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Abstract. In the current state of the art in ontology matching, diverse
golden standards are used to evaluate the algorithms. In this paper we
show that by following appropriate rules in their construction and use,
the quality of the evaluations can be significantly improved, particularly
in the accuracy of the precision and recall measures obtained.

1 Introduction

In the recent years, as a valid solution to the semantic heterogeneity prob-
lem, several matching tools have been proposed. These tools identify nodes in
two schemas (e.g., database and XML schemas, classifications, thesauri or on-
tologies), that are syntactically or semantically related. We focus on matching
techniques, which find semantic correspondences between nodes [1,2], such as
SMatch [3-5].

In this paper we discuss issues related to evaluating tools that output rich
mappings. In particular, we consider the types of output similar to the one pro-
vided by SMatch. In SMatch, the two schemas in input are preliminary converted
into lightweight ontologies [6]. With the conversion, each natural language node
label is translated into a propositional Description Logic (DL) formula encod-
ing the meaning of the node. The algorithm then computes the mapping, also
called alignment, containing the set of semantic correspondences between nodes
in the two ontologies. Each correspondence is given a semantic relation in the
set: disjointness (L), equivalence (=), less general (C) and more general (3).

Most of the tools for semantic matching identify only equivalence, some of
them identify less and more general correspondences, but only a few of them
include explicit disjointness [7]. Reflecting this, an overwhelming majority of
available golden standards are targeted at evaluating mappings containing only
equivalence correspondences. In this paper we explain why evaluating a rich
mapping using such a golden standard makes results imprecise and provide best
practices to make results of evaluation and comparison between different tools
fair and more accurate.

The rest of the paper is organized as follows. We first introduce the re-
lated work in the field of ontology matching and specifically of their evaluation.
Section 3 discusses the issues that arise when computing precision and recall



measures on large datasets. Section 4 introduces the notion of redundant corre-
spondences in a mapping and discusses their influences on precision and recall
calculation. Section 5 provides an evaluation that emphasizes the repercussions
of evaluating with and without redundancy. Finally, Section 6 provides a set of
conclusions on all of these issues and an outline of the best practices for the
evaluation of ontology matching algorithms.

2 Related Work

The main focus of the ontology matching field are the matching techniques
themselves (see [1] for a recent survey), in particular within the successful OAEI!
campaign and rarely the evaluation methodology. We believe that the community
can benefit from a greater attention to the evaluation issues raised by the use
and the quality of existing golden standards.

The evaluation methodology of the ontology matching tools has been scarcely
examined in the literature. For instance, [8,9] report on general evaluation ex-
periments and [10,11] on domain-specific evaluation experiments, but they do
not discuss any of the existing issues in the existing evaluation methodology.

Considerable attention has been paid to appropriateness and quality of the
measures, such as standard precision and recall. For example, in [12] the authors
propose a framework for generalizing precision and recall. The improvement of
precision and recall measures continued in [13], where the authors propose se-
mantic precision and recall. Later, these improvements were analyzed and further
advanced in [14], where adaptations of the relaxed and semantic precision and
recall to the normalized mapping are proposed.

Attention has also been brought to the mapping itself, such as in [15] where
the authors propose to complement the precision and recall with new measures
to take into account possible mapping incoherence, thus addressing the issues of
internal logical problems of the mapping and the lack of reference mappings. In
[16] two evaluation techniques are proposed. The first is practice-oriented and
evaluates the behaviour of the mapping in use. The second focuses on the manual
evaluation of a mapping sample and the generalization of the results.

Closer to our work the authors of [7] raise the issue of evaluating non-
equivalence correspondences, pointing out that more and more systems start to
produce correspondences with relations such as subsumption and disjointness.
In particular, they discuss the issue of evaluating a mapping that contains re-
dundant correspondences, that is, correspondences that can be logically derived
from the others in the mapping. They compute precision both for the original
set and the set from which the redundant correspondences are eliminated. We
extend and correct their conclusions.

