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SUMMARY 

 

 

 

Motivated by the potential vulnerability of their road infrastructure, many national 

authorities and local Departments of Transportation are incorporating seismic risk 

assessment in their management systems. This Dissertation aims to develop methods 

and tools for seismic risk analysis that can be used in a Bridge Management System 

(BMS); helping bridge owners to assess the costs of repair, retrofit and replacement 

of the bridges under their responsibility.  

More specifically, these tools are designed to offer estimates of:  

(1) the seismic risk to single components of bridges and their expected performance 

after an earthquake.  

(2) the impact a priori (i.e. before an earthquake) of a given earthquake on the 

operation of a road network, in terms of connectivity between different locations.  

(3) the damage a posteriori (i.e. after an earthquake) to road network operation, 

based on prior knowledge of network vulnerability and on the observed damage to a 

small number of single bridges.  

The effectiveness of these methods is tested and validated in a specific case 

study, the bridge stock of the Autonomous Province of Trento (APT) in Italy.  

To address the first point, I will first introduce the fragility curve method for 

risk assessment of individual bridges. The Hazus model is chosen as the most 

appropriate and is applied to the bridges of the APT stock. Once the fragility curves 

for all the bridges have been generated, a risk analysis is performed for three 

earthquake scenarios (with return periods of 72, 475 and 2475 years) and four 

condition states (operational, damage, life safety and collapse limit state). Next, I 

will extend the results of the component level analysis to the network level: the APT 

road network is modeled in the form of a graph and the problem of connectivity 

between two locations is analyzed. A shortest path algorithm is introduced and 

implemented to identify the best path between any two given places. Correlation in 

capacity and demand among bridges is not considered at this stage.  

After reiterating the fundamentals of probability theory, the theory of Bayesian 

Networks is introduced. The Bayesian Network approach is used to incorporate 

mutual correlation in capacity and demand, in risk assessment of a bridge stock. The 

concept is first formulated and illustrated on a simple case (the ‘twin bridge 

problem’), then extended to the general case of a full stock. I will show how the 
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same framework can be used in post-earthquake assessment problems, where the 

evidence of the state of one or more bridges affects the prediction of the 

performance of another bridge. The outcomes and the limits of this work are 

discussed at the end of the Thesis. 
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1 Introduction 

 

1.1 Motivation 

The recent Magnitude 9.0 earthquake near the East Coast of Honshu, Japan, causing 

28050 deaths (USGS 2011), again heightens our awareness of the great damage that 

can be caused by earthquakes. There are about five million earthquakes per year, 

worldwide. They can cause fires, floods, toxic gas leaks, the spread of bacteria and 

radio-active materials and can also cause tsunamis, landslides, avalanches, cracks 

and other secondary disasters. Table 1.1, taken from USGS (2011), gives a 

quantitative idea of how enormous the damage produced by earthquakes to human 

society in the last twenty years has been. 

Bridges, in particular, play a vital role in modern transportation: they are the key 

nodes of various road networks and the main components of three-dimensional city 

traffic. Bridges are also the reflection of a country's development, economic strength, 

technology and productivity. Bridge Management Systems (BMS) are tools 

designed to help bridge managers keep track of their bridge stock: providing 

information on the bridge stock characteristics, condition and serviceability 

(Thompson et al. 1998, Astudillo 2002, Frangopol Neves 2004, and Bortot 2006). 

Based on the analysis of single bridges, the BMS helps bridge managers develop 

programs to determine the best allocation of resources to maximize the safety and 

functionality of the road network. Originally, the function of BMS was to facilitate 

the day-to-day management of bridges. Gradually, the functions of BMS became 

more and more powerful (Bortot 2006). More recently, bridge management systems 

have been used as tools to improve the overall condition of bridges and to prevent 

excessive structure deterioration (Bortot, 2006).  

We have learned from recent experience how earthquakes can seriously damage 

highway systems, even in those countries which are supposed to be prepared for 

such events. Many authors (see, for example, Ghasemi et al., 1996) report the 
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example of the 1995 Kobe Earthquake, when at least 60% of the bridges in the Kobe 

area were damaged and the Hanshin Expressway, the major transportation route 

between Osaka and Kobe, collapsed.  

Motivated by the potential vulnerability of their road infrastructure, many 

national authorities and local Departments of Transportation are incorporating 

seismic risk assessment in their management systems (FEMA 2003, Shinozuka et al. 

2000). Therefore, there is growing demand for tools that help assess seismic bridge 

vulnerability and can predict bridge performance under a given earthquake scenario. 

Of critical importance to strategic decision making by transportation and civil 

protection agencies, is the ability to predict the operational state of the road network 

in a post-earthquake scenario; this can help minimize the impact of possible network 

downtimes on the rescue operations. 

Table 1.1 Deadliest Earthquakes 1990 - 2011 (USGS, 2011) 

Date Magnitude Fatalities Region 

1990/06/20 7.4 50,000 Iran 

1991/10/19 6.8 2,000 Northern India 

1992/12/12 7.8 2,519 Flores Region 

1993/09/29 6.2 9,748 India 

1994/06/06 6.8 795 Colombia 

1995/01/16 6.9 5,530 Kobe, Japan 

1996/02/03 6.6 322 Yunnan, China 

1997/05/10 7.3 1,572 Northern Iran 

1998/05/30 6.6 4,000 Afghanistan-Tajikistan Border Region 

1999/08/17 7.6 17,118 Turkey 

2000/06/04 7.9 103 Southern Sumatera, Indonesia 

2001/01/26 7.7 20,023 India 

2002/03/25 6.1 1,000 Hindu Kush Region, Afghanistan 

2003/12/26 6.6 31,000 Southeastern Iran 

2004/12/26 9.1 227,898 Off West Coast of Northern Sumatra 

2005/10/08 7.6 80,361 Pakistan 

2006/05/26 6.3 5,749 Java, Indonesia 

2007/08/15 8.0 514 Near the Coast of Central Peru 

2008/05/12 7.9 87,587 Eastern Sichuan, China 

2009/09/30 7.5 1,117 Southern Sumatra, Indonesia 

2009/04/06 6.3 308 L'Aquila, Italy 

2010/01/12 7.0 222,570 Haiti 

2011/03/11 9.0 28050 Near the East Coast of Honshu, Japan 

 

http://en.wikipedia.org/wiki/L'Aquila
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1.2 Objectives of the Thesis 

This Dissertation aims to develop methods for seismic risk analysis that can be 

incorporated in a BMS and so help bridge owners to assess the costs of repair, 

retrofit and replacement of the bridges under their responsibility. More specifically, 

these tools address the following points: 

1. Estimating the seismic risk of the individual components of a bridge stock, 

and their expected performance after an earthquake. 

