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A B S T R A C T   

Land Use Land Cover (LULC) segmentation is a famous application of remote sensing in an urban environment. 
Up-to-date and complete data are of major importance in this field. Although with some success, pixel-based 
segmentation remains challenging because of class variability. Due to the increasing popularity of crowd- 
sourcing projects, like OpenStreetMap, the need for user-generated content has also increased, providing a 
new prospect for LULC segmentation. We propose a deep-learning approach to segment objects in high-resolution 
imagery by using semantic crowdsource information. Due to satellite imagery and crowdsource database 
complexity, deep learning frameworks perform a significant role. This integration reduces computation and labor 
costs. Our methods are based on a fully convolutional neural network (CNN) that has been adapted for multi- 
source data processing. We discuss the use of data augmentation techniques and improvements to the training 
pipeline. We applied semantic (U-Net) and instance segmentation (Mask R-CNN) methods and, Mask R–CNN 
showed a significantly higher segmentation accuracy from both qualitative and quantitative viewpoints. The 
conducted methods reach 91% and 96% overall accuracy in building segmentation and 90% in road segmen-
tation, demonstrating OSM and remote sensing complementarity and potential for city sensing applications.   

1. Introduction 

Urban land use and land cover (LULC) information is changing 
rapidly and exploring it is very important for analyses of the environ-
ment, land resource management, yield estimation, city planning, 
change detection analysis, and emergency/disaster situations in urban 
environments (Huang et al., 2018). Remote sensing data are an effective 
way to extract the LULC information automatically. After the acquisi-
tion, satellite data are processed and geo-referenced for many applica-
tions. Satellite images are identified as a valuable source and 
high-resolution images have received strong attention in recent years 
for the updated LULC mapping (Zhang et al., 2016). However, the up-
date of LULC maps is a non-trivial task as it requires a large amount of 
time and cost to acquire and manipulate the very high-resolution (VHR) 
remote sensing data. 

Although advancement in remote sensing, data processing for LULC 
is complex, and sometimes image processing methods fail in critical 
applications like disaster management (Geiß et al., 2017). Often 
methods end up with limited accuracy because LULC-supervised clas-
sification methods such as artificial intelligence and advanced strategies 

being edge-based, shadow-based, and object-based (Lambers and Trav-
iglia, 2016; Ok, 2013) require optimal training datasets. In supervised 
classification, human users manually draw labels to train the algorithm. 
To have high-quality training, testing, and validation datasets the 
preparation requires time and implies costs. Also, for validation of 
classification maps, reference data are collected by humans using survey 
techniques including Global Positioning System (GPS) and Geographic 
Information System (GIS) maps. Unfortunately, training samples with 
high quality and quantity are seldom available and the development of a 
high-level automatizing procedure for extracting information from 
remote sensing imagery remains a major challenge. The absence of both 
unique joint learning techniques and high-quality training samples were 
noted as two important obstacles to efficient deep learning for remote 
sensing at a large scale (Li et al., 2022; Hong et al., 2020). There is still 
some accessible information such as Google maps and GIS databases, 
which rely on user-input crowdsourced annotations. 

Crowd sourcing is collecting data/information by expert and non- 
expert volunteers from different geographical locations and freely 
available with the coverage of the entire world on the internet. With the 
advancement in Volunteer Geographic Information (VGI) and geospatial 
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crowd sourcing efforts, the well-known user-generated content is OSM 
and its first open geodata (Ayala et al., 2021). OSM is a mapping data-
base available to the public as open data, created and managed by 
volunteers around the world that manually collect data from different 
sources. In most cases by digitizing the ortho-rectified satellite images, 
but also by collecting data with GPS, importing data from other sources, 
or correcting the data with local knowledge. OSM data contains, with 
semantic information, the outline of the building, the midline of the 
road, railroads, power transmission channels, etc. Another key feature of 
OSM is that object-related data is sometimes saved/set in a hierarchical 
order and can be separated using specific tags or points of interest (POI). 
We can use this tag to extract or filter out the information related to the 
application/problem. 

The images used in OSM come from various sources for which 
permission for reuse has been granted. These are not always geo- 
referenced correctly and sometimes not up-to-date; depends from area 
to area. In most cases, high-resolution satellite images are used. Unlike 
satellite images which are raster, OSM data is available in vector format 
with the metadata related to the creation of edit and the name of the 
author information. Initially, OSM simply focused on mapping ground 
information, and its members were known as primary consumers of the 
maps (Mooney and Minghini, 2017). Today, OSM has a broad view in 
the context of data generation, evaluation, and implementation. It has 
been getting attention from many private companies and government 
sectors because of the open data policy. In the meantime, OSM was 
suffering poor quality control due to huge data, and many areas (small 
cities) have not yet been mapped/drawn adequately. In addition, we 
need to take into account the inconsistency and alignment issues be-
tween OSM and remote sensing images. So, handling this kind of data is 
still a challenging task. But crowdsource (OSM) mapping platform could 
be a good source of data for the LULC classification, especially when 
data from other sources is not available. We are focusing on the 
implementation of deep learning algorithms that can learn from noisy 
open crowdsourced data and also how both datasets are important for 
creating up-to-date maps automatically. Both sides are crucial and 
should engage each other to minimize the amount of manual work for 
learning from a large dataset. 

