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Abstract. The elastic flow, which is the L2-gradient flow of the elastic energy, has several
applications in geometry and elasticity theory. We present stable discretizations for the elastic flow
in two-dimensional Riemannian manifolds that are conformally flat, i.e. conformally equivalent to
the Euclidean space. Examples include the hyperbolic plane, the hyperbolic disk, the elliptic plane
as well as any conformal parameterization of a two-dimensional manifold in R

d, d ≥ 3. Numerical
results show the robustness of the method, as well as quadratic convergence with respect to the space
discretization.
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1. Introduction. Elastic flow of curves in a two-dimensional Riemannian man-
ifold (M, g) is given as the L2-gradient flow of the elastic energy 1

2

∫
κ
2
g , where κg is

the geodesic curvature. It has been shown, see [6] for the general case and [11] for the
hyperbolic plane, that the gradient flow of the elastic energy is given as

(1.1) Vg = −(κg)sgsg −
1
2 κ

3
g − S0 κg ,

where Vg is the normal velocity of the curve with respect to the metric g, ∂sg = g−
1

2 ∂s,
s denoting arclength, and S0 is the sectional curvature of g. The evolution law (1.1)
decreases the curvature energy 1

2

∫
κ
2
g , and long term limits are expected to be critical

points of this energy. These critical points are called free elasticae, see [16], and are of
interest in geometry and mechanics. In particular, let us mention that a curve is an
absolute minimizer if and only if it is a geodesic. Recently the flow (1.1) was studied
in [11, 12], for the case of the hyperbolic plane, relying on earlier results in [14] for
a flat background metric. The hyperbolic plane is a particular case of a manifold
with non-positive sectional curvature, which is of particular interest as the set of free
elasticae is much richer, see [16].

In this paper, we allow for a general conformally flat metric. Examples include
the hyperbolic plane, the hyperbolic disk, the elliptic plane, as well as any conformal
parameterization of a two-dimensional manifold in R

d, d ≥ 3. For parameterized
hypersurfaces in R

3, earlier authors, see e.g. [9, 17, 18, 2, 4], used the surrounding
space in their numerical approximations, which leads to errors in directions normal to
the hypersurface. This will be avoided by the intrinsic approach used in this paper. In
particular, our numerical method leads to approximate solutions which remain on the
hypersurface after application of the parameterization map. In addition, in this paper
we will present a first numerical analysis for elastic flow in manifolds not embedded
in R

3. This in particular makes it possible to compute elastic flow of curves in the
hyperbolic plane in a stable way.

For finite element approximations of (1.1) introduced in [6] it does not appear
possible to prove a stability result. It is the aim of this paper to introduce novel
approximations for (1.1) that can be shown to be stable. In particular, we will show

†Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
‡Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany

1



2 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG

that the semidiscrete continuous-in-time approximations admit a gradient flow struc-
ture. For relevant literature on conformal metrics we refer to [19, 15]. Curvature
driven flows in hyperbolic spaces have been studied by [10, 1, 11, 12, 6], and related
numerical approximations of elastic flow of curves can be found in [14, 13, 5, 8] for
the Euclidean case, and in [9, 17, 18, 2, 4] for the case of curves on hypersurfaces in
R

3.
The outline of this paper is as follows. After formulating the problem in detail

in the next section, we will derive in Section 3 weak formulations which will be the
basis for our finite element approximation. In Section 4 we introduce continuous-in-
time, discrete-in-space discretizations which are based on the weak formulations. For
these semidiscrete formulations a stability result will be shown, which is the main
contribution of this work. In Section 5 we then formulate fully discrete variants for
which we show existence and uniqueness. In Section 6 we present several numerical
computations which show convergence rates as well as the robustness of the approach.
Finally, in the appendix we show the consistency of the weak formulations presented
in Section 3.

2. Mathematical formulations. Let I = R/Z be the periodic interval [0, 1].
Let ~x : I → R

2 be a parameterization of a closed curve Γ ⊂ R
2. On assuming that

|~xρ| > 0 on I, we introduce the arclength s of the curve, i.e. ∂s = |~xρ|
−1 ∂ρ, and set

(2.1) ~τ = ~xs and ~ν = −~τ⊥ ,

where ·⊥ denotes a clockwise rotation by π
2 . For the curvature κ of Γ(t) it holds that

(2.2) κ ~ν = ~κ = ~τs = ~xss =
1

|~xρ|

[
~xρ

|~xρ|

]

ρ

.

Let H ⊂ R
2 be an open set with metric tensor

(2.3) [(~v, ~w)g](~z) = g(~z)~v . ~w ∀ ~v, ~w ∈ R
2 for ~z ∈ H ,

where ~v . ~w = ~vT ~w is the standard Euclidean inner product, and where g : H → R>0

is a smooth positive weight function. The length induced by (2.3) is defined as

(2.4) [|~v|g](~z) = ([(~v,~v)g](~z))
1

2 = g
1

2 (~z) |~v| ∀ ~v ∈ R
2 for ~z ∈ H .

For λ ∈ R, we define the generalized elastic energy as

(2.5) Wg,λ(~x) =
1
2

∫

I

(κ2
g + 2λ) |~xρ|g dρ ,

where

(2.6) κg = g−
1

2 (~x)
[
κ − 1

2 ~ν .∇ ln g(~x)
]

is the curvature of the curve with respect to the metric g, see [6] for details. General-
ized elastic flow is defined as the L2–gradient flow of (2.5), and it was established in
[6] that a strong formulation is given by

(2.7) Vg = g
1

2 (~x) ~xt . ~ν = −(κg)sgsg −
1
2 κ

3
g − S0 κg + λκg ,
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where ∂sg = g−
1

2 (~x) ∂s and

(2.8) S0 = −
∆ ln g

2 g

is the sectional curvature of g. We refer to [6] for further details.
The two weak formulations of (2.7), for λ = 0, introduced in [6] are based on the

equivalent equation

g(~x) ~xt . ~ν = −
1

|~xρ|

(
[κg]ρ

g
1

2 (~x) |~xρ|

)

ρ

− 1
2 g

1

2 (~x)κ3
g − g

1

2 (~x)S0(~x)κg .

The first uses κ as a variable, while the second uses κg as a variable.
(U): Let ~x(0) ∈ [H1(I)]2. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2 and κ(t) ∈ H1(I) such
that∫

I

g(~x) ~xt . ~ν χ |~xρ| dρ =

∫

I

g−
1

2 (~x)
(
g−

1

2 (~x)
[
κ − 1

2 ~ν .∇ ln g(~x)
])

ρ
χρ |~xρ|

−1 dρ

− 1
2

∫

I

g−1(~x)
[
κ − 1

2 ~ν .∇ ln g(~x)
]3

χ |~xρ| dρ

−

∫

I

S0(~x)
[
κ − 1

2 ~ν .∇ ln g(~x)
]
χ |~xρ| dρ ∀ χ ∈ H1(I) ,

(2.9a)

∫

I

κ ~ν . ~η |~xρ| dρ+

∫

I

(~xρ . ~ηρ) |~xρ|
−1 dρ = 0 ∀ ~η ∈ [H1(I)]2 .

(2.9b)

(W): Let ~x(0) ∈ [H1(I)]2. For t ∈ (0, T ] find ~x(t) ∈ [H1(I)]2 and κg(t) ∈ H1(I) such
that
∫

I

g(~x) ~xt . ~ν χ |~xρ| dρ =

∫

I

g−
1

2 (~x) [κg]ρ χρ |~xρ|
−1 dρ− 1

2

∫

I

g
1

2 (~x)κ3
g χ |~xρ| dρ

−

∫

I

S0(~x) g
1

2 (~x)κg χ |~xρ| dρ ∀ χ ∈ H1(I) ,

(2.10a)

∫

I

g(~x)κg ~ν . ~η |~xρ| dρ+

∫

I

[
∇ g

1

2 (~x) . ~η + g
1

2 (~x)
~xρ . ~ηρ
|~xρ|2

]
|~xρ| dρ = 0 ∀ ~η ∈ [H1(I)]2 .

(2.10b)

For the numerical approximations based on (U) and (W) it does not appear possible
to prove stability results that show that discrete analogues of (2.5), for λ = 0, decrease
monotonically in time. Based on the techniques in [5], it is possible to introduce al-
ternative weak formulations, for which semidiscrete continuous-in-time finite element
approximations admit such a stability result.

We end this section with some example metrics that are of particular interest in
differential geometry. Two families of metrics are given by

(2.11a) g(~z) = (~z . ~e2)
−2µ , µ ∈ R , with H = H

2 = {~z ∈ R
2 : ~z . ~e2 > 0} ,

and

(2.11b) g(~z) =
4

(1− α |~z|2)2
, with H =

{
Dα = {~z ∈ R

2 : |~z| < α− 1

2 } α > 0 ,

R
2 α ≤ 0 .



4 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG

The case (2.11a) with µ = 1 models the hyperbolic plane, while µ = 0 corresponds to
the Euclidean case. The case (2.11b) with α = 1 gives a model for the hyperbolic disk,
while α = −1 models the geometry of the elliptic plane. Of course, α = 0 collapses
to the Euclidean case.

Further metrics of interest are induced by conformal parameterizations ~Φ : H →
R

d, d ≥ 3, of the two-dimensional Riemannian manifold M ⊂ R
d, i.e. M = ~Φ(H)

and |∂~e1
~Φ(~z)|2 = |∂~e2

~Φ(~z)|2 and ∂~e1
~Φ(~z) . ∂~e2

~Φ(~z) = 0 for all ~z ∈ H . Here examples
include the Mercator projection of the unit sphere without the north and the south
pole, ~Φ(~z) = cosh−1(~z . ~e1) (cos(~z . ~e2), sin(~z . ~e2), sinh(~z . ~e1))

T , so that

(2.11c) g(~z) = cosh−2(~z . ~e1) , with H = R
2 ,

as well as the catenoid parameterization ~Φ(~z) = (cosh(~z . ~e1) cos(~z . ~e2), cosh(~z . ~e1)
sin(~z . ~e2), ~z . ~e1)

T , so that

(2.11d) g(~z) = cosh2(~z . ~e1) , with H = R
2 .

Based on [20, p. 593] we also recall the following conformal parameterization of a torus
with large radius R > 1 and small radius r = 1 from [6]. In particular, we let s = [R2−

1]
1

2 and define ~Φ(~z) = s ([s2 + 1]
1

2 − cos(~z . ~e2))
−1 (s cos ~z . ~e1

s
, s sin ~z . ~e1

s
, sin(~z . ~e2))

T ,
so that

(2.11e) g(~z) = s
2 ([s2 + 1]

1

2 − cos(~z . ~e2))
−2 , with H = R

2 .

3. Weak formulations. We define the first variation of a quantity depending
in a differentiable way on ~x, in the direction ~χ as

(3.1)

[
δ

δ~x
A(~x)

]
(~χ) = lim

ε→0

A(~x + ε ~χ)−A(~x)

ε
,

and observe that, for ~x sufficiently smooth,

(3.2)

[
δ

δ~x
A(~x)

]
(~xt) =

d

dt
A(~x) .