2. Evaluating a priori (i.e. before an earthquake) the impact of a given 

earthquake on the operation of a road network, in terms of connectivity 

between different locations. 

3. Evaluating a posteriori (i.e. after an earthquake) the damage state of a road 

network and its operability, based on the prior knowledge of the network 

vulnerability and the posterior evidence of damage observed on one or more 

individual bridges. 

The effectiveness of these tools is tested and validated on a specific case study, 

the bridge stock of the Autonomous Province of Trento (APT) in Italy. The APT 

bridge stock and the Bridge Management Systems currently used by the Department 

of Transportation are briefly introduced in the next Section. 

 

 

 

 

1.3 Introducing the APT BMS 

Due to the political devolution process in Italy since the nineteen seventies, many 

administrative responsibilities have been transferred to local authorities. During this 

process, the number of bridges under Autonomous Province of Trento (APT) 

responsibility doubled, without an adequate transition period. The clear need for a 

management tool which could help make decisions on maintenance, rehabilitation or 

replacement of bridges in the APT led to the APT Bridge Management System 

(BMS). This was is developed in collaboration between the University of Trento 

(UniTN) and the APT Department of Transportation (DoT) (Zonta. et al 2007). 
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Fig. 1.2 Flowchart for the APT-BMS showing its main components and information paths 
(Zonta. et al 2007) 
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The APT-BMS has been operational since 2004; it manages 986 bridges and 

approximately 2400 kilometers of roads. Most of the APT bridges were built after 

the Second World War; the peak construction period being the 70s (Fig. 1.1(a)). As 

for construction type (Fig. 1.1(b)), 62.93% of APT bridges are reinforced concrete 

and prestressed concrete, and 28.84% are arch bridges, while the remaining 8.23% 

includes steel and steel-concrete composite bridges. 

The APT-BMS is based on an SQL database, which includes all the data for the 

whole stock of bridges. The main characteristics of the systems are: 

 The system is fully operative on the web; inspectors and evaluators upload data 

to the system through a web-based interface and the managers access the results 

of the analysis using the same web interface. 

 All personnel including DoT (Department of Transportation) managers, DoT 

inspectors and professional engineers involved in management can directly 

interact with the system.  

 All information is provided in real-time. 

 For each bridge, the system not only gives a clear indication of the condition 

state but also its safety level expressed as a reliability index.  

 System maintenance and upgrade are continuous and transparent to the users. 

As shown in Fig. 1.2, the APT-BMS has four major components: ‘Data Storage’, 

‘Maintenance and Cost Model’, ‘Deterioration Model’ and ‘Decision Making 

Algorithms’. These components are divided into modules; each module having a 

specific task. The module can be at project level or network level. The former 

focuses on a single bridge while the latter concerns the bridge stock as a whole. 

In APT-BMS, the bridge is considered as a set of Structural Units (SU), such as 

deck, piles and abutments, which are characterized by common attributes (such as 

length, material, typology etc.). The spatial arrangement of SUs is defined through 

connections (C). Each SU and C includes a set of Standard Elements (SE). The APT 

system currently recognizes 22 types of Structural Unit. For more details of 

APT-BMS, see Zonta et al. (2007). 
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1.4 Method 

Objective 1 is addressed using a classical fragility curve approach. Fragility curves 

are conditional probability statements which give the likelihood of a bridge reaching, 

or exceeding, a particular damage level for an earthquake of a given intensity level 

(Shinozuka et al. 2000a, Nielson 2005). Much research has been devoted to 

generating fragility curves. Because of the characteristics of APT-BMS, managing a 

large number and variety of bridge types, a systematic and quick method is required 

to develop fragility curves. The Hazus model (FEMA, 2003) meets this requirement 

and was chosen for application to the case study: in contrast with other methods, 

such as empirical fragility curves or analytical fragility curves that require much 

previous damage data or extensive computation, only limited information is needed 

for this model. Using the Hazus model, the fragility curves for all the bridges in the 

APT stock are generated. Next, the seismic risks for a number of earthquake 

scenarios are evaluated. I considered 3 earthquake scenarios, with return periods of 

72, 475 and 2475 years, and four possible limit states of the bridge: operational 

(OLS), damage (DLS), life safety(LLS) and collapse (CLS).  

After an earthquake, the ability to decide the best path to distribute the available 

human and material rescue resources to the disaster centre is of paramount 

importance to decision makers. Addressing Objective 2 means solving the problem 

of determining the best path between any two given locations after an earthquake, 

where ‘best’ means the lowest risk of exposure to operational problems in a given 

damage scenario. This problem is addressed by Dijkstra’s algorithm (Dijkstra, 1959). 

In the analysis, bridges are first regarded simply as independent components. Next, 

their mutual correlation in demand and capacity are taken in to account. For example, 

nearby bridges are likely to have a similar site condition, thus their seismic demands 

are somehow correlated. Also, some of the bridges have very similar characteristics, 

such as type, material, and construction year. In this case, it is reasonable to find the 

correlations between these bridges and so provide a dynamic assessment of seismic 

risk.  

To address Objective 3, I propose to model the logical connection between the 

bridges in the stock with Bayesian Networks (BN), (Jensen and Nielsen 2007). A 

limit of classical BN algorithms is that they are normally thought to handle discrete 

variables, while the quantities involved in post-earthquake assessment are 

continuous. To overcome this limitation, all the continuous variables are assumed to 

have conditional Gaussian distribution; in this case it is demonstrated that there is 

exact inference in hybrid BNs, which include both discrete and continuous variables 

(Lauritzen and Jensen, 2001). The BN incorporates the seismic demand model, the 

capacity model and the fragility function. The uncertainty terms are considered both 

in the capacity model and the demand model. First, the BN is applied to the 
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individual bridges and the prior probabilities of the bridge being in any one of the 

limit states are calculated during the initialization procedures. After an earthquake, 

the data on the bridge is entered into the network using the Monte-Carlo method and 

the probabilities of other variables are updated. Next, this framework is easily 

extended from individual bridges to the whole network; all the bridges in the 

network are correlated through the demand model and the capacity model. When an 

earthquake happens, the data on one or more of the bridges can be propagated 

throughout the network, so as to provide an updated assessment on the performance 

of the other bridges and the whole network. Finally, the best path search between 

any two given network nodes is reformulated, now accounting for bridge 

correlations in demand and capacity. 

