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Introduction

My thesis deals with mathematical models for the dynamics of vector-

borne infection, especially West Nile virus.

West Nile virus is a mosquito-borne disease of the Flaviviridae family. It is

neuro-pathogenic for birds, humans, horses and other mammals. The most

serious manifestation of this virus is a fatal encephalitis in humans and more

frequently in horses. It may very often cause death in some bird species.

West Nile virus is mainly transmitted through the bite of infected vectors,

that acquire the virus by feeding on infected birds. It is maintained by bird-

mosquito cycle while humans, horses and other mammals are considered as

dead-end host for the virus (Bisanzio et al. [2011], Hayes et al. [2005]). Since

the mammals are secondary hosts and they do not play any role in the main-

tenance and in the amplification of the virus, we focused our attention on

the mosquito-bird cycle transmission only.

Although the vector responsible of the transmission, Culex Pipiens mosquito,

is active only during the summer, there are evidences of re-occurrence of the

virus from a year to another year(Monaco et al. [2011]) and so the infection

overwinters in some way.

This is a peculiarity of many vector-borne diseases. We assume that over-

wintering of the infection occurs in the vector population.

To survive winter, mosquitoes enter diapause: during this stage of sponta-

neous stop of development, the organism of the mosquitoes is inactive, i.e.

the metabolic activity decreases. The transmission may occur during certain

periods of the year only, depending on the seasonality of the species, and so,

in the case of West Nile virus, not in winter.

The aim of the thesis was to investigate the effect of this particular kind



xii Introduction

of periodicity, due to the inactivity of many vectors, and so to the absence of

transmission during winter, on the dynamics of a general vector-borne dis-

ease.

To model the transmission between vectors and hosts, we used a semi-discrete

system (Mailleret and Lemesle [2009]), i.e. a particular class of hybrid dy-

namical systems that undergoes continuous dynamics, but repeatedly are

subjected to discrete changes. The summer seasons, in which infection trans-

mission occurs, are modeled with ordinary differential equations, whereas the

winter seasons are modeled in an extremely simple way only with the survival

probabilities, i.e. a discrete change.

In Chapter 1, a very short introduction to the mechanisms of transmis-

sion and the distribution of the vector-borne disease is given. Moreover,

some mathematical models helpful in studying epidemiological features of a

disease, especially in the case of vector-borne disease, are reviewed.

In Chapter 2, a really simplify model is examined. It is supposed the

presence of a single host population, which is certainly not realistic for West

Nile virus, but it may be useful as first step. Moreover all parameters, in-

cluding host and vector population size, are assumed to be constant during

the summer seasons. For this model, a threshold parameter is identifIED for

both SIS and SIR epidemiological framework presented. A complete descrip-

tion of the global behavior in the case of infections of SIS type is obtained

and some illustrative simulations are showed.

The resulting threshold is compared with the definition of R0 proposed by

Nicolas Bacaër and coworkers for models of vector-borne disease in a periodic

environment.

A more realistic model for West Nile virus is presented in Chapter 3.

This model was developed during a period visiting the Emory University,

Georgia (USA), at the Department of Environmental Science, Laboratory of

Epidemiology of Vector-borne Disease. More details in mosquito life cycle

are introduced and time-dependence in the demographic parameters is as-

sumed; the model results in a dynamics of bird and mosquito populations

qualitatively similar to what observed in the United States or in Southern

Europe.
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Since exact parameter value for West Nile virus are difficult to obtain,

simulations were computed using parameters generated using Latin Square

Hypercube sampling and keeping only the samples yielding simulations of

the populations and of West Nile virus infection compatible with some con-

straints imposed for realism. The analysis of the resulting simulations high-

lights some qualitatively features of the phenomenon and show how, accord-

ing to the values of the parameters of the populations, it is possible to observe

dynamics of endemic type, similar to the USA, or limited and short epidemic,

as usually occurred in Europe. The analysis also highlights the uncertainty

of the estimate of the parameters based on few available data.

Finally in Chapter 4, the spatial spread of a general vector-borne disease is

considered. The simpler semi-discrete SIR model, presented and analyzed in

Chapter 2, is expanded introducing the space in a very easy way, considering,

as a first step, a one-dimensional region.





Chapter 1

Mathematical models for

vector-borne diseases

1.1 A short introduction to vector-borne dis-

eases

According to WHO, vector-borne disease constitute 17% of the estimated

global amount of all infectious disease. Malaria, the most life-threatening

vector-borne disease is caused by a parasite Plasmodium, transmitted via

infected mosquitoes. It is estimated that in 2012 malaria caused 627.000

deaths.

Vector-borne disease are carried by vectors, such as mosquitoes, tick and

sand-flies, that are organisms that transmit pathogens and parasites from

one infected host to another one.

These diseases are commonly found in tropical and sub-tropical regions

and places where access to safe drinking-water and sanitation systems is

problematic. The increment in traveling to and from tropical regions has

helped the circulation of diseases that are constantly being discovered.

Several vector-borne infections have emerged in recent years as diseases

of considerable and widespread importance, among which Lyme disease and

West Nile virus.

For instance, the rapid spread of West Nile virus is facilitated by the fact
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that the mosquitoes involved in the transmission are a very competent vec-

tor of the infective agent. In fact, West Nile virus was introduced in 1999

to New York and from this point has spread very rapidly into most of the

United States: West Nile virus has reached in 2004 California and Canada

causing large arboviral meningoencephalitis outbreaks. This example shows

the risk of the introduction of exotic vector-borne infections to Europe and

North America. Many factors that may facilitate the introduction and estab-

lishment of disease vectors, reservoirs or pathogens in new geographic areas

could lead to the emergence of a disease in the European Union (EU). These

factors include international travel and trade, e.g. legal and illegal trade in

animals and animal products, new agricultural practices and land-use pat-

terns, socio-demographic evolution and climatic changes. (ECDC [2013])

1.1.1 Climate variability and change: potential im-

pacts on vector-borne diseases.

Periodic fluctuations are frequent in the dynamics of disease transmis-

sion. For example, children diseases are influenced by opening and closing of

the school. In these instances, contact rates vary seasonally, so that periodic

behavior of the incidence can be observed. Periodic changes in birth rates

of population, that may be lead to a periodic behaviour of a disease, are

evidenced in many biological works also. (Cushing [2006], Schwartz [1992],

Wang and Zhao [2008])

Periodic fluctuations are common especially in the dynamics of vector-borne

disease.

Vector-borne diseases are transmitted by blood-feeding arthropods. The pa-

thogens involved in this type of disease spend part of their life cycle in the

vector blood. Since life cycle of vectors in general is ruled by environmental

factors and many vector-borne diseases show a clear distinct seasonal pattern,

it is expected that this kind of infections are weather sensitive. Tempera-

ture, photo-period, precipitations and other weather variables may affect in

many ways both vectors and pathogens they transmit. High temperatures,

for example, may increase or reduce the survival rate of the vectors and also
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their behavior and ecology. Thus, the probability of transmission may be

decreased or increased by high temperatures.

The life-cycle of the mosquitoes is influenced by the temperature and

photo-period. In temperate climates, they are active only during the summer

season, when the temperature is close a certain temperature. When photo-

period and temperature decrease, they start entering diapause to survive

winter.

During winters the transmission of the virus does not occur and so it is clear,

facing the study of infection that involve these type of population, that is

very important considering the environmental factors that may lead to a

periodic fluctuation in the incidence of the disease.

1.2 Mathematical deterministic models

Mathematical models have been, and they still are, a very important tool

that helps us to understand epidemiology (Anderson and May [1991]).

The goal of mathematical modeling of infectious diseases is to identify

those mechanisms that cause outbreaks and spread of the disease, to describe

in a rational way these events and to establish how to control a disease.

Formulation of a model usually depends on the aspects that the modeler

prefers to deal with. This aspects could come from the branches different

from mathematics, such as biology, epidemiology, demography etc... It may

be very hard to learn all the knowledge of a specific field and build a model

that exactly takes in account all of them.

Moreover, limited available data and not sufficient epidemiological informa-

tions can hinder the efforts of the modeler in modeling the spread of the

etiological agent, if his aims go beyond the theoretical exploration and the

intrinsic interest.

A first distinction within the wide variety of mathematical approaches

mostly undertaken in infectious disease epidemiology can be made between

deterministic and stochastic models. For instance, mathematical epidemiol-

ogy uses models based on difference, differential, integral or functional dif-

ferential equations. These kind of models are named deterministic models.
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Deterministic models first appeared in the literature in 20th century (Bailey

et al. [1975], Hamer [1906], Ross [1916]) and culminated with the work by

Kermack and McKendrick [1927]. Deterministic models have had a very im-

portant role in the description of the spread of an infection.

Using for instance a system of differential equations, once the initial condi-

tions and parameter values have been fixed, it is possible to obtain solutions

as functions of time that are unique.

On the other hand, in stochastic models, there are transition probabilities

at each step of moving from one population state to another. The same set of

parameter values and initial conditions will lead to an ensemble of different

output.

In simple deterministic models for epidemics, it is possible to obtain a

precise threshold which allows to determines whether an epidemic will occur

or will not occur. Instead, a stochastic model may lead, for instance, to

probabilities that a disease would occur or can give informations as mean

time of extinction. Thus the approach, concepts and appropriate questions

are quite different for stochastic models.

Both deterministic and stochastic epidemiological models have other lim-

itations besides being only approximations of reality. Obviously, the natural

world is buffed by stochasticity. But, stochastic model are considerably more

complicated.

Especially when the aim is to model a disease, deterministic models do not

take into account the role of chance that the disease is subjected to. A set of

initial conditions lead to exactly one solution in a deterministic model; thus

no information is available on the reliability or the confidence in the results.

Through a sensitivity analysis, it is possible to understand the dependence

of parameter values, by examining the effect of chance in a single parameter

value on the final result. A parameter in a model is said to be sensitive if

small changes in the parameter lead to big changes in the results.

On the other hand, these changes are embedded in stochastic models, but

it is harder to get analytical results for these models. Moreover, computa-

tional results are also harder since simulations could require many computer

runs in order to detect patterns and get quantitative results. Deterministic
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model are rapid to simulate, relative easy to parametrize and capture the

average of epidemic behaviour, i.e. they can be considered a valid tool for

predictions in large populations. On the other hand, stochastic approches

can be appropriate to model the spread of a disease in small populations, as

well as in the early and final stage of an epidemic.

The mathematical models we will consider in this thesis are deterministic

compartmental models at population level. When we want to analyse the

spread of a disease in a population, we focus, not on the pathogen popu-

lation, but on the number of infected individuals of the species involved in

the transmission, neglecting the mechanism that make the single individual

sick. This is because the time scale, at which the infection transmission be-

tween individuals occurs, is slower than the time scale of the dynamics of the

pathogen invasion and growth within the individuals.

These type of model allow us to divide the entire population, involved

in the transmission, into compartments that usually describe the infectious

state (i.e. susceptible, infected, recovered individuals) and can also include

other forms of classes involved in the disease control, for instance.

In the specific case of vector-borne disease both host and vector population

are split into compartments of the infectious state.

One of the first and famous model of vector-borne disease is Ross-Macdonald

model. In 1957 Macdonald (Macdonald et al. [1957]) combined a Ross model

(Ross [1911]) with epidemiological and entomological field data to understand

the malaria transmission. Several models have been published as a Ross-

Macdonald model. Their model is based on the following assumptions:

� Total mosquito and human population sizes, V and H , are constant

� Mosquitoes can be susceptible or infectious, I

� Humans are either susceptible or infectious, Y

� no incubation periods

� The biting rate is proportional to the number of mosquitoes but inde-

pendent of the number of humans
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The previous assumptions translate in the following formulation (Ander-

son and May [1991]):

Ẏ = abI

(
H − Y
H

)
− ξY

İ = ac(V − I)
Y

H
− δI

where a represents the mosquito biting rate, b the mosquito to human trans-

mission probability per bite, c the human to mosquito transmission proba-

bility per bite , ξ the human recovery rate and δ mosquito death rate.

A very important novelty introduced with this model has been the defini-

tion of the basic reproductive number R0 for this type of models. The basic

reproductive number is the average number of secondary infections that re-

sult if a single infectious individual is introduced into an entirely susceptible

population and Ross [1911] defined it as

R0 = RHV
0 RV H

0

i.e. , the product of the number of humans infected by a mosquitoes and the

number of mosquitoes infected by a person.

A systematic historical review suggests that several mathematicians and

scientists contributed to development of the Ross-Macdonald model over a

period of 70 years (Smith et al. [2012]). Several models have been pro-

posed for malaria, including deterministic compartmental models (Anderson

and May [1991], Aron and May [1982], Chitnis et al. [2006]) and stochas-

tic (Dietz et al. [1974]) individual-based models (Eckhoff [2011], McKenzie

et al. [2001]), while West Nile virus, that is the main object of this thesis,

has been modelled by Thomas and Urena [2001], who formulated a differ-

ence equation model for West Nile virus, and Wonham et al. [2004] who, on

the basis of the classical Ross-McDonald malaria model (Anderson and May

[1991], Macdonald et al. [1957]), considered a system of ordinary differential

equation modeling West Nile virus transmission in the mosquito and bird

populations. Their study has been extended in several directions, such as

the study of temporal mosquito bird cycle transmission of West Nile virus
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(Cruz-Pacheco et al. [2005]) or heterogeneity in the competence of reservoir

species (Simpson et al. [2012]) or also involving human and equine population

in the model (Laperriere et al. [2011]).

