

Following the 
lassi
al inverse s
attering approa
h [5℄, the problem of retrieving

the shape, the position and the ele
tromagneti
 
hara
teristi
s of the targets

buried within Dinv is formulated as the problem of re
onstru
ting the so-
alled


ontrast fun
tion, de�ned as

τ (r) =
εeq (r)− εB,eq

ε0
(2.2)

where

εeq (r) = ε0εr (r)− j
σ (r)

ω
(2.3)

and

εB,eq = ε0εrB − j
σB
ω

. (2.4)

Given (2.3) and (2.4), it is easy to verify that the real part of the 
ontrast is

given by

ℜ{τ (r)} = εr (r)− εrB (2.5)

while the imaginary part depends on the frequen
y via the angular speed

ω = 2πf as

ℑ{τ (r)} = σB − σ (r)
ωε0

. (2.6)

Denoting with υ(j) the 
ross-se
tion of the j-th target buried within Dinv (j =
1, ..., J , being J the total number of s
atterers), we then have

τ (r) =





0 r /∈
∑J

j=1 υ
(j)

τ (r) r ∈∑J
j=1 υ

(j)

(2.7)

sin
e outside the support of the J buried targets the equivalent permittivity

and the 
ondu
tivity is that of the ba
kground medium (i.e., εeq (r) = εB,eq and

σ (r) = σB) and no dis
ontinuity 
an be observed by the propagating impinging

waves.

As a matter of fa
t, the total �eld measured at position r when the J targets

are buried inside the investigation domain 
an be de
omposed as the sum of

two separate 
ontributions, represented by the in
ident �eld and by the so-
alled

s
attered �eld, respe
tively

E
(v)
tot (r) = E

(v)
inc (r) + E

(v)
scatt (r) , v = 1, ..., V. (2.8)

Given the 
ylindri
al symmetry of the problem [Fig. 2.1℄ and the isotropi



hara
teristi
s of the medium at hand, also the total �eld and the s
attered

�eld result z-oriented (i.e., E
(v)
tot (r) = E

(v)
tot (r) ẑ and E

(v)
scatt (r) = E

(v)
scatt (r) ẑ, for

7



2.2. MATHEMATICAL FORMULATION

v = 1, ..., V ). If on the one hand the in
ident �eld E
(v)
inc (r) is referred to the

half spa
e s
enario when no obje
ts are lo
ated below the interfa
e [Fig. 2.1℄,

on the other hand the s
attered �eld is the 
ontribution to the total �eld due to

the presen
e of s
atterers buried within Dinv. More pre
isely, the total �eld is


ompletely des
ribed by means of the following set of Maxwell equations [59℄





▽×E
(v)
tot (r) = −jωµ0H

(v)
tot (r)

▽×H
(v)
tot (r) = jωεeq (r)E

(v)
tot (r) + I0δ

(
x− x(v)

)
δ
(
y − y(v)

)
ẑ

▽ · εeq (r)E(v)
tot (r) = 0

▽ · µ0H
(v)
tot (r) = 0

(2.9)

where H
(v)
tot (r) is the total magneti
 �eld at position r

H
(v)
tot (r) = H

(v)
tot,x (r) x̂+H

(v)
tot,y (r) ŷ (2.10)

and the impressed 
urrent for the v-th illumination is expressed in expli
it

form as

J0 (r) = I0δ
(
x− x(v)

)
δ
(
y − y(v)

)
ẑ (2.11)

where I0 is the amplitude of the 
urrent �owing along an in�nite z-oriented
line lo
ated at position

(
x(v), y(v)

)
. In (2.9), the divergen
e of εeq (r)E

(v)
tot is set

to null (i.e., εeq (r)E
(v)
tot is solenoidal) sin
e it is easily veri�ed that

▽ · εeq (r)E(v)
tot =

∂

∂z

{
εeq (x, y)E

(v)
tot (x, y)

}
= 0. (2.12)

Similarly, in absen
e of targets within Dinv, the in
ident �eld satis�es the

following set of equations [59℄





▽×E
(v)
inc (r) = −jωµ0H

(v)
inc (r)

▽×H
(v)
inc (r) = jωεhsE

(v)
inc (r) + I0δ

(
x− x(v)

)
δ
(
y − y(v)

)
ẑ

▽ · εhsE(v)
inc (r) = 0

▽ · µ0H
(v)
inc (r) = 0

(2.13)

where H
(v)
inc (r) is the in
ident magneti
 �eld at position r

H
(v)
inc (r) = H

(v)
inc,x (r) x̂+H

(v)
inc,y (r) ŷ (2.14)
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and εhs is a pie
e-wise 
onstant fun
tion de�ning the (possibly 
omplex)

diele
tri
 permittivity of the half spa
e s
enario at hand

εhs =





ε0 y > 0

εB,eq y < 0.
(2.15)

Given that, it follows that the s
attered �eld satis�es the following set of equa-

tions [59℄





▽×E
(v)
scatt (r) = −jωµ0H

(v)
scatt (r)

▽×H
(v)
scatt (r) = jωεhsE

(v)
scatt (r) + jω∆ε (r)E

(v)
tot (r)

▽ · εhsE(v)
scatt (r) = 0

▽ · µ0H
(v)
scatt (r) = 0

(2.16)

where H
(v)
scatt (r) is the s
attered magneti
 �eld at position r

H
(v)
scatt (r) = H

(v)
scatt,x (r) x̂ +H

(v)
scatt,y (r) ŷ (2.17)

and ∆ε (r) models the dis
ontinuity between the diele
tri
 permittivity of the

s
atterers and the surrounding homogeneous medium

∆ε (r) = εeq (r)− εhs. (2.18)

By looking at (2.16) we 
an observe that the s
attered �eld is due to an equivalent

sour
e that models the presen
e of the unknown s
atterers inside Dinv, de�ned

as [59℄

Jeq (r) = jω∆ε (r)E
(v)
tot (r) . (2.19)

By re-arranging (2.16) and imposing the 
ontinuity of the tangential 
omponents

of both the ele
tri
 and magneti
 �elds at the interfa
e (i.e., at y = 0), eventually
[59℄ the z-
omponent of the s
attered �eld for points lo
ated below the interfa
e

[i.e., y < 0, Fig. 2.1℄ 
an be 
omputed as

E
(v)
scatt (r) = k2B

∫

Dinv

τ (r′)E
(v)
tot (r

′)Gburied (r, r′) dr′ (2.20)

while the s
attered �eld for points lo
ated above the interfa
e [i.e., y > 0,
Fig. 2.1℄ is expressed as

E
(v)
scatt (r) = k2B

∫

Dinv

τ (r′)E
(v)
tot (r

′)Ghalf−space (r, r
′) dr′. (2.21)

9



2.2. MATHEMATICAL FORMULATION

In (2.20) the integral Green's fun
tion Gburied (r, r′) relates points below the

interfa
e to points below the interfa
e (i.e., y < 0 and y′ < 0) and, a

ording to

Eq. (4.42) in [59℄ and to the de�nition of the 
ontrast fun
tion given in (2.2), it

is de�ned as

Gburied (r, r′) = Gburied (x, y, x′, y′) =

−j
4π

(
ε0

εB,eq

) ∫ +∞

−∞
exp(−ju(x′−x))

kyB
[exp (−jkyB |y − y′|)+

µ0kyB−µ0ky0
µ0kyB+µ0ky0

exp (−jkyB (y′ + y))
]
du

(2.22)

while the fun
tion Ghalf−space (r, r
′) links points below the interfa
e to points

above the interfa
e (i.e., y > 0 and y′ < 0) and is de�ned as

Ghalf−space (r, r
′) = Ghalf−space (x, y, x

′, y′) =

−jµ0

2π

(
ε0

εB,eq

) ∫ +∞

−∞

exp(−jkyBy′)exp(jky0y)exp(−ju(x′−x))

µ0kyB+µ0ky0
du.

(2.23)

In (2.22) and (2.23) ky0 and kyB are fun
tions of the integration variable u
and are de�ned as follows





k2y0 = k2y0 (u) = k20 − u2 y > 0

k2yB = k2B (u) = k2B − u2 y < 0
(2.24)

where k0 = ω
√
ε0µ0 and kB = ω

√
εB,eqµ0 are the wave-number in free-spa
e

and in the lossy ba
kground medium, respe
tively. Finally, the following s
alar

integral equations 
an be retrieved, mathemati
ally modeling the buried s
atter-

ing problem

E
(v)
inc (r) = E

(v)
tot (r)− k2B

∫
Dinv

τ (r′)E
(v)
tot (r

′)Gint (r, r′) dr′

r ∈ Dinv

(2.25)

E
(v)
scatt (r) = k2B

∫
Dinv

τ (r′)E
(v)
tot (r

′)Gext (r, r′) dr′

r ∈ Dobs

(2.26)

in whi
h Dobs /∈ Dinv is the observation domain, where both sour
es and measure-

ment points are supposed to be lo
ated [Fig. 2.1℄. The former integral equation

is 
alled �state equation�, while the latter is the so-
alled �data equation�, and

both need to be solved in a numeri
al way in order to retrieve the unknown


ontrast fun
tion τ (r) and the unknown total �eld inside Dinv. Clearly, sin
e

Gint (r, r′) (
ommonly known as the �internal � Green's fun
tion) relates points

whi
h are lo
ated inside Dinv, it will always 
oin
ide with Gburied (r, r′). On the

10
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other hand, Gext (r, r′) (
ommonly known as the �external � Green's fun
tion) re-

lates points inside Dinv to points outside it (i.e., belonging to the observation

domain Dobs /∈ Dinv). Then, if a half spa
e setup is 
onsidered, where mea-

surement points are lo
ated above the interfa
e (i.e., y
(v)
m > 0, for v = 1, ..., V

and m = 1, ..,M [Fig. 2.1(a)℄), we will have that Gext (r, r′) = Ghalf−space (r, r
′).

Otherwise, if a 
ross-borehole setup is 
onsidered, where measurement points are

lo
ated below the interfa
e (i.e., y
(v)
m < 0, for v = 1, ..., V and m = 1, ..,M [Fig.

2.1(b)℄), we will have that Gext (r, r′) = Gburied (r, r′).
In order to solve the inverse s
attering problem, both the unknowns and

the state and data equations need to be dis
retized. A 
ommon 
hoi
e is to

use re
tangular basis fun
tions [56℄ partitioning the investigation domain into N
subdomains

τ (r) =
∑N

n=1 τ (rn)ψn (r)

E
(v)
tot (r) =

∑N
n=1Etot (rn)ψn (r)

(2.27)

resulting in the following ve
tor of unknowns

Θ =
{
τ (rn) ; E

(v)
tot (rn) ; n = 1, ..., N ; v = 1, ..., V

}
. (2.28)

Given that, the dis
retized form of the �state equation� (2.25) be
omes

E
(v)
inc (rn) = E

(v)
tot (rn)− k2B

∑P
p=1 τ (rp)E

(v)
tot (rp)Gint (rn, rp)

rn, rp ∈ Dinv

(2.29)

while the data equation in (2.26) be
omes

E
(v)
scatt

(
r
(v)
m

)
= k2B

∑N
n=1 τ (rn)E

(v)
tot (rn)Gext

(
r
(v)
m , rn

)

r
(v)
m ∈ Dobs, rn ∈ Dinv.

Solving the inverse s
attering problem is then reformulated as the estimation

of the unknown 
oe�
ients Θ via the minimization of the following 
ost fun
tion

Φ
{
Θ̂
}
= βdataΦdata

{
Θ̂
}
+ βstateΦstate

{
Θ̂
}

(2.30)

where βdata and βstate are 
onstant weights. In (2.30) the �data� termΦdata

{
Θ̂
}

quanti�es the mismat
h between the known s
attered �eld 
olle
ted atM points

belonging to Dobs to the s
attered �eld 
omputed for the retrieved versions of the

unknowns (i.e., Θ̂ =
{
τ̂ (rn) ; Ê

(v)
tot (rn) ; n = 1, ..., N ; v = 1, ..., V

}
) a

ording to

(2.26)

11



2.2. MATHEMATICAL FORMULATION

Φdata

{
Θ̂
}
=

∑V
v=1

∑M
m=1

∣∣∣E(v)
scatt

(
r
(v)
m

)
− Ê(v)

scatt

(
r
(v)
m

)∣∣∣
2

∑V
v=1

∑M
m=1

∣∣∣E(v)
scatt

(
r
(v)
m

)∣∣∣
2 (2.31)

where Ê
(v)
scatt

(
r
(v)
m

)
is the 
omputed s
attered �eld for the m-th probe under

the v-th illumination. Similarly, the �state� term of the 
ost fun
tion de�ned in

(2.30) measures the di�eren
e between the known in
ident �eld insideDinv to the

retrieved in
ident �eld 
omputed a

ording (2.25) on the basis of the estimated

Θ̂

Φstate

{
Θ̂
}
=

∑V
v=1

∑N
n=1

∣∣∣E(v)
inc (rn)− Ê

(v)
inc (rn)

∣∣∣
2

∑V
v=1

∑N
n=1

∣∣∣E(v)
inc (rn)

∣∣∣
2 (2.32)

where Ê
(v)
inc (rn) is the 
omputed s
attered �eld for the n-th point in Dinv

under the v-th illumination.
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Chapter 3

Multi-Fo
using Inexa
t Newton

Method within the Se
ond-Order

Born Approximation

In this 
hapter, the re
onstru
tion of a shallow buried obje
t is addressed by an

ele
tromagneti
 inverse s
attering method based on 
ombining di�erent imag-

ing modalities. In parti
ular, the proposed approa
h integrates the inexa
t-

Newton method with an iterative multi-s
aling approa
h. Moreover, the use of

the se
ond-order Born approximation (SOBA) is exploited. A numeri
al val-

idation is provided 
on
erning the potentialities arising by 
ombining the reg-

ularization 
apabilities of the inexa
t-Newton method and the e�e
tiveness of

the multi-fo
using strategy to mitigate the non-linearity and ill-posedness of the

inversion problem. Comparisons with the standard "bare" approa
h in terms of

a

ura
y, robustness, noise levels, and 
omputational e�
ien
y are also in
luded.

13



3.1. INTRODUCTION

3.1 Introdu
tion

The aim of this 
hapter is to reformulate the integrated IMSA − IN inver-

sion te
hnique [48℄ in order to deal with subsurfa
e imaging and to evaluate the

e�e
tiveness of su
h an approa
h when the se
ond-order Born approximation

(SOBA) is applied. Moreover, a dire
t 
omparison in terms of a

ura
y, ro-

bustness against di�erent 
onditions and noise levels, as well as 
omputational

e�
ien
y is given when dire
tly 
omparing the proposed IMSA− IN − SOBA
approa
h with its standard �bare� implementation (BARE − IN − SOBA), as
des
ribed in [28℄.

Towards this end, se
tion 3.2 provides the basi
 mathemati
al formulation used to

model the buried problem under the SOBA. In Se
t. 3.3 the 
ombined IMSA−
IN − SOBA is des
ribed. An in-depth numeri
al validation is then provided in

Se
t. 3.4 in order to analyze the performan
e of the proposed approa
h and to

demonstrate its e�e
tiveness and advantages over the BARE − IN − SOBA,
under mono
hromati
 transverse magneti
 (TM) illumination 
onditions in a


ross-borehole setup similar to that used in [37℄. Finally, some 
on
lusions are

drawn (Se
t. 3.5).

3.2 Problem Formulation

Let us 
onsider a 
ylindri
al s
atterer buried in a homogeneous half spa
e medium.

A 
ross-borehole measurement 
on�guration is assumed [Fig. 3.1℄. Let τ (r) de-
note the 
ontrast fun
tion inside the inspe
ted area Dinv, as de�ned in equation

(2.2). The upper medium is supposed to be air, with diele
tri
 properties equal

to those of the va
uum and the position ve
tor r denotes a point in the transverse

plane, i.e., r = (x, y).

The target, whose 
ross se
tion is in
luded in the inspe
ted area Dinv is illu-

minated by V in
ident waves, whi
h are produ
ed by a set of in�nite line 
ur-

rents. They generate in
ident waves of transverse magneti
 type, su
h that

E
(v)
inc(r) = E

(v)
inc(r)ẑ, v = 1, . . . , V . Due to the 
ylindri
al geometry, the s
attered

and total �elds results to be z-polarized, too.

The basi
 equation for this inverse problem is therefore the following s
alar in-

tegral one

E
(v)
scatt (r) = E

(v)
tot (r)− E(v)

inc(r) = k2B

∫

Dinv

τ (r′)E
(v)
tot (r

′)Gburied (r, r′) dr′, (3.1)

whi
h is a nonlinear ill-posed Lippman-S
hwinger equation, whose kernel is the

Green's fun
tion for the half spa
e [55℄ with de�nition given in equation (2.22).

In equation (3.1), E
(v)
tot and E

(v)
scatt are the z-
omponents of the total and s
at-

tered ele
tri
 �elds (for the v-th illumination), respe
tively. Su
h equation is

approximated by using a se
ond-order Born expansion [27℄, i.e.,

14
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Figure 3.1: Geometry of the problem and imaging setup.

E
(v)
scatt (r)

∼= F
(v)
B1 τ (r) + k2B

∫

Dinv

τ (r′)F
(v)
B1 τ (r

′)Gburied (r, r′) dr′ = F
(v)
B2 (τ) (r) ,

(3.2)

where F
(v)
B1 denotes the �rst order Born operator de�ned as

F
(v)
B1 τ (r) = k2B

∫

Dinv

τ (r′)E
(v)
inc (r

′)Gburied (r, r′) dr′. (3.3)

Consequently, sin
e the 
ontrast fun
tion is independent of v, the inverse s
at-

tering problem 
an be formulated as the solution of the following set of equations

with respe
t to the unknown τ

FB2 (τ) =



F

(1)
B2 (τ)
.

.

.

F
(V )
B2 (τ)


 =



E

(1)
scatt
.

.

.

E
(V )
scatt


 = Escatt (3.4)

The dis
rete 
ounterparts of the above equations 
an be obtained by partitioning

them in square subdomains in order to obtain pixelated images of the retrieved

distributions of the diele
tri
 parameters inside the inspe
ted area.

3.3 Re
onstru
tion Method

In order to solve equation (3.4), an inner/outer iterative s
heme based on an IN
method is applied [28℄. The operator equation (3.4) is iteratively linearized by

using the Fre
hét derivative of the operator FB2. This step leads to the following

linear operator equation

F
′

τi
u = Escatt − FB2 (τi) (3.5)
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where τi is the 
ontrast fun
tion at the i-th iteration and F
′

τi
denotes the Fre
hét

derivative of the operator FB2 at τi. As detailed in [29℄, F
′

τi
is given by

F
′

τi
u =



F

′(1)
τi u
.

.

.

F
′(V )
τi u


 (3.6)

where

F
′(v)
τi u (r) = F

(v)
B1 u (r) + k2B

∫
Dinv

τi (r
′)F

(v)
B1 u (r

′)Gburied (r, r′) dr′
+k2B

∫
Dinv

u (r′)F
(v)
B1 τi (r

′)Gburied (r, r′) dr′
(3.7)

As it is well known, equation (3.5) turns out the be ill-posed. Consequently,

its solution 
an be obtained in a regularization sense by using a regularization

method. In parti
ular, following the approa
h in [44℄, a good 
hoi
e seems to be

the use of the Landweber iterative method [61℄. In this 
ase, a se
ond loop is

obtained by means of the following s
heme

ui,0 = 0
ui,q+1 = ui,q − ρiF

′∗
τi

(
F

′

τi
ui,q − Escatt + FB2 (τi)

)
,

(3.8)

where F
′∗
τi
is the the adjoint of F

′

τi
and 0 < ρi < 2

∥∥F ′

τi

∥∥−2

s
, being ‖·‖s the spe
tral

norm. A regularized solution ui is obtained by trun
ating the iterations after a

prede�ned number of steps Q. After the linearized problem is solved, the 
urrent


ontrast fun
tion is updated as

τi+1 = τi + ui (3.9)

and the algorithm is iterated until a prede�ned stopping 
riteria is ful�lled. It

requires of 
ourse an initialization phase, in whi
h an estimate of the diele
tri


properties of the inspe
ted area is 
hosen. In most 
ases, an empty domain is

used as initial guess.

