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Abstract

Quadratic curvature terms are commonly introduced in the action as first-order correc-

tions of General Relativity, and, in this thesis, we investigated their impact on the most

simple isolated objects, that are the static and spherically symmetric ones.

Most of the work has been done in the context of Stelle’s theory of gravity, in which

the most general quadratic contractions of curvature tensors are added to the action

of General Relativity without a cosmological constant. We studied this theory’s possi-

ble static, spherically symmetric and asymptotically flat solutions with both analytical

approximations and numerical methods. We found black holes with Schwarzschild and

non-Schwarzschild nature, naked singularities which can have either an attractive or re-

pulsive gravitational potential in the origin, non-symmetric wormholes which connects

an asymptotically flat spacetime with an asymptotically singular one, and non-vacuum

solutions modeled by perfect fluids with different equations of state. We described the

general geometrical properties of these solutions and linked these short-scale behaviors to

the values of the parameters which characterize the gravitational field at large distances.

We studied linear perturbations of these solutions, finding that most are unstable, and

presented a first attempt to picture the parameter space of stable solutions. We also stud-

ied the Thermodynamics of black holes and described their evaporation process: we found

that either evaporation leads black holes to unstable configurations, or the predictions of

quadratic gravity are unphysical.

We also considered the possibility of generalizing Stelle’s theory by removing the depen-

dence from the only mass-scale present by including a new dynamical scalar field, making

the theory scale invariant. Having a more complex theory, we did not investigate exotic

solutions but limited ourselves to the impact of the new additional degrees of freedom

on known analytical solutions. It was already known that in a cosmological setting this

theory admits a transition between two de Sitter configurations; we analyzed the same

problem in the context of static and spherically symmetric solutions and found a transi-

tion between two Schwarzschild-de Sitter configurations. In order to do that, we studied

both linear perturbations and the semiclassical approximation of the path integral for-

mulation of Euclidean quantum gravity.

At last, we tried to extract some phenomenological signatures of the exotic solutions. In

particular, we investigated the shadow of an object on background free-falling light, and

a possible way of determining the behavior close to the origin using mass measurements

that rely on different physical processes. We show that, whenever these measurements

are applied to the case of compact stars, in principle it could be possible to distinguish

solutions where different equations of state describe the fluid.
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1 INTRODUCTION

1 Introduction

Gravity has always been the guiding light of Physics into field theories: the concept itself

of field was introduced in Physics to describe the gravitational interaction in the eigh-

teenth century, General Relativity was the first theory founded on the idea of relativistic

fields, and its requirement of diffeomorphism invariance inspired the idea of gauge invari-

ance, on which all theories of fundamental interactions are built. Nonetheless, while all

the other interactions have a well-established and accepted description as Quantum Field

Theories, a consensus on a quantum description of gravity is still lacking. The search for

a theory of quantum gravity has been, in all likelihood, the single topic that attracted

the interest of the largest number of theoretical physicists in all of history. The aim of my

Ph.D., however, was not to look for a fully consistent theory of quantum gravity, rather

it was to understand what could be the most common predictions of these theories in an

actual physical context. For this reason we studied the most simple isolated objects, that

are static, spherically symmetric and asymptotically flat, in some of the most common

effective theories of quantum gravity, which are quadratic theories of gravity.

Our current description of gravity, that is General Relativity, has as fundamental object

of investigation the metric tensor gµν(x), which defines the norm of any vector field vµ(x)

at any point of the spacetime x as ||v(x)|| = (gµνv
µvν) (x). To parallel transport a vector

field vµ in the direction of a second vector field uν , we introduce the covariant derivative

uν∇νv
µ = uν

(
∂νv

µ + Γµνρv
ρ
)
, where Γµνρ is an affine connection which is usually taken

to be the Levi-Civita one,

Γµνρ =
1

2
gµσ (∂νgσρ + ∂ρgνσ − ∂σgνρ) . (1.1)

This choice guarantees that the norms of vector fields do not change during the transport,

thanks to ∇ρgµν = 0, and that transporting a scalar field in the direction of vµ and then

in the direction of uν or the other way around has the same results, thanks to Γµνρ = Γµρν .

The dynamics of the spacetime can be completely extracted by its curvature, which can

be quantified by the Riemann tensor Rρ
σµν

[∇µ,∇ν ] v
ρ = Rρ

σµνv
σ, (1.2)

which can be expressed in terms of the Levi-Civita connection as

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ. (1.3)

Other useful curvature tensors are the Ricci tensor Rµν = Rρ
µρν and the Ricci scalar

R = gµνRµν . Finally, as understood by Hilbert, Einstein’s theory of gravitation can be
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1 INTRODUCTION

completely derived from a Lagrangian theory with an action defined as

IEH =
1

16πG

∫
d4x

√
−g [R− 2Λ] + Imat, (1.4)

where G is the Newton constant, Λ is another constant relevant at cosmological scales

and Imat contains all the matter and radiation fields populating the spacetime. To give

an intuitive understanding of why there is no consensus on a quantum version of (1.4), let

us consider a small perturbation hµν around the Minkowski metric ηµν = diag(−1, 1, 1, 1)

as gµν = ηµν +
√
Ghµν . Not considering the constant Λ and the matter fields, the action

(1.4) becomes

IEH ∼
∫

d4x
[
(∂h)2 +

√
Gh(∂h)2 +Gh2(∂h)2 + ...

]
, (1.5)

where we considered having taken all possible covariant contractions of the metric and

its derivatives. In a standard Quantum Field Theory description an interaction between

two excitations, for example a graviton-graviton scattering, will have loop corrections in

a perturbative expansion in the coupling constant G, as can be seen pictorially in Figure

1. For a renormalizable theory, the divergent contributions of each loop ∼
∫∞
0

d4k k4 can

be removed by regularizing the theory integrating only up to a scale ΛUV , adding to the

action a finite number of counterterms, and then finding a finite value when ΛUV is taken

to be infinite again.

Figure 1: Graviton-graviton scattering at tree level with one-loop and two-loop corrections, where we

underlined the dependence from the constant G of the interaction vertices.

This is not the case for General Relativity, because the coupling constant G has a dimen-

sion of inverse squared energy [G] = E−2, and to have the same dimension at every loop
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1 INTRODUCTION

order, each diagram will have a dependence from the cutoff scale as

(G)tree +
(
G2Λ2

UV

)
1−loop +

(
G3Λ4

UV

)
2−loops + ... (1.6)

Having a dependence from the cutoff different at any loop order, it is necessary to add a

different counterterm at each order; in particular, it will be required to add terms with an

increasing number of derivatives. The resulting picture is clear: either we add an infinite

number of counterterms, or the limit ΛUV → ∞ of the amplitude will be infinite; in any

case, the theory is not renormalizable in the standard sense.

The standard approach to non-renormalizable theories which, nonetheless, are confirmed

by low-energy experiments, is to consider them effective theories. For example, let us

consider the Fermi model for β-decay shown in Figure 2. The four-point interaction has a

coupling constantGF of mass dimension [GF ] = E−2, and the same reasoning made for the

graviton-graviton scattering can be applied. Nonetheless, we now know that at energies

E ∼ 1/
√
GF the β-decay can be described as the emission of a W− boson with mass

mW ∼ 1/
√
GF in the context of the electroweak theory. The electroweak model, which

has a dimensionless coupling constant g∗ is instead renormalizable, while for energy scales

E ≪ mW the Fermi interaction model remains viable and confirmed by experiments.

Figure 2: β-decay of a neutron considering Fermi interaction, and considering the exchange of a W−

boson in the electroweak theory.

This can be stated slightly more formally using the path integral formulation of Quantum

Field Theory. If we call all the possible fields of the theory ψ collectively, and we consider

a renormalizable theory with action I(ψ), the partition function of the quantum theory

is written as

Z =

∫
Dψ eI(ψ). (1.7)

Let us now consider the field configurations with momenta below a certain energy scale

µ and call them ψ̄, and the field configurations with momenta above the energy scale µ

7



1 INTRODUCTION

called ψ̃. The partition function can be rewritten as

Z =

∫
Dψ eI(ψ) =

∫
Dψ̄

∫
Dψ̃ eI(ψ̄,ψ̃) =

∫
Dψ̄ eIeff (ψ̄), (1.8)

where we defined

eIeff (ψ̄) =

∫
Dψ̃ eI(ψ̄,ψ̃). (1.9)

The fundamental theory with action I is then said to be described at energies E < µ by

the effective theory with action Ieff . This theory does not need to be renormalizable, as

the loop corrections are integrated in momenta only up to k = µ and will not contain

fields that are present only at momenta higher than µ. In the case of the electroweak

interaction, as an example, if the scale µ < mW all the configurations with W bosons will

be integrated and will not be present in Ieff . The same reasoning has been applied to

General Relativity where, however, the scales at which we expect to find new particles

are E ∼ 1/
√
G = mP , where mP is the Planck mass and is of order O (1019) GeV, which

is 15 orders of magnitude above current high energy experiments in Particle Physics. The

various proposal of fundamental theories of quantum gravity, such as supergravity or

string theory, then predicts particles that are detectable at energies that are completely

out of range for current experiments.

Another approach to the problem of non-renormalizability was introduced by Weinberg

in the late ’70s [1]. The main idea was to focus on the essential properties which a physical

quantum theory really needs, which are

- finiteness, that is having finite predictions for the results of scattering experiments;

- predictivity, that is being able to measure all the theory parameters with a finite

number of experiments.

To formalize these statements, let us consider a theory at the energy scale k, described

by the action

Ik(ψ) =
∫

dDx
∑
i

gi(k)k
D−diOi(ψ), (1.10)

where the Oi(ψ) are all possible operators constructed with the fields ψ with mass dimen-

sion [Oi(ψ)] = Edi and the gi(k) are dimensionless coupling constants. The two conditions

are then guaranteed if and only if

- finiteness : the dimensionless coupling constants go to a finite value in the ultraviolet

limit lim
k→∞

gi(k) = g∗i <∞ for all i;

- predictivity : at any scale k there is a finite number of coupling constants gi(k) which

have the g∗i as ultraviolet limit.
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1 INTRODUCTION

Standard renormalization is found simply whenever the limit, called ultraviolet fixed

point, is g∗i = 0 and then perturbative methods can be used. A theory with a finite

fixed point different from zero and a finite number of coupling constants attracted to the

fixed point is called asymptotically safe. Weinberg then applied this definition to General

Relativity and argued that could be asymptotically safe [2]; however, its derivation was

based on calculations made in dimension D = 2 + ϵ with ϵ ≪ 1, but the proposed limit

ϵ → 2 spoiled the required smallness of the ϵ parameter. More refined methods have

been developed in the ’90s, and the asymptotic safety conjecture for quantum gravity has

found more evidence (for a review see [3, 4]). However, while these results are intriguing,

the techniques used in this context rely on assuming the form in terms of operators of

the fundamental action IUV = lim
k→∞

Ik and then can be applied to a potentially infinite

number of theories.

While all these different approaches have their negative sides, they generally agree that

the first-order corrections to General Relativity have to be in the form of the addition of

terms quadratic in the curvature tensors to the action (1.4). The one-loop counterterms to

the graviton-graviton scattering have been rigorously derived by ’t Hooft and Veltmann

[5], and they are proportional to

R2, RµνRµν , (1.11)

where a term proportional to RµνρσRµνρσ was not included because in four dimensions it

can be removed by a total derivative. Quadratic terms appear also in the effective theory

in the low energy limit of probably the most studied fundamental theory of quantum

gravity, that is string theory. The presence of quadratic terms as first corrections was

already supposed in the early era of string theory [6], and in the ’80s it was shown that

for the heterotic E8 × E8 string model the low energy gravitational action should be

corrected by the inclusion of a term proportional to

RµνρσRµνρσ (1.12)

[7, 8], which was generalized to

RµνρσRµνρσ − 4RµνRµν +R2 (1.13)

in order to remove by hand the presence of ghost particles [9]. Similar corrections also

appear in the low energy limit of the bosonic string, as described in the lectures of David

Tong [10]. This, however, is no surprise: if we consider a general effective action Ieff , in
principle all terms which are invariants under diffeomorphism could be present, and if

only the metric tensor appears as the dynamical field, these terms have to be constructed
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1 INTRODUCTION

from curvature tensors. If we restrict ourselves to a theory where only curvature tensors

and not their derivatives are present, we can imagine expanding the action Ieff in a sort

of power series as

Ieff =
∫

d4x
√
−g
[
g0m

4
p + g1m

2
pR + g2R

2 + g′2R
µνRµν + g′′2R

µνρσRµνρσ +
g3
m2
p

R3 + ...

]
,

(1.14)

where increasing powers of the curvature tensors are matched with decreasing power of

the energy scale, chosen as mp. It is clear that, as the energy scale at which we study the

effective action is increased, more terms in the expansion (1.14) will be relevant: starting

from

Ieff =
∫

d4x
√
−g
[
g0m

4
p + g1m

2
pR + ...

]
=

1

16πG

∫
dx
√
−g [R− 2Λ...] , (1.15)

where g0 = −Λ/8πm2
p and g1 = 1/16π, the first-order corrections will, in general, be

given by

Ieff =
∫

d4x
√
−g
[
g0m

4
p + g1m

2
pR + g2R

2 + g′2R
µνRµν + g′′2R

µνρσRµνρσ + ...
]
, (1.16)

that is, by quadratic terms in the curvature. The inclusion of quadratic terms is also

confirmed by the analysis in the context of asymptotically safe gravity [11]: while looking

at the number of relevant operators with actions constructed only using the Ricci scalar

R, it has indeed been found that the effective action will behave a

Ieff =
∫

d4x
√
−g

[
AR2 +

∑
i

ϵiΛ
θiR2−θi/2

]
, (1.17)

where, considering θ ≤ 4 to avoid terms as 1/R, we get once again General Relativity

with the addition of a squared term in the Ricci scalar.

At last, we write the most general correction of the Einstein-Hilbert action containing

terms quadratic in the curvature as

Iqg =
∫

d4x
√
−g
[
γ (R− 2Λ) + aR2 + bRµνRµν + cRµνρσRµνρσ

]
, (1.18)

where γ = 1/16πG. Considering the previous discussion on the quantum origin of quadratic

terms, and recalling that the constant Λ is relevant only at cosmological scales, we set

Λ = 0. The action (1.18) is then equivalent, up to a total derivative, to

IStelle =
∫

d4x
√
−g
[
γR +

(
β +

2

3
α

)
R2 − 2αRµνRµν

]
, (1.19)

where we simply used different names for the constants. Interestingly, it has been shown

by Stelle [12] that whenever the action (1.19) is considered as a fundamental action for
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gravity, the propagator goes as

Dµνρσ(k) =
1

(2π)4i

(
2P

(2)
µνρσ(k)

k2(2αk2 + γ)
− 4P

(0−s)
µνρσ (k)

k2(6βk2 + γ)
+ gauge fixing terms

)
, (1.20)

where P
(2)
µνρσ(k) and P

(0−s)
µνρσ (k) are projectors for symmetric rank-two tensors, and given

that the propagator goes as k−4 the divergences are removed, and the theory is renor-

malizable. However, the propagator (1.20) can be rewritten as

Dµνρσ(k) =
1

γ(2π)4i

(
2P

(2)
µνρσ(k)− 4P

(0−s)
µνρσ (k)

k2
− 2P

(2)
µνρσ(k)

k2 +m2
2

+
4P

(0−s)
µνρσ (k)

k2 +m2
0

+ g. f. t.

)
,

(1.21)

where we defined

m2
2 =

γ

2α
, m2

0 =
γ

6β
. (1.22)

The first term in (1.21) is the propagator of a massless particle of spin S = 2, the second

term is the propagator of a massive particle of spin S = 2 and mass m2, and the third

term is the propagator of a massive particle of spin S = 0 and mass m0. This propagator,

however, has an extremely problematic property, namely the massive particle with spin

S = 2 has a propagator with a negative sign, and it is then a propagating ghost particle.

The presence of a ghost particle is associated with negative kinetic energy states, and

then with an energy unbounded from below and extreme instabilities. From another point

of view, ghost particles can be interpreted as having a negative norm, and then negative

energy can be traded for the non-unitarity of the theory [13]. While various proposals

to deal with ghosts have been done in the past years [14, 15, 16, 17, 18], the general

approach of the scientific community is to discard a theory that contains them. If one

does not focus too much on the ghost problem, the classical solutions of (1.19) present

a large variety of behaviors, opening the possibility of deviating from General Relativity

in many different ways. In particular, in the context of cosmology, the action has been

used by Starobinski to model the very early times of the universe [19], and in the case of

static and spherically symmetric solutions, different families of solutions have been char-

acterized [20, 21, 22]. More in detail, a class of non-Schwarzschild black holes has been

discovered [23] and thoroughly investigated [24, 25], and a class of naked singularities has

been studied for its “black hole mimicker” nature [26]. A large part of this thesis will

start from these works, aiming to complete the global picture of static and spherically

symmetric solutions in quadratic gravity.

At very high energies, it is clear that the quadratic terms in the action (1.19) will dominate

over the linear one, making the theory effectively scale invariant. This motivated the

study of a generalization of (1.19) in which scale invariance is taken as a fundamental
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1.1 Outline of the thesis 1 INTRODUCTION

symmetry [27]; this can be employed by substituting the only mass-scale present in the

action γ = 1/16πG = m2
p/16π by a dynamical scalar field

Isi =
∫

d4x
√
−g
[
ξϕ2R +

(
β +

2

3
α

)
R2 − 2αRµνRµν −

1

2
∂µϕ∂µϕ− λ

4
ϕ4

]
, (1.23)

where α, β, ξ, and λ are dimensionless arbitrary positive constants. This action has

proved itself able to produce a model for inflation which satisfies all current experimental

constraints [28], to produce primordial magnetic fields [29], and also to be stable under

one-loop quantum corrections [30]. This new additional, and very stringent, symmetry

seems to protect the model from some controversial aspects of Stelle’s model. Nonethe-

less, it is still not completely understood if this model can predict detectable deviations

from General Relativity. In this thesis we then carried out some preliminary steps in the

study of static and spherically symmetric solutions in this scale-invariant model of gravity.

While a consistent description of quadratic terms in a quantum theory of gravity seems

an obstacle course, at the same time it is natural to expect that, if some variations from

the solutions of General Relativity are present, they can be described at first approxi-

mation by a quadratic theory of gravity. Moreover, the impressive results of recent years

and the bright short-term perspectives in experimental gravitational physics open, for the

first time, the possibility of having an insight into the behavior of gravity at these scales.

We live in a scientific era in which results from precision cosmology, gravitational wave

measurements, and radio observations with impressive angular resolutions converge. We

believe then that aiming to have a complete description of the consequences of quadratic

terms in a realistic setting can be more physically instructive in understanding our uni-

verse rather than fully describing the quantum nature of spacetime. To set a more realistic

goal, we approached this problem starting from the simplest solutions: static, spherically

symmetric isolated objects.

1.1 Outline of the thesis

In Section 2 we present the actions considered throughout the thesis and their equations

of motion both in tensor form and when applied to a static and spherically symmetric

metric. In particular, we present in greater detail Stelle’s action (1.19) and its “sectors”

in which only one of the two additional massive modes is present, and we will present

the model of scale-invariant gravity proposed by Rinaldi and Vanzo (1.23) and its scalar

sector, in which only the scalar field and the Ricci scalar are present. We will also present

some no-hair-like theorems which, under some general requirements as the metric to be

static, constraints the Ricci scalar to be zero in Stelle’s theory, and a combination of the
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1.1 Outline of the thesis 1 INTRODUCTION

Ricci scalar and the scalar field to be constant in the scale-invariant theory.

In Section 3 we present all the analytical approximations and numerical methods re-

quired to find exotic solutions in Stelle’s quadratic theory of gravity. In particular, the

solutions at large distances can be found in the linearized theory, and are in the form of

the Schwarzschild metric corrected by two Yukawa terms associated with the two massive

modes of the theory. The solutions can also be found in terms of power series close to the

origin or a metric singularity, and different families are found: there is a family which is

regular in the origin and two which describe singularities, and there is the possibility of

having either an event horizon or a wormhole throat. We also present the possibility of a

solution that is asymptotically vanishing at large distances, as they will be relevant in the

subsequent discussions. At last, we present the shooting method used to find solutions, in

which we numerically match the behavior at large distances with different possible series

expansions.

In Section 4 we present the so-called “phase diagram” of the theory, a diagram in which

in all points in the space defined by the asymptotic parameters at large distances we

indicate the type of global solution associated. We present the phase diagram in the case

of the two sectors of Stelle’s theory, and attempt to extract the relevant information from

the phase diagram of the full theory without having a complete description. We will also

show the location of non-vacuum solutions in the phase diagram of vacuum solutions to

understand which can model the external potential of compact stars.

In Section 5 we describe in detail the metric and the geometrical properties of all the

solutions found in the phase diagram. There are Schwarzschild and non-Schwarzschild

black holes, naked singularities with an attractive and repulsive gravitational field in the

origin, and non-symmetric wormholes. In the last subsection, we present the known ana-

lytical static and spherically symmetric solutions of scale-invariant gravity, which are the

ones also present in General Relativity. We also present briefly the cosmological model,

in which there is a spontaneous transition between two de Sitter configurations, as one

of the goals of this thesis was to find a similar transition in the case of isolated objects.

In Section 6 we study dynamical perturbations in Stelle’s theory and scale-invariant grav-

ity. We directly integrated the wave-like equations of perturbations, in order to find both

the insurgence of instabilities and the time dependence of the perturbations at large dis-

tances simultaneously. In Stelle’s theory most of the solutions result to be unstable, and,

in particular, there is a minimum stable radius for the event horizon of black holes. In
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the scale-invariant model we show the results of Simon Boudet, who proved that there

are two Schwarzschild-de Sitter solutions, of which one is stable and the other is unstable.

In Section 7 we first investigated the evaporation process of black holes in Stelle’s theory.

In particular, it has been possible to find the dependence between the evaporating total

mass and time using the adiabatic approximation, in which black holes evaporate slowly.

It is argued that either evaporation has to lead black holes into unstable configurations, or

the predictions of quadratic gravity are inconsistent with the existence of our universe. In

the scale-invariant model, we focused on the Euclidean action of the two Schwarzschild-de

Sitter solutions. It is possible indeed to argue from a semiclassical analysis of the theory

that the difference between the two actions leads to a transition between the unstable

and the stable solutions. In order to evaluate the Euclidean action we had to develop a

technique to avoid the insurgence of conical singularities.

In Section 8 we tried to extract some simple phenomenological predictions from the solu-

tions of Stelle theory. We present the difference between the shadow predicted by General

Relativity and the one produced by the exotic solutions, finding a direct relationship be-

tween the different families of solutions and the shadow being larger or smaller than the

one of the classical case. We also argue that different definitions for the mass measured

at a finite radius from the object have different predictions in quadratic gravity, and then

that this fact can be exploited to measure deviations from General Relativity. In partic-

ular, we will show that the difference in the mass definitions depends on the equation of

state describing the microscopical nature of the fluid in the case of compact stars.

After the conclusions, in Appendix A we present black hole solutions in the case of α < 0

(motivated by the results found in the context of asymptotically safe gravity), that have

characteristic oscillations at all distances, are not asymptotically flat, and are always

unstable. In Appendix B, we will instead tackle the problem of rotating solutions and

prove that in quadratic gravity it is not possible to use the Newman-Janis algorithm to

directly derive a rotating solution from a static and spherically symmetric seed.

1.2 Notes on units and adimensionalization

The presence of massive modes naturally introduces mass scales in quadratic gravity.

After imposing natural units as c = ℏ = kB = 1, a mass scale is the only quantity needed

to determine a set of units to characterize the solutions completely. Choosing a mass

scale is also necessary to perform numerical integrations, in which all quantities must be

dimensionless. Throughout this thesis, we decided to use as mass scale the one of the

14



1.2 Notes on units and adimen... 1 INTRODUCTION

massive tensor modes m2 =
√
γ/2α. This choice has been made to be consistent with

the simplified case with β = 0, in which many results of this thesis have been derived; in

the very few instances in which we considered the case with α = 0, we used as mass scale

the one of the massive scalar m0 =
√
γ/6β. With some exceptions, which will always be

specified in advance, the results of this thesis will all be in these “m2 units”, to which we

also refer as numerical units being the units used in our codes. The exceptions will be the

results on compact stars solutions, for which we opted to use more common units such

as solar masses and kilometers, and the final results on the evaporation of black holes. If

we denote adimensionalized quantities with a subscript “a”, we can write down the table

of conversion for the mass of the solutions, the radial coordinate, two charges S−
2 and S−

0

which will characterize the strength of the contribution to the asymptotic gravitational

interactions of the massive tensor and scalar modes, the temperature of black holes, the

entropy of black holes, and the energy density and pressure of a perfect fluid:

Physical quantity m2 units Plank units Physical units

M 16πγ
m2

Ma 4
√
2παMamp ∼Ma10

δ−37M⊙

r 1
m2
ra 4

√
2πα ra lp ∼ ra10

δ−37Km

S−
2

1
m2
S−
2,a 4

√
2παS−

2,a lp ∼ S−
2,a10

δ−37Km

S−
0

1
m2
S−
0,a 4

√
2παS−

0,a lp ∼ S−
0,a10

δ−37Km

TBH m2TBH,a
1

4
√
2πα

TBH,amp ∼ TBH,a10
31−δK

SWald
16πγ
m2

2
SWald,a 32παSWald,a ∼ SWald,a10

2δ−21J/K

ρ γm2
2ρa

1
29π2α

ρa
mp

l3p
∼ ρa10

93−2δKg/m3

p γm2
2pa

1
29π2α

pa
mp

l3p
∼ pa10

110−2δPa

Table 1: Table of conversion for the quantities which can characterize various solutions; in the first column

we indicate the physical quantities, in the second their expressions using the “m2 units”, in the third one

using Planck natural units and in the fourth one using the most common physical units in Astrophysics.

In the second and third columns we express the physical quantities using both the m2

units and Planck units, in which the dependence from the free parameter α is mani-

fest. In the fourth column of Table 1 we also considered the expressions of the various

quantities using the most common units of Astrophysics and expressing the free param-

eter as α = 102δ to have a direct relationship between the order of magnitude of α and

the physical units of our results. It is clear that using natural values of α of order of

unity, and then with δ = 0, the unity of adimensionalized quantities will correspond to

almost Planckian values; using a parameter of the order predicted by Cosmic Microwave

Background (CMB) anisotropies for Starobinski’s model (that is (1.19) with α = 0), we

would have α = 108 and δ = 4 [19], and all the quantities will be still above the range
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of high energy particle physics; using the maximum values of the parameters allowed by

constraints [31], that is α = 1060 and δ = 30, we would have masses in the range of the

ones of asteroids, which are indeed possible for primordial black holes, but not for the

observed astrophysical ones or neutron stars; finally, in order to have physical quantities

of the order of magnitude observed we would need α = 1074 and δ = 37, which however

would lead to measurable but unobserved deviations from General Relativity.

In the case of scale-invariant gravity, clearly, there is no preferred mass scale, and units are

entirely arbitrary. To adimensionalize the physical quantities, we then choose units related

to the specific solutions considered; in particular, in the case of linear perturbations, we

adimensionalized in terms of the mass parameter M present in the Coulombian part of

the potential −2M
r
, and in the case of the Euclidean action, in which we want to be able

to vary this parameter M , we adimensionalized in terms of the product M
√
Λ where Λ

is an effective cosmological constant.
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2 QUADRATIC GRAVITY

2 Quadratic gravity

While many different quadratic theories of gravity share the same physical motivation,

and can also present some similarities in the predicted corrections to the solutions of Gen-

eral Relativity, each theory has its own physical and technical properties, varying greatly

from one to the other. As said in the introduction, we will focus only on local theories

with quadratic invariants constructed by the curvature tensors and not their derivatives.

In particular, we will consider including a scalar field only to remove the dependence

from the mass scale set by the Planck mass and render the theory scale invariant. In this

section we will show the equations of motion and some general properties of quadratic

gravity, its non-trivial sectors, and scale-invariant gravity.

This section is divided in two parts:

- in the first subsection we analyze quadratic gravity, in particular Stelle’s action,

of which we will present the equations of motion both in tensor form and in the

case of static and spherically symmetric metrics, and we will also present a theorem

which imposes a zero Ricci scalar under simple and generic conditions. We will also

show the equations of motion for the two non-trivial reductions of quadratic gravity,

namely Einstein-Weyl gravity, in which the Einstein-Hilbert action is corrected by

the addition of a squared contraction of the Weyl tensor, and Starobinski’s action,

in which the Einstein-Hilbert action is corrected by the addition of a squared Ricci

scalar term; in particular, of this latter reduction, we will show its interpretation as a

simple case of the more general f(R) class of theories of gravity and its reformulation

in the so-called Einstein frame, that is as Einstein gravity with a scalar field;

- in the second subsection we analyze scale-invariant gravity, in which a dynamical

scalar field substitutes the Planck mass, and we will present both the equations

of motion and a theorem that states that a combination of the Ricci scalar and

the scalar field is constant under some generic and simple assumptions; we will

also show for scale-invariant gravity that the scalar sector, in which all the terms

proportional to curvature tensors different from the Ricci scalar are suppressed, can

be reformulated in the Einstein frame as General Relativity with two scalar fields,

of which however thanks to scale invariance only one is non-trivial.

The equations of this section are somehow common knowledge, and we refer as partial

bibliography to [32, 20, 33, 24] for quadratic gravity, and to [27, 34, 28, 35] for scale-

invariant gravity.
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2.1 General quadratic gravity... 2 QUADRATIC GRAVITY

2.1 General quadratic gravity and Stelle’s action

The most general correction of the Einstein-Hilbert action containing only quadratic

contractions of the curvature tensors can be simply written as

Iqg =
∫

d4x
√
−g
[
γ (R− 2Λ) + aR2 + bRµνRµν + cRµνρσRµνρσ

]
; (2.1)

however, for reasons that will be clear shortly, we prefer to recast it as

Iqg =
∫

d4x
√
−g
[
γ (R− 2Λ) + β R2 − αCµνρσCµνρσ + χG

]
, (2.2)

where Cµνρσ is the Weyl tensor, defined as

Cµνρσ = Rµνρσ +
1

2
(Rµσgνρ +Rνρgµσ −Rµρgνσ −Rνσgµρ) +

1

6
(gµρgνσ − gµσgνρ) , (2.3)

which is traceless under any possible contraction of the indices, and G is the Gauss-Bonnet

combination

G = RµνρσRµνρσ − 4RµνRµν +R2, (2.4)

which in four dimensions is a total derivative and its integral is a topological term; for this

reason, it does not contribute to the equations of motion. As stated in the introduction,

we are interested in the short-scale corrections to the solutions of General Relativity,

and then we can safely consider Λ = 0, taking into account that in our universe the

cosmological constant is relevant only at very large scales; we specify here that this will

be the case for all the solutions of quadratic gravity studied in this thesis. Not considering,

for now, the Gauss-Bonnet term that, however, will come back in the Thermodynamics

of black holes, the action can be written in the form studied by Stelle

IStelle =
∫

d4x
√
−g
[
γ R + β R2 − αCµνρσCµνρσ

]
. (2.5)

While we will not indulge in the quantum description of this theory, we remember that

the action has been proven to be renormalizable [12], and at the quantum level three

fundamental excitations are present, namely

- a massless tensor particle with spin S = 2, which can be interpreted as the standard

graviton;

- a massive scalar particle with spin S = 0 and mass m2
0 = γ/6β, which is associated

with the R2 term;

- a massive tensor particle with spin S = 2 and mass m2
2 = γ/2α, which is associated

with the CµνρσCµνρσ term and is the ghost particle we discussed in the introduction.
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2.1 General quadratic gravity... 2 QUADRATIC GRAVITY

It is then clear why we choose to express the action as (2.2), as those specific combinations

of the curvature invariants are indeed the ones with a physical meaning. If we want to

include a classical matter component, the action becomes

IStelle,mat =
∫

d4x
√
−g
[
γ R + β R2 − αCµνρσCµνρσ + Lmat

]
(2.6)

and the equations of motion can be derived from the minimization of (2.6); in particular,

they are

Gµν = γ

(
Rµν −

1

2
Rgµν

)
+ 2 β

(
Rµν −

1

4
Rgµν −∇µ∇ν + gµν □

)
R+

− 4α

(
∇ρ∇σ +

1

2
Rρσ

)
Cµρνσ =

1

2
Tµν ,

(2.7)

where clearly the equations for (2.5) are found by setting Tµν = 0, and the one for (2.2)

are found by setting Tµν = 2Λgµν . It can be proven using the definition of the Riemann

tensor and the second Bianchi identity

(∇ρ∇µ −∇µ∇ρ)R
ρ
ν =Rρ

σρµR
σ
ν −Rσ

νρµR
ρ
σ = Rσ

νRσµ −RρνRσνρµ,

∇ρ∇σRµρνσ =∇ρ∇µR
ρ
µ −□Rµν ,

∇ρR
ρ
µ =

1

2
∇µR,

(2.8)

that the equations (2.7) are equal to

Gµν = γ

(
Rµν −

1

2
Rgµν

)
+ 2 β

(
Rµν −

1

4
Rgµν −∇µ∇ν + gµν □

)
R+

− α

(
4RρσRµρνσ −RρσRρσgµν −

4

3
RRµν +

1

3
R2Gµν + 2□Rµν −

1

3
□Rgµν +

− 2

3
∇µ∇νR

)
=

1

2
Tµν ,

(2.9)

and now it is trivial to see that all the vacuum solutions of General Relativity Tµν =

Rµν = 0 are also vacuum solutions of this theory. It will not be the case for non-vacuum

solutions because the additional terms will couple non-minimally with the stress-energy

tensor, and the solutions of General Relativity will not be solutions of the quadratic

theory. Thanks to the traceless nature of the Weyl tensor, the trace of the equations of

motion takes the very simple form

6β

(
□− γ

6β

)
R = 6β

(
□−m2

0

)
R =

1

2
T, (2.10)

where T = T µµ and we used the definition of the mass of the scalar particle present at

quantum level m2
0 = γ/6β. As described in [36, 23], from (2.10) it is possible to prove the

following theorem:
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Theorem 1. Let’s consider a static spacetime (M,g) which is a solution of the vacuum

equations of motion of quadratic gravity and a spacelike hypersurface Σ; if the spacetime

satisfies either

- gµνκ
µκν → 0 at the boundary of Σ, with κµ being the timelike Killing vector,

- R → 0 at the boundary of Σ,

- DaR → 0 at the boundary of Σ, with Da being the covariant derivative on Σ,

then R = 0 in all Σ.

Proof. Considering the ansatz for a generic static metric

ds2 = −τ 2(x)dt2 + ξi,j(x)dx
idxj. (2.11)

Equation (2.10) in the vacuum becomes

□R−m2
0R = DiDiR +

1

τ
DiτDiR−m2

0R = 0, (2.12)

where Di is the covariant derivative defined by the ξij metric. Multiplying everything by

τR and integrating over a spacelike hypersurface Σ we get∫
Σ

d3x
√
ξ
[
τRDiDiR +RDiτDiR−m2

0τR
2
]
=

= [τRDiR]∂Σ −
∫
Σ

d3x
√
ξ τ
[
DiRDiR +m2

0R
2
]
= 0,

(2.13)

where we integrated by parts in the second line. If the boundary term goes to zero, the

integral term in the second line has to go to zero as well; being that with a static metric

its spatial projection ξij is positive definite, the integrand is the sum of two terms which

are always non-negative, and then they have to be both identically zero in order to have

a zero integral. In particular, m2
0R

2 = 0 =⇒ R = 0. □

From theorem 1 the two following corollaries can be trivially derived:

Corollary 1. All the static and asymptotically flat black hole solutions of quadratic grav-

ity have R = 0 outside the event horizon.

This corollary is proven by the fact that ∂Σ, in this case, is constituted by the event

horizon, for which τ = 0, and by spatial infinity, for which R → 0 for an asymptotically

flat solution. □

Corollary 2. All the solutions of quadratic gravity which satisfy the requirements of

theorem 1 are also solutions of a theory with action (2.5) with β = 0.
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In this case, we remember that the terms of the equations of motion which are proportional

to β are (
Rµν −

1

4
Rgµν −∇µ∇ν + gµν □

)
R, (2.14)

and are always zero for R = 0; setting β = 0 at the level of the action then does not

affect the solutions. □

As already stressed, the main goal of this thesis will be to characterize static and spheri-

cally symmetric spacetimes, for which we choose the ansatz for the metric in Schwarzschild

form

ds2 = −h(r)dt2 + dr2

f(r)
+ r2dΩ2, (2.15)

and the stress-energy tensor of a perfect fluid with form

Tµν = (ρ(r) + p(r))uµuν + p(r)gµν , (2.16)

where uµ is a timelike unit vector. In principle the equations of motion (2.7) should become

a system of two fourth-order ordinary differential equations, however Grr depends only

on derivatives up to h(3)(r) and f ′′(r), and Gtt depends only on derivatives up to h(4)(r)

and f (3)(r). It is then possible to use the suitable combination

Gtt −X(r)

(
Grr −

1

2
Trr

)
− Y (r)∂r

(
Grr −

1

2
Trr

)
=

1

2
Ttt, (2.17)

in order to find an equation dependent only on terms up to f (3)(r) and h′′(r). Using

X(r) =
f(r)h(r)

(9βrh(r)f ′(r)− 2r(α− 3β)f(r)h′(r) + 4(α + 6β)f(r)h(r))2

(
54βr2(α+

− 3β)h(r)2f ′(r)2 + rf(r)h(r)
(
r
(
−8α2 + 48αβ − 153β2

)
f ′(r)h′(r) + 4(α+

− 3β)h(r) ((4α + 42β)f ′(r)− 9βrf ′′(r))
)
+ 2f(r)2

(
− r2(2α− 15β)(α+

− 3β)h′(r)2 − 2r
(
4α2 − 15αβ + 90β2

)
h(r)h′(r) + 24(α− 3β)(α + 6β)h(r)2

))
(2.18)

and

Y (r) = − 4r(α− 3β)f(r)2h(r)2

2f(r) (r(α− 3β)h′(r)− 2(α + 6β)h(r))− 9βrh(r)f ′(r)
, (2.19)

we find the two third-order equations

Grr = − h(3)(r) (9βrh(r)f ′(r)− 2r(α− 3β)f(r)h′(r) + 4(α + 6β)f(r)h(r))

6rh(r)2
+

− h′′(r)2(α− 3β)f(r)

6h(r)2
+

h′′(r)

12r2f(r)h(r)3

(
4rf(r)h(r)h′(r)

(
r(α + 6β)f ′(r) + 6(α+

+ 3β)f(r)
)
+ h(r)2

(
−
(
27βr2f ′(r)2 + 4r(2α + 21β)f(r)f ′(r) + 16(α + 6β)f(r)2

))
+
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− 6r2(α− 3β)f(r)2h′(r)2
)
+

7(α− 3β)f(r)h′(r)4

24h(r)4
− h′(r)3

12rh(r)3

(
3r(α + 3β)f ′(r)+

+ 2(5α + 12β)f(r)
)
+

h′(r)2

24r2f(r)h(r)2

(
− r2(α− 39β)f ′(r)2 + 4rf(r)

(
r(α+

− 3β)f ′′(r) + 4(α + 6β)f ′(r)
)
− 4(α− 48β)f(r)2

)
+

h′(r)

12r3f(r)h(r)

(
r2f ′(r)

(
2(α+

− 12β)f ′(r)− 9βrf ′′(r)
)
− 4rf(r) (2r(α + 6β)f ′′(r) + (α + 15β)f ′(r)− 3γr)+

+ 16(α + 6β)f(r)2
)
− 1

6r4f(r)

(
− 4α + 12β − 4r2(α− 12β)f(r)f ′′(r)+

− 6f(r)
(
−12β + 6βrf ′(r) + γr2

)
+ rf ′(r)

(
18β

(
r2f ′′(r) + 2

)
+ r(α− 12β)f ′(r)

)
+

+ 4(α− 21β)f(r)2 + 6γr2
)
=

p(r)

2f(r)
=

1

2
Trr,

(2.20a)

Gtt−X(r)Grr − Y (r)∂rGrr =

=
1

8r4h(r)3 (9βrh(r)f ′(r) + f(r) (4(α + 6β)h(r)− 2r(α− 3β)h′(r)))2

(
144αβr3

(
rf ′(r)+

+ 4f(r)
)
f(r)h(r)5

(
9βrh(r)f ′(r)− 2r(α− 3β)f(r)h′(r) + 4(α+

+ 6β)f(r)h(r)
)
f (3)(r)− 288αβr4(α− 3β)f(r)2h(r)5 (rh′(r)− 2h(r)) f ′′(r)2+

− 12βr2h(r)2
(
f(r)h(r)2

(
r4(α− 3β)2f ′(r)2h′(r)2 − 2r3

(
2α2 + 33αβ+

− 36β2
)
h(r)f ′(r)2h′(r) + 4h(r)2

(
r2
(
α2 − 150αβ + 36β2

)
f ′(r)2 − 2(α− 3β)

(
2α+

− 6β − 3γr2
)))

− 2f(r)2h(r)
(
r4(α− 3β)2f ′(r)h′(r)3 + r3h(r)f ′(r)h′(r)

(
(−20α2+

+ 21αβ + 36β2)h′(r)− 2r(α− 3β)2h′′(r)
)
+ 2rh(r)2

(
2r2(α− 3β)(α + 6β)f ′(r)h′′(r)+

+ h′(r)
(
−8(α− 3β)2 + 3αr(51β − 2α)f ′(r) + 6γr2(α− 3β)

) )
+ 4h(r)3

(
24αr(α+

+ 6β)f ′(r) + (α− 3β)
(
8α + 12β + 3γr2

) ))
− 54αβr3h(r)4f ′(r)3 + f(r)3

(
r4(α+

− 3β)2h′(r)4 − 16r
(
11α2 + 42αβ + 18β2

)
h(r)3h′(r)− 4r3(α− 3β)h(r)h′(r)2

(
r(α+

− 3β)h′′(r) + 6αh′(r)
)
+ 4r2h(r)2

(
r2(α− 3β)2h′′(r)2 +

(
41α2 − 57αβ+

− 36β2
)
h′(r)2

)
− 16

(
7α2 + 84αβ + 9β2

)
h(r)4

))
f ′′(r) + 3βr4h(r)4

(
r2(α+

− 3β)(2α + 3β)h′(r)2 − 4r(α− 12β)(2α + 3β)h(r)h′(r) + 4(2α− 15β)(α+

− 12β)h(r)2
)
f ′(r)4 + 3βr3h(r)3

(
− r3(α− 3β)(8α + 3β)f(r)h′(r)3+

+ 4r2f(r)h(r)h′(r)
(
r(α− 3β)(2α + 3β)h′′(r) +

(
4α2 − 105αβ − 126β2

)
h′(r)