Moreover, epidemiological mechanisms of vector-borne disease may lead

to periodic solutions. Periodicity can arise in different ways, for example

through extrinsic forcing by a model parameter, such as contact rate.

Aron and May [1982] examine the dynamical consequences of seasonal and

other variations in the total mosquito population. Most mathematical models

of vector-borne disease that include the effects of seasonality assume sinu-

soidal fluctuations in transmission coefficients or other parameters (Bacaër

[2007], Bacaër and Guernaoui [2006], Chitnis et al. [2012]) Bacaër and Guer-

naoui [2006] developed a mathematical model of a vector-borne disease, in

particular cutaneous leishmaniasis, to estimate some of the parameters of the

transmission cycle and to estimate the classical epidemic threshold R0. This

specific study has led to a new general definition of the basic reproduction

number R0 in a periodic environment.

1.2.1 Semi-discrete models

Continuous-time and discrete-time models are the two most classical

approaches to study biological phenomena. The first one is used overall

when the populations involved are characterized by overlapping generations.

When the interactions between compartments of a population happen ran-

domly in time, the processes can be considered, from a macroscopic point

of view, as continuous, and in general ordinary differential equation models

are used to describe those connections. Examples of such system are the

Lotka-Volterra predator–prey model, the Kermack-McKendrick susceptible-

infected-removed (SIR) epidemic model.

These models are embedded in a continuous representation of the processes

in which time and abundances of the populations are real valued and can

take any value. Continuous-time models are useful because we can use the

tools provided by calculus.

However some biological phenomena occur at certain time only or con-



8 Chapter1

Figure 1.1: Graphical representation of semi-discrete models

centrated in a short time intervals, such as seasonal reproductions, egg de-

position, vulnerability of some animals to attacks during a certain period

of their life cycle only. Since 1970’s discrete-time modeling has attracted

more and more attention in population biology. These models were par-

ticularly developed by consumer-resource modeling community with respect

to the host-parasitoid interaction (Murdoch et al. [2003]). Both modeling

have a long history in biological sciences, however there are a lot of pro-

cesses that cannot be thoroughly described with either formalism. In fact

those processes can involved some phenomena that are of a continuous na-

ture and some other that are of a discrete one. They undergo continuous

dynamics most of the time, but at some given instants they are subjected

to discrete changes, termed pulse too. For example, epidemiological systems

with seasonal reproduction, emigration processes that start when the popula-

tion reaches a density threshold, the survival of some insect that are strongly

influenced by the season, are related to this particular class of phenomena.

To build a suitable model, it is necessary to take into account both discrete

and continuous parts. A system of ordinary differential equations describes

the dynamics of this kind of processes during the continuous part. The dis-

crete part, that occur at some given moments, is referred to as an ’impulsive’

or ’pulsed’ system.

These type of models are termed semi-discrete models. They are, as I

stated before, a particular class of hybrid dynamical systems. In Figure

1.1, there is a schematic representation of the dynamics of the semi-discrete

models.
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Let x be the vector of state variables at time t and tT be the instants when

the discrete changes occur. The following system represents a semi-discrete

model ẋ(t) = f(x, t) x 6= t0

x(tn+1
0 ) = F (x(tnT ), tnT )

with tn+1
0 denoting the instant just after t = tnT . f(· ) is the continuous

ordinary differential equation followed by the system and F (· ) is the discrete

component (also termed the pulse or impulse) that may also depend on time.

In general, (tn+1
T − tnT ) is a constant for all n, but there are examples where

it is not (Liu et al. [2005]).

An important part of the semi-discrete models are related to the seasonal

processes. In these cases (tn+1
T − tnT ) is in general equal to the length of the

year or following season, at each instant tnT , time t is reset to zero and the

state vector corresponding to the nth year may be denoted with a subscript

n on x.

The discrete part of the model may sum up what happens within a con-

tinuous period of time. There are many insects that are active and interact

with other species during the summer, but are mainly resting in the winter.

It is possible use a semi-discrete model to represent what happens during the

summer with its continuous part and what happens during the winter with

its discrete part (Ghosh and Pugliese [2004]). Hence, strictly speaking, in

these cases actually, tn0 is not always the instant just after tn−1
T , but repre-

sent a jump from the number of insect at the end of the nth summer to the

number of those at the begin of the following summer. When epidemiological

phenomena are seasonal influenced, especially in vector-borne disease, as in

the cases we will deal with in this thesis, the initial condition of the ordinary

differential equations that describe the dynamics during a season are given by

a function of the size of the state variable at the end of the previous season.

1.2.2 Impulsive reaction-diffusion models

West Nile virus is a vector-borne disease transmitted by bite of infected

mosquitoes that acquire the virus by feeding on infected birds. West Nile
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virus is endemic in Africa, the Middle East and western Asia. In late August

1999 the first outbreak of West Nile in North America was reported in New

York City. Over the next five years, the epidemic has spread spatially across

the continental United States, north into Canada, and southwards into the

Caribbean islands and Latin America. It seems that the spread of West Nile

virus comes from the interaction of disease dynamics and bird and mosquito

movement.

On the other hand, in Europe a different spatial diffusion can be observed.

For example, 10 years after the first outbreak, West Nile virus reoccurred in

Italy causing death and clinical signs in horses and humans (Calistri et al.

[2010], Savini et al. [2008]). West Nile infection outbreaks were also reported

in 2009. As in the previous year, the virus West Nile virus has been able to

cause disease in horses and humans and, similarly, no birds fatalities were re-

corded. The infection re-occurred in the same places of the 2008 and moved

westerly and southerly involving new areas and regions. Monaco et al. [2011]

From the previous example, it emerges that understanding the spread

of vector borne diseases is of great importance to establish which measures

might be effective before they are actually carried out.

Lewis et al. [2006] analyzed the spread of West Nile virus by spatially ex-

tending the non-spatial dynamical model of Wonham et al. [2004] to in-

clude diffusive movement of birds and mosquitoes. Instead in Liu et al.

[2006], a mathematical model to understand the spatial spread patterns in

the establishment phase of West Nile virus in a region consisting of multiple

patches has been used. In the literature a large part of mathematical models

on spread are proposed in terms of reaction-diffusion equations(Lewis et al.

[2006]). Most reaction-diffusion epidemic models are space-dependent exten-

sions of the classical Kermack-McKendrik model(Kermack and McKendrick

[1927]). These types of model assume that the spreading is ruled by ran-

dom diffusion and that dispersal and growth take place continuously in time

and space. A reaction-diffusion equation consists of a reaction term and a

diffusion term, i.e. the typical form is as follows:

ut = D∆u+ f(u)
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where u = u(x, t) is a state variable and describes density of the population

at position x ∈ Ω ∈ Rn at time t (Ω is a open set). ∆ denotes the Laplace

operator. So the first term on the right hand side describes the “diffusion”,

including D as diffusion coefficient. The second term, f(u) is a smooth

function f : R→ R and describes processes which really “change” the present

u, i.e. something happens to it (birth, death ...), not just diffuse in the space.

Facing the study of the spatial spread of vector-borne disease, since the

vector population are not active during a season and so the interaction be-

tween host and vector population occurs within another season, we can not

consider a classical reaction-diffusion model, but we need to take into account

both discrete and continuous components. Lewis and Li [2012] proposed a

simple impulsive reaction-diffusion equation model to study the persistence

and the spread of species with a reproductive stage and a dispersal stage in

bounded and unbounded domains.

In the case of vector-borne diseases, it is possible to use this type of approach

considering the extension of a non-spatial semi-discrete model to include dif-

fusive movement of hosts and vectors.

The formulation will consist of a system of nonlinear reaction-diffusion equa-

tions for the disease transmission period and a discrete map describing the

overwintering of the disease due to the survived infected vector.
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Chapter 2

A simple semi-discrete model

of a vector-borne disease

2.1 Introduction

Several vector-borne infections have emerged in recent years as diseases of

considerable and widespread importance, principally among them Lyme dis-

ease and West Nile virus. According to the WHO, vector-borne disease con-

stitute 17% of the estimated global amount of all infectious disease. Malaria,

the most life-threatening vector-borne disease is caused by a parasite plas-

modium, transmitted via infected mosquitoes. It is estimated that in 2012

Malaria caused 627.000 deaths.(WHO [2014])

The basic reproductive number R0 is the average number of secondary

infections that result if a single infectious individual is introduced into an

entirely susceptible population. It seems immediately clear that R0 < 1

means that every infected individual can spawn less than one new infected

individual, and it is possible to predict that the infection will disappear from

the population. When R0 > 1, the infection is able to invade the susceptible

population and the disease can persist and increase .

The analysis of this threshold is an extremely important and useful aspect

in studying a disease. It allows us to determine which control measures (how

and when to apply them) would be most effective in reducing R0 below one.



14 Chapter2

In 1957 Macdonald (Macdonald et al. [1957]) combined a Ross model

(Ross [1911]) with epidemiological and entomological field data to under-

stand the malaria transmission. The Ross-MacDonald model is the earliest

and also simplest mathematical model describing a mosquito-borne infection

transmission between host and vector populations.

Ross introduced the definition of R0 for malaria as the product of the number

of humans infected by a mosquitoes and the number of mosquitoes infected

by a person.

Following the earlier attempt in Heesterbeek and Roberts [1995], a gen-

eral definition of the basic reproduction number for a vector-borne disease in

a periodic environment is presented in Bacaër and Guernaoui [2006] and in

Bacaër [2007]. Then also Wang and Zhao [2008] established the basic repro-

duction ratio for a large class of periodic compartmental epidemic models.

In this chapter, we consider an extreme form of seasonality consisting in

two discrete distinct seasons, summer and winter; furthermore, for the sake

of simplicity, we assume that all the parameters, including population sizes

of host and vector population, are constant during the summer season. The

infection dynamics is assumed to be of SI type for the vectors and SIS or

SIR for the hosts. In both cases, we obtain a threshold parameter S0, easily

computable, that determines, similarly to the parameter R0 of Bacaër and

Guernaoui [2006], whether the infection will persist or not over the years. A

complete description of the global behavior of the infection has been obtained

for the SI-SIS case; for the SI-SIR case, no analytical results exist on the

infection behavior above the threshold, and we present simulations of some

illustrative instances.

The threshold S0 has been explicitly compared to the definition of R0

in Bacaër and Guernaoui [2006], showing that they share, as expected, the

threshold property, but identifying also their differences. The assumption

of distinct seasons allows for a simpler analysis, by making it possible to

reduce, at least in principle, the problem to a discrete one. While we have

analyzed very simple (perhaps simplistic) cases, it is possible to apply the

same ideas to more realistic models involving, for instance, multiple hosts

and the relative feeding preference of the vector, the different stages in the
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life cycle of the mosquitoes, and also allowing for parameters to vary within

a season.

2.2 An SIS model

We construct a semi-discrete model (Mailleret and Lemesle [2009]) using a

SIS epidemiological framework to model the enzootic transmission in a host

population with a single vector population. The model incorporates the

infection transmission between a vector and a generic host population.

A semi-discrete model represents what happens during the summer with

its continuous part, when the vector population is active and interacts with

other species; what happens during the winter, in this case the survival of a

proportion of the individuals, is represented with its discrete part (Mailleret

and Lemesle [2009]).

Transmission occurs as a continuous process during summer while in win-

ter there is no transmission and the infection persists only because of surviv-

ing infected vectors. To simplify the analysis, we make strong assumptions

about the two populations during the summer season: we suppose that the

total vector and host populations are constant during the summer and they

have the same size every year. So H represents the population of host and

V the vector population, they satisfy:Ḣ(t) = ΛH − µHH(t)

V̇ (t) = ΛV − µV V (t)

where Λi is the recruitment rate and µi the death rate related to host

(i = H) or vector (i = V ) population.

These assumptions translate into the following model. We divide the

years in two periods: one (named (0, T )) during which infection transmission

occurs due to mosquitoes being active. A second period (T, 1) (having chosen

1 year as the time unit) where no infections occur. In nth summer, the

variables Snh , I
n
h , S

n
v and Inv represent the densities of susceptible and infected

hosts and vectors at time t ∈ [0, T ].
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They satisfy the following system of differential equations:



Ṡnh (t) = ΛH + γHI
n
h (t)− µHSnh (t)− αβH

NH
Inv (t)Snh (t)

İnh (t) = αβH
NH

Inv (t)Snh (t)− γHInh (t)− µHInh (t)

Ṡnv (t) = ΛV − µV Snv (t)− αβV
NH

Inh (t)Snv (t)

İnv (t) = αβV
NH

Inh (t)Snv (t)− µV Inv (t)

(2.2.1)

where γH is the rate at which the infected hosts recover and become

susceptible again. Instead, due to its short life, a vector never recovers from

the infection.

We assume that the biting rate α is constant and equal for each type

of host. The transmission probability is the probability that an infected

individual produces a new case in a susceptible member of the other species.