 

 

 

 

1.5 Outline of Thesis 

The rest of the Thesis is organized in the following Chapters, in detail: 

 In Chapter 2, the fragility curve method for risk assessment is introduced. The 

Hazus model is chosen as the most appropriate and is applied to the bridges of 

the APT stock. Once the fragility curves for all the bridges have been generated, 

risk analysis is performed for three earthquake scenarios (with return periods of 

72, 475 and 2475 years) and four damage states (OLS, DLS, LLS, and CLS). 

 In Chapter 3, I extend the results of the component analysis to the network level; 

the APT road network is modeled in the form of a graph and the problem of 

connectivity between two locations is analyzed. A shortest path algorithm is 

introduced and implemented, to identify the best path between any two given 

places. Correlation in capacity and demand among bridges is not accounted for at 

this stage. 

 Chapter 4 describes basic Bayesian Networks theory. After reiterating the 

fundamentals of probability theory, the definition of the Bayesian Network is 

given. The general operations on Bayesian Networks are introduced and the 

computation scheme with conditional Gaussian distributions is explained in 

detail. 

 Chapter 5 presents a seismic risk assessment framework both for individual 

bridge and twin bridges based on the BN methodology. In this system, two 

bridges are correlated through the demand and capacity models. It is shown how 

evidence of the state of one bridge can affect the prediction performance of 

another bridge. Two case studies are used to illustrate the procedures.  
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 In Chapter 6, the concept introduced in Chapter 5 for two bridges is extended to 

all the bridges in the network of the post-earthquake assessment system. Now, all 

the bridges are correlated through the demand model and capacity model. Given 

the data on one or more variables, the performance of the whole network can be 

updated. The best path given any two nodes within the network is identified 

again. Correlations between different bridges are now considered and the results 

are compared with those in Chapter 3. 

 Finally, in Chapter 7, the outcomes and limits of this Thesis are summarized and 

necessary future work is discussed. 
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2 Fragility curves 

 

2.1 Introduction 

Fragility curves are conditional probability statements which give the likelihood of a 

bridge reaching, or exceeding, a particular damage level, for an earthquake of a 

given intensity level (Shinozuka et al. 2000a, Nielson 2005). The conditional 

probability is given by the following equation: 

)|()(Fragility xIMLSPx                   (2.1) 

where LS is the limit state of the bridge, IM is the ground motion intensity measure 

of the bridge, and x is the realization of the intensity measure. This equation shows 

that when the earthquake intensity is x, the probability of the bridge exceeding the 

limit state LS is Fragility(x). Fig. 2.1 is the graphical representation of Equation 

(2.1). 

As an effective tool in seismic risk analysis, fragility curves have become more 

and more popular. Fragility curves are not only useful in seismic risk assessment, 

but also in bridge retrofit prioritization and post earthquake response. When 

updating a bridge network, fragility curves can be used to highlight the most 

vulnerable bridges so as to maximize the functionality of the whole bridge network 

system. In a real time post earthquake situation, fragility curves can assist decision 

makers to make rapid decisions on bridge closures.  

Based on information found in the literature, Shinozuka et al. (2000b) classifies 

four methods for developing fragility curves: professional judgment; quasi-static and 

design code consistent analysis; utilization of damage data associated with past 

earthquakes, and numerical simulation of the seismic response of structures based on 

dynamic analysis. According to the generation methodology, Nielson (2005) defines 

three kinds of fragility curve: expert based, empirical and analytical. 
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Fig. 2.1 Graphical representation of fragility function (Nielson 2005) 

2.1.1 Expert Based Fragility Functions 

One example of Expert-based Fragility Functions is ATC-13 (ATC, 1985), 

developed by the Applied Technology Council (ATC) and reported by Nielsen 

(2005). The ATC put together 42 experts to give information on the various 

components of infrastructures. The experts were asked to give the probability of a 

bridge being in one of seven damage states for a given intensity value. These results 

were compiled as the damage probability matrices (DPM) for bridges in the ATC-13 

report (ATC, 1985). Nielsen (2005) raised several major concerns with this 

methodology: first, the procedure is subjective in that it is based solely on the 

experience of the experts; next, the DPM were created for only two classes of 

bridges, major and conventional. He concluded that this method presents a very high 

level of uncertainty. See Nielsen (2005) for more details. 

2.1.2 Empirical fragility curves 

Empirical fragility curves are generated from actual earthquake data. This 

methodology has been presented and demonstrated by several groups, for example 

Prof. Kiremidjian’s group (Basöz and Der Kiremidjian, 1995) and Prof. Der 

Kiureghian’s group (Gardoni et al. 2002). Although there are some slight variations 

in the methods used by the researchers, they are conceptually the same. During the 

procedure, first a post earthquake damage state assessment is performed for all the 

bridges that belong to the considered bridge class, and then ground motion intensity, 

in terms of a measure such as peak ground acceleration (PGA), is assigned to each 

bridge. Then a damage state and a given ground intensity motion are given for each 

bridge in a damage matrix. The percentage of the overall bridge class inventory will 

be displayed for each damage state and at each ground motion intensity level. There 

are several of ways to generate fragility curves. See the maximum likelihood method 

proposed by Shinozuka et al. (2000b) in section 2.5.1. 
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Although the generation methods for empirical fragility curves are relatively 

straightforward, they have some drawbacks and limitations as pointed out by Basöz 

and Kiremidjian (1995). First, it is difficult to get enough information on bridges 

belonging to a specific bridge class that lie in a particular damage level. Second, it is 

very difficult to get the ground motion intensities for the target bridges. Finally, the 

empirical fragility curves are too subjective. There is often a discrepancy between 

the damage levels assigned by two different inspectors. Further details of this 

discussion are found in Basöz and Kiremidjian (1995). 

2.1.3 Analytical fragility curves 

Because of the limitations of empirical fragility curves, more research is devoted to 

the implementation of analytical fragility curves. When actual bridge damage and 

ground motion data are not available, analytical fragility curves must be used to 

assess the performance of bridges under earthquakes. There are many researchers 

who have developed analytical fragility curves for bridges using a variety of 

different methodologies. 

According to the definition of the fragility curves (Shinozuka et al. 2000a, 

Nielson 2005), it is obvious that fragility curves are related to both structural 

demand (D) and structural capacity (C). The fragility can be described as: 

]0ln[ln][  CDPCDPPf                     (2.2) 

In addition, when the structural demand and capacity fit a lognormal distribution - if 

we assume that: C  lnN (C, C
2
); D  lnN (D, D

2
), then the reliability index  

is:  

P

P




   (2.3)

where P = D - C, P
2 

= C
2 

+ D
2
.  