)
+

+ 4rf(r)h(r)2
((
4α2 + 273αβ + 36β2

)
h′(r)− 2r(α− 12β)(2α + 3β)h′′(r)

)
+

− 8h(r)3
(
4(α− 3β)(α + 33β)f(r) + 9β

(
−4α + 12β + 3γr2

)) )
f ′(r)3+

+ 3βr2h(r)2
(
3r4(α− 3β)(4α− 3β)f(r)2h′(r)4 + 4r3f(r)2h(r)h′(r)2

(
(11α2+
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+ 6αβ + 126β2)h′(r)− 6αr(α− 3β)h′′(r)
)
+ 16rf(r)h(r)3

(
4r(2α2 + 24αβ+

− 9β2)f(r)h′′(r) + h′(r)
(
(7α + 6β)(5α + 12β)f(r)− 3γr2(α− 3β)

) )
+

+ 4r2f(r)2h(r)2
(
r2(α− 3β)(2α + 3β)h′′(r)2 −

(
76α2 + 831αβ + 468β2

)
h′(r)2+

− 4r
(
2α2 − 3αβ + 72β2

)
h′(r)h′′(r)

)
− 8h(r)4

(
f(r)

(
36β(21β − 4α) + 2(26α2+

+ 411αβ − 657β2)f(r) + 3γr2(14α + 39β)
)
+ (2α + 3β)

(
2α− 6β − 3γr2

) ))
f ′(r)2+

+ rf(r)h(r)
(
− 3βr5(3β − α)(15β − 8α)f(r)2h′(r)5 + 12βr4f(r)2h(r)h′(r)3

(
3r(α+

− 3β)(2α− 3β)h′′(r) +
(
−2α2 + 39αβ − 18β2

)
h′(r)

)
+ 8rh(r)4h′(r)

(
f(r)

(
− 12β(4α2+

− 78αβ + 117β2) + 6β
(
76α2 − 141αβ + 225β2

)
f(r) + γr2

(
8α2 − 48αβ + 153β2

) )
+

+ 3β(3β − 4α)
(
−2α + 6β + 3γr2

) )
− 36βrf(r)h′′(r)

(
4α(α + 6β)f(r)− γr2(α+

− 3β)
)
+ 8r2f(r)h(r)3

(
108β2r2(α− 3β)f(r)h′′(r)2 + h′(r)2

(
(2α + 3β)

(
γr2(2α+

+ 3β)− 12β(α− 3β)
)
− 12β

(
32α2 + 231αβ + 153β2

)
f(r)

)
− 12βr(α + 6β)(8α+

+ 21β)f(r)h′(r)h′′(r)
)
+ 12βr3f(r)2h(r)2h′(r)

(
− r2(α− 3β)(4α− 3β)h′′(r)2+

+
(
124α2 + 327αβ + 252β2

)
h′(r)2 + 4r(α− 12β)(α− 3β)h′(r)h′′(r)

)
+

− 64h(r)5
(
f(r)

(
12β

(
−2α2 + 12αβ + 63β2

)
+ 6β

(
16α2 + 39αβ − 99β2

)
f(r)+

+ γr2(α + 6β)(4α + 15β)
)
− 9β

(
γr2(α + 6β)− 6β(α− 3β)

) ))
f ′(r)+

+ 2f(r)2
(
3βr6(α− 3β)2f(r)2h′(r)6 − 6βr5(α− 3β)f(r)2h(r)h′(r)4

(
2r(α+

− 3β)h′′(r) + (11α− 6β)h′(r)
)
+ 8r2h(r)4

(
12βr2(α− 3β)(α + 6β)f(r)2h′′(r)2+

+ 3h′(r)2
(
f(r)

(
4β(3β − α)(8α + 3β)− 2β

(
−7α2 + 132αβ + 153β2

)
f(r)+

+ γr2
(
4α2 + 3αβ + 9β2

) )
− β(α− 3β)

(
2α− 6β − 3γr2

) )
+

+ 4rf(r)h′(r)h′′(r)
(
γr2(α− 3β)2 − 6β(α + 6β)(7α + 6β)f(r)

) )
+

+ 12βr4f(r)2h(r)2h′(r)2
(
r2(α− 3β)2h′′(r)2 − 27α(α− 5β)h′(r)2 + 2r(5α− 6β)(α+

− 3β)h′(r)h′′(r)
)
+ 8r3f(r)h(r)3h′(r)

(
− 3βr2(5α− 6β)(α− 3β)f(r)h′′(r)2+

+ h′(r)2
(
3β
(
43α2 + 318αβ + 36β2

)
f(r) + (α− 3β)

(
12β(α− 3β)− γr2(2α + 3β)

))
+

+ 72αβr(α− 3β)f(r)h′(r)h′′(r)
)
− 16rh(r)5

(
4γr3(α− 3β)(α + 6β)f(r)h′′(r)+

+ h′(r)
(
6β(α− 3β)(6β − 5α) + f(r)

(
12β(2α + 3β)(6β − 5α)− 6β(5α + 3β)(6β+

− 5α)f(r) + γr2(4α− 21β)(α + 6β)
)
+ γr2(4α− 3β)(α + 6β)

))
+ 64(α + 6β)(f(r)+

− 1)h(r)6
(
6β(α− 3β) + 6β(5α + 3β)f(r) + γr2(−(2α + 3β))

) ))
= −1

2
h(r)ρ(r)+

=
h(r)p(r)

2 (9βrh(r)f ′(r)− 2r(α− 3β)f(r)h′(r) + 4(α + 6β)f(r)h(r))2

(
18βr2(α+

− 3β)h(r)2f ′(r)2 + 9βrf(r)h(r) (4(α− 3β)h(r) (2f ′(r)− rf ′′(r))− 9βrf ′(r)h′(r))+
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+ 2f(r)2
(
− r2(2α− 15β)(α− 3β)h′(r)2 − 2r

(
4α2 − 15αβ + 90β2

)
h(r)h′(r)+

+ 24(α− 3β)(α + 6β)h(r)2
))

+

− 2r(α− 3β)f(r)h(r)2

2f(r) (r(α− 3β)h′(r)− 2(α + 6β)h(r))− 9βrh(r)f ′(r)
p′(r) =

=
1

2
(Ttt −X(r)Trr − Y (r)∂rTrr) ,

(2.20b)

which are the only independent equations of motion. To have a complete set of differential

equations, we also have to consider the only non-zero component of the conservation of

the stress-energy tensor

∇µT
µν = 0 → p′(r) +

h′(r)

2h(r)
(ρ(r) + p(r)) = 0, (2.21)

and an equation of state

p(r) = P (ρ(r)) . (2.22)

Unsurprisingly, no analytical solutions of (2.20)-(2.21), except for the vacuum solutions

of General Relativity, are known, and solutions must be studied numerically or under

approximations. We expect six free parameters for static and spherically symmetric so-

lutions as they solve two third-order ordinary differential equations. However, we can

remove two free parameters requiring the spacetime to be asymptotically flat and an-

other one with a gauge fixing of the rescaling of the time coordinate, which is always

possible in static spacetimes. The solutions of quadratic gravity we will analyze are then

described only by three free parameters.

2.1.1 Starobinski action and f(R) theories

Despite its general nature, Stelle’s quadratic theory of gravity (2.5) received relatively

little attention in the study of classical solutions, especially with respect to its simplified

version

IStarobinski =
∫

d4x
√
−g
[
γR + βR2

]
. (2.23)

For this choice there are three main reasons:

- a theoretical reason, that is that the action (2.23) does not contain ghost particles

at quantum level;

- a phenomenological reason, that is that with a Friedmann-Lemâıtre-Robertson-

Walker (FLRW) ansatz for the metric the Weyl term is identically zero, and there-

fore at background level the two actions are the same. We remember that the

cosmological model derived from the action (2.23) has been studied by Starobinski
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in [19], and it is one of the models which survived the recent constraints on inflation

coming from CMB anisotropies [37, 38]; this is indeed the reason for which we refer

to the action (2.23) as Starobinski’s action.

- a technical reason, that is that it is possible to rewrite the action in the so-called

Einstein frame, that is Einstein gravity minimally coupled with a scalar field, in an

easy and manageable way.

While the theoretical reason is intriguing, quadratic terms are expected to be generated

by quantum corrections, and there is no natural way to avoid generating terms propor-

tional to the squared Ricci and Riemann tensors. In the absence of such a mechanism,

we believe that quadratic gravity remains more solid at the theoretical level.

Regarding the phenomenological reason, it is a peculiarity of the cosmological ansatz for

the metric, and we believe that applying it to isolated objects is an excessive extrapo-

lation; moreover, we also recall that the tensor perturbations, which, however, have not

been detected yet, have different behaviors in the two theories [39].

To discuss the technical reason, let us briefly describe the actual reformulation of the

theory in the Einstein frame. We start introducing the auxiliary field χ

I ′
Starobinski =

∫
d4x

√
−g
[
γR + βR2 − β (χ−R)2

]
=

∫
d4x

√
−g
[
(γ + 2βχ)R− βχ2

]
,

(2.24)

where the original action is found solving the equations of motion of χ. Applying the

Weyl rescaling to the metric g̃µν = (1 + 2βχ/γ)gµν , the action becomes

I ′′
Starobinski =

∫
d4x
√
−g̃
[
γR̃− 6β2/γ

(1 + 2βχ/γ)2
∂ρχ∂ρχ− β

(1 + 2βχ/γ)2
χ2

]
, (2.25)

that with the redefinition ϕ =
√
3γ ln (1 + 2βχ/γ), dropping the tildes and the super-

scripts, and renaming γ =M2
p/2, becomes

IStarobinski =
∫

d4x
√
g

[
M2

p

2
R− 1

2
∂ρϕ∂ρϕ−

M4
p

16β

(
1− e

−
√

2
3

ϕ
Mp

)2
]
, (2.26)

which is General Relativity with a minimally coupled scalar field with the potential

V (ϕ) =
M4

p

16β

(
1− e

−
√

2
3

ϕ
Mp

)2

. (2.27)

In particular, the specific form of the potential (2.27) naturally describes a slow-roll infla-

tionary phase. We also note that an infinitesimal field will be described by the Lagrangian

density

−1

2
∂ρϕ∂ρϕ−

M4
p

16β

(
1− e

−
√

2
3

ϕ
Mp

)2

∼ −1

2
∂ρϕ∂ρϕ−

M2
p

24β
ϕ2 = −1

2

(
∂ρϕ∂ρϕ+m2

0ϕ
2
)
,

(2.28)

25



2.1 General quadratic gravity... 2 QUADRATIC GRAVITY

which is exactly the action of a free scalar field with mass m2
0 = γ/6β. The formulation

in the Einstein frame acquires much more strength whenever we consider Starobinski’s

action (2.23) in the context of the f(R) class of theories of gravity. Indeed, it is possible

to describe a large variety of models with an action expressed as

If(R) =

∫
d4x

√
−gf(R), (2.29)

of which Starobinski’s model is the simplest case that deviates from General Relativity. A

property of the f(R) class is that all models can be mapped to an Einstein theory with a

minimally coupled scalar field with a procedure similar to the one shown for Starobinski’s

model. The potential of the scalar field can be found by solving the equations

f ′(R) =
M2

p

2
e
√

2
3

ϕ
Mp ,

e
−
√

2
3

ϕ
Mp V ′(ϕ) =

Mp√
6
R,

(2.30)

and fixing the constants of integration with the equations of motion. Nonetheless, while

the Einstein frame is extremely useful in some cases, it is not optimal to study isolated

objects. This is due to the transformation g̃µν = (1+2βχ/γ)gµν which, to be a conformal

map, has to satisfy 1 + 2βχ/γ > 0 and then, considering the equation of motion of χ

means R > −m2
0/3, which however can be a strict requirement for isolated objects. In

addition, a cosmological constant naturally appears in the Einstein frame, and while it

is of fundamental importance in a cosmological context, it might render the discussion of

isolated objects much more complicated.

Considering also the possibility of having a non-zero stress-energy tensor, the equations

of motion for the action (2.23) are

Fµν = γ

(
Rµν −

1

2
Rgµν

)
+ 2 β

(
Rµν −

1

4
Rgµν −∇µ∇ν + gµν □

)
R =

1

2
Tµν , (2.31)

that become a set of fourth-order ordinary differential equations whenever the static

and spherically symmetric ansatz (2.15) is considered. However, if we consider the Ricci

scalar R as an independent variable it is possible to rewrite the system as one second-order

equation in R and two first-order equations in h(r) and f(r) as

Fµ
µ =

9

2
βf ′(r)R′(r) +

9βf(r)h′(r)R′(r)

2h(r)
+ 6βf(r)R′′(r) +

18βf(r)R′(r)

r
− γR(r) =

=
1

2
(−ρ(r) + 3p(r)) =

1

2
T,

(2.32a)
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Ftt +
h(r)

3
Fµ

µ = − h(r)

6r2
(
6γrf ′(r)− 6γ − 3βr2f ′(r)R′(r) + 12βrR(r)f ′(r) + 2γr2R(r)+

+ 6f(r) (γ − 2βrR′(r) + 2βR(r)) + 3βr2R(r)2 − 12βR(r)
)
=

=
h(r)

3
(2ρ(r) + 3p(r)) =

1

2

(
Ttt +

h(r)

3
T

)
,

(2.32b)

Frr =
−2γ + 3βr2f ′(r)R′(r) + βr2R(r)2 − 4βR(r)

2r2f(r)
+

+
rh′(r) (γ + βrR′(r) + 2βR(r)) + h(r) (γ + 4βrR′(r) + 2βR(r))

r2h(r)
=

p(r)

2f(r)
=

1

2
Trr.

(2.32c)

Having one second-order and two first-order equations, the solutions of the action (2.23)

will have only four free parameters, which will be reduced to two free parameters whenever

asymptotic flatness is imposed and a time parametrization is fixed.

2.1.2 Einstein-Weyl gravity

As opposed to the case of Starobinski’s action (2.23), Einstein-Weyl gravity studies the

sector of quadratic gravity where only the squared Weyl tensor is present

IEW =

∫
d4x

√
−g [γ R− αCµνρσCµνρσ] . (2.33)

It has been relatively less studied than Starobinski’s action, having all the complications of

the full theory, namely having a ghost at the quantum level, having no cosmological model

associated, and having a non-manageable Einstein frame counterpart. In particular, to be

more specific on the third point, we recall the Einstein frame formulation of Einstein-Weyl

gravity derived in [40] as

IEW =

∫
d4x

√
−g

M2
p

2

[
R̃− g̃µν

(
∆ρ

µσ(ϕαβ)∆
σ
νρ(ϕαβ)−∆ρ

µν(ϕαβ)∆
σ
σρ(ϕαβ)

)
+

+
m2

2

4

ϕµνϕµν − ϕ2√
detA(ϕαβ)

]
,

(2.34)

where

∆ρ
µν(ϕαβ) =

1

2
(g−1)ρσ(ϕαβ)

(
∇̃µgσν(ϕαβ) + ∇̃νgµσ(ϕαβ)− ∇̃σgµν(ϕαβ)

)
,

gµν(ϕαβ) =
A ρ
µ (ϕαβ)g̃ρν√
detA(ϕαβ)

,

A ρ
µ (ϕαβ) =

(
1 +

1

2
ϕ

)
δ ρ
µ − ϕ ρ

µ ,

(g−1)νρϕµρ = g̃νρπµρ,

(2.35)
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the non-tilded quantities are the ones of the original action (2.33), and πµν is an auxil-

iary field which satisfies the equations of motion πµν = 2m−2
2

(
Rµν − 1

6
Rgµν

)
. While it is

interesting that the Einstein-Weyl action can be recast in the form of General Relativity

with a minimally coupled massive tensor field with spin S = 2, the form of the action

(2.34) does not really simplify the study of solutions, and we will never use the Einstein

frame formulation.

However, the most interesting point of Einstein-Weyl gravity is precisely the presence of

this additional massive tensor mode with negative energy states. While the R2 term of

(2.5) can be related to the presence of a massive scalar, whose effects are standard in some

sense, the action (2.33) contains the more peculiar aspects of the full quadratic theory.

In particular, thanks to the second lemma 2 of the theorem 1, Einstein-Weyl gravity de-

scribes all the Ricci scalar flat solutions of the full quadratic theory; more specifically, all

the static and asymptotically flat black hole solutions of quadratic gravity are solutions

also of the Einstein-Weyl theory. Nonetheless, as we will show shortly, the equations of

motion are much simpler than the ones of the full quadratic case.

The tensorial form of the equations of motion for the Einstein-Weyl action (2.33) are

Hµν = γ

(
Rµν −

1

2
Rgµν

)
− 4α

(
∇ρ∇σ +

1

2
Rρσ

)
Cµρνσ =

1

2
Tµν , (2.36)

with the trace being

Hµ
µ = −γR =

1

2
T, (2.37)

which is the same as in General Relativity due to the traceless nature of the Weyl term.

Substituting the metric (2.15) results once again in a system of four fourth-order equa-

tions. However, Hµ
µ has only terms up to h′′(r) and f ′(r) and Hrr only up to h(3)(r) and

f ′′(r). To find another second-order equation we can then use the convenient combination

Hrr − X̃(r)

(
Hµ

µ −
1

2
T

)
− Y (r)

(
Hµ

µ −
1

2
T

)2

− Z(r)∂r

(
Hµ

µ −
1

2
T

)
=

=Hrr −X(r)

(
Hµ

µ −
1

2
T

)
− Y (r)

((
Hµ

µ

)2 − 1

4
T 2

)
− Z(r)∂r

(
Hµ

µ −
1

2
T

)
,

(2.38)

which has terms only up to f ′′(r) and h′(r). Using the factors

X̃(r) =
α (2rf(r)h′(r) + h(r) (3rf ′(r) + 2f(r)− 2))

3γr2h(r)f(r)
,

X(r) =
α (2rf(r)h′(r) + h(r) (3rf ′(r) + 2f(r)− 2))

3γr2h(r)f(r)
− α

6γ2f(r)
T,

Y (r) = − α

6γ2f(r)
,

Z(r) =
α (rh′(r)− 2h(r))

3γrh(r)
,

(2.39)
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we have then, finally, the two second-order equations

Hµ
µ =

γ

2r2h(r)2

(
rh(r)

(
rh′(r)f ′(r) + 2f(r)

(
rh′′(r) + 2h′(r)

))
− r2f(r)h′(r)2 +

+ 4h(r)2
(
rf ′(r) + f(r)− 1

))
=

1

2
(−ρ(r) + 3p(r)) =

1

2
T,

(2.40a)

Hrr −X(r)Hµ
µ − Y (r)

(
Hµ

µ

)2 − Z(r)∂rHµ
µ =

1

2r4h(r)3f(r)

(
αr3f(r)2h′(r)3 +

− αr2h(r)f(r)h′(r)2
(
rf ′(r) + 3f(r)

)
− 2r2h(r)2f(r)h′(r)

(
αrf ′′(r) + αf ′(r) +

− γr
)
+ h(r)3

(
r
(
4αf ′(r)− 3αrf ′(r)2 − 2γr

)
+ 2f(r)

(
4α + 2αr2f ′′(r) + γr2 +

− 2αrf ′(r)
)
− 8αf(r)2

))
=

1

24γ2r2f(r)h(r)

(
h(r)

(
α
(
4γρ(r) (3rf ′(r) + 2f(r)− 2)+

+ 8γrf(r) (3p′(r)− ρ′(r)) + r2ρ(r)2
)
− 6p(r)

(
αr (6γf ′(r) + rρ(r)) + 4αγf(r)+

− 2γ
(
2α + γr2

) )
+ 9αr2p(r)2

)
+ 4αγrf(r)h′(r) (−3rp′(r)− 6p(r) + rρ′(r) + 2ρ(r))

)
=

=
1

2

(
Trr −X(r)T − 1

2
Y (r)T 2 − Z(r)∂rT

)
,

(2.40b)

where in the last equivalence of (2.40b) we used (2.40a) to remove the term proportional

to Y (r)Hµ
µT . Having two second-order equations, we expect four free parameters for the

solutions, which will become two after imposing asymptotic flatness and having fixed a

time parametrization, exactly as in the case of Starobinski’s action. Finally, we note that,

even if the equations are much simpler than (2.20), no analytical solutions are known,

except for the vacuum solutions of General Relativity, and it is necessary to resort to

numerical integration or approximations.

2.2 Scale-invariant gravity

A very simple but very intriguing extension of the quadratic action (2.2) can be found

by substituting the Planck mass parameter γ = M2
p/2 with a dynamical scalar field.

If we introduce only a quartic self-interaction of the field and no mass term, we find a

generalization of the action studied by Rinaldi and Vanzo in [27, 34, 28]

Isi =
∫

d4x
√
−g
[
ξϕ2R + βR2 − αCµνρσCµνρσ + χG − 1

2
∂µϕ∂µϕ− λ

4
ϕ4

]
, (2.41)

where α, β, χ, ξ, and λ are dimensionless arbitrary positive constants, and we specify that

we used a different notation than the original authors to be consistent with the parameters

used for the action (2.2). This action possesses the dilatation, or scale, symmetry

g′µν(x) = gµν(ℓx), ϕ′(x) = ℓϕ(ℓx), (2.42)
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for any constant ℓ. It also possesses a rigid Weyl symmetry

g′µν(x) = L2gµν(x), ϕ′(x) = L−1ϕ(x), (2.43)

for any constant L, and the composite symmetry

g′µν(x) = L2gµν(ℓx), ϕ′(x) = L−1ℓϕ(ℓx), (2.44)

which is clearly a diffeomorphism transformation in the case L = ℓ. However, the theory’s

scale-invariant nature was already manifested by the presence of dimensionless constant

only, which forces any mass scale in the theory to be generated dynamically. The metric

field equations of (2.41) read(
2βR + ξϕ2

)
Gµν − 4α

(
∇ρ∇σ +

1

2
Rρσ

)
Cµρνσ −

1

2

(
∇µϕ∇νϕ− 1

2
gµν∇ρϕ∇ρϕ

)
+

− (∇µ∇ν − gµν□)
(
2βR + ξϕ2

)
+

1

2

(
βR2 +

λ

4
ϕ4

)
gµν = 0, (2.45)

where Gµν = Rµν − 1
2
Rgµν is the Einstein tensor, while varying the action with respect

to the scalar field yields

□ϕ+
(
2ξR− λϕ2

)
ϕ = 0. (2.46)

If we restrict ourselves to solutions with constant ϕ and R, it is trivial to see that (2.45)

reduce to the equations of Einstein-Weyl gravity with a cosmological constant. Finally,

using the scalar equation (2.46), the trace of the metric equations of motion can be written

as

□

(
R +

1 + 12ξ

24β
ϕ2

)
= 0. (2.47)

This specific form of the trace of the equation of motion suggests that it is possible to

derive a no-hair-like theorem as theorem 1. It is indeed possible to derive two theorems:

Theorem 2. Let’s consider a static spacetime (M,g) which is a solution of the vacuum

equations of motion of scale-invariant gravity and a spacelike hypersurface Σ; if the space-

time satisfies either

- gµνκ
µκν → 0 at the boundary of Σ, with κµ being the timelike Killing vector,

- Da

(
R + 1+12ξ

24β
ϕ2
)
→ 0 at the boundary of Σ, with Da being the covariant derivative

on Σ,

then
(
R + 1+12ξ

24β
ϕ2
)
= const. in all Σ.

Theorem 3. Let’s consider an isotropic and homogeneous spacetime (M,g) which is a

solution of the vacuum equations of motion of scale-invariant gravity and a time interval

∆t; if the spacetime satisfies either
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- gµνκ
µκν → 0 at the boundary of ∆t, with κµ being one of the spacelike Killing

vectors,

- Dt

(
R + 1+12ξ

24β
ϕ2
)
→ 0 at the boundary of ∆t, with Dt being the covariant derivative

on ∆t,

then
(
R + 1+12ξ

24β
ϕ2
)
= const. in all ∆t.

Proof. It is possible to prove both theorems simultaneously; let us consider a metric in

the form

ds2 = τ(x)2σab(y)dy
adyb + ξij(x)dx

idxj, (2.48)

where σab(y) is the metric of a maximally symmetric manifold with dimension dy < 4

and ξij(x) is the metric of a generic manifold of dimension 4− dy. If we impose that the

scalar field has the same symmetries of the spacetime, i.e. that it depends only on the x

variables, equation (2.10) becomes

DiDi

(
R +

1 + 12ξ

24β
ϕ2

)
+
dy
τ
DiτDi

(
R +

1 + 12ξ

24β
ϕ2

)
= 0, (2.49)

where the Di are the covariant derivatives defined by the metric ξij(x). Multiplying by

τ dy
(
R + 1+12ξ

24β
ϕ2
)
and integrating over a submanifold Σ defined by the x coordinates we

get∫
Σ

d4−dyx
√

|ξ|

[
τ dy
(
R +

1 + 12ξ

24β
ϕ2

)
DiDi

(
R +

1 + 12ξ

24β
ϕ2

)

+ dyτ
dy−1

(
R +

1 + 12ξ

24β
ϕ2

)
DiτDi

(
R +

1 + 12ξ

24β
ϕ2

)]
= 0,

(2.50)

that, integrated by parts, leads to[
τ dy
(
R +

1 + 12ξ

24β
ϕ2

)
Di

(
R +

1 + 12ξ

24β
ϕ2

)]
∂Σ

−
∫
Σ

d4−dyx
√

|ξ|
[
τ dyDi

(
R +

1 + 12ξ

24β
ϕ2

)
Di

(
R +

1 + 12ξ

24β
ϕ2

)]
= 0.

(2.51)

If the metric ξij(x) is either positive or negative definite in Σ and the boundary term is

vanishing, then the combination R + 1+12ξ
24β

ϕ2 is constant in all Σ. □

To have a better physical understanding of this result, we make explicit the specific cases:

with a static metric

ds2 = −τ 2(x)dt2 + ξij(x)dx
idxj, (2.52)
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the boundary term vanishes whenever the boundary is taken on event horizons (τ 2 = 0)

or on hypersurfaces of constant scalar curvature and scalar field, and it leads to

R +
1 + 12ξ

24β
ϕ2 = const. (in space) ; (2.53)

with a FLRW metric

ds2 = −ξ(t)dt2 + τ(t)2σab(y)dy
adyb, (2.54)

the boundary term vanishes whenever the boundary is taken on cosmological singularities

(τ 2 = 0), or on times at which the scalar curvature and scalar field are constant, and it

leads to

R +
1 + 12ξ

24β
ϕ2 = const. (in time) . (2.55)

The spatial constraint (2.53) is then ensured for the external region of black holes, which

are either asymptotically flat or asymptotically anti-de Sitter, and in the region between

the black hole and cosmological horizon whenever both are present. The time constraint

(2.55) is instead ensured if the cosmological evolution is between two fixed points, and

can be used to keep track of the value of the effective cosmological constant throughout

a cosmological evolution.

2.2.1 Scalar sector and Einstein frame formulation

We present here a simplified version of (2.41), which is exactly the one proposed and

studied by Rinaldi and Vanzo [27, 28], that is

IRV =

∫
d4x

√
−g
[
ξϕ2R + βR2 − 1

2
∂µϕ∂µϕ− λ

4
ϕ4

]
, (2.56)

where the Weyl and Gauss-Bonnet terms are suppressed. The equations of motion for the

metric are clearly

(
2βR + ξϕ2

)
Gµν −

1

2

(
∇µϕ∇νϕ− 1

2
gµν∇ρϕ∇ρϕ

)
+

− (∇µ∇ν − gµν□)
(
2βR + ξϕ2

)
+

1

2

(
βR2 +

λ

4
ϕ4

)
gµν = 0, (2.57)

and the one for the scalar field does not change. In this case, the solutions with constant

ϕ and R are simply the ones of General Relativity with a cosmological constant. The

main reason for which it is useful to consider this less general case is that it is possible to

rewrite the system in the Einstein frame by introducing another scalar field, and without

having to introduce a very involved massive tensor field as done in Subsubsection 2.1.2.

Similarly to what has been done in (2.24) and (2.25) for Starobinski’s action, we can add
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an auxiliary field φ as

I ′
RV =

∫
d4x

√
−g
[
ξϕ2R + βR2 − β(φ−R)2 − 1

2
∂µϕ∂µϕ− λ

4
ϕ4

]
=

=

∫
d4x

√
−g
[(
ξϕ2 + 2βφ

)
R− 1

2
∂µϕ∂µϕ− λ

4
ϕ4 − βφ2

]
.

(2.58)

With the conformal transformation g̃µν = 2 (ξϕ2 + 2βφ) gµν/M
2
SI and introducing the

variable ψ = ξϕ2 + 2βφ and the constant Ω = βλ+ ξ2 the action becomes

I ′′
RV =

∫
d4x
√

−g̃
[
M2

SI

2
R̃− M2

SI

4ψ
∂µϕ∂µϕ− 3M2

SI

4ψ2
∂µψ∂µψ − M4

SI (Ωϕ
4 + ψ2 − 2ξϕ2ψ)

16βψ2

]
.

(2.59)

Here, MSI is an arbitrary parameter with mass dimensions which, however, turns out

to be a so-called redundant parameter (see discussion in [27]), leaving the action scale

invariant. While it is not possible to perform a scalar field redefinition for which both

kinetic terms have a canonical form, it is possible to redefine them in order to have one

scalar field with a canonical kinetic term. In particular, with the scalar field redefinition

ζ =
√
6MSIarcsinh

(
ϕ

2
√
3ψ

)
,

ρ =
MSI

2
ln

(
ϕ2 + 12ψ

2M2
SI

)
,

(2.60)

dropping the tildes and superscripts, we obtain the expression for the action

IRV =

∫
d4x

√
−g
[
M2

SI

2
R− 3 cosh2

(
ζ√
6MSI

)
∂µρ∂µρ−

1

2
∂µζ∂µζ − U(ζ)

]
, (2.61)

where

U(ζ) =
M4

SI

β

(
1

16
− 3ξ

2
sinh2

(
ζ√
6MSI

)
+ 9Ω sinh4

(
ζ√
6MSI

))
. (2.62)

The action’s specific form has made the potential dependent only on the field with a

canonical kinetic term. Moreover, if we consider the definition of the field ρ and the

equation of motion for the auxiliary field φ = R, we can express this spectator field as

ρ =
M2

SI

2
ln

(
12β

M2
SI

(
R +

1 + 12ξ

24β
ϕ2

))
, (2.63)

and then, whenever the theorems 2, 3 are satisfied, this scalar field has zero contribution

to the action. Finally, the field equations for the metric and scalar fields in the Einstein

frame are

M2
SIGµν = 6 cosh2

(
ζ√
6MSI

)(
∂µρ∂νρ−

1

2
gµν∂λρ∂

λρ

)
+

+ ∂µζ∂νζ −
1

2
gµν∂λζ∂

λζ − gµνU(ζ),

□ζ =

√
6

MSI

cosh

(
ζ√
6MSI

)
sinh

(
ζ√
6MSI

)
∂µρ∂

µρ+
dU

dζ
,

□ρ = − 2√
6MSI

tanh

(
ζ√
6MSI

)
∂µρ∂

µρ.

(2.64)
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Note that ρ = const. (not necessarily vanishing) is a trivial solution of the system precisely

because the potential depends on ζ only. As we will show in Subsection 6.3, the Einstein

frame formulation of scale-invariant gravity will be fundamental when considering the

dynamical stability of black holes, as the perturbed equation will be slight variations

from the ones of General Relativity.
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3 Analytical approximations and numerical methods

As discussed in the previous section, quadratic gravity solutions must be studied using

numerical integration or some approximations. In this technical section, we will first de-

scribe the various regimes under which it is possible to have analytical approximations,

and we will briefly discuss the main properties at the mathematical level of the differ-

ent behaviors found. We will also describe in detail the numerical methods used to link

the various analytical approximations and fully describe the solutions in the non-linear

regime.

This section is divided in four parts:

- in the first subsection we will study the linearized equations of motion and use them

to describe asymptotically flat solutions at large distances. The metric in this regime

results to be the Schwarzschild one with exponentially suppressed corrections; in

particular, in the Newtonian limit, the gravitational potential will have two Yukawa

corrections, each of them associated with one of the two massive modes which

appear together with the standard massless graviton in quadratic gravity. We will

also show that, in the presence of a perfect fluid, the stress-energy tensor will fix

both the total mass and the strength of the Yukawa corrections, and the Yukawa

terms will be dependent on the equation of state of the fluid;

- in the second subsection we will study solutions close to the origin or a finite non-

zero radius with a variation of the Frobenius method; with this technique, the

metric is expanded in a power series with integer or fractional exponents and is

possible to classify the solutions in different families characterized by the first powers

of the series. In particular, close to the origin the metric can be either regular,

with a curvature singularity generated by a divergent metric, or with a curvature

singularity generated by a vanishing metric; at a finite radius is instead possible

to have either an event horizon or a wormhole throat. We will also show how the

different families of solutions at the origin appear as the fixed points of dynamical

system analysis;

- in the third subsection we will study a metric that is asymptotically vanishing at

large distances; while there is not a theoretical reason to introduce this type of

solution, the non-linear analysis of a type of wormhole solutions indicates that this

is indeed the behavior of the metric in the second patch of the spacetime;

- in the fourth section we will present the numerical methods used to study the solu-

tions in the non-linear regime; in particular, we will present the shooting method,
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which is a procedure used to solve boundary value problems that can be, and have

been, used to study in detail specific types of solutions. We will show in detail also

how to apply this method to black holes, compact stars, and wormhole solutions.

Most of the results presented in this section are common knowledge; we refer to [32, 20, 33,

24, 41] for the discussion on the linearized equations of motion, to [32, 20, 33, 21, 22, 42]

for the discussion on the different families of solutions, to [24] for the dynamical system

analysis, to [43] for the discussion on asymptotically vanishing solutions and to [24, 41, 43]

for the numerical methods.

3.1 Linear regime and linearized equations of motion

The linear regime is crucial both for understanding the physics of the solutions and for

setting the numerical integration used to study the non-linear regime. The weak field limit

is fundamental from a phenomenological point of view, as it has all the information on

the Newtonian and post-Newtonian limit of the gravitational interaction in this theory. It

is fundamental also from a particle physics point of view, as it includes the classical limit

of the particles which mediate the interaction, and from a geometrical point of view, as it

includes the information about the global properties of the solutions as their total energy.

From a numerical point of view, the weak field limit will be used as the initial condition

for the integrations of the parameter space of the theory and as one of the boundaries

when studying particular types of solutions.

To derive the linearized equations of motion we consider a perturbation around a flat

metric as

h(r) = 1 + ϵ V (r), f(r) = 1 + ϵW (r), (3.1)

and expand the vacuum equations of motion at linear order in ϵ. Setting ϵ = 1 after the

expansion, we get

Gµµ = −
(
6β∇2 − γ

) (
∇2V (r) + 2Y (r)

)
= 0

Gii − Gtt = −4

(
β − 1

3
α

)
∇2Y (r)− 2

(
β +

2

3
α

)
∇2∇2V (r) + γ∇2V (r) = 0,

(3.2)

where Y (r) = r−2
(
rW (r)

)′
and∇2 denotes the three-dimensional Laplace operator. These

equations, however, form a first-order equation for Grr, namely 1
2

(
Gµµ + (Gii − Gtt)

)
=

3Grr + rG ′
rr; refining the solutions of (3.2) with Grr = 0 solves this issue. Having refor-

mulated the equations as combinations of Laplace and Helmholtz operators, it is possible

to use standard Fourier transform techniques to solve them analytically. The equations
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(3.2) can be partially solved as

Y (r) = −1

2
∇2V (r) +

3

2
m2

0

(
S−
0

e−m0r

r
+ S+

0

em0r

r

)
,

(
∇2 −m2

2

)
∇2V (r) =

(
m2

0 −m2
2

)
m2

0

(
S−
0

e−m0r

r
+ S+

0

em0r

r

)
,

(3.3)

where m2
2 = γ/2α and m2

0 = γ/6β are the masses of the tensor and scalar modes of the

quantum theory. The solutions of (3.3) have long been known [32, 20, 24], and are quite

trivial to find, and are

h(r) =1 + Ct −
2M

r
+ 2S−

2

e−m2 r

r
+ 2S+

2

em2 r

r
+ S−

0

e−m0 r

r
+ S+

0

em0 r

r

f(r) =1− 2M

r
+ S−

2

e−m2 r

r
(1 +m2 r) + S+

2

em2 r

r
(1−m2 r)

− S−
0

e−m0 r

r
(1 +m0 r)− S+

0

em0 r

r
(1−m0 r) .

(3.4)

We note that, due to our different ansatz for the metric, we have different signs in the ra-

dial component of the metric than in [32, 20] and, in particular, we get corrections to the

exact Schwarzschild solution. Imposing asymptotic flatness and fixing a time parametriza-

tion (i.e. imposing h(r) → 1 for r → ∞), that is setting Ct, S
+
2 , S

+
0 = 0 leads to the

solution in the weak field regime at large distances

h(r) = 1− 2M

r
+ 2S−

2

e−m2 r

r
+ S−

0

e−m0 r

r

f(r) = 1− 2M

r
+ S−

2

e−m2 r

r
(1 +m2 r)− S−

0

e−m0 r

r
(1 +m0 r) ,

(3.5)

that is the Schwarzschild solution with the addition of exponentially suppressed cor-

rections; the corrections take a Yukawa expression in the Newtonian potential ϕ(r) ∼
1
2
(h(r)− 1) and, for this reason, we will refer to S−

2 and S−
0 as Yukawa charges. The

sign of these charges determines if their contribution to the potential is either attractive

(whenever they are negative) or repulsive (whenever they are positive). Moreover, the

presence of Yukawa terms in the gravitational potential perfectly agrees with the pres-

ence of massive modes in the quantum theory and is a cross-check for the calculation.

We specify here that the mass parameter M truly represents the mass of the solutions.

Let us consider the total energy of the solution as defined by Arnowitt, Deser and Mis-

ner (ADM) [44], which is defined in terms of a 3+1 foliation of an asymptotically flat

spacetime, and it is usually written as

E = 2γ lim
∂Σ→∞

∑
i,j

∫
∂Σ

dAni (∂jgij − ∂igjj) , (3.6)

with ni the unit normal vector to a two-dimensional surface ∂Σ of which the limit at

spatial infinity is considered, and the indices i, j run in the directions orthogonal to this

37



3.1 Linear regime and lineari... 3 ANALYTICAL APPROXIMATIONS AND ...

surface. In our case, we can safely use the weak field limit and then (3.6) is easily evaluated

as

E ∼ 2γ lim
r→∞

4πr2
(
2M

r2
− 2m2S

−
2 e

−m2r −m0S
−
0 e

−m0r

)
→ 16πγM, (3.7)

and then the mass parameter M is indeed the solution’s total energy in the case γ =

1/16π =⇒ G = 1. This also agrees with the Komar definition for spacetimes with

asymptotic timelike Killing vectors [45], which is defined as

E = −4γ lim
∂Σ→∞

∫
∂Σ

dAnµ
κν∇νκ

µ

√−κρκρ
, (3.8)

where nµ the unit normal vector to the surface ∂Σ, and κµ is the asymptotic timelike

Killing vector. With no surprise, also this definition becomes in the weak field limit

E ∼ 4γ lim
r→∞

4πr2
1

2

(
2M

r2
− 2m2S

−
2 e

−m2r −m0S
−
0 e

−m0r

)
→ 16πγM, (3.9)

confirming once again that the Yukawa terms do not contribute to the total energy, and

the parameter M really represents the mass of the solutions.

3.1.1 Non-vacuum case

To linearize the non-vacuum equations, we consider an energy density and pressure linear

in ϵ, that is

ρ(r) = ϵρ(r), p(r) = ϵp(r). (3.10)

The equations are then simply

Gµµ = −
(
6β∇2 − γ

) (
∇2V (r) + 2Y (r)

)
=

1

2
(−ρ(r) + 3 p(r)) =

1

2
T

Gii − Gtt = −4

(
β − 1

3
α

)
∇2Y (r)− 2

(
β +

2

3
α

)
∇2∇2V (r) + γ∇2V (r)

=
1

2
(ρ(r) + 3 p(r)) =

1

2

(
T ii − T tt

)
,

(3.11)

and can be solved with Fourier transform methods as the vacuum case. The equations

(3.11) in Fourier modes look like

6β
(
k2 +m2

0

) (
−k2 Ṽ (k⃗) + 2 Ỹ (k⃗)

)
= −1

2

∫
d3x′ e−i k⃗·x⃗

′
(ρ(x⃗′)− 3 p(x⃗′)) ,

4

(
β − 1

3
α

)
k2 Ỹ (k⃗)− 2

(
β +

2

3
α

)
k4 Ṽ (k⃗)− γ k2 Ṽ (k⃗) =

=
1

2

∫
d3x′ e−i k⃗·x⃗

′
(ρ(x⃗′) + 3 p(x⃗′)) ,

(3.12)
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and are formally solved by

V (r) = − 1

16π3 γ

∫∫
d3k d3x′ ei k⃗·(x⃗−x⃗

′)

[
m2

2

ρ(x⃗′) + 3 p(x⃗′)

k2 (k2 +m2
2)

+

+
1

3

(
m2

2 −m2
0

) ρ(x⃗′)− 3 p(x⃗′)

(k2 +m2
2) (k

2 +m2
0)

]
,

Y (r) = − 1

32π3 γ

∫∫
d3k d3x′ ei k⃗·(x⃗−x⃗

′)

[
m2

2

ρ(x⃗′) + 3 p(x⃗′)

k2 +m2
2

+m2
0

ρ(x⃗′)− 3 p(x⃗′)

k2 +m2
0

+

+
1

3

(
m2

2 −m2
0

)
k2

ρ(x⃗′)− 3 p(x⃗′)

(k2 +m2
2) (k

2 +m2
0)

]
.

