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Towards Robust Person Re-identification by
Defending Against Universal Attackers

Fengxiang Yang, Juanjuan Weng, Zhun Zhong, Hong Liu, Zheng Wang,
Zhiming Luo, Donglin Cao, Shaozi Li, Shin’ichi Satoh, Nicu Sebe

Abstract—Recent studies show that deep person re-identification (re-ID) models are vulnerable to adversarial examples, so it is critical
to improving the robustness of re-ID models against attacks. To achieve this goal, we explore the strengths and weaknesses of
existing re-ID models, i.e., designing learning-based attacks and training robust models by defending against the learned attacks. The
contributions of this paper are three-fold: First, we build a holistic attack-defense framework to study the relationship between the attack
and defense for person re-ID. Second, we introduce a combinatorial adversarial attack that is adaptive to unseen domains and unseen
model types. It consists of distortions in pixel and color space (i.e., mimicking camera shifts). Third, we propose a novel virtual-guided
meta-learning algorithm for our attack-defense system. We leverage a virtual dataset to conduct experiments under our meta-learning
framework, which can explore the cross-domain constraints for enhancing the generalization of the attack and the robustness of the re-
ID model. Comprehensive experiments on three large-scale re-ID benchmarks demonstrate that: 1) Our combinatorial attack is effective
and highly universal in cross-model and cross-dataset scenarios; 2) Our meta-learning algorithm can be readily applied to different attack
and defense approaches, which can reach consistent improvement; 3) The defense model trained on the learning-to-learn framework
is robust to recent SOTA attacks that are not even used during training. Code is available at: https://github.com/WJJLL/Meta-Attack-
Defense

F

1 INTRODUCTION

T HE goal of person re-identification (re-ID) is to find pedestri-
ans of interest in a surveillance system with non-overlapping

cameras. It plays a crucial part in the construction of a smart
and safe city, such as assisting law enforcement in the search for
fugitive criminals or lost children. Thanks to the rapid develop-
ment of deep neural networks [1], [2], [3], the leading person
re-ID methods [4], [5], [6], [7] have achieved very high accura-
cies on various datasets. However, recent studies on adversarial
attacks [8], [9], [10], [11] reveal the vulnerability of deep models,
i.e., a model may suffer catastrophic performance degradation
by adding quasi-imperceptible perturbations to test images. This
phenomenon also appears in the community of person re-ID [12],
[13], [14], arousing the demand of improving the robustness of
deep re-ID models.

“What does not kill me makes me stronger.”
—Friedrich Nietzsche, 1888

Inspired by this aphorism, we aim to improve the robustness of
re-ID models by defending against strong attacks. Specifically, we
propose a holistic attack-defense framework, which involves two
goals: (1) learning a strong attack to mislead re-ID models, and
(2) learning a robust re-ID model through an effective defense
algorithm with the assistance of the attack.

Goal 1: Learning Strong Attacker. Person re-ID is an
open-set problem that is usually challenged with a cross-domain
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Fig. 1: Schematic illustration of our MetaAttack and MetaDefense.
(a) MetaAttack has a good universality, which can mislead models
trained on different domains with the same model, the same
domain with different models, and different domains with different
models. (b) MetaDefense is to learn a robust re-ID model that can
defense various attacks achieved by different types of algorithms.

scenario. In this case, the testing samples have identities that are
not included in the training set and may belong to a domain
outside the training set. Therefore, a re-ID attack should have the
ability to perturb samples from unseen identities and domains,
as well as mislead various types of re-ID models. In this paper,
we refer to this ability as universality. While recent works show
the efficacy of attacking re-ID models, they still have limitations
that restrict their universality. These shortcomings are generally
manifested in three aspects. First, the works in [13], [14] learn
perturbations using the test data (i.e., query and gallery), which
severely limits their universality, since the test data is seldom
completely accessible in practice. Second, Wang et al. propose
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MisRank [12], which learns a generator from the training data
and disturbs test samples without additional training. However, the
generator is trained on one dataset and may be sensitive to unseen
datasets with variation factors. Third, the re-ID has the domain-
shift or camera-shift issue [15], [16], which severely impacts the
model performance. Therefore, color-distribution variation across
cameras is a common and important environmental factor.

In our attack-defense framework, we first propose a combina-
torial attack method equipped with a meta-learning algorithm for
training a powerful re-ID attack. This combinatorial attack consists
of a functional color attack [17] and an additive attack [18], [19].
The former generates adversarial perturbation in a color-space by
simulating camera-shift, which can adapt to various models. The
latter disturbs several samples with a single universal perturbation,
which can generalize well across datasets. Therefore, we can build
a powerful combinatorial attack with good universality by using
their mutual strengths.

Specifically, learning the attack that includes different vari-
ation factors, such as domain variation and pose variation, is
an intuitive method to simulate the change of realistic scenarios
during the training phase. However, obtaining such rich labeled
data is difficult due to data collection and labeling costs, as well
as data privacy concerns. The works in [20], [21], [22] have
introduced several virtual datasets that automatically simulate
many kinds of real-world scenarios and protect data privacy.
However, directly using these virtual datasets during training may
hamper the performance because of the large domain gap between
real and virtual data. To solve this drawback, we propose a novel
virtual-guided meta-learning scheme (MetaAttack), in which real
data is served as meta-train and virtual data is served as meta-
test. We encourage our MetaAttack method to capture more
underlying variations by mimicking the cross-domain constraint
through meta-learning, therefore enhancing attack generalization
on unknown domains. As shown in Fig. 1 (a), our MetaAttack
is trained on a real domain and a virtual domain with a specific
model, which is flexible and suitable for different attack contexts
including various datasets and models.

Goal 2: Learning Robust Re-ID Model. After studying the
vulnerability of re-ID models, we further explore the defense
system of learning a robust metric-preserving model that can
resist those attacks. Recently, few studies [13], [14] have focused
on learning defense models based on the adversarial training
pipeline [8], [23]. However, they use the same source data for
both attack and defense learning, which may cause a biased issue
and can only deal with a specific attack. In practice, it is preferable
to have a defense model that can resist various kinds of attacks.
Interestingly, this generalization ability is similar to that of attacks,
where we expect that our attack-defense system can generalize
well to different domains, attacks, and environments.

To this end, we further present a virtual-guided meta-defense
algorithm (MetaDefense) for training the defense model, which
can improve the robustness of re-ID by using our combinatorial
attack. As shown in Fig. 1 (b), MetaDefense can effectively defend
against different re-ID attacks, in which additional attacks under
cross-domain restrictions are simulated with the help of a virtual
dataset. This encourages the model to have a good generalization
capacity for resisting previously unknown adversarial data.

The main contributions of our work can be summarized as:

• We introduce a holistic attack-defense framework for
person re-ID, which facilitates the investigation of the

vulnerability of deep models and improves the robustness
of deep models, with respect to adversarial samples.

• We design a combinatorial attack for person re-ID. The
proposed method takes advantage of a functional color
attack and the universal additive attack, which can effec-
tively promote the universality of the attack.

• We propose a unified virtual-guided meta-learning algo-
rithm, which can be applied to the training phases of both
the attack and defense. With our method, the cross-domain
constraint is explicitly injected into the optimization, ef-
fectively improving the universality of the attack and the
robustness of the defense model.

• Extensive experimental results on three large-scale re-ID
benchmarks demonstrate the effectiveness and strong uni-
versality of the proposed MetaAttack in both cross-model
and cross-dataset scenarios. Meanwhile, our MetaAttack
achieves state-of-the-art attack performance.

• The experiments also demonstrate that MetaDefense can
resist various kinds of attacks by learning with a universal
re-ID attack. The model trained by our MetaDefense
achieves higher accuracies than the one learned by vanilla
adversarial training.

Different from our previous work [24], this work further makes
four significant contributions. (1) Our previous work only studied
the problem of attack. Instead, this paper studies both attack
and defense challenges by introducing a holistic attack-defense
framework that helps us better understand the relationship between
attack and defense. (2) We introduce a combinatorial attack by
combining the functional color attack and additive attack. (3)
We extend the virtual-guided meta-learning scheme to adversarial
learning, which can effectively improve the robustness of the re-ID
model. (4) We clarify the definition of universality for attacks and
conduct comprehensive experiments to investigate the universality
of different attacks. More importantly, we verify our motivation
that a re-ID model could be robust to different types of attacks
by defending against adversarial samples produced by a strong
attack with good universality. We believe this could be a valuable
direction for designing robust re-ID models in future studies.