Based on the above, it can be seen that the structural demand and capacity must 

be modeled to generate analytical fragility curves. Researchers use a number of 

methods to accomplish this task. In order to facilitate reading, and to separate out 

other researchers’ methods from the method that will be used in this Thesis, the 

methods of other researchers will be introduced at the end of this chapter, see section 

2.5. Although the general procedures used by different researchers are conceptually 

the same, there are some differences in how the tools are actually employed to 

accomplish each step.  
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2.2 HAZUS model 

HAZUS (FEMA 2003) is a geographic information system (GIS) based, 

standardized, nationally applicable multi-hazard loss estimate methodology and 

software that was developed for the National Institute of Building Science (NIBS) 

under a cooperative agreement with the Federal Emergency Management Agency 

(FEMA). Hazus is intended to develop guidelines and procedures for making 

earthquake loss estimates. It can be used by local, state and regional officials to help 

them to reduce risks from earthquakes, and to prepare for emergency response and 

recovery. This package was developed by a team of earthquake loss experts 

including earth scientists, engineers, architects, economists, emergency planners, 

social scientists and software developers. It provides damage and loss estimate for 

thirteen major components or subcomponents, for example general building stock, 

transportation systems, airport transportation systems, and so on. 

The HAZUS model (FEMA, 2003) is a rapid approach seeking to establish 

dependable fragility curves (Mander, 1999). In contrast to other methods that have 

been used in the past, such as empirical fragility curves or analytical fragility curves 

that require much previous damage data or extensive computation, only limited 

information is needed for this model.  

Because of the characteristics of the APT bridge stock, illustrated in Section 1.2, 

with a large number and variety of bridge types, a systematic and quick method is 

required to develop fragility curves. Given the level of information stored in the 

APT-BMS database, HAZUS seems the most suitable model for this application. Its 

implementation in the APT-BMS is explained in here. 

2.2.1 Formulation of fragility curves 

The probability of being in or exceeding a damage state in HAZUS is modeled as: 

1
[ ( )] Φ[ ln( )]

Α ( )

a

f a i

g i

S
P S

a
=   1, 2 , 3, 4i =  (2.4) 

where is the standard normal cumulative distribution function; Sa is the spectral 

acceleration amplitude (for a period of T=1 sec); (ag)i is the median spectral 

acceleration that causes the i
th

 damage level; and is the normalized composite 

log-normal standard deviation. There are five possible damage states defined in 

APT-BMS: no-damage, OLS, DLS, LLS, and CLS; these five states are associated 

with the five damage state defined in Hazus according to Table 2.1. The normalized 

standard deviation  takes account of uncertainty and randomness for both capacity 
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and demand. As justified by Basöz and Mander (1999), the uncertainty factor for 

seismic demand can be assumed to be 0.5 (Pekcan, 1998), the uncertainty factor for 

capacity is assumed to be 0.25 (Dutta, 1999), and an analysis uncertainty factor is 

assumed to be 0.2. Therefore the recommended value of =(0.5
2
+0.25

2
+0.2

2
)
0.5 

= 

0.6. Therefore, in Equation (2.4), the only unknown parameter is (ag)i, which can be 

calculated using a capacity-spectrum approach. 

Table 2.1 Definition of damage states (FEMA, 2003) 

 Damage state Failure Mechanisms 

1 No damage First yield 

2 Operational limit state (OLS) Cracking, spalling 

3 Damage control limit state (DLS) 
Bond, abutment back wall 

collapse 

4 Life safety limit state (LLS) Pier concrete failure 

5 Collapse limit state (CLS) Deck unseating, pier collapse 

 

2.2.2 Capacity-spectrum approach 

According to the Italian code (D.M.14 Jan 2008), which is largely based on 

Eurocode 8 (Eurocode 8, 2004), the seismic demand is given by: 

0( )d S gC a S η F   
   (2.5a) 

0( ) C
d L g

T
C a S η F

T

 
      

 
   (2.5b) 

where (Cd)S, (Cd)L are the seismic demands of short and long periods; ag is the design 

ground acceleration (normalized with respect to gravitational acceleration, g ); S is 

the coefficient dependent on the soil type; is the damping correction factor with a 

reference value of for 5% viscous damping; F0 is the spectral amplification 

factor; TC is the upper limit of the period of the constant spectral acceleration branch; 

and T is the effective period of the structure given by: 

Δ Δ
2 2 2

y c

W W
T π π π

g k g F C g


     

  
                                  (2.6) 
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where W is the weight of the bridge; Fy is the lateral force on the pier; Cc= Fy / W is 

the base shear capacity; and is maximum displacement response. For example, for 

a collapse mechanism involving bridge pier bending collapse, the ultimate 

displacement can be calculated using: 

Δ θ H   (2.7) 

where is the column drift, and H is the column height (Basöz and Mander 1999). 

Basöz and Mander (1999) also propose values of  and  as in Table 2.2.  

Under the capacity-spectrum approach, the capacity is assumed to be equal to 

the demand:  

d cC C    (2.8) 

Table 2.2 Drift and displacement limits (Basöz and Mander, 1999) 

Damage  

State 

Drift limits () for Weak Pier & Strong 

Bearings 

Displacement Limits 

() for Weak Bearings 

& Strong Pier (m) Non-seismic Seismic 

2 0.005 0.010 0.05 

3 0.010 0.025 0.100 

4 0.02 0.05 0.175 

5 0.05 0.075 0.300 

 

Substituting Equation (2.6) and Equation (2.8) into Equation (2.5), the required 

spectral accelerations can be obtained as the greater of (ag) S and (ag) L: 

0

( ) C

Sg

C

S η F
a 

 
             (2.9a) 

3

0

Δ2
( ) C D

g L

C

C Kπ
a

S η F g T


  

 
   (2.9b) 

In Equations (2.9), the only parameter to be calculated is the normalized 

capacity CC which will be obtained in the following section.  
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2.2.3 Analysis of bridge capacity 

Based on Dutta and Mander (1998), the capacity of a bridge can be divided into two 

parts: base shear capacity under lateral loading and arching action under transverse 

shaking. For a bridge with strong bearings and weak piers, the capacity is assumed 

to be from piers only. For a bridge with weak bearings and strong piers, or a single 

span bridge, the capacity is dependent on the bearings.  