(3.13)

In order to find an asymptotically flat solution, we choose an integration path in momen-

tum space that considers only the im2 and im0 poles. The remaining spatial integrals

take the form of ∫
d3x′

f(x⃗′)

|x⃗− x⃗′|
,

∫
d3x′

e−m |x⃗−x⃗′|f(x⃗′)

|x⃗− x⃗′|
, (3.14)

and can be partially solved considering ρ (x⃗′) = ρ(s) and p (x⃗′) = p(s), where s is the

radial coordinate in the x⃗′ variables, and positioning ourselves on the outside of the star

where we can safely consider r > s. We then find as final expression for V (r) and Y (r)

V (r) =− 1

r

∫ ∞

0

ds 4π s2
ρ(s) + 3 p(s)

8π γ
+

e−m2 r

r

∫ ∞

0

ds 4 π s2
(em2 s − e−m2 s)

24π γ m2 s
(2 ρ(s)+

+ 3 p(s))− e−m0 r

r

∫ ∞

0

ds 4 π s2
(em0 s − e−m0 s)

48π γ m0 s
(ρ(s)− 3 p(s)) ,

Y (r) =− e−m2 r

r

∫ ∞

0

ds 4π s2
m2 (e

m2 s − e−m2 s)

48 π γ s
(2 ρ(s) + 3 p(s)) +

− e−m0 r

r

∫ ∞

0

ds 4π s2
m0 (e

m0 s − e−m0 s)

48 π γ s
(ρ(s)− 3 p(s)) .

(3.15)

Using the definition Y (r) = r−2 (rW (r))′ we find W (r) as

W (r) =− C

r
+

e−m2 r

r
(1 +m2 r)

∫ ∞

0

ds 4 π s2
(em2 s − e−m2 s)

48π γ m2 s
(2 ρ(s) + 3 p(s)) +

+
e−m0 r

r
(1 +m0 r)

∫ ∞

0

ds 4π s2
(em0 s − e−m0 s)

48 π γ m0 s
(ρ(s)− 3 p(s)) .

(3.16)

From the remaining equations of motion we can prove that C =
∫∞
0

ds 4 π s2 ρ(s)+3 p(s)
8π γ

.

We also note that the integral ∫ ∞

0

ds 4π s2 p(s) (3.17)
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represents the total work of the system, that in our case is zero, and we get again as the

final result

h(r) = 1− 2M

r
+ 2S−

2

e−m2 r

r
+ S−

0

e−m0 r

r

f(r) = 1− 2M

r
+ S−

2

e−m2 r

r
(1 +m2 r)− S−

0

e−m0 r

r
(1 +m0 r) ,

(3.18)

with, however, an expression for the free parameters in terms of the stress-energy tensor

properties

M =
1

16πγ

∫ ∞

0

ds 4 π s2ρ(s)

S2− =
1

16πγ

∫ ∞

0

ds 4 π s2
sinh (m2 s)

3m2 s
(2 ρ(s) + 3 p(s))

S0− =
1

16πγ

∫ ∞

0

ds 4 π s2
sinh (m0 s)

3m0 s
(−ρ(s) + 3 p(s)) ,

(3.19)

where the definition of M agrees with the one found solving the Tolman-Oppenheimer-

Volkoff (TOV) equations in General Relativity, and the result agrees with the one found

by Stelle in [32] with ρ(s) = Mδ(s)/4πs2 = Mδ3(x⃗) and p(s) = 0. While this result is

valid only in the low energy density and pressure limit, it exhibits an extremely interesting

feature: the presence of both the energy density and pressure in the expressions for S−
2

and S−
0 renders the gravitational potential sensitive to the physical nature of the fluid,

namely to its equation of state. It is indeed manifest that fluids with a traceless stress-

energy tensor will have no scalar Yukawa contribution, while to have a zero contribution

from the tensor Yukawa term it is necessary to have either a negative energy density or a

negative pressure, in agreement with the pure trace nature of the R2 term and the ghost

nature of the CµνρσCµνρσ term.

3.2 Series expansion at fixed radius

While the linear theory is crucial to determine the asymptotic gravitational properties of

the solutions, their specific physical nature can be categorized by analyzing their behavior

close to the origin or a metric singularity (as an event horizon). As extensively explained

in [20, 22], it is possible to use a variation of the Frobenius method to find the possible

behaviors and to determine different families of solutions. Taking an expansion of the

metric functions in the form

h(r) = (r − r0)
t

[
N∑
n=0

ht+n/∆ (r − r0)
n
∆ +O

(
(r − r0)

N+1
∆

)]

f(r) = (r − r0)
s

[
N∑
n=0

fs+n/∆ (r − r0)
n
∆ +O

(
(r − r0)

N+1
∆

)]
,

(3.20)
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with h0, f0 ̸= 0, it is possible to solve the equations of motion order by order in (r− r0).

The lowest order equations are called indicial equations because, considering that h0 and

f0 are different from zero by definition, they become equations for the indices t and s and

determine their admissible values. The higher orders determine the number of the free

parameters of the solution for a given set of indices instead. On the contrary, the choice

of having whether r0 = 0 or r0 ̸= 0 and of the value of ∆ have to be chosen arbitrarily at

the beginning of the calculation. Finally, it is possible to classify the solutions as (s, t)∆r0 .

At the present time, the known families are:

Family No of free parameters Interpretation

(0, 0)10 3 (→ 0) Vacuum

(−1,−1)10 4 (→ 1) Naked singularity/Schwarzschild interior

(−2, 2)10 6 (→ 3) Naked singularity (Holdom star)

(0, 0)1r0 6 (→ 3) Generic solution

(1, 1)1r0 4 (→ 1) Black hole

(1, 0)1r0 3 (→ 0) Symmetric wormhole

(1, 0)2r0 6 (→ 3) Non-symmetric wormhole

(3/2, 1/2)2r0 3 (→ 0) Unusual black hole

(4/3, 0)3r0 4 (→ 1) Unusual wormhole

Table 2: Families of solutions around finite and zero radii in quadratic gravity.

where in the second column we made manifest the number of free parameters after impos-

ing asymptotic flatness, a specific time parametrization, and a zero stress-energy tensor.

In this thesis we did not analyze the last two families of solutions, being both particularly

exotic and present only in a zero measure region of the parameter space, and we will not

put any emphasis on the (0, 0)1r0 family, as it represents a generic point of the spacetime

with no particular properties.

(0, 0)10 family. This family in the vacuum has the general form

h(r) = h0
(
1 + h2r

2 + h4(h2, f2)r
4 +O

(
r6
))

f(r) = 1 + f2r
2 + f4(h2, f2)r

4 +O
(
r6
)
,

(3.21)

with free parameters h0, h2 and f2, and includes all the solutions with regular curvature

in the origin. As shown in [33], we can express all the non-zero terms of the Riemann
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tensor on a local orthonormal frame Rabcd = Rµνρσe
µ
ae
ν
be
ρ
ce
σ
d as

Ryzyz =
1− f(r)

r2
,

Rxyxy = Rxzxz = −f
′(r)

2r
,

Rtyty = Rtztz =
f(r)h′(r)

2rh(r)
,

Rtxtx =
h(r)f ′(r)h′(r)− f(r)h′(r)2 + 2f(r)h(r)h′′(r)

4h(r)2
,

(3.22)

where the other non-zero terms are related by symmetries and t, x, y and z are the

coordinates in the orthonormal frame, and it can be shown that they are not divergent in

the origin if and only if the metric behaves like (3.21). In the vacuum, this family’s only

asymptotically Minkowski solution is the Minkowski spacetime itself, with h2 = f2 = 0.

In the context of compact stars, we want solutions that are regular everywhere, and then

the metric in the origin will belong to the (0, 0)10 family. Together with the stress-energy

tensor, the metric functions will have the form

h(r) = h0
(
1 + h2r

2 + h4(h2, f2, ρ0, p0)r
4 +O

(
r6
))

f(r) = 1 + f2r
2 + f4(h2, f2, ρ0, p0)r

4 +O
(
r6
)
,

ρ(r) = ρ0 + ρ2(h2, f2, ρ0, p0)r
2 +O

(
r4
)
,

p(r) = p0 + p2(h2, f2, ρ0, p0)r
2 +O

(
r4
)
,

(3.23)

where the parameters ρ0 and p0 will be related by the equation of state of the fluid.

(−1,−1)10 family. This family has the general form

h(r) = h−1

(
r−1 +

1

f−1

+ h2r
2 + h3(f−1, h2, f2)r

3 +O
(
r4
))

,

f(r) = f−1r
−1 + 1 + f2r

2 + f4(f−1, h2, f2)r
3 +O

(
r4
)
,

(3.24)

with free parameters h−1, f−1, h2 and f2. The Schwarzschild metric is found setting h−1 =

f−1 = −rS and h2 = f2 = 0, for which also all the terms fn and hn with n > 2 are equal

to zero. This family is singular in the origin, with the curvature invariants going as

R2 ∼ C(f−1, h2, f2) +O (r) ,

RµνRµν ∼ C(f−1, h2, f2) +O (r) ,

RµνρσRµνρσ ∼ r−6 +O
(
r−5
)
,

(3.25)

where the constant C goes to zero for the Schwarzschild metric. This family of solutions

from parameter counting should be present in a zero-measure region of the parameter

space, but, as we will see later, this is not the case.
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(−2, 2)10 family. This family has the general form

h(r) = h2

(
r2 − f−1

f−2

r3 + h4r
4 + h5(f−2, f−1, h4, f0, f1)r

5 +O
(
r6
))

,

f(r) = f−2r
−2 + f−1r

−1 + f0 + f1r + f2(f−2, f−1, h4, f0, f1)r
2 +O

(
r2
)
.

(3.26)

with free parameters h2, f−2, f−1, h4, f0 and f1. The metric in the origin is extremely

singular, with curvature invariants going as

R2 ∼ r−4 +O
(
r−3
)
,

RµνRµν ∼ r−8 +O
(
r−7
)
,

RµνρσRµνρσ ∼ r−8 +O
(
r−7
)
.

(3.27)

While it is possible to find a combination of the free parameters for which the Ricci

scalar is not diverging, namely the combination for which the solution is a solution of the

equations of motion of the Einstein-Weyl sector of the theory, the squared Ricci tensor

will always be singular as well as the Riemann tensor squared. This family has the total

number of free parameters admissible by the equations, and therefore it is expected to

represent a type of solution that populates a large area of the parameter space.

(1, 1)1r0 family. This family has the general form

h(r) = h1
(
(r − r0) + h2(f1, f2, r0)(r − r0)

2 +O
(
(r − r0)

3
))
,

f(r) = f1(r − r0) + f2(r − r0)
2 + f3(f1, f2, r0)(r − r0)

3 +O
(
(r − r0)

4
)
,

(3.28)

with free parameters h1, f1, f2 and r0. In this case, the Schwarzschild solution simply

requires h1 = f1 = 1/r0 and f2 = −1/r20, and the curvature invariants are all regular

at r = r0. The hypersurface defined by r = r0 is then clearly an event horizon, and

the (1, 1)1r0 family is the family of black hole solutions. As previously said, black holes

are present only in the Einstein-Weyl sector of the theory, and the parameter f2 can

be expressed in terms of f1 and r0. From the number of free parameters, it is already

manifest that either an additional requirement forces the presence of a horizon or black

holes will not be generic vacuum solutions, having only one free parameter after imposing

asymptotic flatness and fixing the time parametrization. Thanks to the corollary 1, this

family of solutions is present only in the Einstein-Weyl sector of the theory.

(1, 0)1r0 and (1, 0)2r0 families. These two families of solutions have the form

h(r) = h0
(
1 + h1(f1, r0)(r − r0) +O

(
(r − r0)

2
))
,

f(r) = f1(r − r0) + f2(f1, r0)(r − r0)
2 +O

(
(r − r0)

3
)
,

(3.29)
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with free parameters h0, f1 and r0 for the (1, 0)1r0 family, and

h(r) =h0
(
1 + h1/2(r − r0)

1/2 + h1(r − r0) + h3/2(h1/2, f1, h1, f3/2, r0)(r − r0)
3/2+

+O
(
(r − r0)

2
) )
,

f(r) = f1(r − r0) + f3/2(r − r0)
3/2 + f2(h1/2, f1, h1, f3/2, r0)(r − r0)

2 +O
(
(r − r0)

5/2
)
,

(3.30)

with h0, h1/2, f1, h1, f3/2 and r0 as free parameters for the (1, 0)2r0 family. While it is

manifest that the (1, 0)1r0 family is a subset of the (1, 0)2r0 family, it is not trivial that it is

not sufficient to require h1/2 = f3/2 = 0 to derive one family from the other; an additional

constraint can be derived by their interpretation as wormholes. Curvature invariants are

regular at r = r0, and then it is sensible to expect the spacetime to continue after this

point. Extending the spacetime to the region r < r0, we have the expansions

h(r) = h0

(
1 + h̃1(f̃1, r0)(r0 − r) +O

(
(r0 − r)2

))
,

f(r) = f̃1(r0 − r) + f̃2(f̃1, r0)(r0 − r)2 +O
(
(r0 − r)3

)
,

(3.31)

for the (1, 0)1r0 family, and

h(r) =h0
(
1 + h̃1/2(r0 − r)1/2 + h̃1(r0 − r) + h̃3/2(h̃1/2, f̃1, h̃1, f̃3/2, r0)(r0 − r)3/2+

+O
(
(r0 − r)2

) )
,

f(r) = f̃1(r0 − r) + f̃3/2(r0 − r)3/2 + f̃2(h̃1/2, f̃1, h̃1, f̃3/2, r0)(r0 − r)2 +O
(
(r0 − r)5/2

)
,

(3.32)

for the (1, 0)2r0 family. However, the choice f1 = f̃1 leads to a spacetime with two time

coordinates, and the choice f1 ̸= f̃1 leads to jumps in the curvature invariants. The only

possible choice is then connecting one sheet of spacetime with r > r0 to another sheet of

spacetime with r > r0, and the solution is then interpreted as a wormhole. To express

manifestly the wormhole nature, we can change the radial coordinate as

r = r0 +
1

4
ρ2, (3.33)

for which the metric of the two families looks like

ds2 =

(
h0 +

h1
4
ρ2 +O

(
ρ4
))

dt2 +
dr2

f1 +
f2
4
ρ2 +O (ρ4)

+

(
r0 +

1

4
ρ2
)2

dΩ2 (3.34)

for the (1, 0)1r0 family, and

ds2 =

(
h0 +

h1/2
2
ρ+

h1
4
ρ2 +O

(
ρ3
))

dt2 +
dr2

f1 +
f3/2
2
ρ+ f2

4
ρ2 +O (ρ3)

+

+

(
r0 +

1

4
ρ2
)2

dΩ2,

(3.35)
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for the (1, 0)2r0 family. Both metrics are manifestly well-behaved around ρ = 0, and the

second sheet of spacetime with r > r0 is defined by the region ρ < 0. While the metric

in (3.34) is symmetric with respect to the transformation ρ → −ρ, the one in (3.35) is

not manifestly symmetric. The (1, 0)2r0 family is, however, really not symmetric because

requiring a symmetry with
√
r − r0 = 1

2
|ρ| leads once again to jumps in the curvature

invariants. The symmetry of the (1, 0)1r0 family, finally, adds the additional constraint

on the free parameters of the solutions. Fixing a time parametrization and imposing

asymptotic flatness then leads to only a single symmetric wormhole solution and to a

large area of the parameter space populated by non-symmetric wormholes.

3.2.1 Behavior close to the origin and autonomous dynamical system

We include here a parallel analysis done in Einstein-Weyl gravity to assess the behavior

of the metric close to the origin. Let us consider a redefinition of the metric functions as

h(r) = ch e
η(r), f(r) = cf e

λ(r), (3.36)

and, taking into consideration that for both the (−1,−1)10 and the (−2, 2)10 families the

function f(r) diverges in the origin, approximate the equations (2.40) at leading order in

eλ(r)

4 + r ((4 + rη′(r)) (η′(r) + λ′(r)) + 2rη′′(r)) = 0,

−8 + r(−4λ′(r) + r(η′(r) + λ′(r))(λ′(r) + η′(r)(−3 + rη′(r)− 2rλ′(r)))+

−2r(−2 + rη′(r))λ′′(r) = 0.

(3.37)

With a redefinition of the independent variable x = − ln(r) and of the metric functions

as t(x) = η′(r) and s(x) = λ′(r), the equations form the autonomous dynamical system

ds

dx
= −−2s2t+ s2 − st2 − 8s+ t3 − 3t2 − 8

2(t− 2)
,

dt

dx
= −1

2
(−st− 4s− t2 − 2t− 4).

(3.38)

The functions t(x) and s(x) are expressed in terms of the original metric functions as

t =
r h′(r)

h(r)
, s =

r f ′(r)

f(r)
, (3.39)

and they clearly go to the leading exponents of a series expansion close to the origin in

the limit x → ∞. The dynamical system indeed has two fixed points, that are (t, s) =

(−1,−1) and (2,−2), which correspond to the first exponents of the two non-trivial

families of solutions close to the origin. The linear analysis shows that the fixed point

(−1,−1) has one attractive and one marginal direction, while the fixed point (2,−2)
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has two attractive directions. The non-linear analysis shown in Fig. 3 confirms that the

(2,−2) fixed point is indeed attractive, while the (−1,−1) one is attractive for only half

of the perturbations.

Figure 3: Flow of the running exponents t, s under the dynamical system (3.38); the arrows point in the

direction of decreasing radius. The fixed point (−1,−1) is in red, while the (2,−2) is in blue, and the

red/blue regions indicate the points that are attracted either to (−1,−1) or (2,−2).

Together with confirming that the (−1,−1)10 and the (−2, 2)10 families are indeed favored

as the behavior in the origin for solutions of the theory, the marginally stable nature of

the (−1,−1) fixed point opens the possibility of having logarithmic corrections to the

(−1,−1)10 family, which might solve the problem of the number of free parameters of the

family that do not agree with the results of the phase diagram.

3.3 Non-asymptotically flat solutions

Having introduced in the previous subsection non-symmetric wormhole solutions, it be-

comes necessary to analyze the possibility of having non-asymptotically flat solutions. In

this section we will focus on solutions which are asymptotically vanishing, that is where

the metric goes as h(r) → 0 and f(r) → ∞ with r → ∞, and then both the time and

radial components of the metric goes to zero at large distances. To study this type of
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solution, we write the metric functions as

h(r) = ϵ h1(r)
(
1 + ϵ h2(r) +O(ϵ2)

)
,

f(r) =
1

ϵ f1(r)
(
1 + ϵ f2(r) +O(ϵ2)

) , (3.40)

and expand the equations in powers of ϵ starting from O (ϵ−1). Unfortunately, the equa-

tions are still not manageable and it is impossible to find a general solution. However, it

has been discovered by Alessandro Zuccotti that the functions

h1(r) = Chr
2e−ar,

f1(r) = Cfr
2e−ar,

(3.41)

with a positive, solve the equations at order O (ϵ−1). This specific form has been found

realizing that the metric of non-symmetric wormholes at large distances satisfies with

good approximation the equations

d

dr

(
h′(r)

h(r)

)
=

2

r2
,

d

dr

(
f ′(r)

f(r)

)
= − 2

r2
.

(3.42)

The expression (3.41), moreover, is in agreement at the first order with the one in (3.26) if

expanded around a small radius. To go beyond the first order, it is convenient to consider

the ansatz for the functions h2(r) and f2(r)

h2(r) = h̃2(r)e
−ar,

f2(r) = f̃2(r)e
−ar,

(3.43)

where the expansion in ϵ is guaranteed to be well-defined at large distances thanks to the

additional powers of e−a r. The equations of motion at order O(1) then become a system

of third-order linear differential equations in h̃2(r) and f̃2(r). The solution can be found

in a polynomial form

h̃2(r) = h̃0 + h̃1 r + h̃2 r
2 + h̃3 r

3,

f̃2(r) = f̃0 + f̃1 r + f̃2 r
2 + f̃3 r

3,
(3.44)

where h̃0, f̃0 and f̃1 result to be other free parameters, and the other coefficients are

completely determined by the six free parameters (Cf , Ch, a, f̃0, h̃0, f̃1). Similarly, it is

possible to continue the expansion as

h(r) = Chr
2e−ar

(
1 + h̃2(r)e

−ar + h̃3(r)e
−2ar +O

(
e−3ar

))
,

f(r) =
1

Cfr2e−ar
(
1 + f̃2(r)e−ar + f̃3(r)e−2ar +O (e−3ar)

) , (3.45)
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where we changed the expansion in ϵ in an expansion in e−ar, which however is well-

defined in the large radii limit. The functions h̃3(r) and f̃3(r) at order O (e−3ar) can be

found in a similar way as h̃2(r) and f̃2(r) in terms of six order polynomials, but with no

other free parameters appearing. The total number of free parameters of these solutions

then results to be six, the correct number needed to connect these solutions with the

(1, 0)2r0 family. Although we do not discuss the convergence of this expansion, we believe

that a certain convergence radius r∗ exists, such that for r >> r∗, the solution is well

approximated by (3.45). The solutions have a curvature singularity at spatial infinity,

having curvature invariants going as

R ∼ C(Cf , a, f̃0, h̃0, f̃1) +O
(
e−ar

)
,

RµνRµν ∼ O
(
e2ar

r6

)
,

RµνρσRµνρσ ∼ O
(
e2ar

r6

)
,

(3.46)

where the constant C goes to zero in the Einstein-Weyl limit. Interestingly, if we look at

the squared Weyl tensor, the divergent part of the squared Ricci and Riemann tensors

compensate, and we get

CµνρσCµνρσ ∼ 3

(
β

α
R +m2

2

)2

+O
(
e−ar

)
= 3

(
β

α
C(Cf , a, f̃0, h̃0, f̃1) +m2

2

)2

+O
(
e−ar

)
(3.47)

which reduces to 3m4
2 in the Einstein-Weyl limit. While it might be simply an interesting

curiosity, we believe that it could be relevant for the application of the finite action

principle [46], which is getting much attention in recent times for its applications in

quadratic theories of gravity [47, 48, 49]

3.4 Numerical methods

Having shown in the previous subsections the approximations used to describe the metric

in various regimes, we present here the main numerical tools used to investigate the

non-linear regime and the global structure of the solutions. Having as one of the main

goals the study of isolated objects without a cosmological constant, all the solutions will

be described at large distances by the weak field expansion shown in (3.5). To study

the solutions qualitatively or to study the phase diagram of the theory, it is sufficient

to integrate the equations using (3.5) as initial conditions at a large radius x∞. The

integration has been done using the adaptive step size Runge-Kutta integrator DO2PDF

developed by the N.A.G. group (see https://www.nag.com for details) with a tolerance

of 10−12 for vacuum solutions and of 10−9 for non-vacuum solutions. The large radius

has then been chosen as x∞ = 18 in numerical units in order to have Yukawa corrections
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larger than the tolerance threshold. The solutions at the origin are classified in terms of

the values of the running exponents (3.39) evaluated at a small radius ro = 10−3; this

is particularly useful for solutions without no metric singularity for r > 0, and for the

interior of black holes. To study solutions in greater detail, however, it is necessary to

use a more refined method, described in the following paragraphs. The method described

is also necessary to study black hole solutions, considering that they populate a zero-

measure region of the parameter space and, therefore, cannot be analyzed using a simple

initial value integration.

3.4.1 Shooting method

Choosing a specific type of solution to investigate means choosing one of the behaviors

in Table 2 a priori, and then specifying an internal boundary. At the numerical level,

choosing a specific type of solution to investigate then means solving a boundary value

problem for a system of ordinary differential equations. To describe the general procedure,

we can recast the equations of motion as a set of N first-order ordinary differential

equations with dependent variables y⃗ and independent variable x

dy⃗(x)

dx
= f⃗(x, y1, y2, ..., yN), (3.48)

and impose Dirichlet boundary conditions at a certain point x1, characterized by n1

parameters Vj with j = 1, ..., n1

y⃗(x1) = B⃗1(x1, V1, ..., Vn1); (3.49)

we then impose Dirichlet boundary condition also at another point x2, characterized by

n2 = N − n1 parameters Vk with k = 1, ..., n2

y⃗(x2) = B⃗2(x2, V1, ..., Vn2). (3.50)

To solve this problem, the shooting method solves exactly (within the numerical integra-

tion accuracy) the equations and then makes the solution satisfy the boundary conditions,

as opposed to the relaxation method in which the boundary conditions are satisfied by

a solution which then is required to solve the differential equations. To implement the

shooting method, we start by defining an N -dimensional vector V⃗ that can be thought

as

V⃗ =

(
V⃗1

V⃗2

)
where V⃗1 and V⃗2 are respectively an n1 and n2-dimensional vectors with the parameters’

values defining the boundary conditions at x1 and x2. We now define two distinct load-

ing subroutine LOAD1(x1,v1,y) and LOAD2(x2,v2,y) that generate the starting vectors

49



3.4 Numerical methods 3 ANALYTICAL APPROXIMATIONS AND ...

B⃗(x1) and B⃗(x2), and integrate the system (3.48) up to an intermediate point xf from

both boundaries, using a subroutine ODEINT(N,yi,yl,xi,xf,derivs), defining the vec-

tors y⃗L(xf ) and y⃗R(xf ), where the subscripts L and R indicate if the integration has been

done from left or right boundary. Finally, the subroutine SCORE(xf,yl,yr,f) define a

discrepancy vector F⃗ as

F⃗ = y⃗L(xf )− y⃗R(xf ).

Collecting everything in the subroutine

subroutine FUNCV(N,v,f)

call LOAD1(x1,v,yi)

call ODEINT(N,yi,yl,x1,xf,derivs)

call LOAD2(x2,v(n2+1),y)

call ODEINT(N,yi,yr,x2,xf,derivs)

call SCORE(xf,yl,yr,f)

return

end

the boundary value problem is reduced to a root-finding problem for the function F⃗
(
V⃗
)

defined by the subroutine FUNCV(N,v,f). Within the work made for this thesis, the

subroutine ODEINT(N,yi,yl,xi,xf,derivs) has still been defined using the DO2PDF in-

tegrator, while, for the root-finding algorithm, it has been used the BROYDN subroutine

found in the Fortran version of Numerical Recipes [50], which implements the Broyden’s

method.

Shooting method for black holes. To study black hole solutions we impose, together

with the boundary (3.5) at large distances, that the metric satisfies the boundary condi-

tion (3.28) at fourth order at a radius rb = rH+10−3, where rH is the radius at which the

event horizon is located and is an external parameter. Having specified the value of rH ,

the shooting method then finds the values of M, S−
2 , f1 and h1 for which the boundary

value problem is solved with a precision of the root-finding algorithm of 10−6 (remember

that thanks to the corollary 1 black holes are present only in the Einstein-Weyl sector

of the theory); the fitting radius rf at which the two integrations are matched does not

change the results and have been fixed at rf = rH + 0.5 for optimal convergence. The

family of black holes is found by varying the value of rH , which is the only free parameter

left. The series expansion (3.28) can then be extended to the other side of the horizon

and be used as the initial value for an additional integration towards the origin. The

metric at the origin is then classified using the running exponents (3.39). In Figure 4,

finally, we show how the numerical integration interpolates between the various analytical
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approximations for a non-Schwarzschild black hole.

Figure 4: Analytical approximations and the shooting method for a non-Schwarzschild black hole; the

non-linear solutions in solid lines interpolate between the asymptotic values (in dashed lines) and the

series expansion at the horizon (in dotted lines), and at the end is fitted by another series expansion (in

dotted-dashed lines) close to the origin.

Shooting method for compact stars. In order to study compact star solutions

the boundary (3.5) at large distances is imposed together with the conditions ρ(r∞) =

p(r∞) = 0, and the other boundary is fixed using the expansion (3.23) at fourth order at

a small radius ro = 10−3. From the internal boundary the non-vacuum equations are inte-

grated up to a radius R∗, which is an external parameter specified before the integration,

while from the external boundary the vacuum equations of motion are solved up to the

same radius. Matching the vacuum and non-vacuum equations of motion at the radius

r = R∗ fixes the star surface precisely at that radius. As in the case of black holes, the

parameters M, S−
2 , S

−
0 , h0, ρ0, p0, h2 and f2 are completely fixed by the integration and

the radius R∗ is the only free parameter of the solution, which can be varied to explore the

family of solution. Each family is also specified by an equation of state p = P(ρ), which,

being an equation with dimensionful parameters, fixes the energy scales of the fluid. As

we will discuss in more detail in Subsection 5.4, this will impose some restriction on either

the free parameters of the action α and β or the parameters present in the equation of

state. We also note that, in general, the equations of state of physical fluids assume that

the energy density is always positive; the shooting method, however, will often produce

negative values for the energy density in the integrations before convergence. We specify

here that all the equations of state will be in terms of the energy density modulus, which

guarantees a well-defined pressure but can slow down the convergence process. In Figure

5, finally, we show how the numerical integration interpolates between the various ana-
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lytical approximations for a compact star with the polytropic equation of state p = 0.2 ρ2

in numerical units.

Figure 5: Analytical approximations and the shooting method for a compact star; the non-linear solutions

in solid lines interpolates between the asymptotic values (in dotted lines) and the series expansion at the

origin (in dashed lines).

Shooting method for wormholes. The general procedure for applying the shooting

method to wormhole solutions is the same as the one for black holes, that is, a shooting

method between the linearized expansion (3.5) at large distances and the series expansion

(3.30) close to the metric singularity, and then a further integration with initial condi-

tions set by the boundary at the metric singularity. Applying this method to wormholes,

however, requires some additional care due to the presence of three free parameters and

a divergent first derivative of the time component of the metric at the throat. We then

present the procedure in the case of Einstein-Weyl gravity, where the presence of only

two free parameters dramatically simplifies the discussion. The first point of caution is

that it is much more convenient to fix the external parameters M and S−
2 to have faster

convergence in the codes. This required a previous parameter space analysis to find the

area where an integration from large radii leads to a metric singularity at a finite radius.

After this preliminary scan of the parameter space, using this external integration to

52



3.4 Numerical methods 3 ANALYTICAL APPROXIMATIONS AND ...

formulate an educated guess for the parameters at the throat is also helpful. Having a

divergent derivative of the time component of the metric, the integration from the throat

is very sensitive to the specific values of the parameters, in particular to the throat ra-

dius and the parameter b1/2 in (3.30). Nonetheless, taking into account these precautions,

the shooting method results to be quite efficient also in this case, as can be seen in the

example of a wormhole with M = 0.6 and S−
2 = −0.2 in Figure 6.

Figure 6: Analytical approximations and the shooting method for wormholes, with the asymptotically

flat patch in the top panel and the asymptotically vanishing in the bottom panel; the non-linear solutions

in solid lines interpolates between the asymptotic values (in dashed lines) and the series expansion at the

throat (in dotted lines), and at the end is fitted by the asymptotically vanishing metric at large distances

in the second patch (in dotted-dashed lines).
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4 The phase diagram of quadratic gravity

As extensively discussed in the previous section, there are many possible behaviors for the

metric around the origin or a metric singularity in quadratic gravity. This large variety of

short-scale behaviors is contrasted with the single, but very simple and physically intu-

itive, form of the metric at large distances. The weak field expansion at large distances is

indeed characterized by the total mass and the strength of the interactions mediated by

the additional massive modes, which characterize the gravitational interaction at large

distances. It is then of fundamental relevance to understanding how these parameters

affect the short-scale behavior of the solutions. To indicate the diagram in which different

types of solutions are associated with specific regions of the parameter space, we borrowed

the term “phase diagram” from classical Thermodynamics to highlight the fact that we

are associating a “microscopical” property of solutions to the parameters describing their

“global” external properties.

This section is divided in three parts:

- in the first subsection we will present the phase diagram of vacuum solutions in

Einstein-Weyl gravity, which is the most informative two-dimensional reduction

of the full quadratic theory. There will be four different types of solutions: black

holes with Schwarzschild or non-Schwarzschild nature, naked singularities which are

gravitationally repulsive in the origin, naked singularities which are gravitationally

attractive in the origin and non-symmetric wormholes; we will show that black

holes populate only a zero-measure region of the parameter space and that for large

masses most of the solutions will be either wormholes if the Yukawa contribution

to the gravitational potential is attractive, or repulsive naked singularities if the

Yukawa contribution is repulsive;

- in the second subsection we will present the main issues emerging in the evaluation

of the phase diagram of vacuum solutions in the full quadratic theory, namely an

inconsistency in the link between the linear and non-linear regimes in the case the

masses of the two additional modes are different, and try to extract some physical

information nonetheless. The families of solutions will be the same as in Einstein-

Weyl gravity and, in this case, also attractive naked singularities will have a relevant

role in the region of the phase diagram with solutions with large masses; in particular

repulsive singularities will be favored by a repulsive contribution of the massive

tensor particle, attractive naked singularities by an attractive contribution of the

massive scalar particle, and wormholes by a simultaneous attractive contribution of

the tensor particle and a repulsive contribution of the scalar particle;
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- in the third subsection we will show the location of non-vacuum solutions in the

phase diagram of vacuum solutions; in particular, in Einstein-Weyl gravity they will

populate only the region where repulsive naked singularities are present, while in the

full quadratic theory they will populate the surface which separates attractive and

repulsive naked singularities. In all the cases considered, there will be two points

in the phase diagrams which emerge as triple points for all the different types of

solutions, of which one of them is Minkowski, and the other represents a solution

with a small and positive mass;

The results on the phase diagram of Einstein-Weyl gravity, both for vacuum and non-

vacuum solutions, have been published in [51], while the ones on the phase diagram of

the full quadratic theory have only been anticipated in [52], but not fully published yet.

4.1 The phase diagram of Einstein-Weyl gravity

The phase diagram of vacuum solutions of Einstein-Weyl gravity is depicted in Figure 7.

The parameter space is mapped by the values of the mass M and the Yukawa charge S−
2 ,

which characterize the gravitational potential at large distances; we will show here also

the part of the phase diagram with M < 0, and postpone to the following sections the

discussion on the possible phenomenological reductions of the diagram. To describe this

diagram we will use the term “repulsive mass” for negative values of the parameterM and

attractive or repulsive Yukawa charge for negative or positive values of the parameters

S−
2 respectively; once specified the attractive or repulsive nature of the parameters we

will use “large” and “small”, or similar terms, always referring to their modulus. The

solutions will be characterized either by the presence of a metric singularity or by the

value of the running exponents (3.39)

t =
d log (h(r))

d log(r)
=
r h′(r)

h(r)
, s =

d log (f(r))

d log(r)
=
r f ′(r)

f(r)
(4.1)

at a small radius set to ro = 10−3. The integration of the equations has been done with

a Fortran code as described in Section 3.4, and later cross-checked with a code written

using the Wolfram Mathematica language by Alessandro Zuccotti. The phase diagram is

divided into five main regions populated by three different types of solutions:

- Type I solutions: they are characterized by values of the running exponents between

−0.8 and −1.4;

- Type II solutions: they are characterized by values of the running exponent t very

close to 2 and of the running exponent s very close to −2;
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- Type III solutions: they are characterized by a metric singularity at a radius different

from zero in which there is a zero of the function f(r) which is not a zero of the

function h(r).

Figure 7: Phase diagram of vacuum solutions of the Einstein-Weyl theory; the dashed black line indicates

Schwarzschild black holes, while the solid red and blue lines indicate non-Schwarzschild black holes.

We postpone to Section 5 a detailed description of these solutions; however, now we will

sketch their main properties and the relation of their location in the phase diagram with

the asymptotic parameters.

Type I. The first type of solution seems to belong to the (−1,−1)10 family; however,

we have found relevant discrepancies from the expected value t = s = −1 even at radii

smaller than ro = 10−3. Moreover, these solutions cover an area of the phase diagram,

while the number of free parameters of the (−1,−1)10 family suggests that they should

occupy a one-dimensional region. These considerations make evident that type I solutions

should belong to some correction of the (−1,−1)10 family, but with the same leading order.

In [33] a non-Frobenius family that shares the same leading order of the (−1,−1)10 family

but with logarithmic corrections and with one additional free parameter has been found

in the full quadratic theory, but in Einstein-Weyl gravity none of such family has been

discovered. Sharing the leading behavior of (−1,−1)10 solutions, however, we can still infer
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that they are naked singularities with a repulsive gravitational force close to the origin,

and we will refer to them as “repulsive naked singularities”. Indeed, they populate the

area where both the mass and the Yukawa charge are repulsive, the area where the mass

is repulsive and the Yukawa charge is attractive but with a repulsive mass larger than

the attractive Yukawa charge, and the area where the mass is attractive and the Yukawa

charge is repulsive but with a repulsive Yukawa charge larger than the attractive mass.

Type II. The second type of solutions instead truly belong to the (−2, 2)10 family,

having found no relevant discrepancies from (s, t) = (−2, 2) (except for the regions close

to the transition with other families) and, in contrast with type I solutions, the area

populated by these solutions agrees with the number of free parameters of the (−2, 2)10

family. Belonging to this family, they also represent naked singularities, but with an

attractive gravitational force close to the origin, and we will refer to them as “attractive

naked singularities”. As opposed to their repulsive counterparts, they populate a region

with an attractive mass and repulsive Yukawa charge but with a mass much larger than

the Yukawa charge, a region with repulsive mass and attractive Yukawa charge but with

a Yukawa charge much larger than the repulsive mass, and finally a small region with an

attractive mass and an attractive Yukawa charge, but where both take small values.

Type III. The third type of solutions, in principle, might belong to the (1, 0)1r0 or

the (1, 0)2r0 families, but the number of the free parameters eliminates the possibility of

having an area populated by (1, 0)1r0 solutions. Finally, the code which implements the

shooting method with a (1, 0)2r0 boundary converges in all the regions shown populated

by type III solutions in Figure 7, confirming that this is indeed their behavior close to the

metric singularity. We will refer to these solutions as either wormholes, non-symmetric

wormholes, or the contracted form no-sy WHs. They populated almost all the areas where

both the mass and the Yukawa charge are attractive, with the exception of a region

where both are small (occupied by type II solutions), a small region with attractive mass

and repulsive Yukawa charge, but with small values of both parameters, and a region

with repulsive mass and attractive Yukawa charge, but with the Yukawa charge being

significantly larger than the repulsive mass.

Black holes. Black holes populate only zero-measure regions of the phase diagram

and then cannot be found by a simple scan of the parameter space, but it is necessary

to use the shooting method. Schwarzschild black holes are shown in the dashed black

line in Figure 7, while non-Schwarzschild black holes are shown with the solid red and

blue lines, where the two different colors indicate whether they have negative or positive
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Yukawa charge and will be useful in the discussion of Section 6 and 7. Their specific

location is on the lines which separate attractive naked singularities (type II) and non-

symmetric wormholes (type III), and stressing the phase diagram analogy they represent

the phase transition between the two different types of solutions. Being on this separa-

tion lines, Schwarzschild black holes always have an attractive mass and zero Yukawa

charge, and non-Schwarzschild black holes have either an attractive mass and repulsive

Yukawa charge, but both being small, an attractive mass and attractive Yukawa charge,

but still both being small, or a repulsive mass and attractive Yukawa charge, but with no

bounds for both of them and with a Yukawa charge always larger than the repulsive mass.

Let us now focus on the most interesting part of the phase diagram from a phenomenolog-

ical point of view, which is the one where solutions have a large attractive mass. The first

point emerging is that black holes can have only Schwarzschild nature, they are present

only in a zero-measure region of the parameter space and therefore are not expected to

be the general vacuum solutions of Einstein-Weyl gravity, unless specific arguments are

taken into account to require the existence of a horizon. For an attractive contribution of

the Yukawa term in the asymptotic potential, the solutions will always be non-symmetric

wormholes while, for a repulsive contribution, they will always be naked singularities;

the main difference here is that for very small values of the repulsive Yukawa charge the

naked singularity will be attractive and in the other cases it will be repulsive.

Figure 8: Triple points in the phase diagram of vacuum solutions of the Einstein-Weyl theory; the

dashed black line indicates Schwarzschild black holes, while the solid red and blue lines indicate non-

Schwarzschild black holes.
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Stressing a little bit more the phase diagram analysis, there are two “triple points” in the

diagram, shown in detail in Figure 8. The first corresponds to the Minkowski spacetime

M = 0, S−
2 = 0, while the second one, which we will call massive triple point from now

on, is located at M ≃ 0.623, S−
2 ≃ 0.102 in our numerical units. Both triple points

are at the border of the areas populated by type I, type II, black hole, and wormhole

solutions; moreover, the Minkowski one corresponds to the point where the horizon of

Schwarzschild black holes goes to zero, while the massive triple point is where the horizon

of non-Schwarzschild black holes goes to zero. Taking into account these properties, it

seems that the Minkowski flat space is not unique as it is in General Relativity and could

be not the only “true vacuum” of the theory; the presence of this massive triple point

suggests that there might be a sort of ghost condensate vacuum, that might have relevant

consequences on the study of quantum fluctuations.

4.2 The phase diagram of quadratic gravity

Finding the phase diagram for the full quadratic theory was one of the objectives of this

thesis. Unfortunately, as mentioned at the beginning of this section, an inconsistency

in the link between the linear and non-linear regimes in the full theory appeared. In the

weak field limit for the metric (3.5), two different Yukawa terms with two different masses

are present; having two different masses results in an ill definition of the linear solution,

opening possibilities as
e−m0r

r
<

e−m2r

r2
(4.2)

for m0 > m2 and r large enough, which means having

O (ϵ) < O
(
ϵ2
)
. (4.3)

We specify here that even if in principle it could have been possible also to have a situation

as
e−m2r

r
<

1

r2
(4.4)

for r large enough, a term with no exponentials would be proportional only to the M

parameter and then, being equal to a non-linear contraction of the Schwarzschild metric,

will have a vanishing contribution to the Ricci tensor and will not appear in the equations

of motion. Nonetheless, the ill behavior of the linearized metric with two exponentials

persists. The most immediate consequence of this inconsistency is that, for m0 > m2,

it is not possible to find a phase diagram where the section S−
0 = 0 is equal to the

phase diagram of Einstein-Weyl gravity. As a first step in the discussion, we present

in 9 the phase diagram of the R + R2 theory, which is much simpler than the one of

Einstein-Weyl gravity. Type I solutions, which are repulsive naked singularities, populate
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the majority of the area with a repulsive mass, with the exception of an attractive Yukawa

charge larger than the repulsive mass, and are present only in a small portion of the area

with an attractive mass and only if a much larger repulsive Yukawa charge is present.