In this work, we will focus on the deep-pixel supervised classification 
of buildings and roads, as they are paramount features for the impacts of 
urban growth in any region and are the most important hosting places 
for human activities. 

There are a lot of limitations to extracting these classes. For example, 
roads are frequently obscured by building shadows and greenery. The 
colors, widths, structures, textures, and forms of roadways and buildings 
vary widely between locations. Urban roads, for example, are straighter 
and broader than rural roads and the same applies to buildings in rural 
and urban areas. All of these variables make it more difficult to extract 
features from remote sensing imagery automatically. To overcome the 
mentioned limitations, our research questions in this study are: 

How good are crowd sourcing (OSM) and remote sensing with 
respect to generating segmentation maps on large scale through existing 
deep-learning approaches? What are the challenges of pre-processing to 
improve data quality and the importance of augmentation techniques in 
computer vision to the proposed task with respect to performance and 
scalability? 

This article outlines the various improvements and outcomes of the 
proposed approaches. The next Section 2 will focus on the relevant study 
that evolved to the suggested technique for buildings and roads. Our 
methodology Section 3 shows two experiments: buildings and roads 
segmentation work has been explained with a thorough understanding 
of CNNs models. A brief overview of deep neural networks Mask-RCNN 
and U-Net is included together with a discussion on how their archi-
tectures cope with the problem of image segmentation using the pro-
posed dataset of remote sensing and OSM in Section 3.2. The study area 
and experimental details with results are described in Sections 4 and 5, 
respectively. Finally, we conclude the work in Section 6. 

2. Related work 

The deep learning models for semantic interpretation based on sat-
ellite imagery have been researched extensively. Since 2014, many ap-
plications including remote sensing image classification, grasp attention 
towards DL frameworks (Zhu et al., 2017). The fundamental DL network 
models are recurrent neural networks (RNNs), sparse auto-encoder 
(AEs), convolutional neural networks (CNNs), deep belief networks 
(DBNs), and generative adversarial networks (GANs). CNN is the most 
famous network for image classification and for change detection 
analysis in remote sensing for being fully convoluted (Ji et al., 2019). 
Since the early work on information extraction using CNN’s (Mnih and 
Hinton, 2010), several research has looked into deep neural networks 
for autonomous interpretation of aerial and satellite data. The use of 
Fully Convolutional Networks (Long et al., 2015), an architecture that 
was originally designed for semantic segmentation of multimedia dis-
plays but has now been successfully applied to remote sensing data at 
multiple resolutions, has been the topic of recent DL research. On a very 
high-resolution dataset, this type of deep model produced good results 
(Li et al., 2017), and it was frequently integrated with multi-scale 
analysis, a graphical model for post-processing, and boundary or edge 
detection. The same approaches were successful in extracting building 
information from aerial scenes at low resolution. Many methods are 
proposed for image classification or image segmentation possibly for 
single-class prediction. In (Wang et al., 2020), the efficiency of U-Net 
architecture for segmentation is described. The network can be trained 
end-to-end on a small amount of data in a very reasonable time. 
Accordingly, we used the U-Net approach for handling large areas and 
buildings with variance aspects. Heterogeneous data fusion was also 
investigated using end-to-end deep networks in (Hu et al., 2017) for 
LiDAR and RGB data, and in (Audebert et al., 2017) for ortho-rectified 
aerial IR-RGB images data, and later utilizing deep features mixed 
with hand-crafted features for random forest classification (Pai-
sitkriangkrai et al., 2015). High-resolution images have been fused with 
3-channel auxiliary input including normalized DSM to get a clearer 
output in (Gu et al., 2021), with an increase in computational and time 
cost. With more advancements in computer vision for object recogni-
tion, instance segmentation is getting famous for individual instance 
detection. A series of architectures, such as R–CNN, Fast R–CNN, Faster 
R–CNN, and Mask R–CNN has been designed for this task (He et al., 
2017). Among them, Mask R–CNN is the most recent one. All these 
networks use Regional Proposal Net (RPN) to detect regions of interest. 
Other famous architectures for instance segmentation are Single Shot 
Detector (SSD), You Only Look Once (YOLO), etc., and use one-stage 
algorithms to predict boundary boxes around objects. Its performance 
time is fast but without RPN the detection for small targets is not as good 
as the Mask R–CNN. In addition, sometimes it fails to define boundaries 
for individual instances (Ruiz-Santaquiteria et al., 2020). The informa-
tion collected from imagery in computer vision fields has recently been 
utilized to successfully recover road networks in remote sensing imagery 
(Cheng et al., 2012). The majority of these approaches are 
classification-based; they use geometric, photometric, and textural fea-
tures to extract features from remote sensing data. These approaches 
based on feature extraction are frequently semi-automatic methods that 
rely on the manual selection of samples. Developing a large number of 
annotations is very difficult, and increasing input layers make a network 
architecture complex and increases computational cost. Since the 
introduction of OSM and Google Maps in 2004, geographic data has 
become freely available and widely used in remote sensing applications. 
They may be utilized as targets for deep learning systems, as demon-
strated by Mnih’s research work (Mnih, 2013). The data layers can be 
incorporated into a processing sequence to generate new geospatial 
data. Despite the fact that the scope and quality of open GIS annotations 
vary greatly depending on the users’ experience and the number of 
volunteers, this data may contain useful information for particular areas 
and classes. Active deep learning helps to discover unlabeled objects in 