For later use, on noting (3.1), (2.1) and (2.4), we observe that

[
δ

δ~x
gβ(~x)

]
(~χ) = β gβ−1(~x) ~χ .∇ g(~x) = β gβ(~x) ~χ .∇ ln g(~x) ∀ β ∈ R ,(3.3a)

[
δ

δ~x
∇ ln g(~x)

]
(~χ) = (D2 ln g(~x)) ~χ ,(3.3b)

[
δ

δ~x
|~xρ|

]
(~χ) =

~xρ . ~χρ

|~xρ|
= ~τ . ~χρ = ~τ . ~χs |~xρ| ,(3.3c)

[
δ

δ~x
|~xρ|g

]
(~χ) =

(
~τ . ~χs +

1
2 ~χ .∇ ln g(~x)

)
|~xρ|g ,(3.3d)

[
δ

δ~x
~τ

]
(~χ) =

[
δ

δ~x

~xρ

|~xρ|

]
(~χ) =

~χρ

|~xρ|
−

~xρ

|~xρ|2
~xρ . ~χρ

|~xρ|
= ~χs − ~τ (~χs . ~τ)

= (~χs . ~ν)~ν ,(3.3e)
[
δ

δ~x
~ν

]
(~χ) = −

[
δ

δ~x
~τ⊥
]
(~χ) = −(~χs . ~ν)~ν

⊥ = −(~χs . ~ν)~τ ,(3.3f)
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[
δ

δ~x
~ν |~xρ|

]
(~χ) = −

[
δ

δ~x
~x⊥
ρ

]
(~χ) = −~χ⊥

ρ = −~χ⊥
s |~xρ| ,(3.3g)

where we always assume that ~χ is sufficiently smooth so that all the quantities are
defined almost everywhere. E.g. ~χ ∈ [L∞(I)]2 for (3.3a), (3.3b), and ~χ ∈ [W 1,∞(I)]2

for (3.3c)–(3.3g). In addition, on recalling (2.1), we have for all ~a, ~b ∈ R
2 that

~a .~b⊥ = −~a⊥.~b ,(3.4a)

~a⊥ = (~a⊥ . ~τ)~τ + (~a⊥ . ~ν)~ν = (~a⊥ . ~ν⊥)~τ − (~a⊥ . ~τ⊥)~ν = (~a . ~ν)~τ − (~a . ~τ)~ν .(3.4b)

Let (·, ·) denote the L2–inner product on I. In the following we will discuss the
L2–gradient flow of the energy
(3.5)

Wg,λ(~x) =
(
1
2 κ

2
g + λ, |~xρ|g

)
=
(

1
2 g

− 1

2 (~x)
(
κ − 1

2 ~ν .∇ ln g(~x)
)2

+ λ g
1

2 (~x), |~xρ|
)
,

treating either κ or κg formally as an independent variable that has to satisfy the
side constraint (2.9b), or (2.10b), respectively. For the weak formulations of the L2–
gradient flow obtained in this way, it can be shown that they are consistent with the
strong formulation (2.7), see the appendix. Moreover, we will formally establish that
solutions to these weak formulations are indeed solutions to the L2–gradient flow of
(3.5). Mimicking these stability proofs on the discrete level will yield the main results
of this paper.

3.1. Based on κ. We define the Lagrangian

L(~x,κ⋆, ~y) = 1
2

(
g−

1

2 (~x)
(
κ
⋆ − 1

2 ~ν .∇ ln g(~x)
)2

+ 2λ g
1

2 (~x), |~xρ|
)

− (κ⋆ ~ν, ~y |~xρ|)− (~xs, ~ys |~xρ|) ,(3.6)

which is obtained on combining (3.5) and the side constraint

(3.7) (κ⋆ ~ν, ~η |~xρ|) + (~xs, ~ηs |~xρ|) = 0 ∀ ~η ∈ [H1(I)]2 ,

recall (2.9b) and (2.1). Taking variations ~η ∈ [H1(I)]2 in ~y, and setting
[

δ
δ~y

L
]
(~η) = 0

we obtain (3.7). Combining (3.7) and (2.9b) yields, on recalling (2.1), that κ
⋆ = κ,

and we are going to use this identity from now. Taking variations χ ∈ L2(I) in κ
⋆

and setting
[

δ
δκ⋆ L

]
(χ) = 0 leads to

(3.8)
(
g−

1

2 (~x)
(
κ − 1

2 ~ν .∇ ln g(~x)
)
− ~y . ~ν, χ |~xρ|

)
= 0 ∀ χ ∈ L2(I) ,

which implies that

(3.9) ~y . ~ν = g−
1

2 (~x)
(
κ − 1

2 ~ν .∇ ln g(~x)
)

⇐⇒ κ = g
1

2 (~x) ~y . ~ν+ 1
2 ~ν .∇ ln g(~x) .

Taking variations ~χ ∈ [H1(I)]2 in ~x, and then setting (Vg, g
1

2 (~x) ~χ . ~ν |~xρ|g) =

(g
3

2 (~x) ~xt . ~ν, ~χ . ~ν |~xρ|) = −
[

δ
δ~x

L
]
(~χ), where we have noted (2.7) and (2.4), yields,

on recalling (2.1), that

(
g

3

2 (~x) ~xt . ~ν, ~χ . ~ν |~xρ|
)
= − 1

2

((
κ − 1

2 ~ν .∇ ln g(~x)
)2

,

[
δ

δ~x
g−

1

2 (~x) |~xρ|

]
(~χ)

)

+ 1
2

(
g−

1

2 (~x)
(
κ − 1

2 ~ν .∇ ln g(~x)
)
,

[
δ

δ~x
~ν .∇ ln g(~x)

]
(~χ) |~xρ|

)
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+

(
κ ~y,

[
δ

δ~x
~ν |~xρ|

]
(~χ)

)
+

(
~yρ,

[
δ

δ~x
~τ

]
(~χ)

)
− λ

(
1,

[
δ

δ~x
g

1

2 (~x) |~xρ|

]
(~χ)

)
,

(3.10)

for all ~χ ∈ [H1(I)]2. On choosing ~χ = ~xt in (3.10) we obtain, on noting (3.2), that

(
g

3

2 (~x) (~xt . ~ν)
2, |~xρ|

)
= − 1

2

((
κ − 1

2 ~ν .∇ ln g(~x)
)2

,
[
g−

1

2 (~x) |~xρ|
]
t

)

+ 1
2

(
g−

1

2 (~x)
(
κ − 1

2 ~ν .∇ ln g(~x)
)
, [~ν .∇ ln g(~x)]t |~xρ|

)

+
(
κ ~y, [~ν |~xρ|]t

)
+ (~yρ, ~τt)− λ

(
1,
[
g

1

2 (~x) |~xρ|
]
t

)
.(3.11)

Differentiating (3.7) with respect to time, and then choosing ~η = ~y yields, on
recalling that κ⋆ = κ, that

(3.12) (κt, ~y . ~ν |~xρ|) + (κ ~y, (~ν |~xρ|)t) + (~τt, ~yρ) = 0 .

Combining (3.11), (3.12) and (3.9) gives, on noting (3.5), that

(
g

3

2 (~x) (~xt . ~ν)
2, |~xρ|

)
= − 1

2

((
κ − 1

2 ~ν .∇ ln g(~x)
)2

,
[
g−

1

2 (~x) |~xρ|
]
t

)

+ 1
2

(
g−

1

2 (~x)
(
κ − 1

2 ~ν .∇ ln g(~x)
)
, [~ν .∇ ln g(~x)]t |~xρ|

)

−
(
κt, g

− 1

2 (~x)
(
κ − 1

2 ~ν .∇ ln g(~x)
)
|~xρ|

)
− λ

(
1,
[
g

1

2 (~x) |~xρ|
]
t

)

= −
d

dt
Wg,λ(~x) .(3.13)

The above yields the gradient flow property of the new weak formulation, on noting
from (2.7) and (2.4) that the left hand side of (3.13) can be equivalently written as
(V2

g , |~xρ|g).
In order to derive a suitable weak formulation, we now return to (3.10). Combin-

ing (3.10), (3.3) and (3.4a) yields that

(
g

3

2 (~x) ~xt . ~ν, ~χ . ~ν |~xρ|
)
= − 1

2

(
g−

1

2 (~x)
(
κ − 1

2 ~ν .∇ ln g(~x)
)2

+ 2λ g
1

2 (~x), ~χs . ~τ |~xρ|
)

+ 1
4

(
g−

1

2 (~x)
(
κ − 1

2 ~ν .∇ ln g(~x)
)2

− 2λ g
1

2 (~x), ~χ . (∇ ln g(~x)) |~xρ|
)

+ 1
2

(
g−

1

2 (~x)
(
κ − 1

2 ~ν .∇ ln g(~x)
)
~ν, (D2 ln g(~x)) ~χ |~xρ|

)

− 1
2

(
g−

1

2 (~x)
(
κ − 1

2 ~ν .∇ ln g(~x)
)
[ln g(~x)]s, ~ν . ~χs |~xρ|

)
+ (~ys . ~ν, ~χs . ~ν |~xρ|)

+
(
κ ~y⊥, ~χs |~xρ|

)
∀ ~χ ∈ [H1(I)]2 .

(3.14)

Overall we obtain the following weak formulation.
(P): Let ~x(0) ∈ [H1(I)]2. For t ∈ (0, T ] find ~x(t), ~y(t) ∈ [H1(I)]2 and κ ∈ L2(I) such
that (3.14), (3.8) and

(3.15) (κ ~ν, ~η |~xρ|) + (~xs, ~ηs |~xρ|) = 0 ∀ ~η ∈ [H1(I)]2

hold. We remark that in the Euclidean case (3.8) collapses to κ = ~y . ~ν, and so
on eliminating κ from (3.14) and (3.15), and on noting (3.4b), we obtain that the
formulation (P) collapses to [5, (2.4a,b)] for the Euclidean elastic flow.
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3.2. Based on κg. We recall that (P) was inspired by the formulation (U),
which is based on κ acting as a variable. In order to derive an alternative formulation,
we now start from (W), where the curvature κg is a variable.

We begin by equivalently rewriting the side constraint (2.10b) as
(3.16)(

g
1

2 (~x)κg ~ν, ~η |~xρ|g

)
+ (~xs, ~ηs |~xρ|g) +

1
2 (∇ ln g(~x), ~η |~xρ|g) = 0 ∀ ~η ∈ [H1(I)]2 ,

where we have noted (2.1), (2.4) and 1
2 ∇ ln g(~x) = g−

1

2 (~x)∇ g
1

2 (~x). Combining (2.5)
and (3.16) leads to the Lagrangian

Lg(~x,κ
⋆
g , ~yg) =

1
2

(
(κ⋆

g)
2 + 2λ, |~xρ|g

)
−
(
g

1

2 (~x)κ⋆
g ~ν, ~yg |~xρ|g

)
− (~xs, (~yg)s |~xρ|g)

− 1
2 (∇ ln g(~x), ~yg |~xρ|g) .(3.17)

Taking variations ~η ∈ [H1(I)]2 in ~yg, and setting
[

δ
δ~yg

Lg

]
(~η) = 0 we obtain

(3.18)(
g

1

2 (~x)κ⋆
g ~ν, ~η |~xρ|g

)
+ (~xs, ~ηs |~xρ|g) +

1
2 (∇ ln g(~x), ~η |~xρ|g) = 0 ∀ ~η ∈ [H1(I)]2 .

Combining (3.18) and (3.16) yields that κ⋆
g = κg, and we are going to use this identity

from now. Taking variations χ ∈ L2(I) in κ
⋆
g and setting

[
δ

δκ⋆
g
Lg

]
(χ) = 0 yields that

(3.19)
(
κg − g

1

2 (~x) ~yg . ~ν, χ |~xρ|g

)
= 0 ∀ χ ∈ L2(I) ,

which implies that

(3.20) κg = g
1

2 (~x) ~yg . ~ν .