! http://oaei.ontologymatching.org/



3 Computing Precision and Recall

Golden standards are fundamental for the computation of precision and recall,
as they are normally used for the evaluation of ontology matching techniques
[14]. They are typically manually constructed. A positive golden standard, that
we denote with G'S™, contains correspondences which are considered correct by
a human editor. On the other hand, a negative golden standard, that we denote
with GS™, contains correspondences which are considered wrong. In the ideal
case, GS~ is the complement of GST. However, in large datasets it is practically
impossible to annotate all of the possible correspondences (see Sect. 3.1) and
thus, the golden standard is composed of three sets:

G ST the set of annotated node pairs that hold as true in the alignment (i.e.
the correspondences that would be correct if they were discovered by the
matching algorithm);

GS~ the set of annotated node pairs that do not hold in the alignment (i.e.
the correspondences that would be wrong if they were discovered by the
matching algorithm);

Unk the set of node pairs for which there are no annotations (i.e. the relation
between the two nodes is unknown).

If we denote the result of the matcher (i.e. the mapping) with Res, precision
and recall can be computed as follows [17]:

Precision = P _ |[Fes 0 GST| (1)
TP+ FP |ResNGS*t|+ |ResNGS™|
TP |Res N GST|
= = 2
Recall = 5T FN IGST] @)
In case GS™ is not available, precision can be approximated as follows:
+
Precision = % (3)
Where:
TP is the set of correspondences found by the algorithm that hold (True Posi-
tives),
FP is the set of correspondences found by the algorithm that do not hold (False
Positives),
F N is the set of correspondences that the algorithm did not find (False Nega-
tives).

These sets are illustrated in Fig. 1. For example, if for sake of simplicity we
use numbers to indicate the correspondences, we could have:

Res ={1,2,3,4} GS*=1{1,2,5,7,9,10} GS~ =1{3,4,6,8} Unk={}

Precision = =05 Recall = 2 =0.33 (4)

(2+2)
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Fig. 1. True Positives, False Positives and Golden Standards

The precision gives an indication of the amount of noise that is retrieved
by the matching algorithm (i.e. how many correct correspondences it returns)
while the recall is a measure of the coverage of the algorithm (i.e. how many
correspondences the algorithm found and missed).

In the next sections we first show how golden standards of different coverage
or with different relations may lead to different evaluation results, and then we
propose the best approach to follow for evaluation.

3.1 Coverage of the Golden Standard

Given two ontologies, respectively of size n and m, the size of a mapping, and
therefore of both the negative and positive golden standards, can range from zero
up to nxm. In principle, in order to precisely construct them, one should inspect
all possible n x m combinations of nodes in the two ontologies and consider all
possible semantic relations which can hold between them. Constructing a golden
standard in this way would allow a very precise computation of precision and
recall. However, for large ontologies it would be costly or practically impossible.
Our assumption is that this is the main reason why only a few golden standards
are available and evaluation campaigns, such as the OAEI [18], tend to use
very small ontologies. However, by using a small dataset for evaluation and
comparison, there is a loss of statistical significance of the results and a dataset
bias can be introduced towards one algorithm or the other.

When setting up exhaustive GST and GS~ is not possible, the common
practice is to compute them on a subset of the n x m pairs of nodes [19,17]. At
the beginning of this section we have denoted the set of non-inspected node pairs
with Unk (unknown). The partial coverage clearly leads to an approximated
evaluation. In particular, we cannot say anything about the subset Res N Unk
of correspondences identified by the matcher. However, if GS* and GS~ are



sampled properly, the precision and recall can still be evaluated in a statistically
significant manner. For example, we could have reduced coverage:

Res={1,2,3,4} GSt={1,2,70 GS™ ={3,6,8} Unk ={4,5,9,10}

2 2
Precision = R =0.66 Recall = 3= 0.66 ResNUnk = {4}

As it can be noted from this example, the results of such evaluations may
be different from the real values (compare them with (4)). The relevance of the
results depends on:

— the portion of the pairs covered;
— the ratio between the size of the GS* and the GS~;
— their quality (as illustrated in the Sect. 4).