M. Usmani et al.                                                                                                                                                                                                                                



ISPRS Open Journal of Photogrammetry and Remote Sensing 8 (2023) 100031

3

OSM (Chen and Zipf, 2017), while machine learning (ML) technologies 
(a random forest variant) allow combining remote sensing and vol-
unteered geographic information (VGI) to estimate natural hazard 
exposure (Geiß et al., 2017) and local climate zones (Danylo et al., 
2016). However, very few VGI have been employed as an input (rather 
than a target) in DL networks. Despite the fact that hand-labeled data is 
typically correct, the cost of human labeling and the lack of publicly 
released hand-labeled datasets reduces the availability of remote sensing 
training and testing sets. While considering remote sensing datasets, 
crowd-sourced initiatives like OSM could be significant. As a result, 
datasets that are larger than those that have been hand-labeled can now 
be created. Although ML and DL approaches are rising, the accuracy of 
training samples for segmentation in remote sensing is still under 
analysis and some comprehensive areas have not been researched yet. In 
this paper, we present the problem of building segmentation with two 
models: U-Net for semantic segmentation, and Mask R–CNN for instance 
segmentation. 

3. Methodology for buildings and roads segmentation 

The proposal includes a straightforward and repeatable process of DL 
models for deep-pixel-based buildings and road recognition using VHR 
remote sensing and OSM. Let γ and φ be a remote sensing and crowd 
source dataset respectively, obtained from different sources and at 
different times (t1, t2). The goal is to develop a robust segmentation 
framework that could combine γ and φ effectively for object segmen-
tation, class (Cp) and no object class (Co) in the image, the general 
workflow is shown in Fig. 1. We demonstrate the capabilities of remote 
sensing and OSM data fusion, and the capability to generate segmen-
tation maps for areas other than the input training ones. The method-
ology has two main steps: pre-processing and CNN-based segmentation. 

3.1. Pre-processing 

Despite the fact that the γ and φ dataset appears to be ready to train 
DL-based models, a closer look reveals that there is a significant amount 
of labeling noise owing to the use of open data (φ) and high dimension 
data (γ). Before producing a suitable training dataset for deep con-
volutional networks, data pre-processing is a key requirement for 
accessing the data issues like misalignment and high dimension. The 
dataset used in this work is generated through the geo-processing tools, 
like geo-referencing, projection, clipping, translation, and rasterization 
using the QGIS approach and Osmosis tool; {γ1, γ2, γ3, ….γn} and { φ1, 
φ2, φ3, …..φn} are generated by tiling large (f × f) dimension images in 
the dataset, where γn and φn are a total number of tiles of remote sensing 
and OSM dataset, respectively. The dataset was split into two subsets 
(training and testing) according to the machine learning guidelines 
suggested in (Xu and Goodacre, 2018). This makes the quality assess-
ment more reliable than evaluating the dataset as a whole. Here, (γi, φi) 
are training inputs for CNN networks and i is the number of patches. The 
training set was used to train the model parameters, while the test set 
was used to evaluate the generalization ability of the networks. The 
OpenStreetMap data dump was downloaded and filtered according to 
building and road segmentation problems. The planet.osm1 is called a 
data dump and includes all semantic information of nodes, ways, and 
polygons. The whole world or just interesting areas like one country or a 
small area can be downloaded. We utilize the Osmosis tool to extract the 
Point Of Interests (POIs) for roads and buildings and store them in a 
separate file after downloading them for our area of interest. OSM POIs 
may be connected to many polygons, nodes, or routes. The features that 
these items represent are described in their tags. The subset of POIs 
related to buildings and roads has categories as listed in Table 1; mo-
torways, highways, land use, and other categories (more than 10 

different categories) are mentioned. About 5537 OSM POIs for buildings 
and 5937 for road lines for one γ ((f × f) image) were extracted. 