Taking variations ~χ ∈ [H1(I)]2 in ~x, and then setting (Vg, g
1

2 ~χ . ~ν |~xρ|g) =
(g(~x) ~xt . ~ν, ~χ . ~ν |~xρ|g) = −

[
δ
δ~x

Lg

]
(~χ), where we have noted (2.7), yields, on recalling

(2.1) and (2.4), that

(g(~x) ~xt . ~ν, ~χ . ~ν |~xρ|g) = − 1
2

(
κ
2
g + 2λ,

[
δ

δ~x
|~xρ|g

]
(~χ)

)

+

(
κg ~yg,

[
δ

δ~x
g

1

2 (~x)~ν |~xρ|g

]
(~χ)

)
+

(
(~yg)ρ,

[
δ

δ~x
g

1

2 (~x)~τ

]
(~χ)

)

+ 1
2

(
~yg,

[
δ

δ~x
(∇ ln g(~x)) |~xρ|g

]
(~χ)

)
∀ ~χ ∈ [H1(I)]2 .(3.21)

Choosing ~χ = ~xt in (3.21), and noting (3.2), yields that

(
g(~x) (~xt . ~ν)

2, |~xρ|g
)
= − 1

2

(
(κg)

2 + 2λ, (|~xρ|g)t
)
+
(
κg ~yg, (g

1

2 (~x)~ν |~xρ|g)t

)

+
(
(~yg)ρ, (g

1

2 (~x)~τ )t

)
+ 1

2 (~yg, ((∇ ln g(~x)) |~xρ|g)t) .(3.22)

On differentiating (3.16) with respect to time, and then choosing ~η = ~yg, we
obtain, on recalling (2.1) and (2.4), that

(
(κg)t ~yg, g

1

2 (~x)~ν |~xρ|g

)
+
(
κg ~yg, (g

1

2 (~x)~ν |~xρ|g)t

)
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+
(
(~yg)ρ, (g

1

2 (~x)~τ )t

)
+ 1

2 (~yg, ((∇ ln g(~x)) |~xρ|g)t) = 0.(3.23)

Choosing χ = (κg)t in (3.19), and combining with (3.22) and (3.23), yields, on recall-
ing (3.5), that

(3.24)
(
g(~x) (~xt . ~ν)

2, |~xρ|g
)
= −

d

dt
Wg,λ(~x) ,

which once again reveals the gradient flow structure, on noting from (2.7) that the
left hand side of (3.24) can be equivalently written as (V2

g , |~xρ|g).
In order to derive a suitable weak formulation, we now return to (3.21). Substi-

tuting (3.3) into (3.21) yields, on noting (2.4), that

(g(~x) ~xt . ~ν, ~χ . ~ν |~xρ|g)

= − 1
2

(
κ
2
g + 2λ− ~yg .∇ ln g(~x),

[
δ

δ~x
|~xρ|g

]
(~χ)

)

+ 1
2

(
~yg,

[
δ

δ~x
(∇ ln g(~x))

]
(~χ) |~xρ|g

)
+

(
κg ~yg . ~ν,

[
δ

δ~x
g(~x)

]
(~χ) |~xρ|

)

+

(
g(~x)κg ~yg,

[
δ

δ~x
~ν |~xρ|

]
(~χ)

)
+

(
(~yg)ρ . ~τ ,

[
δ

δ~x
g

1

2 (~x)

]
(~χ)

)

+

(
g

1

2 (~x) (~yg)ρ,

[
δ

δ~x
~τ

]
(~χ)

)

= − 1
2

(
κ
2
g + 2λ− ~yg .∇ ln g(~x),

[
~τ . ~χs +

1
2 ~χ .∇ ln g(~x)

]
|~xρ|g

)

+ 1
2

(
(D2 ln g(~x)) ~yg, ~χ |~xρ|g

)
+
(
g

1

2 (~x)κg ~yg . ~ν + 1
2 (~yg)s . ~τ , (∇ ln g(~x)) . ~χ |~xρ|g

)

−
(
g

1

2 (~x)κg ~yg, ~χ
⊥
s |~xρ|g

)
+ ((~yg)s . ~ν, ~χs .~ν |~xρ|g) ∀ ~χ ∈ [H1(I)]2 .

(3.25)

Then, on recalling (3.4a), we obtain the following weak formulation.
(Q): Let ~x(0) ∈ [H1(I)]2. For t ∈ (0, T ] find ~x(t), ~yg(t) ∈ [H1(I)]2 and κg(t) ∈ L2(I)
such that

(g(~x) ~xt . ~ν, ~χ . ~ν |~xρ|g)

= − 1
2

(
κ
2
g + 2λ− ~yg .∇ ln g(~x),

[
~χs . ~τ + 1

2 ~χ .∇ ln g(~x)
]
|~xρ|g

)

+ 1
2

(
(D2 ln g(~x)) ~yg, ~χ |~xρ|g

)
+
(
g

1

2 (~x)κg ~yg . ~ν + 1
2 (~yg)s . ~τ , ~χ . (∇ ln g(~x)) |~xρ|g

)

+
(
g

1

2 κg, ~χs . ~y
⊥
g |~xρ|g

)
+ ((~yg)s . ~ν, ~χs .~ν |~xρ|g) ∀ ~χ ∈ [H1(I)]2 ,

(3.26)

(3.19) and (3.16) hold. We remark that in the Euclidean case (3.19) collapses to
κg = ~yg . ~ν, and so on eliminating κg from (3.26) and (3.16), and on noting (3.4b),
we obtain that the formulation (Q) collapses to [5, (2.4a,b)] for the Euclidean elastic
flow.

4. Semidiscrete finite element approximations. Let [0, 1] = ∪J
j=1Ij , J ≥ 3,

be a decomposition of [0, 1] into intervals given by the nodes qj , Ij = [qj−1, qj ]. For
simplicity, and without loss of generality, we assume that the subintervals form an
equipartitioning of [0, 1], i.e. that

(4.1) qj = j h , with h = J−1 , j = 0, . . . , J .



ELASTIC FLOW IN RIEMANNIAN MANIFOLDS 9

Clearly, as I = R/Z we identify 0 = q0 = qJ = 1.
The necessary finite element spaces are defined as follows:

V h = {χ ∈ C(I) : χ |Ij is linear ∀ j = 1 → J} and V h = [V h]2 .

Let {χj}
J
j=1 denote the standard basis of V h, and let πh : C(I) → V h be the standard

interpolation operator at the nodes {qj}
J
j=1. We require also the local interpolation

operator πh
j ≡ πh |Ij , j = 1, . . . , J .

We define the mass lumped L2–inner product (u, v)h, for two piecewise continuous
functions, with possible jumps at the nodes {qj}

J
j=1, via

(4.2) (u, v)h =

J∑

j=1

∫

Ij

πh
j [u v] dρ = 1

2

J∑

j=1

hj

[
(u v)(q−j ) + (u v)(q+j−1)

]
,

where we define u(q±j ) = lim
δց0

u(qj ± δ). The interpolation operators πh, πh
j and the

definition (4.2) naturally extend to vector valued functions.

Let ( ~Xh(t))t∈[0,T ], with ~Xh(t) ∈ V h, be an approximation to (~x(t))t∈[0,T ]. Then,
similarly to (2.1), we set

(4.3) ~τh = ~Xh
s =

~Xh
ρ

| ~Xh
ρ |

and ~νh = −(~τh)⊥ .

For later use, we let ~ωh ∈ V h be the mass-lumped L2–projection of ~νh onto V h, i.e.

(4.4)
(
~ωh, ~ϕ | ~Xh

ρ |
)h

=
(
~νh, ~ϕ | ~Xh

ρ |
)
=
(
~νh, ~ϕ | ~Xh

ρ |
)h

∀ ~ϕ ∈ V h .

On noting (3.1), (4.3) and (2.4), we have the following discrete analogues of (3.3)
for all ~χ ∈ V h and for j = 1, . . . , J

[
δ

δ ~Xh
gβ( ~Xh)

]
(~χ) = β gβ−1( ~Xh) ~χ .∇ g( ~Xh)

= β gβ( ~Xh) ~χ .∇ ln g( ~Xh) on Ij , ∀ β ∈ R ,(4.5a)
[

δ

δ ~Xh
∇ ln g( ~Xh)

]
(~χ) = (D2 ln g( ~Xh)) ~χ on Ij ,(4.5b)

[
δ

δ ~Xh
| ~Xh

ρ |

]
(~χ) =

~Xh
ρ . ~χρ

| ~Xh
ρ |

= ~τh . ~χρ = ~τh . ~χs | ~X
h
ρ | on Ij ,(4.5c)

[
δ

δ ~Xh
| ~Xh

ρ |g

]
(~χ) =

(
~τh . ~χs +

1
2 ~χ .∇ ln g( ~Xh)

)
| ~Xh

ρ |g on Ij ,(4.5d)

[
δ

δ ~Xh
~τh
]
(~χ) =

[
δ

δ ~Xh

~Xh
ρ

| ~Xh
ρ |

]
(~χ) =

~χρ

| ~Xh
ρ |

−
~Xh
ρ

| ~Xh
ρ |

2

~Xh
ρ . ~χρ

| ~Xh
ρ |

= ~χs − ~τh (~χs . ~τ
h) = (~χs . ~ν

h)~νh on Ij ,(4.5e)
[

δ

δ ~Xh
~νh
]
(~χ) = −

[
δ

δ ~Xh
(~τh)⊥

]
(~χ) = −(~χs . ~ν

h)~τh on Ij ,(4.5f)

[
δ

δ ~Xh
~νh | ~Xh

ρ |

]
(~χ) = −

[
δ

δ ~Xh
( ~Xh

ρ )
⊥

]
(~χ) = −~χ⊥

ρ = −~χ⊥
s | ~Xh

ρ | on Ij .(4.5g)
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4.1. Based on κh. In the following we will discuss the L2–gradient flow of the
energy
(4.6)

Wh
g,λ(

~Xh, ~κh) = 1
2

(
g−

1

2 ( ~Xh)

(
κh − 1

2

~ωh

|~ωh|
.∇ ln g( ~Xh)

)2

+ 2λ g
1

2 ( ~Xh), | ~Xh
ρ |

)h

,

subject to the side constraint

(4.7)
(
κh ~νh, ~η | ~Xh

ρ |
)h

+
(
~Xh
s , ~ηs | ~X

h
ρ |
)
= 0 ∀ ~η ∈ V h .

On recalling (4.4), we see that (4.6) and (4.7) are discrete analogues of (3.5) and
(2.9b), respectively. We define the Lagrangian

Lh( ~Xh, κh, ~Y h) = 1
2

(
g−

1

2 ( ~Xh)

(
κh − 1

2

~ωh

|~ωh|
.∇ ln g( ~Xh)

)2

+ 2λ g
1

2 ( ~Xh), | ~Xh
ρ |

)h

−
(
κh ~νh, ~Y h | ~Xh

ρ |
)h

−
(
~Xh
s , ~Y

h
s | ~Xh

ρ |
)
,(4.8)

which is the corresponding discrete analogue of (3.6).

In addition to (4.5), we will require
[

δ

δ ~Xh
πh
[

~ωh

|~ωh|

]]
(~χ) in order to compute vari-

ations of (4.8). We establish this along the lines of [5, (3.2a,b)–(3.7)]. To this end, we

introduce the following operators. On recalling (4.2) and (4.3), let Ds, D̂s : V
h → V h

be such that for any t ∈ [0, T ]

(Ds η)(qj) =
| ~Xh(qj , t)− ~Xh(qj−1, t)| ηs(q

−
j ) + | ~Xh(qj+1, t)− ~Xh(qj , t)| ηs(q

+
j )

| ~Xh(qj , t)− ~Xh(qj−1, t)|+ | ~Xh(qj+1, t)− ~Xh(qj , t)|

=
η(qj+1)− η(qj−1)

| ~Xh(qj , t)− ~Xh(qj−1, t)|+ | ~Xh(qj+1, t)− ~Xh(qj , t)|
, j = 1, . . . , J ,(4.9a)

(D̂s η)(qj) =
(Ds η)(qj)

|(Ds
~Xh(t))(qj)|

=
η(qj+1)− η(qj−1)

| ~Xh(qj+1, t)− ~Xh(qj−1, t)|
, j = 1, . . . , J ,

(4.9b)

where qJ+1 = q1. Here, we make the following natural assumption

(Ch) ~Xh(qj , t) 6= ~Xh(qj+1, t) and ~Xh(qj−1, t) 6= ~Xh(qj+1, t),

j = 1, . . . , J, for all t ∈ [0, T ] .

Hence (4.9) is well-defined. As usual, Ds, D̂s : V
h → V h are defined component-wise.

It follows from (4.4), (4.3) and (4.9a) that, for all ~ϕ ∈ V h,
(4.10)(

~ωh, ~ϕ | ~Xh
ρ |
)h

= −
(
(~τh)⊥, ~ϕ | ~Xh

ρ |
)h

= −
(
( ~Xh

ρ )
⊥, ~ϕ

)h
= −

(
(Ds

~Xh)⊥, ~ϕ | ~Xh
ρ |
)h

.

Therefore, we have from (4.10), (Ch) and (4.9b) that

(4.11) ~ωh = −(Ds
~Xh)⊥ and πh

[
~ωh

|~ωh|

]
= −(D̂s

~Xh)⊥ .
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Then it is a simple matter to compute, for any ~χ ∈ V h,
[

δ

δ ~Xh
D̂s

~Xh

]
(~χ) = ~πh

[[
Id− (D̂s

~Xh)⊗ (D̂s
~Xh)

] (
D̂s ~χ

)]

= ~πh
[
|~ωh|−2

(
(D̂s ~χ) . ~ω

h
)
~ωh
]
,

so that
(4.12)[

δ

δ ~Xh
~πh ~ωh

|~ωh|

]
(~χ) = −

([
δ

δ ~Xh
D̂s

~Xh

]
(~χ)

)⊥

= −~πh
[
|~ωh|−2

(
(D̂s ~χ) . ~ω

h
)
(~ωh)⊥

]
.