3.2 Comparing Semantic Relations

In the current state of the art, the available tools produce different kinds of re-
lations in output. While most of the matching tools, such as Similarity Flooding
[20], Cupid [21] and COMA [22] only produce equivalence relations, some tools,
such as CSR [23] and AROMA [24] also produce less general and more gen-
eral relations. At the best of our knowledge only ctxMatch [25], SMatch [3-5],
MinSMatch [26] and Spider [7] produce explicit disjointness between nodes.

To compare tools producing different semantic relations in output, some cri-
teria have to be established for a comparison to be correct. Different algorithms
are usually compared without distinguishing among the different semantic rela-
tions produced and only the presence or absence of a relation between a pair of
nodes is evaluated. This means, for instance, that 3, C and = are considered
as the same. This approach can be used to compare heterogeneous correspon-
dences, but provides imprecise results as it is unclear how the algorithms behave
on each type of relation.

A different discourse has to be made for disjointness relations. Typically
disjointness can be seen as a negative result, namely a clear indication of two
completely unrelated nodes. Thus, the majority of matching tools do not consider
them interesting to the users. As a consequence they do not compute them at
all, but corresponding node pairs are rather put in the GS™.

Car

car#l

Baby
baby#1 M car#l

Fig. 2. Overlap between nodes A and B. Natural language labels are in bold with a
corresponding DL formulas under them.



Consider the example in Fig. 2. The mapping element < A, C, J> is a correct
result and as such should be part of the GS™. In fact, given the semantics of
lightweight ontologies, the meaning of the node C includes the meaning of the
node B above it. What about the relation between A and B? They are not
disjoint as they share C. The relation is rather an overlap (namely ANB # 0).
Discriminating the two cases above is fundamental both to conclude the right
relations between the nodes and to correctly evaluate precision and recall of
disjointness relations when they are explicitly computed by the matching tool.
In fact, the main problem is that negative golden standards (when available)
typically contain undifferentiated correspondences. For instance, the authors of
[17] make no difference between disjointness and overlap relations.

3.3 Best Practice

When computing precision and recall, if the golden standard is small, some
questions can be raised on the relevance of the results. In particular, it is unclear
if the algorithm is biased toward the dataset and if the algorithm is portable. By
constructing a large golden standard, the diversity of the correspondences that
it contains is greater and thus the results of evaluations will be more statistically
significant.

First recommendation. Evaluations should be performed on large golden
standards.

However, constructing a large golden standard is often difficult. To over-
come this problem, in [17] the authors propose a semi-automatic procedure to
construct a golden standard sampling. If the sampling is constructed fairly, the
results can be considered as significant. However, in this case, the measures of
precision and recall must take into account that several relations remain un-
known (see Sect. 3.1).

Second recommendation. To provide a good approximation of the pre-
cision and recall measures, the sampled golden standard must also pro-
vide a set of negative correspondences (that we call GS™) in addition
to the usual set of positive results. Both the positive and negative sam-
ples should cover a significant portion of the possible node pairs to be
statistically significant.

In the current state of the art there is a large diversity of results returned
by the matching algorithms. Some of them only provide information about the
existence of a correspondence (which is typically interpreted as equivalence),
while others specify the kind of semantic relation as either more general, less
general or equivalence. Some algorithms even provide information about logical
disjointness between nodes. Conducting an accurate comparison based on the
different relations produced is clearly not possible (see Sect. 3.2).



Third recommendation. When comparing algorithms that produce dif-
ferent kinds of relations it is fundamental to specify how the analysis is
performed and whether it takes into account the semantic relation type.

In addition, we want to stress the point that more research is required to
build a methodology for evaluating algorithms producing disjointness relations.
To the best of our knowledge, no evaluations take disjointness relations into
account when measuring precision and recall.

4 Maximized and Minimized Golden Standards

In this section we use the notion of minimal mapping [26] to judge of the quality
of a golden standard. The basic idea is that among all possible correspondences
between two ontologies there are some redundant ones, which can be logically
inferred from the other correspondences. Therefore, the minimal mapping is
defined as the minimal set of (non-redundant) correspondences such that all
the other (redundant) correspondences can be logically inferred from the non-
redundant ones.