The OSM data and the imagery were both projected to the same 
geographic coordinate system. To keep the images geographically rele-
vant, the imagery was translated to the same coordinate system as the 
OSM data. For roads, using the same geographic coordinates, the cor-
responding OSM center line annotations were extracted. Using prior 
information of the image resolution, the initial road annotations are 
extrapolated from the center line and apply a buffer to manipulate the 
pixel values of roads. This is because most road centerlines in VGI data 
miss accurate width information and hence cannot be easily used to 
train the models. After rasterization on the same resolution level, all γ 
and related φ annotation images were clipped using a fixed-size sliding 
window to create the dataset for training the specified model. Because 
the proposed CNNs is a segmentation model, it accepts both remote 
sensing imagery and crowdsourced data as input. We trained two con-
volutional neural networks for semantic and instance segmentation of 
(Cp , Co) at different visual sizes to verify that the proposed dataset has 
potential to segment buildings accurately, also individually, and used 
fine-tuned approach for road segmentation. 

3.2. CNNs 

A state-of-the-art of convolutional neural network (CNN) is pre-
sented in (Shrestha and Vanneschi, 2018) for image segmentation and 
explains how ML and DL models are improving day by day. The CNNs 
are most widely used in image processing or image segmentation, due to 
a series of convolutional layers. Pixel-based segmentation through deep 
learning has been divided into two types known as semantic and 
instance segmentation. We are considering both types and comparing 
semantic and instance segmentation methods for our proposed dataset. 
We utilized two techniques to overcome the problem of building seg-
mentation: U-Net for semantic segmentation and Mask R–CNN for 
instance segmentation. The U-Net is gradually enhanced with additional 
characteristics and complexity. Despite the incorporation of more 
complex characteristics, the performance of some classifiers appears to 
be limited due to complexity in data handling, boundary separation, and 
data usage limit. As a result, we look at Mask R–CNN as a second 
method, to show data compatibility for instance image segmentation. 
Here, we modified the U-Net and Mask R–CNN architectures, which are 
considered good approaches for image segmentation, and found these 
effective and efficient to show the significance of the proposed strategy. 
Since the Mask R–CNN size for the problem of the building was large and 
performed well for building segmentation applications, we propose a 
smaller network, which we call the light-weight classifier. This 
light-weight classifier is half the size of the original Mask R–CNN ar-
chitecture. We used fine-tuning approach to train the model with a small 
dataset that simulates the road environment and provides accurate re-
sults for road segmentation without using a huge amount of data and 
complex architecture. The architecture of the DL models used for 
training is decided by hyper-parameters being evaluated by examining 
the training, loss, and accuracy validation. Our approach is an effective 
method that creates a balance between minimum training time and good 
accuracy so that the whole process can respond as soon as possible in any 
emergency response, change detection analysis, or urban planning. The 
proposed framework is end-to-end and fully automatic.  

1. U-Net Architecture 

U-Net has been used in several satellite image segmentation tasks 
(Chen et al., 2018) and is a popular semantic segmentation model. We 
modified its layers and added a batch normalization layer for every 
convolutional layer to extract buildings information. U-Net benefits 
tremendously due to its deeper architecture, as demonstrated by (Li 
et al., 2019). The deep layers enable the model to segment data in 
considerably more detail. The segmentation through U-Net is very 1 Planet OpenStreetMap. 
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accurate, especially at the object borders. A work in (Iglovikov et al., 
2017), introduced the deep U-Net architecture, and Fig. 2 depicts the 
model architecture adopted in it, which takes raw satellite/aerial images 
and OSM semantic information as input and predicts buildings seg-
mentation maps. The hyper-parameters of the network are described in 
Table 2. The left half (encoder) of the network is comparable to a CNN 
that is concerned with constructing a low-dimensional dense set of in-
puts, while the right half (decoder) up-samples the training feature 
representations to a shape similar to the input. The skip connections 
allow data to move from the encoder to the decoder, supporting the 
defined network in maintaining spatial/feature data. The network is 
known as a binary classifier because the overall purpose is to detect (Cp , 
Co). As a result, we utilize a sigmoid activation function after the last 

convolution to generate pixel-wise pseudo-probabilities. To match the 
input and output sizes after down-sampling and up-sampling, we use 
zero padding and cropping as needed. As mentioned in the 
pre-processing phase, the training images are subsets of a large dimen-
sion high-resolution image. A zero padding would improve the estima-
tions of the building part on the adjacent tile. Under the assumption of 
binary classification problem (Cp , Co), binary cross entropy loss function 
is defined in (Mohanty et al., 2020) as: 

LOSS = − φtlog(Cp) − (1 − φt)log(1 − Cp) (1) 

Where. 

φt - target class 
Cp - predicted class 

Every pixel in the image is given a probability of being an object of 
interest (Cp) by the model. A decision threshold determines the mem-
bership to a class. For binary class, probabilities or scores in the range of 
0–1 and the threshold is set to 0.5 by default. The distribution of the 
areas in the dataset was used to determine a reasonable drop off pixel 
threshold. For example, the strategy can be shown as: 

Fig. 1. Proposed workflow to combine RS and OSM information.  