Dutta and Mander (1998) have shown that the pier capacity can be defined as: 

cp Q P

D
C λ k

H
                    (2.10) 

where Kp = j (1+0.64t fy / fc);  = WD / fcAg = the average dead load axial 

stress ratio in the column; D = column diameter; H = column height; t = volumetric 

ratio of longitudinal reinforcement (assumed to be 0.01 for non-seismic design and 

0.02 for seismic design); = fixity factor, taken as 1 for multi-column bends, and 

0.5 for single column cantilever action; j = internal lever arm coefficient normally 

assumed to be 0.8;  fy= yield stress of the longitudinal reinforcement; fc= strength 

of the concrete; WD = the deck weight; Ag = the cross section area of the column; 

and Q is a strength reduction factor that occurs due to cyclic loading. For different 

damage states, the values are given as Table 2.3.  

Table 2.3 Values for strength reduction factor Q (Dutta, 1999) 

Damage State Non-seismically designed Seismically Designed 

1 1 1 

2 1 1 

3 0.6 0.9 

4 Kp 0.8 

5 j Kp 0.7 

      

Fig. 2.2 Two failure modes for single span bridges (Basöz, and Mander. 1999) 
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For single span bridges or bridges seated on strong piers with weak bearings, the 

capacity is assumed to arise from bearings only. There are two mechanical modes to 

compute the capacity of bearings: translation and rotation (Fig. 2.2). The mechanism 

with lower capacity governs. The following calculates the capacity using principles 

of virtual work plastic analysis, where the external work done (EWD) by the seismic 

loads is equal to the internal work (IWD) done by the resisting mechanism.  

For the translation mode: the external work is EWD = CcW, and the internal 

work isIWD = tW; according to principles of virtual work plastic analysis, we 

have Cc = t. t is the coefficient of sliding friction of the bearings in the transverse 

direction.  

For the rotation mode, the external work is EWD = CcW, and the internal work 

isIWD = tWlWjB, so Cc = tl jBSince t < tl jB, Cc = t. 

The t values for different bearings in every damage state are shown in Table 2.4. 

Table 2.4 Friction coefficients of the bearings in the transverse direction (Basöz and 

Mander 1999) 

Damage State Rubber, fixed, or mobile mechanical bearings Other bearings 

2 0.85 0.8 

3 0.75 0.7 

4 0.75 0.7 

5 0.75 0.7 

 

2.2.4 Accounting for 3D effects 

K3D is the factor that considers the 3D arching action when the displacement is 

sufficiently large (Basöz and Mander 1999). In Equation (2.9a), the 3D effects are 

omitted because the seismic displacement has not yet developed. Coefficient K3D 

depends on the failure mechanism, as explained in the following. 

Case 1: For bridges seated on strong bearings with weak piers, based on the 

work of Dutta and Mander (1998), the definition is: 

3
3 1

1

D
D

k
K

n
 


                                                   (2.11) 

where n represents the number of spans in the bridge, and k3D is a factor related to 

span continuity and bearing type as given in table 2.5. 
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Table 2.5 3D effect factor for bridges seated on strong bearings with weak piers 

(Dutta and Mander 1998) 

Bridge Type Bearing type k3D 

 

Simply supported 

Neoprene Pads 0.25 

High steel rocker bearings 0.09 

Low steel rocker bearings 0.20 

Continuous Bridges all bearing types 0.33 

 

Case 2: For bridges seated on weak bearings with strong piers, based on Dutta 

and Mander (1998), K3D is defined as:  

3
3 1 D
D

f
K

n
                                                     (2.12) 

where f3D is given as follows: 

f3D = 0.05 for high steel rocker bearings with a span length larger than 20m; 

f3D = 0.10 for low steel sliding bearings with a span length not larger than 20m; 

f3D = 0.21 for neoprene pads. 

 

Case 3: for bridges with monolithic abutments, the abutment strength is 

assumed to be the same as the pier strength, and the pier capacity is defined in terms 

of pier strength and weight. For the bridge with n spans, the capacity is defined as:  

1
(1 )c cpC C

n
                                                    (2.13) 

Therefore the 3D factor is given by:  

3

(1 1/ )
1 0.5 /

cp

D

cp

C n
K n

C

 
                                       (2.14) 

Case 4: for bridges with single span, the 3D factors are listed in Table 2.6. 

Table 2.6 3D effect factor for single span bridge (Basöz and Mander 1999) 

Deck Type Bearing Type K3D 

Concrete Deck Neoprene Pads 1.2 

Steel Girder L > 20m High steel rocker bearings 1.05 

Steel Girder L <= 20m Low steel rocker bearings 1.1 
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2.3 Application of Hazus model to APT-BMS 

2.3.1 Example of a bridge with weak bearings and strong piers 

The SP83 Bridge on the Nogarè river (Fig. 2.3) is a typical bridge in APT-BMS. It is 

a 3 span pre-stressed reinforced concrete bridge with wall piers and non monolithic 

abutments. The column parameters are D=5m, H=13.4m. Its geographical location is 

Long=11.2132(E), Lat= 46.1025(N), and the elastic spectra parameters are: S=1, F0 

=2.6835, TC =0.33393.  

18.15 m  18.1518.00

Trento

Pine'

A

A

longitudinal section
Trento

Pine'

 deck

4.50

9.5 m

1.
50 Section AA

 

Fig. 2.3 (a) Overview of the SP83 Bridge on the Nogarè River; (b) Plan view, elevation and 
cross-section of the deck 

Since the bridge has wall piers, the capacity is assumed to arise from bearings 

only, so Cc = t＝[0.85, 0.75, 0.75, 0.75]. Substituting Cc into Equations (2.9), the 

required median spectral acceleration (ag)i is obtained. Table 2.7 gives the results. 

Given (ag)i, from Equation (2.4), the fragility curves of Ponte Nogarè SP83 under 

different damage states are calculated as shown in Fig. 2.4. Assuming a spectral 

acceleration Sa =0.071g, which is the earthquake intensity with a return period of 

475 years, the seismic probabilities of the SP83 Nogarè Bridge in every damage 

state are calculated as shown in Table 2.8. In table 2.8, the second column gives the 

probability of exceeding each limit state, and the third column gives the probabilities 

of exceeding or being in each limit state.  

Table 2.7 The required parameters for calculating median spectral accelerations 

Damage State t  m (ag)S (g) (ag)L (g) ag (g) 

2 0.85 0.6325 0.05 0.5008 0.8829 0.8829 

3 0.75 0.6325 0.1 0.4419 1.1728 1.1728 

4 0.75 0.6325 0.175 0.4419 1.5515 1.5515 

5 0.75 0.6325 0.3 0.4419 2.0314 2.0314 
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Table 2.8 Seismic probability of Ponte Nogarè SP83 for different limit states 

Damage State P[D>DSi|Sa] P[D=DSi|Sa] 

2 1.2885×10
-5

 1 

3 1.4262×10
-6

 1.1459×10
-5

 

4 1.3195×10
-7

 1.2942×10
-6

 

5 1.0922×10
-8

 1.2103×10
-7
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Fig. 2.4 Fragility curves of Ponte Nogarè SP83 

 

2.3.2. Example of a bridge with strong bearings and weak piers 

The SP90 Bridge on the Adige River at Villa Lagarina is a simply supported, 

pre-stressed concrete girder bridge with four spans. It was built in 1966. The column 

parameters are D=1.5m, H=10.45m. The elastic spectra parameters are given in 

Table 2.9. 