2 RELATED WORK

2.1 Adversarial Attacks

Szegedy et al. [9] demonstrated how adversarial examples may
easily fool deep models by manipulating images with quasi-
imperceptible perturbations. Subsequently, many white-box (i.e.,
models and data are available) attack methods [19], [25], [26],
[27], [28] have been proposed to generate more disruptive ad-
versarial examples. [29] found that adversarial examples are
transferable among different models, which then inspired a series
of studies on black-box attacks [30], [31], [32]. However, these
methods usually need to generate perturbations for each exam-
ple individually, which is inefficient. Then, Moosavi-Dezfooli
et al. [19] introduced a Universal Adversarial Perturbation (UAP)
method, which uses a single image-agnostic perturbation to attack
deep models. Besides, the UAP can be applied to black-box
attacks. Wang et al. [10] design a new generative attack method
using MCMC to generate adversarial examples more efficiently.
Different from previous attacks on classification tasks, attack-
ing re-ID [13], [14] or image retrieval systems [18], [33], [34]
focuses on corrupting the pair-wise similarities in the training
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set. Bai et al. [13] proposed an attack scheme for re-ID models
by extending various classification attacks to metric-attacks. This
attack is achieved by pushing the feature of an input away from its
intra-class features (i.e., non-targeted attack) or pulling towards a
target from inter-class (i.e., targeted attack). Bouniot et al. [14]
propose a self-supervised attack method SMA to corrupt the
accuracies of re-ID models without using any labels. However,
these two methods have to optimize their attack during test time
on one or more images from test set, which is not practical in real-
world re-ID attacks. Li et al. [18] tried to attack the image retrieval
systems, including re-ID, with a UAP by optimizing with label-
wise, pair-wise and list-wise constraints. Wang et al. [12] proposed
to attack re-ID models by learning a perturbation generator based
on adversarial training. Although this generator is learned on a
specific model and dataset, it can also be applied to attack other re-
ID systems. In sum, existing attack methods can be mainly divided
into two types: instance-level attacks [13], [14] and universal
attacks [12], [18]. The former requires additional computation
power during the test time to optimize the perturbation for each
test image. In contrast, the latter directly applies the unique
perturbation, which is learned during an offline training stage on
training data, to attack all test images. Therefore, considering the
advantages of low-cost, universality and ease of use, this paper
focuses on the universal attack methods and does not compare
with the instance-level attack methods when evaluating attack
performance. In this paper, we design a combinatorial universal
attack with the UAP and the color-space perturbation to achieve
a more universal attack. In addition, we propose a meta-learning
scheme with the assistance of a virtual data for the training of
attack, which can further improve the universality of the learned
attack.

2.2 Adversarial Defense

Adversarial defense aims to improve the robustness of models to
resist adversarial samples. Existing adversarial defense methods
can be mainly categorized into three types: (1) adversarial train-
ing [8], [23], [35], [36], [37], (2) defensive distillation [38], [39],
[40], and (3) detection-based methods [41], [42]. Adversarial train-
ing is one of the popular defense schemes, which is formulated as
a min-max game that injects adversarial examples into the training
set and jointly trained with original samples [8], [23].

Defensive distillation learns a smoother model by model dis-
tillation, which introduces a smaller amplitude of gradients around
input points [43]. Detection-based methods try to distinguish
adversarial examples from benign ones by using the region in-
formation of images [41] or additional language descriptions [42].
Although most defense methods achieve great success, they can
not be directly applied to re-ID due to the property of open-
set [44] problems. Bai et al. [13] proposed the first defense model,
which merges the original examples and adversarial examples to
train a new defense reID model. Subsequently, Bouniot et al. [14]
attempted to improve the defense accuracy with guide-sampling
adversarial training. These works extend defense algorithms to the
re-ID problem and achieve satisfactory performance. Nevertheless,
they overlook the generalization ability for defending different
attacks, which may limit their practicality in a real-world attack
scenario. Different from previous works, we adopt additional
virtual data and meta-learning algorithm to build underlying cross-
domain constraints during training, which can effectively improve
the robustness of the re-ID models.

2.3 Meta Learning
Meta-learning, also known as “learning to learn”, is initially intro-
duced to train models that can learn new tasks rapidly with a few
training examples. The popular meta-learning algorithms include
optimizing-based [45], [46], [47], model-based [48], [49], and
metric-based [50], [51] methods. The optimizing-based methods
are to obtain an ideal model that can be fast adapted to new
tasks with just a few steps of fine-tuning. Finn et al. [45] pro-
posed model-agnostic meta-learning (MAML) to acquire the ideal
weight by stimulating the learning process of new tasks with meta-
test set. Subsequently, Reptile [46] sped up the learning process
of MAML with a first-order approximation. For applications in
attack and defense, Yin et al. [52] designed a defense algorithm
with meta-learning to help model resist FGSM [8] attack. This
work adopts training samples as meta-train and perturbed images
as meta-test, which may suffer from the domain-shift issue brought
by different attacks. However, [52] is designed for image clas-
sification and can not be directly employed in our re-ID task.
Different from their work, we propose a virtual-guided meta-
learning algorithm based on optimization, which can be used in
both attack and defense schemes for re-ID. Our proposed meta-
learning approach mainly focuses on improving the generalization
ability of attacks and defense models, in which an attack is learned
to mislead different models while a defense model is optimized to
resist different types of attacks.

3 ATTACKING RE-ID MODELS

In the context of universal re-ReID attack, we are given a source
dataset S and a model φ trained on S . We aim to learn an
attacker that can mislead different re-ID models on different
domains. In general, these re-ID models are (1) the model φ
(source-attack), (2) the same model trained on unseen datasets
T (cross-dataset attack), (3) different model trained on S (cross-
model attack), and (4) different model trained on unseen datasets
T (cross-model & dataset attack). Note that, the unseen datasets
and new models are not available during the learning of attack,
making it hard to achieve a universal attack. In this section, we
propose a novel combinatorial universal attack for person re-ID,
which has a good universality under different attack scenarios. In
addition, we introduce a virtual-guided meta-learning algorithm
to further improve the universality of the proposed attack, which
is achieved by simulating cross-domain constraints with an extra
virtual dataset.

3.1 Universal Adversarial Attack
For the universal attack, the attacker should be learned on the
training data and can be directly applied to unseen samples without
further optimization. Moreover, this attack cannot access query
images to optimize the perturbation. In this paper, we consider two
types of attack that satisfy the requirements of universal attack,
and integrate them into a combinatorial universal attack.
Additive Delta Attack. The additive attack is the most widely
used adversarial attack method, which perturbs the input image
by adding a small perturbation to each pixel. To learn a universal
perturbation, we adopt universal perturbation attack (UAP) [18] to
threaten re-ID systems, formulated by:

x̃ = (x1 + δ1, · · · ,xn + δn), (1)

where xi is the i-th pixel (xi ∈ R3 for RGB images) in x and
δi is the i-th perturbation of δ. n denotes the number of pixels in
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Fig. 2: The process of the proposed combinatorial universal attack.
Given an image, we first perturb it by the functional color attack.
Then, we produce the final adversarial example by adding the
learned universal perturbation δ to the color-attacked image.

an image x, and x̃ is the adversarial counterpart. Generally, the
maximum change caused by δ can not exceed ε-ball of the original
image. The UAP can produce adversarial examples with only one
single perturbation for all samples. This property enables UAP
to naturally be applied to unseen samples that are from different
identities. Since we use symbol delta to represent the perturbation,
we call this attack method as an additive delta attack to distinguish
it from the following functional color attack.
Functional Color Attack. Camera-shift or domain-shift is an
important issue that can largely influence the retrieval performance
of re-ID. In other words, re-ID models are sensitive to color
changes caused by camera-shift or domain-shift [15], [16], [53].
To mimic the camera-shift or domain-shift for a better attack,
we leverage the ReColorAdv [17] as the adversarial color attack.
The ReColorAdv learns a color-transform function that disturbs
the deep re-ID models by uniformly adjusting the color-space
with a small perturbation. The color-transform function can be
formulated as:

f : C → C s.t. |cj − c̃j | < ε, j = {1, 2, 3}, (2)

where C is the color-space (RGB in our case) and cj denotes the
j-th channel of a pixel xi ∈ R3. In practice, f(·) is defined on
a mesh grid in the color space and parameterized by a series of
trainable parameters Θ ∈ Rx×y×z . The transformation of other
points in the color space is computed by trilinear interpolation
from those mesh points.

For a sample x, we obtain the corresponding color-
transformed adversarial counterpart for each pixel in x by:

x̃i = (c̃i,1, c̃i,2, c̃i,3) = f(ci,1, ci,2, ci,3), (3)

where x̃i is the i-th pixel for the perturbed image x̃, and
{c̃i,1, c̃i,2, c̃i,3} are corresponding RGB channels for the given
perturbed pixel x̃i. The functional color attack has two advan-
tages: (1) it can change the overall color-distribution of samples
with one color-transformer; (2) it is effective in attacking different
models, since re-ID models commonly are sensitive to color
changes (i.e., domain/camera shift).
Combinatorial Attack. By combining the above two attacks,
we then have the final universal adversarial attack to fool re-ID
models, which is formulated as

x̃ = f(x) + δ, (4)

where f(·) is the learned color-transformer and δ is the learned
universal perturbation.

Similar to previous methods [12], [18], [54], we perform an
L∞-bounded attack to generate perturbed images that is limited
in the ε-ball of the original image. The overall attacking process is

shown in Fig. 2. Given an input image, we first use the functional
color attack f(·) to uniformly change its color-space. Then, we
generate the final adversarial example by adding the learned
perturbation δ to the image. The proposed combinatorial attack
can exploit the merits of both additive attack and functional color
attack to achieve better universality. Note that, although we use
two attack processes in our method, the overall ε is the same as
using each individual attack.

3.2 Objective Function for Attack
To attack a re-ID model, it is crucial to disturb the pair-wise
similarities of training samples. Therefore, different from attack
methods in classification, we adopt the pair-wise constraint, which
is implemented based on the triplet loss, to optimize the attack
proposed in Sec. 3.1. In contrast to the triplet loss function for
the normal training of re-ID model, we use a reverse version to
mislead the original pairwise relations. Specifically, in a training
batch, we aim at pushing an adversarial sample away from its
hard-positive sample while pulling it close to its furthest negative
example. The loss function for misleading the pair-wise relations
is defined as:

Lpair(x̃,x; Θ, δ)=
[
||φ(xn)−φ(x̃)||2−||φ(xp)−φ(x̃)||2+m

]
+
,

(5)
where [x]+ is the max(0, x) function, xp and xn are the hard-
positive and furthest negative examples of x within the training
batch, respectively. x̃ is the adversarial example of x. φ(·) extracts
the feature for a given sample. || · ||2 is the L2-norm function. m
is the margin.