Similarly to (4.10), we have for any ~η ∈ V h that

(4.13)
(
~ηs, ~ϕ | ~Xh

ρ |
)h

=
(
Ds ~η, ~ϕ | ~Xh

ρ |
)h

∀ ~ϕ ∈ V h ,

Hence, it follows from (4.13), (4.9b) and (4.11) that

(4.14)
(
|~ωh|−1 ~ηs, ~ϕ | ~Xh

ρ |
)h

=
(
D̂s ~η, ~ϕ | ~Xh

ρ |
)h

∀ ~η, ~ϕ ∈ V h .

Therefore, combining (4.12) and (4.14) yields for any ~ϕ, ~χ ∈ V h that

(
~ϕ,

[
δ

δ ~Xh

~ωh

|~ωh|

]
(~χ) | ~Xh

ρ |

)h

= −
(
|~ωh|−2 ~ϕ,

(
(D̂s ~χ) . ~ω

h
)
(~ωh)⊥| ~Xh

ρ |
)h

= −
(
|~ωh|−3

(
~ϕ . (~ωh)⊥

)
~ωh, ~χs | ~X

h
ρ |
)h

= −

(
|~ωh|−1 ~ϕ .

(
~ωh

|~ωh|

)⊥

,
~ωh

|~ωh|
. ~χs | ~X

h
ρ |

)h

.

(4.15)

Taking variations χ ∈ V h in κh and setting
[

δ
δκh Lh

]
(χ) = 0 leads to

(4.16)

(
g−

1

2 ( ~Xh)

(
κh − 1

2

~ωh

|~ωh|
.∇ ln g( ~Xh)

)
− ~Y h . ~νh, χ | ~Xh

ρ |

)h

= 0 ∀ χ ∈ V h ,

which, on recalling (4.4), implies the discrete analogue of (3.9)

πh
[
~Y h . ~ωh

]
= πh

[
g−

1

2 ( ~Xh)

(
κh − 1

2

~ωh

|~ωh|
.∇ ln g( ~Xh)

)]

⇐⇒ κh = πh

[
g

1

2 ( ~Xh) ~Y h . ~ωh + 1
2

~ωh

|~ωh|
.∇ ln g( ~Xh)

]
.(4.17)

Taking variations ~η ∈ V h in ~Y h, and setting
[

δ

δ~Y h
Lh
]
(~η) = 0 we obtain (4.7). Setting

(
g

3

2 ( ~Xh) ~Xh
t . ~ωh, ~χ . ~ωh | ~Xh

ρ |
)h

= −
[

δ

δ ~Xh
Lh
]
(~χ), for variations ~χ ∈ V h in ~Xh yields,

as a discrete analogue to (3.10),

(
g

3

2 ( ~Xh) ~Xh
t . ~ωh, ~χ . ~ωh | ~Xh

ρ |
)h

= − 1
2

((
κh − 1

2

~ωh

|~ωh|
.∇ ln g( ~Xh)

)2

,

[
δ

δ ~Xh
g−

1

2 ( ~Xh) | ~Xh
ρ |

]
(~χ)

)h
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− λ

(
1,

[
δ

δ ~Xh
g

1

2 ( ~Xh) | ~Xh
ρ |

]
(~χ)

)h

+ 1
2

(
g−

1

2 ( ~Xh)

(
κh − 1

2

~ωh

|~ωh|
.∇ ln g( ~Xh)

)
,

[
δ

δ ~Xh

~ωh

|~ωh|
.∇ ln g( ~Xh)

]
(~χ) | ~Xh

ρ |

)h

+

(
κh ~Y h,

[
δ

δ ~Xh
~νh | ~Xh

ρ |

]
(~χ)

)h

+

(
~Y h
ρ ,

[
δ

δ ~Xh
~τh
]
(~χ)

)
.

(4.18)

Choosing ~χ = ~Xh
t in (4.18), where we observe a discrete variant of (3.2), yields that

(
g

3

2 ( ~Xh) ( ~Xh
t . ~ωh)2, | ~Xh

ρ |
)h

= − 1
2

((
κh − 1

2

~ωh

|~ωh|
.∇ ln g( ~Xh)

)2

,
[
g−

1

2 ( ~Xh) | ~Xh
ρ |
]
t

)h

− λ
(
1,
[
g

1

2 ( ~Xh) | ~Xh
ρ |
]
t

)h

+ 1
2

(
g−

1

2 ( ~Xh)

(
κh − 1

2

~ωh

|~ωh|
.∇ ln g( ~Xh)

)
,

[
~ωh

|~ωh|
.∇ ln g( ~Xh)

]

t

| ~Xh
ρ |

)h

+
(
κh ~Y h,

[
~νh | ~Xh

ρ |
]
t

)h
+
(
~Y h
ρ , ~τht

)
.(4.19)

Differentiating (4.7) with respect to time, and then choosing ~η = ~Y h yields that

(4.20)
(
κh
t ,

~Y h . ~νh | ~Xh
ρ |
)h

+
(
κh ~Y h, (~νh | ~Xh

ρ |)t

)h
+
(
~τht ,

~Y h
ρ

)
= 0 .

Combining (4.19), (4.20) and (4.16) with χ = κh
t gives, on noting (4.6), that

(
g

3

2 ( ~Xh) ( ~Xh
t . ~ω)2, | ~Xh

ρ |
)h

= − 1
2

((
κh − 1

2

~ω

|~ω|
.∇ ln g( ~Xh)

)2

,
[
g−

1

2 ( ~Xh) | ~Xh
ρ |
]
t

)h

+ 1
2

(
g−

1

2 ( ~Xh)

(
κh − 1

2

~ω

|~ω|
.∇ ln g( ~Xh)

)
,

[
~ω

|~ω|
.∇ ln g( ~Xh)

]

t

| ~Xh
ρ |

)h

−

(
κh
t , g

− 1

2 ( ~Xh)

(
κh − 1

2

~ω

|~ω|
.∇ ln g( ~Xh)

)
| ~Xh

ρ |

)h

− λ
(
1,
[
g

1

2 ( ~Xh) | ~Xh
ρ |
]
t

)h

= −
d

dt
Wh

g,λ( ~X
h, ~κh) .

(4.21)

In order to derive a suitable approximation of (P), we now return to (4.18).
Combining (4.18), (4.5) and (4.15), on noting (3.4a), yields

(
g

3

2 ( ~Xh) ~Xh
t . ~ωh, ~χ . ~ωh | ~Xh

ρ |
)h

=
(
~Y h
s . ~νh, ~χs . ~ν

h | ~Xh
ρ |
)

− 1
2

(
g−

1

2 ( ~Xh)

[
κh − 1

2

~ωh

|~ωh|
.∇ ln g( ~Xh)

]2
+ 2λ g

1

2 ( ~Xh), ~χs . ~τ
h | ~Xh

ρ |

)h
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+ 1
4

(
g−

1

2 ( ~Xh)

[
κh − 1

2

~ωh

|~ωh|
.∇ ln g( ~Xh)

]2
− 2λ g

1

2 ( ~Xh), ~χ . (∇ ln g( ~Xh)) | ~Xh
ρ |

)h

+ 1
2

(
g−

1

2 ( ~Xh)

[
κh − 1

2

~ωh

|~ωh|
.∇ ln g( ~Xh)

]
~ωh

|~ωh|
, (D2 ln g( ~Xh)) ~χ | ~Xh

ρ |

)h

− 1
2

(
g−

1

2 ( ~Xh)

[
κh − 1

2

~ωh

|~ωh|
.∇ ln g( ~Xh)

]
∇ ln g( ~Xh)

|~ωh|
.

(
~ωh

|~ωh|

)⊥

,
~ωh

|~ωh|
. ~χs | ~X

h
ρ |

)h

+
(
κh (~Y h)⊥, ~χs | ~X

h
ρ |
)h

∀ ~χ ∈ V h ,

(4.22)

which is the discrete analogue of (3.14), on noting that ~ν⊥ = ~τ .
Hence we obtain the following approximation of (P).

(Ph)
h: Let ~Xh(0) ∈ V h. For t ∈ (0, T ] find ( ~Xh(t), κh(t), ~Y h(t)) ∈ V h × V h × V h

such that (4.22), (4.16) and (4.7) hold.

We note that in the Euclidean case it follows from (4.17) that κh = πh [~Y h . ~ωh],
and so on eliminating κh, and on noting (4.4), the approximation (Ph)

h collapses to
the isotropic closed curve version of (3.36a,b), with β = 0, in [5].

Theorem 4.1. Let the assumption (Ch) be satisfied and let ( ~Xh(t), ~Y h(t)) ∈ V h×
V h, for t ∈ (0, T ], be a solution to (Ph)

h. Then the solution satisfies the stability bound
(4.21).

Proof. The proof is given in (4.19), (4.20) and (4.21).

Remark 4.2. We note why we choose ~ωh

|~ωh|
in (4.6) as opposed to ~νh or ~ωh. In the

case of ~νh, (4.17) and (4.18) still hold with ~ωh

|~ωh|
replaced by ~ωh and ~νh, respectively.

However, then the elimination of κh from the modified (4.18) via the modified (4.17)
now leads to a far more complicated version of (4.22). In the case of ~ωh, one needs

to compute
[

δ

δ ~Xh
~ωh
]
as opposed to

[
δ

δ ~Xh

~ωh

|~ωh|

]
. However, on noting (4.11) and (4.9),

it is easier to compute the latter. Hence, the choice of ~ωh

|~ωh|
in (4.6).

Remark 4.3. Due to (4.7), the approximation (Ph)
h satisfies the equidistribution

property, i.e. any two neighbouring elements are either parallel or of the same length,
at every t > 0. For this property to hold, it is crucial to employ mass lumping in
(4.7). We refer to [3, Rem. 2.4] for more details.

4.2. Based on κh
g . Let (·, ·)⋄ denote a discrete L2–inner product based on some

numerical quadrature rule. In particular, for two piecewise continuous functions, with
possible jumps at the nodes {qj}

J
j=1, we let (u, v)⋄ = I⋄(u v), where

(4.23)

I⋄(f) =

J∑

j=1

hj

K∑

k=1

wk f(αk qj−1+(1−αk) qj) , wk > 0 , αk ∈ [0, 1] , k = 1, . . . ,K ,

with K ≥ 2,
∑K

k=1 wk = 1, and with distinct αk, k = 1, . . . ,K. A special case is
(·, ·)⋄ = (·, ·)h, recall (4.2), but we also allow for more accurate quadrature rules.

We define the Lagrangian

Lh
g (

~Xh, κh
g ,

~Y h
g ) = 1

2

(
(κh

g )
2 + 2λ, | ~Xh

ρ |g

)⋄
−
(
g

1

2 ( ~Xh)κh
g ~ν

h, ~Y h
g | ~Xh

ρ |g

)⋄
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−
(
~Xh
s , (

~Y h
g )s | ~X

h
ρ |g

)⋄
− 1

2

(
∇ ln g( ~Xh), ~Y h

g | ~Xh
ρ |g

)⋄
,(4.24)

which is the corresponding discrete analogue of (3.17). Taking variations χ ∈ V h in

κh
g and setting

[
δ

δκh
g
Lh
g

]
(χ) = 0 yields that

(4.25)
(
κh
g − g

1

2 ( ~Xh) ~Y h
g . ~νh, χ | ~Xh

ρ |g

)⋄
= 0 ∀ χ ∈ V h .