Type II solutions, which are attractive naked singularities, still populate the area with a

repulsive mass and an attractive Yukawa charge but with a mass smaller than the Yukawa

charge, and all the areas with an attractive mass and an attractive Yukawa charge. Type

III solutions, which are non-symmetric wormholes, instead populate almost all the area

with an attractive mass and a repulsive Yukawa charge, in contrast to what happens in

Einstein-Weyl gravity. In agreement with theorem 1 there are only Schwarzschild black

holes, which are on the S−
0 = 0 line that is the intersection with the Einstein-Weyl theory.

Also in this case, black holes appear only as transitions between wormholes and attractive

naked singularities, and the only triple point of the diagram is the Minkowski spacetime.

It is interesting to note that, as in Einstein-Weyl gravity, in the large mass limit half of the

phase diagram is populated by non-symmetric wormholes, while in contrast to Einstein-

Weyl gravity, the other half is populated by attractive naked singularities instead of

repulsive ones.

Figure 9: Phase diagram of vacuum solutions of R+R2 gravity; the three types of solutions are the same

as in Einstein-Weyl gravity and the dashed black line indicates Schwarzschild black holes.

To understand how the scalar and tensor Yukawa terms interact one with the other, we

can analyze the phase diagram of the full quadratic theory in the specific case m0 = m2
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where the linearized metric is well-defined, that we present in Figure 10. To clarify the

discussion, we superimposed the phase diagram of Einstein-Weyl gravity over the S−
0 = 0

sector of the parameter space and the one of R + R2 gravity over the S−
2 = 0 sector,

with a perfect agreement. Similarly to the previous cases, the three main volumes of the

diagram are populated by the same types of solutions, namely attractive and repulsive

naked singularities, and non-symmetric wormholes. Black holes are still present only in

one-dimensional lines on the S−
0 = 0 section of the surface which separate attractive

naked singularities and non-symmetric wormholes.

Figure 10: Phase diagram of vacuum solutions of quadratic gravity in the case m0 = m2 with super-

imposed the phase diagram of the Einstein-Weyl and the R + R2 sectors; the three types of solutions

are the same of Einstein-Weyl gravity, the dashed black line indicates Schwarzschild black holes and the

solid red and blue lines indicate the non-Schwarzschild ones.
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The phase diagram is then populated as follows:

- Type I solutions are still the solutions more present in the area with a repulsive

mass; in particular, they are more present whenever also the Yukawa charges have

a repulsive contribution; for an attractive mass, they are present only if the tensor

Yukawa charge S−
2 is repulsive, while the scalar charge S−

0 can be either attractive

or repulsive but with an intensity always smaller than the tensor charge;

- Type II solutions mainly populate the area where both the mass and the scalar

charge are attractive, while for them to be repulsive they have to be contrasted

by a stronger attractive contribution of the tensor Yukawa charge; as the mass

increase, if the tensor charge is attractive the scalar charge has to be larger, while

if the tensor charge is repulsive the scalar charge can be smaller;

- Type III solutions mainly populate the area where both the mass and the tensor

charge are attractive, but the scalar charge is repulsive, while for them to be re-

pulsive they have to be compensated by a much stronger repulsive contribution

of the scalar charge; as the mass increase, they can be present both for attractive

and repulsive scalar and tensor Yukawa charges, especially in the regions where the

repulsive scalar charge is larger than the repulsive tensor charge, or the attractive

tensor charge is larger than the attractive scalar charge.

To focus once again on the part of the phase diagram with a large attractive mass,

repulsive naked singularities are present approximately when −S−
2 ⪅ S−

0 ⪅ S−
2 , attractive

naked singularities when S−
0 ⪅ min

(
−S−

2 , S
−
2

)
and non-symmetric wormholes whenever

S−
0 ⪆ S−

2 . The triple points of the phase diagram of Einstein-Weyl gravity are now the

intersections with the surface of zero scalar Yukawa charge of conjunction line of the

surfaces that separate the three types of solutions; they still are the only points where

the three generic vacuum solutions also meet with black holes. Regardless of the specific

behavior of this phase diagram, we can track down some common behavior of the effects

of the three asymptotic parameters, that is:

- a repulsive mass M < 0 will always favor repulsive naked singularities, and the

values of the Yukawa charges have little effect;

- with an attractive mass, a repulsive tensor charge S−
2 > 0 favors repulsive naked

singularities while an attractive tensor charge S−
2 < 0 favors non-symmetric worm-

holes;

- with an attractive mass, a repulsive scalar charge S−
0 > 0 favors non-symmetric

wormholes while an attractive scalar charge S−
0 < 0 favors attractive naked singu-

larities.
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From a physical point of view, we expect that changing the ratio between the two masses

m0 and m2, the Yukawa with a bigger mass should have less effect, and the phase diagram

should become more similar to one of the two bi-dimensional cases 7 or 9; as an example,

if we consider the case m2 ≫ m0 we expect that varying the tensor charge S−
2 will have

little effect and the phase diagram will become the translation solid generated by the

phase diagram 9 on the S−
2 direction. Unfortunately, this is not the case: as we can see

in Figure 11, where we show the phase diagram in the case m0 =
2
3
m2, the tensor charge

has less effect indeed, and the families of solutions are not influenced that much by the

values of S−
2 , but the phase diagram is not a translation of the one of R +R2 gravity.

Figure 11: Phase diagram of vacuum solutions of quadratic gravity in the case m0 = 2
3m2 with superim-

posed the phase diagram of the Einstein-Weyl and R+R2 sectors.
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Moreover, the sector S−
2 = 0 does not coincide anymore with the one of R + R2 gravity.

The sector S−
0 = 0, instead, still coincides with the Einstein-Weyl gravity phase diagram.

In particular, what happens is that for an attractive scalar charge, repulsive and attractive

naked singularities change their places in the phase diagram. Something similar happens

in the case of m0 larger than m2, as can be seen in Figure 12, where we present the phase

diagram in the case m0 =
3
2
m2.

Figure 12: Phase diagram of vacuum solutions of quadratic gravity in the case m0 = 3
2m2 with superim-

posed the phase diagram of the Einstein-Weyl and R+R2 sectors.

Here the values of the scalar charge S−
0 have little effect on the families of solutions; still,

we are not able to find the phase diagram of Einstein-Weyl gravity in the S−
0 = 0 sector,
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while we find (approximately) the phase diagram of R+R2 gravity in the S−
2 = 0 sector.

The phase diagram, in this case, has a quite complicated structure that we believe is not

particularly insightful to investigate deeply. As previously said at the beginning of this

section, we believe these inconsistencies are due to the ill definition of the linear theory

in the case of different masses. While having the phase diagram in the Einstein-Weyl, the

R+R2, and m0 = m2 cases can shed light on the phase diagram of the full theory in the

generic case, this ill-definition of the linearized theory has to be solved.

4.3 Non-vacuum solutions in the phase diagram

Leaving the safe place of General Relativity, where the only vacuum solution is the

Schwarzschild metric and non-vacuum solutions also appear as Schwarzschild solutions

outside their surface, it becomes a non-trivial and crucial point to understand which

type of vacuum solutions describes the exterior of compact stars. We remember that

while the vacuum solutions of General Relativity, i.e. with Rµν = 0, are also vacuum

solutions of quadratic gravity, the non-vacuum solutions of General Relativity, i.e. with

Rµν = 1
2

(
Tµν − 1

2
Tgµν

)
, are not solutions of quadratic gravity. For the same reason, we

do not expect the non-vacuum solution of Einstein-Weyl gravity to be related to the ones

of the full theory. Nonetheless, we will present both cases as they complete the discussion

made in the previous subsections.

Einstein-Weyl gravity. The location of some families of non-vacuum solutions in

Einstein-Weyl gravity is shown in Figure 13; in particular, we present solutions generated

by self-gravitating fluids with polytropic equations of state

p = k0 ρ
Γ, (4.5)

with different values of k0 and Γ. In particular, changing the polytropic exponent Γ

changes the shape of the relation between the M and S−
2 parameters while changing k0,

being related to the physical energy scales of the fluid, has a scaling effect on this relation.

Nonetheless, there are some important common features:

- the non-vacuum solutions are present only in the area populated by repulsive naked

singularities;

- as the star radius decreases, the solutions converge to the massive triple point of

the phase diagram.

The main qualitative difference is that the solutions with Γ = 2, for which a vanishing

central pressure is reached at a finite radius and with vanishing mass, also converge to
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the Minkowski triple point, while the solutions with Γ = 4/3, 5/3, for which a vanishing

central pressure instead is reached in the large star radius limit and with a constant mass,

seem to have a divergent value of the Yukawa charge. However, we have to note that for

very large star radii, the integration becomes unstable because the weak field limit is not

reliable anymore.

Figure 13: Location of non-vacuum solutions on the phase diagram of Einstein-Weyl gravity; all the fluid

equations of state have been modeled using polytropic equations, the dashed colored lines indicate e.o.s.

with Γ = 2 and different k0, while the solid and dotted black lines indicate e.o.s. with Γ ̸= 2.

The location of the non-vacuum solution in the phase diagram sheds new light on type

I solutions that did not have a physical interpretation until now. They appear, in fact,

as the external field of compact objects and are a candidate to be the generic observed

solution in a quadratic theory of gravity. The second important aspect emerging from

Figure 13 is that the two triple points of vacuum solutions play a special role also for

non-vacuum solutions. While the Minkowski flat space remains an attractive point for

solutions that vanish for vanishing energy density (a property which is not valid for all

the equations of state also in General Relativity), the massive triple point is an attractor

for stars with a divergent central energy density independently of the equations of state

of the fluid.

Full quadratic theory. We show the location of non-vacuum solutions in quadratic

gravity only in the specific case m0 = m2 in Figure 14. With respect to the Einstein-Weyl

theory, there are one major difference and one major similarity:
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- in contrast to Einstein-Weyl gravity, non-vacuum solutions do not have a corre-

sponding vacuum solution family, as they are constrained to the surface which

separates attractive and repulsive naked singularities;

- similarly as in Einstein-Weyl gravity, the solutions converge to the massive triple

point of the phase diagram as the star radius decreases.

Figure 14: Location of non-vacuum solutions on the phase diagram of quadratic gravity in the case

m0 = m2; all the fluid equations of state have been modeled using polytropic equations, the dashed

colored lines indicate e.o.s. with Γ = 2 and different k0, while the solid and dotted black lines indicate

e.o.s. with Γ ̸= 2.

The interpretation of repulsive naked singularities as the vacuum solutions representing

the asymptotic field of a compact star has been quite short-lived, as now no family has

this role. It is still interesting to note that the types of solutions present also in General

Relativity, that is, black holes and compact stars, are present only in the surfaces that

separate different solutions.
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5 Solutions of quadratic gravity

In the previous section, we showed how the asymptotic gravitational properties affect the

metric in the short-scale regime. However, we just sketched the properties of the different

solution types without going into detail. In this section, instead, we will try to give a

complete overview of the global properties of the metric for various solutions of quadratic

gravity, leaving some specific topics to the following sections. These solutions are collected

in Figure 15 in the particular case of Einstein-Weyl gravity, where we also stressed the

relevance of the Yukawa charges on the solutions setting the same mass M for all the

types of solutions. In the last subsection we will also present the specific properties of

analytical solutions of General Relativity whenever they are considered as solutions of

scale-invariant gravity.

Figure 15: Vacuum solutions in the case of Einstein-Weyl gravity with mass M = 0.6. The Schwarzschild

BH in dashed black has S−
2 = 0, the non-Schwarzschild BH in orange has S−

2 = 0.101, the type I solution

in red has S−
2 = 0.2, the type II solution in green has S−

2 = 0.075, and the type III solution in dotted

and solid blue has S−
2 = −0.2.

This section is divided in five parts:

- in the first subsection we will present black hole solutions, with a focus on the

non-Schwarzschild black holes present in quadratic gravity; we will show that it is

possible to have black holes for which the Yukawa term in the potential is attractive

and black holes for which it is repulsive, which have respectively a divergent and

a vanishing metric in the origin. The most interesting characteristic of this type of

black hole, however, is that the mass decreases and the surface gravity increases

as the horizon radius increases, precisely the opposite of what happens in General

Relativity;

- in the second subsection we will describe the two types of naked singularities present

in the theory, showing some generic metric forms, their causal structure and dis-

cussing the behavior of geodesics. Repulsive naked singularities present an infinite

potential barrier that prevents geodesics from reaching it; nonetheless, this means
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also that outgoing geodesics will get to spatial infinity with an extreme amount of

energy. Attractive naked singularity, on the contrary, can be reached by all ingoing

geodesics; outgoing geodesics, instead, need an extreme amount of energy to escape

the singularity;

- in the third subsection we will describe non-symmetric wormholes, showing also

in this case some generic metric forms, their causal structure and discussing the

behavior of geodesics. We will show that these wormholes connect an asymptotically

flat spacetime with another one that is asymptotically singular; geodesics will reach

this singularity in a finite amount of proper time but in an infinite time for an

external observer. We will also discuss that an infinite amount of energy is required

to leave the singularity, and that these types of wormholes appear as a good example

of black hole mimickers;

- in the fourth subsection we will consider the case of non-vacuum solutions, where

a perfect fluid with either a polytropic or a realistic equation of state is self-

gravitating. We will show how the presence of the Weyl term in the action has

a significant repulsive contribution to the gravitational interaction, opening the

possibility of having standard fluids which can sustain compact stars with very

large masses. In this subsection we will restore physical units using very unnatural

values of α and β in (2.5), which, however, are helpful to illustrate more clearly the

effects of the quadratic terms;

- in the fifth subsection we will present the known analytical solutions of scale-

invariant gravity, namely Schwarzschild, (anti-)de Sitter and Schwarzschild-(anti-)

de Sitter; in particular, we will show that it is possible to have two Schwarzschild-de

Sitter solutions, one with a zero scalar field and the other with a non-zero scalar

field, which are also the only solutions present in the Einstein frame. We will also

briefly present some results of the theory in a cosmological setting, namely a transi-

tion between two asymptotically de Sitter spacetimes, which motivated the analysis

of a transition between the two Schwarzschild-de Sitter black holes.

Black hole solutions have been presented for the first time in [23], and later investigated

in [20, 25] and in [24] we completely characterized their metric; naked singularities have

been studied in [20], and the asymptotically vanishing one have been investigated in detail

in [26]; non-symmetric wormholes have been first presented in [20] and then we presented

the global properties shown in this section in [43]; we studied compact stars in quadratic

gravity for the first time in [43], and most of the results shown in this section will be

taken from that paper. Finally, black hole solutions in scale-invariant gravity have been
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studied in [53, 54, 55] and we review them in [35], while the cosmological case has been

investigated in various paper, of which we point out [27, 34, 28].

5.1 Black holes

One of the first results of the study of solutions of quadratic gravity has been the discovery

of a class of non-Schwarzschild black hole solutions [23] which, for the corollary 1, are

present only in the Einstein-Weyl sector of the theory. These solutions have an event

horizon, described by the behavior of the (1, 1)1r0 family in Subsection 3.2, but have a

non-zero value of the Yukawa charge S−
2 in the asymptotic expansion (3.5) and then the

two metric functions h(r) and f(r) are different one from the other. In terms of the sign of

the Yukawa charge, we can define two different branches of non-Schwarzschild solutions:

a Yukawa attractive and Yukawa repulsive branches that connect at a crossing point with

the Schwarzschild solutions (which have zero Yukawa charge). As described in Subsection

3.4.1, we find black hole solutions specifying an event horizon radius and deriving all the

other parameters using the shooting method technique. In Figure 16 we finally show the

parameters characterizing the black hole metrics in function of the horizon radius.

At large distances we can immediately see from the top panels that Yukawa repul-

sive black holes are present only for small horizon radius and small positive masses,

while Yukawa attractive black holes have unbounded horizon radii and unbounded neg-

ative masses. These properties already set some constraints on the presence of non-

Schwarzschild black holes in our universe, as they are either large but gravitationally

repulsive or small both in size and mass, and then they cannot model astrophysical black

holes.

Close to the horizon the parameters h1 and f1 in the middle panels, which are the val-

ues of the first derivatives of h(r) and f(r) at the horizon, show another striking difference

from Schwarzschild black holes, namely that the strength of the gravitational interaction

at the horizon increases for increasing horizon radius. To quantify this statement, we can

consider the surface gravity at the horizon

κ =

√
−1

2
(∇µKν) (∇µKν)

∣∣∣∣∣
r=rH

=
1

2

√
h1f1, (5.1)

where Kµ is the timelike Killing field, which clearly increases as the horizon radius grows

with the behavior of h1 and f1 shown in Figure 16. This increase leads to an indefinite

growth in the tidal forces that, as we will see later, is directly translated to the tem-

perature. Nonetheless, the geometry close to the horizon will have no distinct differences
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Figure 16: Parameters of black hole solutions in terms of the horizon radius; the black dashed line

indicates Schwarzschild black holes, while the solid red and blue lines indicate the two branches of non-

Schwarzschild black holes. In the top panels are shown the asymptotic field parameters, in the middle

panels are shown the parameters that describe the metric close to the horizon, and in the bottom panels

the running exponents which characterize the metric close to the origin.

from the one of a Schwarzschild metric, and there will be no qualitative differences in

geodesics dynamics. Let us indeed consider a generic geodesic which, in a static spheri-

cally symmetric spacetime, can be defined as the integral line of the vector field V µ with

components

V t =
dt

dτ
=

E

h(r)
,

V r =
dr

dτ
= ±

√
f(r)

( E2

h(r)
− L2

r2
+ ϵ
)
,

(5.2)
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V θ =
dθ

dτ
= 0,

V ϕ =
dϕ

dτ
=
L

r2
,

with ϵ = −1 and τ the proper time for a timelike geodesic, or ϵ = 0 and τ an affine

parameter for a null geodesic, and where we considered θ = π/2 without loss of generality;

the ± in front of the radial component indicate whether the geodesic is ingoing to smaller

radii or outgoing to larger radii. Close to the horizon, the geodesic will behave as

V t =
dt

dτ
∼ E

h1(r − rH)
,

V r =
dr

dτ
∼ ±

√
f1
h1
E,

V θ =
dθ

dτ
= 0,

V ϕ =
dϕ

dτ
∼ L

r2H
,

(5.3)

and then we recover the usual coordinate time and proper time behaviors close to the

horizon

τ ∼ −
∫ rH

rτ=0

dr√
f1
h1
E

=

√
h1
f1

rτ=0 − rH
E

,

t ∼ −
∫ rH

rt=0

dr√
h1f1(r − rH)

= lim
r→rH

log(rt=0 − rH)− log(r − rH)√
h1f1

= +∞,

(5.4)

in which choosing a Schwarzschild metric has the only effect of setting h1 = f1 = 1/rH .

At the origin in the last panels we show the values of the running exponents (3.39)

measured at ro = 10−3, which explicitly show that the two branches are indeed different

in nature. While the properties at large distances and close to the horizon are physically

different but follow a sort of continuity, there is clearly a transition between the (−1,−1)10

and the (−2, 2)10 families as we pass from the Yukawa attractive black holes to the Yukawa

repulsive ones, which is faster as we evaluate the running exponents closer to the origin.

These two possible behaviors at the origin, however, are not relevant in the context of

geodesics dynamics, as the presence of the event horizon guarantees that all of them will

reach the singularity.

To conclude, the two branches of black holes have very qualitatively different behaviors, as

shown manifestly in Figure 17. All the general properties described above can be directly

seen in this figure: for the Yukawa repulsive black hole we note the stronger attractive

force at large distances, the weaker tidal forces close to the horizon, and the vanishing of
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the time component of the metric at the origin, and for the Yukawa attractive black hole

the repulsive gravitational force at large distances, the strong and attractive force close

to the horizon, and the divergence of the time component of the metric at the origin.

Figure 17: Metric of non-Schwarzschild black holes, with a Yukawa repulsive black hole in the left panel

and a Yukawa attractive black hole in the right one; both are compared with a Schwarzschild metric

with the same horizon radius.

While they have different metrics, and then different physical properties, having a single

horizon and a singularity in the origin, all the three different types of black holes con-

sidered have the causal structure depicted in Figure 18, with the singularity being the

future endpoint of all the geodesics intersecting the event horizon.

Figure 18: Penrose diagram for all the types of black hole solutions considered.

We also note that in [24] we found a class of non-Schwarzschild black holes in the case

of α < 0, that is a tachyonic mass m2
2 < 0; we will present this type of black holes in

Appendix A.

5.2 Naked singularities

One of the most immediate results of the study of solutions of quadratic gravity is that

naked singularities populate the majority of the parameter space. As previously said,
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the first type of naked singularities has a divergent time component of the metric at

the origin, and it might coincide with a logarithmic correction of the (−1,−1)10 family;

nonetheless, the dominant contribution close to the origin will be given by the r−1 terms

in the metric. The second type of naked singularity has a vanishing time component of

the metric close to the origin, and it truly coincides with the (−2, 2)10 family of solutions.

For both types of solutions, if we consider the (−1,−1)10 as the leading order behavior of

type I solutions, the Kretschmann scalar RµνρσRµνρσ diverge, as r−6 for type I and r−8

for type II solutions; also for both solutions the tortoise coordinate

r∗ =

∫
dr√

h(r)f(r)
(5.5)

goes to zero as r → 0, and therefore both types of solutions have the causal structure

pictured in the Penrose diagram in Figure 19. It is then manifest that these spacetimes

represent naked singularities, having all the light cones intersecting the singular origin at

a finite time.

Figure 19: Penrose diagram for both types of naked singularities considered.

While they share the same causal structure, these two types of naked singularities have

very different properties that will be described in detail in the following paragraphs.

5.2.1 Repulsive naked singularities

From the analysis of the phase diagram in Figure 10, they are linked with the presence

of a repulsive gravitational force at large distances, i.e. to a negative mass M < 0, or
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to an attractive gravitational force at large distances with a repulsive contribution of

the Yukawa term associated with the spin-2 particle whenever it dominates over the

contribution of the scalar particle. In other words, to have a repulsive naked singularity

is necessary to have a relevant repulsive contribution of a tensor mode, whether massive

or massless. In Figure 20 there are two examples of this type of solution, one with positive

and one with negative mass. In the second case is clear that the attractive contribution

of a Yukawa term is not sufficient to contrast the repulsive contribution of a negative

mass. In the first case, the repulsive contribution instead becomes relevant only close to

the origin, giving rise to a minimum in the gravitational potential at some radius r ̸= 0.

Figure 20: Metric functions for a repulsive naked singularity with positive mass, in particular with

(M,S−
2 , S−

0 ) = (1, 1,−0.3) (on the left), and one with negative mass, in particular with (M,S−
2 , S−

0 ) =

(−1,−1, 0.3) (on the right).

To recall what was said in Section 4, this type of solution is characterized by a divergent

behavior of the time component of the metric gtt = −h(r) and by a vanishing behavior

of the radial component grr = 1/f(r); from the Frobenius analysis collected in Table 3,

the only family of solution which has this behavior at the origin is the (−1,−1)10 family.

Unfortunately, there are two main points of caution: the first is that the analysis of the

running exponents (3.39) does not have (−1,−1) as a result, but there are discrepancies

of the order of some percentage points, the second is that the number of free parameters

of that family suggests that these solutions should be present on a line only. Looking at

the detail of the running exponents for two repulsive naked singularities in Figure 21, it

is clear that it is not a matter of how close to the origin the exponents are evaluated, but

it is truly a deviation from the (−1,−1)10 behavior. However, the Frobenius analysis and

the dynamical system analysis confirm that the first exponents of a metric that diverges

in the origin have to be (−1,−1), and the corrections have to be of higher order.

In [33] a family of logarithmic corrections of the Frobenius (−1,−1)10 family exists. How-

ever, such a family has not been found in the Einstein-Weyl case where we still find

numerically the same behavior. The possibility of logarithmic corrections can be seen
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Figure 21: Trend of the running exponents t(r) and s(r) defined in (3.39) for a repulsive naked singularity

with positive mass (on the left) and one with negative mass (on the right).

in Figure 22, where the log-linear plot of the functions r h(r) and r f(r) are shown. In

contrast with a pure Frobenius family, where the functions should flatten to a constant,

it is clear that they have a logarithmic behavior at small radii.

Figure 22: Logarithmic corrections of the (−1,−1)10 family for a repulsive naked singularity with positive

mass (on the left) and one with negative mass (on the right).

While the actual behavior of the metric at the origin remains a problem to be solved,

most of the relevant physical information can be extracted nonetheless. Let us consider

the general geodesic defined by the integral lines of the vector (5.2); if we consider the

(−1,−1)10 as the first approximation of the metric, and a timelike radial geodesic with

L = 0, this vector takes the form

V t =
dt

dτ
∼ E

h−1

r,

V r =
dr

dτ
∼ ±

√
f−1

h−1

(
E2 − h−1r−1

)
,

V θ =
dθ

dτ
= 0,

V ϕ =
dϕ

dτ
= 0,

(5.6)
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which is clearly defined only up to r = h−1

E2 . It is then manifest the repulsive nature of

this singularity, as a massive particle with starting energy Ē at spatial infinity can reach

only up to the limiting radius rl =
h−1

Ē2 , and at the same time a particle emitted at a

radius r̄ will reach spatial infinity with an energy Ei =
√

h−1

r̄
. The particle emitted close

to the singularity will then have a huge amount of energy, but, to reach the singularity,

it is necessary to have an infinite amount of energy. It is clear that having logarithmic

corrections, or simply having an exponent t ∼ −1 does not change this property of the

singularity. It is instead possible to reach the singularity for null geodesics, for which the

argument of the square root is always positive. It is also possible to evaluate the total

proper time and coordinate time that is required to reach the singularity, which both

result to be finite

τ = −
∫ 0

rτ=0

dr√
f(r)

(
E2

h(r)

) ∼ −
∫ 0

rτ=0

√
h−1

f−1

dr

E
=

√
h−1

f−1

rτ=0

E
,

t = −
∫ 0

rt=0

E dr

h(r)

√
f(r)

(
E2

h(r)

) ∼ −
∫ 0

rt=0

rdr√
f−1h−1

=
r2t=0

2
√
f−1h−1

.

(5.7)

We can have an insight into the nature of the singularity by studying a congruence of

infalling geodesics with tangent vector (5.2). Following the discussion in chapter 4 of [56],

we can define the vector field Zµ, which represents the separation of points in nearby

geodesics, that satisfies the equation

d

dτ
Zµ = Bµ

νZ
ν , (5.8)

where we have defined the deviation tensor

Bµν = hρµh
σ
ν∇ρVσ (5.9)

with hµν being the metric of either the hypersurface orthogonal to the geodesic in the

timelike case or the surface transverse to the geodesic in the null case. For the timelike

case it is not possible to reach the singularity, while for the null case the equation (5.8)

close to the singularity can be rewritten in terms of the radial coordinate as

dτ

dr

d

dτ


Zt(r)

Zr(r)

Zθ(r)

Zϕ(r)

 =
d

dr


Zt(r)

Zr(r)

Zθ(r)

Zϕ(r)

 ∼


0 0 0 0

0 0 0 0

0 0 1
r

0

0 0 0 1
r



Zt(r)

Zr(r)

Zθ(r)

Zϕ(r)

 , (5.10)

with the geodesics keeping a constant distance in the time and radial directions and

converging in the angular directions as Zθ ∼ Zϕ ∼ r → 0 purely for geometrical aspects
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(that is, they follow radial directions which converge to the origin), exactly as in the case

of Minkowski space. The repulsive naked singularity, therefore, seems to have no physical

problems for everything concerning ingoing geodesics, while its singular nature is present

in the high energy of the outgoing geodesics.

5.2.2 Attractive naked singularities

The second type of naked singularities, as shown in Figure 10, is associated with the

presence of a positive mass and an attractive contribution of the Yukawa term associated

with the scalar particle, whenever it dominates over the contribution of the tensor particle.

However, it is possible to find this type of singularity also in the region of negative mass,

but only if there is a strongly attractive contribution of the Yukawa term associated

with the tensor particle. In other words, it is a type of solution that requires a strong

attractive gravitational force. In Figure 23 we show two examples of this type of solution,

one with an attractive gravitational potential at large distances, on the left, and one with

a repulsive gravitational potential at large distances, on the right. In the second case, the

repulsive behavior at large distances and the attractive behavior close to the origin give

rise to a potential barrier at some radius r ̸= 0, which can be more and more accentuated

as we get closer to the family of repulsive naked singularities.

Figure 23: Metric functions for an attractive naked singularity with positive mass, in particular

with (M,S−
2 , S−

0 ) = (0.5,−0.1,−0.5) (on the left), and one with negative mass, in particular with

(M,S−
2 , S−

0 ) = (−0.2,−0.5,−0.5) (on the right).

As previously said, this type of solution is characterized by both the time component of the

metric gtt = −h(r) and the radial one grr = 1/f(r) going to zero at the origin, and from

the analysis done in Subsection 3.2 we expect it to coincide with the (−2, 2)10 Frobenius

family of solutions. In contrast to what happens for repulsive naked singularities, the

running exponents (3.39) converge precisely on the (−2, 2) values, as can be seen in

Figure 24.
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Figure 24: Trend of the running exponents t(r) and s(r) defined in (3.39) for an attractive naked singu-

larity with positive mass (on the left) and one with negative mass (on the right).

As an additional cross-check, we can also perform an analysis similar to the one done for

repulsive naked singularities, and study the behavior of the functions r−2h(r) and r2f(r)

close to the origin. We show as an example the behavior of such functions for the same

two solutions in Figure 25, where it is clear that there are no logarithmic corrections to

the Frobenius family. It is however important to specify that, while the value of the h2

parameter on the left and of the f−2 parameter on the right are quite small, they are of

order O (10−2) and have to be considered as small parameter different from zero.

Figure 25: No logarithmic corrections of the (−2, 2)10 family for an attractive naked singularity with

positive mass (on the left) and one with negative mass (on the right).

If we now look at the geodesic (5.2), there is no infinite potential barrier, and it can be

extended up to the origin. In the case L = 0 the geodesic takes the form

V t =
dt

dτ
∼ E

h2 r2
,

V r =
dr

dτ
∼ ± 1

r2

√
f−2

(E2

h2
+ ϵ r2

)
∼ ± 1

r2
E

√
f−2

h2
,

(5.11)
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V θ =
dθ

dτ
= 0,

V ϕ =
dϕ

dτ
= 0,

and there is no difference between a timelike and a null geodesic. From 5.11 we can then

immediately evaluate the proper and coordinate time required to reach the singularity as

τ = −
∫ 0

rτ=0

dr√
f(r)

(
E2

h(r)
+ ϵ
) ∼ −

∫ 0

rτ=0

√
h2
f−2

r2dr

E
=

√
h2
f−2

r3τ=0

3E
,

t = −
∫ 0

rt=0

E dr

h(r)

√
f(r)

(
E2

h(r)
+ ϵ
) ∼ −

∫ 0

rt=0

dr√
f−2h2

=
rt=0√
f−2h2

,

(5.12)

which are both finite. It is now possible also to solve the differential equation (5.8) for

the deviation vector Zµ of a congruence of geodesics both in the timelike and in the

null cases. The null congruence follows the same equation as in (5.10), with different

geodesics keeping a constant distance in the time and radial direction and converging on

the angular directions for geometrical aspects. The timelike congruence instead has to

satisfy the equation

dτ

dr

d

dτ


Zt(r)

Zr(r)

Zθ(r)

Zϕ(r)

 =
d

dr


Zt(r)

Zr(r)

Zθ(r)

Zϕ(r)

 ∼


1
r

1√
h2f−2r

0 0

−
√
h2f−2

r
−1
r

0 0

0 0 1
r

0

0 0 0 1
r



Zt(r)

Zr(r)

Zθ(r)

Zϕ(r)

 , (5.13)

which is solved by

Zµ =



Zt(r) ∼ c1 + c2 log(r),

Zr(r) ∼ −
√
h2f−2 (c1 + c2 log(r)) ,

Zθ(r) ∼ cθ r,

Zϕ(r) ∼ cϕ r.

(5.14)

While on the angular directions geodesics converge, as usual simply for geometrical rea-

sons, the behavior in the time and radial component is quite peculiar, with different

points in the geodesics being separated by an infinite amount of time and an infinite

radial distance. In other words, an object falling into an attractive naked singularity will

undergo an extreme spaghettification process. While, at least for solutions with positive

mass, geodesics can always reach the singularity, what has to be taken with care is how
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geodesics can leave the singularity. While the proper and coordinate time required to

reach a specific (small) radius r̄ is simply

τ ∼

√
h2
f−2

r̄3

3E
, t ∼ r̄√

f−2h2
, (5.15)

as can be seen from (5.12), what is relevant is the time component of the vector V µ in

(5.11). From this component is indeed possible to extract the redshift of a photon emitted

at radius r and measured at infinity as

z =

√
h(r∞)

h(r)
=

1√
h(r)

∼ 1√
h2r

, (5.16)

which clearly diverges as r → 0. As we approach the singularity, the energy required to

leave it gets larger and larger, and it becomes infinite precisely at the singularity. Exactly

the opposite of what happens for repulsive naked singularities, we can conclude that the

singularity cannot communicate with the surrounding spacetime, but all the infalling

geodesics can experience the nature of the singularity.

5.3 Wormholes

A large area of the phase diagram is populated by type III solutions for which the radial

component of the metric diverges, while the time component is finite and different from

zero. It is common practice to interpret this behavior as the presence of a wormhole so-

lution [57, 58, 59, 60] and, as already discussed in Subsection 3.2, we believe that this

is the case also in quadratic gravity. From now on, we will refer to these solutions as

non-symmetric wormholes or using the contracted forms, no-sy wormholes or no-sy WHs.

This type of solution seems to be favored by a positive mass and either a repulsive contri-

bution of the massive scalar field or an attractive contribution of the massive tensor field.

They are also present in the case of a repulsive negative mass, but in this case a very at-

tractive massive tensor contribution and a very repulsive massive scalar contribution are

required. In other words, type III solutions are favored by the competing contributions

of the tensors and scalar fields.

Due to the numerical expenses of implementing the shooting method for wormhole so-

lutions, and for the sake of simplicity while presenting the results, we will specify the

discussion on this type of solution to the case of the Einstein-Weyl theory. Thanks to

this numerical method is indeed possible to confirm that type III solutions of the phase

diagram in Figure 7 truly belong to the (1, 0)2r0 family, as the shooting method imple-

mented as stated in the paragraph 3.4.1 converges in all and only in the area populated by
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wormhole solutions. Moreover, is it possible to show the relations between the asymptotic

parameters and the property close to the throat; in Figure 26 we then show the relation

between the throat radius rT and the parameter h0, which can be linked to the redshift

of a photon emitted at such distance and measured at infinity by z (rT ) = 1/
√
h0, with

the location of the solutions in the phase diagram. It is manifest from the left panel of

Figure 26 that the throat radius increases with an increasing mass; and in particular, as

the Yukawa charge goes to zero, the throat radius approaches the mass-radius relation of

the event horizon of the Schwarzschild metric rH = 2M . We note that the throat radius

also increases as the Yukawa charge decreases, and then in the large mass limit where

no-sy wormholes are present only for negative values of S−
2 , the throat is always larger

than the event horizon of a Schwarzschild black hole with the same mass. It is also im-

portant to note that as the gravitational parameters of a wormhole get closer to the ones

of a black hole, that is, in the phase diagram we get closer to either the Schwarzschild

or non-Schwarzschild black hole lines, the parameter h0 gets closer to zero, and then the

redshift of a photon emitted at the throat increases, and diverges in the limit of black

holes. At the physical level, this means that the topological sphere defined by rT becomes

an infinite redshift surface in this limit or, in other words, it becomes indistinguishable

from an event horizon. For large masses then, if the Yukawa charge is sufficiently small,

no-sy wormholes are optimal black hole mimickers.

Figure 26: Trend of the two main throat parameters in the phase diagram of Einstein-Weyl gravity. In

function of the gravitational parameters M and S−
2 we show the throat radius rT in the left panel, and

the redshift parameter h0 in the right panel.

As for single solutions, in Figure 27 we present an example of a non-symmetric wormhole

spacetime, both in function of the r coordinate and of the ρ coordinate defined in (3.33);

in particular in function of this latter coordinate, the functions h(ρ) and f(ρ), as well as

gρρ(ρ) are smoothly matched from both the patches in ρ = 0. The time component of

the metric in this coordinate frame h(ρ) is monotonic, meaning that an observer would
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feel a gravitational force always in the direction of decreasing ρ. This corresponds to an

attractive central force in the asymptotically flat patch and a repulsive central force in the

second patch, considering as attractive or repulsive whether it attracts objects towards

small or large values of the r coordinate, respectively.

Figure 27: Metric of a no-sy WH solution with M = 0.5, S−
2 = −0.3 and S−

0 = 0: in the panels on

the left the metric is in function of the r-coordinate, while in the panels on the right is in function of

the ρ-coordinate; solid and dashed lines indicate whether we are in the asymptotically flat or in the

asymptotically vanishing patch, respectively.

The wormhole nature is manifest in the geodesic dynamics around the throat. Indeed,

recalling the transformation (3.33), the radial component in (5.2) can be written in terms

of ρ as

dρ

dτ
= ±

√
f(r)

(r − rT )

( E2

h(r)
− L2

r2
+ ϵ
)
. (5.17)

If we consider the specific form of f(r) around the throat (3.30), equation (5.17) can be

integrated, obtaining a smooth geodesic that goes from positive to negative ρ. On the

contrary, it is not possible to build a differentiable geodesic that goes from r > rT to

r < rT with a metric as (3.32), confirming once again the interpretation of the (1, 0)2r0 as

a wormhole solution family. It is trivial to see that geodesics will reach the throat in a
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finite amount of proper and coordinate time

τ = −
∫ rT

rτ=0

dr√
f(r)

(
E2

h(r)
− L2

r2
+ ϵ
) ∼ −

∫ rT

rτ=0

dr√
f1(r − rT )

(
E2

h0
− L2

r2
T
+ ϵ
) =

=
2
(√

rτ=0 −
√
rT
)√

f1

(
E2

h0
− L2

r2
T
+ ϵ
) ,

t = −
∫ rT

rt=0

Edr

h(r)

√
f(r)

(
E2

h(r)
− L2

r2
+ ϵ
) ∼ −

∫ rT

rt=0

Edr

h1(r − rT )3/2
√
f1

(
E2

h0
− L2

r2
T
+ ϵ
) =

=
2E
(√

rt=0 −
√
rT
)

h1

√
f1rTrt=0

(
E2

h0
− L2

r2
T
+ ϵ
) .

(5.18)

From geodesics dynamics close to the throat, it is also possible to infer that a free-

falling object entering the wormhole throat from the asymptotically flat patch will always

proceed until it reaches the surface r → ∞ of the second patch. Taking into account

that the radical argument in (5.17) has to be positive, and considering the expansion

f(r) = f1(r− rT ) +O((r− rT )
3
2 ) and h(r) = h0 +O((r− rT )

1
2 ), for positive f1 and h0 we

get the condition
E2

h0
>
L2

r2T
− ϵ. (5.19)

However this means that once entered the second patch, dρ
dτ

cannot vanish, indeed we

have
E2

h(r)
>
E2

h0
>
L2

r2T
− ϵ >

L2

r2
− ϵ, (5.20)

since h(r) decreases in the asymptotically vanishing region. This means that a free-falling

object will inevitably reach ρ = −∞ since the gravitational force attracts it, and the an-

gular momentum conservation contributes in the same direction. This behavior implies

that the photon sphere (see e.g. [61]) of no-sy wormholes is always located in the asymp-

totically flat patch.

Finally, we move our analysis to the asymptotic surface ρ = −∞ in the second patch,

which, as can be seen from Figure 27, has both the time component of the metric gtt =

−h(r) and the radial component of the metric grr = 1/f(r) going to zero. A common

behavior for the metric in this limit emerged during the calculations, namely all the
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solutions considered satisfy with good accuracy the relation

d

dr

(
h′(r)

h(r)

)
=
h′′(r)

h(r)
−
(
h′(r)

h(r)

)2

→ − 2

r2
,

d

dr

(
f ′(r)

f(r)

)
=
f ′′(r)

f(r)
−
(
f ′(r)

f(r)

)2

→ 2

r2
,

(5.21)

at large distances in the second patch; this particular combination is shown in 28.

Figure 28: Details of the metric in the asymptotically vanishing region of a no-sy WH solution with

M = 0.5, S−
2 = −0.3 and S−

0 = 0.

This asymptotic behavior can be analytically integrated and results in the approximation

(3.41), which has been proven to be a solution of the first-order expansion of an asymp-

totically vanishing solution at large distances. We can then use this approximation of the

metric to infer some properties of the spacetime in this limit. At first, it is possible to

show that the asymptotic surface r → ∞, ρ→ −∞ is located at a finite proper distance

from the wormhole throat. Indeed, the proper radial distance is given by

r̃max =

∫ ∞

rT

dr√
f(r)

, (5.22)

and this integral converges with f(r) interpolated between (3.30) and (3.41) as

r̃max =

∫ ∞

rT

dr√
f(r)

∼ r̃asy +

∫ ∞

rasy

√
Cfre

−a
2
rdr = r̃asy +

2
√
Cf

a2
e−

a
2
rasy(2 + arasy), (5.23)

where rasy is a radius at which the metric is well approximated by (3.41) and r̃asy is its

proper distance from the throat. This means that even the proper volume of the entire

ρ < 0 region is finite, as given by

Vp = 4π

∫ ∞

rT

dr
r2√
f(r)

∼ Vasy +
8π
√
Cf

a4
e−

a
2
rasy(48+ 24arasy +6a2ar2asy + a3r3asy), (5.24)
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where Vasy is the proper volume closed inside the radius rasy. Moreover, the proper time

interval needed to fall into this surface is finite, as it goes as

τs =

∫ ∞

rτ=0

dr√
f(r)

(
E2

h(r)
− L2

r2
+ ϵ
) ∼ τasy +

2
√
ChCf

Ea3
e−arasy(2 + 2arasy + a2r2asy), (5.25)

where τasy is the proper time required to reach rasy. However, for a distant observer in

the asymptotically flat patch, a particle falls into the wormhole throat in a finite time

interval, but the time needed to reach the surface ρ → −∞ results divergent, as it is

given by

t =

∫ ∞

rt=0

Edr

h(r)

√
f(r)

(
E2

h(r)
− L2

r2
+ ϵ
) ∼

∫ ∞

rt=0

√
Cf
Ch

dr → ∞.
(5.26)

These peculiar properties are in agreement with the fact that the hypersurface defined

by r → ∞ is indeed singular, as seen by the behavior of the curvature invariants in (3.46)

which, however, as said in Subsection 3.3, leave the Ricci scalar and squared Weyl tensor

constant (3.47). We also note that, besides the singular nature of the curvature invariants,

the fact that a timelike geodesic reaches an infinite radius in a finite proper time is a

strong indication that the spacetime is geodesically incomplete. As it is clear that the

hypersurface at r → ∞ is a singular region, it is a new kind of singularity with unique

physical properties. To begin with, the causal structure of this spacetime is radically

different from the standard solutions of General Relativity. As shown in the conformal

diagram of Figure 29, we see that the causal structure of a no-sy WH is equivalent to

the one of a maximally extended Minkowski with a singularity at the “internal” J +
I and

J −
I . This is not surprising, considering that the t-r sector of a no-sy wormhole spacetime

is conformally equivalent to the Minkowski one after the coordinate transformation

ds2 = h(r)(−dt2 + dr∗2) + r2dΩ2, (5.27)

where the tortoise coordinate goes to zero at the throat. The relevant information man-

ifestly shown in Figure 29, however, is that the singularity is at the edges of the causal

structure. In other words, a distant observer can communicate with the singularity only

in an infinite amount of time. Furthermore, recalling the definition of the redshift of a

photon emitted at radius r and measured at infinity z(r) = 1√
h(r)

, we see that the singu-

larity is actually on an infinite redshift surface and, as for an event horizon, an infinite

amount of energy is required to leave it. The singularity is therefore naked only in its

infinite past section, and can be interpreted as the equivalent of a white hole singularity.