3.3 MetaAttack for Universal Re-ID Attacker
As mentioned in the previous sections, an effective way to improve
the universality of attack is training with larger, more diverse data,
so that the attack can capture more underlying variation factors.
However, the abundant training data is hard to obtain in practice
due to data privacy and labeling costs. Therefore, in this work, we
propose to use a virtual dataset to enlarge the training data and
help us learn a more universal attack. Furthermore, to overcome
the potential performance degradation caused by the large domain
shift between virtual and real images, we propose to optimize
our attack under the meta-learning framework. The proposed al-
gorithm is called virtual-guided meta-learning, which simulates
the cross-domain constraint during training and encourages the
attack to capture more underlying variations that are important for
universality. Specifically, we first regard the real dataset as meta-
train set Dtr and the virtual set as meta-test set Dte, and then
train the attack with the following three steps: i.e., Meta-Train,
Meta-Test and Meta-Update. Next, we will introduce these three
processes in detail.
Step 1: Meta-train. In the first step, we aim to optimize the attack
with meta-train set. We sample a mini-batch xtr with Nb images
from Dtr and generate their perturbed counterparts x̃tr to update
our attack. The loss function utilized in the meta-train step can be
formulated as:

Lmtr(x̃tr,xtr; Θ, δ) =
1

Nb

Nb∑
i=1

[
Lpair(x̃tri ,xtri ; Θ, δ)

]
, (6)

where Θ and δ are trainable parameters of our combinatorial
attack. By optimizing the meta-train loss through SGD with
momentum, we can obtain a new attack. This new attack is termed
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Fig. 3: The overall framework of the proposed “MetaAttack” and “MetaDefense”. Overall: in both “MetaAttack” and “MetaDefense”,
we regard the real dataset as meta-train and the virtual dataset as meta-test. A meta-learning strategy is applied to learn the universal
attack (MetaAttack) and the robust re-ID model (MetaDefense). (a) MetaAttack: (1) We first generate adversarial samples for the
meta-train with the original attack and obtain a temporary attack with the meta-train loss Lmtr. (2) We then generate adversarial
samples for the meta-test with the obtained temporary attack and calculate the meta-test loss Lmte. (3) The original attack is updated
with the combination of Lmtr and Lmte. In this way, the proposed MetaAttack encourages the attack to capture more underlying
variations across domains, and thus to have better universality. (b) MetaDefense: Similar to MetaAttack, we train the re-ID model
with three steps. The difference is that we fix the attack and update the re-ID model with corresponding defense losses. With our
MetaDefense, the re-ID model is enforced to be robust to unseen adversarial examples.

as temporary attack, which is parameterized by Θ′ and δ′ and is
utilized in the next step.
Step 2: Meta-Test. In the meta-test step, we attempt to evalu-
ate the temporary attack with meta-test images. Specifically, we
sample a mini-batch xte from Dte with Nb images and generate
its perturbed counterparts x̃te by the temporary attack. Then, the
meta-test loss is obtained by:

Lmte(x̃te,xte; Θ′, δ′) =
1

Nb

Nb∑
i=1

[
Lpair(x̃tei ,xtei ; Θ′, δ′)

]
.

(7)
Step 3: Meta-update. In the final step, the gradient from meta-
train loss and meta-gradient from meta-test loss are aggregated to
optimize parameters of the original attack. The loss function in
this step can be formulated as:

Lmeta = Lmtr(x̃tr,xtr; Θ, δ) + Lmte(x̃tr,xtr; Θ′, δ′). (8)

The former item aims to learn basic knowledge with meta-
train, while the latter item aims to capture common factors across
domains that are helpful in improving universality. It should
be noted that although the meta-test loss is obtained from the
temporary parameters Θ′ and δ′, the gradient w.r.t. original Θ
and δ can also be obtained through chain rule. The gradient for
optimizing Θ can be formulated as:

∂Lmeta

∂Θ
=
∂Lmtr

∂Θ
+
∂Lmte

∂Θ′
∂Θ′

∂Θ
. (9)

The gradient of δ shares a similar formulation to Θ. The
overall training process is listed in Alg. 1. In this work, we call
the proposed virtual-guided meta-learning for combinatorial attack
as “MetaAttack”. The framework of the proposed MetaAttack is
illustrated in Fig. 3-(a).

Algorithm 1 The Procedure of MetaAttack.
Inputs: Meta-train Dtr (source dataset S), meta-test Dte (virtual
dataset P), batch size Nb, re-ID model trained on source domain
S , number of training epochs T , learning rate α
Outputs: Final attack F parameterized by Θ∗ and δ∗.

1: Initialize Θ and δ with 0;
2: for t in T do
3: repeat
4: Sample mini-batches xtr and xte with Nb images from

Dtr and Dte, respectively;
5: Disturb xtr and xte to generate x̃tr and x̃te;
6: // Meta-train
7: Compute meta-train loss Lmtr with Eq. 6;
8: Update Θ and δ via momentum SGD to obtain temporary

Θ′ and δ′;
9: // Meta-Test

10: Compute meta-test loss Lmte through Eq. 7;
11: // Meta-update
12: Compute final loss with Eq. 8;
13: Update the original Θ and δ via momentum SGD;
14: until Dtr and Dte are enumerated;
15: end for
16: Θ∗ ← Θ, δ∗ ← δ;
17: Return the attack F parameterized Θ∗ and δ∗;

4 DEFENDING RE-ID MODELS

As a counter-strike to adversarial attacks, this section aims to
learn a robust metric-preserving re-ID model that can resist these
attacks. Previous re-ID defense methods [13], [14] follow the
traditional adversarial training pipeline to improve robustness of
the re-ID model, which jointly optimize the re-ID model with the
original training images and their adversarial counterparts. This
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training strategy can lead the model to resist a specific attack that
is used during defense learning. However, the learned model may
fail to defend against other types of attacks that can not be seen
during training. In practice, a robust model should have the ability
to resist different types of attacks. This generalization ability is
similar to that of the attack task. In attack and defense tasks,
we hope that (1) the attack can mislead different models, and
that (2) the defense model can be robust to different types of
attacks. Taking the above considerations, we draw inspiration from
the proposed “MetaAttack” and propose a virtual-guided meta-
defense algorithm for defending re-ID model, which is called as
“MetaDefense” (illustrated in Fig. 3-(b)). Next, we will introduce
the basic loss functions for defense learning and the proposed
“MetaDefense”.

4.1 Basic Losses for Defense

We adopt triplet and cross-entropy losses to improve the robust-
ness of the original re-ID model φ. The triplet loss used in our
method is formulated as:

Ltri(x;w) =
[
||φ(xp)−φ(x)||2− ||φ(xn)−φ(x)||2 +m

]
+
,

(10)
where x are images or their adversarial counterparts. xp and xn

are corresponding hard-positive and hard-negative examples of x.
φ(·) computes the feature for an input image.

The cross-entropy loss for the defense re-ID model is as
follows:

Lce(x;w) = −
NI∑
i=1

qi log p(xi), (11)

where NI is the number of identities in the training dataset. p(xi)
is the predicted probability of xi belonging to identity i, and qi is
the i-th element of xi’s one-hot vector.

4.2 MetaDefense for Robust Re-ID Model

Similar to “MetaAttack”, the proposed “MetaDefense” leverages
an extra virtual dataset and meta-learning strategy to improve the
robustness of the re-ID model. We regard the real dataset as the
meta-train set Dtr and the virtual dataset Dte as the meta-test set.
The overall defense scheme can be summarized into Meta-Train,
Meta-Test and Meta-Update steps.
Meta-Train. Based on loss functions for adversarial training, we
sample Nb images from the meta-train set Dtr and generate Nadv

perturbed images with an attacker. Then we adopt the triplet and
cross-entropy losses for meta-train:

Lmtr(xtr, x̃tr;w) =
Nb∑
i=1

[
Ltri(xi;w) + Lce(xi;w)

]
+

Nadv∑
j=1

[
Ltri(x̃j ;w) + Lce(x̃j ;w)

]
,

(12)

where xtr and x̃tr are original and the perturbed images of meta-
train set Dtr. w are parameters of the current re-ID model. We
update w with SGD optimizer to generate its updated version
w′ for further optimization. For the triplet loss, we select hard-
positive and hard-negative samples of xtr or x̃tr in the mini-
batch that includes both original and perturbed images (i.e., size
=Nb+Nadv).

Algorithm 2 The Procedure of MetaDefense.
Inputs: Meta-train Dtr (source dataset S), meta-test Dte (virtual
dataset P), number of training epochs T , batch size for original
images Nb, batch size for adversarial examples Nadv , learning
rate α, attack F , pre-trained re-ID model φ parameterized by w.
Outputs: metric-preserving re-ID model φ∗ parameterized byw∗.

1: for t in T do
2: repeat
3: Sample mini-batches xtr and xte with Nb images from

Dtr and Dte, respectively;
4: // Meta-Train
5: Randomly select Nadv examples from xtr to generate

adversarial examples x̃tr by attack F ;
6: Compute meta-train loss Lmtr through Eq. 12;
7: Obtain temporary model by w′ = w − α∇wLmtr;
8: // Meta-Test
9: Randomly select Nadv examples from xte to generate

adversarial examples x̃te by attack F ;
10: Compute meta-test loss Lmte through Eq. 13;
11: // Meta-Update
12: Compute the final loss Lmeta with Eq. 14;
13: Update the original model by w = w − α∇wLmeta;
14: until Dtr and Dte are enumerated.
15: end for
16: w∗ ← w
17: Return the robust re-ID model φ∗ parameterized by w∗;

Meta-Test. In this step, we use the meta-test set Dte to validate
the robustness of the updated model, and to further improve the
performance of the model with guidance from Dte. Similar to
meta-train, we sample Nb images xte from Dte and randomly
select Nadv examples to generate adversarial examples x̃te. Then
the loss is defined with the updated parameters w′ to compute
meta-test loss:

Lmte(xte, x̃te;w
′) =

Nb∑
i=1

[
Ltri(xi;w

′) + Lce(xi;w
′)
]

+
Nadv∑
j=1

[
Ltri(x̃j ;w

′) + Lce(x̃j ;w
′)
]
,

(13)
where xte and x̃te are original and their perturbed counterparts,

respectively.
Meta-Update. Based on the aforementioned meta-train and meta-
test losses, the final loss for updating the original w is defined as
follows:

Lmeta = Lmtr(xtr, x̃tr;w) + Lmte(xte, x̃te;w
′). (14)

The overall MetaDefense training scheme is illustrated in Alg. 2.