Taking variations ~η ∈ V h in ~Y h
g , and setting

[
δ

δ~Y h
g

Lh
g

]
(~η) = 0 we obtain

(4.26)
(
g

1

2 ( ~Xh)κh
g ~ν

h, ~η | ~Xh
ρ |g

)⋄
+
(
~Xh
s , ~ηs |

~Xh
ρ |g

)⋄
+ 1

2

(
∇ ln g( ~Xh), ~η | ~Xh

ρ |g

)⋄
= 0 ,

for all ~η ∈ V h, as a discrete analogue of (3.16). Taking variations ~χ ∈ V h in ~Xh, and

then setting (g( ~Xh) ~Xh
t . ~ωh, ~χ . ~ωh | ~Xh

ρ |g)
⋄ = −

[
δ

δ ~Xh
Lh
g

]
(~χ), we obtain

(
g( ~Xh) ~Xh

t . ~ωh, ~χ . ~ωh | ~Xh
ρ |g

)⋄

= − 1
2

(
(κh

g )
2 + 2λ,

[
δ

δ ~Xh
| ~Xh

ρ |g

]
(~χ)

)⋄

+

(
κh
g
~Y h
g ,

[
δ

δ ~Xh
g( ~Xh)~νh | ~Xh

ρ |

]
(~χ)

)⋄

+

(
(~Y h

g )ρ,

[
δ

δ ~Xh
g

1

2 ( ~Xh)~τh
]
(~χ)

)⋄

+ 1
2

(
~Y h
g ,

[
δ

δ ~Xh
(∇ ln g( ~Xh)) | ~Xh

ρ |g

]
(~χ)

)⋄

,

(4.27)

for all ~χ ∈ V h. Choosing ~χ = ~Xh
t in (4.27), and noting a discrete variant of (3.2), as

well as (2.4), yields that
(
g( ~Xh) ( ~Xh

t . ~ωh)2, | ~Xh
ρ |g

)⋄

= − 1
2

(
(κh

g )
2 + 2λ, (| ~Xh

ρ |g)t

)⋄
+
(
κh
g
~Y h
g , (g

1

2 ( ~Xh)~νh | ~Xh
ρ |g)t

)⋄

+
(
(~Y h

g )ρ, (g
1

2 ( ~Xh)~τh)t

)⋄
+ 1

2

(
~Y h
g , ((∇ ln g( ~Xh)) | ~Xh

ρ |g)t

)⋄
.(4.28)

On differentiating (4.26) with respect to time, and then choosing ~η = ~Y h
g , we

obtain, on recalling (4.3) and (2.4), that
(
(κh

g )t ~Y
h
g , g

1

2 ( ~Xh)~νh | ~Xh
ρ |g

)⋄
+
(
κh
g
~Y h
g , (g

1

2 ( ~Xh)~νh | ~Xh
ρ |g)t

)⋄

+
(
(~Y h

g )ρ, (g
1

2 ( ~Xh)~τh)t

)⋄
+ 1

2

(
~Y h
g , ((∇ ln g( ~Xh)) | ~Xh

ρ |g)t

)⋄
= 0.(4.29)

Choosing χ = (κh
g )t in (4.25), and combining with (4.28) and (4.29), yields that

(4.30)
(
g( ~Xh) ( ~Xh

t . ~ωh)2, | ~Xh
ρ |g

)⋄
+ 1

2

d

dt

(
(κh

g )
2 + 2λ, | ~Xh

ρ |g

)⋄
= 0 ,

which reveals the discrete gradient flow structure. Also note that (4.28)–(4.30) are
the discrete analogues of (3.22)–(3.24).

In order to derive a suitable finite element approximation, we now return to (4.27).
Substituting (4.5) into (4.27) yields, on noting (4.3) and (2.4), that

(
g( ~Xh) ~Xh

t . ~ωh, ~χ . ~ωh | ~Xh
ρ |g

)⋄
= 1

2

(
~Y h
g ,

[
δ

δ ~Xh
(∇ ln g( ~Xh))

]
(~χ) | ~Xh

ρ |g

)⋄
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− 1
2

(
(κh

g )
2 + 2λ− ~Y h

g .∇ ln g( ~Xh),

[
δ

δ ~Xh
| ~Xh

ρ |g

]
(~χ)

)⋄

+

(
κh
g
~Y h
g . ~νh

[
δ

δ ~Xh
g( ~Xh)

]
(~χ) | ~Xh

ρ |

)⋄

+

(
g( ~Xh)κh

g
~Y h
g ,

[
δ

δ ~Xh
~νh | ~Xh

ρ |

]
(~χ)

)⋄

+

(
(~Y h

g )ρ . ~τ
h,

[
δ

δ ~Xh
g

1

2 ( ~Xh)

]
(~χ)

)⋄

+

(
g

1

2 ( ~Xh) (~Y h
g )ρ,

[
δ

δ ~Xh
~τh
]
(~χ)

)⋄

= − 1
2

(
(κh

g )
2 + 2λ− ~Y h

g .∇ ln g( ~Xh),
[
~τh . ~χs +

1
2 ~χ .∇ ln g( ~Xh)

]
| ~Xh

ρ |g

)⋄

+ 1
2

(
(D2 ln g( ~Xh)) ~Y h

g , ~χ | ~Xh
ρ |g

)⋄

+
(
g

1

2 ( ~Xh)κh
g
~Y h
g . ~νh + 1

2 (
~Y h
g )s . ~τ

h, (∇ ln g( ~Xh)) . ~χ | ~Xh
ρ |g

)⋄

−
(
g

1

2 ( ~Xh)κh
g
~Y h
g , ~χ⊥

s | ~Xh
ρ |g

)⋄
+
(
(~Y h

g )s . ~ν
h, ~χs . ~ν

h | ~Xh
ρ |g

)⋄
∀ ~χ ∈ V h .

(4.31)

Then (4.31), (4.25) and (4.26), on recalling (3.4a), give rise to the following approxi-
mation of (Q).

(Qh)
⋄: Let ~Xh(0) ∈ V h. For t ∈ (0, T ] find ( ~Xh(t), κh

g (t),
~Y h
g (t)) ∈ V h×V h×V h

such that
(
g( ~Xh) ~Xh

t . ~ωh, ~χ . ~ωh | ~Xh
ρ |g

)⋄
−
(
(~Y h

g )s . ~ν
h, ~χs . ~ν

h | ~Xh
ρ |g

)⋄

= − 1
2

(
(κh

g )
2 + 2λ− ~Y h

g .∇ ln g( ~Xh),
[
~χs . ~τ

h + 1
2 ~χ .∇ ln g( ~Xh)

]
| ~Xh

ρ |g

)⋄

+ 1
2

(
(D2 ln g( ~Xh)) ~Y h

g , ~χ | ~Xh
ρ |g

)⋄
+
(
g

1

2 ( ~Xh)κh
g , ~χs . (~Y

h
g )⊥ | ~Xh

ρ |g

)⋄

+
(
g

1

2 ( ~Xh)κh
g
~Y h
g . ~νh + 1

2 (
~Y h
g )s . ~τ

h, ~χ . (∇ ln g( ~Xh)) | ~Xh
ρ |g

)⋄
∀ ~χ ∈ V h ,

(4.32)

(4.25) and (4.26) hold.

Theorem 4.4. Let | ~Xh
ρ | > 0 almost everywhere in I × (0, T ). Let ( ~Xh(t), κh

g (t),
~Y h
g (t)) ∈ V h × V h × V h, for t ∈ (0, T ], be a solution to (Qh)

⋄. Then the solution
satisfies the stability bound (4.30).

Proof. We have already shown that a solution to (Qh)
⋄ satisfies (4.28) and (4.29).

Hence choosing χ = (κh
g )t in (4.25), and combining with (4.28) and (4.29), yields (4.30)

as before.

Remark 4.5. We stress that unlike for (Ph)
h, recall Remark 4.3, it is not possible

to prove an equidistribution property for (Qh)
⋄, even if we employ mass lumping in

(4.26). It is for this reason that we also consider higher order quadrature rules. The
motivation behind considering (Qh)

⋄ as an alternative to (Ph)
h is twofold. Firstly,

from a variational point of view, it is more natural to work with κg as a variable, since
(2.5) is naturally defined in terms of κg. Secondly, the techniques introduced for (Qh)

⋄

will be exploited in [7] for stable approximations of Willmore flow for axisymmetric
hypersurfaces in R

3.

5. Fully discrete finite element approximations. Let 0 = t0 < t1 < . . . <
tM−1 < tM = T be a partitioning of [0, T ] into possibly variable time steps ∆tm =

tm+1 − tm, m = 0 → M − 1. We set ∆t = maxm=0→M−1 ∆tm. For a given ~Xm ∈ V h
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Table 1

Expressions for terms that are relevant for the implementation of the presented finite element
approximations.

g ∇ ln g(~x) D2 ln g(~x)

(2.11a) −2µ (~x .~e2)
−1 ~e2 2µ (~x .~e2)

−2 ~e2 ⊗ ~e2

(2.11b) 4α
1−α |~x|2 ~x

4α
1−α |~x|2 Id + 8α2

(1−α |~x|2)2 ~x⊗ ~x

(2.11c) −2 tanh(~x .~e1)~e1 −2 cosh−2(~x .~e1)~e1 ⊗ ~e1

(2.11d) 2 tanh(~x .~e1)~e1 2 cosh−2(~x .~e1)~e1 ⊗ ~e1

(2.11e) −2 sin(~x . ~e2)

[s2+1]
1

2 −cos(~x . ~e2)
~e2 2 1−[s2+1]

1

2 cos(~x . ~e2)

([s2+1]
1

2 −cos(~x . ~e2))2
~e2 ⊗ ~e2

we set ~νm = −
[ ~Xm

ρ ]⊥

| ~Xm
ρ |

, as the discrete analogue to (2.1). We also let ~ωm ∈ V h be the

natural fully discrete analogue of ~ωh ∈ V h, recall (4.4). Given ~Xm ∈ V h, the fully
discrete approximations we propose in this section will always seek a parameteriza-
tion ~Xm+1 ∈ V h at the new time level, together with a suitable approximation of
curvature.

For the metrics we consider in this paper, we summarize in Table 1 the quantities
that are necessary in order to implement the numerical schemes presented below.

5.1. Based on κm+1. We propose the following fully discrete approximation of
(Ph)

h.

(Pm)h: Let ( ~X0, κ0, ~Y 0) ∈ V h × V h × V h. For m = 0, . . . ,M − 1, we define κm
g =

πh
[
g−

1

2 ( ~Xm) [κm − 1
2

~ωm

|~ωm| .∇ ln g( ~Xm)]
]
, and then find ( ~Xm+1, κm+1, ~Y m+1) ∈

V h × V h × V h such that

(
g

3

2 ( ~Xm)
~Xm+1 − ~Xm

∆tm
. ~ωm, ~χ . ~ωm | ~Xm

ρ |

)h

−
(
~Y m+1
s , ~χs | ~X

m
ρ |
)

+
(
~Y m
s . ~τm, ~χs . ~τ

m | ~Xm
ρ |
)
= − 1

2

(
g

1

2 ( ~Xm)
[
(κm

g )2 + 2λ
]
, ~χs . ~τ

m | ~Xm
ρ |
)h

+ 1
4

(
g

1

2 ( ~Xm)
[
(κm

g )2 − 2λ
]
, ~χ . (∇ ln g( ~Xm)) | ~Xm

ρ |
)h

+ 1
2

(
κm
g

~ωm

|~ωm|
, (D2 ln g( ~Xm)) ~χ | ~Xm

ρ |

)h

+
(
κm (~Y m)⊥, ~χs | ~X

m
ρ |
)h

− 1
2

(
κm
g

|~ωm|
∇ ln g( ~Xm) .

(
~ωm

|~ωm|

)⊥

, ~χs .
~ωm

|~ωm|
| ~Xm

ρ |

)h

∀ ~χ ∈ V h ,(5.1a)

(
g

1

2 ( ~Xm) ~Y m+1 . ~ωm, ~η . ~ωm | ~Xm
ρ |
)h

+ 1
2

(
~ωm

|~ωm|
.∇ ln g( ~Xm), ~η . ~ωm | ~Xm

ρ |

)h

+
(
~Xm+1
s , ~ηs | ~X

m
ρ |
)
= 0 ∀ ~η ∈ V h(5.1b)

and

(5.2) κm+1 = πh

[
g

1

2 ( ~Xm) ~Y m+1 . ~ωm + 1
2

~ωm

|~ωm|
.∇ ln g( ~Xm)

]
.
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Notice that (5.1b) was obtained on combining (5.2) with a fully discrete variant of
(4.7), and noting (4.4), in order to obtain a lower dimensional linear system to solve

for the unknowns ~Xm+1 and ~Y m+1 that is decoupled from (5.2). Moreover, (5.1a) is
a fully discrete approximation of (4.22), on noting the definition of κm

g .
We make the following mild assumption.