As mentioned in Se
tion 3.1, the e�e
tiveness of an integrated pro
edure that

pro�tably exploits the regularization 
apabilities of the IN method and the 
a-

pability of the iterative multi-s
aling approa
h (IMSA) [54℄ to redu
e the o

ur-
ren
e of lo
al minima has been already assessed in [48℄[49℄ for free-spa
e imaging.

Issues su
h as numeri
al instabilities 
aused by the presen
e of noise on measured

data, as well as the ill-
onditioned and non-linear nature of the inversion prob-

lem are thus jointly addressed, throughout the synergeti
 
ombination of both

te
hniques.

In parti
ular, at ea
h s-th step of the IMSA (s = 1, ..., S; s being the step

index), the RoI Ω(s)
(Ω(1)


oin
iding with Dinv) is de�ned and partitioned a
-


ording to the Ri
hmond's pro
edure [56℄ into N square sub-domains (N being

the estimated number of degrees of freedom of the measured data [57℄[58℄) 
en-

tered at r
(s)
n (r

(s)
n ∈ Ω(s)

, n = 1, ..., N). Following the IN method formulation, the

non-linear equation (3.4) is iteratively linearized in order to obtain the following
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linear operator equation (note the addition of the supers
ript

(s)
with respe
t to

(3.5) to indi
ate the iterative nature of the multi-s
aling approa
h)

(
F (s)
τi

)′

u(s) = Escatt − F (s)
B2

(
τ
(s)
i

)
(3.10)

As previously detailed, at ea
h IN step, equation (3.10) is solved in a regularized

sense by means of an inner trun
ated Landweber loop, 
omposed by the following

loop (initialized with u
(s)
i,0 = 0)

u
(s)
i,q+1 = u

(s)
i,q − ρ

(s)
i

(
F (s)
τi

)′∗
[(
F (s)
τi

)′

u
(s)
i,q −Escatt + F

(s)
B2

(
τ
(s)
i

)]
, q = 0, ..., Q− 1

(3.11)

The 
urrent solution is updated as τ
(s)
i+1 = τ

(s)
i + u

(s)
i,Q and the IN method is

iterated (i.e., by letting i = i + 1) until a suitable prede�ned stop 
riterion is

rea
hed. On
e the IN loop has been terminated, a new IMSA step is initialized

(i.e., by letting s = s + 1), throughout the update of Ω(s)
and its dis
retization

with a �ner resolution. This step requires to update the bary
enters r
(s)
n ∈ Ω(s)

,

n = 1, ..., N .

The multi-step pro
ess is iterated until the veri�
ation of a suitable termination


ondition (e.g., s = S), and u(S) = τ (S) is �nally assumed as the IMSA− IN −
SOBA solution.

It has been pointed out in [49℄ the importan
e of de�ning an e�
ient stopping


riterion for the IMSA − IN − SOBA when no a-priori information on the

obje
t under test is available. To monitor the evolution of the re
onstru
tion

residual, a parameter is introdu
ed, whi
h is de�ned at ea
h IN iteration i as the
dis
repan
y between measured and retrieved s
attered �eld at M measurement

lo
ations:

Φi =

∑V
v=1

∑M
m=1

∥∥∥E(v)
scatt(r

(v)
m )− Ê(v)

scatt,i(r
(v)
m )

∥∥∥
2

2

∑V
v=1

∑M
m=1

∥∥∥E(v)
scatt(r

(v)
m )

∥∥∥
2

2

(3.12)

where E
(v)
scatt(r

(v)
m ) and Ê

(v)
scatt,i(r

(v)
m ) denote the measured and estimated s
attered

�elds at the measurement point m (m = 1, ...,M) for the v-th illumination

(v = 1, ..., V ), while ‖.‖2 denotes the l2-norm operator. The following stationary


ondition, based on su

essive observations of the estimated residual, 
an then

be de�ned in order to adaptively terminate the IN pro
edure at ea
h s-th step

of the multi-fo
using s
heme:

ζi =

∣∣∣WΦi −
∑W

j=1Φi−j

∣∣∣
Φi

≤ η (3.13)

where η and W denote a �xed numeri
al threshold and a �xed number of IN
iterations, respe
tively. The de�nition of suitable values for both η and W has


learly a 
riti
al impa
t on the overall performan
es of the IMSA−IN−SOBA,

17



3.4. NUMERICAL ASSESSMENT

sin
e both parameters are essential to identify a stagnating behaviour of the

residual, whi
h is a
tually strongly linked to the semi
onvergen
e property of the

IN method when dealing with the regularization of noisy data [29℄. Con
erning

the regularization 
apability of IN method algorithm, the number of iterations

Q for the Landweber method should also be 
arefully 
hosen, as well as the

number of multi-s
aling iterations S should be set in order to su

essfully balan
e


omputational e�
ien
y and overall quality of the retrieved images.

3.4 Numeri
al Assessment

This se
tion is aimed at illustrating the potentialities of the proposed IMSA−
IN−SOBAmethod when dealing with the pro
essing of syntheti
 data produ
ed

by both homogeneous and inhomogeneous s
atterers buried in a lossy homoge-

neous half spa
e medium. The signi�
ant advantage of the IMSA − IN over

the standard IN method has been already highlighted and well do
umented in

[48℄[49℄ for the free-spa
e s
enario. The appli
ability of the IN method within

the se
ond-order Born approximation to the retrieval of buried obje
ts has been

su

essfully demonstrated in [28℄, as well. The analysis will thus fo
us on the

advantages of employing the iterative multi-resolution inversion s
heme over the

�bare� IN method implementation within the SOBA (BARE − IN − SOBA),
both in terms of a

ura
y, robustness when dealing with di�erent s
atterers and

di�erent noise 
onditions. Besides the pi
torial representation of the retrieved

diele
tri
 distributions, the following error indexes will be used in the following

to give a quantitative evaluation of the re
onstru
tion a

ura
y:

Ξreg =
1

Nreg

Nreg∑

n=1

|τ̂ (xn, yn)− τ(xn, yn)|
|τ(xn, yn) + 1| reg = tot, ext, int (3.14)

where Nreg indi
ates the number of 
ells 
overing the whole inspe
ted area Dinv

(reg = tot, Ntot = N), or belonging to the ba
kground region (reg = ext), or to
the support of the buried s
atterer (reg = int; Ntot = Next+Nint). Moreover, the

terms τ̂ and τ in equation (3.14) indi
ate the retrieved and the a
tual 
ontrast

fun
tion for the n-th 
ell belonging to the investigation domain.

The �rst part of this Se
tion is devoted to a sensitivity analysis of the IMSA−
IN − SOBA algorithm, aimed at investigating the e�e
t of ea
h 
ontrol param-

eter on the �nal quality of the retrieved distributions when dealing with noisy

data, in order to de�ne a suitable and general setup.

3.4.1 Calibration of the IMSA− IN − SOBA
It should be stressed that, as already dis
ussed in Se
tion 3.3, the 
hoi
e of the


ontrol parameters η, W , Q and S should be 
arefully performed in order to

pro�tably exploit the 
apabilities of the IMSA− IN − SOBA.
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Figure 3.2: Sensitivity Analysis (Homogeneous Square S
atterer - ℓ ≈ λb

3
, τ = 1.5,

SNR = 20 dB) - Behaviour of the integral error Ξtot versus η and W when

Q = Q∗
, S = S∗

(a), and versus K when η = η∗, W = W ∗
, and S = S∗

(b).

Plot of the total, internal, and external error as a fun
tion of S when Q = Q∗
,

η = η∗, and W = W ∗
(
).
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Towards this end, an exhaustive sensitivity analysis on the impa
t of ea
h 
on-

trol parameter has been performed on noisy �eld data (SNR = 20 dB) 
olle
ted
for an homogeneous lossy o�-
entered �square� 
ylinder, with side l ≈ λb/3,
λb being the wavelength inside the ba
kground, and τ = 0.5 [Fig. 3.3 (a)℄.

Moreover, a square investigation domain of side 1.6λb lo
ated 0.1λb under the
air-soil interfa
e has has been assumed as referen
e s
enario (Fig. 3.1). The

homogeneous half spa
e medium, inside whi
h the s
atterer is buried, is 
har-

a
terized by a relative diele
tri
 permittivity εrB = 4.0 and by a 
ondu
tivity

σB = 10−2
S/m. The investigation domain Dinv is sequentially illuminated by a

set of V = 16 transverse-magneti
 (TM) mono
hromati
 plane waves generated

by two verti
al rows of �eld sour
es 
on�gured in a 
ross-borehole setup [Fig.

3.1℄ working at the frequen
y of f = 300 MHz. For ea
h view, the syntheti
ally

generated s
attered �eld is 
olle
ted at M = 15 equally spa
ed measurement

points (with ±0.2λb o�set along x with respe
t to the investigation domain [Fig.

3.1℄). It is worthwhile to noti
e that that the values of V and M have been


hosen following the guidelines in [57℄[58℄ to 
olle
t all the available information

on Dinv from the measured s
attered radiation. Moreover, the investigation area

has been partitioned into N = 100 square sub-domains.

In order to investigate the impa
t of η and W on the a
hievable performan
es

of the IMSA− IN − SOBA, Fig. 3.2(a) reports the total re
onstru
tion error

Ξtot as a two dimensional fun
tion of both parameters, when the number of

Landweber and IMSA iterations are respe
tively set to their optimal values Q∗

and S∗
.

As it 
an be observed, a low value of the threshold η (e.g., η = 10−4
) results


ompletely inappropriate, leading to a signi�
ant degradation of the quality of

the re
onstru
tions, due the so-
alled semi
onvergen
e property of the IN regu-

larization te
hnique [29℄.

A
tually, the best re
onstru
tion is obtained after a given number of IN iter-

ations, while subsequent iterations give rise to worse solutions, sin
e data are

a�e
ted by noise [28℄. Similarly, an high value of η also leads to ina

urate re-

sults, 
ausing the premature termination of the inversion pro
edure. Therefore,

a good 
hoi
e for η is

η∗ = 10−2
(3.15)

and it has been assumed hereinafter for the IMSA− IN − SOBA inversions.

Even if less 
riti
al, a suitable value for W should also be 
arefully sele
ted. As

shown in equation (3.13), W de�nes the number of IN iterations whi
h should

be taken into a

ount for the identi�
ation of a stagnating behaviour on the

residual Φ. Although a small value of W 
an redu
e the 
apability of �ltering

out numeri
al errors a�e
ting the 
omputation of the residual, high values of W
give rise to a remarkable degradation of the performan
es, as depi
ted in Fig.

3.2(a), whatever the value of the threshold η. Given the above 
onsiderations,

the optimal value of W has been set to

W ∗ = 5 (3.16)
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Figure 3.3: Sensitivity Analysis (Homogeneous Square S
atterer - ℓ ≈ λb

3
, τ = 1.5,

SNR = 20 dB, S = S∗) - A
tual (a) and retrieved (b)(
) 
ontrast pro�les when

(b) Q = Q∗
, W = W ∗

, η = 10−4
; (
) K = K∗

, W = 40, η = η∗.

and it will be used in the following of the dis
ussion. For 
ompleteness, and

to give the reader a pi
torial example of what is the impa
t of a wrong 
hoi
e

of η and W on the IMSA − IN − SOBA performan
es, the retrieved pro�les
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for the �square� 
ylinder of Fig. 3.3(a) are shown for η = 10−4
[Fig. 3.3(b)℄

and W = 40 [Fig. 3.3(
)℄, being the other parameters �xed to their optimal

values. The 
omputed total error indexes are Ξtot⌋η=10−4,W=W ∗ ≈ 1.27 × 10−1

and Ξtot⌋η=η∗,W=40 ≈ 2.12 × 10−1
, while a redu
tion of more than one order of

magnitude on Ξtot 
an be a
hieved when jointly setting η andW to their optimal

values (Ξtot⌋η=η∗ ,W=W ∗ ≈ 7.92× 10−3
) [Fig. 3.2(a)℄.

Con
erning the dependen
e of the inversion quality on the number of Landweber

iterations, Fig. 3.2(b) shows the behaviour of Ξtot as a fun
tion of Q, when all

remaining parameters are set to their optimal values. As a matter of fa
t, the

number of iterations plays the role of a regularization parameter in the iterative

Landweber regularization method, representing a heuristi
 
ompromise between

fast 
onvergen
e of the IN method (for low values of Q) and noise �ltering

(for high values of Q) [28℄. Therefore, given the above 
onsiderations and also

following the out
ome of the performed sensitivity analysis (Fig. 3.2(b)), the

number of inner iterations has been to

Q∗ = 60 (3.17)

an it will be 
onsidered for the su

essive analysis of the algorithm performan
es.

Con
erning the stop 
riterion for the iterative multi-zooming s
heme, Fig. 3.2(
)

reports the 
omputed error indexes as a fun
tion of the IMSA step s (s = 1, .., 6)
in the 
ase η = η∗, W = W ∗

and Q = Q∗
.

As it 
an be observed, the total error shows a rapid des
ent until step s = 4
is rea
hed (Ξs=1

tot ≈ 9.73 × 10−2
vs. Ξs=4

tot ≈ 7.92 × 10−3
), while a progressive

degradation of the a

ura
y 
hara
terizes the remaining su

essive steps, as ver-

i�ed by the error indexes (Ξs=5
tot ≈ 2.15 × 10−2

and Ξs=6
tot ≈ 3.52 × 10−2

). It is

worth noti
ing that, although the external error rea
hes its null even before step

s = 4, the suppression of artifa
ts inside the ba
kground region 
omes at the


ost of a slight in
rement of the internal error. Given the above 
onsiderations,

the optimal number of IMSA steps has been identi�ed as

S∗ = 4 (3.18)

and it will be employed as a good 
ompromise for su

essive test 
ases. Fig-

ures 3.4(b)-3.4(e) illustrate the evolution of the re
onstru
tion throughout the

IMSA− IN −SOBA steps, when the optimal values of ea
h 
ontrol parameter

is set to its optimal value. As shown by the single plots, the retrieved pro�le

improves step-by-step, starting from a rough estimation of the buried obje
t

support and diele
tri
 
hara
teristi
s [s = 1 - Fig. 3.4(b)℄ until a satisfa
tory

re
onstru
tion is rea
hed [s = 4 = S∗
- Fig. 3.4(e)℄. A pi
torial representation

of the evolution of the residual (equation (3.12)) and of the stationary index

(equation(3.13)) throughout the multi-zooming steps is given Fig. 3.4(a).
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Figure 3.4: Sensitivity Analysis (Homogeneous Square S
atterer - ℓ ≈ λb

3
, τ = 1.5,

SNR = 20 dB, Q = Q∗
, W = W ∗

, η = η∗) - Behaviour of Φ and ζ versus the

IMSA − IN iteration number (a). Plot of the retrieved 
ontrast pro�les when

(b) S = 1, (
) S = 2, (d) S = 3, (e) S = 4 = S∗
.
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3.4.2 Homogeneous �Square� and �L-shaped� Cylinders

The �rst set of numeri
al experiments deals with two o�-
entered lossy homoge-

neous s
atterers having di�erent 
ross-se
tions and 
hara
terized by a 
ontrast

τ = 1.5 [�Square� and �L-shaped � pro�les, - Fig. 3.5℄. The BARE−IN−SOBA
re
onstru
tions have been 
arried out by setting Q = 20 and I = 20 [28℄,

while for the IMSA − IN − SOBA the following parameters have been 
ho-

sen, a

ording to the previously dis
ussed sensitivity analysis: η = 10−2 = η∗,
W = 5 = W ∗

, Q = 60 = Q∗
, and S = 4 = S∗

. Moreover, the investigation do-

main Dinv has been partitioned into N = 400 and N = 100 square sub-domains

for BARE − IN − SOBA and IMSA− IN − SOBA inversion te
hniques, re-

spe
tively. All remaining parameters are kept equal to those employed in the

previous paragraph.

Figs. 3.5(b)-3.5(
) show the retrieved pro�les by the BARE−IN−SOBA, while
Figs. 3.5(d)-3.5(e) the 
orresponding IMSA − IN − SOBA re
onstru
tions,

in 
ase the s
attered �eld data is 
orrupted by an additive zero mean 
omplex

Gaussian noise, raising a signal-to-noise ratio equal to SNR = 10 dB. As it 
an be
observed, the IMSA−IN−SOBA is able to provide a remarkable improvement

in terms of a

ura
y over the �bare� 
ounterpart even in the presen
e of a strong

noisy 
omponent on measurements, as quantitatively 
on�rmed by the lower

error (Ξtot⌋BARE−IN−SOBA
”Square” ≈ 1.46× 10−1

vs. Ξtot⌋IMSA−IN−SOBA
”Square” ≈ 1.24× 10−1

and Ξtot⌋BARE−IN−SOBA
”L−shaped” ≈ 1.23× 10−1

vs. Ξtot⌋IMSA−IN−SOBA
”L−shaped” ≈ 1.19× 10−1

).

To further validate these out
omes, the results from a more exhaustive set of

noisy 
ases have been summarized in Fig. 3.5(a), showing the a
hieved total

re
onstru
tion error Ξtot for di�erent values of SNR for both the 
onsidered

homogeneous s
atterers. The result is that the IMSA− IN −SOBA over
omes

the �bare� IN method implementation in terms of re
onstru
tion a

ura
y, as

pointed out by the error 
urves in Fig. 3.5(a). Although the re
onstru
tion

quality degrades for both BARE − IN − SOBA and IMSA− IN − SOBA for

lower signal-to-noise ratios, it turns out that ΞIMSA−IN−SOBA
tot < ΞBARE−IN−SOBA

tot

whatever the noise 
ondition.

3.4.3 �O-shaped� Cylinder

In order to prove the general validity of the previously dis
ussed out
omes on

the IMSA − IN − SOBA approa
h when dealing with the retrieval of more


omplex diele
tri
 shapes with di�erent values of τ , an homogeneous hollow

square 
ylinder (�O-shaped � pro�le) with an outer side equal to l ≈ λb/2 has been

hosen as a more 
hallenging ben
hmark geometry. In order to give the reader a

full pi
ture on the performan
e improvement of the IMSA− IN − SOBA over

the BARE − IN − SOBA, Fig. 3.6 illustrates the behaviour of the total error

Ξtot as a fun
tion of τ , for di�erent signal-to-noise ratios on s
attered data.
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Figure 3.5: Performan
e Assessment (τ = 1.5, SNR ∈ [10, 40] dB) - Behaviour
of the Ξtot as a fun
tion of SNR when dealing with �Square� or �L-Shaped� targets

(a). Plot of the 
ontrast pro�les retrieved by (b)(
) BARE − IN − SOBA and

(d)(e) IMSA − IN − SOBA when SNR = 10 dB. (b)(d) �Square� s
atterer;

(
)(e) �L-Shaped� s
atterer.
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e Assessment (�O-Shaped� S
atterer ℓ ≈ λb

2
, SNR ∈

[10, 30] dB) - Behaviour of the Ξtot as a fun
tion of τ obtained by BARE−IN−
SOBA and IMSA− IN − SOBA.

Although the re
onstru
tion a

ura
y degrades as τ in
reases, the IMSA −
IN − SOBA always provides the lowest error (e.g., ΞBARE−IN−SOBA

tot

⌋
τ=2.2

≈
2.14× 10−1

vs. ΞIMSA−IN−SOBA
tot

⌋
τ=2.2

≈ 4.42× 10−2
).