5 EXPERIMENTS ON ATTACK

5.1 Experimental Setup
Evaluation Settings. To verify the effectiveness of the attack, we
conduct experiments under different scenarios. Specifically, we
first train the attack on the source training set (or combined with a
virtual dataset) with a re-ID model, and then test the learned attack
on four settings: 1) source attack, 2) cross-model attack, 3) cross-
dataset attack and 4) cross-dataset&model attack, depending on
the testing samples and models. Note that, in our attack settings,
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TABLE 1: Performance of source attack with three methods (color
attack, delta attack and combinatorial attack). “None”: before
attack, “Color”: color attack. “Delta”: delta attack, “Col.+Del.”:
combinatorial attack

Model Attack Meta Duke Market
mAP rank-1 mAP rank-1

IDE

None × 66.7 80.9 78.2 88.7
Color × 18.5 26.1 28.5 36.7
Delta × 2.5 3.0 2.6 2.0

Col.+Del. × 1.6 1.9 2.3 2.3
Color X 12.1 16.3 18.1 24.2
Delta X 1.1 1.2 0.6 0.1

Col.+Del. X 0.6 0.6 0.4 0.1

PCB

None × 68.0 84.1 76.7 91.3
Color × 19.8 30.0 26.2 36.3
Delta × 13.5 19.6 27.5 36.5

Col.+Del. × 7.4 9.9 13.1 16.5
Color X 13.5 20.7 23.9 34.2
Delta X 8.2 12.7 14.7 21.0

Col.+Del. X 3.7 4.7 4.6 4.9

the query and gallery sets are not allowed to train the perturbations
or attack models, which is an important constraint in the universal
attack. The source attack belongs to white-box setting, since the
re-ID model is entirely available. The cross-dataset & cross-model
attacks belong to black-box setting, since we do not know the
structure and parameters of the targeted re-ID model.

• Source attack: We perturb the query set of the source
domain and use the obtained adversarial examples to fool
the source model that is used to train the attack.

• Cross-model attack: We perturb the query set of the
source domain and use the obtained adversarial examples
to fool another model optimized with source training data.

• Cross-dataset attack: We perturb the query set of target
domains and use the obtained adversarial examples to fool
the re-ID models that are trained on these target domains.

• Cross-dataset&model attack: We perturb the query set
of the target domains and use the obtained adversarial
examples to fool another re-ID model optimized on other
domains.

Evaluation Protocol. The overall performance is evaluated with
the mean average precision (mAP) and rank-1 accuracy, lower
mAP and rank-1 denote better attack performance. We use Eu-
clidean distance for the evaluations of all re-ID attacks, unless
otherwise specified.
Datasets. In our experiments, we use three real-world datasets
as the source data or the test data, including Market-1501 (Mar-
ket) [55], DukeMTMC-reID (Duke) [56], [57] and MSMT-17
(MSMT) [58]. Market contains 1, 501 identities (32, 668 images)
taken by six cameras, of which 750 identities (12, 936 images)
are used for training and the other 751 identities for evaluation.
Duke consists of 36, 411 images of 1, 404 identities obtained
from eight cameras. MSMT covers 126, 441 images from 4, 101
identities captured by fifteen cameras. For the virtual-guided meta-
learning algorithm, we use PersonX-456, a subset of PersonX [20]
dataset with rich background variations, as the virtual data in our
experiments. PersonX-456 is composed of 39, 852 images, which
are obtained from 410 persons and is initially designed to explore
the impact of viewpoints on re-ID systems. The viewpoints of one
identity in PersonX are sampled at an interval of 10◦.

TABLE 2: Performance of cross-model attack with three methods.
“Color”: color attack. “Delta”: delta attack. “Col.+Del.”: our
combinatorial attack. “IDE → PCB”: attack PCB model with
the attacker trained with IDE model. “PCB → IDE”: attack IDE
model with the attacker trained with PCB model.

Training Methods Meta IDE→ PCB PCB→IDE
Data mAP rank-1 mAP rank-1

Market

None × 76.7 91.3 78.2 88.7
Color × 29.1 41.3 26.4 33.4
Delta × 55.6 77.0 33.9 46.1

Col.+Del. × 22.9 32.9 15.0 20.0
Color X 22.4 32.7 29.9 40.4
Delta X 60.4 80.9 21.2 28.9

Col.+Del. X 26.6 38.2 4.4 4.6

Duke

None × 68.0 84.1 66.7 80.9
Color × 21.2 30.8 18.4 25.3
Delta × 45.2 64.5 20.7 27.9

Col.+Del. × 21.0 32.3 11.2 14.1
Color X 10.7 15.8 20.0 29.1
Delta X 49.9 70.3 16.8 22.7

Col.+Del. X 15.8 24.3 7.0 9.6

Implementation Details. We use IDE [59], PCB [5], and
AGW [60] as our re-ID models, of which the feature extractors
are constructed based on ResNet-50 [1], and train universal ad-
versarial attacks separately. We control the mesh-grid resolution
of the parameters Θ over the learned color-transformer f(·) and
set its dimension x = y = z = 25. The other hyper-parameters
in our experiments are as follows: the batch size Nb = 64, the
number of training epoch T = 10, margin m = 0.5, and the
learning rate α = ε/10. We apply a stochastic gradient descent
with momentum [18] to update the universal attack. We use the
model of the last epoch for evaluation. By default, all experiments
based on attacks are performed by L∞-bounded attacks with
ε = 8/255, where ε is the upper bound for the change of each
pixel (‖ x̃ − x ‖∞≤ ε). To satisfy this constraint, we adopt
the same strategy as [18], i.e., clipping the generated perturbation
after the optimization. For simplicity, we regard “Color” as the
functional color attack, “Delta” as the additive delta attack and
“Col.+Del.” as the proposed combinatorial attack. We utilize
PersonX as the meta-test set for our meta-learning approach,
unless otherwise noted.

5.2 Evaluations on Source Attack

In this section, we assess the performance of the proposed attack
method in the source attack setting. We mainly evaluate two
important factors in our method, i.e., (1) the types of attacks (color
attack, delta attack, and combinatorial attack), (2) the effectiveness
of meta-learning. For experiments without meta-learning, both
meta-optimization and an additional virtual dataset were not used
in the training. From the results reported in Tab. 1, we have the
following three observations.

(1) Both delta attack and color attack can substantially
mislead the accuracies of re-ID models. Firstly, we notice that
the most widely used additive attack can successfully corrupt the
deep Re-ID models. For example, the additive delta attack (w/o
meta-learning) successfully reduces the mAP of the IDE model
on Duke from 66.7% to 2.5%. On the other hand, the color attack
can also significantly reduce the performance of re-ID models,
such as the mAP drops to 18.5% and 19.8% for the IDE and
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TABLE 3: Performance of cross-dataset attack with three methods (color attack, delta attack and combinatorial attack). “None”: before
attack. “Color”: color attack. “Delta”: additive delta attack. “Col.+Del.”: the proposed combinatorial attack. “Dataset A→ Dataset B”:
using the attack trained on Dataset A to mislead the inferring on Dataset B.

Model Methods Meta Duke→ Market Duke→ MSMT Market→ Duke Market→ MSMT
mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

IDE

None × 78.2 88.7 42.3 69.8 66.7 80.9 42.3 69.8
Color × 37.3 50.0 18.0 49.4 31.2 42.8 22.7 57.8
Delta × 3.1 2.6 4.4 10.8 13.9 18.8 4.1 10.2

Col.+Del. × 2.4 2.0 2.4 5.5 11.4 16.2 3.0 7.1
Color X 23.6 31.5 18.9 50.7 15.4 21.0 21.1 56.0
Delta X 1.8 1.2 3.1 7.3 5.5 7.2 2.5 5.7

Col.+Del. X 2.2 1.4 1.5 3.0 2.4 2.6 1.2 2.4

PCB

None × 76.7 91.3 50.8 88.9 68.0 84.1 50.8 88.9
Color × 26.3 38.5 8.8 21.2 23.0 33.7 15.9 38.7
Delta × 29.4 41.7 4.0 8.3 22.2 34.2 5.3 11.8

Col.+Del. × 16.6 24.5 2.4 4.8 14.0 20.9 3.9 8.7
Color X 29.5 41.6 13.4 34.7 17.3 26.5 11.5 29.3
Delta X 18.3 25.2 2.4 4.8 16.2 24.2 3.0 6.4

Col.+Del. X 11.5 16.1 2.1 4.4 4.9 7.2 2.1 4.7

TABLE 4: The results of cross-model & dataset attack. For
experiments with “IDE → PCB” and “Market → Duke”, we
optimize the attack with the IDE model trained on Market and
then corrupt another PCB model trained on Duke.