 

Fig. 2.5 Overview of the SP90 Bridge on the Adige River at Villa Lagarina 
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Table 2.9 Spectral parameters at the SP90 Adige Bridge location 

Long Lat Sa (Return period of 475 years) Fo Tc S 

11.038 45.913 0.116 g 2.484 0.286 1.00 

 

The capacity of the bridge is calculated as the smaller of the two resisting 

mechanisms, pier collapse or sliding of bearings. If the pier capacity is critical, the 

capacity coefficient is given by: 

c Q p

D
C λ k

H
                                                      (2.15)                                                                                                            

Conversely, if sliding of bearings is critical, the capacity coefficient is simply:  

tcC                                                           (2.16) 

For computation simplicity, the smaller of the two is used here as the capacity 

value of this bridge. The parameters of the pier are given in Table 2.10. 

Since this is a simple supported bridge, the 3D effects coefficient is given by: 

3
3 1 1.08

1

D
D

k
K

n
  


  

Table 2.10 parameters of the SP90 Bridge on the Adige River 

Damage 

states 
 Q  ag F(PGA) 

OLS 0.745 1.0 0.005 0.513 6.66×10
-3

 

DLS 0.674 0.8 0.010 0.718 1.21×10
-3

 

LLS 0.649 0.7 0.020 0.986 1.83×10
-4

 

CLS 0.367 0.6 0.050 1.472 1.16×10
-5
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Fig. 2.6 The fragility curves of the pier 
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Finally, the fragility curves for the four limit states are given in Fig. 2.6. 

Similarly, Table 2.11 gives the parameters related with the sliding mechanism, while 

the corresponding fragility curves are depicted in Fig. 2.7. By comparing the 

parameters of the two mechanisms, it is evident how in this case the pier mechanism 

is the more critical, and the corresponding fragility curves are used to represent the 

bridge vulnerability.  

Table 2.11 parameters of the pier 

Damage states  t (m) Ai(g) F(PGA) 

OLS 0.632 0.85 0.050 1.1124  8.38×10
-5

 

DLS 0.632 0.75 0.100 1.4777  1.13×10
-5

 

LLS 0.632 0.75 0.175 1.9548  1.28×10
-6

 

CLS 0.632 0.75 0.300 2.5595 1.29×10
-7
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Fig. 2.7 The fragility curves due to the sliding of bearings 
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2.4 Results and conclusions 

Using the above methods, the fragility curves for all the bridges in the APT stock are 

generated. Thus, given an earthquake scenario, seismic vulnerability for all damage 

states can be calculated, for the same three return periods and four limit states.  

The results with return periods of 475 years, 72 years, and 2475 years are shown 

in Google Earth maps in Figs 2.8, 2.9, and 2.10 respectively. Bridges are denoted by 

dots of different colors, according to their probability P of exceeding the limit state: 

green (P<10
-5

), yellow (10
-5

<P<10
-4

), orange (10
-4

<P<10
-3

) and red (P>10
-3

). This is 

a very straightforward way to show bridge managers and users the seismic risk of 

every bridge. The histogram of Fig. 2.11 gives the number of bridges in each 

probability class for a return period of 475 years.  

The results show that the seismic risk for a return period of 475 years in the 

APT stock is moderate. For limit states OLS and DLS, some bridges have relatively 

high failure probabilities as shown in Fig. 2.8 (a) and Fig. 2.8 (b). As for limit states 

LLS and CLS, 99% of the bridges in the APT stock have a very low probability as 

shown in Fig. 2.8 (c) and Fig. 2.8 (d). This can be explained by the seismic activity 

of the APT region. Fig 2.12 gives the PGA values of the APT region in the 475 year 

return period. From Fig. 2.11, we can see that for the 475 year return period, PGA 

values in most areas of APT region are about 0.075g, which is a very low value. 

Only in the south east part of APT region, there is a higher PGA value. This region 

is classified as a low seismic zone. 

 (a) (b)  

(c) (d)  

Fig. 2.8 Seismic vulnerability of APT stock for the return period of 475 years in damage 
states (a), OLS (b), DLS (c), LLS (d), CLS 
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(a) (b)  

(c) (d)  

Fig. 2.9 Seismic vulnerability of APT stock for the return period of 72 years in damage 
states (a), OLS (b), DLS (c), LLS (d), CLS 

(a) (c)  

(b) (d)  

Fig. 2.10 Seismic vulnerability of APT stock for the return period of 2475 years in damage 
states (a), OLS (b), DLS (c), LLS (d), CLS 

Although the direct seismic risk involving collapse or loss of life is moderate, 

system operation at network level is of concern in a post earthquake situation. From 

fig 2.11, we find that there are about 150 red bridges for operation limit state, so 

approximately 15% of the bridges in the APT stock have a relatively high risk of 
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suffering operational problems. It is therefore necessary to identify the safest path 

between any two given points after an earthquake. Here ‘the safest’ means the 

lowest risk of exposure to operational problems in a given earthquake scenario. 

After an earthquake, the ability to decide quickly is of great help to decision makers 

who need to best distribute the available human and material rescue resources to the 

disaster center. This problem is addressed in the next section.  

0

100

200

300

400

500

600

700

800

900

1000

OLS DLS LLS CLS
Damage state

n
u
m

b
e
r 

o
f 
b
ri
d
g
e
s

P<1E-5

1E-5<P<1E-4

1E-4<P<1E-3

P>1E-3

 

Fig. 2.11 Seismic vulnerability distribution of the APT stock 

 

Fig. 2.12 PGA value of APT region with 475 years’ return period (DPC-INGV) 
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2.5 Other methods for generating fragility curves 

A review of the literature identified a state-of-the-art method to calculate fragility 

curves, and I report this here. 