It is also worth to noti
e that, as reported in Fig. 3.6, the error index of the

IMSA− IN −SOBA for SNR = 10 dB is always lower than the error provided

by the �bare� IN method implementation for a signi�
antly higher signal-to-

noise ratio (SNR = 30 dB). For 
ompleteness, the error indexes in Fig. 3.6 are

also reported in Tab. 3.1.

BARE − IN − SOBA
SNR dB τ = 0.2 τ = 0.6 τ = 1.0 τ = 1.4 τ = 1.8 τ = 2.2

30 1.98× 10−2 5.68× 10−2 9.18× 10−2 1.22× 10−1 1.56× 10−1 1.92× 10−1

20 2.20× 10−2 6.12× 10−2 9.79× 10−2 1.37× 10−1 1.74× 10−1 2.14× 10−1

10 3.52× 10−2 8.74× 10−2 8.87× 10−2 2.01× 10−1 2.69× 10−1 3.15× 10−1

IMSA− IN − SOBA
SNR dB τ = 0.2 τ = 0.6 τ = 1.0 τ = 1.4 τ = 1.8 τ = 2.2

30 1.18× 10−2 3.59× 10−2 5.63× 10−2 6.24× 10−2 8.03× 10−2 9.06× 10−2

20 1.29× 10−2 2.72× 10−2 3.64× 10−2 4.88× 10−2 5.20× 10−2 4.42× 10−2

10 1.28× 10−2 3.95× 10−2 8.26× 10−2 9.21× 10−2 1.15× 10−1 1.54× 10−1

Table 3.1: Performan
e Assessment (�O-Shaped� S
atterer ℓ ≈ λb

2
, SNR ∈

[10, 30] dB) - Error values and 
omputational indexes.
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Figure 3.7: Performan
e Assessment (�O-Shaped� S
atterer ℓ ≈ λb

2
, SNR = 20

dB) - Plot of the 
ontrast pro�les retrieved by (a)(
)(e) BARE − IN − SOBA
and (b)(d)(f ) IMSA − IN − SOBA when (a)(b) τ = 0.2, (
)(d) τ = 1.0, and
(e)(f ) τ = 2.2.

To further 
on�rm the above 
onsiderations and provide a qualitative pi
ture
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of the retrieved pro�les, Fig. 3.7 shows a dire
t 
omparison between the re
on-

stru
tions provided by both BARE − IN − SOBA and IMSA− IN − SOBA
for di�erent values of 
ontrast [Figs. 3.7(a)-3.7(b) - τ = 0.2, Figs. 3.7(
)-3.7(d)
- τ = 1.0, Figs. 3.7(e)-3.7(f ) - τ = 2.2℄, when SNR = 20 dB. As it 
an be

observed, thanks to the in
reased level of resolution inside the 
orre
tly identi-

�ed RoI, the IMSA− IN −SOBA outperforms its �bare� 
ounterpart, showing

not only the 
apability of better retrieving the external boundaries of the s
at-

terer, suppressing the undesired artifa
ts inside the ba
kground region, but also

of re
ognizing position and shape of the internal 
avity.

3.4.4 Inhomogeneous Cylinders

To assess the performan
es of the IMSA−IN−SOBA when dealing with buried

obje
ts 
hara
terized by non-homogeneous diele
tri
 distributions, this Se
tion


onsiders the analysis of the two referen
e pro�les in Figs. 3.8(a)-3.8(b). The �rst

inhomogeneous geometry (Fig. 3.8(a), �Double-L� 
ylinder) is 
hara
terized by

τup = 0.5 and τlow = 1.5 in the upper and lower portions, respe
tively, while the

se
ond referen
e distribution (Fig. 3.8(b), �Con
entri
� 
ylinder) is 
hara
terized

by τext = 0.5 and τin = 1.0. The se
ond and third rows of Fig. 3.8 illustrate the

retrieved diele
tri
 distributions by the BARE− IN −SOBA [Figs. 3.8(
)-(d)℄

and by the IMSA − IN − SOBA [Fig. 3.8(e)-(f )℄, when SNR = 20 dB. As

a matter of fa
t, the �bare� IN method implementation provides mu
h more

�smoothed� pro�les than the multi-s
aling s
heme.

Considering the retrieved pro�les for the �Double-L� s
atterer, the improvement

in terms of a

ura
y provided by the IMSA− IN − SOBA [Fig. 3.8(e)℄ is 
on-

�rmed by a remarkable redu
tion of the re
onstru
tion error (ΞBARE−IN−SOBA
tot ≈

1.03× 10−1
vs. ΞIMSA−IN−SOBA

tot ≈ 3.35× 10−2
). Still 
onsidering this parti
ular

example, it is quite interesting to noti
e that the BARE − IN − SOBA seems

almost 
ompletely unable to identify the presen
e of two distin
t geometri
ally

adja
ent distributions of the 
ontrast [Fig. 3.8(
)℄.

Similar 
on
lusions 
an be also formulated for the �Con
entri
� 
on�guration

[Figs. 3.8(d)-(f )℄. Di�erently from the �bare� 
ounterpart, the IMSA − IN −
SOBA 
orre
tly identi�es the squared shape and the 
ontrast of the inner 
ore, as

veri�ed by the lower internal re
onstru
tion error (ΞBARE−IN−SOBA
int ≈ 1.19×10−1

vs. ΞIMSA−IN−SOBA
int ≈ 7.45× 10−2

).

Besides the dis
ussed aspe
ts, it is important to remark that the improved a

u-

ra
y showed by the IMSA−IN−SOBA 
omes together with an in
reased 
om-

putational e�
ien
y, as emphasized by the evaluation of the inversion times on a

standard laptop with 3.20 GHz CPU 
lo
k and 4GB of RAM memory. The total

time required to obtain the re
onstru
tions in Fig. 3.8 are ∆tIMSA−IN−SOBA =
80 [s℄ and ∆tIMSA−IN−SOBA = 57 [s℄ for �Double-L� and �Con
entri
� pro-

�les, respe
tively, while the time required by the BARE − IN − SOBA is

∆tBARE−IN−SOBA = 256 [s℄ for both distributions.
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Figure 3.8: Performan
e Assessment (Inhomogeneous S
atterers, SNR = 20
dB) - Plot of the a
tual (a)(b) and retrieved (
)-(f ) 
ontrast pro�les by (
)(d)

BARE−IN−SOBA and (e)(f ) IMSA−IN−SOBA for (a)(
)(e) �Double-L�

and (b)(d)(f ) �Con
entri
� targets.
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3.4.5 �Square� Cylinder with strong 
ondu
tivity

The last test 
ase is aimed at further assessing whether the previously dis
ussed

performan
es of the IMSA−IN−SOBA are still valid when the unknown obje
t

is 
hara
terized by a 
ondu
tivity σc higher than the surrounding ba
kground

medium. As for the previous results, the geometry and measurement setup of

Se
t. 3.4 have been maintained, while di�erent values of 
ondu
tivity σc ≥ σB =
10−2

have been 
onsidered for the �Square� 
ylinder in Fig. 3.3(a). Considering

this spe
i�
 test 
ase, the real part of the s
atter 
ontrast is thus kept 
onstant

to R{τ} = 1.5, while the e�e
t of 
onsidering di�erent values of the imaginary

part I {τ} =
[
σB−σc

2πfε0

]
is hereinafter investigated. In order to give the reader a full

overview of the e�e
tiveness of the IMSA−IN−SOBA and to provide a pi
torial


omparison in terms of a

ura
y with respe
t to the BARE− IN −SOBA, Fig.
3.9(a) depi
ts the behaviour of Ξtot as a fun
tion of the obje
t 
ondu
tivity σc.

In a

ordan
e to what has been already observed when 
onsidering di�erent val-

ues of R{τ} [Fig. 3.6℄, the error in
reases for both methods as the s
atterer

be
omes stronger (i.e., the value of σc is in
reased with respe
t to the 
on-

du
tivity of the ba
kground medium). However, the error 
urves in Fig. 3.6


learly highlight the advantages of the IMSA − IN − SOBA when applied to

the dete
tion of buried s
atterers with strong 
ondu
tivity, whatever the 
on-

sidered SNR on measured �eld data. Moreover, the performan
e gap between

the two implementations be
omes even more evident as the value of σc is in-


reased (ΞBARE
tot

⌋
σc=10−2 ≈ 9.72 × 10−2

vs. ΞIMSA
tot

⌋
σc=10−2 ≈ 1.83 × 10−2

and

ΞBARE
tot

⌋
σc=10−1 ≈ 3.12 × 10−1

vs. ΞIMSA
tot

⌋
σc=10−1 ≈ 7.33 × 10−2

, for SNR = 20

dB). For 
ompleteness, the retrieved distributions when σc = 10−1
(I {τ} =

−5.39) are also reported for both BARE − IN − SOBA [Fig. 3.9(b)-(d)℄ and

IMSA − IN − SOBA [Fig. 3.9(
)-(e)℄, for blurred data with SNR = 20 dB.

As 
on�rmed by the presented out
omes, the linearization properties of the IN
are enhan
ed when exploiting a multi-resolution approa
h intrinsi
ally devoted

to mitigate the undesired e�e
ts of a high-nonlinearity (e.g., the o

urren
e of

lo
al minima), as for the 
ase of strong s
atterers. The artifa
ts 
hara
teriz-

ing the re
onstru
tions of the �bare� IN method (both present in the real [Fig.

3.9(b)℄ and imaginary [Fig. 3.9(d)℄ parts of the retrieved 
ontrast) are almost


ompletely suppressed by the IMSA− IN − SOBA, as veri�ed by a redu
tion

of the external error by an order of magnitude (ΞBARE−IN−SOBA
ext

⌋
≈ 1.73× 10−1

vs. ΞIMSA−IN−SOBA
ext

⌋
≈ 2.25× 10−2

). Moreover, the total inversion time needed

by the multi-zooming te
hnique is signi�
antly redu
ed when 
ompared to the

single-step 
ounterpart (∆tBARE−IN−SOBA = 259 [s℄ vs. ∆tIMSA−IN−SOBA = 79
[s℄).
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Figure 3.9: Performan
e Assessment (Homogeneous Square S
atterer - ℓ ≈ λb

3
,

R{τ} = 1.5, SNR ∈ [10, 30] dB) - Behaviour of the Ξtot as a fun
tion of σc
(a). Plot of the real (b)(
) and imaginary (d)(e) parts of the 
ontrast pro�les

retrieved by (b)(d) BARE − IN − SOBA and (
)(e) IMSA − IN − SOBA
when SNR = 20 dB.

31



3.5. DISCUSSIONS

3.5 Dis
ussions

In this 
hapter, a new mi
rowave imaging method for subsurfa
e prospe
ting has

been proposed. The approa
h 
ombines a multi-fo
using strategy with a regu-

larization solution based on the use of an inexa
t-Newton method. In parti
ular,

the inverse problem has been addressed by numeri
ally solving the Lippmann-

S
hwinger equation under the se
ond-order Born approximation (SOBA). The
proposed re
onstru
tion method has been validated through an extended set

of numeri
al results involving di�erent types of s
atterers and noise 
onditions.

Simulations have highlighted the following key results:

• the proposed te
hnique is able to pro�tably 
ombine the well assessed reg-

ularization 
apabilities of the adopted lo
al sear
h te
hnique (the inexa
t-

Newton method) with the enhan
ed exploitation of available information

provided by the multi-fo
using strategy, whi
h is able to redu
e the prob-

lem of lo
al minima arising from the non-linearity of the involved set of

equations.

• Moreover, the 
ombined strategy exhibits advantages over its standard

"bare" implementation in terms of a
hieved a

ura
y and resolution, what-

ever the 
ontrast distribution (homogeneous/inhomogeneous), the 
ross-

se
tion geometry and the noise level on measured data.

• Furthermore, the proposed multi-fo
using approa
h over
omes the stan-

dard "bare" implementation also in terms of the 
omputational e�
ien
y,

thanks to the signi�
ant redu
tion of the problem unknowns at ea
h itera-

tive step, whi
h arises from the use of an adaptive 
oarse-to-�ne dis
retiza-

tion of the investigation areas at di�erent levels of resolution.
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Chapter 4

Ele
tromagneti
 Subsurfa
e

Prospe
ting by a Fully Nonlinear

Multi-fo
using Inexa
t Newton

Method

In this 
hapter, an ele
tromagneti
 inverse s
attering pro
edure for the re
on-

stru
tion of shallow buried obje
ts in a homogeneous half-spa
e is proposed. The

approa
h is based on the numeri
al solution of the integral equations modelling

the inverse s
attering relationships and it extends to strong s
atterers the imag-

ing 
apabilities of the approa
h presented in Chapter 3 relying on approximated

formulations (i.e., the SOBA). The inversion is based on the synergi
 appli
ation
of a multi-fo
using strategy based on the iterative multi-s
aling approa
h (IMSA)

along with an e�
ient regularization s
heme based on the inexa
t-Newton (IN )

method. Numeri
al results 
orroborate the mathemati
al des
ription to assess


apabilities and 
urrent limitations of the proposed fully-nonlinear te
hnique.
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4.1. INTRODUCTION AND MOTIVATION

4.1 Introdu
tion and motivation

Mi
rowave methods for retrieving buried obje
ts are a key topi
 of the resear
h

area 
on
erned with inversion methods as 
on�rmed by the s
ienti�
 literature

[1℄-[4℄. Appli
ations range from 
ivil and industrial non-destru
tive testing [6℄-

[9℄ to medi
al imaging [10℄-[12℄ as well as geophysi
al appli
ations [13℄-[18℄. As

for these latter, inverse s
attering te
hniques have been widely proposed for the

shallow investigation of the Earth's subsurfa
e to extend/better-exploit the 
apa-

bilities/features of ground penetrating radars (GPRs) [13℄-[19℄. However, despite

several and important results, mi
rowave methods are still quite 
hallenging and

far from a real-life use mainly due to the ill-posedness and the nonlinearity of the

mathemati
al relationships that relate the s
attered �elds to the unknown dis-

tributions of the diele
tri
 parameters of the investigation region. Moreover, the

information 
ontent available from s
attered-�eld data is low [70℄, espe
ially when

dealing with aspe
t-limited 
on�gurations su
h as those in subsurfa
e prospe
t-

ing, leading to a redu
ed data diversity [20℄. To properly address these issues,

many inversion strategies, both sto
hasti
 [34℄[36℄[37℄[40℄[42℄[62℄[71℄ and deter-

ministi
 [26℄[32℄[63℄-[68℄, have been proposed along with approximate models

(e.g., based on Rytov [48℄ and [26℄ Born linearizations).

In a re
ent paper, the authors have introdu
ed the use of a multi-fo
using ap-

proa
h asso
iated with an inexa
t-Newton (IN ) method [48℄. Indeed, the use of

multi-resolution methods has been found to be an e�e
tive way to redu
e the

number of lo
al minima arising in ele
tromagneti
 inverse problems due to the

severe ill-posedness of the integral equations at hand [54℄[72℄. On the other hand,

the IN method has proven to be a regularization approa
h e�
ient in several

ele
tromagneti
 appli
ations, mainly related to tomography in free-spa
e 
ondi-

tions [44℄[43℄. In Chapter 3, the synergi
 
ombination of the two methods has

been exploited in an e�e
tive approa
h for the re
onstru
tion of buried targets

in a shallow subsurfa
e under the se
ond-order Born approximation (SOBA)

ondition [73℄ by assuming the s
attering �eld nonlinearly depending on the di-

ele
tri
 parameters of the obje
t under test, but independent on the internal

total ele
tri
 �eld. While su
h an approximation resulted in a non-negligible


omputational saving be
ause of the redu
tion of the problem unknowns (i.e.,

the diele
tri
 distribution only), the reliability of the re
onstru
tion turns out

limited to weak s
atterers. Moreover, it is worth pointing out that in pra
ti
al

appli
ations the SOBA extends only partially the range of retrievable diele
tri


permittivities 
ompared to the 
lassi
 �rst order Born approximation where the

s
attered ele
tri
 �eld is expressed in terms of the known in
ident �eld (i.e., the

�eld radiated by the sour
e in the ba
kground without the unknown s
atterer).

In this 
hapter, the integrated multi-fo
using-IN (IMSA − IN) strategy is ap-

plied for the �rst time to the exa
t equations of the inverse s
attering problem

for buried obje
ts by extending the range of validity of the formulation presented

in Chapter 3 as well as the possibility to retrieve strong s
atterers. The outline of
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CHAPTER 4. ELECTROMAGNETIC SUBSURFACE PROSPECTING BY

A FULLY NONLINEAR MULTI-FOCUSING INEXACT NEWTON

METHOD

the 
hapter is as follows. In Se
t. 4.2, the approa
h is mathemati
ally des
ribed.

Se
tion 4.3 reports representative results from several numeri
al simulations de-

voted to validate the proposed approa
h illustrating its potentials and 
urrent

limitations. Finally, some 
on
lusions are drawn (Se
t. 4.4).

4.2 Mathemati
al formulation

Let us 
onsider the same 
ylindri
al geometry already 
onsidered in Chapter 3

whose des
ription is just summarized here. By assuming transmitting and mea-

surement points arranged in a 
ross-borehole 
on�guration (Fig. 4.1), let V be

the set of time-harmoni
 line 
urrents that generate the in
ident �elds prob-

ing the investigation region Dinv. For ea
h v-th illumination, the longitudinal


omponent of the s
attered ele
tri
 �eld ve
tor is 
olle
ted at M measurements

lo
ations (D
(v)
obs, v = 1, ..., V , being the set of measurement points at the v-th

view).

y/
λ b

x/λb

Measurement points
Source locations

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

-1.5 -1 -0.5  0  0.5  1  1.5

Dinv

Figure 4.1: Cross-borehole imaging 
on�guration.

To retrieve the unknown diele
tri
 properties of the investigation domain, the

inverse s
attering problem mathemati
ally des
ribed in terms of the following

two integral equations of �rst- (
alled �state equation�) and se
ond-kind (
alled

�data equation�), respe
tively [2℄,

E
(v)
tot (x, y) = E

(v)
inc (x, y) + k2B

∫
Dinv

τ (x′, y′)E
(v)
tot (x

′, y′)Gint (x, y, x′, y′) dx′dy′
(x, y) ∈ Dinv

(4.1)

E
(v)
scatt (x, y) = k2B

∫
Dinv

τ (x′, y′)E
(v)
tot (x

′, y′)Gext (x, y, x′, y′) dx′dy′
(x, y) ∈ D(v)

obs

(4.2)
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4.2. MATHEMATICAL FORMULATION

need to be solved. In (4.1) and (4.2), E
(v)
tot , E

(v)
inc, and E

(v)
scatt denote the z-


omponents of the total, in
ident, and s
attered �eld ve
tors for the v-th view,

respe
tively. Moreover, Gext is the Sommerfeld's Green's fun
tion for the half

spa
e [55℄, while the 
ontrast fun
tion τ is de�ned in equation (2.2).

Unlike the theory presented in Chapter 3, where the SOBA approximated for-

mulation has been assumed, the two s
attering equations are 
ontemporarily

exploited to inspe
t buried strong s
atterers. Towards this end, let us put (4.1)

and (4.2) in a fun
tional form as

A(v)
(
τ ;E

(v)
tot

)
= b(v) v = 1, ..., V (4.3)

where b(v) in
ludes the known terms (i.e., the in
ident �eld in the state equation

and the measured s
attered ele
tri
 �eld in the data equation)

b(v) =

[
E

(v)
scatt

E
(v)
inc

]
, (4.4)

and let us 
ombine the V equations (4.3) to re
ast the inverse problem as the

solution of the following fun
tional equation

A(v)
(
τ ;E

(1)
tot , ..., E

(V )
tot

)
=




E
(1)
scatt

E
(1)
inc
.

.

.

E
(V )
scatt

E
(V )
inc



=



b(1)

.

.