The problem of dealing with naked singularities in no-sy wormhole spacetimes is then
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Figure 29: Conformal diagram of a no-sy WH spacetime; the dotted lines indicate surfaces of constant

time and radius.

reduced to finding a collapse mechanism for generating such objects.

We now consider the behavior of a congruence of infalling geodesics with tangent vector

(5.2), where with infalling we mean that has a negative V r in the asymptotically flat

patch and a positive V r in the asymptotically vanishing one. The first thing we want to

highlight is that the expansion scalar

θ = hµνBµν (5.28)

does not go to a negative infinite value at the singularity, as it happens in the Schwarzschild

case, but it goes to a positive infinite value as in the limit of outgoing geodesics reaching

spatial infinity in asymptotically flat solutions. However, the peculiar feature here is that

the expansion scalar goes to infinity in a finite proper time. It is, in fact, possible to prove

that the expansion scalar at large radii satisfies

θ(τ) >
1

(τs − τ)α
, (5.29)

with 0 < α < 1 and τs being the proper time (or the affine parameter) at which the

geodesic reaches the singularity, and then that it diverges in the limit τ → τs. The

second thing we want to highlight is the behavior of the deviation vector Zµ. If we

restrict ourselves to radial geodesics, using the definition of proper time (5.25) and the

asymptotic expansion (3.41), we can solve the differential equations (5.8) close to the
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singular surface as

Zµ =



Zt(r) ∼ ct r,

Zr(r) ∼ cr r,

Zθ(r) ∼ cθ r,

Zϕ(r) ∼ cϕ r,

Zµ =



Zt(r) ∼ ct,

Zr(r) ∼ cr,

Zθ(r) ∼ cθ r,

Zϕ(r) ∼ cϕ r,

(5.30)

in the timelike and null cases, respectively. While null geodesics diverge only for geometri-

cal aspects, timelike geodesics experience extreme tidal forces in the radial and temporal

directions that actually diverge as they get closer to the singularity. The presence of such

disruption of timelike observers at a finite value of the proper time has a remarkable

resemblance with the Big Rip cosmological scenario, where the expansion of the universe

diverges in a finite amount of cosmological time. However, this Big Rip-like singularity is

localized inside a topological sphere of radius r = rT for an observer in the asymptotically

flat patch, and has an “origin” in the topological sphere of radius r = rT for an observer

in the asymptotically vanishing one.

With the information at our disposal, we can now have an insight into how observers

perceive no-sy wormholes:

- infalling observers coming from the asymptotic flat patch are attracted by the no-sy

wormhole just as by other compact objects, but after they have reached the radius

r = rT they start to feel a repulsive force, and tidal forces in all directions: they are

quickly pushed away to spatial infinity, and the tidal forces become so strong that

can break all the binding energies and completely disrupt the observer in a finite

amount of proper time, just like in the Big Rip cosmological scenario; however, in

principle observers can always turn on a rocket and escape their fate;

- distant observers in the asymptotically flat patch see an attractive object enclosed

inside the topological sphere of radius r = rT ; the object is smaller than its photon

sphere, and the object will absorb the light emitted outside this sphere; however,

particles can emit light from inside the object, but this emission is expected at

extremely low frequencies: first of all photons are exponentially redshifted, and the

temperature of a ball of gas is expected to decrease, as the volume increases as can

be seen from (5.30); moreover, distant observers will never see the disruption of the

infalling gas, that is instead perceived as “frozen” inside the object.

In conclusion, we can interpret no-sy WHs as black hole mimickers with a “singularity

by disruption” instead of a “singularity by compression” that, for this reason, is always

avoidable.
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5.4 Compact stars

We conclude our review of solutions of quadratic gravity with non-vacuum solutions

or, using a more astrophysical term, compact stars. This name is guaranteed to have a

physical sense by our choice of equations of state, which can be a simple, “scholastic”,

polytropic model [62]

p = k ρΓ, (5.31)

where in particular we used Γ = 2, 3, 4/3, 5/3 while studying the location of non-vacuum

solutions in the phase diagram and only the case Γ = 2 for the results shown in this

subsection, and a realistic SLy equation of state [63, 64] in its analytical representation

[65]

log10 p =
a1 + a2 log10 ρ+ a3 (log10 ρ)

3

exp [a5 (log10 ρ− a6)] + 1
+

a7 + a8 log10 ρ

exp [a9 (a10 − log10 ρ)] + 1
+

+
a11 + a12 log10 ρ

exp [a13 (a14 − log10 ρ)] + 1
+

a15 + a16 log10 ρ

exp [a17 (a17 − log10 ρ)] + 1
;

(5.32)

we have to note, however, that in the analytical representation of the SLy equation of

state the pressure and density are expressed respectively in dyn/cm2 and g/cm3, and the

ai are numerical parameters that can be found in [65]. The analytical representation (5.32)

is then consistent only in the range of energy densities of order [104 − 1016] g/cm3, and

it is clear that this sets a constraint on the scales of the solutions that can be described

using such an equation of state. The choice of an equation of state indeed, fixing the

energy scales of the fluid, renders necessary to make some clarifications on the units

used. In particular, in the general quadratic theory, we have that the dimensionful and

dimensionless energy densities relate as

ρdf ≃ ρdl
1090

α
g/cm3. (5.33)

Having the minimum dimensionless value fixed at 10−6 by the tolerance threshold of

the root-finding algorithm, we have to choose values of α not greater than 1080. We

believe that, having found most of the dimensionless values of the density in the range

[10−6 − 100], a value of α of order 1074 might be optimal. For the evaluation of (5.32), and

while showing the results, we will restore physical units fixing the length scale l2 = 1/m2

equal to the Sun Schwarzschild radius rs,⊙ = 2GM⊙, in a similar, yet different, fashion

to what has been done in [66]. We use the same units, i.e. the unit length equals to the

Sun Schwarzschild radius, also for the R + R2 and General Relativity results, in order

to have an explicit comparison with the R + CµνρσC
µνρσ and full quadratic cases. The

numerical value for the parameter α (or β) is then actually of order 1074, as required by

the SLy equation of state. This value exceeds the 1060 laboratory limit obtained for the
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Yukawa correction to the gravitational potential [67, 31]. These values are also against

“naturalness” principles, considering that they lead to minimal values of the masses m0

and m2, which would be of order O (10−9) eV , and an extreme amount of fine-tuning is

necessary. Nevertheless, we opted to use these units for two reasons:

- exaggerating the quantitative variations from General Relativity we are able to have

a better understanding of the qualitative differences between the different theories;

- most of the results that we will show in this section are sensitive only to the presence

of two Yukawa terms in the potential, regardless of their fundamental origin, and

then they could model different theories in which could be not necessary to have

extremely large dimensionless numbers.

At last, we specify that in this section we fixed the energy scale of the fluid in the case

of the polytropic equation of state by fixing k = 6.51185 · 10−17cm3/g.

To have a better understanding of the role of the two quadratic terms in the action, we

will investigate both the case in which a single Yukawa is present, that is, in Starobinski’s

R + R2 and Einstein-Weyl R + CµνρσCµνρσ models, and the full quadratic theory. We

believe that in this subsection can be instructive to study solutions with a ratio of the

masses ξ = m0/m2 different from unity in order to try to have an insight into the relative

weights of the two terms in the action. In figures 13 and 14 can be indeed seen that

non-vacuum solutions in the full quadratic theory and its reductions are qualitatively

different; at the physical level, this is understood as a coupling between the fluid and the

massive modes of the gravitational theory. We then believe that it is more relevant to

study the general theory, and use Starobinski’s and Einstein-Weyl models to have clear in

mind the different roles of the two quadratic terms, taking into account the problems of

using different masses ratios. Nonetheless, both from figures 13 and 14, and from Figure

30, we can try to extrapolate the relation between the Yukawa charges S−
2 and S−

0 and
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Figure 30: S−
2 and S−

0 relation with the radius varying ξ, and the reference R+CµνρσC
µνρσ and R+R2

solutions.
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compact stars. The scalar sector has somehow a predictable trend: it is always attractive,

and the associated charge S−
0 decreases as the value of ξ is lowered. Here we have to

remember that lower values of ξ mean that the R2 term is dominant with respect to

the CµνρσC
µνρσ term in the action (2.5), or, from a particle point of view, the range of

the massive scalar contribution to the gravitational interaction is larger than the massive

tensorial one. The tensor sector, on the contrary, can be both attractive and repulsive,

which, however, is something we have already seen for all the solutions considered. In

particular, for values of ξ > 1 the contribution is always repulsive and the precise value

has very little impact on the associated charge S−
2 , while for values ξ < 1 it rapidly

becomes attractive for most of the solutions. However, we have to remember that in

this case the range of the scalar contribution is larger than the tensor one, and then we

can associate the attractive behavior of the Weyl term to the presence of massive scalar

particles outside the effective volume where the majority of the repulsive particles are

present. As a final remark, we can differentiate the dependence of the solutions of the full

quadratic theory from ξ = m0/m2 in three classes:

• m0 > m2 the two Yukawa terms are competing, one being attractive and the other

repulsive, and the scalar charge is larger than the tensorial one;

• m0 ∼ m2 the two Yukawa terms are competing, one being attractive and the other

repulsive, and the scalar charge is of the same order as the tensorial one;

• m0 < m2 the two Yukawa terms are both attractive, and the scalar charge is smaller

than the tensorial one.

Nonetheless, we specify one more time that the only completely consistent case is the

one with m0 = m2, in which then the scalar sector is always attractive and the tensor is

always repulsive.

We move now to the analysis of explicit star structure, which we show in Figure 31 in

the case of General Relativity, Starobinski’s and Einstein-Weyl models, and in Figure

32 in the full quadratic theory. In particular, we opted to show the behavior of the

metric functions h(r) and f(r), the scalar curvature R and the pressure for three stars

with the same mass. From Figure 31 it seems that the presence of the massive scalar

results in a slight strengthening of gravity, with a deeper non-relativistic gravitational

potential ϕ(r) ∝ (h(r)− 1) and higher internal pressure. The massive spin-2 particle,

on the contrary, leads to a major softening of the gravitational interaction, with much

smaller internal pressure and non-relativistic gravitational potential. On the other hand,

including both terms results in a decrease in radial distortion and scalar curvature. If, in
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the Einstein-Weyl case, we could relate this effect to the decrease in the fluid pressure

and energy density, in the R + R2 case we have to connect this behavior with a specific

property of the theory.
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Figure 31: Structure of three M = M⊙ stars for GR, R+R2, and R+CµνρσC
µνρσ theories; the dashed

vertical lines in the top-right panel indicate the star surface in the R + R2 case. From left to right and

top to bottom are: pressure, Ricci scalar, temporal component of the metric and radial component of

the metric.

From Figure 32 we see that the full quadratic case is mainly affected by the presence of

the Weyl term, with a global softening of gravity, that is less pronounced as the value of

ξ is lowered. Here we have to remember that lower values of ξ mean that the R2 term is

dominant with respect to the CµνρσC
µνρσ term in the action (2.6), or, from a particle point

of view, the range of the massive scalar contribution to the gravitational interaction is

larger than the massive tensorial one. The impact of the R2 term on the scalar curvature

is also clearer, which is to increase the curvature outside the star and decrease it inside.

The R2 term also contributes to smooth even more the radial component of the metric,

decreasing the radial distortion. The behavior of the Ricci scalar is better understood by

looking at the trace of the equation of motion (2.10)

(6β□− 2γ)R =
1

2
T =⇒

(
1

ξ2
□− 2

)
R =

1

2
T, (5.34)

where on the right we made everything dimensionless and introduced the parameter ξ. For

higher values of ξ, the Ricci scalar gets closer to its form in General Relativity R ∝ −T ,
which is zero outside and large inside the star. For lower values of ξ, instead, we have

that the presence of the fluid has little effect on scalar curvature that gets closer to being

determined by □R = 0 and then, having imposed regularity in the origin and asymptotic
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flatness, flattens out and gets closer to zero. Having a deeper gravitational potential, the

flattening of the scalar curvature has to be driven by a more regular behavior of f(r), or

in other words, by a decrease in the radial distortion.
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Figure 32: Structure of three M = M⊙ stars with different values of ξ, and the reference R+CµνρσC
µνρσ

solution; the dashed vertical lines in the top-right panel indicate the star surfaces in the full quadratic

cases. From left to right and top to bottom are: pressure, Ricci scalar, temporal component of the metric

and radial component of the metric.

Having now a fluid sustaining our solution, it becomes crucial to understand in which

way the properties of the fluid affect the global properties of the compact star. In Figure

33 and 34 we show the asymptotic mass M relations with the star radius and central

pressure, for the restricted theories and for the full quadratic theory, respectively. In

Figure 33 the softening effect of the Weyl term is manifest, with the same pressure being

able to sustain greater stellar masses, and with the same mass being bounded in larger

volumes. We also note that this softening is quite impressive, with an increase in the

maximum mass of a factor greater than 1.5.
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Figure 33: Mass relations with radius and central pressure for GR, R+R2 and R+ CµνρσC
µνρσ.
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From both Figure 33 and 34, we see that the R2 term does not always lead to a strength-

ening of gravity, but there is a trend inversion for higher masses, where the scalar con-

tribution seems to weaken the gravitational interaction, resulting in an increase of the

maximum mass. From Figure 34, it also appears that there is a confirmation that the

full quadratic theory is mainly affected by the Weyl term, with the scalar mode slightly

modifying the parameters found in the R + CµνρσC
µνρσ theory.
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Figure 34: Mass relations with radius and central pressure varying ξ, and the reference R+CµνρσC
µνρσ

solutions.

Even if a complete formal description of such effects has yet to be found, we can still

associate these behaviors with the nature of the two massive modes. The Weyl term acts

through a particle with negative energy states, therefore it is sensible to expect a repulsive

contribution to gravity. The R2 term, instead, acts through a massive scalar that has a

more familiar role in gravity. In particular, we expect an attractive contribution to the

interaction, but also an increase in stability, considering that the scalar field is also dis-

tributed outside the star. It is then sensible to have a strengthening of the gravitational

interaction, but also a greater maximum mass.

In all the previous discussions we left unchanged the mass of one of the massive modes or,

in other words, the value of either α or β in the action (2.5). This approach is useful to

emphasize the relative effects of the R2 and Weyl terms, but does not explain the global

impact of the quadratic terms in detail. Here we want to give a flavor of the effects of the

free parameters; while we are conscious that differences in the internal energy densities

and pressures would have important consequences while using a realistic equation of state,

we indeed limit ourselves to present the impact of the free parameters only at a qualitative

level using the polytropic e.o.s. In Table 3 we show the variation of the maximum mass,

the radius and central pressure for stars with mass equal to their maximum in General

Relativity, similar to what has been done in [68].

The parameter α (or β for the R+R2 theory) is in units of the value α0 (or β0) for which

the intrinsic length scale is equal to the Sun Schwarzschild radius. We confirm once again
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Theory α/α0 or β/β0 ∆Mmax/M⊙ ∆Rmax/km ∆ pc,max/dyn cm
−2

R +R2

1/2 0.001 0.350 -0.969·1035

1 0.005 0.539 -0.544·1035

2 0.009 0.665 0.314·1035

5 0.013 0.770 2.897·1035

10 0.015 0.816 7.218·1035

R + CµνρσC
µνρσ

1/2 0.472 3.733 -1.502·1035

1 0.786 5.112 -1.505·1035

2 1.256 6.915 -1.512·1035

5 2.225 10.177 -1.524·1035

10 3.341 13.585 -1.531·1035

Full theory, ξ = 0.5

1/2 0.477 3.489 -1.488·1035

1 0.791 4.549 -1.481·1035

2 1.258 5.849 -1.480·1035

5 2.209 8.004 -1.484·1035

10 3.292 10.030 -1.490·1035

Full theory, ξ = 1.0

1/2 0.472 3.615 -1.496·1035

1 0.790 4.808 -1.495·1035

2 1.267 6.261 -1.496·1035

5 2.243 8.644 -1.501·1035

10 3.357 10.853 -1.506·1035

Full theory, ξ = 1.5

1/2 0.474 3.668 -1.499·1035

1 0.787 4.936 -1.450·1035

2 1.264 6.512 -1.504·1035

5 2.247 9.140 -1.511·1035

10 3.374 11.608 -1.517·1035

Table 3: Impact of the free parameters on the solutions; the parameters are taken in units of the length

scales discussed in subsection, ∆Mmax is the difference in the maximum mass of the stars, ∆Rmax and

∆ pc,max are the differences of the radius and central pressure for stars with mass equal to the maximum

of General Relativity.

that the Weyl term has an impressive impact on the solutions, with both masses and

radii increasing significantly as the value of α is increased; the R2 term, instead, only

slightly modifies the case of General Relativity and the Einstein-Weyl solutions. We also

have a confirmation of the softening effect of the Weyl term, having a decrease in the

central pressure, and of the trend inversion of the strengthening effect of the R2 term

close to the maximum mass. We note, however, that the significant differences in the
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internal pressures for different values of β might be much more relevant while considering

a realistic equation of state. In conclusion, the variation of the free parameters of the

theory does not change the behavior of the solutions of quadratic gravity but, as could

be expected, has an impact only on the scales of the deviations from General Relativity.

5.5 Black holes in scale-invariant gravity

Having a more complex theory, we believe that the first step that can be done to un-

derstand the solutions of scale-invariant gravity is to analyze the behavior of the known,

analytical solutions of General Relativity whenever they are considered as solutions of

this theory. In this subsection we will not indulge in the properties of these solutions

because they are common knowledge, having exactly the same geometrical structure as

the solutions of General Relativity. The relevant discrepancies will be given by these

solutions’ dynamical and thermodynamical aspects, which we postpone to the following

sections. Considering then the ansatz for the metric

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ2, (5.35)

the known analytical solutions are the Schwarzschild metric

ϕ =0,

R =0,

f(r) = 1− 2M

r
,

(5.36)

where M is a free length parameter; there is also a Schwarzschild-anti-de Sitter solution

ϕ =0,

R = − 4|Λ|,

f(r) = 1− 2M

r
+

|Λ|
3
r2,

(5.37)

where Λ is a free negative cosmological constant, and we used its modulus to underline

this fact; finally, there are two distinct Schwarzschild-de Sitter solutions

ϕ =0,

R =4Λu,

f(r) = 1− 2Mu

r
− Λu

3
r2,

(5.38)

and

ϕ = ±
√

8ξΛs
λ

,

R =4Λs,

f(r) = 1− 2Ms

r
− Λs

3
r2,

(5.39)
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where Λu, Λs,Mu andMs are free parameters, and the cosmological constants are positive.

We can clearly also find (anti-)de Sitter solutions, simply requiring the M parameters to

be zero; then there will be a single anti-de Sitter spacetime and two de Sitter spacetimes,

of which one has a zero scalar field and the other a non-zero scalar field. If we look at the

theory in the Einstein frame, not all these solutions have a counterpart: the Schwarzschild

and Schwarzschild-anti-de Sitter solutions would require an ill-defined conformal trans-

formation g̃µν = u(x)gµν with a non-positive u(x), which however is not a conformal

map. In the Einstein frame the only solutions with constant curvature and scalar field

are indeed two Schwarzschild-de Sitter solutions, namely

ρ = ρ0,

ζ =0,

Λu =
M2

SI

16β
,

f(r) = 1− 2Mu

r
− Λu

3
r2,

(5.40)

and

ρ = ρ0,

ζ =
√
6MSIarcsinh

(√
ξ

12Ω

)
,

Λs =
M2

SI

16β

(
1− ξ2

Ω

)
,

f(r) = 1− 2Ms

r
− Λs

3
r2,

(5.41)

where here only ρ0,Mu andMs are free parameters. Scale invariance, however, is recovered

if we remember that the effective Planck mass MSI is a redundant parameter, and it is

not fixed by any experiment. To fix a convention for the next sections, we will refer to

the horizon of Schwarzschild solutions as

rb = 2M, (5.42)

and to the horizon of Schwarzschild-anti-de Sitter as

rb s.t. rb − 2M +
|Λ|
3
r3b = 0. (5.43)

For the Schwarzschild-de Sitter solution, instead, we remember that whenever the pa-

rameters satisfy the relation 9M2Λ < 1, the function f(r) has three real roots given
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by

rb =
2√
Λ
cos

(
π + η

3

)
, (5.44)

rc =
2√
Λ
cos

(
π − η

3

)
, (5.45)

r0 = − 2√
Λ
cos
(η
3

)
, (5.46)

where cos η = 3M
√
Λ. The first two are positive and represent the black hole and cosmo-

logical horizons, respectively, while the third will not be considered as it is in the region

r < 0. The main goal in our study of solutions in scale-invariant gravity will be looking

for a transition between the two different Schwarzschild-de Sitter solutions. This is moti-

vated by the results in a cosmological setting, which we will shortly present, and will be

carried out both at a purely classical and dynamical level in 6.3 and at a semiclassical

level in 7.3.

5.5.1 Quadratic scale-invariant cosmology

A transition between two cosmological de Sitter spacetimes is known to happen in scale-

invariant gravity, as shown in [27, 28] in the simplified theory (2.56). By imposing the

flat Friedmann-Lemâıtre-Robertson-Walker metric

ds2 = −dt2 + a(t)2δijdx
idxj (5.47)

in the equations of motion, is indeed possible to rewrite the equations of motion (2.57)

as two second-order equations in the scalar field ϕ and the Hubble parameter H = ȧ/a,

namely

ϕ̈+ 3Hϕ̇− 12ξϕḢ − ϕ(24ξH2 − λϕ2) = 0,

36β
(
2HḦ − Ḣ2 + 6H2Ḣ

)
− 1

2
ϕ̇2 + 12ξϕϕ̇H +

ϕ2

4
(24ξH2 − λϕ2) = 0,

(5.48)

where the (˙) indicates a derivative with respect to the cosmological time coordinate t.

Despite the apparent complicate form, these equations can be reduced to four first-order

equations and studied with the means of dynamical system analysis. The result is that

the system has two fixed points. The first, at

Hu =

√
Λu
3
, ϕu = 0, (5.49)

where Λu is an arbitrary cosmological constant, while the second, at

Hs =

√
Λs
3
, ϕs =

√
8ξΛs
λ

, (5.50)
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where Λs is still arbitrary. A linear analysis of the two fixed points shows that the first

one (5.49) is unstable, and the second one (5.50) is stable. Numerical integration not only

confirms the stability and instability of the two points but shows explicitly that there is

a transition between the unstable and the stable points, which we show in Figure 35.

Figure 35: Cosmological evolution of the Hubble parameter H(t), on the left, and the scalar field ϕ(t)2,

on the right, in terms of the cosmological time coordinate.

It turns out that the evolution from the unstable to the stable point yields an inflationary

phase, thoroughly studied in [28]. In particular, we can use (2.55) to relate the two

cosmological constants of the two possible de Sitter solutions with zero and non-zero

scalar field:

Λu =

(
1 +

ξ (1 + 12ξ)

12βλ

)
Λs. (5.51)

The interesting feature is that, at the stable fixed point, the scalar field has a non-trivial

value and, as a result, a mass term is spontaneously generated and the scale invariance is

spontaneously broken. Together with looking for a similar transition in the case of static

and spherically symmetric configurations, one of our goals will be trying to understand

whether the presence of black holes will increase the lifetime of the meta-stable phase,

and then of inflation, or if it will speed up its decay.
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6 Quasi-normal modes and stability of the solutions

The stability of solutions against linear perturbations is one of the most important prop-

erties to investigate. An unstable solution in general will be in a time-evolving state and,

if the time scales of this evolution are much shorter than the ones generally present in As-

trophysics, the probability of detecting it could be effectively zero. The phase diagram of

solutions of quadratic gravity and the knowledge of their global properties are then only

the starting point for the analysis of these solutions in a physical context. In this section,

we study the evolution of linear perturbations of quadratic gravity and scale-invariant

gravity solutions, with a special focus on black hole solutions.

This section is divided in three parts:

- in the first subsection we present the general procedure used to integrate the equa-

tions governing the dynamics of linear perturbations, and we will discuss how it can

be used both for assessing the stability of a solution and to recover the frequency

of quasi-normal modes, that are the decaying oscillations of perturbations at large

distances;

- in the second subsection we apply this procedure to the solutions of Einstein-Weyl

gravity: after presenting the equation of motion of tensor perturbation derived in

[69], we first show that both Schwarzschild and non-Schwarzschild black holes in

quadratic gravity need a minimum radius to be stable, which is precisely the radius

at which the two families of solutions crosses each other; we also make a first

exploratory study of the stability of exotic solutions, finding that all wormhole

solutions are unstable, attractive naked singularities are stable, and repulsive naked

singularities are stable only if the Yukawa charge is small;

- in the third subsection we study the evolution of perturbations of the two Schwarz-

schild-de Sitter solutions present in scale-invariant gravity: we show using both

analytical and numerical methods that Schwarzschild-de Sitter black holes with

zero scalar field are always unstable, while Schwarzschild-de Sitter solutions with a

non-zero value of the scalar field are always stable, in agreement with the results of

the theory in a cosmological setting [27].

The results on the stability of solutions of quadratic gravity presented in Subsection 6.2

are not part of any publication yet, while the results on the stability and instability of

Schwarzschild-de Sitter black holes in scale-invariant gravity presented in Subsection 7.3,

which we specify here that have been found by Simon Boudet, have been published in

[35].
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6.1 Numerical methods for quasi-normal modes

As just anticipated, in this subsection we briefly describe the method used to study

perturbations in quadratic gravity and scale-invariant gravity; however, we will not refer

to a specific form of the equations used, and the method presented can be applied to

quadratic gravity as well as General Relativity or scale-invariant gravity.

Linear perturbations are defined considering the ansatz for the metric

gµν = ḡµν + ϵ hµν , (6.1)

where ḡµν is the background metric and hµν is the perturbation, and the equations of

motion are expanded at first order in ϵ

Gµν = Ḡµν + ϵHµν +O
(
ϵ2
)
= ϵHµν +O

(
ϵ2
)
, (6.2)

where the last equality is given by the fact that the background metric satisfies the back-

ground equations of motion. The impressive result of the Regge-Wheeler-Zerilli equation

[70, 71] was to reduce the tensor equation (6.2), in the case of a static and spherically

symmetric background, to a scalar equation for a function φ(r, t) in the form(
d2

dt2
− d2

dr∗2

)
φ(r, t) + V (r)φ(r, t) = 0, (6.3)

where V (r) is a potential determined by the theory in exam and the background metric,

and r∗ is the tortoise coordinate, defined as usual as

r∗ =

∫
dr√

f(r)h(r)
. (6.4)

Many methods to study the stability of the solutions consider the ansatz for the function

φ(r, t) = ψ(r)ei ω t (see for example [72]), to rewrite equation (6.3) as

d2

dr∗2
ψ(r)−

(
ω2 + V (r)

)
ψ(r) = 0, (6.5)

and to look for a positive or negative value of the imaginary part of ω and assess whether

the solution is stable or unstable. Our procedure instead directly tackles equation (6.3)

using the light-cone coordinates v = t + r∗ and u = t − r∗, in which the equation takes

the form

4
d2

dv du
φ(u, v) + V (r)φ(u, v) = 0 (6.6)

which can be integrated numerically. As described in [72, 73, 74, 75, 35], the standard

technique is to discretize the coordinates u, v on a grid with step h and dimension nmax×
nmax and performing the integration as

φ(N) = φ(W ) + φ(E)− φ(S) +
h2

8
V (S)(φ(W ) + φ(E)) +O

(
h4
)

(6.7)

101



6.1 Numerical methods for qua... 6 QUASI-NORMAL MODES AND STABILI...

where the variable is evaluated in the points S = (u, v), W = (u + h, v), E = (u + h, v)

and N = (u + h, v + h), as shown in Figure 36. With suitable initial conditions, the

integration can be carried on row after row, and the evolution of perturbation is known

both in space and in time. There are indeed two fundamental pieces of information that

can be extracted with this procedure:

- setting v − u = 2 r∗∞, with r∗∞ large and fixed, gives us the time evolution of

perturbation at large distances, of which the frequencies are the quasi-normal modes

of the solution;

- setting v + u = 2 t∞, with t∞ large and fixed, gives us the radial displacement of

perturbations at large times, and the presence of large values of the perturbations

at any point is the smoking-gun of the instability of the solution.

Figure 36: Integration grid for the numerical evolution of the perturbation on light-cone coordinates; the

black dots indicate the rhomboid of vertices S, W, E and N used for the integration.

For this integration there are two main points of caution: the first one is numerical, and it

is due to the fact that the theory predicts a potential with a dependence from the radial

coordinate r, but the integration is done using the tortoise coordinate r∗, the second is

more fundamental and it is the choice of the initial conditions. Regarding the first point,

the inversion of the tortoise coordinate has been done simply by looking at the radius

r̄(r∗) which solves the equation∫
dr√

f(r)h(r)
− r∗

∣∣∣∣∣
r=r̄(r∗)

= 0. (6.8)
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While it can be numerically expensive to invert the tortoise coordinate at each point of

the grid, having a potential that depends only on the radius allows us to evaluate the

potential at the beginning of the integration for all the possible values of r∗ which, being

on a diagonal of the grid, will be nmax instead of nmax × nmax, and consider its value at

the point S as

V (S) = V (v, u) = V (v − u) = V (r∗) = V (r). (6.9)

Regarding the second point of caution, the initial conditions have to be set differently

depending on the solutions considered. On the u = 0 axis the standard approach is to

consider an initial Gaussian perturbation

φ(v, 0) = e−
(v−v0)

2

2σ , (6.10)

which represents an initial “impulse” sent into the spacetime, of which, however, the

specific form will not be relevant for the late time evolution. For black holes the second

standard initial condition is to set to zero the perturbation on the v = 0 axis (see as an

example [76]). With this choice of the initial conditions, it is easy to see that the grid can

be filled integrating row by row. The same initial condition can be used for wormholes

but not for naked singularities, for which the tortoise coordinate is not defined in the

range (−∞,∞) but in the range (0,∞). In this case we considered the initial conditions

φ(r∗ = 0) = 0, as done for example in [77]. While the condition for black holes means

setting to zero the perturbation close to the horizon, both the conditions for wormholes

and naked singularities imply that we are setting to zero the perturbation close to the

singularity. Even if it might be possible to have a non-zero perturbation at the singularity,

we will consider only this case as in the most conservative approach the singularity is

a point that does not belong to the spacetime, and then considering the perturbation

exactly at the singularity has no physical meaning. In the subsequent discussion the

perturbation is integrated using a modification of the previous Fortran codes, where the

inversion of the tortoise coordinate is made using the N.A.G. subroutine C05ADF with

the same precision of the integrator. To test the code, we performed some integrations in

the case of General Relativity, in which the potential in (6.6) has to be taken to be the

Regge-Wheeler one

V (r) = h(r)

(
l(l + 1)

r2
− 3f(r)

2r

(
h′(r)

h(r)
+
f ′(r)

f(r)

))
, (6.11)

and the metric is the Schwarzschild one, which is

h(r) = f(r) = 1− 2M

r
. (6.12)

We show in Figure 37 both the potential and the quasi-normal modes for a perturbation

of a Schwarzschild metric with horizon radius rH = 1 and multipole l = 2. This choice
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of multipole has been taken because it is the lowest multipole perturbation which cannot

be removed with a choice of gauge. Both the potential and the quasi-normal modes agree

with the standard results in General Relativity; in particular, we compared the potential

found using the shooting method with its analytical form and the power law tail of the

quasi-normal modes with the expected analytical one

ϕ(t, r∞) ∼ t−(2l+3). (6.13)

We believe then that we can use the code in quadratic gravity with sufficient trust in its

results.

Figure 37: Regge-Wheeler potential in terms of the tortoise coordinate and quasi-normal modes for a

Schwarzschild black hole with horizon radius rH = 1 for a perturbation of multipole l = 2; in dashed

black there are the numerical results, and in solid red the analytical ones.

6.2 Quasi-normal modes of solutions of quadratic gravity

The main obstacle that prevented the study of perturbations in quadratic gravity was the

difficulty in finding an equation in the form of (6.3) for tensor perturbation in quadratic

gravity. Nonetheless, such an equation was found at the end of 2022 by A. Held and J.

Zang in [69]. The first step in the derivation is rewriting the action (2.5) in the Einstein

frame, following [40], as

IStelle =
∫

d4x
√
−gγ

[
R +

3

2
ψ□ψ − 3

2
m2

0e
−2ψ

(
eψ − 1

)2
+ 2fµνGµν +m2

2

(
fµνfµν − f 2

)]
,

(6.14)

where ψ is a scalar auxiliary field associated with the massive scalar mode and fµν is an

auxiliary tensor field associated with the massive tensor mode. If we consider now the

perturbation

gµν = ḡµν + δgµν ,

ψ = ψ̄ + δψ,

fµν = f̄µν + δfµν ,

(6.15)
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and impose the condition of Ricci scalar flat background solutions, which set R̄ = ψ̄ =

f̄ = 0, the linear equations of motion are

□̄δψ +m2
0δψ = 0,

δGµν +m2
2 (δfµν − ḡµνδf) = 0,

□̄δfµν − ∇̄µ∇̄νδf + 2R̄µρνσδf
ρσ + 2f̄ρσδRµρνσ+

−m2
2

(
δfµν − ḡµν f̄

ρσδfρσ −
(
ḡµν + f̄µν

)
δf − 1

2
f̄ρσf̄ρσδgµν

)
+ = 0, ,

(6.16)

where δGµν and δRµρνσ are the first order variations of the Einstein and Riemann tensor

with respect to the metric and ∇̄µ and □̄ are the covariant derivative and the d’Alembert

operator built with respect to the background metric. The massive scalar mode is com-

pletely decoupled, and we will focus solely on the tensor perturbations. We now consider

the ansatz for the perturbations

δgµν =


−h(r)H0(r) H1(r) 0 0

H1(r)
H2(r)
f(r)

0 0

0 0 r2K(r) 0

0 0 0 r2 sin2 θK(r)

Ylm(θ, ϕ)e
−iωt,

δfµν =


−h(r)F0(r) F1(r) 0 0

F1(r)
F2(r)
f(r)

0 0

0 0 r2M(r) 0

0 0 0 r2 sin2 θM(r)

Ylm(θ, ϕ)e
−iωt.

(6.17)

As discussed in [69], while monopole and dipole perturbations are pure gauge for massless

tensor perturbations, this is not the case for massive ones; taking l = m = 0, using the

constraints f = 0 and ∇µf
µν = 0, choosing a gauge such that K(r) = H0(r) = 0 and

using the two lowest order metric perturbation equations to remove H1(r) and H2(r)

leaves us with the two equations and the constraint

ϕ′′(r) +

(
4

r
+

3h′(r)

2h(r)
− f ′(r)

2f(r)

)
ϕ′(r) +

ω2ϕ(r)

h(r)f(r)
+ Vϕϕ(r)ϕ(r) + Vϕχ(r)χ =0,

χ′′(r) +

(
2

r
+

3h′(r)

2h(r)
+

3f ′(r)

2f(r)

)
χ′(r) +

ω2χ(r)

h(r)f(r)
+ Vχχ(r)χ(r) + Vχϕ(r)ϕ =0,

ϕ′(r) + i
2f(r)

r
χ′(r) + Vϕ(r)ϕ(r) + Vχ(r)χ(r) = 0,

(6.18)

where ϕ(r) = −2ωM(r), χ(r) = F1(r) and the various V ’s are potentials independent of

ω; for more details we refer to the original article [69]. Finally, with the ansatz

ϕ(r) = a(r)ψ̃(r) + b(r)ψ̃′(r),

χ(r) = c(r)ψ̃(r) + d(r)ψ̃′(r),
(6.19)
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where a(r), b(r) and c(r) are fixed by the equations and b(r) = 0 for simplicity, and the

new variable

φ(r, t) = rψ̃(r)eiωt, (6.20)

is it possible to write a Zerilli-like equation for the tensor mode of the metric with the

potential

V (r) =
h(r)f ′(r) + h′(r)f(r)

2r
+m2

2h(r)+

+
24m2

2f(r)h(r)
2 (rf ′(r) + 2f(r)) (2h(r)− rh′(r))

r ((h(r)f ′(r) + f(r)h′(r)) (h(r) (3rf ′(r)− 4) + 3rf(r)h′(r)) + 4m2
2r(1− 3f(r))h(r)2)

+

+
288m4

2f(r)
3h(r)3 (rh′(r)− 2h(r))2

((h(r)f ′(r) + f(r)h′(r)) (h(r) (3rf ′(r)− 4) + 3rf(r)h′(r)) + 4m2
2r(1− 3f(r))h(r)2)

2 ,

(6.21)

where the second term indicates that the potential does not go to zero at large radii, as

in General Relativity, but goes to the limiting value V (r) → m2
2 as expected by a massive

mode. Perturbations have been studied by analyzing the imaginary part of ω in (6.5)

in the case of Schwarzschild black holes [78] and non-Schwarzschild black holes [69]; in

both cases, it has been shown that black holes are stable only up to a minimum radius

rmin = 0.876 in numerical units, which is exactly the radius where the two families of

solutions cross each other. In this subsection we will confirm these results by integrating

the wave-like equation (6.6), and show the first step done to understand all the regions

of the phase diagram with stable or unstable solutions.

6.2.1 Quasi-normal modes of black holes in quadratic gravity

As a first step in studying the stability of black holes, it is necessary to run the shooting

code for black holes in order to define the metric functions h(r) and f(r) and determine

the tortoise coordinate in function of the radial coordinate. Once the background metric

is defined, we can invert the tortoise coordinate and find the potential (6.21) in function

of r∗. To explore late times with the method described in Subsection 6.1, however, it is

necessary to have the potential defined for very small and very large values of the tortoise

coordinate. For this reason, the metric has to be evaluated outside the range [rO, r∞] =

[10−3, 18] used for the shooting method; in particular, we considered the different intervals

r < r≪1, h(r), f(r) not defined, V (r) = 0,

r≪1 <r < rO, h(r), f(r) from the series expansion in (3.28),

rO <r < r∞, h(r), f(r) from the shooting method,

r > r∞, h(r), f(r) from the weak field expansion (3.5),
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where r≪1 is the radius at which the potential becomes smaller than the numerical thresh-

old of sensitivity. In Figure 38 we show the potential for two Schwarzschild black holes

in the top panels, where the red on the left has rH = 1 and the blue on the right has

rH = 0.8, and two non-Schwarzschild black holes in the bottom panels, where the red on

the right has rH = 1, M = 0.276, S−
2 = −0.294 and the blue on the right has rH = 0.8,

M = 0.568, S−
2 = 0.082.

Figure 38: Potential in function of the tortoise coordinate of two Schwarzschild black holes, in the top

panels in dashed lines, and two Schwarzschild black holes, in the bottom panels in solid lines; in the left

panels, in red, the horizon radius is rH = 1 and in the right panels, in blue, it is rH = 0.8.

At the qualitative level the two solutions with smaller masses, that is, the Schwarzschild

with radius rH = 0.8 and the non-Schwarzschild with radius rH = 1, have some simi-

larities, with a deeper but narrower potential well in the small and negative r∗ region

and a small potential barrier in the small and positive r∗ region. Nonetheless, the two

larger black holes on the left result to be stable, while the two smaller black holes on the

right are unstable. To see that we integrate equation (6.6) with the methods described in

Subsection 6.1 with the parameters of the initial condition (6.10) set to

σ = 1, v0 = 10, h = 0.1, nmax = 8000, (6.22)

and find the results shown in figures 39, 40. The standard approach of assessing stability

by looking at the time evolution of perturbations at large distances, i.e. the quasi-normal

modes, is not the best way to tackle this problem in this context. If we look at Figure
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39, where we show the quasi-normal modes of the solutions with the potentials shown

in Figure 38, an instability is present only at very late times for the non-Schwarzschild

black hole with radius rH = 0.8, while all the other solutions seem to be stable.

Figure 39: Quasi-normal modes for the black holes of which the potentials are shown in Figure 38; the

radius at which we evaluated the time evolution is r∞ = 50, and we removed the time interval [200−600]

to show both the initial and final evolutions, and to have visible oscillations.

Figure 40: Radial displacement of the perturbations for the black holes of which the potentials are shown

in Figure 38; the time at which we evaluated the displacement is t∞ = 400.
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In Figure 40, we show the radial displacement of the perturbations of the same black holes

of the previous figures at time t = 400. It is clear that the perturbation is much larger in

the region close to the horizon rather than at large distances; in particular, it seems to

reach its maximum value close to r∗ = 0. The physical reason behind this behavior is that

we are looking at massive perturbation modes, which can have an effective range in which

they propagate efficiently. Eventually, at some point, the perturbation will also reach the

larger radii but, for solutions close to the transition point between stable and unstable

behaviors, it might be at extremely late times. To investigate the stability is then useful

to extract the time evolution of the perturbations at smaller radii; in Figure 41 we show

this at r∗ = 0 for both Schwarzschild (in the top panels) and non-Schwarzschild (in the

bottom panels) black holes close to the transition point rH = 0.876. To have a better

view of the imaginary part of the frequencies ω’s, we have also shown on the right the

moving average over a time interval of ∆t = 20.