Table 1 
POI used for this Study.  

Key:Value Quantity 

Buildings: School, Hospitals, Museum, Government, Apartments, Cafe, 
Company 

5537 

Roads: Highway, Primary Link, Secondary Link, Trunk 587  
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Prediction > = 0.5 = Cp                                                                         

Prediction < 0.5 = Co                                                                            

In semantic segmentation, true positive (TP) are pixels that are 
correctly predicted as a class (Cp), false positive (FP) are misclassified, 
and false negative (FN) are mixed with background pixels, like Cp 
wrongly predicted as Co.  

2. Mask R–CNN Architecture 

As a basic network, for buildings and roads, we adopted the Mask 
R–CNN (Ren et al., 2015) because of its simplicity in the network 
structure and hyper-parameter tuning. Mask R–CNN is a framework that 
can identify objects in an image quickly and accurately, the framework 
shown in Fig. 3 described by (Zhao et al., 2018). It can also generate 
high-quality segmentation masks for each instance. The Resnet-101 was 
chosen as the backbone network in the training of Mask R–CNN, which is 
a network-based solution for tackling the degradation problem. During 
training, the Mask R–CNN features as a Feature Pyramid Network (FPN), 
which is used to improve the detection of multi-scale objects. It works 
seamlessly with the head network. To minimize the complexity of 
building detection and segmentation, we trained Mask R–CNN in three 
steps and modify the model from the multi-class object to single class 
(building) detection. For roads, we reduce the network size and 
fine-tune it. 

Data augmentation techniques are used to improve the quality and 
quantity of training data for a network. It helps in generating robust and 

sufficient training data for a given problem and to improve the robust-
ness of the network for multi-scale building detection. We adopted 
various transformations such as horizontal or vertical flipping, blurring, 
and noise reduction during training. In the final implementation, When 
the Intersection Over Union (IOU) is less than 0.3, negative anchors are 
assigned, and positive anchors are assigned (IOU) is greater than or 
equal to 0.7, IOU was calculated as 2: 

IoU =
TP

TP + FP + FN
(2) 

In instance segmentation, TP are objects/instances that are correctly 
predicted instead of pixels, FP are misclassified instances, and FN are 
mixed with background instances like Cp wrongly predicted as Co. 

We employ a mix of binary cross entropy and a soft Jaccard loss 
(Iglovikov et al., 2017) as a loss function. The mechanism proposed by 
(Iglovikov et al., 2018) to generalize discrete Jaccard index into a 
differentiable version. As a result, the network may directly optimize the 
loss throughout the training phase. 

J(A,B) =
|A ∩ B|

|A| + |B| − |A ∪ B|
(3)  

J =
1
n

∑2

c=1
wc

∑n

i=1

(
φc

i Ĉ
c
i

Cc
i + Ĉ

c
i − φc

i Ĉ
c
i

)

(4)  

Where, φc
i binary value (label), Ĉc

i the corresponding predicted proba-
bility for the pixel i of the class c. 

During the training phase, a loss is calculated and defined as classi-
fication loss, bounding box regression loss, and mask loss as (He et al., 
2017): 

L = Lcls + Lbox + Lmask (5) 

The classification loss is considered the same as bounding-box loss. 
The model tries to learn a mask for each class using a sigmoid function 
and the average binary cross entropy loss is known as mask loss. We 
applied a per-pixel sigmoid activation function and measured mask loss 
as the average binary cross-entropy loss. Regarding implementation, 
both networks (U-Net & Mask R–CNN) were trained with different 

Fig. 2. U-Net based framework: Encoder (in blue) on the left and decoder (in yellow) on the right, dash arrows showing concatenation.  

Table 2 
U-Net training parameters.  

Hyper Parameters Value 

Iteration 150 
LEARNING RATE 0.0001 
Batch Size 4 
Non-Linear Activation ReLU/Sigmoid 
Optimizer ADAM  
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parameters and hyper-parameters, and the details are shown in Tables 2 
and 3, respectively. The purpose is to create a thorough semantic seg-
mentation of a satellite image. 

4. Study area and data set 

To verify the proposed approach of fusion of remote sensing and 
crowd source dataset for building detection, two deep learning models, 
for semantic and for instance segmentation, are utilized. In the semantic 
segmentation model, the dataset originated from two sources: the 
SpaceNet (Van Etten et al., 2018), and the Trento airborne 
high-resolution imagery. The SpaceNet dataset is provided in the 
DeepGlobe challenge and contains satellite images of different cities 
having urban and suburban regions with 30 cm resolution. On the other 
side, Trento imagery was collected through an airborne campaign with a 
high spatial resolution (100 cm) and covers about 50 km2. The 
high-dimension images are processed using a sliding window of 
400x400. In total, about 6000 tiles were used in the first dataset, which 

was divided randomly into 80% and 20% for training and validation 
datasets for the model. 