Natural resources A 1= Natural resources
natural_resources#l 23 natural_ resources#l

se
Management Water treatment

management#1 I CB) R .'f,. ...... water#6 M treatment#2 M
g natural_resources#l

natural_resources#l

Water

water#6 M management#1 M ©
natural_ resources#l

——> minimal mapping element ------- 3 redundant mapping element

Fig. 3. The mapping between two lightweight ontologies. Original natural language
labels are in bold.

Consider the example in Fig. 3 taken from [27]. It shows the minimal mapping
(the solid arrows) and the mapping of maximum size (including the maximum
number of redundant correspondences represented as dashed arrows) computed
between two lightweight ontologies.

Using the notions briefly described above, we compute the following func-
tions:



Min(mapping) removes the redundant correspondences from the mapping. We
call the output of this function the minimized mapping;

Max(mapping) extends the mapping by computing all the correspondences
which are redundant. We call the output of this function the mazimized

mapping.

The result of the Min and Max functions applied to a mapping are what [14]
calls the “semantic reduction” and the “semantic closure”, respectively. However,
in the approach proposed in [26] (by restricting the application to lightweight
ontologies) there are at least two fundamental advantages: (a) we can compute
the redundant correspondences in time linear to the size of the two ontologies;
(b) the set of all possible consequences in the maximized set is always finite and
therefore precision and recall can always be computed.

In contrast with [7], we show that comparing the minimized versions of the
mapping and the golden standards is not informative. Consider the examples in
the Fig. 4.

(a) GST (b) Res

Fig. 4. Minimization changing precision and recall

Suppose that all the displayed correspondences are correct. Notice that 2
and 3 follow from 1. Suppose that our golden standard (Fig. 4a), as it often
happens with large datasets, is incomplete (contains only the correspondences 2
and 3) and thus we use precision formula (3). Suppose the matcher, being good
enough, finds all displayed correspondences (Fig. 4b). In this case, the precision
and recall figures are as follows:

GST =1{2,3} Res=1{1,2,3} Precision =0.66 Recall =1 (5)
Min(GST) ={2,3} Min(Res) = {1} Precision=0 Recall=0 (6)

Compare (5) with (6) that shows the situation when minimized sets are used
to calculate precision and recall figures. From this example we see that precision
and recall figures are far from the real values and therefore unreliable.

Consider now the example in Fig. 5. The precision and recall figures are given
in (7) for the original sets and in (8) for the maximized ones.

GST ={1,2} Res={1,3} Precision=0.5 Recall=0.5 (7)
Maz(GS™) ={1,2,3} Maz(Res) = {1,2,3} Precision =1 Recall =1 (8)
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Fig. 5. Maximization changing precision and recall

In the maximized case precision and recall figures adhere to the real situa-
tion. Using maximized sets gives no preference to redundant or non-redundant
correspondences and leads to more accurate results. In particular, recall figure
better shows the amount of information actually found by the system. If we
maximize the sets we also decrease the number of unknown correspondences
and therefore we obtain a more accurate result. On the other hand, comparing
the minimized versions of the mapping produced by the matcher and the GS™
is not informative.

Maximizing a golden standard can also reveal some unexpected problems
and inconsistencies. For instance, we can discover that even if GST and GS~
are disjoint, Maxz(GS™) and Maxz(GS™) are not, and there is an overlap in their
intersection. During our experiments with the TaxME2 golden standard [17], we
have discovered that there are two correspondences in the intersection of G.S*
and GS™ and 2187 in the intersection of their maximized versions. These two
correspondences are:

=

: Top/Arts/Music/Styles/Jazz/Swing
B: Top/Entertainment/Music/Artists/By_Genre/Jazz/Swing

C: Top/Arts/Music/Styles/Polka
D: Top/Entertainment/Music/Artists/By_Genre/Folk_and_Traditional/Polka

In fact, in the GST we found A C B and C = D, while in the GS™ we
found that A=B and C = D.