(A)h Let | ~Xm
ρ | > 0 for almost all ρ ∈ I, let dim span{~ωm(qj) : j = 1, . . . , J} = 2,

and let ~ωm(qj) 6= ~0, j = 1, . . . , J .

Lemma 5.1. Let the assumption (A)h hold. Then there exists a unique solution

( ~Xm+1, κm+1, ~Y m+1) ∈ V h × V h × V h to (Pm)h.

Proof. As (5.1) is linear, existence follows from uniqueness. To investigate the

latter, we consider the system: Find ( ~X, ~Y ) ∈ V h × V h such that

(
g

3

2 ( ~Xm) ~Xm+1 . ~ωm, ~χ . ~ωm | ~Xm
ρ |
)h

−∆tm

(
~Ys, ~χs | ~X

m
ρ |
)
= 0 ∀ ~χ ∈ V h ,(5.3a)

(
g

1

2 ( ~Xm) ~Y . ~ωm, ~η . ~ωm | ~Xm
ρ |
)h

+
(
~Xs, ~ηs | ~X

m
ρ |
)
= 0 ∀ ~η ∈ V h .(5.3b)

Choosing ~χ = ~X in (5.3a) and ~η = ~Y in (5.3b), and combining, yields that

(5.4) πh [ ~X . ~ωm] = πh [~Y . ~ωm] = 0 ∈ V h .

As a consequence, it follows from choosing ~χ = ~Y in (5.3a) and ~η = ~X in (5.3b) that
~X and ~Y are constant vectors. Combining (5.4) and the assumption (A)h then yields

that ~X = ~Y = ~0 ∈ V h.
Hence we have shown the existence of a unique ( ~Xm+1, ~Y m+1) ∈ V h×V h solving

(5.1), which via (5.2) yields existence and uniqueness of κm+1 ∈ V h.

5.2. Based on κm+1
g . We propose the following fully discrete approximation of

(Qh)
⋄.

(Qm)⋄: Let ( ~X0, κ0
g,
~Y 0
g ) ∈ V h × V h × V h. For m = 0, . . . ,M − 1, find ( ~Xm+1, κm+1

g ,
~Y m+1
g ) ∈ V h × V h × V h such that

(
g( ~Xm)

~Xm+1 − ~Xm

∆tm
. ~ωm, ~χ . ~ωm | ~Xm

ρ |g

)⋄

−
(
(~Y m+1

g )s, ~χs | ~X
m
ρ |g

)⋄

+
(
(~Y m

g )s . ~τ
m, ~χs . ~τ

m | ~Xm
ρ |g

)⋄

= − 1
2

(
(κm

g )2 + 2λ− ~Y m
g .∇ ln g( ~Xm),

[
~χs . ~τ

m + 1
2 ~χ .∇ ln g( ~Xm)

]
| ~Xm

ρ |g

)⋄

+ 1
2

(
(D2 ln g( ~Xm)) ~Y m

g , ~χ | ~Xm
ρ |g

)⋄

+
(
g

1

2 ( ~Xm)κm
g
~Y m
g . ~νm + 1

2 (
~Y m
g )s . ~τ

m, ~χ . (∇ ln g( ~Xm)) | ~Xm
ρ |g

)⋄

+
(
g

1

2 ( ~Xm)κm
g , ~χs . (~Y

m
g )⊥ | ~Xm

ρ |g

)⋄
∀ ~χ ∈ V h ,

(5.5a)

(
κm+1
g − g

1

2 ( ~Xm) ~Y m+1
g . ~νm, χ | ~Xm

ρ |g

)⋄
= 0 ∀ χ ∈ V h ,

(5.5b)

(
g

1

2 ( ~Xm)κm+1
g ~νm, ~η | ~Xm

ρ |g

)⋄
+
(
~Xm+1
s , ~ηs | ~X

m
ρ |g

)⋄
+ 1

2

(
∇ ln g( ~Xm), ~η | ~Xm

ρ |g

)⋄



18 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG

= 0 ∀ ~η ∈ V h .

(5.5c)

Of course, in the case (·, ·)⋄ = (·, ·)h, (5.5b) gives rise to κm+1
g = πh [g

1

2 ( ~Xm)
~Y m+1
g . ~ωm], on noting (4.4), and so κm+1

g can be eliminated from (5.5a) to give rise

to a coupled linear system involving only ~Xm+1 and ~Y m+1
g , similarly to (5.1).

We make the following mild assumption.
(B)⋄ Let | ~Xm

ρ | > 0 for almost all ρ ∈ I, and let dim spanZ⋄ = 2, where

Z⋄ =
{(

g
1

2 ( ~Xm)~νm, χ| ~Xm
ρ |g

)⋄
: χ ∈ V h

}
⊂ R

2.

Lemma 5.2. Let the assumptions (A)h and (B)⋄ hold. Then there exists a unique

solution ( ~Xm+1, κm+1
g , ~Y m+1

g ) ∈ V h × V h × V h to (Qm)⋄.

Proof. As (5.5) is linear, existence follows from uniqueness. To investigate the

latter, we consider the system: Find ( ~X, κg, ~Yg) ∈ V h × V h × V h such that

(
g( ~Xm) ~X . ~ωm, ~χ . ~ωm | ~Xm

ρ |g

)⋄
−∆tm

(
(~Yg)s, ~χs | ~X

m
ρ |g

)⋄
= 0 ∀ ~χ ∈ V h ,(5.6a)

(
κg − g

1

2 ( ~Xm) ~Yg . ~ν
m, χ | ~Xm

ρ |g

)⋄
= 0 ∀ χ ∈ V h ,(5.6b)

(
g

1

2 ( ~Xm)κg ~ν
m, ~η | ~Xm

ρ |g

)⋄
+
(
~Xs, ~ηs | ~X

m
ρ |g

)⋄
= 0 ∀ ~η ∈ V h .(5.6c)

Choosing ~χ = ~X in (5.6a), χ = κg in (5.6b) and ~η = ~Yg in (5.6c) yields that

(
g( ~Xm) ( ~X . ~ωm)2, | ~Xm

ρ |g

)⋄
+∆tm

(
(κg)

2, | ~Xm
ρ |g

)⋄
= 0 ,

and so it follows from (4.23), recall K ≥ 2, and the positivities of g( ~Xm) and | ~Xm
ρ |,

that

(5.7) κg = 0 ∈ V h and
(
g( ~Xm) ~X . ~ωm, η | ~Xm

ρ |g

)⋄
= 0 ∀ η ∈ C(I) .

As a consequence, it follows from choosing ~χ = ~Yg in (5.6a) and ~η = ~X in (5.6c)

that ~X and ~Yg are constant vectors. Combining (5.6b), κg = 0 and the assumption

(B)⋄ then yields that ~Yg = ~0 ∈ V h. Moreover, it follows from (5.7), (4.23), recall

K ≥ 2, and ~X being a constant that ~X . ~ωm = 0 ∈ V h. Combining this with the
assumption (A)h yields that ~X = ~0 ∈ V h. Hence there exists a unique solution

( ~Xm+1, κm+1
g , ~Y m+1

g ) ∈ V h × V h × V h to (Qm)⋄.

6. Numerical results. Unless otherwise stated, in all our computations we set
λ = 0. For the scheme (Qm)⋄ we either consider (Qm)h, recall (4.2), or (Qm)⋆, where
(·, ·)⋆ denotes a quadrature that is exact for polynomials of degree up to five.

On recalling (4.21), for solutions of the scheme (Pm)h we define Wm+1
g,λ =

1
2 ((

~Y m+1 . ~ωm)2 +2λ, g
1

2 ( ~Xm) | ~Xm
ρ |)h as the natural discrete analogue of (3.5). Sim-

ilarly, on recalling (4.24), we define the discrete energy W̃m+1
g,λ = 1

2 ((κ
m+1
g )2 + 2λ,

| ~Xm
ρ |g)

⋄ for solutions of the scheme (Qm)⋄.
We also consider the ratio

(6.1) r
m =

maxj=1→J | ~Xm(qj)− ~Xm(qj−1)|

minj=1→J | ~Xm(qj)− ~Xm(qj−1)|
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Table 2

Errors for the convergence test for (6.2) with (6.3) for α = −1, with r(0) = 1.5, over the time
interval [0, 1].

(Pm)h (Qm)h (Qm)⋆

hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC
2.1544e-01 7.1380e-03 — 1.4510e-02 — 1.2582e-02 —
1.0792e-01 1.7446e-03 2.04 3.5351e-03 2.04 3.0547e-03 2.05
5.3988e-02 4.3377e-04 2.01 8.7838e-04 2.01 7.5835e-04 2.01
2.6997e-02 1.0829e-04 2.00 2.1926e-04 2.00 1.8926e-04 2.00
1.3499e-02 2.7064e-05 2.00 5.4795e-05 2.00 4.7295e-05 2.00

between the longest and shortest element of Γm, and are often interested in the
evolution of this ratio over time.

In order to define the initial data for the schemes (Pm)h and (Qm)⋄ we define,

given Γ0 = ~X0(I), the discrete curvature vector ~κ0 ∈ V h such that

(
~κ0, ~η | ~X0

ρ |
)h

+
(
~X0
s , ~ηs |

~X0
ρ |
)
= 0 ∀ ~η ∈ V h ,

recall (2.2). Then we set κ0 = πh
[
~κ0 . ~ω0

|~ω0|

]
and, as a discrete analogue to (2.6), we let

κ0
g = πh

[
g−

1

2 ( ~X0)
[
κ0 − 1

2
~ω0

|~ω0| .∇ ln g( ~X0)
]]
. Finally, on recalling (4.17) and (4.25),

we set ~Y 0 = ~πh
[
|~ω0|−2 κ0

g ~ω
0
]
and ~Y 0

g = ~πh
[
g−

1

2 ( ~X0) |~ω0|−2 κ0
g ~ω

0
]
.

6.1. Elliptic plane: (2.11b) with α = −1. For the elliptic plane, we recall
the true solution

(6.2) ~x(ρ, t) = a(t)~e2 + r(t) [cos 2 π ρ~e1 + sin 2 π ρ~e2] ρ ∈ I ,

with

(6.3) a(t) = 0 and
d

dt
r4(t) = 1

8 (1− α2 r4(t)) (1− 6α r2(t) + α2 r4(t)) ,

for α = −1, from Appendix A.2 in [6]. We use this true solution for a convergence
test. To this end, we start with the initial data

(6.4) ~X0(qj) = a(0)~e2 + r(0)

(
cos[2 π qj + 0.1 sin(2 π qj)]
sin[2 π qj + 0.1 sin(2 π qj)]

)
, j = 1, . . . , J ,

recall (4.1), with r(0) = 1.5 and a(0) = 0, for J ∈ {32, 64, 128, 256, 512}. We compute

the error ‖Γ − Γh‖L∞ = maxm=1,...,M maxj=1,...,J || ~Xm(qj) − a(tm)~e2| − r(tm)| over
the time interval [0, 1] between the true solution (6.2) and the discrete solutions for the
schemes (Pm)h, (Qm)h and (Qm)⋆. We note that the circle is shrinking, and reaches
a radius r(T ) = 1.148 at time T = 1. Here, and in the convergence experiments that
follow, we use the time step size ∆t = 0.1 h2

Γ0 , where hΓ0 is the maximal edge length
of Γ0. The computed errors are reported in Table 2.

6.2. Hyperbolic disk: (2.11b) with α = 1. For the hyperbolic disk, we recall
the true solution (6.2), (6.3) for α = 1, from Appendix A.2 in [6]. Similarly to Table 2
we start with the initial data (6.4) with r(0) = 0.1 and a(0) = 0. We compute the
error ‖Γ−Γh‖L∞ over the time interval [0, 1] between the true solution (6.2) and the
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Table 3

Errors for the convergence test for (6.2) with (6.3) for α = 1, with r(0) = 0.1, over the time
interval [0, 1].

(Pm)h (Qm)h (Qm)⋆

hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC
2.1544e-01 1.8356e-03 — 1.8655e-03 — 2.3602e-03 —
1.0792e-01 4.5233e-04 2.03 4.5938e-04 2.03 5.8378e-04 2.02
5.3988e-02 1.1270e-04 2.01 1.1444e-04 2.01 1.4583e-04 2.00
2.6997e-02 2.8151e-05 2.00 2.8590e-05 2.00 3.6450e-05 2.00
1.3499e-02 7.0364e-06 2.00 7.1460e-06 2.00 9.1121e-06 2.00

Table 4

Errors for the convergence test for (6.2) with (6.5), with r(0) = 1, a(0) = 2, over the time
interval [0, 1].