In the instance segmentation model, we used the airborne imagery of 
Trento, Italy with a spatial resolution of 100 cm. The 512x512 sliding 
window size has been used to process the high dimension images, which 
were divided into 70% and 30% for training and validation of the model. 
The study area chosen for this is shown in Fig. 4. 

In both datasets, the remote sensing imagery was used with three 
spectral bands (RGB) information. The idea is that after we have shown 
that a method works effectively on RGB imagery, we can work on 
expanding it to multi-channel remote sensing data. The idea behind 
using different augmentation techniques is to increase the model’s 
robustness and make it suitable for building extraction on different and 
large-scale areas. As a result, we will be able to test the suggested 
technique on geographically dispersed complicated urban scenes with a 
large variety. 

The corresponding semantic information was downloaded from OSM 
(for both datasets) which is publicly released. Portals like bbbike2 and 
Geofabrik3 integrate OSM data in order to provide free geodata to the 
community. For roads, we used a small basic dataset, only Trento im-
agery, which was collected through an airborne campaign with a high 
spatial resolution (100 cm) and covers about 20 km2. The high- 
dimension images are processed using a sliding window of 512x512. 
After augmentation, about 3000 tiles were processed and we divided 
80% into the training set and 20% into the validation set. Study area 
details are listed in Table 4, showing the total number of OSM attributes 
(polygons and ways) and the corresponding size in pixels for each 

Fig. 3. Mask R–CNN stages: RPN (selects the regions of interest), ROI (aligns the feature maps).  

Table 3 
Mask R–CNN training parameters.  

Hyper Parameters Value 

BACKBONE Resnet101 
Iteration 200 
LEARNING RATE 0.001 
RPN NMS THRESHOLD 0.7 
WEIGHT DECAY 0.0001 
DETECTION-MAX INSTANCES 100 
RPN ANCHOR RATIOS [0.5, 1, 2] 
RPN ANCHOR SCALES (8, 16, 32, 64, 128) 
Optimizer Jaccard  

2 BBBike extracts OpenStreetMap.  
3 GEOFABRIK. 
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dataset. Our proposed segmentation models are evaluated on the same 
validation data of Trento. To evaluate the proposed approaches, 100 
patches of Trento were manually annotated as reference samples due to 
ground truth data unavailability. 

5. Experimental setup and results 

For buildings, the number of filters in the convolutional layers for the 
CNN model (U-Net) that recognizes buildings with predetermined forms 
were 16, 32, 64, 128, 256, and 512 with a kernel size of 3x3. After the 
first two convolutional layers, we used max-pooling (zero padding), 
ReLU as an activation function, and batch normalization. As it is a binary 
class segmentation, we utilize a sigmoid function in the last output layer. 
We train the first model (U-Net) for 150 iterations with Adam optimizer 
using a learning rate of 0.0001 and the second model (Mask R–CNN) for 
200 iterations at 0.0001 learning rate with the backbone of RESNET 101 
and Jaccard optimizer. The anchor scales of 8, 16, 32, 64, and 128 were 
selected for the segmentation of buildings in the Mask R–CNN network. 
Early stopping is utilized to reduce overfitting and to stop training if 
validation loss decreases in five consecutive epochs. We implemented 
the proposed method using the Tensor-flow and Keras frameworks. By 
considering the GPU memory and cost issues, we tested our code on a 
Google Colab machine equipped with a low-end GPU: 1xTesla K80, 
having 2496 CUDA cores, 12 GB GDDR5 VRAM. 

For roads, we present a lightweight U-Net classifier and investigate 
the impact of fine-tuning approach with limited OSM data and time for 
semantic segmentation. The classifier was implemented utilizing Google 
open-source TensorFlow and python framework. All other tuning hyper- 
parameters are similar to the main U-Net network. The code was run on 
GPU in a Google Colab environment for 50 epochs. All of the pre- 

processed data were fed into the model as an input, and the trained 
model produced a two-category classification map as output: (Cp , Co). In 
the last phase, the parameters are normalized, and the segmentation is 
done at the pixel level, some samples of results are shown in Fig. 7. 

For the performance evaluation of classifiers, we employed some key 
assessment parameters to calculate the effectiveness of suggested net-
works in binary segmentation: Recall (υ), Precision (ρ), F1 Score, Overall 
Accuracy (OA), and Mean Average Precision (mAP) (Ghasemkhani et al., 
2020), shown in Table 5. These parameters are calculated for both 
instance and semantic segmentation on the same validation dataset. 

A patch (γi, φi) with (fxf) was fed into the network and that was 
classified into (Cp, Co). In addition, we used to make predictions on 
different areas other than training one (described in the next section) 
and results show the robustness of the proposed approach and the po-
tential of DL models for the fusion of remote sensing and crowdsource 
dataset as input layers. The evaluation has been done using the formulas 
described in equations (6)–(9): 

ρ =
TP

TP + FP
(6)  

υ =
TP

TP + FN
(7)  

OA =
TP + TN

TP + FP + FN + TN
(8)  

F = 2 ×
ρ × υ
ρ + υ (9) 

Precision is a positive predicted value and is measured by a fraction 
of relevant instances to the retrieved instances. While the recall is 

Fig. 4. Geographical location of Trento: Province boundary (left), the airborne image of the area, and OSM annotations (bottom right).  