.

b(V )


 . (4.5)

By dis
retizing (4.5) with square sub-domains and point mat
hing, a nonlinear

systems of dis
rete equations is yielded

A (τ ;Etot) = b (4.6)

where τ is an array whose n-th entry (n = 1, ..., N) is the value of the 
ontrast

fun
tion at the n-th sub-domain in whi
h the investigation domainDinv has been

partitioned, Etot is an array 
ontaining the V ×N values of the ele
tri
 �eld in the

investigation area, and b is an array of size V × (N +M) 
ontaining the values
of the known samples of the in
ident and s
attered ele
tri
 �elds (see Appendix

A).

To properly and e�
iently solve (4.6), some 
hallenging 
omputational issues

have to be 
arefully addressed. To redu
e the 
omputational burden and there-

fore fo
using the attention only on parts of the investigation domain where s
at-

terers are supposed to be present, the IMSA approa
h is adopted. Su
h a multi-

fo
using te
hnique has been �rstly developed by A. Massa and 
o-workers in [54℄

and su

essively deeply analyzed in other papers [48℄[72℄[74℄[75℄. At ea
h step
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of the IMSA (s = 1, ..., S), a zoomed investigation domain Ωs, 
omposed by the


ombination of the region of interests de�ned at step s − 1, is 
onsidered (Ω1


oin
ides with the whole investigation area - see Fig. 4.1). Equation (4.6) is

then solved by using the IN method [44℄[43℄ for re
onstru
ting the distributions

of the diele
tri
 properties in Ωs. Su
h an inversion method is 
omposed by two

nested loops. In the external loop, (4.6) is �rst linearized by means of a Newton

approximation, whereas the resulting linear system of equations is solved in a

regularized sense with a trun
ated Landweber method [61℄. A maximum number

of iterations, Imax,s, is set for the external loop, while the number of iterations,

Q, of the inner loop is �xed for any re
onstru
tion pro
ess. A 
omplete dis
us-

sion on the appli
ation of the IN method 
an be found in [45℄ where it has been

shown that the number of external iterations plays the role of a regularization

parameter 
ontrolling the so-
alled semi-
onvergen
e. Therefore, it is ne
essary

to de�ne a suitable strategy for terminating the iterations in order to guarantee


onvergen
e towards the global solution of the fun
tional problem at hand. To

this end, let us �rst de�ne the following residual fun
tion

Φi
s =

∑V
v=1

∑M
m=1

∣∣∣E(v)
scatt

(
x
(v)
m , y

(v)
m

)
−E(v)

i

(
x
(v)
m , y

(v)
m

)∣∣∣
∑V

v=1

∑M
m=1

∣∣∣E(v)
scatt

(
x
(v)
m , y

(v)
m

)∣∣∣
(4.7)

where E
(v)
scatt

(
x
(v)
m , y

(v)
m

)
denotes the s
attered �eld 
omponent measured at the

m-th measurement point

(
x
(v)
m , y

(v)
m

)
(m = 1, ...,M) for the v-th illumination

(v = 1, ..., V ), and E
(v)
i

(
x
(v)
m , y

(v)
m

)
indi
ates the same quantity estimated at the

i-th iteration of the imaging pro
ess. Then, at ea
h IMSA step, s (s > 1), the
IN solver is stopped when one of the following 
onditions holds true:

• the �tness goes below the threshold 
omputed at the step s (i.e., φi
s ≤ φth

s );

• the number of outer iterations rea
hes its maximum (i.e., Imax,s>1).

As for the threshold at the s-th step, Φth
s , it is obtained as

Φth
s ≤ αφfinal

s−1 , s = 2, ..., S (4.8)

where Φfinal
s−1 is the �nal residual at the step s−1, α is a setup s
aling fa
tor, and

S is the total number of IMSA steps. Con
erning the �rst IMSA step (s = 1),
the stopping 
riterion is only determined by the user-de�ned number of outer

iterations (i.e., Imax,s=1).

4.3 Numeri
al Results

The proposed approa
h has been validated by means of several numeri
al sim-

ulations referring to the following ben
hmark s
enario. The investigation area
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has been 
hosen as a square domain of side 1.6 λb 
entered at (0.0, −0.9 λb) with
the diele
tri
 properties of the lower half spa
e set to εrB = 4.0 and σB = 0.01
S/m. A set of V = 16 TX/RX antennas, modeled as line-
urrent sour
es with

unit amplitude, has been 
onsidered at a working frequen
y of 300 MHz. The

antennas have been supposed to be lo
ated into two boreholes beside Dinv (as

shown in Fig. 4.1) at positions

(xv, yv) =





(
−λb, −0.1 λb − 2 λb

v−1
v
2
−1

)
if v ≤ V

2(
−λb, −0.1 λb − 2 λb

v−− v
2
−1

v
2
−1

)
if v > V

2

, v = 1, ..., V. (4.9)

When a radiator a
ted as transmitter, the remaining M = V − 1 
olle
ted the

s
attered ele
tri
 �eld. The number of views and measurement points has been


hosen as suggested in [57℄[58℄.

The s
attering �eld samples (i.e., the data of the inversion pro
edure) have been

numeri
ally 
omputed by using a forward solver based on the Method of Moments

[76℄ with a mesh of Nfwd = 40 × 40 square subdomains. To simulate a more

realisti
 measurement setup, a Gaussian noise with zero mean value has been

added to the 
omputed data. Unless otherwise spe
i�ed, the signal-to-noise ratio

on the total ele
tri
 �eld data has been set to SNR = 20 dB. As for the inversion
pro
edure, a 
oarser mesh has been used to avoid inverse 
rimes. More in detail,

N IMSA
inv = 10×10 subdomains have been adopted at ea
h s-th s
aling step of the

IMSA, whereas the number of partitions has been set to N bare
inv = 20 × 20 pixels

for the bare IN approa
h.

To quantitatively evaluate the performan
e of the approa
h, the same error �g-

ures used in Chapter 3 have been adopted and are here reported, for 
ompleteness

Ξreg =
1

Nreg

Nreg∑

n=1

|τ̂ (xn, yn)− τ(xn, yn)|
|τ(xn, yn) + 1| reg = tot, ext, int (4.10)

where τ and τ̂ are the a
tual and re
onstru
ted values of the 
ontrast fun
tion in

the n-th sub-domain

1

and Nreg indi
ates the number of 
ells 
overing the whole

inspe
ted area Dinv (reg = tot, Ntot = N), or belonging to the ba
kground

region (reg = ext), or to the support of the buried s
atterer (reg = int; Ntot =
Next +Nint).

1

The re
onstru
tions have been obtained by averaging the results over 100 di�erent noise

realizations.
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4.3.1 Calibration
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Figure 4.2: Calibration (Square S
atterer - L = 0.32 λb, (xc = −0.16 λb, yc =
−0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m, SNR = 20
dB) - A
tual target used for the algorithm 
alibration.

As already stated in Chapter 3, the 
hoi
e of the 
orre
t parameters of the in-

version pro
edure is of fundamental importan
e, thus an analysis of the per-

forman
es versus su
h parameters has been �rstly performed to identify the

best setup. The goal of this 
alibration has been that of determining the op-

timal (Q,α) pair for the IMSA-IN approa
h, while the other parameters have

been set a

ording to the guidelines already devised in previous works [43℄[69℄,

namely Imax,s=1 = 20, Imax,s>1 = 1000, and S = 4. More in detail, Q and

the �tness s
aling fa
tor α have been varied within the range 10 − 100 and be-

tween 0.1 and 0.9, respe
tively. As a referen
e target, a square 
ylinder lo
ated

at (−0.16 λb, −0.58 λb) with side L = 0.32 λb, relative diele
tri
 permittivity

εr = 5.5, and ele
tri
 
ondu
tivity σ = 0.01 S/m (i.e., τ = 1.5) has been 
onsid-

ered (Fig. 4.2).
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Figure 4.3: Calibration (Square S
atterer - L = 0.32 λb, (xc = −0.16 λb, yc =
−0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m, SNR = 20
dB) - Total re
onstru
tion error vs. α (α ∈ [0.1, 0.9]) for di�erent values of Q in

the range Q ∈ [10, 100].
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Figure 4.4: Calibration (Square S
atterer - L = 0.32 λb, (xc = −0.16 λb, yc =
−0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m, SNR = 20
dB) - Best �tness value for di�erent (Q,α) pairs.
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Figure 4.5: Calibration (Square S
atterer - L = 0.32 λb, (xc = −0.16 λb, yc =
−0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m, SNR = 20
dB) - (a) Real and (b) imaginary parts of the re
onstru
ted distribution of the


ontrast fun
tion when Q = Qopt = 50 and α = αopt = 0.9.

The results of the IMSA-IN re
onstru
tions are summarized in Fig. 4.3, whi
h

reports the values of the total error Ξtot versus the �tness s
aling fa
tor and

for di�erent values of the inner iterations of the IN algorithm when setting

Imax,s=1 = 20 and S = 4, being SNR = 20 dB. Sin
e the best pair of parameters

is de�ned as that with the minimum value of the total re
onstru
tion error Ξtot,
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the optimal setup turned out to be: Q = 50 and α = 0.9. For 
ompleteness,

Figure 4.4 reports the values of the residual Φ on the data, while Figure 4.5 shows

the distribution of the 
ontrast fun
tion [real part - Fig. 4.5(a); imaginary part

- Fig. 4.5(b)℄ re
onstru
ted with the optimal parameters.

As it 
an be observed, the s
atterer is faithfully re
onstru
ted with a 
areful

identi�
ation of the target shape as well as an estimation of the 
ontrast very


lose to the a
tual one.
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Figure 4.6: Calibration (Square S
atterer - L = 0.32 λb, (xc = −0.16 λb, yc =
−0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m, SNR = 20
dB) - Re
onstru
tion errors for di�erent values of ∆εrB.

To assess the robustness of the optimal 
alibration setup against the un
ertain-

ties in the medium ele
tromagneti
 parameters, the same target has been imaged

by assuming that the relative diele
tri
 permittivity ε̂rB used by the inversion

method is di�erent from its a
tual value εrB. The behaviour of the total re
on-
stru
tion error versus ∆εrB , εrB− ε̂rB shows that the a

ura
y of the proposed

approa
h smoothly degrades as the un
ertainty in
reases (e.g.,

Ξtot|∆εrB=0.8

Ξtot|∆εrB=0.2
≈ 2.83

- Fig. 4.6), and that the total error is below 7% even in the worst 
ase 
onditions

(i.e., when ∆εrB ≈ −1.0 - Fig. 4.6).

4.3.2 E�e
ts of Noise

To evaluate the e�e
t of the noise on the re
onstru
tions and the robustness of

the proposed approa
h, a set of simulations with levels of noise varying from

SNR = 5 dB down to ∞ has been performed.
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SNR Itot Φfinal Ξtot Ξint Ξext ∆t [s℄

BARE
∞ (Noiseless) 600 1.28× 10−3 9.46× 10−2 2.17× 10−1 6.94× 10−2 4041

30 [dB℄ 600 1.80× 10−3 9.44× 10−2 2.17× 10−1 7.04× 10−2 4045
20 [dB℄ 600 4.07× 10−3 9.83× 10−2 2.21× 10−1 7.25× 10−2 4042
10 [dB℄ 600 1.25× 10−2 1.35× 10−1 2.17× 10−1 1.00× 10−1 4038
5 [dB℄ 600 2.20× 10−2 1.91× 10−1 2.31× 10−1 1.37× 10−1 4023

IMSA
∞ (Noiseless) 450 4.45× 10−3 5.61× 10−3 1.36× 10−1 0.00 211

30 [dB℄ 461 4.53× 10−3 5.60× 10−3 1.36× 10−1 0.00 212
20 [dB℄ 827 5.39× 10−3 2.89× 10−3 6.87× 10−2 0.00 288
10 [dB℄ 3020 1.41× 10−2 5.21× 10−3 1.17× 10−1 0.00 795
5 [dB℄ 3020 2.43× 10−2 1.46× 10−2 1.97× 10−1 5.96× 10−3 776

Table 4.1: Performan
e vs. Noise (Square S
atterer - L = 0.32 λb, (xc =
−0.16 λb, yc = −0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01
S/m) - Total number of performed outer iterations, �nal �tness values, and re-


onstru
tion errors for the BARE and the IMSA (s = S = 4) IN approa
hes.

Total exe
ution time on a PC with Intel(R) Core(TM)2 CPU 6600 � 2.40GHz,

2GB RAM.

Still 
onsidering the same target of the previous Se
tion, the inversion results

are summarized in Tab. 4.1 where the total number of outer iterations needed

to rea
h the 
onvergen
e

2

, the �nal residual on the data Φfinal
, and the re
on-

stru
tion errors Ξreg are given along with the inversion time

3

. For 
omparison

purposes, the out
omes from the appli
ation of the bare IN approa
h (i.e., the

single-step uniform resolution IN ) is also reported. It is worth noti
ing that for

a fair 
omparison, the 
alibration of the 
ontrol parameters has been 
arried out

for the bare algorithm, as well, with the identi�
ation of the following optimal

values: Imax = 600 and Q = 100.

As it 
an noti
ed (Tab. 4.1), the IMSA-IN approa
h proves to be quite robust

to the noise on the data sin
e, even for heavy noise 
onditions, the arising er-

rors turns out to be quite small and the multi-resolution implementation always

outperforms its 
orresponding single-step uniform resolution 
ounterpart. These

indi
ations are also 
on�rmed by the re
onstru
ted distributions of the 
ontrast

fun
tion (real part - Fig. 4.7; imaginary part - Fig. 4.8).

2

As for the IMSA, this number 
orresponds to the sum of the outer iterations performed

on the whole set of iterative s
aling steps.

3

The IMSA inversion time is 
omputed as the sum of the exe
ution time for ea
h iterative

s
aling step.

43



4.3. NUMERICAL RESULTS

IN IN − SOBA
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Figure 4.7: Performan
e vs. Noise (Square S
atterer - L = 0.32 λb, (xc =
−0.16 λb, yc = −0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01
S/m, SNR =10 dB) - Re
onstru
ted distributions of the 
ontrast fun
tion (real

part) when using (a)(
) IMSA-IN and (b)(d) IN under (a)(b) full-nonlinear and

(
)(d) approximate 
onditions (SOBA).

As a representative example, let us refer to the plots in Fig. 4.7 
on
erned with

the inversion of s
attering data blurred with a noise 
hara
terized by SNR = 10
dB. In parti
ular, Figures 4.7(a) and 4.8(a) show the result yielded with the

IMSA-IN algorithm, while Figures 4.7(b) and 4.8(b) plot the re
onstru
tion from

the bare approa
h. Figures 4.7(
)-4.7(d) and 4.8(
)-4.8(d) 
omplete the overview

by presenting the results under se
ond order Born approximation (i.e., SOBA

method). As expe
ted, the IMSA-IN better shapes the target and the estimated

values of the 
ontrast fun
tion are 
loser to the a
tual ones. On the other hand,

the full-approa
h signi�
antly improves the performan
e of the approximated

one in both IMSA [Fig. 4.7(a) vs. Fig. 4.7(
) - ΞIMSA−IN
tot = 5.21 × 10−3

vs. ΞIMSA−SOBA
tot = 1.83 × 10−2

℄ and single-step [Fig. 4.7(b) vs. Fig. 4.7(d) -

ΞIN
tot = 1.35× 10−1

vs. ΞSOBA
tot = 1.46× 10−1

℄ versions.
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Figure 4.8: Performan
e vs. Noise (Square S
atterer - L = 0.32 λb, (xc =
−0.16 λb, yc = −0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0,
σB =0.01 S/m, SNR =10 dB) - Re
onstru
ted distributions of the 
ontrast

fun
tion (imaginary part) when using (a)(
) IMSA-IN and (b)(d) IN under

(a)(b) full-nonlinear and (
)(d) approximate 
onditions (SOBA).

For 
ompleteness, Figures 4.9(a)-4.9(b) show the residual on the data and the

re
onstru
tion errors versus the outer iteration number, while the behavior of the

re
onstru
tion errors at ea
h resolution step of the s
aling pro
ess is reported in

Fig. 4.9(
). As it 
an be observed, the multi-resolution pro
edure allows a

signi�
ant improvement of the re
onstru
tion quality throughout the iterative

zooming.
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Figure 4.9: Performan
e vs. Noise (Square S
atterer - L = 0.32 λb, (xc =
−0.16 λb, yc = −0.58 λb), εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01
S/m, SNR = 10 dB) - Fitness (a) and re
onstru
tion errors (b) versus outer

iterations index, i. (
) Error index values at ea
h fo
using step s (s = 1, ..., S).
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Finally, it is worth pointing out that the IMSA-IN approa
h requires less CPU

time than the bare method to rea
h the 
onvergen
e solution (Tab. 4.1) sin
e a

smaller problem has to be solved at ea
h resolution step.

4.3.3 E�e
ts of the Diele
tri
 Properties of the Target

This Se
tion is aimed at giving some insights on the dependen
e of the re
on-

stru
tion a

ura
y of the proposed approa
h on the 
ontrast values of the imaged

target.
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Figure 4.10: Performan
e vs. Target Permittivity (Hollow Cylinder - Lext =
0.48 λb, Lint = 0.16 λb, (xc = 0.08 λb, yc = −0.48 λb), σ = 0.01 S/m, εrB =4.0,
σB =0.01 S/m, SNR = 20 dB) - Re
onstru
tion errors for di�erent values of τ .

A hollow square 
ylinder has been 
onsidered [Fig. 4.11(a)℄ 
entered at

(0.08 λb, −0.48 λb) with external side Lext = 0.48 λb and internal side Lint =
0.16 λb. The values of the 
ontrast have been 
hanged in the range τ ∈ [0.2, 2.2].
Figure 4.10 gives the inversion results in terms of the total re
onstru
tion error

for both the bare and the IMSA-IN approa
hes. It turns out that the two

implementations are quite robust against the 
ontrast even though the IMSA-

IN is able to provide a smaller value of re
onstru
tion error. For illustrative

purposes, Figs. 4.11(b) and 4.11(
) show the real part of the 
ontrast fun
tion

retrieved by the IMSA-IN and the bare approa
hes when τ = 2.2, while Figs.

4.11(d) and 4.11(e) show the imaginary parts. The plots outline the e�e
tiveness

of the multi-resolution approa
h in both qualitatively and quantitatively imaging

the target, while the single-step te
hnique only lo
alizes the target.
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Figure 4.11: Performan
e vs. Target Permittivity (Hollow Cylinder - Lext =
0.48 λb, Lint = 0.16 λb, (xc = 0.08 λb, yc = −0.48 λb), εr = 6.2, σ = 0.01 S/m

[τ = 2.2℄, εrB =4.0, σB =0.01 S/m, SNR = 10 dB) - Re
onstru
ted distribution

of the 
ontrast fun
tion. (a) A
tual 
on�guration and (b) real and (d) imaginary

parts provided by the IMSA-IN strategy and (
) real and (e) imaginary parts

obtained by the BARE-IN.
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Figure 4.12: Performan
e vs. Target S
ales (E-Shaped S
atterer - εr = 5.5,
σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m, SNR =20 dB) - Re
onstru
ted
distribution of the 
ontrast fun
tion (real part). (a) A
tual 
on�guration and

re
onstru
tions with (b)(d) IMSA-IN and (
)(e) IN under (b)(
) full-nonlinear

and (d)(e) approximate 
onditions (SOBA).
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4.3.4 Re
onstru
tion of Targets with Small Details

The 
apabilities of the approa
h in re
onstru
ting target details at dimensions


omparable to the inversion grid of the bare te
hnique have been assessed then

by 
onsidering the obje
t in Fig. 4.12(a). The 
ontrast fun
tion retrieved by the

IMSA-IN algorithm is shown in Fig. 4.12(b) and Fig. 4.13(a) and 
ompared to

that from the IN method [Fig. 4.12(
) and Fig. 4.13(b)℄.
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Figure 4.13: Performan
e vs. Target S
ales (E-Shaped S
atterer - εr = 5.5,
σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m, SNR =20 dB) - Re
on-

stru
ted distribution of the 
ontrast fun
tion (imaginary part) with (a)(
) IMSA-

IN and (b)(d) IN under (a)(b) full-nonlinear and (
)(d) approximate 
onditions

(SOBA).