2.5.1 The maximum likelihood method (Shinozuka et al. 2000b) 

In Shinozuka et al. (2000b), the empirical fragility curves are developed based on 

the bridge damage data, obtained from the 1995 Hyogo-ken Nanbu (Kobe) 

earthquake, and on the two-parameter lognormal distribution functions which were 

used for fragility curve construction.  The estimate of the two parameters (median 

and log-standard deviation) is performed using maximum likelihood method. The 

peak ground acceleration (PGA) is used to represent the seismic ground motion 

intensity. The likelihood function is expressed as follows: 

   
1

1

( ) 1 ( )
i i

N
x x

i i

i

L F a F a




                     (2.17) 

where F(∙) represents the fragility curve for a specific state of damage; ai = PGA 

value to which bridge i is subjected; xi = 1 or 0 depending on whether or not the 

bridge sustains the state of damage; and N = total number of bridges inspected after 

the earthquake. F(ai) takes the following analytical form: 

ln( )

( ) [ ]

a

cF a 


                   (2.18) 

where a represents PGA, and [∙] = the standard normal cumulative function. The 

two parameters c and in (2) are computed satisfying the following equations to 

maximize L: 

ln ln
0

d L d L

dc d
 


                                        (2.19) 

This equation is solved by using the optimization algorithm. Using the maximum 

likelihood method, three fragility curves are constructed as shown in Fig. 2.13.  
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Fig. 2.13 Example of empirical fragility curves reported by Shinozuka et al. (2000b) 

2.5.2 Fragility curves for highway bridges (Karim and Yamazaki 2003) 

This method develops analytical fragility curves for highway bridges considering the 

variation of structural parameters based on numerical simulation. Based on the 

observed correlation between the fragility curve parameters and the over-strength 

ratio of the structures, this method constructs the fragility curves using 30 

non-isolated highway bridges in Japan, which fall within the same group and have 

similar characteristics. 

It is assumed that there might be a correlation between the fragility curve 

parameters and the structural parameters, like the over-strength ratio of the 

structure, height of the pier (h), span length (L), and weight (W) of the superstructure. 

However, for simplicity, only is considered in the current analysis as it is one of 

the key structural parameters and provides information on the reserve strength of the 

structure when designed. The over-strength ratio of the structure is defined as: 

Wk

P

h e


   (2.20)

where Pu is the horizontal capacity of the structure, W is the equivalent weight, 

which is calculated as the weight of the superstructure and a 50% weight of the 

substructure, and khe is the equivalent lateral force coefficient. 

12 


a

h c
h e

k
k   (2.21)

where khcis the design lateral force coefficient, and a is the allowable ductility 
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factor of the substructure. The design lateral force coefficient khc is defined as 

hcozhc kck    (2.22)

where cz is the zonation factor, and khco is the standard design lateral force coefficient. 

The value of khco can be obtained by knowing the natural period of the structure and 

ground conditions. 

The regression model used to obtain the relationship between fragility curves  

and  with the over-strength ratio  is given as:  

 10 bb   (2.23) 

 10 cc   (2.24)

where and are the mean and standard deviation of the fragility curves with 

respect to ,  is the over-strength ratio of the structure, and b0 and b1 are the 

regression coefficients.  

2.5.3 Fragility curves for bridge piers based on numerical simulation (Karim and 

Yamazaki 2001) 

This method presents a numerical analysis to construct fragility curves for bridge 

piers of a specific bridge based on static sectional and pushover analysis, and 

non-linear dynamic analysis. The analyses of fragility curves for special piers 

designed under the 1964 and 1998 Japanese highway bridge codes were constructed 

with respect to both PGA and PGV. The input motions were selected from the 

strong records of the 1995 Kobe, 1994 Northridge, 1993 Kushiro and the 1987 

Chiba-ken earthquakes.  

The steps for constructing analytical fragility curves are as follows.  

a. Select the earthquake ground motion records. 

b. Normalize PGA of the selected records to different excitation levels. 

c. Make an analytical model of the structure. 

d. Obtain the stiffness of the structure. 

e. Select a hysteretic model for the non-linear dynamic response analysis. 

f. Perform the non-linear dynamic analysis using the selected records. 

g. Obtain the ductility factors of the structure. 

h. Obtain the damage indices of the structure at each excitation level. 

i. Calibrate the damage indices for each damage rank. 
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j. Obtain the number of occurrences of each damage rank in each excitation level 

and get the damage ratio. 

k. Construct the fragility curves using the obtained damage ratio and the ground 

motion indices for each damage rank. 

For the assessment of the bridge piers, the damage index DI is expressed as   

u

hdDI





  (2.25)      

where d and u are the displacement and ultimate ductility of the bridge piers,  is 

the cyclic loading factor taken as 0.15 and h is the cumulative energy ductility. The 

ultimate ductility u is defined as the ratio of maximum displacement (obtained from 

the static analysis) to the yield displacement (obtained from the static analysis). The 

displacement ductility is defined as the ratio of the maximum displacement 

(obtained from dynamic analysis) to the displacement at the yield point (obtained 

from static analysis). The cumulative energy ductility h is defined as the ratio of the 

hysteretic energy (obtained from dynamic analysis) to the energy at yield point 

(obtained from static analysis). 

The damage indices obtained for the selected input ground motion are calibrated 

to get the relationship between the DI and damage rank (DR). 

Using the relationship between DI and DR, the number of occurrences of each 

damage rank is obtained. These numbers are then used to obtain the damage ratio of 

each damage rank.  

To count the number of occurrences of each damage rank, the PGA for selected 

records were normalized to different excitation levels. Then, the ground motions 

records were applied to the structure to obtain the damage indices. Using these 

damage indices, the number of occurrences of each damage rank is obtained for each 

excitation level. Finally, using the numbers, the damage ratio is obtained for each 

damage rank.  

1. Fragility curves. Fragility curves are constructed with respect to both PGA and 

PGV. The damage ratio for each damage rank in each excitation level is obtained by 

calibrating the DI. Based on this data, fragility curves for the bridge piers are 

constructed assuming a lognormal distribution. The cumulative probability PR of the 

occurrence of the damage to be equal or higher than rank R, is given as 

ln
R

X
P





 
  

 
                                         (2.26) 

where  is the standard normal distribution, X is the ground motion index (PGA and 
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PGV), and  and  are the mean and standard deviation of lnX. Two parameters of 

the distribution are obtained by the least square method on lognormal probability 

paper. Using these probability papers, the two parameters of the distribution are 

obtained to construct the fragility curves of the bridge piers. 

2.5.4 Seismic fragility methodology for bridges using component level approach 

(Nielson and DesRoches 2007)  

This methodology considers the contribution of the major components of the bridge, 

such as the columns, bearings and abutments, to its overall bridge system fragility. 

In particular, probability tools are used to estimate directly the bridge system 

fragility from the individual component fragilities. 