(Pm)h (Qm)h (Qm)⋆

hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC
2.1544e-01 1.2690e-01 — 7.5442e-02 — 4.3265e-02 —
1.0792e-01 3.1923e-02 2.00 1.9548e-02 1.95 1.0719e-02 2.02
5.3988e-02 7.9911e-03 2.00 4.9076e-03 2.00 2.6764e-03 2.00
2.6997e-02 1.9984e-03 2.00 1.2291e-03 2.00 6.6898e-04 2.00
1.3499e-02 4.9966e-04 2.00 3.0741e-04 2.00 1.6723e-04 2.00

discrete solutions for the schemes (Pm)h, (Qm)h and (Qm)⋆. We note that the circle
is expanding, and reaches a radius r(T ) = 0.404 at time T = 1. The computed errors
are reported in Table 3.

6.3. Hyperbolic plane: (2.11a) with µ = 1. For the hyperbolic plane, we
recall the true solution (6.2) with

(6.5) a(t) = a(0) exp

(
−t+ 1

2

∫ t

0

σ2(u) du

)
and r(t) =

a(t)

σ(t)
,

where σ satisfies the ODE σ′(t) = σ(t) (1 − 1
2 σ

2(t)) (σ2(t) − 1), from Appendix A.1
in [6]. As initial data we use (6.4) with r(0) = 1 and a(0) = 2. We recall from
Appendix A.1 in [6] that the circle will raise and expand. In fact, at time T = 1
it holds that r(T ) = 1.677 and a(T ) = 2.411. The computed errors are reported in
Table 4, and they should be compared with the corresponding numbers in [6, Tab. 5].
We repeat the convergence test with the initial data r(0) = 1 and a(0) = 1.1, so that
the circle will now sink and shrink. In fact, at time T = 1 it holds that r(T ) = 0.645
and a(T ) = 0.792. The computed errors are reported in Table 5, and they should
be compared with the corresponding numbers in [6, Tab. 4]. We observe that the
approximation (Qm)h exhibits non-optimal convergence rates for this experiment.
We conjecture that this is caused by the closeness to the ~e1–axis, and the associated
singularity of g, compared to the experiments in Table 4. All the other experiments,
and all the other schemes, always show the expected quadratic convergence rate.

We recall that in Figures 10, 11 and 13 of [6], the authors show some curve
evolutions for elastic flow in the hyperbolic plane. Repeating these simulations, for
the same discretization parameters, for the newly introduced schemes (Pm)h, (Qm)h

and (Qm)⋆ yields very similar curve evolutions. As expected, the main difference is
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Table 5

Errors for the convergence test for (6.2) with (6.5), with r(0) = 1, a(0) = 1.1, over the time
interval [0, 1].

(Pm)h (Qm)h (Qm)⋆

hΓ0 ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC ‖Γ− Γh‖L∞ EOC
2.1544e-01 2.9884e-03 — 5.3699e-02 — 1.1530e-02 —
1.0792e-01 9.7352e-04 1.62 1.6346e-02 1.72 2.9345e-03 1.98
5.3988e-02 2.6531e-04 1.88 5.3475e-03 1.61 7.3673e-04 2.00
2.6997e-02 6.7844e-05 1.97 2.5787e-03 1.05 1.8436e-04 2.00
1.3499e-02 1.7057e-05 1.99 5.8915e-04 2.13 4.6102e-05 2.00
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Fig. 1. A plot of the ratio (6.1) for the schemes (Pm)h, (Qm)h and (Qm)⋆.

in the evolution of the ratio (6.1). As an example, we show the evolution of (6.1) for
the experiment in [6, Fig. 10] in Figure 1.

6.4. Geodesic elastic flow. We present two computations for geodesic elastic
flow on a Clifford torus. To this end, we employ the metric induced by (2.11e) with

s = 1, so that the torus has radii r = 1 and R = 2
1

2 . As initial data we choose
a circle in H with radius 3 and centre (0, 2)T . For the simulation in Figure 2 we
use the scheme (Pm)h with the discretization parameters J = 256 and ∆t = 10−3.
The scheme (Qm)h was not able to compute this evolution, due to a blow-up in the

tangential part of ~Y m+1. Hence we only present a comparison with (Qm)⋆, which
gives nearly identical results to (Pm)h. However, the ratio (6.1) at time t = 50 is 11.2
for (Qm)⋆, while it is only 1.1 for (Pm)h. Repeating the experiment with λ = 1 gives
the evolution shown in Figure 3. In the case λ = 0, the flow reduces the elastic energy
and the absolute minimizer is given by geodesics which have geodesic curvature zero.
However, in Figure 2 the elastic energy does not settle down to zero, and the curves
instead seem to converge to a non-trivial critical point of the elastic energy. This is
in accordance with the analysis in [16], which showed that in cases of hypersurfaces
for which the Gaussian curvature is not non-negative at all points, the set of free
elasticae, i.e., the set of critical points, is much richer.

Appendix A. Consistency of weak formulations.
In this appendix we prove that solutions to (P) and (Q) indeed satisfy the strong

form (2.7). Throughout this appendix we suppress the dependence of g on ~x.
For later use we note, on recalling (2.1), (2.2) and (2.8), that

~νs = −κ ~τ ,(A.1a)

g−
1

2 (g
1

2 )s = −g
1

2 (g−
1

2 )s =
1
2 (ln g)s ,(A.1b)

(ln g)s = ~τ .∇ ln g ,(A.1c)

(ln g)ss = ~τ . (∇ ln g)s + ~τs .∇ ln g = ~τ . (D2 ln g)~τ + κ ~ν .∇ ln g ,(A.1d)
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Fig. 2. (Pm)h Geodesic elastic flow on a Clifford torus. The solutions ~Xm at times t =

0, 1, 10, 50. On the right we visualize ~Φ( ~Xm) at times t = 0, 50, for (2.11e) with s = 1. Below a plot
of the discrete energy Wm+1

g,λ
, as well as of the ratio (6.1) for (Pm)h and (Qm)⋆.

(~ν .∇ ln g)s = ~ν . (∇ ln g)s + ~νs .∇ ln g = ~ν . (D2 ln g)~τ − κ (ln g)s ,(A.1e)

g−
1

2 (κg)ss = g−
1

2 (g
1

2 (κg)sg )s = g
1

2 (κg)sgsg + g−
1

2 (g
1

2 )s (κg)sg

= g
1

2 (κg)sgsg + 1
2 (ln g)s (κg)sg ,(A.1f)

−2 g S0(~x) = ∆ ln g = ~ν . (D2 ln g)~ν + ~τ . (D2 ln g)~τ .(A.1g)

A.1. (P). We note from (3.9), (2.6) and (A.1a) that

(A.2) ~y . ~ν = κg = g−
1

2 (~x)
[
κ − 1

2 ~ν .∇ ln g(~x)
]

and ~ys . ~ν = (κg)s + κ ~y . ~τ ,

and so it follows from (3.14), (2.7), (2.4), (2.1) and (3.4b) that

(
g

1

2 Vg, ~χ . ~ν |~xρ|g

)
= − 1

2

(
g

1

2 [κ2
g + 2λ], ~τ . ~χρ

)
+ 1

4

(
g

1

2 [κ2
g − 2λ], (∇ ln g) . ~χ |~xρ|

)

+ 1
2

(
κg (D

2 ln g)~ν, ~χ |~xρ|
)
− 1

2 (κg [ln g]s, ~ν . ~χρ)

+ ([(κg)s + κ ~y . ~τ ]~ν, ~χρ) +
([

g
1

2 κg +
1
2 ~ν .∇ ln g

]
~y⊥, ~χρ

)

= 1
2

([
g

1

2

[
κ
2
g − 2λ

]
+ κg ~ν .∇ ln g

]
~τ , ~χρ

)

+
([

(κg)s + κ ~y . ~τ − 1
2 κg (ln g)s − (~y . ~τ ) (g

1

2 κg +
1
2 ~ν .∇ ln g)

]
~ν, ~χρ

)

+ 1
4

(
g

1

2

[
κ
2
g − 2λ

]
, (∇ ln g) . ~χ |~xρ|

)
+ 1

2

(
κg (D

2 ln g)~ν, ~χ |~xρ|
)

=
4∑

i=1

Si(~χ) ∀ ~χ ∈ [H1(I)]2 .

(A.3)
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Fig. 3. (Pm)h Generalized geodesic elastic flow, with λ = 1, on a Clifford torus. The solutions
~Xm at times t = 0, 1, 10, 30, 50. On the right we visualize ~Φ( ~Xm) at times t = 0, 10, 50, for (2.11e)
with s = 1. Below a plot of the discrete energy Wm+1

g,λ
, as well as of the ratio (6.1) for (Pm)h and

(Qm)⋆.

Combining (A.3), (2.2) and (2.4) yields that

S1(~χ) = − 1
2

(
g

1

2

[
κ
2
g + 2λ− 2 g−

1

2 κ κg

]
~τ , ~χρ

)

= 1
2

(
κ

[
κ
2
g + 2λ− 2 g−

1

2 κ κg

]
~ν, ~χ |~xρ|g

)

+ 1
2

(
g−

1

2

[
g

1

2

[
κ
2
g + 2λ− 2 g−

1

2 κ κg

]]
s
~τ, ~χ |~xρ|g

)
.(A.4)

Combining (A.3) and (A.2), on noting (2.6), (A.1a), (A.1f) and (2.4), yields that

S2(~χ) =
([
(κg)s −

1
2 κg (ln g)s

]
~ν, ~χρ

)

= −
(
g−

1

2

[
(κg)ss −

1
2 ((ln g)s κg)s

]
~ν, ~χ |~xρ|g

)

+
(
g−

1

2 κ
[
(κg)s −

1
2 (ln g)s κg

]
~τ, ~χ |~xρ|g

)

= −
(
g

1

2 (κg)sgsg − 1
2 g

− 1

2 (ln g)ss κg, ~χ . ~ν |~xρ|g

)

+
(
κ

[
(κg)sg − 1

2 g
− 1

2 (ln g)s κg

]
, ~χ . ~τ |~xρ|g

)
.(A.5)

Combining (A.3) and (2.6), on noting (2.4) and (A.1c), yields that

S3(~χ) =
1
4

(
κ
2
g − 2λ, (∇ ln g) . ~χ |~xρ|g

)

= 1
4

(
κ
2
g − 2λ,

[
2 (κ − g

1

2 κg) ~χ . ~ν + (ln g)s ~χ . ~τ
]
|~xρ|g

)
.(A.6)

It follows from (A.3) and (2.4) that

(A.7) S4(~χ) =
1
2

(
g−

1

2 κg (D
2 ln g)~ν, [(~χ . ~ν)~ν + (~χ . ~τ )~τ ] |~xρ|g

)
.
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Choosing ~χ = χ~τ , for χ ∈ H1(I), in (A.3), and noting (A.4), (A.5), (A.6) and
(A.7), we obtain for the right hand side of (A.3) the value

4∑

i=1

Si(χ~τ ) = 1
2

(
g−

1

2

[
g

1

2

[
κ
2
g + 2λ− 2 g−

1

2 κ κg

]]
s
, χ |~xρ|g

)

+
(
κ

[
(κg)sg − 1

2 g
− 1

2 (ln g)s κg

]
, χ |~xρ|g

)
+ 1

4

(
κ
2
g − 2λ, (ln g)s χ |~xρ|g

)

+ 1
2

(
g−

1

2 κg ~τ . (D
2 ln g)~ν, χ |~xρ|g

)

= 1
2

(
g−

1

2 (g
1

2 )s

[
κ
2
g + 2λ− 2 g−

1

2 κ κg

]
+
[
κ
2
g − 2 g−

1

2 κ κg

]
s
, χ |~xρ|g

)

+
(
κ

[
(κg)sg − 1

2 g
− 1

2 (ln g)s κg

]
+ (14 κ

2
g −

1
2 λ) (ln g)s, χ |~xρ|g

)