As expe
ted, the multi-s
aling strategy provides a quite good re
onstru
tion

of the long arms of the E-shaped target be
ause of its intrinsi
 multi-resolution

nature, although the smallest detail in the internal region is not dete
ted probably

due to the masking e�e
ts of the external region of the s
atterer. On the 
ontrary,
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the single-step re
onstru
tion signi�
antly gets worse loosing all the obje
t details

[Fig. 4.12(
) and Fig. 4.13(b)℄. For 
ompleteness, the 
orresponding SOBA

implementations are reported in Figs. 4.12(d)-4.12(e) and Figs. 4.13(
)-4.13(d),

as well.

4.3.5 Re
onstru
tion of Targets with Higher Condu
tivity

Finally, the e�e
ts of the 
ondu
tivity of the target have been evaluated. The

square obje
t imaged in Se
ts. 4.3.1 and 4.3.2 has been again 
onsidered, but its

ele
tri
 
ondu
tivity has been in
reased to σ = 0.1 (i.e., I {τ} = −5.39).
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Figure 4.14: Performan
e vs. Target Condu
tivity (Square S
atterer - L =
0.32 λb, (xc = −0.16 λb, yc = −0.58 λb), εr = 5.5, σ = 0.1 S/m [τ = 1.5− j5.39℄,
εrB =4.0, σB =0.01 S/m, SNR =10 dB) - Re
onstru
ted distribution of the


ontrast fun
tion. (a) Real and (b) imaginary parts provided by the IMSA-IN

strategy and (
) real and (d) imaginary parts obtained with the bare IN.
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SNR Ξtot BARE Ξtot IMSA

∞ (Noiseless) 3.07× 10−1 4.01× 10−2

30 [dB℄ 3.07× 10−1 3.98× 10−2

20 [dB℄ 3.14× 10−1 1.61× 10−2

10 [dB℄ 3.60× 10−1 2.26× 10−2

5 [dB℄ 4.21× 10−1 3.97× 10−2

Table 4.2: Performan
e vs. Target Condu
tivity (Square S
atterer - L = 0.32 λb,
(xc = −0.16 λb, yc = −0.58 λb), εr = 5.5, σ = 0.1 S/m [τ = 1.5−j5.39℄, εrB =4.0,
σB =0.01 S/m) - Re
onstru
tion errors for the bare IN and the IMSA-IN (at

step s = S = 4) approa
hes.

The re
onstru
tion errors for di�erent values of the signal-to-noise ratio are re-

ported in Tab. 4.2 to assess in this 
ase, too, the IMSA-IN strategy improve-

ments over to the bare method. This is also visually 
on�rmed by the representa-

tive distributions of the 
ontrast fun
tion shown in Fig. 4.14, whi
h refer to the


ase SNR = 10 dB. Indeed, both real and imaginary parts of the 
ontrast fun
-

tion are su

essfully retrieved by the IMSA-IN strategy [Figs. 4.14(a)-4.14(b)℄

being 
loser to the a
tual ones. The same a

ura
y is not a
hieved by the bare

implementation [Figs. 4.14(
)-4.14(d)℄.

4.4 Dis
ussions

In this 
hapter, a mi
rowave imaging te
hnique for the re
onstru
tion of shallow

buried obje
ts has been presented. The proposed approa
h extends the strat-

egy presented in Chapter 3 by employing the full non-linear formulation of the

s
attering problem. In this way, the method is potentially able to deal with

strong s
atterers, too. The re
onstru
tion performan
es have been evaluated by

means of several numeri
al simulations. It has been found that the proposed

approa
h provides quite good re
onstru
tions of the 
onsidered targets showing

a good robustness to the noise, as well. Moreover, the results from the multi-

fo
using strategy turned out to be better both in terms of re
onstru
tion errors

and 
omputational resour
es than the standard bare inexa
t-Newton algorithm

when applied to the same s
attering 
on�gurations. Future works will be devoted

to an experimental validation of the proposed inversion algorithm.
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Chapter 5

GPR Prospe
ting through an

Inverse S
attering

Frequen
y-Hopping Multi-Fo
using

Approa
h

In this 
hapter, an innovative information-a
quisition approa
h to 2D Ground-

Penetrating Radar (GPR) prospe
ting is presented. A mi
rowave inverse-s
attering

nested approa
h 
ombining a frequen
y-hopping (FH ) pro
edure and a multi-

fo
using (MF ) te
hnique is proposed. On the one hand, the FH s
heme ef-

fe
tively handles multi-frequen
y GPR data, while mitigating the non-linearity

issues. On the other, MF te
hniques have proved to be e�e
tive tools for re-

du
ing the o

urren
e of multi-lo
al-minima a�e
ting GPR investigations then

allowing the use of a lo
al sear
h te
hnique based on the Conjugate Gradient

(CG) method to iteratively solve the inverse problem at hand. Sele
ted results

are reported and analyzed to give some insights to the interested readers on the

advantages and the limitations of su
h an approa
h when handling syntheti
ally-

generated and experimental GPR data, as well.
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5.1. INTRODUCTION AND RATIONALE

5.1 Introdu
tion and Rationale

In the last de
ades, ground penetrating radars (GPRs) have been widely used

in subsurfa
e non-destru
tive testing (NDT ) problems [1℄[13℄[77℄[78℄ arising in

ar
haeology, geology, demining, pavement survey, tunnel dete
tion, and poli
e

investigation [59℄[79℄-[83℄. Su
h a popularity mainly derives from the superior

performan
e in terms of resolution, depth of investigation, speed, and 
osts 
om-

pared to other NDT te
hnologies [59℄[79℄[80℄[83℄. Unfortunately, retrieving the

diele
tri
 properties of buried obje
t from GPR data, usually 
olle
ted in the

time domain, is a very 
hallenging task be
ause of the theoreti
al properties of

the asso
iated inverse problems (i.e., ill posedness and non-linearity [84℄[85℄) as

well as the dimensionality of the problem at hand [86℄. To fa
e su
h 
hallenges,

several GPR prospe
ting algorithms have been proposed in the state-of-the-art

literature. Approximate formulations of the 
omplete non-linear problem have

been often taken into a

ount [84℄[86℄-[88℄. More spe
i�
ally, weak s
atterers

have been su

essfully retrieved through Born [84℄[86℄[88℄[89℄ or distorted-Born

GPR approximations [87℄ by solving the arising linear problem with trun
ated

singular value de
omposition (TSVD) algorithms [84℄[86℄-[88℄. Nevertheless, the

derivation of GPR prospe
ting te
hniques able to faithfully handle strong and/or

extended s
atterers and deal with related multi-minima issues is still an open


hallenge [83℄. Indeed, even though global sear
h strategies based on Evolution-

ary Algorithms (EAs) 
ould, in prin
iple, su

essfully address nonlinear problems

[34℄[41℄, their �bare� use is generally prevented in subsurfa
e imaging be
ause of

the size of the domains under investigations and the arising 
onvergen
e and


omputational loads.

On the other hand, the generalization of multi-fo
using (MF ) inversion te
h-

niques borrowed from �free-spa
e� imaging [54℄[72℄[75℄ is a potentially appealing

approa
h to be adopted sin
e GPR time-domain signals are intrinsi
ally multi-

frequen
y data. Histori
ally,MF iterative strategies have been spe
i�
ally intro-

du
ed to mitigate lo
al minima problems in inverse s
attering [51℄[54℄[72℄. By

keeping at ea
h MF iteration the number of unknowns as 
lose as possible to the

available data information [90℄, the original 
omplex imaging problem is re
ast

to a sequen
e of simpler data-mismat
hing 
ost fun
tion minimizations where

the o

urren
e of lo
al minima is strongly redu
ed [54℄[72℄. This latter enables

as an interesting by-produ
t the possibility to use lo
al optimization strategies

that allow a signi�
ant 
omputational saving with respe
t to EAs [34℄[41℄.

This 
hapter is then aimed at introdu
ing a robust and e�
ient 
omplement

to existing GPR prospe
ting strategies based on the multi-minima mitigation


apabilities of MF pro
edures. Towards this end, subsurfa
e imaging from

time-domain GPR data is �rstly re
ast to a multi-frequen
y inversion then a

frequen
y-hopping (FH ) [91℄-[93℄ iterative s
heme is adopted. Sin
e ea
h GPR

frequen
y data is asso
iated to a di�erent level of spatial resolution [92℄, the FH

approa
h is suitably integrated in a hierar
hi
al multi-resolution s
heme that ex-
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ploits a Conjugate Gradient (CG) [30℄[94℄ lo
al strategy as optimization solver.

The outline of the 
hapter is as follows. After the formulation of the GPR

prospe
ting problem (Se
t. 5.2), the proposed FHMF-CG method is introdu
ed

and dis
ussed (Se
t. 5.3). It is then assessed against syntheti
 data generated

through GprMax software [95℄ and 
omparisons with state-of-the-art te
hniques

[87℄[96℄ are also dis
ussed, while experimental validations [97℄ follow (Se
t. 5.4).

Eventually, some 
on
lusions are reported (Se
t. 5.5).

5.2 GPR Prospe
ting - Inverse S
attering For-

mulation

Let us 
onsider the GPR transverse-magneti
 problem sket
hed in Fig. 5.1(a)

where two homogeneous, isotropi
, and non-magneti
 half-spa
es are separated

by an interfa
e at y = 0. The lower half spa
e of ba
kground relative permittivity

εrB and ba
kground 
ondu
tivity σB, 
ontains a set of s
atterers lo
ated within

the investigation domain Dinv [Fig. 5.1(a)℄ and des
ribed by dis
ontinuous (wrt

the ba
kground) pro�les of permittivity εr (r) and 
ondu
tivity σ (r). The free-
spa
e (ε0 and σ0 = 0) upper half spa
e 
omprises a set of V z-dire
ted ideal

line sour
es lo
ated at rv = (xv, yv > 0), v = 1, .., V and ex
ited with the time-

domain 
urrent χ (t) [Fig. 5.1(b)℄ to generate in free spa
e the radiated �eld

[98℄[99℄

wv (r, t) ẑ =

[
1

2π |r− rv| c0
δ

(
t− |r− rv|

c0

)
∗ h (r− rv, t) ∗

∂χ (t)

∂t

]
ẑ (5.1)

where t stands for the time variable, ∗ is the 
onvolution operator, c0 is the free-
spa
e speed of light, δ (·) the Dira
's delta, and h (r, t) is the transient response
of the antenna sour
e lo
ated in r [99℄.

From the intera
tions between the V line sour
es and the lower half spa
e (i.e.,

the ba
kground and the s
atterers) the signal (i.e., the GPR radargram) 
olle
ted

by the M ideal probes lo
ated in the upper half-spa
e at rm = (xm, ym > 0),
m = 1, ...,M , [Fig. 5.1(d)℄ is given by

ũv (rm, t) = uv (rm, t) + qv (rm, t) = ev (rm, t) + sv (rm, t) + qv (rm, t)
m = 1, ...,M ; v = 1, ..., V

(5.2)

where sv is the s
attered ele
tri
 �eld, qv is a zero-mean additive Gaussian noise

term modelling the measurement/environment noise, and ev is the in
ident (i.e.,
the ele
tromagneti
 �eld of the same s
enario but without the s
atterers) ele
tri


�eld.
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Figure 5.1: Problem de�nition - Geometry of the problem (a), plot of the ex
ita-

tion signal in (b) time domain (i.e., χ (t)) and (
) frequen
y domain (i.e., X (f)),
and of a typi
al GPR tra
e ũv (rm, t) (d) and asso
iated s
attered �eld s̃v (rm, t)
(e).
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In order to retrieve the s
atterers pro�le starting from the GPR radargrams,

the s
attered �eld data [88℄ [s̃v (rm, t) , ũv (rm, t) − ev (rm, t) - Fig. 5.1(e)℄ are
�rstly determined by temporal muting the �rst part of the GPR tra
e ũv (rm, t),
m = 1, ...,M , v = 1, ..., V , that a

ounts for the dire
t 
oupling between the

transmitting sour
e antenna and the air-soil interfa
e [Fig. 5.1(d)℄

s̃v (rm, t) = Γ [ũv (rm, t)] v = 1, ..., V, (5.3)

Γ [·] being the gating operator [Fig. 5.1(e)℄. Indeed, su
h a pre-pro
essing pro-


edure is equivalent, for the half-spa
e s
enario at hand, to the subtra
tion of

the in
ident (or unperturbed) �eld, ev, from the total �eld, ũv, whi
h is a 
us-

tomary operation in mi
rowave inverse s
attering experiments under 
ontrolled


onditions.

Afterwards, the Fourier transform of the time s
attered data is 
omputed in K
frequen
y samples

S̃
(k)
v (rm) ,

∫∞

−∞
s̃v (rm, t) exp

(
j2πf (k)t

)
dt

m = 1, ...,M ; v = 1, ..., V ; k = 1, ..., K
(5.4)

to avoid both 'insu�
ien
y' and redundan
y in the data as well as redu
ing the


omputational 
osts and the measurement burden, thus making it possible to

investigate wider domains Dinv. In (5.4), f (k) ∈ [fmin, fmax] is the k-th sam-

pling frequen
y, [fmin, fmax] being the 3dB bandwidth of the spe
trum of the

illuminating pulse X (f) =
∫∞

−∞
χ (t) exp (j2πft) dt [Fig. 5.1(
)℄ [88℄.

In frequen
y-domain framework, the original retrieval problem be
omes then that

of retrieving, in the investigation domain Dinv, the obje
t fun
tion [84℄[?℄

τ (k) (r) ,
(εr (r)− εrB)− j σ(r)−σB

2πf(k)ε0

ε0
, k = 1, ..., K (5.5)

and the total �eld

U (k)
v (r) ,

∫ ∞

−∞

uv (r, t) exp
(
j2πf (k)t

)
dt v = 1, ..., V ; k = 1, ..., K (5.6)

starting from the s
attered , S̃
(k)
v (rm),m = 1, ...,M , v = 1, ..., V , k = 1, ..., K, and

the radiated , E
(k)
v (r) ,

∫∞

−∞
ev (rm, t) exp

(
j2πf (k)t

)
dt, v = 1, ..., V , k = 1, ..., K,

�eld frequen
y samples. Mathemati
ally, su
h a problem 
an be re
ast to the

minimization of the data-mismat
h 
ost fun
tion [84℄

Φ(k) =
∑V

v=1

∑M
m=1

∣∣∣S(k)
v (rm)−Ŝ

(k)
v (rm)

∣∣∣
2

∑V
v=1

∑M
m=1

∣∣∣S̃(k)
v (rm)

∣∣∣
2 +

∑V
v=1

∫
Dinv

∣∣∣E(k)
v (r)−Ê

(k)
v (r)

∣∣∣
2
dr

∑V
v=1

∫
Dinv

∣∣∣E(k)
v (r)

∣∣∣
2
dr

k = 1, .., K

(5.7)

where Ŝ
(k)
v (r) and Ê

(k)
v (r) stand for the retrieved versions of S

(k)
v (r) and E

(k)
v (r),

respe
tively, and they are related to the estimated quantities τ̂ (k) (r) and Û
(k)
v (r)
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through the data [84℄

Ŝ
(k)
v (rm) = k2B

∫
Dinv
G(k)ext (rm, r

′) Û
(k)
v (r′) τ̂ (k) (r′) dr′

m = 1, ..,M, k = 1, ..., K, v = 1, ..., V
(5.8)

and the state equations [84℄

Ê
(k)
v (r) = Û

(k)
v (r)− k2B

∫
Dinv
G(k)int (r, r

′) Û
(k)
v (r′) τ̂ (k) (r′) dr′

r ∈ Dinv, k = 1, ..., K, v = 1, ..., V
(5.9)

G(k)int (r, r
′) and G(k)ext (r, r

′) being the 2D internal and external half-spa
e Green's

fun
tions for the k-th frequen
y [84℄, respe
tively.

The problem of interest 
an be now summarized/stated as follows

GPR Inverse S
attering Prospe
ting Problem - Given E
(k)
v (r)

and S̃
(k)
v (rm), m = 1, ...,M , v = 1, ..., V , k = 1, ..., K, �nd τ̂ (k) (r)

and Û
(k)
v (r), v = 1, ..., V , k = 1, ..., K, within Dinv su
h that (5.7) is

minimized.

5.3 FHMF-CG Inversion Pro
edure

The proposed solution pro
edure is a nested iterative algorithm 
omposed by an

external loop (k = 1, ..., K) implementing the FH strategy, while the internal

loop (s = 1, ..., S) performs the MF (Fig. 5.2).

The external FH s
heme is essentially an information a
quisition pro
ess 
on-

sisting of K su

essive solutions of (5.7), ea
h 
y
le being related to the k-th
frequen
y. Although the 
ontrast is a dispersive quantity whether lossy mate-

rials are at hand

1

(5.5), the re
onstru
tion yielded at the (k − 1)-th step 
an

be exploited to provide a pro�table initialization for the su

essive k-th one

[91℄[92℄[93℄ (e.g., the s
atterer support generally does not 
hange):

{
τ̂ (k) (r)

∣∣guess = 0 k = 1

τ̂ (k) (r)
∣∣guess = ℜ

{
τ̂ (k−1) (r)

}
+jℑ

{
τ̂ (k−1) (r)

}
f(k−1)

f(k) k = 2, ..., K.
(5.10)

In (5.10) the 
ontrast fun
tion retrieved at the (k−1)-th step is res
aled to the k-
th frequen
y by multiplying its imaginary part by the ratio f (k−1)/f (k)

. Moreover,

the guess total �eld distribution at the k-th external iteration is 
omputed, unlike

state-of-the-art FH methods [91℄, as follows





Û
(k)
v (r)

∣∣∣
guess

= E
(k)
v (r) k = 1

Û
(k)
v (r)

∣∣∣
guess

= Ψ
[
E

(k)
v (r) , τ̂ (k) (r)

∣∣guess
]

k = 2, ..., K
(5.11)

1

Lossy s
enarios are 
ommon in GPR appli
ations be
ause of the 
ondu
tive nature of the

materials and the soils at hand [79℄[80℄[81℄[82℄[83℄.
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where Ψ [·] stands for the 2D dire
t solver operator numeri
ally 
omputed by

means of the Method of Moments (MoM )[91℄.

Figure 5.2: FHMF-CG Inversion Pro
edure - Flow
hart of the GPR prospe
ting

method.