To summarize:

Fourh recommendation. When measuring precision and recall both the
golden standards and the result of the matching algorithm should be
maximized in order to contain all possible redundant correspondences.

5 Evaluation

We conducted several experiments to study the differences between precision and
recall measures when comparing the minimized and maximized versions of the
golden standards with the minimized and maximized versions of the mapping
returned by SMatch.



Table 1. Golden standards used in experiments

Dataset pair Node count Max depth ~ ABF Golden standards
101/304 33/42 3/4 4.12/3.50 29/0/0/0 29"
Topia/Icon 542/999 2/9 8.19/3.66 41/146/1166/3 1356"

1096,/990/179/0 2265*

Source/Target 2857/6628 11/15  2.04/1.94
1639/641/94/0 2374~

Table 1 shows some indicators of the complexity of the golden standards
we used in our experiments. The first two datasets come from OAEI They
describe publications and are called 101 and 304, respectively. The second two
come from the arts domain and are referred to as Topia and Icon, respectively.
The third two datasets have been extracted from the Looksmart, Google and
Yahoo! directories and are referred to as Source and Target. The ABF column
contains the average branching factor. The golden standards column contains
details about the relations contained in the golden standards. The first four
figures indicate the amount of = / C / J / L correspondences in the alignment,
respectively. The fifth figure indicates the total amount and kind of alignment:
positive (GS™), or negative (GS™). For the first two datasets the golden standard
is exhaustive and comes from OAEI. For the second two datasets the golden
standard is crafted by experts manually. The third golden standard is described
in [17].

Table 2. Precision and Recall for minimized, normal, and maximized sets

. Precision, % Recall, %
Dataset pair
min res max min res max
101/304 32.47 9.75 69.67 | 86.21 93.10 92.79

Topia,/Icon 16.87 4.86 4542 | 10.v3 20.00 42.11
Source/Target 74.88 52.03 48.40 | 10.35 40.74 53.30

Table 2 contains precision and recall figures calculated using standard preci-
sion and recall formulas (1) and (2). For the cases where no GS~ is provided, (3)
is used instead of (1). In particular, these figures are the result of the compari-
son of the minimized mapping with the minimized golden standards (min), the
original mapping with the original golden standards (res) and the maximized
mapping with the maximized golden standards (max) respectively. As it can be
noted from the measures obtained comparing the maximized versions with the



original versions, the performance of the algorithm is on average better than
expected.

6 Conclusion

In this paper, we discussed a number of issues in evaluating ontology matching
algorithms. These tools are used to find semantic correspondences between the
nodes of two different ontologies in input. In the current state of the art, the
performance of these algorithms is evaluated through the use of golden standards
providing the set of correct correspondences between the ontologies. These golden
standards can thus be used to measure precision and recall.

We proposed a set of best practices to follow when building such golden
standards and to effectively use the golden standards to evaluate matching algo-
rithms. By following these recommendations, the comparison of different match-
ing algorithms will be more accurate. Here is the summary of the best practices
we propose:

Golden Standard Construction The size of the golden standard must be as
large as practically possible.

False Negative Sample The sampling must include a set of negative results
to evaluate the number of false negatives returned by the algorithm.

Matching Element Types It is important to take into account the type of
semantic relations used when comparing algorithms.

Redundancy We recommend to maximize both the golden standard and the
result set to contain all redundant links before computing precision and
recall.

We also discussed the issue of evaluating mappings including disjointness. In
the current state of the art, even if some algorithms are able to identify such rela-
tions, no golden standard is available yet that explicitly provides true disjointness
correspondences. It is thus currently impossible to compare the performance of
such algorithms.