The transmission probabilities from vectors to hosts and from hosts to vectors

are denoted by βH and βV , respectively. This system of equation will hold

for each summer season n = 1, 2, . . .. To these equations, we associate initial

conditions, depending on the previous year variables; to be precise:

Snh (0) = NH

Inh (0) = 0

Snv (0) = NV − δIn−1
v (T )

Inv (0) = δIn−1
v (T )

(2.2.2)

where Sh + Ih = NH = ΛH

µH
is the constant number of hosts during the

summer. They are assumed to be all susceptibles, in fact those infected,

that have survived at the end of the previous year, will have recovered from

infection because of the short infection period (Simpson et al. [2012]).

Sv + Iv = NV = ΛV

µV
is the total population size of the vectors, which is

constant in the considered period. Here δ is the probability of infected vectors

to survive the winter.

The first orthant in the Sh, Ih, Sv, Iv space is positively invariant for sys-

tem (2.2.1) since the vector field on the boundary does not point to the
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exterior. Furthermore, since Sh + Ih = NH , and Sv + Iv = NV are constant,

all trajectories in the first orthant enter or stay inside the region

T+ = {Sh + Ih = NH , Sv + Iv = NV }

In order to simplify the system, we normalize host and vector population

through the following substitutions

sH = Sh

NH
, iH = Ih

NH
, sV = Sv

NV
and iV = Iv

NV

In the next system, sH and iH represent the fraction of susceptible and

infected hosts and sV and iV will be the fraction of susceptible and infected

vectors.



ṡnH = µH + γHi
n
H − µHsnH − αβH NV

NH
snHi

n
V , sH(0) = 1

i̇nH = αβH
NV

NH
snHi

n
V − γHinH − µHinH , iH(0) = 0

ṡnV = µV − µV snV − αβV inHsnV , snV (0) = 1− δin−1
V (T )

i̇nV = αβV i
n
Hs

n
V − µV inV , inV (0) = δin−1

V (T )

(2.2.3)

From the previous assumptions about the vector and host populations, it

follows that the total vector and host populations are constant and in the

normalized system, we obtain sH + iH = 1 and sV + iV = 1.

Last remark allows us to reduce the model, obtainingi̇nH = αβH
NV

NH
(1− inH)inV − (γH + µH)inH , iH(0) = 0

i̇nV = αβV i
n
H(1− inV )− µV inV , inV (0) = δin−1

V (T )

(2.2.4)

Furthermore we can also write the isoclines of the model in the following way

iH(iV ) =
µV
αβV

iV
1− iV

;

iV (iH) =
(γ + µH)

αβH

NH

NV

iH
1− iH

;
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Figure 2.1: Examples of isoclines of model 2.2.3 with different values of param-
eters

2.2.1 A short-term threshold R

We wish to evaluate a threshold R for the spread of the disease taking into

account only the active season. R represents the number of new cases that

one infected individual produces in a completely susceptible population in a

host-vector system. According to Van den Driessche and Watmough [2002],

by linearizing system (2.2.3) in the disease free equilibrium x∗ = (1, 0, 1, 0)

at the beginning of the active season, we obtain

∆ =

(
0 αβH

NV

NH

αβV 0

)
Γ =

(
γH + µH 0

0 µV

)
(2.2.5)

with ∆ nonsingular. Thus, the basic reproduction number for a vector-

host system with constant coefficients is

R = α

√
NV

NH

βHβV
µV (γH + µH)

Near the disease free equilibrium, each infected host produces αβV /µV

new infected vectors over its expected infectious period, and each infected

vector produces αβHNV /(γH + µH)NH new infected hosts over its expected

infectious period. The square root arises from the two ‘generations’ required

for an infected vector or host to ‘reproduce’ itself.
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2.2.2 S0: A long-term threshold quantity

The short-term R, presented in the previous section, is the number of new

infected introduced by one infected individual. This does not take winters

into account however.

We will define S0 as the average number of infected vectors produced at the

start of the following year by a vector that is infected at the start of the year.

Let us consider system (2.2.4), from the initial condition we have that

inV (0) = δin−1
V (T )

Since sH(t) + iH(t) = 1 and sV (t) + iV (t) = 1, in−1
V (T ) can be seen as a

function of initial data in−1
H (0) and in−1

V (0), but in−1(0) is fixed, so it depends

only on in−1
V (0). Hence, we can define F : R→ R

F (inV (0)) = inV (T, inV (0)) (2.2.6)

and write the initial condition of the following season by

inV (0) = δF (in−1
V (0)) (2.2.7)

This can be seen as a discrete dynamical system in the variables

{inV (0), n ∈ N}

.

The following theorem is well known

Theorem 1. Let G : Rk → Rk and x̄ be an equilibrium of Nn+1 = G(Nn).

Then

� If ρ(DG(x̄)) < 1 then x̄ is asymptotically stable

� If ρ(DG(x̄)) > 1 then x̄ is unstable

with ρ the dominant eigenvalue.
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We can consider the case k = 1 when ρ(DG(x̄)) corresponds to |G′(x̄)|.
Now we define S0 := δF ′(0) and apply Theorem 1 to (2.2.7) with G(x) =

δF (x).

If S0 < 1, inV (0) ≡ 0, i.e. the disease free equilibrium of (2.2.3) is asymptoti-

cally stable. If S0 > 1 it is unstable.

It is possible to provide a biological interpretation of S0: if ĩV infected vec-

tors are introduced at the beginning of a season, they will produce δF (ĩV )

infected vector at beginning of the next season.

If ĩV ≈ 0, F (ĩV ) = F ′(0)ĩV and we can say that each infected vectors pro-

duces on average δF ′(0) infected vectors at the beginning of the next year.

Below we compute explicitly S0 in simple cases. In the following section we

will analyze the global behaviour of (2.2.7).

In order to compute F ′(0), we use the equation of variation (Hartman [1964])

to compute the derivative of the solution of the system (2.2.4) with respect

to the initial value iV (0). Let indeed iV (0) = Q and w = ∂iH
∂Q

and z = ∂iV
∂Q

;

they satisfy

ẇ = αβH
NV

NH
(1− w)iV − αβH NV

NH
(1− iH)z − (γH + µH)w w(0) = 0

ż = αβV (1− z)iH + αβV (1− iV )w − µV z z(0) = 1

(2.2.8)

i.e, (
ẇ

ż

)
= M(t)

(
w

z

)
(2.2.9)

with

M(t) =

(
−αβH NV

NH
iV (t)− (γH + µH) αβH

NV

NH
(1− iH(t))

αβV (1− iV (t)) −(αβV iV (t) + µH)

)
where iH(t) and iV (t) are the solutions of the system (2.2.4) with iH(0) = 0

and iV (0) = Q.

With the aim to compute S0, we set Q = 0 obtaining iH(t) = iV (t) = 0.
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Then, evaluating the system (2.2.9), we obtain the following linearized system(
ẇ

ż

)
=

(
−(γH + µH) αβH

NV

NH

αβV −µV

)(
w

z

)

i.e. w′ = −(γH + µH)w + αβH
NV

NH
z w(0) = 0

z′ = αβVw − µV z z(0) = 1
(2.2.10)

We have thus obtained S0 = δF ′(0) = δz(T ), z solution of (2.2.10)

2.2.3 Global behaviour

In the previous section, we computed S0 defining F (iV (0)) as (2.2.6).

Now we can use the following theorem:

Theorem 2. Let G : [0, 1]→ [0, 1] an increasing and concave function, such

that G(0) = 0. Consider the system Nn+1 = G(Nn)

If G′(0) ≤ 1, the disease free equilibrium is globally attractive.

If G′(0) ≥ 1, there exists a unique equilibrium point x̂ that is globally attrac-

tive.

We wish to apply this result to system (2.2.7). First of all, we have that

F ′(Q) = z(T )

shown in system (2.2.9). Looking at this system, we can observe that the

matrixM has nonnegative off-diagonal terms, hence for Corollary 1 of (Hirsch

and Smith [2003]) the fundamental matrix UM(t, s) ≥ 0 and so we have(
w

z

)
(t) = UM(t, s)

(
0

1

)
≥ 0

And so, w(t) ≥ 0 and also z(t) ≥ 0. F is defined in (2.2.6) and maps [0, 1]

into [0, 1] as iV (t), defined through (2.2.3) and knowing that sV + iV = 1,

satisfies 0 ≤ iV (t) ≤ 1. Hence, as δ ≤ 1, G(1) = δF (1) ≤ δ ≤ 1 .
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To prove the concavity, we need to compute the derivatives of w =
∂iH
∂Q

and z =
∂iV
∂Q

. Let u =
∂2iH
∂Q2

and v =
∂2iV
∂Q2

, where iH , iV are the solution

functions of system (2.2.3): F ′′(Q) = v(T ). By differentiating system (2.2.3)

once, we obtained (2.2.8). If we differentiate with respect to Q once again,

we obtain (
u̇

v̇

)
= M

(
u

v

)
− 2wz

(
αβH

NV

NH

αβV

)
(2.2.11)

with u(0) = v(0) = 0.

Its solution is(
u

v

)
(t) = −2

∫ t

0

UM(t, s)

(
αβH

NV

NH

αβV

)
w(s)z(s)ds

This expression is non positive, because w(s), z(s) ≥ 0 and also the funda-

mental matrix of system (2.2.3) is nonnegative, i.e. UM(t, s) ≥ 0. Hence F

is concave. The hypothesis of Theorem 2 hold.

Summarizing, if S0 < 1 the disease free equilibrium is locally stable and

also globally attractive. If S0 > 1 the disease free equilibrium is locally

unstable and there is an endemic equilibrium that is globally attractive.

2.3 SIR model

In this chapter we assume, more realistically for infections like West

Nile virus, that the recovered hosts become permanently immune instead of

becoming susceptible again; hence the model for the host infection becomes

SIR. The immune hosts at the beginning of the summer season are the hosts

that were immune or infected at the end of the previous season and that

survived winter (again we assume that the hosts recover over the winter

season).

These assumptions translate into the following model. In summer n, the

variables Snh , I
n
h , R

n
h, S

n
v and Inv (densities of susceptible, infected and recov-

ered hosts and vectors time t of summer n) satisfy the system of differential



2.3 SIR model 23

equations: 

Ṡnh (t) = ΛH − µHSnh (t)− αβHSnh (t)Inv (t)

İnh (t) = αβV S
n
h (t)Inv (t)− γHInh (t)− µHInh (t)

Ṙn
h(t) = γHI

n
h (t)− µHRh(t)

Ṡnv (t) = ΛV − µvSnv (t)− αβV Inh (t)Snv (t)

İnv (t) = αβV I
n
h (t)Snv (t)− µV Inv (t)

(2.3.1)

with initial conditions

Snh (0) = NH −Rn
h(0)

Inh (0) = 0

Rn
h(0) = ρ(Rn−1

h (T ) + In−1
h (T ))

Snv (0) = NV − δIn−1
v (T )

Inv (0) = δIn−1
v (T )

(2.3.2)

where Sh + Ih + Rh = NH = ΛH

µH
is the constant number of host during

the summer. They are assumed to be all susceptibles or immune, in fact

those infected, that have survived at the end of the previous year, will have

recovered from infection because of the short infection period (Simpson et al.

[2012]).

Sv + Iv = NV = ΛV

µV
is the total population size of the vectors, which is

constant in the considered period. Here δ is the probability of infected vectors

to survive the winter and ρ is the survival probability of host. All other

parameters have the same meaning as in the SIS model. We normalize the

model and reduce the model, obtaining


i̇nH = αβH

NV

NH
(1− inH − rnH)inV − (γH + µH)inH ,

ṙnH = γHi
n
H − µHinH ,

i̇nV = αβV i
n
H(1− inV )− µV inV ,

(2.3.3)
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with the following initial conditions

iH(0) = 0

rH(0) = ρ(in−1
H (T ) + rn−1

H (T ))

inV (0) = δin−1
V (T )

where iH and rH represent the fraction of infected and immune hosts and iV

the fraction of infected vectors.

2.3.1 S0: The long-term threshold quantity

In this case, to define S0 we consider system (2.3.3). The initial conditions

can be written as

inV (0) = δin−1
V (τ, in−1

V (0), rn−1
H (0))

rnH(0) = ρ(rn−1
H (τ, in−1

V (0), rn−1
H (0)) + rn−1

H (τ, in−1
V (0), rn−1

H (0))

emphasizing the dependence on initial data in−1
V (0) and rn−1

H (0).

We can define

G(in−1
V (0), rn−1

H ) = (G1(in−1
V (0), rn−1

H ), G2(in−1
V (0), rn−1

H ))

where

G1(inV (0), rnH(0)) = δinV (τ, inV (0), rnH(0)) (2.3.4)

G2(inV (0), rnH(0)) = ρ(xnI (τ, inV (0), rnH(0)) + xnr (τ, inV (0), rnH(0)) (2.3.5)

And so we have that (
inV
rnH

)
(0) = G(in−1

V (0), rn−1
H (0)) (2.3.6)

Let us fix inV (0) = Q and rnH(0) = R.

Let us define S0 as the dominant eigenvalue of the matrix
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Jlong =

(
∂G1

∂Q
∂G1

∂R
∂G2

∂Q
∂G2

∂R

)
where the derivatives are computed at (0, 0).

Using Theorem 1, we have that if S0 < 1, (0, 0) is asymptotically stable for

system (2.3.6); if S0 > 1 it is unstable. Furthermore it is not difficult to

prove that, when S0 > 1, (2.3.6) has a unique positive equilibrium

In Appendix A, it is proved that ∂G1

∂R
= 0, so that the dominant eigenvalue

is the largest value on the principal diagonal. Moreover ∂G2

∂R
< 1, hence

S0 ≥ 1⇔ ∂G1

∂Q
≥ 1: in this case S0 = ∂G1

∂Q
. It is also shown that

∂G1

∂Q
= δz(T )

with z solution of (2.2.10).