The internalMF loop (Fig. 5.2), 
arried out at ea
h k-th frequen
y step, is aimed

at solving the k-th mono
hromati
 GPR problem by numeri
ally minimizing

the 
ost fun
tion Φ(k)
(5.7) in S zooming steps starting from the initial (s =

1) distributions of the unknowns (5.10)(5.11). Towards this end, the problem

unknowns, τ (k) (r) and U
(k)
v (r) in (5.8) and (5.9), are dis
retized at ea
h s-

th step a

ording to a multi-fo
using s
heme that automati
ally enhan
es the

spatial resolution in 
orresponden
e with the Regions of Interest (RoI s) of Dinv

[54℄[72℄ where the s
atterers have been dete
ted. More in detail, the s-th RoI Ωs

(Ω1 = Dinv) is partitioned into N square subdomains 
entered at rn|s (rn|s ∈ Ωs,

n = 1, ..., N), N being the number of degrees of freedom (DoF s) of the s
attered

�eld S
(k)
v [57℄, to yield

Û (k)
v (r)

∣∣∣
s
=

N∑

n=1

Û (k)
v,n

∣∣∣
s
ψ(k)
n (r′)

∣∣
s

(5.12)
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and

τ̂ (k) (r)
∣∣
s
=

N∑

n=1

τ̂ (k)n

∣∣
s
ψ(k)
n (r)

∣∣
s

(5.13)

where ψ
(k)
n (r)

∣∣∣
s
is the n-th re
tangular pulse basis fun
tion at the s-th MF step

of the k-th frequen
y, while Û
(k)
v,n

∣∣∣
s
and τ̂

(k)
n

∣∣∣
s
are the 
orresponding �eld and


ontrast unknown 
oe�
ients, respe
tively. By substituting (5.12) and (5.13) in

(5.8) and (5.9), the following dis
retized form of the data

Ŝ
(k)
v (rm) =

∑N
n=1 Û

(k)
v,n

∣∣∣
s
τ̂
(k)
n

∣∣∣
s

∫
Dinv
G(k)ext (rm, r

′) ψ
(k)
n (r′)

∣∣∣
s
dr′

m = 1, ..,M, k = 1, ..., K, v = 1, ..., V
(5.14)

and the state equations

Ê
(k)
v (rn|s) = Û

(k)
v,n

∣∣∣
s
−

∑N
n=1 Û

(k)
v,n

∣∣∣
s
τ̂
(k)
n

∣∣∣
s

∫
Dinv
G(k)int (rn|s , r′) ψ

(k)
n (r′)

∣∣∣
s
dr′

r ∈ Dinv, k = 1, ..., K, v = 1, ..., V
(5.15)

are obtained to dedu
e the dis
retized version of (5.7), Φ(k)
∣∣
s
, to be minimized

with a numeri
ally e�
ient lo
al sear
h algorithm. Owing to the suitable 
hoi
e

of the ratio between measurement data and unknowns a

ording to the DoF


riterion [57℄ and the (
onsequent) redu
ed o

urren
e of lo
al minima [90℄, a

CG-based deterministi
 optimization strategy [30℄[94℄ is here adopted. Starting

from (5.10) and (5.11), su
h a minimization te
hnique is de�ned through by the

following update equations [30℄[94℄





Û
(k)
v

∣∣∣
i+1

s
= Û

(k)
v

∣∣∣
i

s
+ α

(k)
v

∣∣∣
i

s
a
(k)
v

∣∣∣
i

s

τ̂
(k)
v

∣∣∣
i+1

s
= τ̂

(k)
v

∣∣∣
i

s
+ β

(k)
v

∣∣∣
i

s
b
(k)
v

∣∣∣
i

s

(5.16)

where i = 1, ..., I is the minimization iteration index,

Û(k)
v

∣∣∣
i

s
,

{
Û (k)
v,n

∣∣∣
i

s
, n = 1, ..., N

}
(5.17)

and

τ̂
(k)
v

∣∣i
s
,

{
τ̂ (k)n

∣∣i
s
, n = 1, ..., N

}
(5.18)

are the unknown total �eld and 
ontrast ve
tors, respe
tively, a
(k)
v

∣∣∣
i

s
and b

(k)
v

∣∣∣
i

s

are the 
orresponding sear
h dire
tions proportional to the gradient of Φ(k)
∣∣
s

[30℄[94℄), while α
(k)
v

∣∣∣
i

s
and β

(k)
v

∣∣∣
i

s
are the asso
iated step lengths.

On
e i = I or the 
ost fun
tion stagnation arises[54℄), the minimization loop

(5.16) is stopped and a new internal MF step is performed (s ← s + 1) to up-

date the lo
alization and the size of Ωs through �ltering and 
lustering [54℄.
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Su

essively, the spatial resolution is enhan
ed within the dete
ted RoI by up-

dating rn|s (s = 2, ..., S, rn|s ∈ Ωs, n = 1, ..., N), and the CG-based pro
ess

is 
arried out again and again until the MF pro
ess terminates (i.e., s = S or

the extension of the RoI does not 
hange signi�
antly) [54℄. Su

essively, the

estimated 
oe�
ients ve
tors, τ̂
(k)
v

∣∣∣
I

S
and Û

(k)
v

∣∣∣
I

S
, are substituted in (5.12) and

(5.13) and then passed to the su

essive FH step a

ording to (5.10) and (5.11).

The whole FHMF -CG pro
edure iterates until the lo
al minimization of the last

multi-fo
using iteration (s = S) of the highest frequen
y (k = K) is 
ompleted

(i = I).
In short, the proposed GPR prospe
ting inverse s
attering method 
an be sum-

marized as follows (Fig. 5.2):

1. Initialization. Determine E
(k)
v (r) and S̃

(k)
v (rm), m = 1, ...,M , v =

1, ..., V , k = 1, ..., K from GPR radargrams, ũv (rm, t), m = 1, ...,M ,

v = 1, ..., V (see Se
t. 5.2). Set k = 1;

2. FH Loop. De�ne Φ(k)
(5.7) and initialize the unknowns by setting (5.10)

and (5.11);

3. MF Loop. Set s = 1,Ωs = Dinv. Compute N a

ording to the DoF


riterion [57℄;

4. MF Loop. Dis
retize the s-th RoI by 
omputing the 
ell 
enters, rn|s ∈
Ωs, n = 1, ..., N . Dedu
e the MF 
ost fun
tion by substituting (5.14) and

(5.15) in (5.7);

5. Deterministi
 Minimization. Update Û
(k)
v

∣∣∣
I

s
and τ̂

(k)
v

∣∣∣
I

s
, v = 1, ..., V ,

a

ording to (5.16) until 
onvergen
e (i = I);

6. MF Loop. If s = S then return Û
(k)
v

∣∣∣
I

S
and τ̂

(k)
v

∣∣∣
I

S
and goto Step 9 , else

goto Step 7 ;

7. MF Loop. Set s← s+ 1 and update Ωs with ��ltering� and �
lustering�

pro
edures [54℄;

8. MF Loop. If

|area{Ωs}−area{Ωs−1}|
|area{Ωs}|

≤ γ then return Û
(k)
v

∣∣∣
I

s
and τ̂

(k)
v

∣∣∣
I

s
and

goto Step 9 , else goto Step 4 ;

9. FH Loop. If k = K then substitute the �nal 
oe�
ients Û
(k)
v,n

∣∣∣
S
= Û

(k)
v,n

∣∣∣
I

S
,

n = 1, ..., N , v = 1, ..., V , and τ̂
(k)
v

∣∣∣
S

= τ̂
(k)
v

∣∣∣
I

S
, v = 1, ..., V , in (5.12)

and (5.13) to determine τ̂ (k) (r) = τ̂ (k) (r)
∣∣
S
and Û

(k)
v (r) = Û

(k)
v (r)

∣∣∣
S
,

k = 1, ..., K. Otherwise, set k ← k + 1 and goto Step 2 .

61



5.4. NUMERICAL AND EXPERIMENTAL VALIDATION

It is worth observing that the FHMF -CG approa
h turns out very �exible sin
e

ea
h pro
edural blo
k (i.e., FH s
heme, MF te
hnique, minimizer) 
an be easily

modi�ed, updated, or substituted without altering the other ones. Analogously,

the 
ost fun
tion (5.7) 
an be easily adapted to take into a

ount additional reg-

ularization terms (e.g., multipli
ative [101℄ or sparseness terms [?℄[23℄). However,

these investigations are beyond the s
ope of the 
urrent resear
h work and they

will be properly addressed in future investigations.

5.4 Numeri
al and Experimental Validation

5.4.1 Rationale and Figures of Merit

In this se
tion, a set of illustrative experiments is presented to assess the features

and the potentialities of the proposed FHMF-CG inversion pro
edure in terms of

a

ura
y, numeri
al e�
ien
y, and robustness both 
onsidering syntheti
 (Se
t.

5.4.2) and measured data (Se
t. 5.4.3). Towards this end, the appli
ation of

the proposed MF s
heme has been 
arried out by prepro
essing the GPR time-

domain signals

2

[Fig. 5.1(b)℄ through a dis
rete Fourier transform (Fig. 5.2),

and then extra
ting the data sets at K equispa
ed frequen
ies within the 3dB
bandwidth of the illuminating pulse [Fig. 5.1(
)℄. As regards the numeri
al

examples, time-domain syntheti
 data generated by means of GprMax software

[95℄ have been 
orrupted by zero-mean additive Gaussian noise, and the signal-

to-noise ratio (SNR) has been referred to the total �eld as [102℄

SNR ,

∑V
v=1

∑M
m=1

∑K
k=1

∣∣∣T (k)
v (rm)

∣∣∣
2

∑V
v=1

∑M
m=1

∑K
k=1

∣∣∣N (k)
v (rm)

∣∣∣
2 . (5.19)

To assess the quality and e�
ien
y of the method, beyond the visual represen-

tation of the retrieved 
ontrast pro�les, the integral error �gures [54℄

Ξ(k)
reg =

1

Nreg

Nreg∑

n=1

∣∣τ̂ (k) (rn)− τ (k) (rn)
∣∣

|τ (k) (rn) + 1| (5.20)

[where reg indi
ates if the error 
omputation 
overs the overall investigation

domain (reg ⇒ tot), the a
tual s
atterer support (reg ⇒ int) or the ba
k-

ground region (reg ⇒ ext)℄ have been reported, along with the inversion time

∆t. Furthermore, the 
ontrol parameters of the MF and CG pro
edures have

been sele
ted a

ording to the guidelines in [30℄[54℄[72℄.

2

It is worth remarking that GPR time-domain data, usually available in radargrams , have

been 
onsidered in both syntheti
 and experimental examples.
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5.4.2 Numeri
al Validation

5.4.2.1 Performan
e Assessment

The �rst set of examples is devoted to assess the performan
e of the proposed

FHMF-CG method when pro
essing syntheti
 data. The ben
hmark 2D GPR

s
enario 
onsists of a square investigation domain of side 0.8 m 
entered at

(0.00,−0.4) m whi
h is illuminated by V = 20 sour
es radiating a time-domain

Gaussian mono
y
le pulse [Fig. 5.1(b)℄ with spe
trum 
entered at 300 MHz and

3 dB bandwidth 
overing the [200.0, 600.0]MHz range [Fig. 5.1(
)℄. The sour
es

are equally spa
ed on a 1 m line whi
h is lo
ated at y = 0.1 m above the soil

[Fig. 5.1(a)℄, whi
h is 
hara
terized by εrB = 4.0, σB = 10−3
S/m. A set of

M = 19 probes [
o-lo
ated with the sour
es

3

- Fig. 5.1(a)℄ 
olle
t the total �eld,

and the Fourier transform is 
arried out assuming K = 5 frequen
ies.

In order to illustrate the FHMF-CG pro
edure (Se
t. 5.3) on a step-by-step basis,

a �hollow square� pro�le (internal side 0.08 m, external side 0.24 m) 
entered at

(0.12,−0.36) m and 
hara
terized by τ = 1.0 [Fig. 5.3(a)℄ has been imaged in

noiseless 
onditions (Fig. 5.3). The re
onstru
tions obtained at the k = 1 FH

iteration (
orresponding to the lowest frequen
y, fk = 200 MHz - Fig. 5.3) show

that the multi-fo
using pro
edure starts from the rough s = 1 re
onstru
tion

[Fig. 5.3(b)℄, and then progressively zooms on the s
atterer support [s = 2, Fig.
5.3(
); s = 3, Fig. 5.3(d)℄ until the 
onvergen
e of the MF loop is rea
hed [i.e.,

s = S = 4, Fig. 5.3(e)℄. Afterwards, the FH loop iterates on the subsequent

frequen
y (k = 2, fk = 300 MHz), performing the same iterative pro
ess [but

exploiting the gathered information from the k − 1 step - see (5.10) and (5.11)℄

to yield the k = 2 retrieved pro�le [Fig. 5.4(b)℄. The pro
edure is then repeated

[k = 3 - Fig. 5.4(d); k = 4 - Fig. 5.4(f )℄ until k = K = 5 [Fig. 5.4(h)℄. As

regards the a

ura
y evolution during the FH steps, the re
onstru
tions obtained

for ea
h k shows that the GPR image quality improves as su

essive iterations

are performed [e.g., k = 1, Fig. 5.3(e) vs. k = 5, Fig. 5.4(h)℄, as it is also


on�rmed by the 
orresponding total error �gures (i.e., Ξ
(k)
tot

∣∣∣
k=1

= 3.96 × 10−2

vs. Ξ
(k)
tot

∣∣∣
k=5

= 1.81 × 10−2
- Tab. 5.1). Indeed, the size and permittivity of the

internal �hollow� region is 
orre
tly dete
ted only at the highest frequen
y [i.e.,

k = 5, fk = 600 MHz - Fig. 5.4(h)℄, while it appears distorted at the previous

FH steps [e.g., it seems narrower at k = 2, fk = 300 MHz - Fig. 5.4(b)℄ despite

the noiseless s
enario.

3

The GPR multi-view multi-stati
 setup operates so that when one sour
e is a
tive, the

remaining V − 1 = M = 19 a
t as ideal �eld probes [Fig. 5.1(a)℄.
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Figure 5.3: Illustrative Example [�Hollow square� pro�le, εrB = 4.0, σB = 10−3

S/m, τ = 1.0, Noiseless data, f1 = 200 MHz, k = 1℄ A
tual (a) and FHMF-CG

retrieved diele
tri
 pro�les when (b) s = 1, (b) s = 2, (b) s = 3, (e) s = S = 4.
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Figure 5.4: Illustrative Example [�Hollow square� pro�le, εrB = 4.0, σB = 10−3

S/m, Noiseless data℄ Diele
tri
 pro�les retrieved by (a)(
)(e)(g) FH-CG and

(b)(d)(f )(h) FHMF-CG when (a)(b) q = 2 (f2 = 300 MHz), (a)(b) q = 3
(f3 = 400 MHz), (a)(b) q = 4 (f4 = 500 MHz), (a)(b) q = 5 (f5 = 600 MHz).
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Figure 5.5: Performan
e Assessment [�Hollow square� pro�le, εrB = 4.0, σB =
10−3

S/m, τ = 1.0℄ Behaviour of the integral error vs. the SNR (a), and

diele
tri
 pro�les retrieved by (b)(d) FH-CG and (
)(e) FHMF-CG when (b)(
)

SNR = 30 dB, (d)(e) SNR = 10 dB.
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The re
onstru
tions obtained with a �bare� FH approa
h (i.e., FH-CG), re-

ported in Fig. 5.4 for 
omparison purposes, remark the e�e
tiveness of the MF

paradigm. Indeed, even exploiting all the frequen
y data [i.e., k = K℄, the single-

resolution method is only able to roughly dete
t the lo
ation of the s
atterer,

but 
ompletely misses its shape and 
ontrast [i.e., Fig. 5.4(g) vs. Fig. 5.4(h)℄.

This is further remarked by the 
orresponding total (e.g., Ξ
(k)
tot

∣∣∣
FHMF−CG

k=K
= 1.81×

10−2
vs. Ξ

(k)
tot

∣∣∣
FH−CG

k=K
= 1.11 × 10−1

- Tab. 5.1), internal (e.g., Ξ
(k)
int

∣∣∣
FHMF−CG

k=K
=

1.24×10−1
vs. Ξ

(k)
int

∣∣∣
FH−CG

k=K
= 2.81×10−1

- Tab. 5.1), and external integral errors

(e.g., Ξ
(k)
ext

∣∣∣
FHMF−CG

k=K
= 8.71 × 10−3

vs. Ξ
(k)
ext

∣∣∣
FH−CG

k=K
= 8.78 × 10−2

- Tab. 5.1).

Even more impressively, the re
onstru
tion obtained at the k = 1 step of the

FHMF-CG are signi�
antly better than those a
hieved at the k = K step of the

bare method [i.e.,

Ξ
(k)
tot

∣∣∣
FH−CG

k=K

Ξ
(k)
tot

∣∣∣
FHMF−CG

k=1

≈ 2.8 - Fig. 5.3(e) vs. Fig. 5.4(g)℄. These results

support the previous 
laim 
on
erning the 
apability of multifo
using approa
hes

to redu
e non-linearity issues arising in GPR imaging (see Se
t. 5.3).

To assess proposed method against noisy data, the same s
enario has been inves-

tigated assuming SNR ∈ [10, 50] dB (Fig. 5.5). The plots of the total integral

error vs. the noise level show that the FHMF-CG provides an a

ura
y equal to

that of the noiseless 
ase until SNR ≈ 40 dB [i.e.,

Ξ
(K)
tot

∣∣∣
SNR=40 dB

Ξ
(K)
tot

∣∣∣
Noiseless ≈ 1.01 - Fig.

5.5(a)℄, while it smoothly degrades for lower SNR values [e.g.,

Ξ
(K)
tot

∣∣∣
SNR=30 dB

Ξ
(K)
tot

∣∣∣
Noiseless ≈

1.2 - Fig. 5.5(a)℄, as it is also 
on�rmed by the pro�le retrieved when SNR = 30
dB [Fig. 5.5(
) vs. Fig. 5.4(h)℄. Moreover, the proposed method is able to de-

te
t the presen
e and position of the s
atterer even in extreme noise 
onditions

[i.e., SNR = 10 dB - Fig. 5.5(e)℄, although the shape turns out distorted in this


ase [Ξ
(K)
tot

∣∣∣
SNR=10 dB

≈ 2.31× 10−1
- Fig. 5.5(a)℄. On the 
ontrary, the FH-CG

single-resolution approa
h provide unsatisfa
tory pro�les even with moderate

noise [Ξ
(K)
tot

∣∣∣
SNR=30 dB

FH−CG
≈ 1.1 × 10−1

- Fig. 5.5(b)℄, and it be
omes 
ompletely

unreliable for lower SNR values [Ξ
(K)
tot

∣∣∣
SNR=10 dB

FH−CG
≈ 7.4× 10−1

- Fig. 5.5(d)℄.

The robustness of the proposed FHMF-CG s
heme is then evaluated against a

variation of the s
atterer 
ontrast. Towards this end, a �square� pro�le of side

0.16 m 
entered at (−0.08,−0.24) m has been simulated assuming τ ∈ [1.0, 2.2]
for di�erent SNR values (Fig. 5.6).
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Figure 5.6: Performan
e Assessment [�Square� pro�le, εrB = 4.0, σB = 10−3

S/m℄ Behaviour of the integral error vs. τ (a), and diele
tri
 pro�les retrieved

by (b)(d) FH-CG and (
)(e) FHMF-CG when (b)(
) τ = 1.0, (d)(e) τ = 2.2
when SNR = 30 dB.
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The behaviour of Ξ
(K)
tot obtained by the FHMF-CG in the noiseless 
ase [dashed

blue line - Fig. 5.6(a)℄ shows that an extremely good �delity is a
hieved whatever

the target 
ontrast [i.e., Ξ
(K)
tot

∣∣∣
FHMF−CG

∈ [8.7× 10−3, 1.2× 10−2] - Fig. 5.6(a)℄,

whi
h is always signi�
antly better than that shown by the single-resolution

method [e.g., Ξ
(K)
tot

∣∣∣
FH−CG

≈ 8.2 × 10−2
when τ = 2.2 - Fig. 5.6(a)℄. However,

the FHMF-CG a

ura
y signi�
antly worsens when low τ with moderate noise

levels are at hand [SNR = 30 dB - green lines, Fig. 5.6(a)℄.

More in detail, the integral error in
reases of almost one order of magnitude

when τ = 2.2→ 1.0 [i.e.,

Ξ
(K)
tot

∣∣∣
τ=1.0

FHMF−CG

Ξ
(K)
tot

∣∣∣
τ=2.2

FHMF−CG

≈ 9.1 when SNR = 30 dB- Fig. 5.6(a)℄,

rea
hing a value whi
h is even above that of the 
orresponding single-resolution

method [i.e., Ξ
(K)
tot

∣∣∣
τ=1.0

FHMF−CG
≈ 1.16 × 10−1

vs. Ξ
(K)
tot

∣∣∣
τ=1.0

FH−CG
≈ 9.8× 10−2

- Fig.