Model Methods Meta Market→ Duke Duke→ Market
mAP rank-1 mAP rank-1

None × 68.0 84.1 76.7 91.3
MisRank × 57.6 73.3 39.7 53.4

Color × 23.5 34.9 33.8 49.4
IDE Delta × 50.0 69.0 57.5 79.2
↓ Col.+Del. × 20.6 30.8 32.0 48.0

PCB Color X 13.6 19.5 22.6 32.7
Delta X 51.7 72.3 59.2 80.2

Col.+Del. X 17.0 27.3 22.1 31.3
None × 66.7 80.9 78.2 88.7

MisRank × 45.9 60.8 49.5 63.9
Color × 30.7 41.4 37.4 49.5

PCB Delta × 31.1 44.2 33.4 45.4
↓ Col.+Del. × 21.3 29.1 17.9 22.7

IDE Color X 16.9 23.9 36.3 47.4
Delta X 21.2 28.9 27.1 37.2

Col.+Del. X 10.6 14.2 13.3 18.8

PCB on Duke (w/o meta-learning). These results prove that our
motivation of using color transformation to mimic camera shift
for attacking re-IDs is feasible.

(2) Combining the color attack and delta attack can further
improve the attack performance. The results reveal that deep re-
ID models are vulnerable to the proposed combinatorial attack on
different models and datasets, regardless of using or not using
meta-learning. For example, the combinatorial attack (w/o meta-
learning) successfully fools the IDE model trained on Duke from
66.7% to 1.6%, which is better than the individual color attack
or delta attack. After using the meta-learning, the combinatorial
attack further reduces the mAP to 0.6%, which also outperforms
individual color or delta attack with meta-learning.

(3) Meta-learning plays an essential role in improving at-
tacking performance. By comparing the results of each attacking
method trained w/ and w/o meta-learning, we find that attacks
endowed with meta-learning achieve better performance. For ex-
ample, in the scenario of IDE trained on the Duke, the mAP of

the color attack w/ and w/o meta-learning is 12.1% vs. 18.5%, the
delta attack is 1.1% vs. 2.5%, and the “Col. + Del.” attack is 0.6%
vs. 1.6%. Accordingly, these results indicate the effectiveness of
the proposed meta-learning strategy that consistently improves the
performance of different types of attacks.

5.3 Evaluations on Cross-model Attack
Different from the source attack in Tab. 1, we further evaluate the
universality of the proposed attack method under the cross-model
attack setting (the target model is different), and report the results
in Tab. 2. From the Tab., we have the following observations.

(1) The color attack shows better consistency than the delta
attack in this setting. In Tab. 2, we find that the color attack
learned by one model can consistently decrease the accuracy
of the other different model for all the cases. For the case of
“IDE→PCB” in the delta attack, we observe the learned universal
delta perturbations (on Market and Duke) struggle to corrupt the
PCB model. For example, the rank-1 only drops from 91.3%
to 77.0% (w/o meta) and 80.9% (with meta) on the Market,
respectively.

(2) The combination of color and delta is beneficial to
improving the performance. For the case of “PCB→IDE” on
both Market and Duke, the combinatorial attack can achieve better
performance than the individual color and delta attack. Although
for the setting of “IDE→PCB”, the combinatorial attack fails
to outperform the color attack. It still can largely alleviate the
significant negative influence brought by the delta attack.

(3) The meta-learning is generally effective for improving
cross-model attack. For most of the cases, we find a substantial
improvement of attacking performance after using the proposed
meta-optimization procedure. However, we also notice that the
attacking of color attack learned by the PCB model is decreased
on both Market and Duke datasets.

5.4 Evaluations on Cross-dataset Attack
Concurrent with the cross-model attack, we also evaluate the uni-
versality of our attack methods under the setting of cross-dataset
attack. In this section, we conduct extensive experiments on three
large-scale benchmarks and list the results in Tab. 3. Similar to
the cross-model attack, we can find that the combinatorial attack
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TABLE 5: Comparison between the proposed attack (MetaAttack with combinatorial attack) and the state-of-the-arts (MisRank [12]
and UAP-Retrieval [18]) under the settings of source attack and cross-dataset attack. All experiments are conducted with ε = 8 in
default. “Market → MSMT”: cross-dataset attack that uses perturbation trained on Market to attack MSMT model. “Before Attack”:
re-ID accuracies without attack. For cross-dataset attack, we report the re-ID accuracies of target model without attack in “Before
Attack”.

Model Methods Market Duke Market→ MSMT Duke→ MSMT
mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

IDE [59]

Before Attack 78.2 88.7 66.7 80.9 42.3 69.8 42.3 69.8
MisRank 19.2 25.9 19.9 26.9 11.1 28.5 11.7 30.0

MisRank+PersonX 24.4 32.7 29.1 39.0 12.4 31.0 20.9 55.8
UAP-Retrieval 3.6 4.5 4.2 9.9 5.3 13.9 5.5 15.4
UAP w/ SMA 1.5 3.4 2.0 2.4 3.2 8.2 2.6 5.7

Ours 0.4 0.1 0.6 0.6 1.2 2.4 1.5 3.0

PCB [5]

Before Attack 76.7 91.3 68.0 84.1 50.8 88.9 50.8 88.9
MisRank 36.3 49.2 39.8 56.1 14.4 28.5 21.1 47.7

MisRank+PersonX 35.3 47.8 40.5 56.2 18.8 39.6 18.8 39.6
UAP-Retrieval 10.7 15.1 14.3 20.3 4.3 8.9 4.4 9.1
UAP w/ SMA 8.3 12.2 6.7 10.4 4.6 9.5 5.8 10.7

Ours 4.6 4.9 3.7 4.7 2.1 4.7 2.1 4.4
Before Attack 88.2 95.3 77.0 87.2 49.3 68.3 49.3 68.3

MisRank 57.1 72.5 31.6 42.5 17.5 33.7 24.9 46.1
MisRank+PersonX 61.3 73.2 34.2 44.1 19.2 34.2 27.0 47.8

MisRank (ε=16) 13.2 18.1 8.9 11.2 4.7 8.5 9.8 18.4
UAP-Retrieval 3.7 3.9 2.0 2.7 9.4 16.7 6.4 10.4
UAP w/ SMA 2.2 4.1 3.1 4.4 6.2 9.7 5.2 8.7

AGW [60]

Ours 0.5 0.3 0.6 0.4 0.4 2.5 0.5 2.5

and the meta-learning are both effective in this Cross-dataset
attack setting. On the other hand, we notice that the delta attack
has better performance than the color attack in this setting. For
example, the learned delta perturbation on the Duke with IDE
(w/o meta) successfully deteriorates the mAP on the Market and
MSMT to 3.1% and 4.4%, respectively. These results suggest that
the learned delta perturbations are less sensitive to the domain
shift of different re-ID datasets.

5.5 Evaluations on Cross-model & Dataset Attack
We also conduct experiments to evaluate cross-model & dataset
attack performance, which is the most challenging and practical
form of real-world re-ID attack. The results are shown in Tab. 4.
Based on the results, we have similar conclusions to previous sec-
tions. i.e., meta-learning and the color information play essential
roles in the cross-model & dataset attack. Besides, the proposed
combinatorial attack takes advantage of the individual color and
delta attacks. Moreover, we also evaluate the performance of the
MisRank [12] in this setting and find that the MisRank only
slightly decreases the accuracy of different models. These results
demonstrate the universality of the proposed methods for attacking
unknown re-ID models.

5.6 Comparison with State-of-the-Arts
We compare the proposed MetaAttack with two state-of-the-art
approaches, i.e., MisRank [12] and UAP-Retrieval [18]. It should
be noted that we do not take [13] and [14] into our comparison. In
detail, both [13] and [14] will use images from testing set to opti-
mize their perturbations, which is different from our experimental
setting and is not a practical scenario in real world re-ID attack.
Although SMA [14] can not be directly applied to our attack
scheme, we try our best to make it usable in our experiments by
applying the self-supervised loss in SMA to UAP. Concretely, we

reduce the pair-wise cosine similarities between the features of the
original training images and their perturbed counterparts to attack
re-ID systems. This variant is called “UAP w/ SMA”. Results are
evaluated on the settings of source attack and cross-dataset attack.
All experiments are conducted with ε = 8. For source attack,
we evaluate the attacks on Market and Duke. For cross-dataset
attack, we train the attacks on Market (or Duke) and test them
on MSMT without any modification. Apart from IDE and PCB,
we also evaluate the recently published re-ID model (AGW [60]),
which achieves state-of-the-art performance on most benchmarks.
We show the comparison results in Tab. 5 and make the following
conclusions. (1) Our attack largely outperforms the MisRank
and UAP-Retrieval in all settings, showing that we achieve new
state-of-the-art attack performance for re-ID. For example, when
attacking the IDE model with ε = 8, our attack achieves mAP =
0.4% on Market and mAP = 0.6% on Duke, respectively. These
results are 3.2% and 3.6% lower (better) than the best competitor
(UAP-Retrieval). Similar superiority of our attack can be found in
other settings (source attack and cross-dataset attack on IDE, PCB
and AGW). (2) “UAP w/ SMA” achieves better attack performance
than UAP-Retrieval but is still inferior to our method. (3) Directly
using the virtual dataset (PersonX) as the training data fails to
bring consistent improvement for MisRank. For example, when
additionally using the virtual data, the mAP on Market (source
attack, IDE model) is increased from 19.2% (MisRank) to 24.4%
(MisRank+PersonX), leading to a worse attack performance. This
indicates that using a virtual dataset is not trivial in attack re-ID.

5.7 Evaluations on Using Different Meta-Test Sets

In this section, we use four different datasets to evaluate the char-
acters of choosing additional data for meta-learning. They are (1)
Real Dataset (MSMT [58] in our experiments) (2) PersonX [20]
(3) UnrealPerson [21] (4) RandPerson [22]. The last three virtual
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TABLE 6: Ablation study on meta-learning and meta-test sets. We adopt MSMT-17 (Real) [58], RandPerson (RP) [22], PersonX
(PX) [20], and UnrealPerson (UP) [21] as meta-test set to study the characters of choosing additional data for meta-learning. “Meta”:
meta-learning, “Extra”: extra data, “Color”: color attack, “Delta”: additive delta attack, “Col.+Del.”: the proposed combinatorial attack.