References

1. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. JoDS 4
(2005) 146-171

2. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag (2007)

3. Giunchiglia, F., Yatskevich, M., Giunchiglia, E.: Efficient semantic matching. In:
Proc. of EWSC. (2005) 272—-289

4. Giunchiglia, F., Shvaiko, P., Yatskevich, M.: Semantic schema matching. In: Proc.
of CooplS. (2005) 347-365

5. Giunchiglia, F., Yatskevich, M.: Element level semantic matching. In: Proc. of
Meaning Coordination and Negotiation workshop at ISWC. (2004) 347-365

6. Giunchiglia, F., Marchese, M., Zaihrayeu, I.. Encoding -classifications into
lightweight ontologies. JoDS 8 (2007) 57-81



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Sabou, M., Gracia, J.: Spider: Bringing non-equivalence mappings to OAEI. In:
Proc. of the Third International Workshop on Ontology Matching. (2008)

Noy, N.F., Musen, M.A.: Evaluating ontology-mapping tools: Requirements and
experience. In: Proc. of OntoWeb-SIG3 Workshop. (2002) 1-14

Do, H.H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In:
Proc. of the 2nd International Workshop on Web Databases. (2002) 221-237
Kaza, S., Chen, H.: Evaluating ontology mapping techniques: An experiment in
public safety information sharing. Decision Support Systems 45(4) (2008) 714-728
Isaac, A., Wang, S., Zinn, C., Matthezing, H., van der Meij, L., Schlobach, S.: Eval-
uating thesaurus alignments for semantic interoperability in the library domain.
IEEE Intelligent Systems 24(2) (2009) 76-86

Ehrig, M., Euzenat, J.: Relaxed precision and recall for ontology matching. In:
Proc. of Integrating Ontologies Workshop. (2005)

Euzenat, J.: Semantic precision and recall for ontology alignment evaluation. In:
Proc. of IJCAI (2007) 348-353

David, J., Euzenat, J.: On fixing semantic alignment evaluation measures. In:
Proc. of the Third International Workshop on Ontology Matching. (2008)
Meilicke, C., Stuckenschmidt, H.: Incoherence as a basis for measuring the quality
of ontology mappings. In: Proc. of the 3rd International Workshop on Ontology
Matching. (2008)

van Hage, W.R., Isaac, A., Aleksovski, Z.: Sample evaluation of ontology-matching
systems. In: Proc. of EON. (2007) 41-50

Giunchiglia, F., Yatskevich, M., Avesani, P., Shvaiko, P.: A large dataset for the
evaluation of ontology matching systems. The Knowledge Engineering Review
Journal 24 (2008) 137-157

Caracciolo, C., Stuckenschmidt, H., Svab, O., Svatek, V., Euzenat, J., Hollink,
L., Ichise, R., Isaac, A., Malaisé, V., Meilicke, C., Pane, J., Shvaiko, P.: First
results of the ontology alignment evaluation initiative 2008. In: Proc. of the Third
International Workshop on Ontology Matching. (October 2008)

Avesani, P., Giunchiglia, F., Yatskevich, M.: A large scale taxonomy mapping
evaluation. In: Proc. of ISWC. (2005) 67-81

Melnik, S., Garcia-Molina, H., Rahm, E.: Similarity flooding: A versatile graph
matching algorithm and its application to schema matching. In: Proc. of ICDE.
(2002)

Madhavan, J., Bernstein, P.A., Rahm, E.: Generic schema matching with cupid.
In: VLDB. (2001) 49-58

Do, H.H., Rahm, E.: Coma — a system for flexible combination of schema matching
approaches. In: VLDB. (2002) 610-621

Spiliopoulos, V., Valarakos, A.G., Vouros, G.A.: CSR: Discovering subsumption
relations for the alignment of ontologies. In: Proc. of ESWC. (2008) 418-431
David, J., Guillet, F., Briand, H.: Association rule ontology matching approach.
International Journal on Semantic Web and Information Systems 3(2) (2007) 2749
Bouquet, P., Serafini, L., Zanobini, S.: Semantic coordination: A new approach
and an application. In: Proc. of ISWC. (2003) 130-145

Giunchiglia, F., Maltese, V., Autayeu, A.: Computing minimal mappings. Techni-
cal report, University of Trento, DISI (2008)

Giunchiglia, F., Soergel, D., Maltese, V., Bertacco, A.: Mapping large-scale knowl-
edge organization systems. In: Proc. of ICSD. (2009)