Figure 41: Time evolution of perturbations at r∗ = 0 for black holes with horizon radius rH = 0.874

in blue, rH = 0.876 in green and rH = 0.878 in red; in the top panels there are Schwarzschild black

holes and in the bottom ones there are non-Schwarzschild black holes. In the right panels are shown the

moving average over an interval of ∆t = 20 of the perturbations shown in the left panels.

It is clear that both for Schwarzschild and non-Schwarzschild black holes, the radius

rH = 0.876 represents a transition point between stability and instability, and that in

both cases the smaller black holes are unstable and the larger ones are stable. It is

also clear that stable non-Schwarzschild black holes have more damped oscillations than

their Schwarzschild counterparts, and a much stronger instability in the case of unstable
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solutions. The resulting picture is then clear: the instability of black holes with horizon

radius rH < 0.876 is confirmed, and the only stable non-Schwarzschild black holes are

the Yukawa attractive ones. We recall here that, unfortunately, most of the Yukawa

attractive black holes have negative mass, and then they are not sensible candidates to

be astrophysical objects, unless an unknown mechanism to force them to have positive

mass is present.

6.2.2 Quasi-normal modes of exotic solutions in Einstein-Weyl gravity

We now move to a first, preliminary, analysis of the perturbations of exotic solutions, that

is, wormholes and naked singularities. Considering the complexity of the problem, we

decided to investigate only solutions of the Einstein-Weyl sector, for which the equation

of the perturbations is exactly the same as for black holes. While for black holes the

procedure described in Subsection 6.1 is standard by now, there is no complete consensus

on the procedure for solutions without a horizon. In particular, the point of caution is

how to deal with initial conditions whenever a singularity is present in the region where

the perturbation is evolving. Furthermore, in the case of naked singularities, the tortoise

coordinate is defined only in the interval [0,∞), and then to explore in detail the region

close to the singularity it is necessary to decrease the step-size of the grid h; this is not

the case for wormholes, for which it is sufficient to extend the size of the grid nmax to get

closer to the singularity. Regarding the first point, as anticipated in Subsection 6.1, we

will impose a zero perturbation exactly at the singularity because, with a conservative

approach, this point does not belong to the spacetime and considering a perturbation of

the metric in that point is then meaningless. Regarding the second point of caution, we

used the same grid used for black holes and, for this reason, we specify that the results

we will present have to be considered preliminary.

Wormholes. For wormhole solutions the tortoise coordinate has the same range of

black holes (−∞,∞), but in this case the surface defined by r∗ = −∞ is a singularity

and not a horizon. As in the case of black holes, to study later times it is necessary to

increase the grid size, and then we need to be able to explore a region much larger than

the one explored simply with the shooting method. In this case, the spacetime has been

divided into the following regions

asymptotically vanishing region:

r > r≫1, h(r), f(r) not defined, V (r) = 0,

rO <r < r≫1, h(r), f(r) from integration starting at rO,

rT <r < rO, h(r), f(r) from the series expansion (3.30),
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asymptotically flat region:

rT <r < rO, h(r), f(r) from the series expansion (3.30),

rO <r < r∞, h(r), f(r) from the shooting method,

r > r∞, h(r), f(r) from the weak field expansion (3.5),

where r≫1 is the radius at which the potential gets smaller than the numerical tolerance.

For the integration, we still considered a zero initial condition at v = 0 and a Gaussian

at u = 0, as in the case of black holes, and performed the integration exactly with

the same procedure. We have to note, however, that the code suffers much more from

numerical instabilities than the one used for black holes, and retrieving information is

more complicated. In Figure 42 we show the potentials for two wormholes: a Yukawa

repulsive one (that is, with positive S−
2 ) in blue on the left, and a Yukawa attractive one

(that is, with negative S−
2 ) in red on the right.

Figure 42: Potential in function of the tortoise coordinate for two wormhole solutions; the blue on the

left has M = 0.3 and S−
2 = 0.1 and the red on the right has M = 1 and S−

2 = −0.5.

The Yukawa attractive one has a potential well before the throat, which in this case

is at r∗T ∼ 1, while before reaching the throat of the Yukawa repulsive one, which is

at r∗T ∼ −1.3, we have to face both a small potential barrier and a deep and negative

potential well. Nonetheless, the main feature of both potentials is an extremely high

potential barrier just after the throat. Probably due to this barrier, the perturbations

increase exponentially in both cases, as can be seen both in the time evolution at radius

r∞ = 50 in Figure 43 and in the radial displacement at t∞ = 250 in Figure 44. While,

as previously said, the code is not completely numerically stable, and it has not been

possible yet to explore the phase diagram rigorously, all the wormhole solutions which

have been analyzed had the same unstable behavior as the two shown in these figures,

and then we are inclined to consider all wormhole solutions as unstable.

Finally, Figure 44 underlines that the instability is generated close to the throat, probably

either by the potential barrier or the potential wells.
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Figure 43: Quasi-normal modes for the wormholes of which the potentials are shown in Figure 42; the

radius at which we evaluated the time evolution is r∞ = 50 in the asymptotically flat patch.

Figure 44: Radial displacement of the perturbations for the wormholes of which the potentials are shown

in Figure 42; the time at which we evaluated the displacement is t∞ = 250.

In conclusion, this first exploratory analysis confirms that non-symmetric wormholes are

unstable, as generally found in alternative theories of gravity.

Naked singularities. To study naked singularities we have to slightly adapt the code

to the limited range of the tortoise coordinate. The most rigorous way of studying these

types of solutions would be to implement the shooting method between a large radius and

the origin, and adapt the step size of the grid to the different regions of the spacetime.

For this first exploratory scan, we integrated the equations of motion from large radii to

the origin and left a fixed step size. The spacetime is then divided simply as

rO <r < r∞, h(r), f(r) from integration starting at r∞,

r > r∞, h(r), f(r) from the weak field expansion (3.5).
(6.23)

While we cannot explore in great detail the area close to the singularity, we believe that

most of the information can still be extracted from this analysis. As initial conditions

we choose to set the perturbation to zero at the singularity. As said before, we made

this choice because, with a conservative approach, the singularity does not belong to the
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spacetime, and it is also confirmed by the results of General Relativity in the case of

Schwarzschild solutions with negative mass [79].

Figure 45: Potential in function of the tortoise coordinate for naked singularities; in the top panels there

are repulsive naked singularities, the green on the left has M = 0.6, S−
2 = 0.2 and the dashed black on

the right has M = 0.6, S−
2 = 0.2239, in the bottom panels there are attractive naked singularities, the

blue on the left has M = 0.6, S−
2 = 0.05 and the red on the right has M = 0.2, S−

2 = −0.2.

In Figure 45 we show the potentials of four different naked singularities with positive

mass: there are two repulsive naked singularities in the top panels with slightly different

positive Yukawa charges, and two attractive naked singularities in the bottom panels of

which the blue on the left has a positive Yukawa charge and the red on the right a negative

Yukawa charge. The main features are clearly an infinite potential barrier at the origin in

the case of repulsive naked singularities and a potential well at the origin in the case of

attractive naked singularities. In addition, the repulsive ones have a potential well before

the barrier, which gets deeper as the mass is increased and the Yukawa charge is decreased,

while the attractive naked singularity with a negative Yukawa charge, on the contrary,

presents a small potential barrier just before the potential well, which also decreases as

the Yukawa charge gets smaller in modulus. In figures 46 and 47 we show, as usual, the

time evolution and radial displacement of the perturbations, where it is clear why we had

shown two repulsive naked singularities with slightly different Yukawa charges: the one

with a larger value of S−
2 is indeed unstable, while the other is stable. Investigating other

solutions with mass M = 0.6 it is possible to show that all the solutions with S−
2 smaller
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than a certain value are stable, while all the ones with S−
2 larger are unstable.

Figure 46: Quasi-normal modes for the naked singularities of which the potentials are shown in Figure

45; the radius at which we evaluated the time evolution is r∞ = 50.

Figure 47: Radial displacement of the perturbations for the naked singularities of which the potentials

are shown in Figure 45; the time at which we evaluated the displacement is t∞ = 350.

From Figure 47 it is also clear that the instability is generated close to the singularity;

therefore, it is fundamental to investigate this region in greater detail. In particular, while
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attractive and repulsive naked singularities have a very qualitatively different nature, and

then it is sensible to expect them to have different stability properties, the difference

between stable and unstable repulsive naked singularities is quantitative, and therefore

has to be considered more carefully. In particular, if we look at Figure 48, the transition

between stable and unstable behavior is very sharp, with a slight change in the parameter

exciting a strong instability.

Figure 48: Transition between stable and unstable behavior of repulsive naked singularities; both have

M = 0.6, but the one in darker green has S−
2 = 0.2238 and the one in dashed black has S−

2 = 0.2239.

Finally, it is interesting to note that the attractive naked singularity with negative Yukawa

charge has some sort of “beat” pattern, with an oscillatory change in the intensity of the

oscillations, which is a very specific phenomenological signature of this type of solution.

Figure 49: Phase diagram of Einstein-Weyl gravity from which have been removed the unstable solutions.
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At last, we collected in Figure 49 the results of this subsection with a first attempt to

picture the phase diagram of stable solutions of Einstein-Weyl gravity. We considered

only the region with positive mass and removed the solutions which are unstable from

the analysis of perturbations: the resulting picture is that small mass stable solutions

have to be either attractive naked singularities or Yukawa attractive non-Schwarzschild

black holes while, in the large mass limit, we are forced to have either Schwarzschild

black holes or naked singularities, that is solutions with S−
2 ≥ 0. It is interesting to note

that the maximum value of S−
2 for which repulsive naked singularities are stable seems

to increase with the mass, but we remember that a quantitative discussion has to be

postponed to a more detailed analysis of the perturbations close to the singularity.

6.3 Quasi-normal modes of black holes in scale-invariant gravity

We now move from quadratic gravity to the scale-invariant theory presented in Subsec-

tion 2.2. As said in Subsection 5.5, having a more complex theory, we start from the

analysis of known analytical solutions of General Relativity when considered as solutions

of the scale-invariant theory. In this subsection, we study the stability against linear

perturbation of the two types of Schwarzschild-de Sitter solutions present in the theory.

However, we specify that this calculation has been done by Simon Boudet, but we believe

it is important to be inserted in this thesis for completeness. All the images (which also

have to be credited to Simon Boudet) and part of the discussion are taken from [35]; we

recall that having used different notations there could be some slight differences with the

formulas and plots of that paper.

To study the dynamical stability of the two Schwarzschild-de Sitter solutions, it is con-

venient to work in the Einstein frame. To simplify the discussion, we will not study the

most general scale-invariant gravity (2.41), but the reduction (2.56) where the tensor

perturbations are suppressed and where the Lagrangian density in the Einstein frame is

given by (2.61). The fields can be expanded to linear order as

gµν = ḡµν + hµν ,

ρ = ρ̄+ δρ,

ζ = ζ̄ + δζ,

(6.24)

where barred quantities, as usual, represent the background solution, which will be either

the Schwarzschild-de Sitter (5.40) or the Schwarzschild-de Sitter (5.40). At first order,
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the system (2.64) gives

M2
SIδGµν + U(ζ̄)hµν =0,

□̄δρ =0,(
□̄− d2U

dζ2
(ζ̄)

)
δζ =0,

(6.25)

where, as in quadratic gravity, δGµν is the first order variation of the Einstein tensor with

respect to the metric and □̄ denotes the d’Alambert operator built with the background

metric. We see that, at linear order, the three perturbations are decoupled. Moreover, since

U(ζ̄) =M2
SIΛ, where Λ denotes (5.40) or (5.40) indifferently, the first equation coincides

with the equation for the metric perturbation of General Relativity on a Schwarzschild-

de Sitter background with cosmological constant Λ. Hence, the dynamics of hµν is not

modified. The same happens for the equation for ρ in (6.25), which is nothing but the

usual Klein-Gordon equation on a Schwarzschild-de Sitter background. The mass term’s

presence modifies the dynamics of δζ in the third equation of (6.25). Therefore, in the

following, we will only focus on the dynamics of δζ since instabilities can only arise from

the latter, and then to the equation(
□̄− d2U

dζ2
(ζ̄)

)
δζ = 0. (6.26)

To proceed, one can exploit the spherical symmetry of the problem, adopting the following

harmonic expansion for the scalar perturbation:

δζ =
Z(r)

r
Ylm(θ, φ)e

−iωt, (6.27)

where Ylm are the standard spherical harmonics. Substituting into (6.26), one finds

d2Z

dr2∗
+
[
ω2 − Vζ(r)

]
Z = 0, (6.28)

where r∗ is the tortoise coordinate defined by

r∗ =

∫
dr

f(r)
=

∫
dr

1− 2M
r

− Λ
3
r2
, (6.29)

and, as usual, the argument of the potential must be considered as a function of r∗. The

effective potential featuring (6.28) can be written in terms of a parameter p̄ as

Vζ(r) = VGR(r)−
4Λ

3
p̄f(r), (6.30)

where VGR(r) represents the effective potential appearing in the case of General Relativity,

namely for a Klein-Gordon equation on a Schwarzschild-de Sitter background:

VGR(r) = f(r)

(
l(l + 1)

r2
+

2M

r3
− 2Λ

3

)
. (6.31)
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Figure 50: Effective potential within the static region rb < r < rc for l = 0 and different values of p̄. The

cosmological constant is set to Λ = 0.001/M2. The p̄ = 0 curve represents the case of General Relativity.

For p̄ = 0 one recovers the case of General Relativity, while deviations for non-vanishing

p̄ can be appreciated in Figure 50.

The value of the parameter p̄ depends on the specific solution one is considering. For the

unstable solution we have

p̄ = pu ≡ 6ξ, (6.32)

while the stable one is characterized by

p̄ = ps ≡ 1− M2
SI

16βΛs
(1 + 12ξ) = −ξ(12βλ+ ξ + 12ξ2)

βλ
, (6.33)

where in the last step we used (5.41). We will now show that the asymptotic behavior of

the perturbation crucially depends on the value of p̄. The critical value of p̄ separating

stable from unstable modes is related to the form of the potential in the pure de Sitter,

M → 0 limit. This was shown in [80], where the case of a non-minimally coupled scalar

field on a Schwarzschild-de Sitter background is considered. It turns out that the effective

potential (6.30) is very similar to the one computed in [80]. In that case, starting from

(□− νR)ϕ = 0, (6.34)
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one gets

V (r) = f(r)

(
l(l + 1)

r2
+

2M

r3
− 2Λ

3
(1− 6ν)

)
. (6.35)

Therefore, the two potentials are mapped into each other via the substitution ν ↔ −p̄/3,
which allows us to obtain the late time behavior of the scalar perturbation from the

results of [80] as

δζ ∼ e−µκct, (6.36)

where κc is the surface gravity of the cosmological horizon, i.e.

κc =
Λ(rc − rb)(rc − r0)

6rc
, (6.37)

and

µ = l +
3

2
− 1

2

√
9 + 16p̄+O

(
rb
rc

)
. (6.38)

We can identify three different behaviors for different values of the parameter p̄. When

p̄ < −9/16, µ becomes complex, and the purely exponential decay is replaced by a damped

oscillatory regime, as observed in [80] (see fig. 51):

δζ ∼ e−(l+ 3
2
)κcte

i
2

√
|9+16p̄|κct. (6.39)

The main difference with respect to [80], is that now µ changes sign for p̄ greater than

the critical value

p̄c =
(2l + 3)2 − 9

16
, (6.40)

so that we have an exponential decay for −9/16 < p̄ < p̄c, with no oscillations, while the

case p̄ > p̄c yields unstable diverging modes.

Numerical integrations confirm this: in the results presented in the following, we used the

procedure presented in Subsection 6.1 and the initial conditions used for the results shown

in Subsection 6.2, that is Z(u, 0) = 0 and Z(0, v) = exp[−(v−vc)2/2σ]. In this particular

case, the inversion of the tortoise coordinate can be found by solving numerically in r the

equation

r∗ = ln

(
(r − rb)

βb(r + rc + rb)
β0

(rc − r)βc

)
, (6.41)

where

βc =
3rc

Λ(rc − rb)(2rc + rb)
, (6.42)

βb =
3rb

Λ(rc − rb)(2rb + rc)
, (6.43)

β0 =
3(rb + rc)

Λ(2rc + rb)(2rb + rc)
. (6.44)
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Figure 51: Evolution of |Z|/M2 as a function of t/M at a fixed radius, for l = 0 and different values

of p̄, showing the onset of the oscillatory regime in the late-time region for p̄ < −9/16 = −0.5625. The

cosmological constant is set to Λ = 0.001/M2.

The results presented here are obtained setting

σ = 1, v0 = 10, h = 0.1, nmax = 5000, (6.45)

and we extracted the time evolution at r∗∞ = 50M ; we note that we worked with dimen-

sionless variables rescaling every quantity by the appropriate black hole mass M power.

The outcome of the numerical integrations is shown in Figure 51 and 52. In particu-

lar, Figure 51 shows the transition from an exponential decay to the damped oscillatory

regime when p̄ becomes lower than −9/16. Figure 52 instead confirms the stability be-

havior discussed above, showing how the perturbations diverge if p̄ > p̄c, while they are

stable and decay exponentially to zero when p̄ < p̄c.

Let us now apply these results to the two solutions under consideration. Given that p̄c is
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Figure 52: Evolution of |Z|/m2 as a function of t/m at fixed radius, for ℓ = 0 and different values of p̄.

The cosmological constant is set to Λ = 0.001/m2.

non-negative, instabilities can never trigger when the stable solution is considered, since

the latter has p̄ = ps < 0 (see equation (6.33). Regarding the other solution instead, since

pu = ξ the stability condition is provided by

ξ < p̄c. (6.46)

The value of p̄c increases with the angular momentum number l, implying that the first

multiple suffering from instabilities would be the lowest-lying mode, namely the monopole,

identified by l = 0. Since p̄c(l = 0) = 0 and being ξ non-negative, we conclude that the

stability condition (6.46) is never satisfied, and the second solution is always unstable.

Therefore, the stable character of the two solutions agrees with the one resulting from

the investigations pursued in a cosmological setting in [27], and solutions with zero scalar

field are unstable and solutions with non-zero scalar field are stable. Nonetheless, these

properties are not sufficient to assess whether there is a transition between the unstable

Schwarzschild-de Sitter and the stable one; we will tackle this problem in Subsection 7.3,

where we will perform a semiclassical analysis of the stability of these solutions.

121



7 SEMICLASSICAL QUADRATIC GRAVIT ...

7 Semiclassical quadratic gravity and black hole Ther-

modynamics

The thermodynamical interpretation of black holes proposed for the first time by Gibbons

and Hawking [81, 82, 83] has completely renewed our understanding of this type of so-

lution. First, within such interpretation, black holes appear to have a mutual interaction

with the surrounding environment and are, therefore, truly physical objects. Second, the

derivation of the thermodynamical properties of black holes is the first robust result of

a semiclassical approach to gravity. It is semiclassical in two distinct senses: the original

derivation of Hawking radiation is semiclassical in the sense that the gravitational inter-

action is considered purely classical but the matter (or radiation) fields populating this

classical spacetime have quantum nature; it is also semiclassical in the sense that all the

thermodynamical properties of black holes can be derived from the mean field approxi-

mation of a consistently defined quantum theory of gravity. The two interpretations are,

in any case, complementary and consistent one with the other.

This section is divided in three parts:

- in the first subsection we review the main concepts of black hole Thermodynamics,

such as Hawking radiation, black hole entropy and black hole evaporation, and

sketch the derivation of these properties from the path integral approach to quantum

gravity;

- in the second subsection we present the thermodynamical properties of non-Schwarz-

schild black holes in quadratic gravity and describe the evaporation process in this

theory; we will show that the stable black holes with an attractive Yukawa con-

tribution have unphysical thermodynamical properties and that either quadratic

gravity is a poor theory of gravity or the evaporation process has to deviate from

stable solutions in its final stages;

- in the third subsection we present a technique to evaluate the Euclidean action

of a solution with multiple horizons in scale-invariant gravity; we will apply this

technique to Schwarzschild-de Sitter black holes and show that, similarly to the

cosmological case, there is a phase transition between two asymptotically de Sitter

spacetimes in which the scalar field acquire a non-zero expectation value.

The results on the evaporation process of black holes in quadratic gravity presented in

Subsection 7.2 are not part of any publication yet, while the results on the phase transition

in scale-invariant gravity presented in Subsection 7.3 are corrections of the ones published

in [35].
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7.1 Black hole Thermodynamics and semiclassical gravity

As stated before, in this subsection we will recall the main concepts of black hole Thermo-

dynamics and their semiclassical derivation. There are three main points that we address

in as many subsubsections: the first one is the emission of particles from the vacuum close

to an event horizon, and the resulting evaporation process of a black hole, the second one

is the semiclassical approximation of the path integral approach to quantum gravity, and

its use for the derivation of all the thermodynamical properties as energy and entropy,

and the third one is the Wald definition of the entropy of a black hole, which can be ap-

plied to black holes in quadratic gravity without having to evaluate the Euclidean action

of the solutions.

7.1.1 Hawking radiation and black hole evaporation

In the first years of the ’70s different scientists realized that the presence of a horizon

should have consequences on the quantum fields surrounding it, and that it would pose a

puzzle to our concepts of information. The first solid statement was formulated by Hawk-

ing with the derivation of black hole radiation using Quantum Field Theory on curved

spacetime [81]. In this subsubsection we will show the calculation hiding some technical

complications, hoping to keep both a substantial level of rigorousness and physical mean-

ing.

The starting point is the non-unique definition for the vacuum in curved spacetimes,

quantified for the first time by Bogoliubov in the ’50s [84]. Let us consider a free scalar

field with action

Iϕ = −1

2

∫
d4x

√
−g
[
∂µϕ∂µϕ+m2ϕ2

]
, (7.1)

with equations of motion (
□+m2

)
ϕ =

(
∇µ∂µ +m2

)
ϕ = 0. (7.2)

We can expand the field ϕ using a basis {fi} of solutions of (7.2) as

ϕ =
∑
i

(
fiai + f ∗

i a
†
i

)
, (7.3)

where ai and a†i are two sets of operators, that we will call creation and annihilation

operators in analogy to what is done in flat spacetimes. Clearly it is possible to expand

the field ϕ using a second basis {gi} of solutions of (7.2) as

ϕ =
∑
i

(
gibi + g∗i b

†
i

)
, (7.4)

with creation and annihilation operators bi and b
†
i . These expansions become physically

meaningful if we allow the existence of timelike Killing vectors, or at least of asymptotic
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ones. If a timelike Killing vector κµ exists, we can define the energy states of the field

ϕ as the eigenvalues of the operator κµ∂µ; in practical terms, these eigenvalues are the

conserved charges associated to time translation, as seen by an observer defined by the

Killing vector κµ. In particular, it is possible to prove that the Laplace operator □ and

the Killing operator κµ∂µ commute and can be simultaneously diagonalized, and then we

can consider the elements of {fi} to be simultaneously eigenvectors of the two operators

□fi = −m2fi, iκµ∂µfi = ωifi, (7.5)

where the ωi are positive and will be called frequencies, and the elements of {gi} to be

eigenvectors of a second timelike Killing vector κ̃µ

□gi = −m2gi, iκ̃µ∂µgi = ω′
igi, (7.6)

with frequencies ω′
i. It is now possible also to define an internal product for the basis {fi}

and {gi}, that now we can safely call “modes”, and the elements of the two expansions

satisfy the relations[
ai, a

†
j

]
= δij, (fi, fj) = i

∫
Σ

d3x
√
γnµ

(
fi∂µf

∗
j − f ∗

j ∂µfi
)
= δij,[

bi, b
†
j

]
= δij, (gi, gj) = i

∫
Σ

d3x
√
γnµ

(
gi∂µg

∗
j − g∗j∂µgi

)
= δij,

(7.7)

where Σ is a spacelike surface, γij is its metric and nµ is the unit normal to it. Being both

complete sets, we can express a fi-mode in terms of the gi as

fi =
∑
j

(
αijgj + βijg

∗
j

)
, (7.8)

where the so-called Bogoliubov coefficients αij and βij are found as

αij = (gj, fi), βij = (g∗j , fi). (7.9)

These coefficients are of fundamental importance because they can be used to define the

operators bi in terms of the ai and a†i ; indeed inserting (7.8) into (7.3) and comparing

with (7.4), we get the expression

bi =
∑
j

(
αijaj + β∗

ija
†
j

)
. (7.10)

Let us now consider the vacuum state for the observer κµ, defined as ai|0a⟩ = 0 for all ai.

The fundamental question is how this state is seen by the second observer κ̃µ; the second

observer can define the number operator n
(b)
i = b†ibi, which has as expectation value the

number Ni of particles with frequency ω′
i. However, due to (7.10) the expectation value of
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the number operator n
(b)
i of the second observer on the vacuum |0a⟩ of the first observer

is

⟨0a|n(b)
i |0a⟩ = ⟨0a|b†ibi|0a⟩ =

∑
j,k

⟨0a|
(
a†jα

∗
ji + ajβji

)(
αikak + β∗

ika
†
k

)
|0a⟩ =

=
∑
j,k

⟨0a|ajβjiβ∗
ika

†
k|0a⟩ =

∑
j,k

βjiβ
∗
ik⟨0a|

(
a†kaj + δij

)
|0a⟩ =

∑
j

|βji|2,
(7.11)

and then, if
∑
j

|βji|2 ̸= 0, it is not a vacuum state.

The Hawking radiation process can be derived by looking at the expectation value of

the number operator after the creation of the black hole on the vacuum state defined

before the creation of the event horizon; in practical terms, this means that an observer

will detect particles outside the black hole, while it would have detected nothing before

its creation. To quantify these statements, let us consider a massless field expanded in

ingoing modes before the collapse

ϕ =
∑
i

(
fiai + f ∗

i a
†
i

)
,

fi =
1√
2πωi

Fi(r)

r
Ylm(θ, ϕ)e

iωiv,

(7.12)

where v = t+ r∗, and r∗ is the standard tortoise coordinate, and in ingoing modes qi and

outgoing modes pi after collapse

ϕ =
∑
i

(
pibi + p∗i b

†
i + qici + q∗i c

†
i

)
,

pi =
1√
2πω′

i

Pi(r)

r
Ylm(θ, ϕ)e

iω′
iu,

qi =
1√
2πω′

i

Qi(r)

r
Ylm(θ, ϕ)e

iω′
iv,

(7.13)

where u = t − r∗, and the frequencies are defined using the asymptotic timelike Killing

vectors in the past and future null infinities. Hawking radiation is then defined by the

Bogoliubov coefficient of outgoing modes pi over the ingoing modes fi. To do that we have

to “track back” an outgoing mode pi into the infinite past J − (see Figure 53); here the

dotted lines indicate the trajectories of the massless particles coming from infinity before

the collapse, going to the origin and re-emerging from the body before the formation of

the horizon.

The blue line will re-emerge just before the formation of the event horizon; therefore,

we can argue that the exponent of eiωiu will oscillate extremely fast for the divergence

of u = t − r∗ (the tortoise coordinate diverge on the horizon), and the geometrical

approximation can be used even in the presence of a collapsing body because a high-

frequency mode is expected to have few interactions. The subtlety here is in the definition
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Figure 53: Evaporation of a black hole from a collapsing body, the orange section is the collapsing body,

the arrows indicate the different modes used during the expansion, and the dotted lines indicate the

trajectories of different modes.

of the proper distance between the geodesics followed by the mode and the null geodesics

which enter the body and re-emerge exactly on the horizon. After the formation of the

black hole, the proper distance λ is defined in terms of the Kruskal-Szekeres coordinate

λ = −U = C1e
−κu, (7.14)

where C1 is a generic constant and κ is the surface gravity (5.1). Before the formation of

the black hole, the proper distance is instead proportional to the Eddington-Finkelstein

coordinate

λ = −C2v, (7.15)

where C2 is another generic constant and we set v = 0 for the null geodesics re-emerging

on the horizon. The outgoing mode then can be expressed as

pi =
1√
2πω′

i

Pi(rH)

r
Ylm(θ, ϕ)e

iω′
iu =

1√
2πω′

i

Pi
r
Ylm(θ, ϕ)

(
C1

C2

) iω′
i

κ

e−i
ω′
i
κ

log(−v), (7.16)

where Pi = Pi(rH), and the Bogoliubov coefficient can be found from

pi =
∑
j

(
αijfj + βijf

∗
j

)
. (7.17)
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However, for the subsequent calculation is convenient to pass from a discrete set of modes

to a continuum one, where the mode pi becomes

pω′ =

∫ ∞

0

dω
1√
2πω

Ylm(θ, ϕ)

r

(
αωω′eiωv + βωω′e−iωv

)
, (7.18)

where we considered lim
r→∞

Fω(r) = 1. The specific form of the integral resembles the one

of the Fourier transform

pω′ =
1

2π

∫ ∞

−∞
dωp̃ω′(ω)eiωv =

1

2π

∫ ∞

0

dω
(
p̃ω′(ω)eiωv + p̃ω′(−ω)e−iωv

)
. (7.19)

By comparing (7.18) and (7.19), we can then express the Bogoliubov coefficients as

αωω′ =
r
√
ω√
2π
p̃ω′(ω) =

Pω′

2π

√
ω

ω′

(
C1

C2

) iω′
κ
∫ 0

−∞
dve−i

ω′
κ

log(−v)e−iωv,

βωω′ =
r
√
ω√
2π
p̃ω′(−ω) = Pω′

2π

√
ω

ω′

(
C1

C2

) iω′
κ
∫ 0

−∞
dve−i

ω′
κ

log(−v)eiωv,

(7.20)

where the boundaries of integration are given by the requirement v < 0 necessary to have

a particle outside the horizon at late times. If we rewrite the βωω′ as

βωω′ =
Pω′

2π

√
ω

ω′

(
C1

C2

) iω′
κ
∫ 0

−∞
dve−i

ω′
κ

log(−v)eiωv =

=
Pω′

2π

√
ω

ω′

(
C1

C2

) iω′
κ
∫ ∞

0

dve−i
ω′
κ

log(v)e−iωv =

=
Pω′

2π

√
ω

ω′

(
C1

C2

) iω′
κ
∫ ∞

0

dve−i
ω′
κ
(log(−v)−iπ)e−iωv =

=e−
πω′
κ
Pω′

2π

√
ω

ω′

(
C1

C2

) iω′
κ
∫ ∞

0

dve−i
ω′
κ

log(−v)e−iωv,

(7.21)

we can consider the combination

αωω′ + e
πω′
κ βωω′ =

Pω′

2π

√
ω

ω′

(
C1

C2

) iω′
κ

(∫ 0

−∞
dve−i

ω′
κ

log(−v)e−iωv+

+

∫ ∞

0

dve−i
ω′
κ

log(−v)e−iωv

)
=

=
Pω′

2π

√
ω

ω′

(
C1

C2

) iω′
κ
∫ ∞

−∞
dve−i

ω′
κ

log(−v)e−iωv = 0,

(7.22)

where the last equation is provable by integrating in the complex plane and taking the

cut of the logarithm in the lower half-plane. We can now consider the normalization of

the modes

(fω, fω) = 1,

(pω′ , pω′) =

∫
drPω′(r)2 = Γω′ ,

(7.23)
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where the normalization of the modes pω′ is not set to 1 because some modes will generally

be scattered inside the black hole (usually the low-frequency ones). Using the continuum

version of (7.17) the normalization of the pω′ can also be expressed as

(pω′ , pω′) =

∫
dω (αωω′α∗

ωω′ − βωω′β∗
ωω′) =

(
e

2πω′
κ − 1

)∫
dω|βωω′ |2 = Γω′ , (7.24)

where the second equivalence is given by (7.22). Finally, we arrive at the continuum

version of (7.11)

⟨0a|n(b)
ω′ |0a⟩ =

∫
dω|βωω′|2 = Γω′

e
ω′

κ/2π − 1
, (7.25)

which is a thermal distribution with temperature

TBH =
κ

2π
, (7.26)

and a so-called grey body factor Γω′ , which is simply a cut-off of the low-frequency modes

at the physical level.

While the calculation just presented shows the presence of emission of particles at the

horizon, it is still not sufficient to demonstrate the evaporation of a black hole. To do so,

it is necessary to understand how the radiation at the horizon affects the time evolution

of the metric. The fundamental equation under analysis is then the flux equation

Gtr =
1

2
⟨Ttr⟩, (7.27)

where Gtr is the time-radial component of the equations of motion and ⟨Ttr⟩ is the ex-

pectation value of the energy flux component of the stress-energy tensor of the particles

which are being emitted. For the calculation of (7.27) it is necessary to resort to the

so-called adiabatic approximation, where we consider the metric to evolve in time slowly

and then to be expressible as the static metric with time-dependent parameters. As an

example, the Schwarzschild metric becomes the Vaidya metric

1− 2M

r
→ 1− 2M(t)

r
. (7.28)

If we consider a scalar field non-minimally coupled with the Ricci scalar with a term

ξϕ2R, the flux component of the stress-energy tensor is [85]

Ttr =
1

2(1− ξϕ2)

(
∂rϕ∂tϕ

∗ + ∂tϕ∂rϕ
∗ − 2ξ∂t∂rϕ

2
)
∼ 1

2

(
∂rϕ∂tϕ

∗ + ∂tϕ∂rϕ
∗ − 2ξ∂t∂rϕ

2
)
,

(7.29)

where the approximation is taken because we need a small back-reaction in order to use

the adiabatic approximation. Evaluating the expectation value requires some care because
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the normal ordering of the operators diverges on the horizon. Nonetheless, it is possible

to express the stress-energy tensor in terms of the pω modes as [82, 85, 86, 87]

⟨Ttr⟩ =
∫

dωdω′|βωω′|21
2

(
∂rpω∂tp

∗
ω + ∂tpω∂rp

∗
ω − 2ξ∂t∂r|pω|2

)
=

= −
∫

dω|Ylm(θ, ϕ)|2
ωPω(r)

2

2πr2
dr∗

dr

Γω

e
ω

κ/2π − 1
→ − 1

r2
√
f(r, t)h(r, t)

∫
dω

ω

8π2

Γω

e
ω

κ/2π − 1
,

(7.30)

where we exploited the conservation of the stress-energy tensor and that P (r) → 1 for

r → ∞ and averaged over the angular directions. The prefactor 1/
√
f(r, t)h(r, t), which

acts as a redshift factor, can be conveniently moved on the left-hand side of the equation

as

r2
√
f(r, t)h(r, t)Gtr = −1

2

∫
dω

ω

8π2

Γω

e
ω

κ/2π − 1
. (7.31)

Since this point, we were never required to consider a specific theory of gravity in our

calculations; however, the left-hand side of (7.27) is manifestly dependent on the action

under analysis. In the case of General Relativity, it is

r2
√
f(r, t)h(r, t)Gtr = −γr

√
h(r, t)

f(r, t)

df(r, t)

dt
= 2γ

dM(t)

dt
, (7.32)

where in the last line we inserted the Vaidya metric (7.28). In the case of quadratic

gravity, it is necessary to stress the adiabatic approximation a bit more and consider only

terms linear in the first derivatives in time, and with no higher-order derivatives in time.

With this approximation, the flux equation can be studied both at large radii and at the

horizon. In the first case we consider the weak field metric (3.5) with time-dependent

M(t) and S−
2 (t), and the left-hand side of (7.31) becomes

r2
√
f(r, t)h(r, t)Gtr → γ

(
2
dM(t)

dt
− dS−

2 (t)

dt
e−m2r(1 +m2r)

)
+

+ 2αm2
2

dS−
2 (t)

dt
e−m2r(1 +m2r) = 2γ

dM(t)

dt
,

(7.33)

where in the last equality we used m2
2 = γ/2α. Stressing the adiabatic approximation it

is possible to evaluate (7.31) also close to the horizon with the metric expressed by (3.28)

with time-dependent rH(t), h1(t) and f1(t), and it takes the form

r2
√
f(r, t)h(r, t)Gtr → γ

√
f1(t)h1(t)rH(t)

drH(t)

dt
+

− 2α
√
f1(t)h1(t)

(
f1(t)

drH(t)

dt
+ rH(t)

df1(t)

dt

)
=

=
1

2
γ
√
f1(t)h1(t)

d

dt

(
rH(t)

2 +
2

m2
2

(1− f1(t)rH(t))

)
.

(7.34)
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Remembering the definition of black hole temperature (7.26), we can express the last line

of (7.34) as

2γTBH(t)
d

dt

(
π

(
rH(t)

2 +
2

m2
2

(1− f1(t)rH(t))

))
, (7.35)

where the argument of the derivative we will show in Subsection 7.1.3 is exactly the Wald

definition of entropy. Finally, we can show that the left-hand side of (7.31) can be written

as

r2
√
f(r, t)h(r, t)Gtr → 2γTBH(t)

dSWald(t)

dt
, (7.36)

and then prove that the two limits satisfy the first law of black hole Thermodynamics

r2

2γ

√
f(r, t)h(r, t)Gtr

∣∣∣∣∣
r→∞

=
dM(t)

dt
= TBH(t)

dSWald(t)

dt
=
r2

2γ

√
f(r, t)h(r, t)Gtr

∣∣∣∣∣
r→rH

.

(7.37)

Finally, the flux equation can be written as

dM(t)

dt
= −

∫
dω

ω

32π2γ

Γω

e
ω

κ/2π − 1
,

TBH
dSWald(t)

dt
= −

∫
dω

ω

32π2γ

Γω

e
ω

κ/2π − 1
.

(7.38)

If we concentrate on high-frequency modes, we can take the approximation Γω → 1, in

which the right-hand side of (7.38) takes the form∫
dω

ω

32π2γ

Γω

e
ω

κ/2π − 1
∼ σ

m2
2

T 2
BH , (7.39)

where σ = 1/384α is an adimensional constant, acting as the Stefan-Boltzmann constant.

Taking everything in units of m2 leads us finally to the equations

dM(t)

dt
∼ − σT 2

BH ,

dSWald(t)

dt
∼ − σTBH ,

(7.40)

that can be easily integrated once TBH(M) or TBH(SWald) are known.

7.1.2 The path integral approach to quantum gravity and black hole Ther-

modynamics

In the previous subsubsection we have shown how it is possible to define a temperature

associated with a black hole and, by implementing an evaporation mechanism, how it is

possible to define, using specific assumptions on the form of the metric, also the energy

and the entropy. However, it is possible to define this concept without resorting to a

convenient form of the metric, and even without requiring a specific theory of gravity.

130



7.1 Black hole Thermodynamics... 7 SEMICLASSICAL QUADRATIC GRAVIT ...

As anticipated at the beginning of the subsection, this is possible by applying the path

integral approach to quantum gravity [83, 88], which in its semiclassical limits has the

same results as the Quantum Field Theory on curved spacetime approach.

Let us consider the partition function of a quantum theory of gravity defined by a bare

action I(g)
Z =

∫
Dg
[
e−I(g)

]
, (7.41)

where the integral
∫
Dg has to be intended as an integral over all possible spacetimes.

Let us now suppose that the Euclidean time has periodicity β and that it is possible to

rewrite the bare action as I(g) = βH(g). The partition function now has the form

Z =

∫
Dg
[
e−βH(g)

]
→
∑
g

⟨g|e−βH(g)|g⟩, (7.42)

where in the second step we discretized the sum over all possible spacetimes. The crucial

point here is that the partition function now formally has the same expression as a

thermodynamical partition function in the canonical ensemble. It is then possible to

apply all the machinery of classical Thermodynamics and define the temperature

T =
1

β
, (7.43)

the expectation value of the energy

⟨E⟩ = 1

Z

∑
g

⟨g|H(g)e−βH(g)|g⟩ = −∂ log(Z)
∂β

, (7.44)

and the entropy

S = −
∑
g

⟨g|e
−βH(g)

Z
log

(
e−βH(g)

Z

)
|g⟩ = log(Z) + β⟨E⟩. (7.45)

These definitions, however, acquire a physical sense in the semiclassical approximation,

where the partition function takes the form

Z ∼ e−I(g0), (7.46)

where g0 is the metric which minimizes the action. The previous definitions now look

⟨E⟩ = ∂I(g0)
∂β

,

S = β
∂I(g0)
∂β

− I(g0),
(7.47)

and all the thermodynamical information can be extracted from the action evaluated on

a specific spacetime. As an example, let us consider the Schwarzschild solution in General

Relativity

ds2E =

(
1− 2GM

r

)
dt2E +

dr2

1− 2GM
r

+ r2dΩ2. (7.48)
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It is necessary to add to the action a boundary term which, in the case of General

Relativity, completes the action as

I =
1

16πG

(∫
M

d4x
√
−gR + 2

∫
∂M

d3x
√
−h(K −K0)

)
, (7.49)

where ∂M is the boundary of the manifold M, hµν is its metric, K its extrinsic curvature

andK0 the extrinsic curvature of a chosen background metric embedded in the spacetime.

The spacetime has a conical singularity at r = 2GM , which can be removed by choosing a

periodic Euclidean time with periodicity β = 8πGM . Choosing the Minkowski spacetime

as background and the boundary at spatial infinity, the Euclidean action results to be

I = 4πGM2. The thermodynamical properties then are

T =
1

β
=

1

8πGM
=

1

4πrs
,

⟨E⟩ = ∂I(g0)
∂β

= 8πGM
∂M

∂β
=M,

S = β
∂I(g0)
∂β

− I(g0) = 8πGM2 − 4πGM2 = 4πGM2 =
πr2s
G

=
A

4G
,

(7.50)

where the temperature agrees with the results obtained with Quantum Field Theory in

curved spacetime, considering that κ = 1/rs, the energy agrees with the Newtonian limit

and all possible definitions of the energy of Schwarzschild spacetime, and the entropy

satisfies the first law of Thermodynamics and agrees with the intuition of Bekenstein

that a black hole should have an entropy proportional to its area [89, 90].