No. Extra Meta
Delta Color Col.+Del.

Market→ Duke Market Market→ Duke Market Market→ Duke Market
mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

0 × × 13.9 18.8 2.6 2.0 31.2 42.8 28.5 36.7 11.4 16.2 2.3 2.3
1 Real × 12.7 17.0 2.8 2.3 32.0 43.1 27.5 36.2 10.8 15.2 2.3 2.0
2 PX × 12.5 17.3 1.9 1.1 33.8 45.9 33.9 44.6 10.7 14.7 1.6 1.0
3 RP × 13.9 19.5 2.2 1.5 25.8 34.6 29.9 40.7 9.8 13.8 2.2 2.3
4 UP × 11.9 16.3 1.7 0.9 23.5 31.9 27.6 36.3 9.1 12.3 1.7 1.4
5 Real X 6.8 8.7 0.5 0.1 19.2 26.4 20.9 28.7 3.6 4.0 0.4 0.1
6 PX X 5.5 7.2 0.6 0.1 15.4 21.0 18.1 24.2 2.4 2.6 0.4 0.1
7 RP X 8.2 10.3 0.5 0.2 14.7 19.6 16.8 21.4 5.7 7.5 0.3 0.0
8 UP X 7.1 9.0 0.5 0.1 13.6 18.4 16.7 20.4 4.6 5.5 0.3 0.1

TABLE 7: Comparison of using different training datasets. The
combinatorial attack (Color+Delta) is applied.

Methods Market Duke
mAP rank-1 mAP rank-1

Real Only (R) 2.3 2.3 1.6 1.9
PersonX Only (PX) 10.8 13.2 11.1 14.8

MetaAttack (R+PX) 0.4 0.1 0.6 0.6

datasets are designed for different purposes and have different
properties. As mentioned in Sec. 5.1, PersonX has balanced
viewpoints and can be utilized to explore the impact of viewpoints
on re-ID systems. RandPerson is composed of 8, 000 identities
captured by 19 cameras, which is designed to improve the quality
of synthesized data with diversified backgrounds, style of clothes,
and occlusion. UnrealPerson is another large-scale virtual dataset,
which contains 120, 000 images of 1, 200 IDs captured by 34
virtual cameras and is proposed to enrich the details of virtual
pedestrians. The experimental results are listed in Tab. 6. We can
make the following observations.

(1) Directly combining source data with the additional
dataset for joint-optimization achieves limited improvements.
By comparing No. 0 and No. 1 - No. 4 in Tab. 6, we notice
that three attacks yield limited improvements on corrupting re-ID
models. The most significant improvement occurs in the cross-
dataset color attack (Market→Duke), which reduces the mAP
score from 31.2% (w/o extra data) to 23.5% (w/ extra data)
with the assistance of UnrealPerson. However, this improvement
is not substantial when compared with those trained by meta-
optimization (No. 5 - No. 8 in Tab. 6).

(2) Meta-learning is essential for improving the perfor-
mance of attack. By comparing the four rows w/o meta-learning
(No. 1 - No. 4) and the last four rows w/ meta-learning (No. 5 - No.
8), we observe that attacks optimized with meta-learning always
have better performance than those without meta-learning for both
extra virtual and extra real data. These results demonstrate the
importance of using meta-optimization for learning more powerful
universal attacks.

(3) Viewpoint is an important factor for training powerful
attacks. The RandPerson, UnrealPerson and MSMT have much
more training samples than PersonX. However, as shown in Tab. 6,
the attacks optimized with PersonX achieve competitive results
with other attacks, regardless of the amount of training data.
Therefore, attacks may be more powerful when optimized with

Origin ε=1 ε=2 ε=4 ε=8 ε=12 ε=16

Fig. 4: Examples of corrupted queries with different ε.

Color Delta Col.+Del.Origin

Fig. 5: Examples of the perturbations and corrupted queries for
three attacks trained with our method. We use IDE as the training
method and Market as the source data.

dataset that have balanced viewpoints.

In Tab. 7, we also show the results of only using the virtual
PersonX as the training data. We can observe that only using
the PersonX achieves largely worse attack performance than the
method of using the real source data and our MetaAttack method.
This indicates the importance of the real data and further verifies
the advantage of the proposed meta-learning.
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DeltaQuery Color + DeltaColor

Fig. 6: Visualization of ranking lists under cross-dataset attack. We train the adversarial perturbation with PCB model trained on Market
and attack the PCB model trained on Duke. The queries are evaluated on the Duke dataset.

TABLE 8: Sensitivity analysis of ε.

Col.+Del. Market Duke
mAP rank-1 mAP rank-1

ε=1 70.5 86.1 60.6 75.8
ε=2 47.3 62.0 43.8 57.8
ε=4 7.5 8.3 13.8 19.0
ε=8 0.4 0.1 0.6 0.6
ε=12 0.2 0.0 0.2 0.2
ε=16 0.2 0.0 0.2 0.0

5.8 Sensitivity Analysis

In Tab. 8, we analyze the impact of ε by changing the value of
it between 1 and 16. Experiments are evaluated on our method
(combinatorial attack with meta-learning) for the setting of source
attack. Clearly, a higher value of ε can easily damage re-ID
accuracies. However, in practice, we should ensure that the added
perturbation is quasi-imperceptible and thus should not assign a
value that is too large to ε. In Fig. 4, we visualize some perturbed
queries with different values of ε. We can perceive changes when
ε is larger than 8, e.g. ε=12. Based on this observation, we suggest
setting ε to 8 for the attacking re-ID systems, which can produce
acceptable attack results with quasi-imperceptible changes.

5.9 Image Quality of Adversarial Examples

In general, the generated adversarial images should be indistin-
guishable from real images. We then estimate the SSIM [61]
scores between the real images and their perturbed counterparts.
SSIM is a popular metric for evaluating image quality, a large
SSIM score indicates better quality and less distortion. In Tab. 9,
we compare the SSIM scores of different attacks, including func-
tional color attack, additive delta attack, combinatorial universal
attack, and MisRank [12]. The first three attacks are learned with
meta-learning. For fair comparison, we set ε = 8 for all attacks.
We can find that all of our attacks achieve higher SSIM scores
than MisRank, showing the advantage of our method in terms of
the image quality. On the other hand, by comparing our methods,
the additive delta attack produces a higher SSIM score than the
functional color attack and the combinatorial attack.

TABLE 9: Comparison of SSIM scores between different attack
methods. We set ε=8 for all attacks. The “Color”, “Delta” and
“Col.+Del.” attacks are trained with our MetaAttack.

Dataset Color Delta Col.+Del. MisRank
Duke 0.2116 0.2141 0.2126 0.1985

Market 0.1904 0.1997 0.1921 0.1889

TABLE 10: Attack results of using two virtual datasets. ε=8 is
used. UP:UnrealPerson, PX:PersonX.

Meta
Train

Meta
Test

Duke Market
Method mAP rank-1 mAP rank-1

Before Attack - - 66.7 80.9 78.2 88.7
Ours UP PX 61.4 68.9 59.6 62.5
Ours Market PX 2.4 2.6 0.4 0.1
Ours Duke PX 0.6 0.6 2.2 1.4

5.10 Attack without Real Data

The utilization of the virtual dataset can partially address the pri-
vacy issue in re-ID. To explore the possibility of fully addressing
the privacy concern, we conduct an experiment by training without
real images. Specifically, we use UnrealPerson [21] as the meta-
train and PersonX [20] as meta-test. Results in Tab. 10 show that
only using virtual data achieves largely worse attack results than
using both real and virtual data. This demonstrates the importance
of real data in achieving good attack performance. Although we
do not completely address the data privacy issue, this paper has
made a non-trivial step to solve this problem. With our method,
we can use publicly available datasets and virtual datasets to train
universal re-ID attacks and learn robust re-ID models. This avoids
the usage of data in unseen scenarios and thus largely prevents
data privacy in real-world applications where the testing process
commonly requires higher privacy.

5.11 Visualization

Perturbation and Corrupted Samples. In Fig. 5, we visualize
the perturbations and adversarial examples of different attacks
(color, delta, and color+delta). All attacks are trained with our
MetaAttack. We can find that: (1) the functional color attack
generates different perturbations for images and changes the
overall color-distributions of the images; (2) the additive delta
attack generates adversarial examples with the same perturbation;
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TABLE 11: Cross-dataset attack on DeepChange (ε = 8). Before
Attack: Performance of target model before being attacked.

Market→DeepChange Duke→DeepChange
mAP rank-1 mAP rank-1

Before Attack 9.2 28.4 9.2 28.4
UAP 0.8 1.1 1.0 2.4
Ours 1.3 2.6 1.2 3.2

TABLE 12: Results of using DeepChange as meta-test (ε = 8).

Meta-Test Market→Duke Duke→Market
mAP rank-1 mAP rank-1

PersonX 2.4 2.6 2.2 1.4
DeepChange 13.7 18.6 14.7 19.2

and (3) the combinatorial attack produces adversarial examples
that have the properties of both color and delta attacks while does
not bring perceptible visual changes.
Ranking Lists under Cross-dataset Attack. We further visu-
alize the query results (ranking lists) under the setting of cross-
dataset attack. Specifically, the three attacks (“Color”, “Delta”
and “Col.+Del.”) are trained with the PCB model on Market. We
visualize the query results on the Duke dataset in Fig. 6. The first
two rows visualize samples with correct retrieval results under
either the delta or color attacks. In the third row, the query image
with partial occlusion is successfully corrupted by all three attacks.
Moreover, we provide a sample that can have correct retrievals for
three attacks in the last row of Fig. 6. We notice that pink clothes
can effectively neglect the influence of perturbations.