5.6(a)℄. This behaviour, whi
h is also 
on�rmed when lower SNR values are at

hand [SNR = 20 dB - red lines, Fig. 5.6(a)℄, suggests that the multifo
using

pro
edure 
an exhibit sub-optimal performan
e when handling low 
ontrast s
at-

terers in high noise s
enarios. By analyzing the 
orresponding re
onstru
tions

[SNR = 30 dB, τ = 1.0 - Fig. 5.6(
)℄, it turns out that in this 
ase the MF

pro
edure is not able to 
orre
tly lo
ate the RoI be
ause the artifa
ts have a


ontrast whose magnitude is 
lose to that of the a
tual target [Fig. 5.6(
)℄. A
-


ordingly, the FHMF-CG method does not e�e
tively allo
ate the DoF s within

the domain, resulting in a �delity similar to that of the single-resolution te
h-

nique [Fig. 5.6(
) vs. Fig. 5.6(b)℄. On the 
ontrary, higher 
ontrast targets

are a

urately retrieved by the FHMF-CG method, sin
e the zooming pro
edure


orre
tly identi�es the RoI [e.g., SNR = 30 dB, τ = 2.2 - Fig. 5.6(e) vs. Fig.

5.6(d)℄.

The next set of numeri
al experiments is devoted to the analysis of the FHMF-

CG sensitivity to the number of available measurements M (Fig. 5.7). To

this end, the retrieval of a �two-bar� pro�le 
entered in (0.16,−0.24) m and


hara
terized by τ = 1.4 [Fig. 5.8(a)℄ has been 
arried out assuming an in
reasing

number of probes (i.e., M ∈ [19, 76]) in di�erent noise 
onditions. By observing

the plots of the total integral error obtained by the FHMF-CG method [Fig.

5.7(b)℄ for a �xed number of measurements, it turns out that, as expe
ted, the

a

ura
y improves as the SNR enhan
es [e.g., Ξ
(K)
tot

∣∣∣
SNR=20 dB

FHMF−CG
≈ 8.9 × 10−2

vs. Ξ
(K)
tot

∣∣∣
SNR=50 dB

FHMF−CG
≈ 3.2 × 10−2

when M = 38 - Fig. 5.7(b)℄. Analogously,

in
reasing the number of measurements redu
es the error for a �xed SNR [e.g.,

Ξ
(K)
tot

∣∣∣
M=19

FHMF−CG
≈ 5.1× 10−2

vs. Ξ
(K)
tot

∣∣∣
M=76

FHMF−CG
≈ 2.9 × 10−2

when SNR = 30

dB - Fig. 5.7(b)℄.
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Figure 5.7: Performan
e Assessment [�Two-bar� pro�le, εrB = 4.0, σB = 10−3

S/m, τ = 1.4℄ Behaviour of the total integral error versus M and SNR for (a)

FH-CG and (b) FHMF-CG .
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Figure 5.8: Performan
e Assessment [�Two-bar� pro�le, εrB = 4.0, σB = 10−3

S/m, τ = 1.4, SNR = 20 dB℄ A
tual (a) and diele
tri
 pro�les retrieved by

(b)(d) FH-CG and (
)(e) FHMF-CG when (b)(
) M = 19, (d)(e) M = 76.

Moreover, the plots in Fig. 5.7 show that (i) the FHMF-CG approa
h never

ex
eeds a ≈ 10% re
onstru
tion error, even in the worst 
onditions [i.e., SNR =
20 dB, M = 19 - Fig. 5.7(b)℄, and (ii) whatever the noise level and M value,

the multifo
using pro
edure outperforms the FH-CG one [Fig. 5.7(b) vs. Fig.
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5.7(a)℄. Furthermore, the re
onstru
tions in Fig. 5.8 suggest that the FHMF-

CG is able to exploit the additional measurements to signi�
antly enhan
e its

�delity espe
ially in low SNR 
onditions [i.e., SNR = 20 dB - Fig. 5.8(
) vs.

Fig. 5.8(e)℄, therefore a
hieving a satisfa
tory a

ura
y [i.e., Ξ
(K)
tot

∣∣∣
SNR=20 dB

FHMF−CG
≈

4.2 × 10−2
when M = 76 - Fig. 5.8(e)℄. On the 
ontrary, the FH-CG te
hnique

does not exhibit a sensible performan
e improvement in this 
ase [Fig. 5.8(b) vs.

Fig. 5.8(d)℄.

FH-CG FHMF-CG

fk [MHz℄ Ξ
(k)
tot Ξ

(k)
int Ξ

(k)
ext Ξ

(k)
tot Ξ

(k)
int Ξ

(k)
ext

200.0 1.18× 10−1 3.61× 10−1 5.24× 10−2 3.96× 10−2 1.31× 10−1 2.98× 10−2

300.0 1.06× 10−1 3.51× 10−1 6.32× 10−2 2.79× 10−2 1.44× 10−1 1.73× 10−2

400.0 1.02× 10−1 3.01× 10−1 7.11× 10−2 1.85× 10−2 1.72× 10−1 5.00× 10−3

500.0 9.56× 10−2 2.86× 10−1 7.18× 10−2 1.84× 10−2 1.61× 10−1 4.50× 10−3

600.0 1.11× 10−1 2.81× 10−1 8.78× 10−2 1.81× 10−2 1.24× 10−1 8.71× 10−3

∆t 7.0× 103 [s℄ 2.5× 103[s℄

Table 5.1: Illustrative Example [�Hollow square� pro�le, εrB = 4.0, σB = 10−3

S/m, τ = 1.0, Noiseless data℄ Figures of merit.

Finally, as for the 
omputational issues, Tab. 5.1 also reports the inversion time

∆t required when handling the �hollow-square� s
atterer in Fig. 5.3(a). For the

sake of fairness, all simulations have been performed assuming non-optimized

Fortran implementations of the pro
edures running on a standard Linux laptop

(with single-
ore 2.1GHz CPU ). As it 
an be noti
ed, despite the multi-frequen
y

nature of the 
onsidered GPR prospe
ting problem, the proposed FHMF-CG

approa
h is able to provide the �nal re
onstru
tion in less than 42 minutes (i.e.,

∆t ≈ 2.5×104 s - Tab. 5.1), while the single resolution method (whi
h has to solve

a larger problem at ea
h FH step [91℄) requires above 116 minutes to 
omplete.

This result, whi
h does not depend on the target features (similar∆t values have
been obtained in all the numeri
al examples), highlights the e�
ien
y of the


onsidered multi-fo
using s
heme, whi
h depends on its 
apability to de
ompose

a large inversion problem in a sequen
e of smaller ones with redu
ed nonlinearity

[54℄.

5.4.2.2 Comparisons with State-of-the-Art Methods

The next set of numeri
al experiments is aimed at assessing the proposed FHMF-

CG method with respe
t to 
omparable state-of-the-art approa
hes. Towards

this end, the setup in [96℄ has been 
onsidered as the �rst ben
hmark.
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Figure 5.9: Comparative Assessment [�Cir
le� pro�le [96℄, εrB = 9.0, σB = 10−2

S/m, ε = 9.05, σ = 0.0, k = K = 3℄ Real (a)(
) and imaginary parts (b)(d) of

the a
tual (a)(b) and FHMF-CG retrieved pro�le when SNR = 50 dB (
)(d),

and (e) behaviour of the integral error vs. the SNR.
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Figure 5.10: Comparative Assessment [�Large square� pro�le [87℄, εrB = 9.0,
σB = 10−2

S/m, τ = 3.0, k = K = 6℄ (a) Behaviour of the integral error vs. the
SNR and (b) a
tual and (
) FHMF-CG retrieved pro�les when SNR = 50 dB.

More spe
i�
ally, a �
ir
le-shaped� target 
entered at (0.0,−1.0) m and with

radius 0.23 m [Figs. 5.9(a)-5.9(b)℄, 
hara
terized by ε = 9.05 and σ = 0.0,
has been pla
ed in a square investigation domain of side 1.6 m, 
entered at

(0.0,−0.9) m (i.e., with a −0.1 m o�set with respe
t to the air-soil interfa
e)

with ba
kground diele
tri
 properties εrB = 9.0, σB = 10−2
S/m [96℄. The

s
enario has been illuminated by V = 21 sour
es equispa
ed on a 2 m line pla
ed

on the air-soil interfa
e, and the obtained �eld has been sampled by M = 25
probes equally spa
ed on the same line [96℄.

The plots of the real [Fig. 5.9(
)℄ and imaginary part [Fig. 5.9(d)℄ of the 
ontrast

pro�le obtained at the k = K = 3 step assuming the same SNR levels of [96℄

4

point out that the proposed approa
h is able to 
orre
tly retrieve the number and

4

Sin
e the SNR in [96℄ is not de�ned as in (5.19), the �translation� of the employed SNR

numeri
al values has been 
arried out before performing the numeri
al simulations, for 
onsis-
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position the s
atterers, and to approximatively yield also its shape and 
ontrast

[e.g., Fig. 5.9(d) vs. Fig. 5.9(b)℄ despite the signi�
ant losses in the soil (i.e.,

σB = 10−2
S/m). By 
omparing these results with the one obtained with the

linear TSVD-based inversion approa
h dis
ussed in [96℄, it turns out that the

proposed method yield a more a

urate estimation of the size and lo
ation of the

target, as well as a less blurred ba
kground [i.e., Fig. 12 in [96℄ vs. Fig. 5.9(d)℄.

Indeed, the s
atterer 
enter is reliably approximated by the FHMF-CG [Figs.

5.9(
)-5.9(d)℄, while a non-negligible o�set was shown in [96℄. Moreover, a similar

a

ura
y 
an be obtained in a wide set of noise 
onditions [i.e., SNR ≥ 40 dB

- Fig. 5.9(e)℄. These results suggests that using a fully non-linear methodology

(handled through a multi-fo
using approa
h) 
an provide an improved a

ura
y

with respe
t to approximated formulations (i.e., distorted Born [96℄) even in

s
enarios where these approximations are a

eptable.

Analogous 
onsiderations arise when applying the FHMF-CG method to the test


ase presented in [87℄. In this 
ase, a square s
atterer of side 0.5 m 
entered at

(0.0,−1.45) m [τ = 3.0 - Fig. 5.10(b)℄ has been imaged assuming V = 21 sour
es
and M = 20 probes displa
ed on a 3 m-long line on the air-soil interfa
e [87℄.

Towards this end, a 1.5 × 2.0 m D (εRb = 9.0, σB = 10−2
S/m) 
entered at

(0.00,−1.25) m (0.5 m depth) has been 
onsidered [87℄. By 
omparing the plot

of the retrieved pro�le at the k = K = 6 FH step [SNR = 50 dB - Fig. 5.10(
)℄

with the 
orresponding re
onstru
tion shown obtained with a linear inversion

algorithm under the Distorted Born Approximation (i.e., Fig. 7 in [87℄) it turns

out that both the shape and the size of the target are more a

urately retrieved

by the FHMF-CG method.

Moreover, the plot of the integral errors vs. the SNR show that the obtained

performan
e is quite stable with respe
t to the noise level [i.e., Ξ
(K)
tot < 2.1×10−1

when SNR > 50 dB - Fig. 5.10(a)℄, and it smoothly degrades for lower and

lower SNRs [Fig. 5.10(a)℄. The redu
ed FHMF-CG a

ura
y when SNR < 50
dB [Fig. 5.10(a)℄ is a
tually 
aused by the depth of the 
onsidered investigation

domain (i.e., y ∈ [−2,−0.5]m) and by the lossy nature of the soil (i.e., σB = 10−2

S/m), whi
h 
ause a very low s
attered �eld to be re
eived by the probes (i.e.,

at SNR = 30 dB, the signal-to-noise ratio 
omputed over the s
attered �eld

turns out equal to ≈ 10 dB in this 
ase), despite the non-negligible 
ontrast [i.e.,

τ = 3.0 - Fig. 5.10(b)℄.

5.4.3 Experimental Validation

The last validations are 
on
erned with the inversion of experimental data. To-

wards this end, the measured GPR radargrams in Area 5 of the Near Surfa
e

Geophysi
al Group (NSGG) Test Site 2 [97℄ using theMalaX3M GPR equipment

[103℄ have been 
onsidered [Fig. 5.11(
)℄.

ten
y.
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Figure 5.11: Experimental Validation - Dataset [97℄ - Photo of the experimental

setup (
ourtesy of Prof. M. Guy) (a), geometry of the problem (b), and full
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Figure 5.12: Experimental Validation - Dataset [97℄ [V = 21℄ Real (a) and

imaginary parts (b) of the FHMF-CG retrieved pro�le.
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Figure 5.13: Experimental Validation - Dataset [97℄ - Real (a)(
)(e) and imag-

inary parts (b)(d)(f ) of the FHMF-CG retrieved pro�les when (a)(b) V = 5,
(
)(d) V = 11, and (e)(f ) V = 41.

The experimental data refer to the setup in Fig. 5.11(a), in whi
h an empty box

(εr = 1.0, σ = 0.0 S/m) of size 0.32×0.25×0.15 m is buried 0.15 m below the soil

surfa
e [104℄, whi
h is assumed to be 
hara
terized by εrB = 5.0, σB = 38×10−3

S/m. The s
enario is investigated through a single pair of transmitting-re
eiving

antennas positioned at the air-soil interfa
e, whi
h is moved over the investigation

domain [one tra
e every 0.02 m - Fig. 5.11(b)℄. The transmitter radiates a

Gaussian mono
y
le pulse with [100, 300]MHz 3 dB bandwidth [97℄[104℄, and the
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resulting �eld is 
olle
ted by the built-in re
eiver (M = 1) whi
h is horizontally

separated by 0.2 m [Fig. 5.11(b)℄. A square investigation domain D of side 0.8
m and 
entered at (0.00,−0.45) m is 
onsidered for the inversion [Fig. 5.11(b)℄.

The plot of the retrieved real [Fig. 5.12(a)℄ and imaginary parts of the 
ontrast

[Fig. 5.12(b)℄ obtained using V = 21sour
e positions [uniformly pla
ed over a 0.8
m range - Fig. 5.11(b)℄ show that the proposed FHMF-CG approa
h is able to


orre
tly identify the presen
e, horizontal extension, and depth of the target [e.g.,

Fig. 5.12(a)℄, while the verti
al extension is overestimated [e.g., Fig. 5.12(b)℄.

However, this behaviour is mainly related to low number of measurements (M =
1), and to the fa
t that the method does not a

ount for the non-ideal nature of

the sour
e/probe antennas (i.e., shielded bowties [97℄[104℄), and well as for any

roughness or non-homogeneity in the soil.

In order to assess the variation in the retrieval a

ura
y with the number of a
-

quisitions, the same experiment has been repeated 
onsidering V = {5, 11, 41}
sour
e positions uniformly distributed in the 0.8 m range (Fig. 5.13). By 
om-

paring the plots of the retrieved pro�les when V = 11 [Figs. 5.13(
)-5.13(d)℄

and V = 41 [Figs. 5.13(e)-5.13(f )℄ it turns out that the number of views does

not signi�
antly a�e
t the GPR prospe
ting a

ura
y, unless a very few data are

used [V = 5 - Figs. 5.13(a)-5.13(b)℄. Moreover, it is worth observing that V = 11
measurements, 
orresponding to a spatial sampling rate of 0.08 m, are su�
ient

for the FHMF-CG method to retrieve the diele
tri
 properties, horizontal size,

and depth of the buried target illuminated through standard GPR instruments.

5.5 Dis
ussions

An innovative information a
quisition approa
h based on a nested frequen
y-

hopping multi-fo
using inversion te
hnique has been introdu
ed for the solution

of 2D GPR prospe
ting problems. Towards this end, an external iterative FH

pro
edure has been proposed to handle multi-frequen
y GPR data, and its 
om-

bination with an internal multi-resolution loop able to mitigate lo
al minima

issues in the asso
iated inverse s
attering problem has been presented. To min-

imize the arising multi-fo
using 
ost fun
tion, a lo
al sear
h strategy based on

CG has been implemented and integrated. The proposed FHMF-CG method

has been validated against syntheti
 and measured GPR data, and a 
ompara-

tive assessment has been dis
ussed.

From the methodologi
al viewpoint, the main 
ontributions of the present work

in
lude (i) the derivation of a multi-fo
using s
heme that, unlike state-of-the-art

methods [54℄[72℄, is suitable for GPR prospe
ting and 
an handle time-domain

data through Fourier pro
essing, and (ii) the introdu
tion of a frequen
y-hopping

te
hnique whi
h, at ea
h frequen
y step, suitably initializes both the total �eld

[Eq. (5.11)℄ and the 
ontrast [Eq. (5.10)℄ using the a
quired information, unlike

[91℄-[93℄.

The numeri
al and experimental validation has pointed out the following main
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out
omes:

• the FHMF-CG method outperforms its single-resolution 
ounterpart in

terms of a

ura
y whatever the noise level, 
ontrast, measurement setup,

and target properties, ex
ept for very weak s
atterers in low SNR s
enarios

in whi
h the two methods provide 
omparable �delities;

• thanks to its multi-fo
using nature, the proposed approa
h is signi�
antly

more numeri
ally e�
ient than a bare FH-CG te
hnique (Tab. 5.1);

• the introdu
ed algorithm favourably 
ompares with state-of-the-art te
h-

niques based on linear formulations and TSVD solvers (Se
t. 5.4.2.2);

• the FHMF-CG te
hnique 
an be e�e
tively used to dete
t the position,

depth, and diele
tri
 properties of buried obje
ts starting from few raw

GPR experimental measurements without the need to a

urately model

the a
tual soil properties and antenna geometries (Se
t. 5.4.3).

Future works, beyond the s
ope of this thesis, will be aimed at extending the

proposed methodology to full 3D GPR s
enarios. Moreover, the possibility to

improve the method a

ura
y through a

urate modelling of the employed trans-

mitting/re
eiving antennas within the inversion pro
ess is 
urrently under inves-

tigation.
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Chapter 6

Con
lusions

In this 
hapter, a �nal numeri
al set of simulations is provided and 
ommented

with the aim of 
omparing the di�erent inversion strategies presented in this

thesis. Moreover, some �nal 
onsiderations on the presented methodologies for

subsurfa
e imaging are drawn, highlighting potentialities and limits of ea
h te
h-

nique.
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6.1. COMPARISON BETWEEN DIFFERENT APPROACHES

6.1 Comparison Between Di�erent Approa
hes

In order to assess what are the potentialities as well as the limits of the proposed

inversion te
hniques presented in this thesis, a �nal numeri
al assessment is here

presented. The 
onsidered ben
hmark s
enario 
onsists of a square investigation

domain of side 0.8 m 
entered at (0.00,−0.4) m whi
h is illuminated by V = 16
sour
es radiating a time-domain Gaussian mono
y
le pulse [Fig. 5.1(b)℄ with

spe
trum 
entered at 300 MHz and 3 dB bandwidth 
overing the [200.0, 600.0]
MHz range [Fig. 5.1(
)℄. The lower half spa
e is o

upied by soil, with εrB = 4.0
and σB = 10−3

S/m.
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Figure 6.1: Comparative Assessment (Square S
atterer at Di�erent Depths - L =
0.16m, (xc = 0.0m, εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01 S/m,

SNR = 20 dB) - Lo
ation of the illuminating sour
es and of the measurement

points for the (a) 
ross-borehole and (b) half spa
e 
on�gurations.