Table 4 
Study areas details.   

Type 

Dataset Area(km2) Resolution(cm) Dimension Tiles Buildings Roads Set 

Space Net 195 50 406x403 1100 6800 – Train/Test 
Trento 50 100 3490x3070 4400 21,320 5937 Train/Test 
Beirut & GoogleMaps – – – – – – Test  
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calculated by all relevant instances and is known as sensitivity. 
To answer the research problem mentioned in section 1, we trained 

the neural networks proposed in section 3.2 on the dataset provided in 
Table 4, and consider three scenarios to evaluate the performance of 
baseline models. Below, there are the three setups, against which the 
results were compared: 

Set-up I: The building case corresponds to the semantic and instance 
segmentation of an area similar to the training one but not included in 
the training phase. The results are produced using U-Net and Mask 
R–CNN proposed models and shown in Figs. 5 and 6. Building footprints 
with sharp boundaries and uniform geometries are delineated precisely 
using the proposed strategy. Our fusion-based strategy surpasses the 
other models like (Zhao et al., 2018), (Li et al., 2020); where they are 
using the traditional classification approach (hand-labeled data) and 
multi-source GIS data (Google Maps) for buildings detection. Our 
approach is achieving a significant recall score (91%, 96% for U-Net and 
Mask R–CNN, respectively) as well as an overall rise in the F1 measure, 
as seen in Table 5. Both models handle the specific size issues of small 
and large buildings. The results indicate that many of the accurate 
predictions are shared by both models. Despite buildings in these areas 
may be easier to detect than other areas or scenes, our network has a 
tendency to correctly map/segment buildings in different areas other 
than the training one, as expected. In addition, a small case study has 
been generated on a resolution different from the training remote 
sensing data one (i.e., 100 cm) for the evaluation of the approach in 
different conditions (details in set-up II). 

The road results show better performance for the smaller network 
even with fine-tune approach. It achieves close performance (89% 
overall accuracy) compared with a fully supervised model by only using 
small OSM center-line data as input. This embraces the proposed 
approach and data-handling strategy during the training procedure. 
Moreover, the proposed method could be used with any other attribute 
data. 

Set-up II: Following the set-up I query, this part shows the instance 
semantic segmentation of buildings for two different areas which are 

spatially disconnected and differ from the training area. The first area is 
downloaded randomly from a publicly available dataset and used as an 
input to the Mask R–CNN model to produce building instance segmen-
tation (Fig. 8). The second area is from Beirut, Lebanon with a spatial 
resolution of 30 cm. Results are shown in Fig. 9. This area was down-
loaded using the Base Map Server (BPS), an online map server in ArcGIS. 
Both areas have buildings with different properties in terms of texture, 
shape, size, and spatial resolution than the training one. The idea behind 
testing these areas is to check the generalization capability of the pro-
posed method. The baseline model used to test the approach is Mask- 
RCNN due to advancement in the structure. Based on the visual com-
parison, the approach can accurately extract the majority of the struc-
tures, even though in different scenes and resolutions. 

Set-up III: In this set-up, we compared the proposed approaches to 
state-of-the-art (SOA) methods from basic supervised and unsupervised 
approaches to advance CNN-based methods. For the semantic segmen-
tation model, we chose the K-means algorithm which is known as a 
famous unsupervised classification method (Wu, 2017) and supervised 
object-based classification (Blaschke, 2010) (here training samples were 
manually drawn). We also choose a widely used CNN model for image 
classification, deeplabv3+ (Liu et al., 2021). For the instance segmen-
tation model, Mask R–CNN with Efficient Channel Attention (ECA) 
(Wang et al., 2020) is compared with simple Mask R–CNN. Table 5 
summarizes the quantitative performance of the proposed approaches 
and SOA methods. The OA for the K-means method on building class 
reached 69% due to considerable misclassification. The K-means algo-
rithm is strongly affected by the number of clusters that leads to 
under-segmentation or over-segmentation if inaccurate. Object-based 
classification reaches an OA of 82%, but it is time-consuming and hec-
tic to draw/collect the samples to train a classifier with good accuracy. 
Moreover, sample collection is to be repeated for any new area to be 
classified. 

If we compare the instance segmentation architecture based on Mask 
R–CNN with SOA approaches it achieves the highest OA (i.e., 96%). 
Among the semantic segmentation SOA methods, Deeplabv3+, recently 

Table 5 
Evaluation matrix for semantic and instance segmentation on validation dataset.  