5.12 Evaluation on Long-Term Person re-ID
Currently, the long-term re-id with clothes changes becomes a
very hot topic in the re-ID community [62], [63]. To explore
the potential of our MetaAttack in long-term re-ID, we conduct
several experiments on the DeepChange dataset [63].

First, we use the proposed MetaAttack, which adopts the
Market dataset or Duke dataset as the source domain, to attack
the re-ID model trained on DeepChange. The results are shown
in Tab. 11. We can find that our method successfully reduces
mAP and rank-1 accuracy but fails to outperform the UAP [18]
attack. The main reason may be that the simulation on meta-
test (PersonX) does not contain instances of changing clothes,
hindering our method achieves further improvement under clothes
changing context. On the other hand, clothes changing indeed
can be regarded as a type of physical attack [64], [65], which
however is very different from traditional imperceptible re-ID
attack. Therefore, some conclusions in the traditional re-ID attack
may not be applicable for the scenario of clothes changing.

Second, we train our MetaAttack by using DeepChange as the
meta-test set. The results are reported in Tab. 12. We can find
that, using DeepChange as the meta-test achieves worse attack
performance compared to using the virtual PersonX. The main
reason is similar to that of cross-dataset attack (in Tab. 11). That is,
the DeepChange dataset includes conspicuous changes of clothes
for the same person, which may not bring the same benefit as the
traditional re-ID dataset during our meta-learning process. Since
the model trained on long-term re-ID may be better robust to
clothes changing, one possible attack solution for long-term re-
ID could be enforcing the attack model to add perturbations to
clothes-unrelated regions, such as face and background. We would
like to study this interesting but challenging problem in the future.

6 EXPERIMENTS ON DEFENSE

6.1 Experimental Setup
In the defense experiments, we utilize IDE to train the metric-
preserving model “M”. During optimization, the adversarial coun-
terparts of the training data are generated by the MetaAttack
as described in Sec. 3, where the used re-ID model for the
MetaAttack is IDE (default) or PCB. Moreover, we use PersonX-
456 [20] and its perturbed data as the meta-test. During the
evaluation, we apply seen and unseen attacks to disturb the query
of the source dataset to test the defense performance of the metric-
preserving model “M”. For other parameters in defense, we set
the sample rate Nb = 64 and Nadv = 0.5 × Nb in Eq. 12. The
learning rate α of Adam optimizer is initialized to 0.0003, and the
metric-preserving model “M” is trained for 85 epochs. We use the
model of the last epoch for evaluation. The defense experiments
are conducted on Market and Duke datasets and evaluated by the
mAP and rank-1, where higher numbers indicate better defense
performance.

6.2 Robustness to Different Types of Attacks
To evaluate the metric defense performance, we adopt differ-
ent universal adversarial attacks to disrupt the metric-preserving
model “M”. In Tab. 13, we compare the results of the normally
trained model and defending model “M” against different attacks
from the IDE model on both the Market and Duke. The included
attacks are MisRank [12], UAP-Retrieve [18], SMA [14] and our
proposed attacks (Col., Del., and Col.+Del.). We adopt Euclidean
distance for most of the evaluations of attack methods, except
SMA that uses cosine similarity. This is because SMA achieves
better performance when using cosine similarity.. Note that, the
adversarial samples used for optimizing the “M” are with the
same value of ε, and the re-ID model used for optimization is the
one used for disturbing the query images. From Tab. 13, we have
the following conclusions.

(1) When testing the original clean query set, the metric-
preserving models have a similar performance compared with
normally trained models, as shown in the first row of Market and
Duke.

(2) When purely testing the adversarial version of query
images, the performance of metric-preserving models guarding
against the attacks in our paper (delta attack, color attack, and
combinatorial attack) is significantly increased. For instance, on
the Market, the delta attack “Delta” fools normally trained models,
which sharply reduces the rank-1 from 88.7% to 0.1%. While the
metric-preserving models “M(Delta)” can increase rank-1 from
0.1% to 61.6% by improving the robustness of the model.

(3) Our defense method is also capable of helping the re-
ID model survive from the state-of-the-art instance-level attacks
like SMA [14], MisRank [12] and UAP-Retrieve [18], which
indicates the effectiveness of our method. In detail, SMA can
easily reduce the rank-1 of a Market re-ID model from 88.7 to 0.0.
After utilizing our method to train the metric-preserving model
“M(Col.+Del.)”, the rank-1 has been recovered to 65.4% and
other metric-preserving models can also improve the robustness
against SMA (rank-1=34.6% for “M(Color)” and rank-1=60.4%
for “M(Delta)”).

(4) Our defense models learned by strong attacks can resist
unseen universal attacks, in which the defense model does not
know the type of attacks in advance. For example, the metric-
preserving models “M(Col.+Del.)” can achieve a distinct effect
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TABLE 13: Performance of metric-preserving models trained with our virtual-guided meta-learning. “Normal” denotes normally
trained models, “Color”: color attack. “Delta”: additive delta attack. “Col.+Del.”: the proposed combinatorial attack. “M(Color)” means
a metric-preserving model trained by source training data and their adversarial counterparts under color attack with ε = 8 . In all
experiments, the adversaries of training data under “M(·)” are generated by MetaAttack and IDE model.

Datasets Attack Methods Normal M(Color) M(Delta) M(Col.+Del.)
mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

Market

Original 78.2 88.7 74.5 88.7 70.0 86.8 75.5 88.9
Color 18.1 24.2 40.0 54.3 43.4 59.5 41.6 55.1
Delta 0.6 0.1 19.1 24.1 46.5 61.6 46.7 62.4

Col.+Del. 0.4 0.1 7.6 8.7 25.9 35.6 31.7 43.1
MisRank [12] 19.2 25.9 71.7 86.7 64.5 83.3 72.1 86.3

SMA (Cosine) [14] 0.2 0.0 25.4 34.6 45.7 60.4 50.2 65.4
UAP-Retrieval [18] 3.6 4.5 25.3 33.8 43.6 58.3 49.3 64.5

Duke

Original 66.7 80.9 62.0 77.8 57.0 74.6 56.2 73.2
Color 12.1 16.3 37.5 52.2 34.7 51.2 36.7 53.8
Delta 1.1 1.2 19.4 27.5 33.1 47.1 39.6 56.1

Col.+Del. 0.6 0.6 8.2 11.3 14.4 19.9 24.9 37.8
MisRank [12] 19.9 26.9 59.4 76.3 52.6 71.1 53.9 72.6

SMA (Cosine) [14] 0.2 0.2 23.6 34.7 30.2 44.6 35.3 49.2
UAP-Retrieval [18] 4.2 9.9 21.6 30.6 33.5 48.8 39.0 55.9

TABLE 14: Comparison with state-of-the-arts. We use different at-
tack methods (MisRank [12], SMA [14], and UAP-Retrieve [18])
to attack metric-preserving models. We use ε = 8 for each attack
method and the optimization of each metric-preserving model
trained by adversarial examples with ε = 8.

Datasets Attacks M(SMA) M(Col.+Del.)
mAP rank-1 mAP rank-1

MisRank 69.4 83.8 72.1 86.3
SMA (Cosine) 10.4 15.3 50.2 ]65.4Market
UAP-Retrieval 42.6 62.3 49.3 64.5

MisRank 46.7 66.9 53.9 72.6
SMA (Cosine) 8.2 14.6 35.3 49.2Duke
UAP-Retrieval 24.9 39.0 39.0 55.9

of resisting the other types of attacks (color, delta, MisRank [12]
and UAP [18]). On Market, the rank-1 increases from 0.1% to
62.4% against “Delta” and from 24.2% to 55.1% against “Color”
for the “M(Col.+Del.)”, respectively. Notably, we find that all our
defense models (M(Color), M(Delta), and M(Col.+Del.) can resist
the MisRank and UAP attack because an obvious improvement
can be seen after re-training.

6.3 Comparison with State-of-the-Arts
We also compare our method with state-of-the-art re-ID defense
works with ε = 8 and IDE model in Tab. 14. Based on the
results, we find that our method outperforms state-of-the-art
defense method SMA [14]. For example, the metric-preserving
model “M(Col.+Del.)” can recover the mAP score to 50.2% when
attacked by SMA on Market. However, the metric-preserving IDE
model optimized with SMA can only recover the mAP to 10.4%.
These results fully demonstrate the effectiveness of our method.