Hence, S0 is identical to the vaalue obtained in the SIS model.

2.4 Comparing the R0 definition of Bacaër

Let suppose that we have the system

p′(t) = (A(t) +B(t))p(t) in Rn (2.4.1)

with A(t) and B(t) T-periodic matrices, where A(t) represents new infections

and B(t) other transitions, including death. Assume that A(t) is nonnegative

for all t and that the off-diagonal elements of B(t) are non negative. UB

is the fundamental matrix relative to the system q′(t) = B(t)q(t). Assume

furthermore |UB(t, t−s)| ≤ e−µs. For more details, see Example 1 of (Bacaër

et al. [2012, Sec.3]).

R0 can be defined (Bacaër [2007], Bacaër and Guernaoui [2006]) as the

spectral radius of the operator

L : p(t)→
∫ ∞

0

A(t)UB(t, t− s)p(t− s)ds

on the space of continuous T-periodic functions. From Bacaër et al. [2012,

Sec.3], this integral converges.

An alternative characterization of R0 that may be simpler in some cases is
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that R0 is the number such that

ρ(U A
R0

+B(T )) = 1.

In fact Wang and Zhao [2008] in Theorem 2.2 show that

R0 = 1⇔ ρ(UA+B(T )) = 1, (2.4.2)

Let us define now the operator L̂ as

L̂ : p(t)→
∫ ∞

0

A

R0

(t)UB(t, t− s)p(t− s)ds;

clearly ρ(L̂) = 1 and from (2.4.2), we obtain ρ(U A
R0

+B(T )) = 1 i.e., the

required condition.

Now, comparing the definition by Bacaër [2007] with our results, we ob-

serve that

xn(t) := x(nT + t) and yn(t) := y(nT + t)

where x and y represent the host ad vector populations in the following

system, obtained by reducing system (2.2.3)

ẋn = αβH
NV

NH
(1− xn)yn − γHxn − µHxn, xn(0) = 0

ẏn = αβV x
n(1− yn)− µV yn, yn(0) = δyn−1(T ).

(2.4.3)

We see that the system can be written as the limiting case of

(
x

y

)′
= (∆− Γs)

(
x

y

)
in [0, T ]

(
x

y

)′
= −Γw

(
x

y

)
in [T, 1]

where Γs = Γ is defined in (2.2.5) as well as ∆, Γw represents instead the
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transition matrix during the winter as

Γw =

(
δx 0

0 − log(δ)
1−T

)

and we consider the limit as δx →∞
Hence (2.4.3) is reduced to (2.4.1) with

A(t) =

∆ 0 ≤ t− [t] < T

0 T ≤ t− [t] < 1

and

B(t) =

−Γs 0 ≤ t− [t] < T

−Γw T ≤ t− [t] < 1

Using the theorem above, we can obtainR0 by computing ρ(L̂) = 1 with these

matrices. Observing that for δx →∞, eΓw(1−T ) =

(
0 0

0 δ

)
, the fundamental

matrix of the system in the total period 1 is

U A
R0

+B(1) =

(
0 0

0 δ

)
U A

R0
+B(T )

so that

1 = ρ(U A
R0

+B(1)) = δ(U A
R0

+B(T ))22.

On the other hand, if we compute S0 as above, we obtain

S0 = δ(UA+B(T )22).

We then see that S0 is generally a different quantity than R0 except when

both are equal to 1. Indeed we observe that

S0 ≥ 1⇔ R0 ≥ 1

S0 ≤ 1⇔ R0 ≤ 1.
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S0 can be considered as a threshold quantity as well as R0, but is more easily

computable.
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2.5 Some simulations

In this section, we present some numerical solutions of the model (2.2.3)

and (2.3.3). The simulations were performed mostly using values similar to

those used by Simpson et al. [2012] for West Nile Virus that have units per

day. Figures 2.2 and 2.3 represent the dynamics of infected hosts and infected

vectors in two simulations of the SIS model.

Parameter Definition Value

γH recovery rate of the host [0.195-0.091]
µH death rate of the host 0.0014
µV death rate of the vector 0.1
βH transmission probability from vectors to hostse 0.44
βV transmission probability from hosts to vectors 0.974
α biting rate 0.14
NV

NH
proportion of vector/host populations

δ survival probability of vector summer-winter
ρ survival probability of the host summer-winter

Table 2.1: Many symbols and numerical values used in simulations (rates have
units per day)

We maintained the short-term threshold greater than 1, hence the infection

initially increases; then, varying the vector survival probability during the

winter, we considered cases with S0 < 1 or > 1.

In Figure 2.3 the disease from the second year seems to decrease but then to

reach a stable level for many years with S0 = 1.35. In Figure 2.2, S0 is less

than 1, namely S0 = 0.13. In this case the infection is present for a few years

before disappearing completely.

Then, since that we are dealing with vector-borne disease in general, we try

to change some parameters. As an example, we set βH = 0.14; βV = 0.374;
NV

NH
= 60, differently from what we did to obtain the simulations in Figure

2.2 and 2.3 where we use NV

NH
= 7. We obtained the pattern showed in Figure

2.4.
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Figure 2.2: A numerical solution of model SIS with parameters δ = 8 ∗ 10−8;
R = 1.73,S0 = 0.135. In blue are the infected hosts, in red are the infected vectors
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Figure 2.3: A numerical solution of model SIS with parameters δ = 8 ∗ 10−7;
R = 1.73; S0 = 1.35. In blue are the infected hosts, in red are the infected vectors

Simulations of the SIR model are presented in Figures 2.5 and 2.6. In

the first one, with a small S0 (S0 = 0.135) the infected essentially disappear

from the second year. Also in Figure 2.6, with S0 = 2.35, we observe that

the infection considerably decreases, but not disappear. On the other hand,
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Figure 2.4: A numerical solution of model SIS with parameters δ = 8 ∗ 10−7;
βH = 0.14; βV = 0.374; NV

NH
= 60; R0 = 1.77; S0 = 3.09. In blue are the infected

hosts, in red are the infected vectors
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Figure 2.5: A numerical solution of model SIR with parameters δ = 8 ∗ 10−8;
ρ = 0.02; R0 = 1.73; S0 = 0.135. In blue are the infected hosts, in green are the
removed hosts, in red line are the infected vectors

when we ran the model with the same parameters that we used to plot the

simulation showed in Figure 2.7, we obtained a third pattern. The disease

seems to vanish in the second year. But after several years the infection
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spreads again, apparently reaching a stationary state
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Figure 2.6: A numerical solution of model SIR with parameters δ = 8 ∗ 10−7;
ρ = 0.02; R0 = 1.73; S0 = 1.35 In blue are the infected host, in green are the
removed host, in red line are the infected vectors
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Figure 2.7: A numerical solution of model SIR with parameters δ = 8 ∗ 10−7;
ρ = 0.02; βH = 0.14; βV = 0.374; NV

NH
= 60; R0 = 1.77; S0 = 3.09. In blue are the

infected host, in green are the removed host, in red line are the infected vectors
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2.6 Discussion

The aim of this chapter was to formulate a model for a vector-borne

disease considering the seasonality of the vector population. We consider an

extreme form of seasonality consisting in two distinct season: summer and

winter. We started from an SIS model that is not realistic for almost every

vector-borne disease, but is simpler to analyze.

We supposed that both populations involved in the transmission are con-

stant, although it is known for example, (see for example Cruz-Pacheco et al.

[2009]), that often mosquito populations, responsible of the transmission of

many vector borne disease, considerably increase at the end of the summer.

Persistence of infection through winter is ensured in the model by overwin-

tering vectors. The main result obtained has been the computation of a

threshold quantity (S0) for this class of model. If S0 < 1, the infection goes

extinct; if S0 > 1 the infection tends to a stable stationary state every season.

When S0 < 1, while the short-term R > 1, the simulations show an infection

outbreak in the first season, possibly followed by smaller outbreaks in the

next few years. This behaviour may be reminiscent of the outbreaks of West

Nile virus in Southern Europe, for instance.

The same threshold S0 is valid for a more realistic SIR model. A typical

behaviour when S0 > 1 is a large outbreak in the first year of introduction,

followed by a decrease and another outbreak after several years.

Several papers, that model vector-borne disease without taking seasonal-

ity into account, consider migration of the birds involved in the transmission

(López et al. [2008]), the intermediates stages of mosquito life cycle and

their distribution in relation with the transmission of the virus (Wonham

et al. [2004]), the feeding preferences (Simpson et al. [2012]) and also the

heterogeneity of the hosts (Kilpatrick et al. [2006]).

We believe that it could be worthwhile combining some of these features

with the discrete-continuous nature of this model to obtain a more realistic

description of the behaviour of vector-borne disease.

In the next Chapter, we will take into consideration a specific vector-borne

disease, such as West Nile virus. We try to combine some of the features listed
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before with a semi-discrete model using an SIR epidemiological framework.



Chapter 3

A seasonal model for West Nile

Virus

3.1 West Nile virus

West Nile Virus (WNV) is a mosquito-borne virus of the Flaviviridae

family, which is a neuropathogen for humans, horses and birds. West Nile

virus is mainly transmitted through the bite of infected vectors, that acquire

the virus by feeding on infected birds. It is maintained by a bird-mosquito

cycle while humans, horses and other mammals are considered as dead-end

host for the virus (Bisanzio et al. [2011], Hayes et al. [2005]).

Because of their local abundance, vector competence in the laboratory (Turell

et al. [2005]) and frequent reports of infection with West Nile virus in nature

(Andreadis et al. [2004], Apperson et al. [2004]), several mosquito species have

tested positive for West Nile virus (see Center for Disease Control [CDC])

and have been involved as bridge vectors or epidemic vectors, i.e. those

responsible for transmission to humans.

Nevertheless, there are evidences including data documenting Culex (Cx.)

pipiens feeding both birds and mammals (Hamer et al. [2008]). Culex (Cx.)

pipiens species is considered as the main epizootic and endemic vector of

West Nile virus in Europe (Hubálek and Halouzka [1999]) and Northeastern

and North Central United States (Apperson et al. [2004], Molaei et al. [2006]).

This is one of the most widespread mosquitoes, with a distribution covering
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all temperate regions and so we will consider that species as the vector of

transmission.

In bird species, playing the role of reservoir/amplifying hosts, viraemia

lasts 1-7 days post infection (depending on infected species). During this

period, birds are able to transmit West Nile virus to susceptible mosquitoes

and, subsequently, develop life-long immunity (Mannelli et al. [2012]). Birds

can be classified as highly competent hosts (HCH) or mildly competent hosts

(MCH) (Komar [2003]; Castillo-Olivares and Wood [2004]), according to the

duration of viraemia.

For the sake of simplicity, in what follows we will consider one general type of

reservoir hosts without distinguishing between hosts differing in competence.

West Nile virus is widely distributed in Africa, the Middle East, Asia, and

southern Europe and was recently introduced to North America. The 1999

outbreak of human encephalitis in New York City due to infection with West

Nile virus represented the first documented introduction of this virus into

the Western Hemisphere. Then the virus branched out into many US states

and has persisted since then sometimes decreasing and sometimes increasing

in terms of number of cases. In 2012 there was another peak in incidence

(CDC [september 2013]). In Southern Europe the dynamics of the infection

seems to be different. There were a few introductions in several areas of this

continent, followed by spatial expansions in the following year and decreases

or even disappearances in the initial areas. The infection prevalence seems

to move like a wave during the years (ECDC [2013])

The model we will develop is not tailored to a specific area, but assumes

a generic temperate climate; its aim is to investigate whether different pa-

rameter values can lead to different qualitative behaviors, reminiscent of the

different dynamics of West Nile virus infection observed in different areas.

Several models have already been developed for West Nile virus.

As far as we know, the first models were presented by Thomas and Urena

[2001], who formulate a difference equation model for West Nile virus, and

Wonham et al. [2004] who, on the basis of the classical Ross-McDonald

malaria model (Anderson and May [1991], Macdonald et al. [1957]), con-
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sider a system of ordinary differential equation modelling West Nile virus

transmission in the mosquito and bird populations. Their study has been

extended in several directions, such as the study of temporal mosquito bird

cycle transmission of West Nile virus (Cruz-Pacheco et al. [2005]) or het-

erogeneity in the competence of reservoir species (Simpson et al. [2012]) or

also involving human and equine population in the model (Laperriere et al.

[2011]).

Many of these papers do not take into account the seasonality of the

species involved in the transmission, while it is well known that periodic

fluctuations are common in the dynamics of disease transmission, especially

for vector borne diseases. Indeed the weather influences the biology of vectors

in different forms like changes in reproduction, population size, and blood

feeding (Reiter [2001]).

In some models (Bacaër [2007], Bacaër and Guernaoui [2006]) seasonality

is introduced by assuming sinusoidal fluctuations in transmission coefficients

or other parameters. Instead, here we aim at a reasonably realistic, but still

rather simple system. In this respect one fundamental feature of mosquito-

borne infections in temperate climates is that in winter there are no active

mosquitoes, thus no infection transmission. Correspondingly, the model will

be based on a system of differential equations describing demography and

infection transmission during the summers coupled by rules for population

survival and stage transition during winters.