Segmentation Method Class Training Dataset Precision Recall F1 Score OA 

Semantic K-means Buildings Trento 0.67 0.61 0.64 0.69 
Object-based Buildings/Roads Trento 0.73 0.60 0.65 0.82 
Deeplabv3+ Buildings SpaceNet 0.81 0.90 0.85 0.93 
U-Net (Proposed) Buildings Trento & SpaceNet 0.74 0.83 0.82 0.91 
U-Net (Proposed) Roads Trento 0.66 0.61 0.63 0.89 

Instance Mask R–CNN–ECA Buildings Trento 0.77 0.62 0.69 0.84 
Mask R–CNN (Proposed) Buildings Trento 0.96 0.96 0.96 0.96  

Fig. 5. Buildings semantic segmentation with U-Net method on Trento area (satellite image, OSM and semantic segmentation).  
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introduced as a good segmentation model, achieved an OA of 93%, only. 
The proposed U-Net architecture is just shortly behind the Deeplabv3+
with a lower OA and F1-score of about 2% and 3%, respectively. How-
ever, this is achieved with a much light-weight architecture. For Mask 
R–CNN with ECA, we adopted the same hyper-parameters setting as in 
the proposed Mask R–CNN–based architecture, and it reaches 84% ac-
curacy staying 12% behind Mask R–CNN. By adding a channel attention 
mechanism, the Mask R–CNN with ECA increases the computational and 

memory requirements and makes convergence slower. Network per-
formance is correlated to the network architecture in terms of layers 
depth, parameters, batch size, and thus with the computational and time 
costs. So accordingly, ECA-Mask R–CNN took a longer time (about 44 h) 
to train than other CNN-based methods with lower performance. 
Deeplabv3+ and the proposed U-net architecture took about 8–10 h for 
training and inference, with similar performance. Whereas the Mask 
R–CNN–based architecture took slightly longer than the latter two 

Fig. 6. Buildings instance segmentation with Mask R–CNN method on Trento area: ((a) RS and OSM (b) instance segmentation).  
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(about 16–18 h) which is a reasonable trade-off with respect to the ac-
curacy achieved on the large-scale areas. Further, this is obtained with a 
low number of parameters. 

For qualitative analysis, Fig. 10 shows the segmentation results of the 
CNN-based methods for three samples of the SpaceNet dataset. The first 
two columns show the original images and corresponding ground truth 
masks while the next columns show the segmentation output produced 
by each network. In the building segmentation setup, the Deeplabv3+
often failed to differentiate between roads and buildings. The skip 
connections in U-Net improved effectiveness in exploiting the high 
resolution and geometrical details of the image in the expansion step and 
achieved better qualitative results as compared to Deeplabv3+. We 
observe that the Deeplabv3+ has a poor representation of boundaries 
and class transitions in the prediction. The effect is clearly visible in 
Fig. 10, line (c). ECA Mask R–CNN approach shows good performance in 
instance segmentation but misses many instances. The proposed Mask 

R–CNN–base architecture shows instance segmentation with a 
maximum number of detected buildings in comparison to all methods 
and accurate boundary delineation in terms of geometrical details. 

6. Conclusion 

In this paper, we presented the approaches for building deep-pixel 
segmentation in VHR images. We considered two types of segmenta-
tion: (i) U-Net (semantic segmentation), and (ii) Mask R–CNN (instance 
segmentation) to handle the problem of binary class segmentation. The 
method integrates two heterogeneous datasets (remote sensing and 
crowd source) as target layers for LULC deep-pixel segmentation using 
DL approaches. The approach accurately segments different kinds of 
buildings, e.g., the residential and business ones. The results have been 
compared with some SOA methods (both semantic and instance) 
showing that the proposed approaches reach better qualitative and 

Fig. 7. Roads segmentation on Trento area: Satellite input and roads semantic segmentation.  

Fig. 8. Test Area-I (GoogleMaps): (a)satellite input (b) buildings segmentation.  
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quantitative results. We have shown that CNN can be trained to attain 
SOA segmentation performance with noisy OSM and minimal human 
supervision. The best-proposed model, Mask R–CNN with OA 96% de-
livers an excellent performance in two aspects: (i) doing multi-source 
dataset fusion, (ii) generalizing the model in different terrains and en-
vironments, we tested our approach for four different datasets (Beirut, 
GoogleMaps, Trento, SpaceNet) and the results illustrate good perfor-
mance. This is dealing with noise in the input dataset and shows a fusion 
approach for binary class instance segmentation. In addition, both 
models achieve more accuracy (quality and quantity) as compared to 
SOA methods. So, the proposed approaches can handle segmentation 
problems on a large scale. The module can refine the features and pro-
vide more areas of coverage, with better accuracy. The approach has 
been tested on road segmentation as well, with small data and minimum 
computing cost, to show the performance of the proposed method in 
different classes other than building and the results are promising as 
well. In future work, we plan to use the method to analyze critical re-
gions with limited building and road OSM data or incomplete crowd- 
sourcing data. Further, we plan to extend the method to other target 
classes else than buildings and roads. 
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