For 
omparison purposes, two measurement 
on�gurations are 
onsidered,

both 
onsidering a set of M = 15 probes

1

, 
o-lo
ated with the sour
es to form

a 
ross-borehole [Fig. 6.1(a)℄ and a half spa
e [Fig. 6.1(b)℄ setup. Con
erning

the 
ross-borehole setup [Fig. 6.1(a)℄, the sour
es/probes are equally spa
ed

along two verti
al lines at 
oordinates x = ±0.5 m, starting from a depth of

ymin = −1.0 [m℄ up to a depth of ymax = 0.0 m. For the half spa
e setup [Fig.

6.1(b)℄ the sour
es/probes are equally spa
ed on a 1 m line whi
h is lo
ated at

y = 0.04 m above the interfa
e. As a ben
hmark pro�le, a �square� pro�le of

side 0.16 m [Fig. 6.2℄ 
entered at xc = 0.0 m and lo
ated at di�erent depths

inside Dinv has been simulated assuming a 
ontrast fun
tion of τ = 1.5. More

pre
isely, the target bary
entre is lo
ated at a depth of yc = −0.16m for the �top�


on�guration [Fig. 6.2(a)℄, yc = −0.4m for the �intermediate� 
on�guration [Fig.

6.2(b)℄ and yc = −0.64 m for the �bottom� 
on�guration.

1

The GPR multi-view multi-stati
 setup operates so that when one sour
e is a
tive, the

remaining V − 1 = M = 15 a
t as ideal �eld probes.
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Figure 6.2: Comparative Assessment (Square S
atterer at Di�erent Depths -

L = 0.16m, (xc = 0.0m, εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01
S/m, SNR = 20 dB) - A
tual target used for the 
omparison for (a) �top� (yc =
−0.16m), (b) �intermediate� (yc = −0.4m) and (
) �bottom� (yc = −0.64m)


on�gurations.

The SNR 
omputed a

ording to (5.19) is su
h that a resulting SNR = 20
dB 
an be estimated on the s
attered �eld at the 
entral frequen
y of 300 MHz.
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As a �rst analysis, we 
onsider the retrieved pro�les when the single-frequen
y

IMSA−IN te
hnique presented in Chapter 4 is employed in order to re
over the

ele
tromagneti
 distributions of the investigated targets [Fig. 6.3℄. The IMSA−
IN −SOBA method presented in Chapter 3 will not be 
onsidered here, sin
e it

has been already widely veri�ed in Chapter 4 that its performan
es are lower wrt

the full non-linear approa
h (i.e., without the SOBA approximation). Moreover,

the same parameters 
onsidered for the numeri
al results shown in Chapter 4

are 
onsidered (i.e., N = 100, Q = 50, α = 0.9, Imax,s=1 = 20, Imax,s>1 =
1000 and S = 4). In parti
ular, the retrieved pro�les are shown when using

both a 
ross-borehole [Fig. 6.3(a)(b)(
)℄ and a half spa
e [Fig. 6.3(d)(e)(f )℄

measurement 
on�guration. By looking at the retrieved pro�les in Fig. 6.3, it is


lear that the performan
es a
hievable with a 
ross-borehole setup signi�
antly

over
ome those obtainable with a half spa
e setup. Moreover, if on the one

hand the performan
es for the 
ross-borehole setup seem quite 
onstant when


hanging the depth of the unknown target, on the other hand the retrieved


ontrasts when using a half spa
e setup undergo a signi�
ant and progressive

degradation when in
reasing the depth of the s
atterer inside Dinv [i.e., passing

from Fig. 6.3(d) to Fig. 6.3(e) and to Fig. 6.3(f )℄. As a matter of fa
t, when

the s
atterer is at a depth of yc = −0.64 m [i.e., 
orresponding to 1.28λb at the

onsidered frequen
y of 300 MHz, Fig. 6.3(f )℄, the inversion te
hnique turns

out to be absolutely un
apable to re
over the shape and the ele
tromagneti



hara
teristi
s of the target. Su
h a behaviour 
an be motivated by the fa
t

that half spa
e setups are strongly aspe
t-limited, given the fa
t that sour
es

and measurement points are both lo
ated only above the interfa
e [Fig. 6.1(b)℄,

thus allowing the 
olle
tion of a very limited amount of information to perform

the inversion. On the 
ontrary, a 
ross-borehole setup [Fig. 6.1(a)℄, even if still

aspe
t-limited, allows the 
olle
tion of a larger amount of information with the

same number of sour
es V and measurements M , sin
e transmissions 
an �
ross�

the investigation domain Dinv and hen
e the targets buried within it. Moreover,

sour
es and measurement points are lo
ated at di�erent depths inside the soil, so

that more information 
an be 
olle
ted for targets whi
h are buried at signi�
ant

depths inside Dinv. The above 
onsiderations are further 
on�rmed by the total

re
onstru
tion error Ξtot obtained by the IMSA−IN method for the two setups.

In fa
t, we have for the �top� 
on�guration [Fig. 6.2(a)℄ Ξtot|”top”cross−borehole ≈
8.66 × 10−3

[Fig. 6.3(a)℄ vs. Ξtot|”top”half space ≈ 1.83 × 10−2
[Fig. 6.3(d)℄, for

the �intermediate� 
on�guration [Fig. 6.2(b)℄ Ξtot|”intermediate”
cross−borehole ≈ 3.72 × 10−3

[Fig. 6.3(b)℄ vs. Ξtot|”intermediate”
half space ≈ 2.91 × 10−2

[Fig. 6.3(e)℄, while for the

�bottom� 
on�guration [Fig. 6.2(
)℄ Ξtot|”bottom”
cross−borehole ≈ 4.12 × 10−3

[Fig. 6.3(
)℄

vs. Ξtot|”bottom”
half space ≈ 4.22 × 10−2

[Fig. 6.3(f )℄. The re
onstru
tion error obtained

for this latter 
on�guration appears more that one order of magnitude larger

when 
onsidering an half spa
e setup wrt a 
ross-borehole setup.
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IMSA− IN 
ross-borehole IMSA− IN half spa
e
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Figure 6.3: Comparative Assessment (Square S
atterer at Di�erent Depths -

L = 0.16m, (xc = 0.0m, εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01
S/m, SNR = 20 dB) - Final re
onstru
tion obtained by the IMSA−IN method

when 
onsidering a (a)(b)(
) 
ross-borehole and (d)(e)(f ) an half spa
e setup.

It is however mandatory to remember that 
ross-borehole setups (as the one

depi
ted in Fig. 6.1(a)) require in real appli
ations the drilling of the ba
kground

medium in order to displa
e the probes below the interfa
e. However, there are
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a lot of pra
ti
al s
enarios when drilling is a
tually impossible (e.g., for the

investigation of an
ient ruins or histori
al buildings) or, even more, it 
an 
ause

severe safety problems to the involved operators in 
riti
al appli
ations su
h as

demining [16℄. For these reasons, in a lot of pra
ti
al s
enarios a half spa
e [Fig.

6.1(b)℄ is not only preferrable but it is also the only possible 
hoi
e. Given that,

the strongly limited amount of information that 
an be 
olle
ted by using su
h

a prospe
ting 
on�guration should be improved by trying to �add� information


oming from other �information sour
es�. In this thesis, this is e�e
tively done by

exploiting the available frequen
y diversity of real GPR measurements through

the use of the FHMF − CG te
hnique presented in Chapter 5. In order to

give the reader a more 
lear idea of what is the a
hievable performan
e when

using the multi-frequen
y FHMF −CG method, the same ben
hmark s
enario


onsidered for the previous analysis is used hereinafter (i.e., by keeping the same

position and number of the V sour
es andM probes), but fo
using the attention

only on the half spa
e setup [Fig. 6.1(b)℄. More in details, Figs. 6.4(a)(b)(
)

show the re
onstru
tions obtained by using the single-frequen
y version of this

te
hnique, denoted as MF − CG2

. As it 
an be observed, the overall quality

of the re
onstru
tions obtained for di�erent depths of the unknown s
atterer

is higher wrt that of the re
onstru
tions obtained by the IMSA − IN [Figs.

6.3(d)(e)(f )℄. It is also evident that, even for the �bottom� s
enario, the single-

frequen
y MF − CG is able to 
orre
tly identify the lo
ation of the target,

even if it fails in properly re
onstru
ting its ele
tromagneti
 
hara
teristi
s [Fig.

6.4(
)℄. These 
onsiderations are 
on�rmed by the lower internal re
onstru
tion

error Ξint: Ξint|”bottom”
MF−CG ≈ 4.21 × 10−1

[Fig. 6.4(
)℄ vs. Ξint|”bottom”
IMSA−IN ≈ 6.04 ×

10−1
[Fig. 6.3(f )℄. The performan
e improvement in this 
ase is due to the

approximated nature of the IN method, as the �inexa
t� word suggests, while

the CG approa
h handles the full derivation of the 
ost fun
tion without any

kind of approximation.

Last but not least, the remarkable improvement in terms of re
onstru
tion

a

ura
y 
oming from the exploitation of multi-frequen
y data is visually 
on-

�rmed by the re
onstru
tions obtained by the FHMF − CG method (Chapter

5) shown in Figs. 6.4(d)(e)(f ). Thanks to the exploitation of K = 5 equally

spa
ed frequen
y 
omponents of the GPR measured spe
trum via the Frequen
y-

Hopping (FH) s
heme, the FHMF − CG te
hnique is able to 
orre
tly deter-

mine both the shape and the diele
tri
 
hara
teristi
s of the buried target [Figs.

6.4(d)(e)(f )℄ with an overall re
onstru
tion a

ura
y signi�
antly higher wrt its

single-frequen
y 
ounterpart [Figs. 6.4(a)(b)(
)℄. Moreover, the information


oming from di�erent frequen
ies is able to �balan
e� the loss of information due

to the use of a half spa
e measurement 
on�guration, as veri�ed by the re
on-

stru
tion obtained for the deepest target [�bottom�, Fig. 6.4(f )℄. In this 
ase,

2

In order to allow a fair 
omparison between the di�erent inversion approa
hes, the same

number of dis
retization 
ells N = 100 has been assumed for all the test 
ases presented in

this se
tion.
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the internal error is Ξint|”bottom”
FHMF−CG ≈ 2.21× 10−1

, whi
h is signi�
antly lower if


ompared to the re
onstru
tion obtained by the single-frequen
y IMSA − IN
[Fig. 6.3(f )℄ and by the single-frequen
y MF − CG [Fig. 6.4(
)℄.
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MF − CG half spa
e FHMF − CG half spa
e
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Figure 6.4: Comparative Assessment (Square S
atterer at Di�erent Depths -

L = 0.16m, (xc = 0.0m, εr = 5.5, σ = 0.01 S/m [τ = 1.5℄, εrB =4.0, σB =0.01
S/m, SNR = 20 dB) - Final re
onstru
tion obtained by the (a)(b)(
) single-

frequen
yMF−CG and by the (d)(e)(f ) multi-frequen
y FHMF−CGmethods

when 
onsidering a half spa
e measurement setup.
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6.2 Final Remarks

In this thesis, a new set of mi
rowave imaging methods for subsurfa
e prospe
t-

ing has been introdu
ed. Chapters 3 and 4 presented two single-frequen
y ap-

proa
hes based on the use of an inexa
t-Newton method. In parti
ular, the

inverse problem has been addressed in Chapter 3 by numeri
ally solving the

Lippmann-S
hwinger equation under the se
ond-order Born approximation. The

proposed IMSA−IN−SOBA re
onstru
tion method has been validated through

an extended set of numeri
al results involving di�erent types of s
atterers and

noise 
onditions. Simulations have highlighted the following key results

• the proposed te
hnique is able to pro�tably 
ombine the well assessed reg-

ularization 
apabilities of the adopted lo
al sear
h te
hnique (the inexa
t-

Newton method) with the enhan
ed exploitation of available information

provided by the multi-fo
using strategy, whi
h is able to redu
e the prob-

lem of lo
al minima arising from the non-linearity of the involved set of

equations.

• Moreover, the 
ombined strategy exhibits advantages over its standard

"bare" implementation in terms of a
hieved a

ura
y and resolution, what-

ever the 
ontrast distribution (homogeneous/inhomogeneous), the 
ross-

se
tion geometry and the noise level on measured data.

• Furthermore, the proposed multi-fo
using approa
h over
omes the stan-

dard "bare" implementation also in terms of the 
omputational e�
ien
y,

thanks to the signi�
ant redu
tion of the problem unknowns at ea
h itera-

tive step, whi
h arises from the use of an adaptive 
oarse-to-�ne dis
retiza-

tion of the investigation areas at di�erent levels of resolution.

The approa
h presented in Chapter 4 extends this approximated strategy by

employing the full non-linear formulation of the s
attering problem. In this

way, the IMSA− IN method is potentially able to deal with strong s
atterers,

too. The re
onstru
tion performan
es have been evaluated by means of several

numeri
al simulations. It has been found that

• the proposed approa
h provides quite good re
onstru
tions of the 
onsid-

ered targets showing a good robustness to the noise, as well;

• a signi�
ant performan
e improvement in terms of re
onstru
tion a

ura
y


an be observed wrt the SOBA-based approa
h presented in Chapter 3,

espe
ially for the retrieval of targets 
hara
terized by high values of the


ontrast fun
tion;

• the results from the multi-fo
using strategy turned out to be better both in

terms of re
onstru
tion errors and 
omputational resour
es than the stan-

dard bare inexa
t-Newton algorithm when applied to the same s
attering


on�gurations.
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Finally, Chapter 5 presented an innovative information a
quisition approa
h

based on a nested frequen
y-hopping multi-fo
using inversion te
hnique for the

solution of 2D GPR prospe
ting problems. Towards this end, an external itera-

tive FH pro
edure has been proposed to handle multi-frequen
y GPR data, and

its 
ombination with an internal multi-resolution loop able to mitigate lo
al min-

ima issues in the asso
iated inverse s
attering problem has been presented. To

minimize the arising multi-fo
using 
ost fun
tion, a lo
al sear
h strategy based

on CG has been implemented and integrated. The proposed FHMF-CG method

has been validated against syntheti
 and measured GPR data, and a 
ompar-

ative assessment has been dis
ussed. From the methodologi
al viewpoint, the

main 
ontributions of this thesis in
lude

1. the derivation of a multi-fo
using s
heme that, unlike state-of-the-art meth-

ods [54℄[72℄, is suitable for GPR prospe
ting and 
an handle time-domain

data through Fourier pro
essing;

2. the introdu
tion of a frequen
y-hopping te
hnique whi
h, at ea
h frequen
y

step, suitably initializes both the total �eld [Eq. (5.11)℄ and the 
ontrast

[Eq. (5.10)℄ using the a
quired information, unlike [91℄-[93℄.

The numeri
al and experimental validation has pointed out the following main

out
omes:

• the FHMF-CG method outperforms its single-resolution 
ounterpart in

terms of a

ura
y whatever the noise level, 
ontrast, measurement setup,

and target properties, ex
ept for very weak s
atterers in low SNR s
enarios

in whi
h the two methods provide 
omparable �delities;

• thanks to its multi-fo
using nature, the proposed approa
h is signi�
antly

more numeri
ally e�
ient than a bare FH-CG te
hnique;

• the introdu
ed algorithm favourably 
ompares with state-of-the-art te
h-

niques based on linear formulations and TSVD solvers;

• the FHMF-CG te
hnique 
an be e�e
tively used to dete
t the position,

depth, and diele
tri
 properties of buried obje
ts starting from few raw

GPR experimental measurements without the need to a

urately model

the a
tual soil properties and antenna geometries.

Moreover, it has been demonstrated that exploiting di�erent frequen
y 
ompo-

nents of the measured GPR spe
trum 
an e�e
tively 
ounterbalan
e the loss of

information due to a strongly aspe
t-limited measurement setup, where sour
es

and probes are both lo
ated above the interfa
e. In pra
ti
al s
enarios where

the drilling of the ba
kground medium for installing a 
ross-borehole measure-

ment system is forbidden or simply prohibitive, an half spa
e is the only possibile

90



CHAPTER 6. CONCLUSIONS


hoi
e. Given that, it has been proven that the 
apabilities of single-frequen
y

approa
hes 
an be signi�
antly enhan
ed by using multi-frequen
y strategies, as


on�rmed by the numeri
al results in Se
t. 6.1.

Future works, beyond the s
ope of this thesis, will be aimed at extending the

proposed methodologies to full 3D GPR s
enarios, as well as at further assess

their potentialities and limitations in dealing with experimental data of di�erent

nature. Moreover, the possibility to improve the a

ura
y of the methods through

a

urate modelling of the employed transmitting/re
eiving antennas within the

inversion pro
ess is 
urrently under investigation.
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Appendix A

Derivation of Eq. (4.5) and Eq. (4.6)

This appendix reports the details of the dis
retized version of the fun
tional Eq.

(4.5) [i.e., Eq. (4.6)℄. In order to numeri
ally solve the inverse problem at hand,

the investigation area at a given s
ale s, Ωs, is partitioned into N square sub-

domains. In ea
h n-th 
ell, both the 
ontrast fun
tion and the in
ident �eld are

assumed to be pie
ewise 
onstant su
h as their distributions in Ωs turn out to

be

τ (x, y) =

N∑

n=1

τnψn (x, y) (A.1)

E
(v)
inc/tot (x, y) =

N∑

n=1

E
(v)
inc/tot,nψn (x, y) (A.2)

where ψn (x, y) is a re
tangular pulse basis fun
tion [56℄. By testing the s
atter-

ing equations using Dira
's delta fun
tions 
entered at the measurement points(
x
(v)
m , y

(v)
m

)
, m = 1, ...,M , v = 1, ..., V , equations (4.1) and (4.2) be
ome

E
(v)
tot,n = E

(v)
inc,n +

N∑

l=1

τlE
(v)
tot,l

∫

Ωs,l

Gint (xn, yn, x′, y′) dx′dy′ (A.3)

E
(v)
scatt,m =

N∑

l=1

τlE
(v)
tot,l

∫

Ωs,l

Gext
(
x(v)m , y(v)m , x′, y′

)
dx′dy′ (A.4)

where E
(v)
scatt,m = E

(v)
scatt

(
x
(v)
m , y

(v)
m

)
and (xn, yn) is the 
enter of the n-th sub-

domain of Ωs (i.e., Ωs,n).

By 
onsidering all the measurement points and rewriting the equations in a

matrix form, the following equation is obtained

A

(v)
(
τ ;E

(v)
tot

)
=

[
G

(v)
datadiag (τ )E

(v)
tot

(I−Gstatediag (τ ))E
(v)
tot

]
= b

(v) =

[
E

(v)
scatt

E

(v)
inc

]
(A.5)
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where τ = [τ1, ..., τN ]
t
is an array 
ontaining the values of the 
ontrast fun
tion in

the N subdomains, diag (τ ) is a diagonal matrix whose diagonal elements are the

values of the array τ , E
(v)
tot =

[
E

(v)
tot,1, ..., E

(v)
tot,N

]
and E

(v)
inc =

[
E

(v)
inc,1, ..., E

(v)
inc,N

]
are

two arrays 
ontaining the values of the total and in
ident ele
tri
 �elds in the N

sub-domains, and E

(v)
scatt =

[
E

(v)
scatt,1, ..., E

(v)
scatt,M

]
is an array with the values of the

s
attered ele
tri
 �eld at the M measurement points of the v-th view. Moreover,

G

(v)
data and Gstate are two matri
es of sizesM×N and N×N , respe
tively, whose

elements are the integrals of the Green's fun
tion.

Finally, Equation (4.6) is yielded by 
ombining all the V views as follows

A (τ ;Etot) =




G

(1)
datadiag (τ )E

(1)
tot

(I−Gstatediag (τ ))E
(1)
tot

.

.

.

G

(V )
datadiag (τ )E

(V )
tot

(I−Gstatediag (τ ))E
(v)
tot



= b =




E

(1)
scatt

E

(1)
inc
.

.

.

E

(V )
scatt

E

(V )
inc




(A.6)

where Etot =

[(
E

(1)
tot

)t

, ...,
(
E

(V )
tot

)t
]t
.
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