+ 1
2

(
g−

1

2 κg [(~ν .∇ ln g)s + κ (ln g)s] , χ |~xρ|g

)

= 1
2

(
(ln g)s

[
κ
2
g − g−

1

2 κ κg

]
+
[
κ
2
g − 2 g−

1

2 κ κg

]
s
+ 2 g−

1

2 κ (κg)s, χ |~xρ|g

)

+
(
g−

1

2 κg (κ − g
1

2 κg)s, χ |~xρ|g

)

= 1
2

(
(ln g)s

[
κ
2
g − g−

1

2 κ κg + g−
1

2 κ κg − κ
2
g

]
, χ |~xρ|g

)

+
(
κg (κg)s + g−

1

2 [−(κ κg)s + κ (κg)s + κg κs]− κg (κg)s, χ |~xρ|g

)

= 0 ,
(A.8)

as required, where we have recalled (A.1b) and (2.6).
Choosing ~χ = χ~ν, for χ ∈ H1(I), in (A.3), and noting (A.4), (A.5), (A.6) and

(A.7), we obtain

(
g

1

2 Vg, χ |~xρ|g

)
=

4∑

i=1

Si(χ~ν) = 1
2

(
κ

[
κ
2
g + 2λ− 2 g−

1

2 κ κg

]
, χ |~xρ|g

)

−
(
g

1

2 (κg)sgsg − 1
2 g

− 1

2 (ln g)ss κg, χ |~xρ|g

)

+ 1
2

(
κ
2
g − 2λ, (κ − g

1

2 κg)χ |~xρ|g

)
+ 1

2

(
g−

1

2 κg ~ν . (D
2 ln g)~ν, χ |~xρ|g

)

=
(
−g

1

2 (κg)sgsg + g
1

2 λκg +
1
2 g

− 1

2

[
~τ . (D2 ln g)~τ + ~ν . (D2 ln g)~ν

]
κg, χ |~xρ|g

)

+ 1
2

(
κ κ

2
g − 2 g−

1

2 κ
2
κg + g−

1

2 κg κ ~ν .∇ ln g + κ
2
g (κ − g

1

2 κg), χ |~xρ|g

)

= −
(
g

1

2

[
(κg)sgsg +

1
2 κ

3
g + (S0(~x)− λ)κg

]
, χ |~xρ|g

)

+
(
g−

1

2 κ κg

[
g

1

2 κg − κ + 1
2 ~ν .∇ ln g

]
, χ |~xρ|g

)

= −
(
g

1

2

[
(κg)sgsg +

1
2 κ

3
g + (S0(~x)− λ)κg

]
, χ |~xρ|g

)
∀ χ ∈ H1(I) ,

(A.9)

where we have recalled (A.1d), (A.1g) and (2.6). Clearly, it follows from (A.9) that
(2.7) holds.

A.2. (Q). It follows from (3.26), (2.7), (3.20), (2.1), (2.4) and (3.4b) that
(
g

1

2 Vg, ~χ . ~ν |~xρ|g

)
= − 1

2

(
κ
2
g + 2λ− ~yg .∇ ln g,

[
~τ . ~χs +

1
2 ~χ .∇ ln g

]
|~xρ|g

)
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+ 1
2

(
(D2 ln g) ~yg, ~χ |~xρ|g

)
+
(
κ
2
g +

1
2 (~yg)s . ~τ , (∇ ln g) . ~χ |~xρ|g

)
+
(
g κg ~y

⊥
g , ~χρ

)

+
(
g

1

2 (~yg)s . ~ν, ~χρ .~ν
)

= − 1
2

(
g

1

2

[
κ
2
g + 2λ− ~yg .∇ ln g

]
~τ , ~χρ

)
+ 1

2

(
(D2 ln g) ~yg, ~χ |~xρ|g

)

+
(
1
4

[
3κ2

g − 2λ+ ~yg .∇ ln g + 1
2 (~yg)s . ~τ

]
, (∇ ln g) . ~χ |~xρ|g

)

+
(
gκg ~y

⊥
g , ~χρ

)
+
(
g

1

2 (~yg)s . ~ν, ~χρ .~ν
)

= 1
2

(
g

1

2

[
κ
2
g − 2λ+ ~yg .∇ ln g

]
~τ , ~χρ

)
+
(
g

1

2 [(~yg)s . ~ν]~ν − gκg (~yg . ~τ )~ν, ~χρ

)

+
(
1
4

[
3κ2

g − 2λ+ ~yg .∇ ln g + 2 (~yg)s . ~τ
]
, (∇ ln g) . ~χ |~xρ|g

)

+ 1
2

(
(D2 ln g) ~yg, ~χ |~xρ|g

)
=

4∑

i=1

Ti(~χ) ∀ ~χ ∈ [H1(I)]2 .

(A.10)

It follows from (2.6), (3.20) and (A.1c) that

~yg .∇ ln g = (~yg . ~ν)~ν .∇ ln g + (~yg . ~τ )~τ .∇ ln g

= g−
1

2 κg 2 (κ − g
1

2 κg) + ~yg . ~τ (ln g)s = 2 g−
1

2 κ κg − 2κ2
g + ~yg . ~τ (ln g)s .(A.11)

Combining (A.10), (A.11), (A.4), (2.2) and (2.4) yields that

T1(~χ) = − 1
2

(
g

1

2

[
κ
2
g + 2λ− 2 g−

1

2 κ κg − ~yg . ~τ (ln g)s

]
~τ , ~χρ

)

= S1(~χ) +
1
2

(
g

1

2 ~yg . ~τ (ln g)s ~τ, ~χρ

)

= S1(~χ)−
1
2 (κ [~yg . ~τ (ln g)s] ~ν, ~χ |~xρ|g)−

1
2

(
g−

1

2

[
g

1

2 [~yg . ~τ (ln g)s]
]
s
~τ, ~χ |~xρ|g

)
.

(A.12)

It follows from (3.20), (A.1a) and (A.1c) that

g
1

2 (~yg)s . ~ν =
[
g

1

2 ~yg . ~ν
]
s
− ~yg .

[
g

1

2 ~ν
]
s
= (κg)s − (~yg . ~ν) (g

1

2 )s + g
1

2 κ ~yg . ~τ

= (κg)s − κg g
− 1

2 (g
1

2 )s + g
1

2 κ ~yg . ~τ = (κg)s −
1
2 (ln g)s κg + g

1

2 κ ~yg . ~τ .(A.13)

Combining (A.10) and (A.13), on noting (A.1a), (A.1f) and (2.4), yields that

T2(~χ) = −
(
g−

1

2

[
g

1

2 [(~yg)s . ~ν]~ν − g κg (~yg . ~τ )
]
s
~ν, ~χ |~xρ|g

)

+
(
κ

[
[(~yg)s . ~ν]~ν − g

1

2 κg (~yg . ~τ )
]
~τ , ~χ |~xρ|g

)

= −
(
g−

1

2

[
(κg)ss −

1
2 ((ln g)s κg)s +

[
~yg . ~τ (g

1

2 κ − gκg)
]
s

]
~ν, ~χ |~xρ|g

)

+
(
κ

[
[(~yg)s . ~ν]~ν − g

1

2 κg (~yg . ~τ )
]
~τ , ~χ |~xρ|g

)

= −
(
g

1

2 (κg)sgsg − 1
2 g

− 1

2 (ln g)ss κg + g−
1

2

[
~yg . ~τ (g

1

2 κ − gκg)
]
s
, ~χ . ~ν |~xρ|g

)

+
(
κ

[
(κg)sg − 1

2 g
− 1

2 (ln g)s κg + ~yg . ~τ (κ − g
1

2 κg)
]
, ~χ . ~τ |~xρ|g

)

= S2(~χ)−
(
g−

1

2

[
~yg . ~τ (g

1

2 κ − gκg)
]
s
, ~χ . ~ν |~xρ|g

)
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+
(
κ ~yg . ~τ (κ − g

1

2 κg), ~χ . ~τ |~xρ|g

)
.

(A.14)

It follows from (2.2) and (3.20) that

(A.15) (~yg)s . ~τ = (~yg . ~τ)s − ~yg . ~τs = (~yg . ~τ )s − κ ~yg . ~ν = (~yg . ~τ )s − g−
1

2 κ κg .

Combining (A.10), (A.11), (A.15) and (2.6) yields that

T3(~χ) =
1
4

(
3κ2

g − 2λ+ ~yg .∇ ln g + 2 (~yg)s . ~τ , (∇ ln g) . ~χ |~xρ|g
)

= 1
4

(
κ
2
g − 2λ+ ~yg . ~τ (ln g)s + 2 (~yg . ~τ )s, (∇ ln g) . ~χ |~xρ|g

)

= 1
4

(
κ
2
g − 2λ+ ~yg . ~τ (ln g)s + 2 (~yg . ~τ )s, [(~ν .∇ ln g) ~χ . ~ν + (~τ .∇ ln g) ~χ . ~τ ] |~xρ|g

)

= 1
4

(
κ
2
g − 2λ+ ~yg . ~τ (ln g)s + 2 (~yg . ~τ )s,

[
2 (κ − g

1

2 κg) ~χ . ~ν + (ln g)s ~χ . ~τ
]
|~xρ|g

)

= S3(~χ) +
1
4

(
~yg . ~τ (ln g)s + 2 (~yg . ~τ )s,

[
2 (κ − g

1

2 κg) ~χ . ~ν + (ln g)s ~χ . ~τ
]
|~xρ|g

)
.

(A.16)

It follows from (3.20) that

(D2 ln g) ~yg = ~yg . ~ν (D
2 ln g)~ν + ~yg . ~τ (D

2 ln g)~τ

= g−
1

2 κg (D
2 ln g)~ν + ~yg . ~τ (D

2 ln g)~τ .(A.17)

Combining (A.10) and (A.17) yields that

T4(~χ) =
1
2

(
g−

1

2 κg (D
2 ln g)~ν + ~yg . ~τ (D

2 ln g)~τ , ~χ |~xρ|g

)

= 1
2

(
g−

1

2 κg (D
2 ln g)~ν + ~yg . ~τ (D

2 ln g)~τ , [(~χ . ~ν)~ν + (~χ . ~τ)~τ ] |~xρ|g

)

= S4(~χ) +
1
2

(
~yg . ~τ (D

2 ln g)~τ, [(~χ . ~ν)~ν + (~χ . ~τ )~τ ] |~xρ|g
)
.(A.18)

Choosing ~χ = χ~τ , for χ ∈ H1(I), in (A.10), and noting (A.12), (A.14), (A.16),
(A.18) and (A.8), we obtain for the right hand side of (A.10) the value

4∑

i=1

Ti(χ~τ) =

4∑

i=1

Si(χ~τ) + 1
2

(
−g−

1

2 (g
1

2 )s (ln g)s − (ln g)ss, (~yg . ~τ)χ |~xρ|g

)

+ 1
2

(
2κ (κ − g

1

2 κg) +
1
2 [(ln g)s]

2
+ ~τ . (D2 ln g)~τ , (~yg . ~τ )χ |~xρ|g

)

=
(
κ

[
(κ − g

1

2 κg)−
1
2 ~ν .∇ ln g

]
, (~yg . ~τ )χ |~xρ|g

)
= 0 ,

as required, where we have recalled (A.1b), (A.1d) and (2.6).
Choosing ~χ = χ~ν, for χ ∈ H1(I), in (A.10), and noting (A.12), (A.14), (A.16),

(A.18) and (A.9), we obtain

(
g

1

2 Vg, χ |~xρ|g

)
=

4∑

i=1

Ti(χ~ν)

=

4∑

i=1

Si(χ~ν) + 1
2

(
−κ (ln g)s − 2 g−

1

2

[
g

1

2 (κ − g
1

2 κg)
]
s
, (~yg . ~τ)χ |~xρ|g

)
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+ 1
2

(
(ln g)s (κ − g

1

2 κg) + (~ν .∇ ln g)s + κ (ln g)s, (~yg . ~τ )χ |~xρ|g

)

= −
(
g

1

2

[
(κg)sgsg + 1

2 κ
3
g + (S0(~x)− λ)κg

]
, χ |~xρ|g

)
∀ χ ∈ H1(I) ,(A.19)

where we have recalled (A.1b) and (2.6). Clearly, it follows from (A.19) that (2.7)
holds.
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