Indeed the mechanisms that allow for the efficient overwintering and sub-

sequent amplification of West Nile virus have not been elucidated. In the

literature, different explanations have been proposed for the overwintering of

West Nile virus: it may occur through infection amplification during bird mi-

grations, but this is not completely understood (Dawson et al. [2007], Owen

et al. [2010], Wheeler et al. [2012]). Otherwise, overwintering could be due

to mosquitoes: as they generally survive winter as diapausing adults, it is

possible that mosquito larvae, infected vertically, would then enter diapause

as they develop into adults, without taking a blood meal, and survive winter;

they could then transmit the infection in the following season (Baqar et al.

[1993], Goddard et al. [2003]). Alternatively, adult mosquitoes infected by
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feeding on a infected avian host could then enter diapause and survive the

winter (Nasci et al. [2001]). Indeed, Bailey et al. [1982], analyzed data pro-

vide evidences to support the theory that a significant number of diapausing

Culex pipiens, which have taken a prehibernation blood meal, do not develop

eggs and can survive the winter at rate comparable to diapausing non blood

fed mosquitoes and vertical transmission of West Nile virus is neglectible.

In this paper, we will assume that West Nile virus overwintering occurs

through the mosquito population, according to either one of the above mech-

anisms.

3.2 Model formulation

We start by modeling the populations involved in the transmission, birds

and mosquitoes, in a disease free state. We divide the years in two peri-

ods: one (named (0, T )) during which infection transmission occurs due to

mosquitoes being active. A second period (T, 1) (having chosen 1 year as the

time unit) where no infections occur.

3.2.1 Bird population

The bird population is modeled taking into account, in an extremely sim-

ple way, the breeding season and the outgoing migration. Let b1 the fertility,

m1 the outgoing migration and d1 the mortality of the bird population. We

assume that the death rate is constant over the summers, while births and

migration are concentrated in part of the season. Precisely, we assume that

at time t = 0 the migrating birds have already arrived at the region being

modelled and the breeding season is starting. Egg hatching occurs, at con-

stant rate, up to time t∗1; after t∗1, as there are no births or immigrations,

the bird population decreases because of deaths, and, beyond time t∗2, also

because of outgoing migration.

The bird population dynamics is then described by the following equation:

ṄB(t) = NB(t)(P (t)b1 − d1 −Q(t)m1) NB(0) = kB (3.2.1)
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where

P (t) =

1 if t < t∗1

0 if t > t∗1.
and Q(t) =

1 if t < t∗2

0 if t > t∗2.

with 0 < t∗1 < t∗2 < T .

We will assume that its initial condition NB(0) is a fixed constant kB. In

Figure 3.1 a general population of birds is shown as example.
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Figure 3.1: Bird population in a disease free state in the period (0, T )

3.2.2 Mosquito population

Mosquitoes go through four separated and distinct stages of its life cycle

and they are as follow: Egg, Larva, Pupa and Adult. Only female mosquitoes

bite animals and drink blood. They require a blood meal to obtain the neces-

sary nutrients for the development and maturation of eggs. Blood is digested

during the gonotrophic cycle and the nutrients transferred to the ovaries or

developing eggs.

In what follows, we consider only females and neglect explicit consideration

of immature stages; instead, because of its importance for infection transmis-
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sion, we take into account the gonotrophic cycle by dividing adult females

into two stages: the compartment of resting mosquitoes, G(t), composed by

the mosquitoes that, after a blood meal, need a period to digest and me-

tabolize it; F (t), the feeding adults that look for hosts on which to feed on.

Their dynamics can be described by the following simple modelḞ (t) = f(t)G(t)− d(t)F (t)− αF (t) + εG(t)

Ġ(t) = αF (t)− εG(t)− d(t)G(t)
(3.2.2)

In the model, α is the rate at which mosquitoes leave the feeding stage,

meaning that 1/α is the mean length of the questing period: it is assumed

that its length does not depend on host density, as their number is never a

limiting resource. Similarly the mean length of the resting period is 1
ε
, so

that they leave the compartment G(t) at rate ε.

Finally, by neglecting immature stages, we assume that newborn mosquitoes

move directly to the stage F .

To obtain a more realistic and coherent model, it would be better considering

the maturation period of the four immature stage. The simplest way to

do that is to assume a constant delay. Mosquitoes that become adult at

time t arise from eggs layed at time t − τ , where τ is the delay induced by

the maturation period. The model (3.2.2) modified by incorporating delay,

becomes:

Ḟ (t) = f(t)G(t− τ)− d(t)F (t)− αF (t) + εG(t)

Ġ(t) = αF (t)− εG(t)− d(t)G(t)
(3.2.3)

To model the seasonal dynamics of the mosquito population, we use the

functions b(t), representing the fertility over time, p(t), the probability that

new adults enter diapause at time t, and d(t), the mortality. Consequently,

the rate at which mosquitoes enter the adult stage is f(t) = b(t)(1 − p(t)).
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Figure 3.2: fertility rate function b(t), diapause rate function p(t), mortality
rate function d(t) and recruitment rate function f(t) using (3.2.4) with parameter
values A = 0.4,B = 0.2, s1 = 30, s2 = 110, s3 = 20, L1 = 100 and L3 = 180

We use the following empirically derived functions:

b(t) = b2(0.75 + 0.25 sin((t+ s1) π
L1

))

p(t) = 0.5 + 1
π

arctan(A(t− s2))

d(t) = d2(1 +B sin((t+ s3) π
L3

))

(3.2.4)

These functions, used in the model, are extrapolated coupling response of

mosquitoes to temperature and photo-period (Rosà et al. [2014]) to an av-

erage temperature cycle in a warm-temperate climate. In Figure 3.2 an

example is shown for specific values of the parameters A, B .... that will be

used in the rest of the paper.

In Figure 3.3 the total population of the mosquitoes is represented: a
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Figure 3.3: Total mosquitoes using model (3.2.2)–(3.2.4) (to the left) and
mosquito abundance by Hamer et al, 2008 (to the right). In our model the time,
expressed in days, is from the beginning of May to the end of September

simulation of our model is plotted on the left and the abundance of Culex

Pipiens mosquitoes on the right. From these figures it comes to light that

the simulations follow a similar pattern of the collected and analyzed data

in Hamer et al, 2008.

3.3 The complete model

We build a model using a standard SIR epidemiological framework to

model enzootic transmission between an avian population and the Culex

Pipiens mosquito population. The avian hosts are divided into classes of

susceptible (SB), infected (IB) and recovered (RB) individuals, so the total

population size is NB(t) = SB(t) + IB(t) + RB(t). Newborn birds are all

susceptibles (Hamer et al, 2008); after becoming infected, birds recover at

rate γ and develop life-long immunity to further West Nile infection. They

can also die because of West Nile infection at rate µWN .

It is assumed that mosquitoes do not recover from infection with West Nile

virus. The population is divided into four compartments, i.e. SM , EM , GM

and IM . SM and IM represent the feeding mosquitoes that are, respectively,

susceptible and infected from West Nile virus. EM and GM represent those

in the gonotrophic cycle that have or have not been infected.

When a susceptible mosquito bites (at rate α IB
NB

) an infected bird, it becomes
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infected with probability βM and enters the gonotrophic cycle. We assume

that the latent period is completed during the resting period, so it will be

infectious by the time of the following feeding period.

Both EM and GM produce eggs. EM mosquitoes give birth to already

infected mosquitoes with probability ν of vertical transmission.

When a bird is bitten by an infected mosquito (compartment IM), it will

become infected with a probability βB. The relative flow chart is shown in

Figure 3.4. The following system of differential equation, with t ∈ [0, τ ],

Figure 3.4: Flow chart

describes West Nile virus transmission between vectors and hosts, and incor-

porate the vector biting rate (α), the transmission rates βB from vector to
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host and βM from host to vector during the summer season of length T .

ṠB(t) = Pb1NB(t)− d1SB(t)− αβBIM (t)
NB(t)

SB(t)−Qm1SB(t)

İB(t) = αβBIM (t)
NB(t)

SB(t)− γIB(t)− µWNIB(t)− d1IB(t)−Qm1IB(t)

ṘB(t) = γIB(t)− d1RB(t)−Qm1RB(t)

ṠM(t) = f(t)((1− ν)EM(t− τ) +GM(t− τ))− d(t)SM(t)− αSM(t) + εGM(t)

ĖM(t) = αβM IB(t)
NB(t)

SM(t)− εEM(t)− d(t)EM(t) + αIM(t)

ĠM(t) = αSB(t)+RB(t)+(1−βM )IB(t)
NB(t)

SM(t)− εGM(t)− d(t)GM(t)

İM(t) = f(t)νEM(t− τ) + εEM(t)− d(t)IM(t)− αIM(t)

ḊI(t) = b(t)p(t)νEM(t).

(3.3.1)

The compartment DI represents the number of vertically infected mosquitoes

that goes in diapausa.

To simplify the analysis, in the rest of the chapter we do not take into account

the maturation period and so we assume that the newborn mosquitoes move

directly to the adult stage: in this case τ = 0 and we obtain the following

model:



ṠB(t) = Pb1NB(t)− d1SB(t)− αβBIM (t)
NB(t)

SB(t)−Qm1SB(t)

İB(t) = αβBIM (t)
NB(t)

SB(t)− γIB(t)− µWNIB(t)− d1IB(t)−Qm1IB(t)

ṘB(t) = γIB(t)− d1RB(t)−Qm1RB(t)

ṠM(t) = f(t)((1− ν)EM(t) +GM(t))− d(t)SM(t)− αSM(t) + εGM(t)

ĖM(t) = αβM IB(t)
NB(t)

SM(t)− εEM(t)− d(t)EM(t) + αIM

ĠM(t) = αSB(t)+RB(t)+(1−βM )IB(t)
NB(t)

SM(t)− εGM − d(t)GM(t)

İM(t) = f(t)νEM(t) + εEM(t)− d(t)IM(t)− αIM(t)

ḊI(t) = b(t)p(t)νEM(t);

(3.3.2)

This system of equation will hold for each summer season n = 1, 2, . . .. Its

initial conditions depend on the final conditions of the system of the previous

summer, as explained in the next Section.



3.4 Overwintering and disease persistence
in the multi-year model 45

3.4 Overwintering and disease persistence

in the multi-year model

We denote by SnB(t), InB(t) . . ., t ∈ [0, T ], n = 1, 2, . . . the densities of birds

or mosquitoes in the different compartments depicted in Fig. 3.4 at time t

of summer n. These variables will satisfy equations (3.3.2) for each n and

t ∈ [0, T ]. The initial conditions will depend on the overwintering mechanism

of West Nile virus.

As discussed in the Introduction, we consider two different mechanisms for

overwintering, assuming either survival of unfed diapausing adults, infected

through vertical transmission; or survival of adult mosquitoes that have been

infected by feeding on an infected bird. In both cases, we assume that all

infected bird recover during the winter and, if alive, they will be immune at

the beginning of the following year; ρ is the birds’ probability of surviving

winter. As already mentioned, the total density of birds at the beginning of

each summer is a constant kB.

We assume, also for mosquitoes, a constant density kM at the beginning

of each summer; no mosquito will be in the gonotrophic cycle or in diapause:

hence SnM(0) + InM(0) = kM . In summary, the initial conditions are

SnB(0) = kB −Rn
B(0)

InB(0) = 0

Rn
B(0) = ρ(In−1

B (T ) +Rn−1
B (T ))

SnM(0) = kM − InM(0)

En
M(0) = 0

Gn
M(0) = 0

Dn
I (0) = 0

(3.4.1)

We still have to assign InM(0) that will depend on the overwintering mecha-

nism. In the first case (transmission through unfed diapausing adult females)

we obtain

InM(0) = δvD
n−1
I (T ) (3.4.2)
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where δv is the probability of surviving winter for a diapausing female. Note

that Dn−1
I (T ) > 0 only if the probability of vertical transmission ν is pos-

itive. This will be then assumed; otherwise, infection persistence would be

impossible.

The second overwintering is that normal adults can survive winter, yield-

ing

InM(0) = δIn−1
M (τ) (3.4.3)

where now δ is the probability of surviving winter for adult females.

In this case we assume, for the sake of simplicity, that ν = 0, as vertical

transmission is not needed for infection persistence.

3.4.1 S0: a long-term threshold quantity

The solution of (3.3.2) with initial conditions (3.4.1) can be seen as a

function y(t; IM(0), RB(0)) where y(t) is the vector

(SB(t), IB(t), RB(t), SM(t), EM(t), GM(t), IM(t), DI(t))

as the initial conditions (3.4.1) are fixed but for the values IM(0) and RB(0).

One can then summarize the whole system as a discrete map

(InM(0), Rn
B(0)) = F (In−1

M (0), Rn−1
B (0)). (3.4.4)

If (3.4.2) hold, the map

F (Q,R) = (δvy8(T ;Q,R), ρ(y2(T ;Q,R) + y3(T ;Q,R))). (3.4.5)

Using instead (3.4.3), we have

F (Q,R) = (δy7(T ;Q,R), ρ(y2(T ;Q,R) + y3(T ;Q,R))). (3.4.6)

It is then easy to see that the persistence of the disease can be determined

through a quantity, that we name S0, defined as ρ(F ′(0, 0)), the spectral

radius of the Jacobian matrix of F . S0 can be seen as the derivative of
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the Poincaré map of the periodic (because of the sequence of summers and

winters) system, as introduced by (Bacaër and Guernaoui [2006], Wang and

Zhao [2008]). The infection will persist over the years when S0 > 1, while it

will go extinct for S0 < 1.