7.1.3 Wald entropy

While the definition of entropy (7.45) is consistently defined, it requires being able to

evaluate both the Euclidean action and its derivative with respect to the Euclidean time

periodicity. A different definition of entropy has been proposed by Wald in [91] as the

conserved charge associated with diffeomorphism for any theory of gravity which admits

a Lagrangian formulation. While the original derivation is somewhat abstract and not

extremely simple, we will try to sketch the main idea in a non-rigorous, but hopefully

physically meaningful, way. The key point is to define an Hamiltonian density H starting

from the Lagrangian density L, and express its variation under diffeomorphism in terms

of a current j which, however, is a boundary term

δH = δ

∫
M

j = δ

∫
∂M

b. (7.51)

If the integration has a boundary at infinity and one over an event horizon, requiring the

equations of motion to be satisfied, that is, δH = 0, imposes

δ

∫
∂M∞

b = −δ
∫
∂MH

b. (7.52)
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It is now sufficient to define the quantity

δE = δ

∫
∂M∞

b, T δS = −δ
∫
∂MH

b, (7.53)

and the first law of Thermodynamics is satisfied. This definition of energy is consistent

with all the possible definitions of the total energy of a spacetime, as the ADM or Bondi

one, as could be expected being associated with the flux of the Hamiltonian at infinity.

The definition of entropy remains a little bit involved and not very manageable; however,

it is possible to express it as [92]

S = −1

8

∫
dΣ

√
hϵµνϵρσ

∂L
∂Rµνρσ

, (7.54)

where Σ is the surface defined by the horizon, hµν its metric and ϵµν is the binormal on

the surface. In [93], (7.54) has been evaluated in the case of the action (2.2), and has as

result

SWald = 16π
(
γπr2H + 4χ− 4αf1rH

)
, (7.55)

where f1 = f ′(r)|r=rH . To have S ∝ A/4 in the case of Schwarzschild it is necessary to

impose χ = α, and finally we obtain

SWald = 16π2γ

(
r2H +

2

m2
2

(1− f1rH)

)
→ π

(
r2H +

2

m2
2

(1− f1rH)

)
, (7.56)

where we gave a dimension to the entropy dividing by 16πγ in order to have the parameter

M in (3.5), which we recall has the dimension of an inverse energy, to satisfy the first law

of Thermodynamics

δM = TBHδSWald. (7.57)

It is now no surprise that this definition satisfies the first law of Thermodynamics, as

anticipated in (7.37), because it is defined to do so. What is of great relevance, instead,

is that thanks to the Wald formula it is possible to define the entropy of a black hole

knowing its behavior at the horizon exclusively. Using the shooting method between a

large radius and the horizon to find black hole solutions gave us then a direct link between

all the thermodynamical properties of black holes without needing an explicit expression

of the metric.

7.2 Thermodynamics of black holes in quadratic gravity

As extensively stressed, the thermodynamical properties of black holes are a semiclassical

effect relevant at small scales (the temperature of a black hole gets higher than the CMB

temperature at masses M ⪅ 10−8M⊙, that is, horizon radius rH ⪅ 10−5m). It is then

natural to ask what is the impact of higher curvature terms on black hole Thermody-

namics. Thanks to the discussion of the previous subsection, we now have at our disposal
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a complete set of thermodynamical properties, that is, Hawking temperature (7.26) and

Wald entropy (7.56), which can be derived directly from the values of the parameters at

the horizon h1 and f1 found with the shooting method (and shown in Figure 16), and

their link with the total energy M which can be instead derived by the parameters at

large distances. At last, we show the temperature and entropy in terms of the horizon

radius and the total mass in Figure 54.

Figure 54: Hawking temperature and Wald entropy for black holes in quadratic gravity in function of

the horizon radius (in the top panels) and in function of the total mass (in the bottom panels); as usual,

the black dashed line indicates Schwarzschild black holes, the solid red indicates Yukawa attractive black

holes and the solid blue the Yukawa repulsive ones. In the plot for the temperature in terms of the

horizon radius there is an inset showing the vanishing of the temperature for vanishing radius.

The temperature, which is shown in the left panels of Figure 54, has an opposite be-

havior for Schwarzschild and non-Schwarzschild black holes when considered in terms of

the horizon radius, namely, it decreases for smaller black holes, as already anticipated in

Subsection 5.1. Even if it is counter-intuitive, it is clear that the gravitational forces an

observer experiences close to the horizon are indeed stronger for a larger black hole, and

then the extraction process of particles from the vacuum is more efficient. Nonetheless,

the temperature increase for a decreasing mass, as for Schwarzschild black holes, indicat-
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ing that the specific heat of the black hole is still negative, and also that these solutions

are thermodynamically unstable and will continue evaporating; having the possibility of

black holes with negative masses, however, the evaporation seems unbounded. The main

critical point of the thermodynamical properties shown in Figure 54 is however given by

the entropy. In terms of the horizon radius, it decreases for an increasing radius reversing

completely the idea of a concept of entropy associated with the area of the black hole;

in terms of the total mass, instead, it decreases for a decreasing mass, signaling that the

entropy of Hawking radiation (which is Srad = Stot − SBH , given that the evaporation

process is adiabatic and then the total variation of entropy is zero) is increasing indefi-

nitely. It can be noted, maybe only as a curiosity, that the maximum allowed entropy for

a non-Schwarzschild black hole, reached for a vanishing horizon radius, is 2π; restoring

the original form of the entropy (7.55) it becomes 64πα which is a topological contribu-

tion due to the Gauss-Bonnet combination, remembering that we set χ = α. However,

the most striking feature of the entropy of non-Schwarzschild black holes is that it gets

negative at some point. If we consider the mechanical statistics definition of entropy

S ∝ −
∑
i

pi log(pi) = −⟨log(p)⟩, (7.58)

it is clear that a negative entropy means that p > 1, and then unitarity is violated. It is

then manifest that the ghost particle, which is responsible for the violation of unitarity in

the quantum version of quadratic gravity, is also responsible for a violation of unitarity

at the semiclassical level.

While these considerations already signal an unphysical nature of non-Schwarzschild black

holes at the semiclassical level, it is necessary to consider the evaporation process in order

to make statements about the effects of these properties in the physical world. Let us

then consider equation (7.40): for a Schwarzschild black hole they can be easily integrated

considering TBH = 1/8πM as

t− t0 = −64π2

σ

∫
dMM2 =

64π2

3σ

(
M(t0)

3 −M(t)3
)
; (7.59)

the integration is less immediate in the case of non-Schwarzschild black holes, as there

is no analytical relation between mass, entropy and temperature. It is necessary then to

either integrate (7.40) numerically, or fit −1/T 2 in terms of the mass, or −1/T in terms

of the entropy. We choose the second option that, while less precise in the result, is more

explanatory of the qualitative evaporation trend. We show in Figure 55 the two functions

and their fit, which is not optimal but is sufficient for qualitative analysis.

We also specify that it is much more convenient to fit the temperature in terms of mass

and entropy and then do the inverse rather than directly fit the inverse temperature. If
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Figure 55: Squared inverse temperature in function of the mass, and inverse temperature in function of

Wald entropy; as usual in dashed black there are Schwarzschild black holes, in solid red Yukawa attractive

black holes and in solid blue Yukawa repulsive ones. In dotted black is shown the fit for non-Schwarzschild

black holes.

we focus on the mass-temperature relation, this is given by

− 1

T 2
BH

∼ −A (Mmtp −M)−η with


A ∼ 32.451

Mmtp ∼ 0.623

η ∼ 0.787

(7.60)

whereMmtp is the mass of the massive triple point of the phase diagram of Einstein-Weyl

gravity, which is the mass of a non-Schwarzschild black hole with a vanishing horizon

radius. Integrating (7.40) then has the result

t− t0 ∼
A

σ(1− η)

(
(Mmtp −M(t))1−η − (Mmtp −M(t0))

1−η) , (7.61)

and can be inverted as

M(t) ∼Mmtp −
(
(Mmtp −M(t0))

1−η +
σ(1− η)

A
(t− t0)

) 1
1−η

. (7.62)

The first thing that can be inferred from (7.61) is that, being a monotonically decreasing

function in time, also for non-Schwarzschild black holes the time evolution is in the

direction of decreasing mass. The main difference here is that there is no minimum mass,

and then, as already argued before, the evaporation process is unbounded. Let us be more

specific and consider a Schwarzschild black hole of initial mass M0 created at time t = 0

which evaporates. At the time

tsns =
64π2

3σ

(
M3

0 −M3
sns

)
, (7.63)

it will have reached the mass Msns at which Schwarzschild and non-Schwarzschild black

holes coincide. At this point, both smaller Schwarzschild and Yukawa repulsive black
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holes will be unstable, and then let us assume that it will have a transition into Yukawa

attractive black holes. If this is the case, the mass at time t will be

M(t) ∼Mmtp −
(
(Mmtp −Msns)

1−η − 64π2(1− η)

3A

(
M3

0 −M3
sns

)
+
σ(1− η)

A
t

) 1
1−η

.

(7.64)

Remembering that everything has been adimensionalized in terms of the mass m2, we

can restore units by

M → m2

16πγ
M → 1√

32παmp

M,

t→m2t→
1√

32παtp
t,

(7.65)

and, in particular, we will give each term the dimensions

M(t) → M⊙√
32παmp

M(t)[M⊙]

M⊙
,

M0 →
Kg√

32παmp

M0[Kg]

Kg
,

t→ Gy√
32παtp

t[Gy]

Gy
,

(7.66)

and leave the rest without dimensions. Finally, equation (7.64) can be written with di-

mensions as

M(t) ∼
√
α

c010−37 −

(
c110

−8 − c210
12

α3/2

(
M0[Kg]

Kg

)3

+
c310

54

α3/2

t[Gy]

Gy

)δ
M⊙, (7.67)

where c0, c1, c2 and c3 are constants of order O(1), and in particular the parameters are

c0 = 0.684, c1 = 1.132, c2 = 1.845, c3 = 0.997, δ = 4.704. (7.68)

It is now possible to describe the evaporation process of an astrophysical black hole. Let us

now consider that in the early universe (let us say t ∼ 10Gy) a primordial Schwarzschild

black hole of mass M0 has formed and started evaporating. In the General Relativity

description is it possible to have black holes of a range of masses that goes from Planckian

to thousand of solar masses [94]; however, primordial black holes with masses of order

M0 < 1011Kg would be completely evaporated at the present time. In quadratic gravity,

instead, a black hole with initial mass M0 > 1011Kg, with α < 1037,

M0 > 10−7
√
αKg, with α > 1037

(7.69)

has still not reached the transition point, and it would be a Schwarzschild black hole in

the present time. In contrast with General Relativity, primordial black holes with smaller
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initial mass are not completely evaporated but would have undergone the transition, and

they would evaporate as non-Schwarzschild black holes. However, the present stage of

these black holes depends on the value of the free parameter α. We can summarize this

behavior as

- α > 1060: this range of parameter has been excluded by experiments on torsion

balance;

- 1042 < α < 1060: the constant term multiplied by c0 dominates, and the black

hole will have a positive mass of order M(t) ∼
√
α10−37M⊙ and then of order

10−16M⊙ < M(t) < 10−7M⊙;

- α < 1042: the term at power δ dominates, and the black hole will have a negative

mass of order M(t) ∼ −α−6.55610259M⊙.

It is then sufficient to have α < 1039 and primordial black holes with initial mass

M0 < 1011Kg to have in the present universe black holes with negative masses larger than

a solar mass; with parameters of the order predicted by CMB anisotropies for Starobin-

ski’s model [19], that is α ∼ 108, we would have black holes with negative masses of the

order of M(t) ∼ −10206M⊙, which is clearly an absurd, being ∼ −10182 times the total

energy of the observable universe.

The evaporation process of non-Schwarzschild black holes then leads us to choose between

one of these possibilities:

- quadratic gravity is a flawed theory of gravity and has to be discarded;

- black holes are not a physical solution of quadratic gravity, and gravitational col-

lapse ends in an exotic solution;

- our assumption that an evaporating Schwarzschild black hole will undergo a tran-

sition into the stable Yukawa attractive solutions is wrong, and at the minimum

stable radius is not possible anymore to describe solutions using a quasi-equilibrium

description.

The first hypothesis is the most conservative, the second is probably the less conservative,

and the third is a good compromise. In particular, in the third case, we can imagine that

the black hole will have a non-static metric that, however, maintains its event horizon.

If we want to speculate that the endpoint of this unstable phase should be a static

spacetime, the only possibility would be the two triple points of the phase diagram,

namely Minkowski spacetime and the massive triple point discussed in Section 4. As seen
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as the limit of black holes, however, Minkowski spacetime is the limit of a black hole with

a vanishing horizon, vanishing mass but infinite temperature. The massive triple point,

on the contrary, has a vanishing radius, a vanishing temperature, a finite mass, and a

finite entropy. As a concluding remark, we believe that this massive triple point could

actually be the final relic of the evaporation process of a black hole.

7.3 Semiclassical analysis of black holes in scale-invariant grav-

ity

We now move again to the study of solutions of General Relativity in the context of scale-

invariant gravity. We recall that in this theory a transition between two de Sitter solutions

is known to happen in a cosmological setting, in which the scalar field of action (2.41)

spontaneously acquires a non-zero expectation value. We also know that two distinct

Schwarzschild-de Sitter solutions are present in this theory, as discussed in Subsection

5.5, of which we studied in Subsection 6.3 the stability against dynamical perturbation

and shown that the solution with zero scalar field is unstable and the one with a non-

zero scalar field is stable. While the linear analysis is rigorous proof of the stability or

instability of the solutions, what cannot be inferred by that analysis is whether one

solution can have a transition into the other or not, and what is the role of black holes in

the cosmological evolution shown in Subsection 5.5.1. A non-linear analysis can answer

both of these problems and confirm that no strong non-linear effect spoils the results

of the linear analysis. Usually, the non-linear stability of black holes is inferred from

their Thermodynamics which, however, is not always well defined. The thermodynamical

properties of Schwarzschild, de Sitter, and Schwarzschild-anti-de Sitter solutions can be

extracted from (7.46), as described in Subsubsection 7.1.2 and as we will show later,

but unfortunately, despite the effort of many authors (see as examples [95, 96]), there

is still no consensus on how to define a global temperature for the Schwarzschild-de

Sitter spacetime, and a thermodynamical description of such type of solution is a much-

debated subject. From a thermodynamical point of view, this is because Schwarzschild-de

Sitter solutions have two horizons with different temperatures, and the system is not at

thermodynamical equilibrium; from a path integral point of view, it is not possible to

define a time periodicity, which removes the two conical singularities emerging in the

Euclidean action from the presence of two horizons. In this subsection, therefore, we will

not indulge in the thermodynamical description of Schwarzschild-de Sitter black holes,

and discuss the possible transition between the two solutions using only the semiclassical

description of Euclidean quantum gravity. While in a purely classical description any

spacetime which is in a stationary point of the action has equivalent relevance, in the
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path integral formulation the absolute value of the action determines which solution

has a dominant contribution to the partition function, opening the possibility of having

meta-stable solutions which will tunnel away with probability

Γ = A e−(Ims−Is), (7.70)

where A is a prefactor and Ims, Is are the Euclidean actions of the meta-stable and

stable solutions. This approach has been used to derive the Hawking-Page transition for

Schwarzschild-anti-de Sitter black holes [97], and we believe it will be of relevance also in

our case. As already said at the beginning of this section, the results of this subsection

are corrections of the ones published in [35], and part of the discussion has been extracted

from that paper.

As anticipated in the case of General Relativity in (7.49), to evaluate the Euclidean

action we need to add a suitable boundary term to the action. Taking into account all

the different terms in (2.41), the boundary terms for scale-invariant gravity result to be

I∂M, 1 =

∫
d3x

√
−h 2ξ ϕ2K,

I∂M, 2 =

∫
d3x

√
−h 4β RK,

I∂M, 3 =−
∫

d3x
√
−h 2αCµνρσ (nµnρKνσ − nµnσKνρ + nνnσKµρ − nνnρKµσ) ,

I∂M, 4 =

∫
d3x

√
−h 2χ

[
Rµνρσ (nµnρKνσ − nµnσKνρ + nνnσKµρ − nνnρKµσ)+

− 4 (RµνKµν +RµνnµnνK − 2Rµνnµn
ρKρν) + 2RK

]
,

(7.71)

where hµν is the metric of the boundary, Kµν is its extrinsic curvature, K its trace, nµ

is its unit normal, and where the ones for the Weyl and Gauss-Bonnet combinations are

derived from [98].

Schwarzschild solution. In this case there is a single horizon, which generates a single

conical singularity at r = rb(= 2M) in the Euclidean action. This singularity can be

removed as in General Relativity requiring a Euclidean time with periodicity βS = 4πrb,

and therefore we can define the temperature as

TS =
1

βS
=

1

4πrb
. (7.72)

The action is easily evaluated, taking into account that the bulk of the action vanishes,

and only the terms proportional to the Riemann tensor in (7.71) survive, and is

IS = 64π2 (α− χ) . (7.73)
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In contrast with General Relativity then the thermodynamical energy of the solution is

⟨ES⟩ =
∂IS
∂βS

= 0, (7.74)

and the entropy is

SS = βS
∂IS
∂βS

− IS = 64π2 (χ− α) . (7.75)

These values are actually very sensible, as scale invariance forces the total energy to zero,

and the value of the entropy is precisely the topological contribution of the Gauss-Bonnet

term that would also survive in the Wald definition of entropy in the case of the vanishing

horizon of a Schwarzschild black hole (and that we removed imposing χ = α).

de Sitter solution. In this case there is no boundary term, considering that the de-

Sitter solution is a compact manifold and the bulk term gives the Euclidean action com-

pletely. In principle is possible to have an ambiguity in the sign of the periodicity, given

that the surface gravity (5.1) can, in principle, be negative. However, the Euclidean action

of de-Sitter spacetime is proportional to the surface of a four-dimensional sphere with

radius rc =
√

3
Λ
, being defined by x20 + x21 + x22 + x23 = r2c , that is

IdS = −
(
β +

χ

6
+ ϵ

ξ2

λ

)
R2

∫
dS

d4x
√
−g = −

(
β +

χ

6
+ ϵ

ξ2

λ

)
(4Λ)2 S4

(√
3

Λ

)
=

= − 384π2

(
β +

χ

6
+ ϵ

ξ2

λ

)
,

(7.76)

where ϵ is a parameter that can be either 0 or 1 if the expectation value of the scalar

field is zero or different from zero. The correct periodicity is then strictly positive βdS =

2π
√
3/
√
Λ, as so it is the temperature

TdS =
1

βdS
=

1

2π

√
Λ

3
. (7.77)

For later convenience, let us write the Euclidean action as

IdS = −384π2

(
β +

α

6
+ ϵ

ξ2

λ

)
+ 64π2 (α− χ) , (7.78)

and then the energy as

⟨EdS⟩ =
∂IdS
∂βdS

= 0, (7.79)

and the entropy as

SdS = βdS
∂IdS
∂βdS

− IdS = 384π2

(
β +

α

6
+ ϵ

ξ2

λ

)
+ 64π2 (χ− α) . (7.80)

As in the Schwarzschild case, scale invariance forces the total energy to be zero, leading

to a constant entropy in which the topological contribution of the Gauss-Bonnet term is

manifest.
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Schwarzschild-anti-de Sitter solution. In this case we still have a single horizon,

and then a single conical singularity at r = rb which can be removed with a periodicity of

the Euclidean time βSadS = 4πrb/ (1 + |Λ|r2b ), where Λ is a negative cosmological constant

such that Λ = R/4, which defines a temperature for the Schwarzschild-anti-de Sitter

TSadS =
1

βSadS
=

1 + |Λ|r2b
4πrb

. (7.81)

To define a finite Euclidean action is necessary in this case to remove a background anti-

de Sitter solution with M = 0 as in the case of General Relativity [97]. The boundary

term is then removed by the background, and the remaining finite part of the bulk of the

action is

ISadS = −128

3
π2
(
β +

α

6

) |Λ|r2b (3− |Λ|r2b )
1 + |Λ|r2b

+ 64π2 (α− χ) . (7.82)

Having a non-constant Euclidean action, the total energy is

⟨ESadS⟩ =
∂ISadS
∂βSadS

= −128π
(
β +

α

6

)
|Λ|M, (7.83)

where we removed the explicit dependence from rb reintroducing the parameter M , and

we considered Λ as fixed, being the same as the background anti-de Sitter metric. Finally,

entropy is

SSadS = βSadS
∂ISadS
∂βSadS

− ISadS = −128π2
(
β +

α

6

)
|Λ|r2b + 64π2 (χ− α) , (7.84)

which has a term proportional to the area of the black hole plus the usual topological

one. We note that if we remove the topological term by setting χ = α, and we rename

the parameters as

−128π
(
β +

α

6

)
|Λ| = 128π

(
β +

α

6

)
Λ → 1

G
, (7.85)

we recover exactly the same result of General Relativity.

Schwarzschild-de Sitter solution. While the Schwarzschild, de Sitter and Schwarz-

schild-anti-de Sitter cases can be evaluated with the same techniques of General Rela-

tivity, the Schwarzschild-de Sitter case requires some care due to the presence of two

conical singularities which cannot be simultaneously removed with a suitable period of

the Euclidean time. In [99] the Euclidean action for a Schwarzschild-de Sitter black hole

in General Relativity has been calculated as

ISdS,GR = −Ab
4G

− Ac
4G

= −8π2M2
p

(
r2b + r2c

)
, (7.86)

where Mp is the reduced Planck mass, using the explicit expression for the conical singu-

larities found in [100] in terms of Dirac delta functions. In the same paper [100] it is shown
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that it is not possible to define quadratic curvature invariants with the same techniques,

having to regularize a squared delta function. However, having no physical singularities

in the Euclidean sector, it is sensible to expect a finite value of the Euclidean action also

in the scale-invariant case. Moreover, in the calculation of the Euclidean action in [99]

it is shown that the action does not depend on the periodicity of the Euclidean time,

which acts as a tool to derive the action in the standard way and acquires physical mean-

ing only through the thermodynamical interpretation. To evaluate the action we then

exploited this fact to have more freedom in the bounds of integration of the Euclidean

action. In particular, we considered three manifolds: a Schwarzschild-de Sitter from which

we removed by hand the cosmological horizon, a Schwarzschild-de Sitter from which we

removed the black hole horizon, and a Schwarzschild-de Sitter from which we removed

both horizons. We then assumed that the Euclidean action of Schwarzschild-de Sitter is

the sum of the ones of the first two manifolds minus the action of the third

ISdS = ISdS\{c} + ISdS\{b} − ISdS\{c,b}. (7.87)

We start from the third manifold, where for now we consider the bulk and the two

boundary terms separately as

IbulkSdS\{c,b} = − 4πβp

∫ rc

rb

dr r2
(
ξϕ2R + βR2 − αCµνρσCµνρσ + χG − 1

2
∂µϕ∂µϕ− λ

4
ϕ4

)
=

= − 4πβp

(
16Λ

(
β +

χ

6
+ ϵ

ξ2

λ

)
Λ

3

(
r3c − r3b

)
+ 16M (α− χ)

(
M

r3c
− M

r3b

))
,

(7.88)

where βp is a generic periodicity of the Euclidean time, and

Ib−boundarySdS\{c,b} = − 8πβp
√
gtt

(
− 4χ (RµνKµν +RµνnµnνK − 2Rµνnµn

ρKρν)+

+ (χRµνρσ − αCµνρσ) (nµnρKνσ − nµnσKνρ + nνnσKµρ − nνnρKµσ)+

+
(
ξϕ2 + 2(β + χ)R

)
K

)∣∣∣∣∣
r=rb

=

=4πβp

(
16Λ

(
β +

χ

6
+ ϵ

ξ2

λ

)(
2rb − 3M − Λr3b

)
+ 16M (α− χ)

rb − 3M

r3b

)
,

(7.89)

Ic−boundarySdS\{c,b} = − 8πβp
√
gtt

(
− 4χ (RµνKµν +RµνnµnνK − 2Rµνnµn

ρKρν)+

+ (χRµνρσ − αCµνρσ) (nµnρKνσ − nµnσKνρ + nνnσKµρ − nνnρKµσ)+
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+
(
ξϕ2 + 2(β + χ)R

)
K

)∣∣∣∣∣
r=rc

=

= − 4πβp

(
16Λ

(
β +

χ

6
+ ϵ

ξ2

λ

)(
2rc − 3M − Λr3c

)
+ 16M (α− χ)

rc − 3M

r3c

)
;

(7.90)

the different signs in the two boundary terms are due to the opposite direction of the

normal to the boundary, which is considered to be always outgoing. Finally, the sum of

the three terms (7.88), (7.89) and (7.90) is

ISdS\{c,b} = − 4πβp

(
32Λ

(
β +

χ

6
+ ϵ

ξ2

λ

)(
rc −

Λ

3
r3c −

(
rb −

Λ

3
r3b

))
+

+ 16M (α− χ)

(
rc − 2M

r3c
− rb − 2M

r3b

))
= 0

(7.91)

where the last equivalence is given by the definitions of the horizons. Thanks to the

equivalence in (7.91), and the fact that the spatial part of the bulk action is independent

of whether we are removing the boundary or not, we can express the action for the other

two spacetimes as

ISdS\{c} =
βb
βp

(
IbulkSdS\{c,b} + Ic−boundarySdS\{c,b}

)
= −βb

βp
Ib−boundarySdS\{c,b} =

= − 24π2r2b
3M − Λr3b

(
16Λ

(
β +

χ

6
+ ϵ

ξ2

λ

)(
2rb − 3M − Λr3b

)
+ 16M (α− χ)

rb − 3M

r3b

)
,

ISdS\{b} =
βc
βp

(
IbulkSdS\{c,b} + Ib−boundarySdS\{c,b}

)
= −βc

βp
Ic−boundarySdS\{c,b} =

= − 24π2r2c
3M − Λr3c

(
16Λ

(
β +

χ

6
+ ϵ

ξ2

λ

)(
2rc − 3M − Λr3c

)
+ 16M (α− χ)

rc − 3M

r3c

)
,

(7.92)

where βb and βc are the periodicities required to remove the black hole and cosmological

horizon conical singularities, respectively, and are imposed to be both positive in order to

be consistent with the calculations used for the Schwarzschild and pure de Sitter cases.

Finally, with some simplifications, the two terms take the form

ISdS\{c} =− 128π2

(
β +

α

6
+ ϵ

ξ2

λ

)
Λr2b + 64π2 (α− χ) ,

ISdS\{b} =− 128π2

(
β +

α

6
+ ϵ

ξ2

λ

)
Λr2c + 64π2 (α− χ) .

(7.93)

The sum (7.87) then has trivially the result

ISdS = −128π2

(
β +

α

6
+ ϵ

ξ2

λ

)
Λ
(
r2b + r2c

)
+ 128π2 (α− χ) . (7.94)
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We note that, when applied to the context of General Relativity, our procedure has the

same result of [99]. While it might seem a crude calculation, this result indicates that

the Euclidean action of Schwarzschild-de Sitter is given entirely by the conical singular-

ities, exactly as shown for General Relativity in [99]. The main difference here is that

the singularity is integrated away while defining the action and not during the volume

integration, opening the possibility of using the same technique for all the actions for

which the boundary terms are known.

Finally, we note that for Schwarzschild, de Sitter and Schwarzschild-(anti-)de Sitter space-

times the Euclidean scale-invariant action ISI can be derived directly from the action of

General Relativity using the relation

ISI = 16

(
β +

α

6
+ ϵ

ξ2

λ

)
Λ

M2
p

IGR + 64π2 (α− χ)NH . (7.95)

where NH is the number of horizons and IGR is the Euclidean action of General Relativity,

and we recall that Mp is the reduced Planck mass, ϵ = 0, 1 respectively in the ϕ = 0 and

ϕ ̸= 0 cases and Λ = 0 for Schwarzschild and Λ = −|Λ| for Schwarzschild-anti-de Sitter.

In particular, with the choice of parameters χ = α and

128π

(
β +

α

6
+ ϵ

ξ2

λ

)
Λ → 1

G
(7.96)

it is possible to recover also the thermodynamical properties in the Schwarzschild and

Schwarzschild-anti-de Sitter cases, in which the cosmological constant is truly considered

as a constant parameter and does not appear in the variations (as it happens for the de

Sitter spacetime).

7.3.1 Non-linear stability and transitions of Schwarzschild-de Sitter solutions

We now move to the analysis of the non-linear stability of the two Schwarzschild-de Sitter

solutions present in the theory. To better compare the dynamical perturbation discussion,

we will analyze the Euclidean version of the simplified action (2.56), where the Euclidean

action can be trivially found from the ones of the previous discussion setting α = χ = 0.

In the case of Schwarzschild-de Sitter, in particular, the action has the form

ISdS = −128π2

(
β + ϵ

ξ2

λ

)
Λ
(
r2b + r2c

)
. (7.97)

To understand whether an unstable Schwarzschild-de Sitter black hole undergoes a transi-

tion into a stable one, we have to understand the most convenient parameters to compare

the two solutions. While in principle the Euclidean action of a Schwarzschild-de Sitter

black hole is characterized by two parameters, that is, its mass and cosmological constant,
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the scale-invariant nature of the theory removes one degree of freedom by making every-

thing dependent only from a dimensionless combination of the two parameters. With

the definitions for the black hole and cosmological horizons (5.44), the expression (7.97)

becomes

ISdS = −256π2

(
β + ϵ

ξ2

λ

)(
2− cos

(
2η

3

))
, (7.98)

where cos η = 3M
√
Λ, and therefore the difference in the actions with zero and non-zero

scalar field is

∆ISdS = ISdS, u−ISdS, s = 256π2

(
ξ2

λ

(
2− cos

(
2ηs
3

))
+β

(
cos

(
2ηu
3

)
− cos

(
2ηs
3

)))
,

(7.99)

with cos ηu = 3Mu

√
Λu and cos ηs = 3Ms

√
Λs. The two parameters Λu and Λs, however,

are not independent one from the other. If we consider the black holes as immersed in a

large, evolving universe, it is sensible to expect that the value of the effective cosmological

constant will be given by the global cosmological evolution, and will not be affected by

the presence of the black holes. The relation (5.51) will then link the two parameters,

and the two Schwarzschild-de Sitter black holes can be compared using relations between

ηu and ηs which will depend only on the free parameters of the theory. We will consider

four different relations and show that they all agree on the result.

Black holes with the same geometry. In this case we require that the parameters

M and Λ evolve in such a way that the two horizon radii are kept fixed, and then the

geometry of the spacetime does not change from one solution to the other. The relation

between ηu and ηs is clearly

ηu = ηs = η. (7.100)

In this case, the difference of the action (7.99) is always positive because only the term

multiplied by ξ2/λ, which is always positive, survives

∆ISdS = ISdS, u − ISdS, s = 256π2 ξ
2

λ

(
2− cos

(
2η

3

))
> 0. (7.101)

Black holes with the same mass parameter. In this case we require the mass

parameter M to be fixed, and then only the cosmological constant Λ changes between

one solution and the other. The relation between ηu and ηs is

ηu = arccos

(√
1 +

ξ(1 + 12ξ)

12βλ
cos ηs

)
. (7.102)

In this case the positiveness of the difference is assessed simply by requiring β, ξ, λ > 0

which, however, is a sensible requirement in order to have the terms in the action having
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a standard signature. While now in the difference of the actions (7.99) is present also the

term multiplied by β, the relation (7.102) guarantees that ηu < ηs for
√

1 + ξ(1 + 12ξ)/12βλ >

1, and then that

cos

(
2ηu
3

)
> cos

(
2ηs
3

)
for ηu < ηs. (7.103)

The difference (7.99) is then the sum of two non-negative terms and is always positive.

Black holes with the same cosmological horizon temperature. In this case, we

allow parameters M and Λ to change from one solution to the other, but we require that

the physical properties at the cosmological horizon remain unchanged. In particular we

require the local gravitational force, and then the temperature, to stay fixed, enforcing

the relation between ηu and ηs

ηu =π − 3 arccos

((
1 +

ξ(1 + 12ξ)

12βλ

)− 1
2 1

8 cos
(
π−ηs
3

)(4 cos2(π − ηs
3

)
− 1+

+

√(
4 cos2

(
π − ηs

3

)
− 1

)2

+ 16

(
1 +

ξ(1 + 12ξ)

12βλ

)
cos2

(
π − ηs

3

)))
.

(7.104)

In [35] there was an error in the derivation of this relation; nonetheless the consequences

are the same, still having ηu < ηs for
√

1 + ξ(1 + 12ξ)/12βλ > 1, and then that

cos

(
2ηu
3

)
> cos

(
2ηs
3

)
for ηu < ηs. (7.105)

Being (7.99) the sum of two non-negative terms is always positive.

Black holes with the same black hole horizon temperature. Similarly to the

previous case we allow both parameters M and Λ to change from one solution to the

other, but now we require that the physical properties at the black hole horizon remain

unchanged. We make this statement formal by requiring that the temperature at the black

hole horizon stays fixed, but we note that this also means that the classical absorption

cross section [101] is left unchanged. As the previous case there was an error in [35], and

the variables ηu and ηs are now linked by

ηu =3arccos

((
1 +

ξ(1 + 12ξ)

12βλ

)− 1
2 1

8 cos
(
π+ηs
3

)(4 cos2(π + ηs
3

)
− 1+

+

√(
4 cos2

(
π + ηs

3

)
− 1

)2

+ 16

(
1 +

ξ(1 + 12ξ)

12βλ

)
cos2

(
π + ηs

3

)))
− π.

(7.106)
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It is not necessary to analyze numerically the positivity of (7.99) because from this

relation is still valid that ηu < ηs for
√

1 + ξ(1 + 12ξ)/12βλ > 1, and then that

cos

(
2ηu
3

)
> cos

(
2ηs
3

)
for ηu < ηs. (7.107)

The results shown in [35] are then incorrect from a quantitative point of view but are

correct from the more important qualitative point of view, that is in showing that also in

the case of black holes with the same temperature at the black hole horizon, the difference

in the actions is always positive.

Finally, we can state that in all the cases under consideration

ISdS, u > ISdS, s for every M,Λu s.t. 3M
√

Λu < 1, (7.108)

where the constraint on the parameters is given by M < 1
3
min

(
1√
Λu
, 1√

Λs

)
= 1

3
√
Λu

. Such

relation guarantees that any Schwarzschild-de Sitter black hole prefers to be immersed in

a de Sitter space with a smaller cosmological constant and, in our specific case, confirms

that a Schwarzschild-de Sitter black hole will have a transition from a solution with zero

scalar field to a solution with a non-zero scalar field.

Having clarified that the unstable Schwarzschild-de Sitter will have a transition into the

stable one, what is left to understand is if the presence of a black hole immersed in the

cosmological setting described in (5.5.1) can stabilize the unstable de Sitter space, or

aggravates its instability. Taking into account the difference in the Euclidean actions of

the two de Sitter spacetimes

∆IdS = IdS, u − IdS, s = 384π2 ξ
2

λ
, (7.109)

the quantity that we want to analyze now is

∆IdS −∆ISdS = 256π2

(
ξ2

λ

(
cos

(
2ηs
3

)
− 1

2

)
− β

(
cos

(
2ηu
3

)
− cos

(
2ηs
3

)))
,

(7.110)

which quantifies the increase or decrease of tunneling probability. It is clear that, when

comparing black holes by their radius, the difference (7.99) is always smaller than (7.109),

being

∆IdS −∆ISdS = 256π2 ξ
2

λ

(
cos

(
2ηs
3

)
− 1

2

)
, (7.111)

which is always positive. The tunneling probability (7.70) will then always be smaller if

a black hole is present, and the unstable de Sitter configuration will have a longer life

expectancy. The situation is the same for black holes with the same mass parameter or
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temperature at the black hole horizon; while an analytical statement cannot be made,

considering that (7.110) is the sum of an always positive term and an always negative one,

we can assess the positivity of (7.110) numerically. In Figure 56 we show the behavior

of (7.110) for black holes with the same mass parameter or temperature at the black

hole horizon, varying the parameter βλ or ξ independently; in both cases, the tunneling

probability is reduced by the presence of a black hole, as (7.110) is positive in all the cases

considered. The difference clearly goes to zero in the case of ηs → π/2, which corresponds

to the case of vanishing M , and then it is the de-Sitter limit.

Figure 56: Decrease of the tunneling probability between two Schwarzschild-de Sitter and two de Sitter

spacetimes for black holes with the same mass parameter, in the panels on top, or the same temperature

at the black hole horizon, in the panels in the bottom, varying separately βλ, in the panels on the left,

and ξ in the panels on the right.

Comparing black holes by their temperature at the cosmological horizon renders the

discussion more complicated: as we show in Figure 57, the presence of a large black hole

will always stabilize the de Sitter solution, while the presence of a small one will always

increase its instability. This is because the maximum value of (7.110) is reached in the

Nariai limit, in which

∆IdS −∆ISdS → 128π2 ξ
2

λ
> 0, for ηs → 0, (7.112)

while the minimum is reached for a vanishing mass parameter M , that is the de Sitter
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limit, where

∆IdS −∆ISdS → 128π2 ξ
2

λ

1− 2 cos

2

3

π − 3 arccos

2 +
√

16 + ξ(1+12ξ)
βλ

2
√

12 + ξ(1+12ξ)
βλ


for ηs →

π

2
,

(7.113)

which is always negative for β, ξ and λ larger than zero. This is because the de Sitter

limit has to be taken with care in this case because it represents two de Sitter spacetime

with different cosmological constants, but with the same properties at the cosmological

horizon.

Figure 57: Change of the tunneling probability between two Schwarzschild-de Sitter and two de Sitter

spacetimes for black holes with the temperature at the cosmological horizon, varying separately βλ, in

the panels on the left, and ξ in the panels on the right.

From Figure 57 it is also clear that the minimum mass to increase the stability of the

de Sitter tunneling decreases as the ratio ξ2/βλ decreases. Considering the most recent

results obtained in the cosmological setting [28], we expect βλ to be much smaller than

ξ2, and then only microscopical black hole will increase the tunneling probability of the

de Sitter spacetimes. We note that all the discussion made in this subsection is still valid

in the full scale-invariant case: the constant term 128π2 (α− χ) is indeed equal in both

solutions, and the only difference left can be reabsorbed with a redefinition β → β + α
6
.
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8 Phenomenological signatures of quadratic gravity

The quantum motivation of the inclusion of quadratic terms suggests that the actual

variations from General Relativity should be relevant only at extremely small scales, and

the results of the previous sections, in particular the one made in the case of compact

stars in Subsection 5.4, confirm this suggestion. Most of the work of this thesis is then

relevant mainly at the theoretical level, specifically in understanding how much physi-

cal sense can have quadratic gravity. Nonetheless, we would like to conclude this thesis

by giving a flavor of the possible phenomenological impact of quadratic terms in astro-

physical solutions. While with sensible parameters the predicted values of the variations

from General Relativity are below any possible desirable sensibility of present experi-

ments, we still believe that it remains interesting to study the possible phenomenological

effects of quadratic gravity as a way of imagining test of falsifiability of General Rela-

tivity, and maybe also some test of other modified theory of gravity with different origins.

This small section is divided in two parts:

- in the first subsection we present the shadows of astrophysical compact objects, that

is, the topological surface over which lie all the innermost stable orbits of photons,

for solutions of Einstein-Weyl gravity and Starobinski’s model. We will see that not

all the solutions will have a shadow, but it will be the case for all the solutions with

a large mass; moreover, as we are accustomed by now, we see that an attractive

contribution of the tensor mode or a repulsive contribution of the scalar mode lead

to an increase in the shadow with respect to General Relativity, while an attractive

contribution of the tensor mode or an attractive contribution of the scalar mode

leads to a decrease in the shadow;

- in the second subsection we introduce a plethora of quasi-local mass definitions,

that is, definitions of the amount of mass inside a sphere of given radius r; these

definitions will all be coincident in the case of General Relativity but will be dif-

ferent in quadratic gravity. It will be possible then to imagine experiments that,

measuring only the gravitational mass of an object with different methods, are able

to characterize the potential of the solutions and have an insight into the short-scale

nature of the solution. In particular we will show that, as a matter of principle, it

is possible to determine the equation of scale of a compact star only with mass

measurements.

The results of the first subsection have not been published but are inspired by the ones

in [102]; the results of the second subsection instead have been published separately in
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[41, 52, 51], and in particular the discussion on the different mass definition is taken by

[41].

8.1 Shadow of isolated objects

Close to a compact object, the gravitational force can be so strong that any free-falling

particle cannot move away from the object. When the gravitational interaction is strong

enough to force also free-falling light rays to converge into the object, it is possible to

define the so-called photon sphere as the surface defined by the lightlike circular orbits.

This is conceptually very different from an event horizon, as an object or a light ray can

escape from the gravitational well by using some energy. Nonetheless, this surface will

still absorb most of the light, and the object will project a shadow on the light emitted

behind with a radius related to the one of this photon sphere. Picturing the shadow is

then one of the most detailed and short-scaled measurements of compact objects’ geomet-

rical structure. Moreover, in the last years, it has been proven that such measurements

are indeed possible [103, 104]. It is then one of the first astrophysical properties to be

investigated while looking at modifications of General Relativity at short scales. First, to

define the photon ring, let us consider the radial geodesic equation

d2r

dτ 2
+ Γrµν

dxµ

dτ

dxν

dτ
=

=
d2r

dτ 2
+ f(r)

(
1

2
h′(r)

(
dt

dτ

)2

− f ′(r)

2f(r)2

(
dr

dτ

)2

− r

(
dθ

dτ

)2

− r sin2(θ)

(
dϕ

dτ

)2
)

= 0;

(8.1)

where τ is either the proper time or an affine parameter, if we now specify to circular

orbits setting d2r
dτ2

= dr
dτ

= 0, and we fix θ = π/2 without loss of generality, (8.1) becomes

1

2
h′(r)

(
dt

dτ

)2

− r

(
dϕ

dτ

)2

= 0. (8.2)

It is possible to find a similar relation from the line element (2.15) as

ϵ = −h(r)
(
dt

dτ

)2

+ r2
(
dϕ

dτ

)2

, (8.3)

where ϵ = −1 for timelike geodesics and ϵ = 0 for null geodesics. Given that the photon

sphere is defined by circular null orbits, we can set ϵ = 0 and, putting together (8.2) and

(8.3), we find

rh′(r)− 2h(r) = 0, (8.4)

and the photon ring is defined by the largest root of (8.4). To define the shadow radius,

we have to correct the photon ring radius rpr by a redshift factor and, finally, we have

rsh =
rpr√
h(rpr)

, s.t. rh′(r)− 2h(r)

∣∣∣∣∣
r=rpr

= 0. (8.5)

152



8.1 Shadow of isolated object... 8 PHENOMENOLOGICAL SIGNATURES OF...

In the case of General Relativity, the photon ring radius and the shadow radius are

trivially found as rpr = 3M and rsh = 3
√
3M . At last, we present in Figure 58 the

relative difference between the shadow of the object and the one predicted by General

Relativity

δ =
rsh − 3

√
3M

3
√
3M

(8.6)

in Einstein-Weyl gravity and Starobinski’s model. The areas left in white are the ones

populated by solutions which do not have any photon ring; there is indeed no guarantee

that such property exists for all types of solutions. On the contrary, the region with

barred red lines is populated by solutions with a shadow radius more than double the

one predicted by General Relativity. This has been done for two reasons: the first one

is to picture more clearly the differences between solutions with a negative and positive

δ, and the second is that these solutions are present only in the case of extremely small

masses, which are not particularly interesting in this phenomenological context.