6.4 Further Experiments
We further explore our defense model of resisting unseen attacks
from other three aspects, i.e., 1) defense from the attacks of
different models, 2) defense from the non-meta attacks, and 3)
defense from the attacks of different values of ε.
Defense from the Attack of Different Models. In Tab. 15, we
evaluate the performance of using our metric-preserving model

“M(Col.+Del.)” to resist perturbations learned by different attack
methods and re-ID models. The re-ID models include IDE, PCB
and AGW. The attack methods include MisRank [12] and our
meta-attacks. When using IDE or PCB as the model for generating
perturbations, our defense model “M(Col.+Del.)” can clearly im-
prove the mAP and rank-1 accuracy for all settings. For example,
on Market, the defense model “M(Col.+Del.)” can increase the
mAP from 36.3% to 74.0% for resisting MisRank based on the
PCB model. When generating perturbations by AGW, our defense
model “M(Col.+Del.)” can consistently improve the performance
under all settings except resisting MisRank on Duke. These results
suggest that our adversarial training paradigm with virtual-guided
meta-learning can improve the robustness for dealing attacks that
are not seen during training.
Defense from the Non-Meta Attacks. We also explore our
defense model for resisting non-meta attacks. In general, by com-
paring the performance of resisting the non-meta attacks and meta
attacks in Tab. 15, we can find that the defense model commonly
has a slightly higher performance in defending against non-meta
attacks. Besides, as demonstrated in the attack experiments, the
meta attacks usually have a strong attack ability than those non-
meta attacks. Therefore, these results mean that the defending
model learned with a strong attack is robust to weak attacks.
Defense from the Attacks of Different values of ε. To fully eval-
uate the robustness of defense models, we employ attack models
with different values of ε to attack the metric-preserving model
“M(Col.+Del.)”. From Tab. 16, we observe following phenomena.
(1) The defense model can achieve dramatic improvement in
resisting attacks trained by a lower epsilon. For example, the mAP
can increase from 8.3% to 68.6%, when “M(Col.+Del.)” faces
adversarial examples generated by the combinatorial attack with
ε = 4 on Market. (2) When further escalating the perturbation of
adversarial samples to ε = 12, our MetaDefense only can slightly
improve the accuracy in resisting the combinatorial attack, such
as the mAP only reaches 4.3%. (3) The defense model is robust
for resisting MisRank attack even with ε = 16. Compared to the
clean case, the mAP only decreases from 78.2% to 67.1%, and
66.7% to 55.7% on Market and Duke, respectively.

These experimental results further confirm that our defense
method can enhance the intrinsic robustness of models, especially
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TABLE 15: Performance of metric-preserving model against attacks generated by different models. “M(Col.+Del.)” means a metric-
preserving model trained by the original clean training data and the adversarial examples generated by Alg. 1 based on IDE model.

Attack
Models

Meta Attack
Methods

Market Duke
Normal M(Col.+Del.) Normal M(Col.+Del.)

mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1
None × None 78.2 88.7 75.5 88.9 66.7 80.9 56.2 73.2

IDE [59]

×

MisRank 19.2 25.9 72.1 86.3 19.9 26.9 54.7 73.4
Color 28.5 36.7 48.9 62.4 18.5 26.1 36.5 53.7
Delta 2.6 2.0 46.4 61.5 2.5 3.0 39.4 55.8

Col.+Del. 2.3 2.3 22.0 28.0 1.6 1.9 23.5 35.3

X
Color 18.1 24.2 41.6 55.1 12.1 16.3 36.7 53.8
Delta 0.6 0.1 46.7 62.4 1.1 1.2 39.6 56.1

Col.+Del. 0.4 0.1 31.7 43.1 0.6 0.6 24.9 37.8

PCB [5]

×

MisRank 36.3 49.2 74.0 88.1 39.8 56.1 53.9 72.6
Color 26.4 33.4 52.1 67.0 18.4 25.3 34.1 50.7
Delta 33.9 46.1 53.0 67.4 20.7 27.9 28.9 41.8

Col.+Del. 15.9 20.0 33.9 45.4 11.2 14.1 18.5 27.3

X
Color 29.9 40.4 44.7 58.1 20.2 29.1 34.1 50.8
Delta 21.2 28.9 47.9 61.5 16.8 22.7 28.8 41.6

Col.+Del. 4.4 4.6 16.9 21.2 7.0 9.6 18.5 27.4
MisRank 61.4 74.4 70.4 85.5 63.6 77.8 57.2 74.5

Color 37.6 47.7 47.1 61.1 28.3 38.0 32.2 46.3
Delta 8.4 10.2 39.1 52.1 2.5 3.2 35.0 49.3

×

Col.+Del. 5.8 7.1 30.3 40.5 0.8 0.9 25.6 36.8
Color 27.6 35.7 35.4 45.8 17.6 23.9 31.3 45.5
Delta 1.6 1.6 33.8 44.8 1.9 2.4 37.7 53.3

AGW [60]

X
Col.+Del. 0.5 0.3 19.6 25.5 0.6 0.4 27.3 40.2

TABLE 16: Performance of metric-preserving model against MetaAttacks of different values of ε. “M(Col.+Del.)” denotes a metric-
preserving model trained by original clean training data and the adversarial version of training data under Alg. 1 with ε = 8.

Attack Methods ε
Market Duke

Normal M(Col.+Del.) Normal M(Col.+Del.)
mAP rank-1 mAP rank-1 mAP rank-1 mAP rank-1

None \ 78.2 88.7 75.5 88.9 66.7 80.9 56.2 73.2

Col.+Del.
ε=4 7.5 8.3 53.1 68.6 13.8 19.0 40.1 56.7
ε=8 0.4 0.1 31.7 43.1 1.1 1.0 24.9 37.8
ε=12 0.2 0.0 4.3 4.5 0.2 0.0 9.2 13.4

MisRank ε=8 19.2 25.9 73.1 86.3 19.9 26.9 54.7 73.4
ε=16 4.4 3.7 67.1 82.9 2.7 3.3 55.7 73.2

TABLE 17: Ablation study on the proposed MetaDefense algo-
rithm. We use our universal attack to train the metric-preserving
model.

No.
Duke Market Virtual data Meta

mAP rank-1 mAP rank-1 PersonX Learning

1 5.5 7.4 10.2 16.8 × ×
2 16.2 22.7 16.4 19.8 × X
3 16.7 21.5 21.3 30.3 X ×
4 24.9 37.8 31.7 43.1 X X

in resisting different types of adversarial attacks.

6.5 Ablation Study
Evaluation on Virtual-Guided Meta-Learning. To evaluate the
contributions of different components, we gradually add the virtual
dataset and meta-learning into our metric-preserving model. The
training protocols for four settings in Tab. 17 are as follows: the
No.1 is the baseline which is trained by using only source data
and its adversarial counterpart. In No.2, we leverage another real
dataset (MSMT) and its adversarial counterpart as the meta-test. In

No.3, the model is trained with mixed data (source and PersonX)
and their adversarial counterparts. The No.4 is our full defense
training protocol with both virtual data and meta-learning.

From Tab. 17, we can have the following findings. (1) The
comparison between No.1 and No.2 suggests that using the real
data as the meta-test has a positive effect on improving the ro-
bustness of the metric preserving model. (2) From the comparison
of No.1 vs. No.3, we can find that introducing virtual data into
defense training can significantly improve the metric defense
performance. (3) Comparing the No.3 vs. No.4, we can observe
a further improvement of mAP and rank-1 on both Duke and
Market. These results indicate the mutual benefit of leveraging
the virtual data in meta-learning to increase the robustness of the
metric-preserving model.

Evaluation on the Losses for MetaDefense. In Tab. 18, we
investigate the impact of different loss functions for our MetaDe-
fense, including triplet loss and cross-entropy loss. We can find
that the triplet loss achieves higher defending performance than
the cross-entropy loss on both datasets. In addition, by combining
these two loss functions, the defending performance can be further
improved.
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Fig. 7: Visualization of ranking lists for two query images under attack “Col.+Del.” disturbing a normally trained model “Normal” and
the proposed metric-preserving model “M(Col.+Del.)” .

TABLE 18: Effect of loss functions for the proposed MetaDefense.
Our MetaAttack is used to train the metric-preserving model.

Loss Market Duke
mAP rank-1 mAP rank-1

Lce 15.4 26.4 3.1 5.3
Ltri 26.1 32.7 15.3 22.9

Ltri + Lce 31.7 43.1 24.9 37.8

Query

1

2

3

4

Ranklist

Fig. 8: Visualization of incorrect ranking lists for query images
under “M(Col.+Del.)” against “Col.+Del.”.

6.6 Visualization

Ranking Lists in MetaDefense. We visualize the ranking list
of two query images in Fig. 7. The first row is the ranking list
of a normally trained model for retrieving non-attacked samples.
The second and third rows represent the combinatorial attack
“Col.+Del.” that misleads the normal-trained model “Normal” and
the proposed metric-preserving model “M(Col.+Del.)”, respec-
tively. From the second row, we can find that the proposed attack
method can disturb the whole ranking list of the queries. In the
third row, our metric-preserving model can correct the ranking list
for the attacked query.
Destructive Queries in MetaDefense. Our MetaDefense can
largely resist other attack methods, while it has certain limitations
in combating the combinatorial attack. In Fig 8, we further visu-
alize some destructive query images and their ranking lists under
“M(Col.+Del.)” against the MetaAttack of “Col.+Del.”. From the
results, we may conjecture that the query image with extra objects,

TABLE 19: Analysis of computational cost.
Method Training Time (s / epoch)

w/ meta 63.0Our Attack
w/o meta 22.0
w/ meta 271.0Our Defense
w/o meta 31.0

such as a bag or bicycle, is not easy to defend.

6.7 Computational Cost
In Table 19, we compare the computational cost of training models
with or without the proposed meta-learning. When using meta-
learning, the training time will be increased by 3 times and 9 times
for the attack and defense model, respectively. Since we need to
update the whole re-ID model during meta-defense, the increased
training time is higher than that of meta-attack. Note that our
meta-learning approach does not increase the testing time.

7 CONCLUSION

Deep person re-identification (re-ID) systems are vulnerable to
adversarial attacks, raising the security risk of real applications.
In this study, we present a holistic attack-defense framework to
investigate the relationship between attack and defense in person
re-ID. Specifically, we propose a universal adversarial attack to
fool the re-ID, which combines the functional color attack and
additive adversarial attack. Experiments show the universality
of the proposed universal attack. Moreover, we design a novel
virtual-guided meta defense algorithm, which can be applied to the
learning of both attack and defense. Experiments verify that our
meta-learning can effectively improve the universality of the attack
and the robustness of the re-ID model. Importantly, we find that
re-ID models learned by defending strong adversarial examples
that have a good universality could be robust to different attacks.
This observation may inspire us to develop robust re-ID models
by learning with stronger (universality) attacks in the future.
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