As shown in the Appendix, ρ(F ′(0, 0)) > 1 if and only if the same is true

for its first entry, F ′11(0, 0); thus it is convenient using this element as the

definition

S0 = F ′11(0, 0) =
∂InM(0)

∂In−1
M (0)

.

This derivative can be computed by differentiating (3.3.2) with respect to

the initial condition Q = IM(0) and obtaining the variational system

ẇ = αβBz − (γ + µWN + d1 +Qm1)w w(0) = 0

ż = b(t)(1− p(t))νu+ εu− d(t)z − αz z(0) = 1

u̇ = αβMw
SM (t)
NB(t)

− εu− d(t)u+ αz u(0) = 0

φ̇ = b(t)p(t)νu φ(0) = 0

ṠM = b(t)(1− p(t))EM − d(t)SM − αSM + εEM SM(0) = kM

ĖM = αSM − εEM − d(t)EM EM(0) = 0

ṄB = Pb1NB − d1NB −Qm1NB NB(0) = kB
(3.4.7)

where ∂IB
∂Q

= w,∂IM
∂Q

= z, ∂EiM

∂Q
= u, ∂DI

∂Q
= φ. The other derivatives are not

introduced, beacuse they are not needed to compute S0.

S0 can be obtained from (3.4.7) in the two cases, either as

Sv0 = δvφ(T ) (3.4.8)

or as

Sh0 = δhz(T ). (3.4.9)
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3.5 Model parameters

3.5.1 Parameters

The resulting model is rather rich of parameters. There exist several

information for the demography of several bird species is rather well known.

We have then decided to set the parameters to average values of passerine

species. (Noon and Sauer [1992])

Precisely, we chose as average life of an adult bird 2 years, implying that

the death rate is d1 = 1/(365 ∗ 2days).

The summer is considered to last 150 days from May 1 to September 30; thus,

survival over the summer is approximately 0.81; consistently, ρ (survival over

winter) has to be set to 0.74.

We assume that the breeding season starts on May 1 and ends after 30

days, during which period every couple of adult birds produces two offsprings;

this means that the birth rate is b1 = 0.023 (days)−1. We assume that

migration starts at the end of August with a rate differing from species to

species and from region to region. As a value that seems to produce realistic

population values we choose m1 = 0.03 (days)−1.

As for the other parameters, although some estimates exist also about

mortality and fertility of adult mosquitoes Bowman et al. [2005], Simpson

et al. [2012], we believe that actual values may be very different under field

condition. Thus, we use literature data to obtain ranges for each param-

eter; (see Table 3.1); then we use the Latin Hypercube sampling (Marino

et al. [2008]) to obtain samples of acceptable parameter values. A sample

was deemed to be acceptable, if it gave rise to solutions satisfying some

constraints, specified below.

The sample was realized in two stages. First of all, we generated 10000

samples of the parameters involving mosquito population, b2,d2 and kM , ob-

taining a (10000x3) matrix. For each sample, we solved (3.2.1) and (3.2.2)

and selected only those such that the solution satisfied some constraints re-

lated to population dynamics without infection (Rosà et al. [2014]).

Precisely, we asked first that the peak density of the mosquito population

is approximately 1000 times the peak density of birds. The second condi-
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Parameter range/value description

b1 0.02 birth rate of birds
d1 0.0014 death rate of birds
m1 0.003 out-coming migration rate birds
kB 103 bird density at the start of summer
b2 (0, 0.5] fertility function coefficient
d2 (0, 0.2] mortality function coefficient
kM [104, 2 · 105] mosquito density at the start of the summer
α [0.2, 0.7] biting rate
βB [0, 1] vector to host transmission rate
βM [0, 1] host to vector transmission rate
γ [0.1, 0.3] recovery rate of birds
µWN [0, 0.5] death rate of birds due to WNV infection
ε [0, 0.2] resting rate of mosquitoes
ν [0, 0.1] vertical transmission probability

Table 3.1: Parameters value and meaning. The rates have units per days

tion is that mosquito density at the start (early May) and the end (late

September) of the season is about 5% of the peak density.

These constraints were implemented by considering a simulation accept-

able only if∣∣∣∣log( max
t∈(0,T )

(NM(t)))− log(103 max
t∈(0,T )

(NB(t)))

∣∣∣∣ ≤ log(1.5) (3.5.1)

and ∣∣∣∣log(NM(0))− log( max
t∈(0,T )

(NM(t)))

∣∣∣∣ ≤ log(1.4) (3.5.2)∣∣∣∣log(NM(T ))− log( max
t∈(0,T )

(NM(t)))

∣∣∣∣ ≤ log(1.4) (3.5.3)

Then each selected parameter was combined with another matrix of samples

of dimensions (3000x6) including the parameters involved in the transmission

α, βB, βM , γ, µWN , ε and ν.

For each resulting combination of parameters, we solved (3.3.2) with the

following initial conditions that can reproduce what could be the situation

after some year. Thus, a certain proportion of the birds will be immune
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(because of infections having occurred in the previous years) and a small

fraction of the emerging mosquitoes will be infected, after over-wintering:

S1
B(0) = 0.6kB

I1
B(0) = 0

R1
B(0) = 0.4kB

S1
M(0) = 0.9999kM

G1
M(0) = 0

E1
M(0) = 0

I1
M(0) = 0.001kM

In words, the constraints required to the solution were:

1. that the peak of infected mosquito were a couple of weeks after the

peak of the total population of the mosquitoes (the middle of July);

2. enough susceptible birds were left at the end of season.

Precisely, let t∗ ∈ [0, T ] such that

IM(t∗) = max
t∈(0,T )

(IM(t))

these constraints were implemented as

1.

t∗ >
3

5
T (3.5.4)

2.

SnB(T ) > 0.02 kB ∀ n = 1, 2, ... (3.5.5)

The following constraint must hold when assuming no vertical transmis-

sion :

more infected mosquitoes were present at the end of the season than at

the start (otherwise the infection could not persist, as the simulations were
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started with a very low number of infected mosquitoes), namely,

IM(T ) > IM(0) (3.5.6)

From this evaluation, depending on the assumptions made on the vertical

transmission (see Section (3.4)), we obtained 198 sets of parameters that

satisfy the constraint for the model without vertical transmission and 3271

for the model with vertical transmission.

3.5.2 A posteriori parameter distributions

We show in Figure 3.5 the histograms of the distributions of the param-

eters γ, µWN , ν and ε, obtained through Latin Hypercube Sampling and

satisfying constraints (3.5.1), (3.5.2), (3.5.3), (3.5.4), (3.5.5) and (3.5.6) in

the case with vertical transmission. These distributions appear close to the

uniform used as prior. In Figure (3.6) the same is shown for the parameters

βB, βM and α. In these cases, one sees an apparent mode with more likely

values for the biting rate α in the interval [0.45, 0.7], and for the transmission

probabilities βB in (0, 0.2] and βM in [0.1, 0.2]. The fourth panel in the same

Figure shows a 2-dimensional plot of the joint distribution of βB and βM .

An expected, strong negative correlation emerges between the estimates of

the two parameters with a higher frequency of samples with βM > βB, in

agreement with values used in most models.

In the case of the model without vertical transmission, the values pro-

duced by Latin hypercube sampling and satisfying the constraints (3.5.1),

(3.5.2), (3.5.3), (3.5.4) and (3.5.5) are plotted in Figure (3.7) and (3.8). From

Figure (3.7) we can see that the posterior distribution of most parameters

appears close to uniform, similarly to the case with vertical transmission.
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Figure 3.5: Distributions of the feasible choice of parameters for the model with
vertical transmission

Exceptions, as can be seen from Figure 3.8, are the biting rate α where

values are concentrated in upper half [0.5, 0.7] of the prior distribution, and

βB where most values of the posterior distribution are below 0.2. Concerning

the latter, panel d) of Figure 3.8 shows that the estimates of probabilities

of transmission, βM and βB, are, as expected, negatively correlated and in

general βM > βB.
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Figure 3.6: Distribution of parameters involved in the transmission and compar-
ing plot of the transmission rates for the case with vertical transmission
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Figure 3.8: Distribution of parameters involved in the transmission and com-
paring plot of the transmission rates for the case with no vertical transmission
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3.6 Some simulations

We ran simulations of the model, starting from two initial conditions in

the first year.

The first one considers the case of an initial introduction of the infection

starting from one migrating bird that had been infected in its winter grounds.

Thus the initial conditions are the following

S1
B(0) = kB − 1

I1
B(0) = 1

R1
B(0) = 0

S1
M(0) = kM

G1
M(0) = 0

E1
M(0) = 0

I1
M(0) = 0

(3.6.1)

For these initial conditions, we ran some simulations of the model, each

time choosing the parameter values from the posterior distribution shown

in the previous Section; the parameter (δv according to the over-wintering

scheme considered) have been chosen so as to yield a required value of S0.

3.6.1 Model with vertical transmission

Starting from the case with vertical transmission and initial conditions

(3.6.1), we let the simulations run for 20 years, and looked at the infection

dynamics in the last year of simulations (in all cases, the simulations had

reached a stationary situation over the years).

In Figure 3.10, we show the 2-dimensional plot displaying on the two axes

the peak times of infected birds and of infected mosquitoes in the first year

obtained by solving the system for each set of parameters. It can be seen

that the infection peak in the mosquito population occurs before, or at most

simultaneously, than the peak of the bird population. This is in agreement

with what it is generally observed in reality (Hamer et al. [2008]).
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Figure 3.10: Peak time of infected bird versus peak time of infected mosquitoes
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Figure 3.11: On the left peak time of infected bird, peak time of infected
mosquitoes and peak time of removed birds and on the right initial and final RB
after some years
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Simulations of 20th year
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Figure 3.12: Plot of the 20th year of some simulations starting with only one
infected bird for S0 = 2, Figure 3.12a, and for S0 = 3, Figure 3.12b . In red are
plotted the infected mosquitoes, in blue the infected birds and in green the removed
birds

In Figure 3.11b the frequencies of the number of birds belonging to the

compartment of removed (RB) are displayed for the beginning and the end

of the 20th season.

Using the initial conditions (3.6.1) for the first year, we displayed some

simulations focusing on the 20th year plotting the functions of the compart-

ments IB, RB and IB in Figure 3.12.

The pattern over the 20 years is shown in the simulations starting with

the initial conditions (3.6.1). We show only the simulations obtained with

the first six extracted parameter values that, for the sake of clarity, are listed

in Table 3.2, and having set S0 = 2.

Figure 3.14 displays simulations of the model with vertical transmission

obtained using the same set of parameters, but having set δv so as to obtain

S0 = 0.8, 1.5, 2, 4. Even when S0 < 1, persistence of the disease can be

detected for at least the first two years. For values of S0 > 1, after the initial

outbreak, the infection decreases sharply both in mosquitoes and birds; then



3.6 Some simulations 59

Multi-year model with vertical transmission
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Figure 3.13: Simulations of the model with vertical transmission with different
sets of parameters in Table 3.2 for S0 = 2
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Fig (3.13a) (3.13b) (3.13c) (3.13d) (3.13e) (3.13f)

b2 0.1266 0.1266 0.1062 0.1062 0.1062 0.1062
d2 0.0624 0.06244 0.0549 0.0549 0.0549 0.0549
kM 91446,7 91446,7 193717,5 193717,5 193717,5 193717,5
α 0.6236 0.3852 0.5936 0.5032 0.5761 0.2618
βB 0.2428 0.7274 0.0328 0.1851 0.1006 0.0780
βM 0.1563 0.1520 0.5591 0.1655 0.0952 0.8120
γ 0.1838 0.2157 0.2393 0.1606 0.2160 0.1522

µWN 0.1664 0.2778 0.1224 0.2309 0.0056 0.0554
ε 0.1463 0.1164 0.1226 0.1205 0.1495 0.1196
ν 0.0345 0.3632 0.0287 0.0359 0.0517 0.0581 à

Table 3.2: Value of the parameters related to the plots in Figure 3.13

the disease starts increasing, converging to a stationary solution that depends

on the value of S0.

The results regarding the model without vertical transmission are dis-

played in the Appendix B, since they are qualitatively quite similar to the

case with vertical transmission.
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Multi-year model with vertical transmission
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Figure 3.14: Simulations of the model with vertical transmission with the same
sets of parameters for different vale of S0 = 0.8, 1.5, 2, 4
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3.7 Conclusions

The model examined in this chapter is built on a standard SIR-SIS host-

vector epidemic model, and focuses on the effects of a realistic seasonal

dynamics, and on the mechanisms of infection overwintering. Concerning

the last aspect, we considered two different possibilities, both involving the

mosquitoes.

The first mechanism assumes that infection is transmitted to the following

year by mosquitoes that have entered diapause as unfed adults in the pre-

vious year, and must have become infected by vertical transmission. The

second mechanism assumes instead that a fraction of (non-diapausing) adult

mosquitoes survive the winter and, if they had been infected during feeding,

can transmit the infection in the following year.

The resulting model is rather rich in parameters. Independent estimates

on most of them is scarce; hence we used the Latin Hypercube sampling

scheme and rejected those samples that yielded solutions that did not satisfy

some realistic constraints.