Figure 58: Relative variation between the shadow of the object and the one predicted by General Rela-

tivity rsh = 3
√
3M in Einstein-Weyl gravity, in the left panel, and in Starobinski’s model, in the right

panel; the solutions in the white area do not have a shadow, and the ones in the barred red one have a

shadow which is more than double the one of General Relativity.

In particular, it seems that all repulsive naked singularities do not have a shadow; how-

ever, it is not a surprise considering that they are characterized by a weakening in the

gravitational attraction with respect to General Relativity, which actually becomes a

gravitational repulsion close to the origin. We also note that an attractive contribution of

the tensor Yukawa term leads to an increase in the shadow radius, and a repulsive con-

tribution leads to a decrease, while an attractive contribution of the scalar Yukawa term

leads to a decrease in the shadow radius, and a repulsive contribution leads to an increase.

As usual, the tensor and scalar terms appear to have opposite effects on the solutions. In

particular, this suggests that, in general, wormhole solutions will have a shadow larger
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than the one predicted by General Relativity, and attractive naked singularities will have

a smaller shadow. Taking into account the results of Subsection 6.2, we then expect as a

prediction of quadratic gravity to have shadows that are slightly smaller than the ones

predicted by General Relativity. Nonetheless, we also see from Figure 58 that the relative

difference becomes less sensitive to the value of the Yukawa charges S−
0 and S−

2 as the

mass of the solution increases, and then we expect very small variation with respect to

the shadow predicted by the Einstein theory.

8.2 Mass definitions and mass discrepancies

The definition of energy posed a fundamental problem for General Relativity. Namely,

while the energy of the fields populating a spacetime can be described by the stress-

energy tensor, there is no concept of gravitational energy density, and the contribution

of gravity to the total energy has been open to a large number of interpretations (see

for example the discussion in section 11.2 of [105]). While a concept of total energy has

been proposed, and it is widely accepted, by Arnowitt, Deser and Misner [44], and other

definitions are possible in the case of spacetime with asymptotic timelike Killing vectors

[45], the definition of the so-called quasi-local energy, that is the total energy inside

a topologically 2-surface, is still a not completely solved puzzle. It is indeed possible

to have many quasi-local energy definitions, considering that the requirement of being

consistent with the global definitions at large distances is not very stringent. In particular,

it is possible to define the quasi-local energy starting from a theoretical point of view

[106, 107, 108] or from a phenomenological point of view [109]. In the particular case of

quadratic gravity, while the total energy of a static solution is a well-defined concept, and

it is proportional to the mass parameter M of the weak field limit (3.5) and independent

from the values of the Yukawa charges S−
2 and S−

0 , it is sensible to expect discrepancies

in the various possible quasi-local mass definitions. We will start by presenting various

quasi-local energy definitions, which we will call quasi-local masses because we are dealing

with static spacetimes, and they will always refer to the total energy inside a sphere of

radius r.

Misner-Sharp mass. Given a spherically symmetric spacetime with metric

ds2 = gabdx
adxb + r2dΩ2 (8.7)

where gab is the induced metric in the effective 1+1 spacetime, the Misner-Sharp mass is

defined as

r,ar
,a = f(r) =: 1− 2M(xc)

r
. (8.8)
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so that

MM -S(r) =
1

2
r(1− f(r)) (8.9)

in our case. It was originally proposed by Misner and Sharp in the context of spherically

symmetric models of gravitational collapse [106] and it was used to represent the energy, or

mass, enclosed in a spherical hypersurface at time t. It is one of the most used definitions

in the context of compact stars in quadratic theories of gravity [110, 111, 112, 113, 114].

Hayward mass. Hayward [108] proposed a quasi-local mass definition starting from

the idea of a 2+2 foliation of the spacetime. He defined a Hamiltonian 2-form, which in

the spin-connection formalism can be written as

1

2γ
H = −dA

(
R+ θθ̃ − 1

2
σabσ

ab − 2ωaω
a

)
, (8.10)

where dA is the 2-form associated with the area of a two-dimensional surface ∂Σ. The

quasi-local energy is defined as the integral of this density over ∂Σ as

E = −2γ

∫
∂Σ

dA

(
R+ θθ̃ − 1

2
σabσ

ab − 2ωaω
a

)
, (8.11)

which, however, with our ansatz for the metric, reduces to the Misner-Sharp definition

(8.9). This definition also has a theoretical motivation, and there is a solid reason why it

has been widely used in extensions of General Relativity.

Hawking mass. With a similar idea as the one of Hayward, Hawking proposed a quasi-

local mass definition starting from a 2+2 foliation of the spacetime [115]. However, its

proposal is inspired by the Gibbons-Hawking-York boundary term and is based on the

difference between the extrinsic curvature of a two-dimensional surface embedded in the

spacetime and the same surface embedded in a background one. It takes the form

E = −2γ

∫
∂Σ

dAN
(
2K − 2K0

)
, (8.12)

where 2K is the extrinsic curvature of the two-dimensional surface embedded in the

spacetime, 2K0 is the extrinsic curvature of the surface embedded in the background and

N is a lapse function taking into account time translations. When applied to our ansatz

for the metric, and considering Minkowski as background, the Hawking mass definition

becomes

MHaw(r) =
1

2
r(1−

√
h(r)f(r)). (8.13)

Nonetheless, we found no previous analysis of solutions in quadratic theories of gravity

which used such a definition, and we did not investigate its behavior in detail.
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Komar quasi-local mass. At last, we present another theoretical mass definition that

we believe is of great interest even if, to the best of our knowledge, it has not been

considered in any study of solutions of quadratic gravity. In a static spacetime it is

indeed always possible to define the mass in a natural way as the conserved quantity

associated with the timelike Killing vector

M = −4γ

∫
∂Σ

dAnµ
κν∇νκ

µ

√−κρκρ
, (8.14)

where κµ is the timelike Killing vector, ∂Σ is a two dimensional surface and nµ is the unit

normal to such surface [105]. In General Relativity it can be proved that, in the vacuum,

the integral in (8.14) is independent of the choice of ∂Σ, and the definition is well cast;

at the same time, in quadratic gravity, this is possible only in the asymptotically infinite

region, where it becomes the Komar mass definition (3.8). We can however exploit the

definition in (8.14) and consider it as the energy inside the surface ∂Σ; as usual with our

ansatz and units it becomes

MKom(r) =
1

2
r2

√
f(r)

h(r)
h′(r). (8.15)

TOV mass. In General Relativity, the total mass inside a spherical distribution of

matter is most of the time obtained from the tt-component of the field equations that,

with the Misner-Sharp mass definition and our conventions, reads

M ′(r) =
1

4γ
r2 ρ(r), (8.16)

and which implies

M(r) =

∫ r

0

ds 4πs2ρ(s). (8.17)

The integration extends to the surface r = R∗ defined by ρ(R∗) = 0 in the Tolman-

Oppenheimer-Volkoff equations (TOV) for the relativistic stellar structure [116, 117],

and reaches the limit value

MTOV =

∫ R∗

0

ds 4πs2ρ(s). (8.18)

As it is well known, MTOV does not coincides with the proper mass inside the star, but

fully describes the observational properties of a compact object (neutron star) in General

Relativity. This definition is strongly dependent on the equation of motion of General

Relativity; however, being sensible in the weak field regime (3.3), it has also been used

in quadratic theories of gravity [118, 119].
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Particle potential mass. To define the mass of a star in terms of observational prop-

erties, Resco et al. proposed a definition based on the effective potential of a massive

particle [109]. With our ansatz the particle equation of motion reads

1

2
m ṙ2 +

mf(r)L2

2 r2
+
m

2
(h(r)− 1)

f(r)

h(r)
=
f(r)

h(r)
(E −m) . (8.19)

Comparing the third term on the left hand side of (8.19) with the Newtonian (or General

Relativistic) potential energy −mM
r

we can define the mass as

MPot(r) =
1

2
r (1− h(r))

f(r)

h(r)
. (8.20)

Newtonian limit mass. In the usual non-relativistic limit of General Relativity the

gravitational potential is expressed as

ϕ(r) =
1

2
(h(r)− 1) ; (8.21)

equating (8.21) to the Newtonian potential ϕ(r) = −M
r

we can define the Newtonian

limit mass as

MNew(r) =
1

2
r (1− h(r)) . (8.22)

The motivation behind this definition is conceptually very similar to the one of Resco et

al. (8.20), and it could be derived from the particle equation of motion (8.19) imposing

that the energy on the right-hand side is independent of the radial coordinate. This

definition, however, is particularly useful, being dependent only from the time component

of the metric and then associated with the redshift of a photon emitted at radius r and

measured at infinity

z(r) =
1−

√
h(r)√

h(r)
, (8.23)

and therefore it has already been used in modified theories of gravity [68].

Kepler’s law mass. Another measurable mass definition is the one that can be inferred

from the orbital period using Kepler’s Third Law. Assuming that in some limit the

Newtonian regime is recovered, one can define the Keplerian mass from a measure of

orbital period T
r3

T 2
=

M

4π2
. (8.24)

The radial geodesic equation, in the case of a circular orbit on the equatorial plane, can

be written as
1

2
h′(r) ṫ2 − r ϕ̇2 = 0 =⇒

(
dϕ

dt

)2

=
1

2

h′(r)

r
, (8.25)
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and combined with (8.24) give rise to the definition

MKep(r) =
1

2
r2h′(r). (8.26)

In Figure 59 we collected these mass definitions for all the different types of vacuum

solutions in Einstein-Weyl gravity. While there are some important differences between

one definition and the other, some general properties can be inferred from these behaviors.

Figure 59: Quasi-local mass definitions for different solutions: in dashed black there is the Schwarzschild

metric outside the horizon, in orange there is a non-Schwarzschild black hole outside the horizon, in blue

there is a wormhole outside the throat, in green there is an attractive naked singularity and in red a

repulsive naked singularity.

All the definitions agree that repulsive naked singularities have a large and negative mass

in the origin. On the contrary, with the exception of the Misner-Sharp and the Resco et

al. definitions, all the others agree that attractive naked singularities have a vanishing
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mass in the origin. The Resco et al. definition is also the only definition for which it

can be stated that wormholes have a mass that increases as we get closer to the origin,

while all the other solutions have a mass that decreases. Nonetheless, this property is

present at large distances for all the definitions considered, and it is the most important

from a phenomenological point of view. To focus more on the astrophysical sense of

these definitions, we show in Figure 60 the mass-radius relations for the mass definitions

considered, evaluated at different distances from the star surface d = r − R∗; we note

that we did not consider the Hawking definition (8.13), while we considered the TOV one

(8.18). Each definition has its specific mass-radius relation and its specific dependence

from the distance d, although it is a general feature that they coincide with the asymptotic

limit after a few solar Schwarzschild radii from the surface, except the TOV mass that is

identically identified by its value at the star surface.

Figure 60: Mass-radius relations for different mass definitions, evaluated at different distances from the

star surface.

The large variety in the possible behaviors, and in particular with the mass-radius re-

lations of the same class of solutions, leaves us with two possible approaches to the

interpretation of mass in quadratic gravity:

• the only meaningful definition of mass is the asymptotic one M , and in order to
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completely define the gravitational field we have to measure the tensor and scalar

charges S−
2 and S−

0 ;

• each mass definition describes a particular physical property of the star, and any

star analysis has to consider carefully which aspect is under investigation.

While both approaches in the specific case of quadratic gravity seem to be simply differ-

ent ways of formulating the same problem, we believe that the second approach is more

powerful, as it is less dependent on the underlying theory of gravity. In particular, we can

reverse our point of view and state that the presence of discrepancies between different

mass definitions can be taken as a strong indication of departure from General Relativity.

Indeed, any metric different from the Schwarzschild one will have a discrepancy between

at least two mass definitions, and then this approach leads to an interesting falsifiability

mechanism of General Relativity.

Still, we would like to show how these mass discrepancies can be used as a gravitational

measure of the microscopical nature of the solutions. As a toy-model example, we can

imagine measuring the mass of an object with the redshift of a photon emitted at a radius

r̄ by some gas using

MNew(r̄) =
1

2
r̄ (1− h(r̄)) =

1

2
r̄

(
1− 1

(1 + z(r̄))2

)
, (8.27)

where z is the redshift, or by the transit of a satellite, assuming that in some limit we

can use Kepler’s third law, using

MKep(r̄) =
1

2
r̄2h′(r̄) =

(
2π

T

)2

r̄3, (8.28)

where T is the orbital period. Both measurements will coincide with the ADM mass

parameter M at infinity but will have discrepancies when evaluated at finite radii. In

Figure 61 we show how these mass definitions differ from the asymptotic value if measured

at a radius r̄ = 3M , which is the radius of the photon sphere for a Schwarzschild black

hole, in the case of Einstein-Weyl gravity; we have removed the area of the phase diagram

populated by no-sy wormholes with throat radius greater than 3M which, however, is not

relevant in the large mass limit.

As could be expected, the discrepancy increases for small masses but is still present at any

scale. In particular, in the limit in which the spacetime at r̄ is already in the linearized

regime, the differences become

M −MNew(r̄) = S−
2 e

−m2 r̄ +
1

2
S−
0 e

−m0 r̄,

M −MKep(r̄) = S−
2 e

−m2 r̄ (1 +m2 r̄) +
1

2
S−
0 e

−m0 r̄ (1 +m0 r̄) .
(8.29)
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Figure 61: Differences in observable masses measured at infinity and at r̄ = 3M ; in the left panel the

mass MN is measured by the redshift of a photon, while in the right panel the mass MK is measured

using Kepler’s third law. The white region is removed, being populated by wormholes with throat radius

rT > 3M .

While both measurements will be exponentially suppressed, is still noticeable the linear

dependence from the Yukawa charges S−
2 and S−

0 . Thanks to the phase diagram pictured

in Figure 10 we can conclude that, as a rule of thumb, repulsive naked singularities will

always have a smaller mass when measured closer to the origin, attractive naked singulari-

ties will always have a larger mass, and wormholes can have both behaviors; in particular,

in the case of Einstein-Weyl gravity it will always be larger, and in Starobinski’s model

it will always be smaller.

This toy model becomes even more interesting if we consider the case of a neutron star

with an orbiting plane. We can indeed consider one mass measurement from the redshift

emitted at the star surface

MNew(R∗) =
1

2
R∗

(
1− 1

(1 + z(R∗))
2

)
, (8.30)

and the mass measured from the transit of the planet, which is considered to be at a

distance d from the star’s surface, as

MKep(d) =

(
2π

T

)2

(R∗ + d)3 . (8.31)

We believe that this case is more interesting because even if the planet is distant enough

from the neutron star to have a Keplerian mass indistinguishable from the ADM one M ,

the mass measured by the redshift will still be different. In particular, we show in Figure

62 the difference between the two measurements for the case of six different stars with

asymptotic masses between [0.5− 2.642]M⊙.

Finally, we conclude with the most interesting aspect of these different mass measure-

ments. If we consider stars with the same asymptotic mass M but different equations
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Figure 62: Differences between masses measured with surface redshift or planetary transit, in function

of the distance from the star surface, for stars with asymptotic masses in the range [0.5− 2.642]M⊙.

of state, we know from the results in Subsection 4.3 that they will have different values

of the Yukawa charges. This means that they will also have different quasi-local mass

definitions, and then, in principle, it is possible to study the microscopical nature of the

fluid from purely gravitational measurements. In particular, we show in Figure 63 the

difference between the two mass definitions for stars of one solar mass but with different

equations of state.

Figure 63: Differences between masses measured with surface redshift or planetary transit, in function

of the distance from the star surface, for stars with different equations of state and asymptotic mass

M = M⊙.

Albeit the large range of possibilities for the masses m2 and m0 might render a prediction

on the equations of state effectively useless, and the natural values of the masses at the

order of the Planck mass might render the effective phenomenological prediction many

orders of magnitude under the precision of current experiments, the idea of being able

to infer the microscopical nature of a compact star exclusively from different measures

on its gravitational mass is very intriguing. As a final remark, we would like to stress
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one more time that, while using these mass discrepancies as a test of a specific theory of

gravity is a utopistic goal, it is still relevant as a falsifiability test of General Relativity.
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Conclusions

In this thesis we analyzed the most simple isolated objects, namely static and spherically

symmetric, in the context of very natural extensions of General Relativity at high ener-

gies, that is, quadratic theories of gravity. The main goal was to understand the possible

contributions to the physical content of our universe of terms quadratic in the curvature

tensors in the gravitational action, terms that appear following different approaches to

quantum gravity. While a lot of work can still be done in this analysis, we believe that

some physical consequences are manifest already in this simplified setting. In Section 2

we presented the two theories under analysis: in the first one, which we called quadratic

gravity, General Relativity is corrected by the addition of all possible quadratic combina-

tions of curvature tensors that can be collected in a Ricci scalar squared term and a Weyl

tensor squared term; in the second one, which we called scale-invariant gravity, quadratic

gravity is modified by the substitution of the only mass-scale present in the theory, that

is the Planck mass scale, with a dynamical scalar field. In both cases, we also considered

some simplified “sectors” in which some terms are suppressed. In these final remarks,

we will separate the discussion on the two theories to focus on the most relevant and

physically interesting aspects.

In quadratic gravity, we studied all possible behaviors of static, spherically symmetric and

asymptotically flat spacetimes. In order to do that, we had to consider various analytical

approximations and integrate numerically between the different approximated solutions

with the procedures described in Section 3. In particular, we specify that the asymptotic

gravitational potential at large distances is characterized by the total mass M and the

charges S−
2 and S−

0 of two contributions with a Yukawa-like form associated with a tensor

and scalar mode, respectively. In Section 4 we studied the relation between the relative

values of these three parameters and the behavior of the metric at short scales, in Section

5 we presented the main geometric properties of the different families of solutions found,

in Section 6 we studied their stability and, finally, in Section 7 we studied the black hole

evaporation process and in Section 8 some possible phenomenological properties. We now

briefly summarize the results for the different types of solutions of quadratic gravity.

Black holes. Together with the Schwarzschild metric, a family of non-Schwarzschild

black holes also exists. Thanks to a theorem we presented in Subsection 2.1, they are

present in a simplified setting, called Einstein-Weyl gravity, in which also the Weyl tensor

squared term is present and then S−
0 = 0. In contrast with the case of General Relativity,

for this type of black hole, as the radius of the event horizon decreases, their total mass and

entropy increase while their temperature decreases. In particular, for non-Schwarzschild
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black holes with a horizon radius smaller than a specific value, namely rH = 0.876 in

numerical units, the Yukawa term in the asymptotic gravitational potential will have a

repulsive contribution, and as the horizon radius gets to zero, the mass and entropy reach

a finite value, while the temperature vanishes. For black holes with a horizon radius larger

than that specific value, on the contrary, as the horizon radius increases, both the mass

and entropy become large and negative, and the temperature increases indefinitely. Both

the negative mass and negative entropy are a signal of the presence at the classical level of

the ghost instabilities present in the quantized version of quadratic gravity. The analysis

of dynamical perturbations confirmed a recent statement for which both Schwarzschild

and non-Schwarzschild black holes are unstable under the specific radius rH = 0.876. If

we assume that an evaporating black hole will always remain in a stable phase, stability,

together with the peculiar Thermodynamics of non-Schwarzschild black holes, implies

that at the present time there should be extremely repulsive isolated objects; not being

the case, we conclude by stating that either quadratic gravity is a flawed theory of gravity,

black holes are not physical solutions of quadratic gravity, or that the final stages of black

hole evaporation have to be in a dynamically unstable phase. As to Schwarzschild black

holes, being present in a zero-measure region of the phase diagram, they do not appear

to be the generic vacuum solution of quadratic gravity.

Repulsive naked singularities. Solutions characterized in general by either a neg-

ative mass or a positive value of the tensor charge S−
2 , which is characterized by the

repulsive contribution of a tensor mode, are naked singularities with a repulsive gravi-

tational interaction close to the origin. This type of singularity cannot be reached by a

massive particle, and provides an extreme blueshift to particles emitted close to it. They

will then be completely different from black holes, as they will not have a shadow, they

cannot be reached, and an orbiting gas will emit photons with extremely high frequencies.

Their behavior under dynamical perturbations appears to be stable only in the case of

large masses and small values of Yukawa charges. Moreover, if an experiment measures

the object’s mass as perceived by an observer close to it, it will always detect a smaller

value than the one measured at large distances. Due to their “emitting” nature, they do

not seem plausible candidates to substitute black holes as solutions describing compact

objects.

Attractive naked singularities. Solutions characterized by a positive mass and an

attractive contribution of the scalar mode, and then a negative value of S−
0 , are naked

singularities with an attractive gravitational interaction close to the origin. These solu-

tions are a peculiarity of quadratic gravity and find no similar counterparts in General
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Relativity. A free-falling object will always reach the singularity and, as it gets closer, it

will experience extreme tidal forces in the radial direction. Contrary to what happens for

repulsive naked singularities, photons that move away from the singularity experience an

extreme redshift and will reach spatial infinity with very low frequencies. They have a

shadow, which, however, is always slightly smaller than the one of a Schwarzschild black

hole with the same mass. Thanks to their attractive nature, they seem to be stable under

linear perturbations, most likely as the perturbations reach the singularity and they can-

not escape from it. Generically speaking, an experiment that measures the object’s mass

as perceived by an observer close to it will always detect a larger value than the one mea-

sured at large distances. They do not appear to have particularly unphysical properties,

and they could be good candidates to be generic solutions representing compact objects.

Non-symmetric wormholes. Solutions with a positive mass and competing contri-

butions of the two Yukawa terms, that is, one is attractive and the other is repulsive,

will generally be wormhole solutions. In quadratic gravity, wormholes are solutions that

connect an asymptotically flat spacetime with another one that has a singularity at spa-

tial infinity, at a specific radius called throat. The gravitational force will be attractive

towards the throat in the asymptotically flat patch and repulsive in the second one. Simi-

larly to what happens for attractive naked singularities, free-falling objects will experience

extreme tidal forces close to the singularity, and photons which go towards spatial infinity

in the asymptotically flat patch will be very redshifted. In contrast with naked singulari-

ties, however, they have a shadow larger than the one of a Schwarzschild black hole with

the same mass. The analysis of linear perturbation seems to confirm the behavior typical

to many traversable wormhole solutions, that is, they are all unstable. While they share

many properties with attractive naked singularities, they do not appear to be generic

solutions of quadratic gravity.

Compact stars. As global properties, compact stars are not qualitatively different

from those present in General Relativity. As for the additional modes of quadratic grav-

ity, non-vacuum solutions are favored by a repulsive contribution of the tensor mode

and an attractive contribution of the scalar one; in particular, they have an asymptotic

potential which is a transition between the one of attractive and repulsive naked singu-

larities. The main effect of the quadratic terms is a major weakening of the gravitational

interaction, with a smaller internal pressure able to sustain much more massive stars. As

for vacuum solutions, the Weyl tensor squared term has a much stronger effect than the

Ricci scalar squared one. A relevant aspect is that the equation of state has an impact

on the value of the Yukawa charges, and then two stars with the same total mass but

166



CONCLUSIONS

composed of two different fluids have a different gravitational potential closer to their

surface. In particular, if a star’s mass is measured both at large distances and, for ex-

ample, by the redshift of a photon emitted at the star’s surface, the two results will be

different and sensitive to the equation of state of the fluid. However, natural values of

the free parameters of the theory force the possible phenomenological deviations from

General Relativity to be much smaller than the precision of current experiments.

In scale-invariant gravity, we studied analytical solutions of General Relativity whenever

they are considered as solutions of this more complex theory. In particular, we consid-

ered their stability under linear perturbations and with a semiclassical analysis of the

Euclidean action. Scale-invariant gravity is indeed known to have two de Sitter solutions

in cosmological settings, of which one has a zero value of the scalar field and is unstable,

and one has a non-zero value of the scalar field and is stable. There is also a numerical

solution that describes a transition between the two solutions, which can model inflation

and reheating with good accuracy. In the static and spherically symmetric setting, there

are indeed two Schwarzschild-de Sitter solutions, and our analysis of linear perturbations

showed that the one with a zero scalar field is unstable and the one with a non-zero field is

stable. The semiclassical analysis instead relies on the idea that, in the semiclassical limit

of a path integral formulation of quantum gravity, a solution that is in a relative mini-

mum of the action will tunnel into a solution in a true minimum (or at least in a relative

minimum with a smaller action). To evaluate the Euclidean action of Schwarzschild-de

Sitter black holes, for which the standard approach cannot be used because they have two

horizons, we developed a technique that can be applied to all the theories for which the

boundary terms are known. In particular, the Euclidean action will be given precisely by

the boundary terms evaluated on the horizons. The semiclassical analysis has shown that

the unstable solution has a transition into the stable one, indeed confirming the numerical

results of the cosmological setting. Moreover, there is much evidence that the presence of

black holes stabilizes the unstable pure de Sitter configuration, and the transition to the

stable one is slower.

To conclude, including quadratic terms in the action greatly expands the number of

possible vacuum solutions representing isolated objects. All the solutions still present a

singularity in the origin, but some have a physical structure for which the singularity is

not particularly problematic. Nonetheless, the theory’s intrinsic instabilities also impact

classical solutions, and most of them are unstable. However, in the case of black holes,

dynamical instability is the only way out from the thermodynamical instability which

would completely spoil the physical predictions of the theory. Imposing scale symmetry
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by substituting the Planck mass scale with a dynamical scalar field seems to constrain

such instabilities. While we do not know the impact on exotic geometries, and we know

that instabilities are still present, there is much evidence that scale invariance protects

unstable solutions from being completely disrupted and leads them through a transition

into a stable form. While for actual physical predictions it would be necessary to study

rotating solutions (for which we show only some very timid and preliminary steps in

Appendix B), we believe that the analysis done in this thesis gives an insight into the

possible directions that can be fruitful, and the ones that do not seem to lead to physical

situations, in the study of these natural extensions of General Relativity.

168



A TACHYONIC BLACK HOLES

Appendices

A Tachyonic black holes

Motivated by the results in the asymptotic safety approach to quantum gravity [120, 121]

which show that the value of the parameter α in (2.5) is negative at the fixed point, in

[24] we investigated the case of black holes for which m2
2 < 0. The massive particle with

spin S = 2 is then not only a ghost but also a tachyon and, for this reason, we called

the black hole solutions found in this case “tachyonic black holes”. Nonetheless, it seems

that the scalar mass remains real and then the theorem 1 can still be applied, and black

holes can be considered in the case of Einstein-Weyl gravity. The linear theory can be

solved analytically, and the metric takes the form

h(r) = 1− 2M

r
+ 2A2

cos (|m2|r + ϕ2)

r
,

f(r) = 1− 2M

r
+ A2

cos (|m2|r + ϕ2)

r
+ A2|m2| sin (|m2|r + ϕ2) ,

(A.1)

where |m2| is the modulus of the imaginary mass, and ϕ2 is an additional parameter

that has to be included as we cannot remove one free parameter by requiring asymptotic

flatness as done in (3.4) to obtain (3.5). In fact imposing asymptotic flatness forces the

solution to be the Schwarzschild one, having the last term in the definition of f(r) not

vanishing at large distances. It is indeed necessary to impose A2|m2| ≪ 1 for the linear

solution to be consistent. The shooting method can be used exactly as in the standard

case using equations (2.40) with m2
2 = −1 with boundaries (A.1) and (3.28), and in

general will find results as the one shown in Figure 64 as an example.

Figure 64: Metric of a tachyonic black hole with mass M = 0.746, amplitude A2 = −0.170 and phase

ϕ2 = π/2.

From the right plot of the f(r) metric function the non-asymptotically flat nature of

169



A TACHYONIC BLACK HOLES

the solution is manifest, and from the left plot of the h(r) is manifest that, on the

other hand, the Newtonian asymptotic potential ϕ(r) ∼ 1
2
(h(r)− 1) will have suppressed

oscillations. An oscillatory solution with similar features was already found in the context

of asymptotically safe gravity in [122] by looking at minima of the Euclidean action for a

Starobinski model with imaginary mass m2
0 < 0, and also appeared in a linearized higher

derivative theory in [123], where they were compared to Friedel oscillations in plasma

[124]. The concluding remarks of [122] where that an external observer will see an average

of the metric over an interval determined by the length scales at which the experiments

are being done, more than the metric itself; these remarks can also be applied to our case,

and having oscillations with periodicity T = 2π/|m2|, it is sufficient to do experiments at

length scales larger than ∼ l2 = 1/m2 to not being able to detect deviations from General

Relativity. We highlight this property by showing in Figure 65 the metric of the black

hole solution of the previous example at large distances, its moving average over intervals

of ∆r = 2, 4, 6, and the corresponding Schwarzschild metric.

Figure 65: Metric of a tachyonic black hole with mass M = 0.746, amplitude A2 = −0.170 and phase

ϕ2 = π/2 in solid blue and red lines, in dashed blue and red the metric we have shown the moving

average over an interval of ∆r = 2, in dot-dashed blue and red the metric we have shown the moving

average over an interval of ∆r = 4, in dotted blue and red the metric we have shown the moving average

over an interval of ∆r = 6 and in dashed black there is the Schwarzschild metric with mass M = 0.746.

We can perform an analysis similar to the one made in the non-tachyonic case and derive

the relations between the different parameters describing the black holes either at spatial

infinity or close to the horizon. However, we must note that in this case the parameter

M is not the ADM mass of the solution. Employing (3.6), the total energy results indeed

divergent

E ∼ 2γ lim
r→∞

4πr2
(
2M

r2
− 2A2

cos (|m2|r + ϕ2)

r2
− 2A2|m2|

sin (|m2|r + ϕ2)

r

)
→ ∞.

(A.2)
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This is actually no surprise, because tachyonic black holes are not asymptotically flat

solutions, and the standard definitions of mass cannot be used. A suitable non-Minkowski

vacuum solution should be derived, in order to remove its contribution from the energy

of black holes and define the total energy of the solutions. We can still call the parameter

M the mass of the solution only if we assume that there is a certain limit in which the

metric average is well approximated by a Schwarzschild solution with the same parameter

M . We present in Figure 66 the parameter space both for the asymptotic parameters and

the parameters at the horizon. Having an additional parameter ϕ2, black holes populate

an area of the parameter space, of which we presented some one-dimensional sectors of

constant phase. We note that changing the phase as ϕ2 → ϕ2 + π will not change the

parameters at the horizon, while it will change the asymptotic parameters as (M,A2) →
(M,−A2). It also seems that black holes densely populate the area of small mass M , but

need larger values of the amplitude A2 to go to larger mass values, leaving the region

around Schwarzschild black holes free.

Figure 66: Parameter space for tachyonic black holes, on the left there are the asymptotic ones, that are

the “mass” parameter M and the amplitude A2, and on the right there are the ones at the horizon, that

are the first derivatives of the metric f1 and h1; we used the same colors for solutions with a difference

of π in their phases ϕ2, as they have the same parameters at the horizon and the asymptotic parameters

can be found one from the other as (M,A2) → (M,−A2).

In Figure 67 we also present the thermodynamical properties of tachyonic black holes,

that is, the Hawking temperature and Wald definition of entropy, in terms of the horizon

radius. Also in this case there is no proof that these definitions represent actual physical

properties, as both definitions rely on the possibility of defining the total energy of the

solution. Nonetheless, if we make the strong assumption that it is possible to define a

Thermodynamics of these black holes, and that the thermodynamical properties will be

defined in the same way as it is done for standard black holes, it is interesting to note

that tachyonic black holes have particularly standard temperatures and entropies. While

at a quantitative level they differ from the definitions for Schwarzschild black holes, the
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temperature is still proportional to a negative power of the horizon radius, that is, it

decreases for larger black holes, and the entropy is proportional to a power of the area,

with a vanishing entropy for a vanishing black hole.

Figure 67: Thermodynamical parameters for tachyonic black holes in terms of the horizon radius; on the

left there is the Hawking temperature TBH and on the right the Wald definition of entropy SWald.

While regarding the stability of these solutions, however, due to the negative value of

the squared mass m2
2, the potential of perturbation (6.21) will go at a negative value at

large distances; in units of |m2|, the potential will indeed go to V (r) → −1 as r → ∞.

This property made all the tachyonic black hole solutions considered extremely unstable

under linear perturbations, as can be seen by the example shown in Figure 68. From the

plot of the potential is manifest both the solution’s oscillating nature and the potential’s

negative limit at large distances. On the contrary, the time evolution of the perturbations

at radius r∞ = 50 does not have oscillations even at very early times, and it seems to

diverge as a power law.

Figure 68: Linear perturbations of a tachyonic black hole with mass M = 0.746, amplitude A2 = −0.170

and phase ϕ2 = π/2; in the left panel there is the potential for perturbations in terms of the tortoise

coordinate, while in the right panel there is the time evolution of the perturbation at radius r∞ = 50.

More importantly, however, is that the potential has the negative limit V (r) → −1

as r → ∞ also in the case of Schwarzschild black holes. As shown in Figure 69 the
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potential reaches this limit without oscillations, which is sufficient to produce a power

law divergence of the perturbations.

Figure 69: Linear perturbations of a Schwarzschild black hole with mass M = 0.75 in the tachyonic case;

in the left panel there is the potential for perturbations in terms of the tortoise coordinate, while in the

right panel there is the time evolution of the perturbation at radius r∞ = 50.

From our analysis, it seems that all the black hole solutions considered are unstable,

regardless of their parameters. The negative limit of the potential will probably lead

all the solutions of the theory into an unstable phase, and then we believe that these

solutions cannot model astrophysical objects.
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B Rotating solutions and Newman-Janis algorithm

One of the initial goals of this thesis was to derive a rotating counterpart to the spheri-

cally symmetric solutions of quadratic gravity, as current observations indicate that the

astrophysical black holes of our universe are indeed represented by rotating solutions.

We did not manage to produce any sensible result, but we would like to present in this

appendix a strong constraint on the possible approaches that we found while working on

this problem.

The ansatz for the metric for a stationary axisymmetric solution, that is, a rotating

solution, can be written using a Boyer-Lindquist form as

ds2 = −H(r, θ)dt2 + J(r, θ)dtdϕ+
dr2

F (r, θ)
+
(
r2 + a cos2(θ)

)
dθ2 +G(r, θ)dϕ2, (B.1)

where we considered the gθθ component of the metric to be equal to the corresponding

flat one in oblate spheroidal coordinates and a indicates the oblateness, which can also

be written as

ds2 = −H(r, χ)dt2 + J(r, χ)dtdϕ+
dr2

F (r, χ)
+
r2 + aχ2

1 + χ2
dθ2 +G(r, χ)dϕ2, (B.2)

where χ = cos θ, and that will be useful in the following discussion. It is clear that the

equations of motion of (B.1) will be much more complicated than the already very com-

plicated ones of the spherically symmetric case (2.20). Unfortunately, also the linearized

equations of motion are much more complicated and cannot be solved analytically. The

difficulty of finding rotating solutions in modified theories of gravity has then attracted

the attention of many physicists to the Newman-Janis algorithm, a procedure (or trick,

as it is also called) to derive rotating solutions acting on a seed static and spherically

symmetric ansatz (see for example [125]). Following [126] or [127], the procedure works

as follows:

- write the static and spherically symmetric metric in advanced null coordinates

ds2 = −h(r)du2 +

√
h(r)

f(r)
dudr + r2dθ2 + r2 sin2(θ)dϕ2; (B.3)

- express the inverse metric in terms of a null tetrad

gµν = lµnν + nµlν −mµm̄ν − m̄µmν , (B.4)

where

lµlµ = nµnµ = mµmµ = 0, lµnµ = −mµm̄µ = 1, lµmµ = nµmµ = 0, (B.5)
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that with our ansatz can be written as

lµ = δµr , nµ =

√
f(r)

h(r)
δµu −

1

2
f(r)δµr , mµ =

1√
2 r

(
δµθ +

i

sin(θ)
δµϕ

)
;

(B.6)

- extend the coordinates in the complex plane as

xµ → zµ = xµ + iyµ(x), (B.7)

where the yµ(x) are functions of the real coordinates xµ, and then extend also the

tetrad in the complex plane

lµ(x) → lµC(z), nµ(x) → nµC(z), mµ(x) → mµ
C(z), (B.8)

with the requirement that whenever zµ = z̄µ the original tetrad is found (N.B. this

is the most delicate and controversial point, as there is no mathematical or physical

rule for the extension of the tetrad);

- perform the complex coordinate transformation

z̃µ = zµ + ia cos(θ) (δµu − δµr ) , (B.9)

under which the tetrad transforms in the standard way

l̃µC(z̃) =
∂z̃µ

∂zν
lνC(z), ñµC(z̃) =

∂z̃µ

∂zν
nνC(z), m̃µ

C(z̃) =
∂z̃µ

∂zν
mν

C(z), (B.10)

and then it will take a form dependent on the complex radius r and angle θ as

l̃µC = δµr , ñµC =

√
f(r, θ)

h(r, θ))
δµu −

1

2
f(r, θ)δµr ,

m̃µ
C =

1√
2 (r − ia cos(θ))

(
ia(δµu − δµr ) + δµθ +

i

sin(θ)
δµϕ

)
;

(B.11)

- construct a new inverse metric using the new tetrad

g̃µν = l̃µCñ
ν
C + ñµCl̃

ν
C − m̃µ

C
¯̃mν

C − ¯̃mµ
Cm̃

ν
C; (B.12)

- using a suitable coordinate transformation

u = t−
∫

dr

√
f(r,θ)
h(r,θ)

(r2 + a2 cos2(θ)) + a2 sin2(θ)

f(r, θ)(r2 + a2 cos2(θ)) + a2 sin2(θ)
,

ϕ =ϕ−
∫

dr
a

f(r, θ)(r2 + a2 cos2(θ)) + a2 sin2(θ)
,

(B.13)
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together with θ = arccos(χ) we can rewrite the metric in Boyer-Lindquist coordi-

nates as

ds2 = − h(r, χ)dt2 − a(1− χ2)

(
h(r, χ)−

√
h(r, χ)

f(r, χ)

)
dtdϕ+

+
r2 + a2χ2

(r2 + a2χ2)f(r, χ) + a2(1− χ2)
dr2 +

r2 + aχ2

1 + χ2
dθ2+

+ (1− χ2)

(
r2 + a2χ2 − a2(1− χ2)

(
h(r, χ)− 2

√
h(r, χ)

f(r, χ)

))
dϕ2,

(B.14)

which is a particular case of (B.2) in which the functions H(r, χ), F (r, χ), J(r, χ)

and G(r, χ) satisfy two algebraic equations.

Using this algorithm, it is possible to derive the Kerr metric starting from the Schwarzschild

one, and it was used to derive for the first time the Kerr-Newman metric, which was ver-

ified to be a solution of the Maxwell-Einstein equations a posteriori, starting from the

Reissner-Nordström one. In [127] it was used to derive the rotating counterpart of a so-

lution of f(R) gravity found exploiting Noether symmetry but, at the same time, it has

been proven that the Newman-Janis algorithm in quadratic gravity finds solutions which

are not solutions of the equations of motion [128]. In the case of quadratic gravity is in-

deed possible to prove that this second statement is indeed correct, as the Newman-Janis

algorithm can produce only the Kerr-Newman metric. In [126] two theorems are proven,

that are:

Theorem 4. The only algebraically special spacetimes generated by the Newman-Janis

algorithm are Petrov type D.

and

Theorem 5. The only Petrov type D spacetime generated by the Newman-Janis algorithm

with a vanishing Ricci scalar is the Kerr-Newman spacetime.

and we refer to the original paper for the relative proofs. The first theorem is somehow

intuitive and natural, considering that isolated objects are of Petrov type D. The second

theorem, however, imposes a strong constraint on the possible solutions. In particular,

we present an additional theorem

Theorem 6. All the stationary, axisymmetric and asymptotically flat black hole solutions

of quadratic gravity have R = 0 outside the event horizon.

which can be proven with the same techniques we used for similar no-hair-like theorems

in this thesis.
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Proof. Let us consider a stationary and axisymmetric metric

ds2 = γab(y)dx
adxb + hij(y)dy

idyj, (B.15)

where the indices a, b run over the directions t, ϕ and the indices i, j over the directions

r, θ. The trace of the equations of motion (2.10) can be written as

□R−m2
0R = DiDiR +

1

2
γab∂iγabDiR−m2

0R = DiDiR +
1√
−γ

Di
√
−γDiR−m2

0R = 0,

(B.16)

where Di is the covariant derivative defined by the hij metric and γ is the determinant

of γab. As usual we multiply by
√
−γR and integrate in the submanifold defined by the

yi vectors ∫
Σ

drdθ
√
h
[√

−γRDiDiR +RDi
√
−γDiR−

√
−γm2

0R
2
]
=[√

−γRDiR
]
∂Σ

−
∫
Σ

drdθ
√
h
√
−γ
[(
DiR

)
(DiR) +m2

0R
2
]
=0,

(B.17)

and, if hij is positive definite, the vanishing of the boundary term requires R = 0 in all

the surface Σ. If we consider the surface to be between spatial infinity and a black hole

horizon, we have that
√
−γRDiR → 0 as r → ∞ because the spacetime is asymptotically

flat, and that
√
−γRDiR → 0 as r → rH because γ → 0 as r → rH for the definition

of the event horizon. Being the spacetime axisymmetric, the surface Σ is independent of

the choice of angle ϕ, and the black hole has zero Ricci scalar outside the horizon. □

Putting together theorems 4, 5 and 6 we conclude that the Newman-Janis algorithm

can be used consistently in quadratic gravity only to produce the Kerr metric from a

Schwarzschild seed. A more viable approach to the problem of rotating solutions is prob-

ably the slowly rotating approximation, which already showed some interesting results

for solutions of quadratic gravity [129].
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