The posterior distribution (the one obtained after rejection of samples)

of most parameters is similar to the prior distribution, so that inference

on parameter values is limited. However, parameter rejection resulted in

a multivariate distribution that yields rather consistent model simulations.

Among the most obvious results, a highly negative correlation between the

probabilities of transmission (from mosquito to bird βB and from bird to

mosquito βM) has emerged: in essence the product of these probabilities can

be estimated with some accuracy from field data, but not the single value

of βM or βB, although it is more likely (see Fig. 3.9) obtaining estimates

with βM > βB (as has been used in most models), especially in the case of

overwintering without vertical transmission.

The choices used on how mosquito fertility, mortality and diapausing

depend on time within a season yield a mosquito seasonal dynamics that

follows a pattern similar to the one seen in the data from (Hamer et al. [2008]),

as shown in Figure 3.3. Indeed, the functions used are simply descriptive and

not based on physiological mechanisms. It would be worthwhile examining
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the possibilities of using laboratory data (as in Ciota et al. [2014]) on the

dependence on temperature of demographic parameters of Culex mosquitoes,

coupled with an average temperature profile in the area of interest. Possibly,

other climatic factors beyond temperature are relevant for life history traits in

the field (certainly, it is well known that diapause is induced through photo-

period), as is demonstrated in the recent analysis by Rosà et al. [2014].

Comparing seasonal infection dynamics as predicted by model simulations

to actual data is more difficult, as there are very limited longitudinal data.

A relevant feature emerging from the simulations is that the time of the

season when infected mosquitoes reach the maximum (peak-time) occurs

consistently before peak-time of infected birds; this seems in agreement with

field observations (Hamer et al. [2008]).

The general multi-year pattern shows that after a large outbreak following

the first introduction, a drop in cases occurs for several years, followed from

an increase towards a stationary level, often with oscillations, especially if S0

is relatively large. Such a pattern is somewhat reminiscent of the trend in

human cases in United States from 1999 to 2013 (CDC [2014]).

From the simulation with S0 < 1, we can note an infection persistence

for 2-3 years, then a decrease and finally the disappearance of the disease.

For S0 > 1 in both models, with or without vertical transmission (see Ap-

pendix B), after decreasing, the disease reaches a stable point.
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Chapter 4

Spatial spread

4.1 Introduction

West Nile virus is a vector-borne disease transmitted through the bite

of infected mosquitoes that acquire the virus by feeding on infected birds.

West Nile virus is endemic in Africa, the Middle East and western Asia. In

late august 1999 the first outbreak of West Nile in North America was re-

porter in New York City. Over the next five years, the epidemic has spread

spatially across the continental United States, north into Canada, and south-

ward into the Caribbean islands and Latin America. It seems that the spread

of West Nile virus comes from the interaction of disease dynamics and bird

and mosquito movement. From the previous example, it emerges that un-

derstanding the spread of vector borne diseases is of great importance to

establish which measures might be effective before they are actually carried

out.

On the other hand, in Europe a different spatial diffusion can be observed.

For example, 10 years after the first outbreak, West Nile virus reoccurred in

Italy causing death and clinical signs in horses and humans (Calistri et al.

[2010], Savini et al. [2008]). West Nile infection outbreaks were also reported

in 2009. As in the previous year, the virus West Nile virus has been able to

cause disease in horses and humans and, similarly, no birds fatalities were re-

corded. The infection re-occurred in the same places of the 2008 and moved

westerly and southerly involving new areas and regions (Monaco et al. [2011]).
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Lewis et al. [2006] analyzed the spread of West Nile virus by spatially ex-

tending the non-spatial dynamical model of Wonham et al. [2004] to include

diffusive movement of birds and mosquitoes. Instead in Liu et al. [2006], a

mathematical model to understand the spatial spread patterns in the estab-

lishment phase of West Nile virus in a region consisting of multiple patches

has been used. In literature a large part of mathematical models on spread

are proposed in terms of reaction-diffusion equations(Lewis et al. [2006]).

Most reaction-diffusion epidemic models are space-dependent extensions of

the classical Kermack-McKendrik model(Kermack and McKendrick [1927]).

These types of models assume that the spreading is ruled by random diffusion

and that dispersal and growth take place continuously in time and space. A

reaction-diffusion equation comprises a reaction term and a diffusion term,

i.e. the typical form is as follows:

ut = D∆u+ f(u)

where u = u(x, t) is a state variable and describes density of the population

at position x ∈ Ω ∈ Rn at time t (Ω is a open set). ∆ denotes the Laplace

operator. So the first term on the right hand side describes the “diffusion”,

including D as diffusion coefficient. The second term, f(u) is a smooth

function f : R→ R and describes processes which really “change” the present

u, i.e. something happens to it (birth, death, transmission ...), not just diffuse

in the space.

Facing the study of the spatial spread of vector-borne diseases, since the

vector population are not active during a season and so the interaction be-

tween host and vector populations occurs within the summer season, we

cannot consider just a classical reaction-diffusion model, but we need to take

into account both discrete and continuous components. Lewis and Li [2012]

proposed simple impulsive reaction-diffusion equation model to study the

persistence and the spread of species with a reproductive stage and a disper-

sal stage in bounded and unbounded domains.

In the case of vector-borne diseases, it is possible to use this type of approach

considering the dormant stage and the disease dispersal stage.
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The formulation will consist of a system of nonlinear reaction-diffusion equa-

tions that holds in the disease transmission period and a discrete map de-

scribing the survival of the vector responsible of the transmission during the

dormant season. We chose to consider the SIR system analyzed in Chapter

2 that represents, in a very simple way, the transmission of a vector-borne

disease during the active season of a vector with the related initial condition

that allow the persistence of the disease for several year.

To solve the system of nonlinear reaction-diffusion equation, we used the

Crank-Nicolson method. (Giles [2010])

Finally, we will present also some simulations for the spatial spread of the

disease considering, as a first step, a one-dimensional domain.

4.2 An SIR model

We start this section considering the following simple SIR model described

in Chapter 2 

Ṡnh (t) = ΛH − µHSnh (t)− αβHSnh (t)Inv (t)

İnh (t) = αβV S
n
h (t)Inv (t)− γHInh (t)− µHInh (t)

Ṙn
h(t) = γHI

n
h (t)− µHRh(t)

Ṡnv (t) = ΛV − µvSnv (t)− αβV Inh (t)Snv (t)

İnv (t) = αβV I
n
h (t)Snv (t)− µV Inv (t)

(4.2.1)

with initial conditions

Snh (0) = NH −Rn
h(0)

Inh (0) = 0

Rn
h(0) = ρ(Rn−1

h (T ) + In−1
h (T ))

Snv (0) = NV − δIn−1
v (T )

Inv (0) = δIn−1
v (T )

(4.2.2)
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where Sh + Ih + Rh = NH = ΛH

µH
is the constant number of host during the

summer, where µH is the death rate. They are assumed to be all susceptibles

or immune (they recover at rate γH) at the beginning of the summer,in fact

those infected, that have survived at the end of the previous year, will have

recovered from infection because of the short infection period (Simpson et al.

[2012]).

Sv + Iv = NV = ΛV

µV
is the total population size of the vectors, which is

constant in the considered period. Due to its short life, a vector never recovers

from the infection. We assume that the biting rate α is constant and equal

for each type of host. The transmission probability is the probability that an

infected individuals produces a new case in a susceptible member of the other

species. The transmission probabilities from vectors to hosts and from hosts

to vectors are denoted by βH and βV , respectively. This system of equations

will hold for each summer season n = 2, 3, . . ..

Here δ is the probability of infected vectors to survive the winter and ρ is

the survival probability of host.

We normalize and reduce the model, obtaining


i̇nH = αβH

NV

NH
(1− inH − rnH)inV − γHinH − µHinH ,

ṙnH = γHi
n
H − µHinH ,

i̇nV = αβV i
n
H(1− inV )− µV inV ,

(4.2.3)

with initial conditions

iH(0) = 0

rH(0) = ρ(in−1
H (T ) + rn−1

H (T ))

inV (0) = δin−1
V (T )

where iH and rH represent the fraction of infected and immune hosts and

iV will be the fraction of infected vectors.
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4.3 The impulsive reaction-diffusion model

Now we start considering the spatial spread of the disease. Our mathe-

matical model therefore consists of a system of partial differential equations

describing the spatio-temporal evolution of the populations.

Let un(t, x) the fraction of infected hosts, vn(t, x) the fraction of immune

hosts and zn(t, x) the fraction of infected vectors at time t of the nth year at

the position x.

The model is given on a spatial domain Ω with smooth boundary ∂Ω; for

simplicity we start by considering a one–dimensional domain, that is, Ω =

[−L,L].

In particular we are going to develop a reaction-diffusion system, falling into

the category of non-linear parabolic systems defined in the time interval

[0, T ], where T is the length of the summer.

Actually, the whole model will be an impulsive reaction-diffusion model.

Dealing with vector-borne disease, as we state in the previous sections, we

need to take into account that the vectors responsible of the transmission

in general are active only during the summer. We are not interested in the

dispersal of the population involved in the disease during the winter, because

it is supposed that the vector population is not moving, the transmission does

not occur and the hosts recover in a period shorter than the winter. So the

disease does not spread in other places. Therefore our model can be written

as
unt (t, x) = D1u

n
xx(t, x) + αβH

NV

NH
[1− un(t, x)− vn(t, x)]zn(t, x)− (γH + µH)un(t, x)

vnt (t, x) = D2v
n
xx(t, x) + γHu

n(t, x)− µHvn(t, x)

znt (t, x) = D3z
n
xx(t, x) + αβV (1− zn(t, x))un(t, x)− µV zn(t, x)

(4.3.1)

where D1,D2 and D3 are the diffusion coefficients and with initial conditions

un(0, x) = 0 ∀x ∈ Ω

vn(0, x) = ρ(un−1(T, x) + vn−1(T, x)) ∀x ∈ Ω

zn(0, x) = δ(zn−1(T, x)) ∀x ∈ Ω
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and no-flux boundary conditions, ∀t ≥ 0

∂un

∂x
(t,−L) =

∂vn

∂x
(t,−L) =

∂zn

∂x
(t,−L) = 0

∂un

∂x
(t, L) =

∂vn

∂x
(t, L) =

∂zn

∂x
(t, L) = 0
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4.4 Numerical approximation with Crank-Nicolson

method

We used the Crank-Nicolson method, that is a finite difference method,

to solve system (4.3.1). Let

∆x =
2L

N
and ∆t =

T

K

and let

xj = −L+ j∆x and ti = i∆t

We start with a discretization of the system at point (ti+ 1
2
, xj) for i =

1, ..., K, j = 1, ..., N and where K and N are the number of step in which

we chose to divide our time and space domain, respectively.

To easily explain the method used to approximate the solutions of the system,

in the following paragraphs we use simply u, v, z instead of un, vn, zn.

Infected birds equation

Looking at the first equation of system (4.3.1), let

ut(ti+ 1
2
, xj) ≈

u(ti+1, xj)− u(ti, xj)

∆t

the centered difference approximation for ut at (ti+ 1
2
, xj).

To approximate the term uxx(ti+ 1
2
, xj), we use the average second centered

difference for uxx(ti+1, xj) and uxx(tt, xj), that is

uxx(ti+ 1
2
, xj) ≈

1

2

[
u(ti+1, xj−1)− 2u(ti+1, xj) + u(ti+1, xj−1)

∆x2

+
u(ti, xj−1)− 2u(ti, xj) + u(ti, xj−1)

∆x2

]

We can star writing the discretization of the first equation of system (4.3.1)
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referred to the proportion of infected hosts, as follows

u(ti+1, xj)− u(ti, xj)

∆t
=
u(ti+1, xj+1) + u(ti+1, xj−1)− 2u(ti+1, xj)

2∆x2

+
u(ti, xj+1) + u(ti, xj−1)− 2u(ti, xj)

2∆x2

+ αβH
NV

NH

(1− u(ti, xj)− v(ti, xj))z(ti, xj)

− 1

2
(γH + µH)u(ti+1, xj)−

1

2
(γH + µH)u(ti, xj)

or, letting λ1 = D1
∆t

∆x2
, for i = 2, ...N − 1

−1

2
λ1u(ti+1, xj−1) + (1 + λ1 +

1

2
(γH + µH)∆t)u(ti+1, xj)−

1

2
λ1u(ti+1, xj+1) =

1

2
λ1u(ti, xj−1) + (1− 1

2
(γH + µH)∆t− λ1)u(ti, xj) +

1

2
λ1u(ti, xj+1)

+αβH
NV

NH

∆t(1− u(ti, xj)− v(ti, xj))z(ti, xj)

Since we chose null-flux boundary conditions, u(ti, x0) = u(ti, x1) and u(ti, xN) =

u(ti, xN + 1).

And so, we obtain for j = 1

(1 +
1

2
λ1 +

1

2
(γH + µH)∆t)u(ti+1, x1)− 1

2
λ1u(ti+1, x2) =

(1− 1

2
λ1 −

1

2
(γH + µH)∆t)u(ti, x1) +

1

2
λ1u(ti, x2)

+αβH
NV

NH

∆t(1− u(ti, x1)− v(ti, x1))z(ti, x1)

and for j = N

−1

2
λ1u(ti+1, xN−1) + (1 +

1

2
λ1 +

1

2
)(γH + µH)∆t)u(ti+1, xN) =

1

2
λ1u(ti, xN−1) + (1− 1

2
λ1 −

1

2
(γH + µH)∆t)u(ti, xN)
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+αβH
NV

NH

∆t(1− u(ti, xN)− v(ti, xN))z(ti, xN)

Let us solve this problem (in a matrix form)

Aui+1 = Bui + αβH
NV

NH

∆t(1− ui − vi)zi (4.4.1)

by implying with (1− ui − vi)zi the component-wise product and where

A =



a11 a12 a13 0

a21 a22 a23
. . .

. . . . . . . . .
. . . . . .

aN−2,N−1 aN−1,N−1 aN−1,N

0 aN,N−1 aNN



B =



b11 b12 a13 0

b21 b22 b23
. . .

. . . . . . . . .
. . . . . .

bN−2,N−1 bN−1,N−1 bN−1,N

0 bN,N−1 bNN


with

a11 = aN,N = (1 +
1

2
λ1 + ∆t(γH + µh)) b11 = bN,N = (1− 1

2
λ1 −∆t(γH + µh))

ak = (1 + λ1 + ∆t(γH + µh)) bkk = (1− λ1 −∆t(γH + µh))

ak,k−1 = ak−1,k = −1

2
λ1 bk,k−1 = bk−1,k =

1

2
λ1

Removed birds equation

Let λ2 = D2
∆t

∆x2
, for j = 1, ...N we can write the discretization of the

equation related to the diffusion of the removed birds, obtaining
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−1

2
λ2v(ti+1, xj+1) + (1 +

1

2
∆tµh + λ2)v(ti+1, xj)−

1

2
λ2v(ti+1, xj−1) =

(1− 1

2
∆tµh − λ2)v(ti, xj) +

1

2
λ2v(ti, xj+1) +

1

2
λ2v(ti, xj−1) + ∆tγHu(ti, xj)

and in matrix form, we can write

Âvi+1 = B̂vi + ∆tγHu
i (4.4.2)

Infected mosquitoes equation

In analogous way, we can obtain the following discretization of the equation

of infected mosquitoes for j = 1, ...N , by letting λ3 = D3
∆t

∆x2

(1 + λ3 + ∆t
1

2
µV )z(ti+1,xj)−

1

2
λ3z(ti+1, xj−1)− 1

2
λz(ti+1, xj+1) =

(1−λ3−∆t
1

2
µV )z(ti,xj)+

1

2
λ3z(ti, xj−1)+

1

2
λ3z(ti, xj+1)+αβV u(ti, xj)(1−z(ti, xj))∆t

In this case, the matrix formulation is

Ãzi+1 = B̃zi + αβV u
i(1− zi) (4.4.3)

Now, by solving the system composed by

Aui+1 = Bui + αβH
NV

NH

∆t(1− ui − vi)zi (4.4.4)

Âvi+1 = B̂vi + ∆tγHu
i (4.4.5)

Ãzi+1 = B̃zi + ∆tαβV u
i(1− zi) (4.4.6)
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with initial conditions in year n

un(t0, xj) = 0 ∀xj
vn(t0, xj) = ρ(un−1(tK , xj) + vn−1(tK , xj)) ∀xj
zn(t0, xj) = δ(zn−1(tK , xj)) ∀xj

with the help of mathematical software, such as Matlab, we can obtain the

numerical approximation of the system (4.3.1) that holds during the summer.



76 Chapter4

4.5 Some simulations

In this section, we present some approximation of the model (4.3.1). In

each simulations that follow, we chose the values of some parameters such as

the diffusion coefficients as D1 = D2 = 0.004 and D3 = 0.00002, referring to

the host and the vector population, respectively, in such a way that D3 <<

D1 = D2. Some other parameters, as recovery rate, host and vector death

rate and biting rate are taken equal to values proposed in Simpson et al.

[2012], i.e. γ = 0.195, µH = 0.0014, µV = 0.1 and α = 0.14.

We first consider the spatial spread of the disease within a season.
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Figure 4.1: Spatial spread of a vector-borne disease within a season
At I row: plots obtained with NV

NH
= 7, βH = 0.44, βV = 0.974 and R = 1.73

At II row: plots obtained with NV
NH

= 100, βH = 0.14, βV = 0.374 and R = 2.28

In Figure 4.1, we show for each compartments, infected hosts, removed

hosts and infected vectors two different cases. In both cases, the value of R is

grater than one, in the first case R = 1.73 and in the second case R = 2.28. In

the former we also decide to use NV

NH
= 7, βH = 0.44, βV = 0.974, differently

from the value that allow us to perform the simulation in the second row,

where we use NV

NH
= 100, βH = 0.14, βV = 0.374.

Then, we consider a multi-year period to observe some example of spatial
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spread of the vector-borne disease.
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Figure 4.2: Spatial spread of a vector-borne disease during six years
Plot obtained with NV

NH
= 7, βH = 0.44, βV = 0.974, δ = 8· 10−8 and S0 = 0.135
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Figure 4.3: Spatial spread of a vector-borne disease during six years
Plot obtained with NV

NH
= 7, βH = 0.44, βV = 0.974, δ = 8· 10−6 and S0 = 13.5

In Figure (4.2) and (4.3), we chose some values of the parameter as NV

NH
=

7, βH = 0.44, βV = 0.974. By varying the value of survival probability

of vectors during the winter, we can obtain two different patterns. With

δ = 8· 10−8, we obtained a value of S0 < 1 and with δ = 8· 10−6, S0 > 1.

Assuming the same values for the survival probabilities used to obtain the

plots in Figure (4.2) and (4.3), but varying the other three parameters, we

obtained the patterns showed in Figure (4.4) and (4.5). In those figures, we

chose NV

NH
= 60, βH = 0.14, βV = 0.374.
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Figure 4.4: Spatial spread of a vector-borne disease during six years
Plot obtained with NV

NH
= 60, βH = 0.14, βV = 0.374, δ = 8· 10−8 and S0 = 0.31
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Figure 4.5: Spatial spread of a vector-borne disease during six years
Plot obtained with NV

NH
= 60, βH = 0.14, βV = 0.374, δ = 8· 10−6 and S0 = 30, 9
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Focusing on Figure (4.2), (4.3), (4.4) and (4.5) and considering S0 = 1

the spreading threshold, we can observe a limited propagation of the disease

when we are in the situation with S0 < 1. In fact after the second or third

year the infection seems to disappear in the whole domain.

On the other hand, observing the cases in which S0 > 1, it seems that there

is a constant spreading speed of traveling wave. Presumably, it would be

possible to prove rigorously the existence of traveling waves in the spirit of

Lewis and Li [2012].
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Appendix A

To prove that ∂G1

∂R
= 0 and ∂G2

∂R
< 1, let us consider the derivatives of

(iH , rH , iV ), that are the solution functions of system (2.3.3), with respect to

iV (0) = Q, i.e.

∂(iH , rH , iV )T

∂Q

∣∣∣∣
Q=0

= U(t) = [u1, u2, u3]

where u1 = ∂iH
∂Q

,u2 = ∂rH
∂Q

, u3 = ∂iV
∂Q

.

Let f be defined by the right-hand side of (2.3.3), so that

U ′(t) = ∇f(iH(t, Q,R), iR(t, Q,R), iV (t, Q,R))U(t).

Evaluating it in Q = 0 and R = 0 and computing the derivative with respect

to Q, we obtain

u̇1 = αβH
NV

NH

u3 − (γH + µH)u1 u1(0) = 0

u̇2 = γHu1 − µHu2 u2(0) = 0

u̇3 = αβV u1 − µV u3 u3(0) = 1

(A.0.1)

One can note that the equations u1, u3 are exactly the same as in system

(2.2.10) and do not depend on u2.

From the definition (2.3.4, 2.3.5) of G, we have

∂G1

∂Q
= δu3(T )

∂G2

∂Q
= ρ(u1(T ) + u2(T )).
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Hence
∂G1

∂Q
= δz(T ), z(· ) solution of (2.2.10).

Similarly if we compute the derivatives with respect to R, defining

∂(iH , rH , iV )T

∂R

∣∣∣∣
R=0

= W (t) = [w1, w2, w3]

we obtain that

∂G1

∂R
= δw3(T )

∂G2

∂R
= ρ(w1(T ) + w2(T ))

where

ẇ1 = αβH
NV

NH

w3 − (γH + µH)w1 w1(0) = 0

ẇ2 = γHw1 − µHw2 w2(0) = 1

ẇ3 = αβVw1 − µVw3 w3(0) = 0

(A.0.2)

It is easy to see that the solution of (A.0.2) is w1(t) ≡ 0, w3(t) ≡ 0 and

w2(t) = e−µH t. Hence
∂G1

∂R
= δw3(τ) = 0

∂G2

∂R
= ρe−µH t < 1

(A.0.3)



Appendix B

The results regarding the model without vertical transmission are dis-

played in the following Figures.

The results are qualitatively quite similar to the case with vertical trans-

mission.

Fig (B.1a) (B.1b) (B.1c) (B.1d) (B.1e) (B.1f)

b2 0.1266 0.1266 0.1062 0.1062 0.1062 0.1062
d2 0.0624 0.06244 0.0549 0.0549 0.0549 0.0549
kM 91446,7 91446,7 91446,7 193717,5 193717,5 193717,5
α 0.5187 0.5132 0.5562 0.3071 0.5827 0.6891
βB 0.1013 0.1769 0.0876 0.0992 0.0606 0.1110
βM 0.6621 0.3181 0.3399 0.9991 0.5784 0.1112
γ 0.1981 0.2334 0.1543 0.1605 0.1982 0.2174

µWN 0.3476 0.3622 0.0478 0.4646 0.3548 0.1249
ε 0.1203 0.1340 0.1346 0.1438 0.1327 0.1175

Table B.1: Value of the parameters related to the plots in Figure B.1

Figures B.2 show how the disease reaches a stable point more slowly than

in the case of the model with vertical transmission.
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Multi-year model without vertical transmission
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Figure B.1: Simulations of the model without vertical transmission with different
sets of parameters in Table B.1 for S0 = 2
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Figure B.2: Simulations of the model without vertical transmission with the same
sets of parameters for different vale of S0 = 0.2, 1.5, 2, 4
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Figure B.3: Peaks and times of peak of infected birds and mosquitoes (Model
without vertical transmission)
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Figure B.8: Plot of the 20th year of some simulations starting with only one
infected bird for S0 = 2, Figure B.8a, and for S0 = 3, Figure B.8b . In red
line there are the infected mosquitoes, in blue the infected birds and in green the
removed birds
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N. Bacaër et al. On the biological interpretation of a definition for the

parameter R0 in periodic population models. Journal of mathematical

biology, 65(4):601–621, 2012.



90 Bibliography

C. L. Bailey, M. E. Faran, T. Gargan 2nd, and D. E. Hayes. Winter survival

of blood-fed and nonblood-fed culex pipiens l. The American journal of

tropical medicine and hygiene, 31(5):1054–1061, 1982.

N. T. Bailey et al. The mathematical theory of infectious diseases and its

applications. Charles Griffin & Company Ltd, 5a Crendon Street, High

Wycombe, Bucks HP13 6LE., 1975.

S. Baqar, C. G. Hayes, J. R. Murphy, and D. M. Watts. Vertical transmission

of West Nile virus by Culex and Aedes species mosquitoes. Technical

report, DTIC Document, 1993.

D. Bisanzio, M. Giacobini, L. Bertolotti, A. Mosca, L. Balbo, U. Kitron, and

G. M. Vazquez-Prokopec. Spatio-temporal patterns of distribution of West

Nile virus vectors in eastern Piedmont Region, Italy. Parasit Vectors, 4:

230, 2011.

C. Bowman, A. Gumel, P. Van den Driessche, J. Wu, and H. Zhu. A mathe-

matical model for assessing control strategies against west nile virus. Bul-

letin of mathematical biology, 67(5):1107–1133, 2005.

P. Calistri, F. Monaco, G. Savini, A. Guercio, G. Purpari, D. Vicari, S. Cas-

cio, R. Lelli, et al. Further spread of West Nile virus in italy. Vet Ital, 46

(4):467–474, 2010.

J. Castillo-Olivares and J. Wood. West Nile virus infection of horses. Vet-

erinary research, 35(4):467–483, 2004.

CDC. www.cdc.gov/westnile/. Centers of Disease Control and Prevention,

2014.

CDC. http://www.cdc.gov/westnile/statsmaps/. Centers of Disease Control

and Prevention, september 2013.

N. Chitnis, J. Cushing, and J. Hyman. Bifurcation analysis of a mathematical

model for malaria transmission. SIAM Journal on Applied Mathematics,

67(1):24–45, 2006.



91 Bibliography

N. Chitnis, D. Hardy, and T. Smith. A periodically-forced mathematical

model for the seasonal dynamics of malaria in mosquitoes. Bulletin of

mathematical biology, 74(5):1098–1124, 2012.

A. T. Ciota, A. C. Matacchiero, A. M. Kilpatrick, and L. D. Kramer. The

effect of temperature on life history traits of culex mosquitoes. Journal of

medical entomology, 51(1):55–62, 2014.

G. Cruz-Pacheco, L. Esteva, J. A. Montaõ-Hirose, and C. Vargas. Modelling
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