A probability distribution is developed for the demand, conditioned on the IM, 

also known as a probabilistic seismic demand model (PSDM), and convolving it 

with a distribution for the capacity. The estimate for the median demand (Sd) can be 

represented by a power model:  

b

d aIMS                                                       (2.27) 

where IM is the seismic intensity measure of choice, and both a and b are regression 

coefficients. Thus, the PSDM can be written as  

ln( ) ln( )
1 ( )

b

DIM

d aIM
P D d IM


      

        (2.28) 

The generation of the PSDMs follows the procedure outlined below. 

1. Assemble a suite of N ground motions which are applicable to the geographical 

area of interest. This suite should represent a broad range of values for the 

chosen intensity measure. 

2. Generate N statistical samples of the subject structure. These samples should be 

generated by sampling various modeling parameters which may be deemed 

significant. Thus, N statistically different yet nominally identical bridge samples 

are generated. 

3. Perform a full non-linear time history analysis for each ground motion-bridge 

pair. Key responses should be monitored throughout the analysis. 

4. For each analysis, peak responses are recorded and plotted versus the peak value 

of the intensity measure for that ground motion. A regression analysis of these 

data is then performed to estimate a, b and D|IM. 

Step 4 is repeated for all major vulnerable components in the bridge. Thus, the 
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seismic demand on each of the bridge components can be modeled. 

The capacity level (limit states) for the various bridge components can be 

assessed using a physics (prescriptive) approach and a judgmental (descriptive) 

approach. 

The distributions of the component capacities are assumed to be lognormal. The 

lognormal parameters for limit state (Sc, c) of each bridge component used are 

developed using a Bayesian approach that incorporates physics-based assessments 

with judgmental assessments. 

The general assessment of the seismic vulnerability for the bridge as a whole 

must be made by combining the effects of the various bridge components. The 

probability that the bridge is at, or beyond, a particular limit state is the union of the 

probabilities of each of the components being in that same limit state. 

The estimate of the system or bridge level fragility is facilitated through the 

development of a joint probabilistic seismic demand model (JPSDM). This approach 

recognizes that there is some level of correlation between the demands placed on the 

various bridge components during a given earthquake.  

Specifically, this methodology is designed to consider all major bridge 

components when assessing seismic vulnerabilities. The demand on the bridge is 

quantified by using a JPSDM. The fragility of the bridge is calculated by integrating 

overall failure domains of the joint PSDM.  

 

 



 
 

Impact of Seismic Vulnerability on Bridge Management Systems          

 49 

 

 

 

 

 

 

 

3 Network level assessment 

 

3.1 Introduction 

Bridges in highway networks are crucial to the essential function of connectivity. 

Highway bridges provide effective links that connect the nodes of interest in a 

geographical region. Therefore, it is a fundamental requirement to maintain highway 

bridges at, or above, a minimum level of service and safety during their entire life 

(Liu and Frangopol 2006). Compared with the seismic assessment of individual 

bridges, network level seismic assessment normally involves network prioritization, 

which is always related to the distribution of limited financial, material and human 

resources to bridge maintenance, repair, and rehabilitation in an best manner. 

A clear objective is needed before selecting the prioritization method. Safety, 

minimum cost, and minimum travel time are all reasonable and desirable aims. 

Different targets can lead to different solutions and methods. Normally, the 

prioritization methods function can be expressed as (Nuti, 2004): 

),,( bbbb CRFfP                           (3.1) 

where Pb is the prioritization value for every bridge in a stock, f is the function 

dependent on the prioritization method, Fb is the seismic hazard on the bridge, Rb is 

the resistance of the bridge, and Cb is the cost of bridge failure. Based on Equation 

(3.1), the bridge with a higher prioritization value deserves a higher priority in 

seismic retrofitting.  

The outline of this chapter is as follows: in section 3.2, the connectivity analysis 

is carried out in APT-BMS; in section 3.3 the safest path is identified in the 

APT-BMS network; finally, the existing methods for network level assessment are 

introduced in section 3.4.  
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3.2 Connectivity analysis in APT-BMS 

From chapter 2, we learned that the seismic risk in the APT stock is moderate. 

However, the system operation at network level is of concern in a post earthquake 

situation. Approximately 15% of the bridges in the APT stock have a relatively high 

risk of suffering operational problems. It is therefore necessary to identify the safest 

path between any two given points after an earthquake. Here ‘the safest’ means the 

lowest risk of exposure to operational problems in a given earthquake scenario. 

Before identifying the shortest path between any two given points, we need to check 

the connectivity of the two points. The connectivity reliability of a network states 

the probability that the traffic can reach the destination from the origin (Liu and 

Frangopol, 2006). In this Chapter, it is assumed that the bridge elements are the only 

vulnerable parts of the network, and that the roads between any two bridges will 

never fail. In Chapter 4, I will explain the graph theory in detail.   

3.2.1 Definition of network connectivity 

1

2

1

3

2
Bridge

Node

  

Fig. 3.1 Simple network with two nodes and three bridges 

Fig. 3.1 is a simple network with two nodes and three bridges. Bridge i, for i = 1, 

2, 3, is in the operational mode with probability pi, and in the failed mode with 

probability qi =1- pi. Table 3.1 gives the values of pi and qi for each bridge. In this 

example, I assume that there is no correlation between these bridges; they are all 

independent of each other. 

Table 3.1 probabilities in operational mode 

Bridge pi qi 

1 0.7 0.3 

2 0.8 0.2 

3 0.9 0.1 

 

The links between the nodes and the bridges are assumed to be safe. A bridge 

mode vector V is used to denote the state mode of the bridges: 
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




modeloperationainisbridgeif0

modefailedinisbridgeif1

i

i
Vi                         (3.2) 

Given a specific mode vector, if there is at least one path connecting node 1 and 

node 2, then we say that node 1 and node 2 are connected; otherwise they are 

disconnected. Table 3.2 gives all the network states and the corresponding 

probability for each network state.  

Table 3.2 all the network states in Fig. 3.1 

Network state Bridge mode vector V  
Probability for this 

vector    
Connectivity 

1 110 0.054 Disconnected 

2 101 0.024 Disconnected 

3 011 0.014 Connected 

4 100 0.216 Connected 

5 001 0.056 Connected 

6 010 0.126 Connected 

7 000 0.504 Connected 

8 111 0.006 Disconnected 

 

Table 3.2 shows that there are five network states that are connected. The sum 

of the probabilities for these five states is 0.916. In this case, we say that the 

connectivity for the network is 0.916. From this example, the connectivity can be 

defined as the sum of the probabilities of the network states that are connected.  

In this simple network, there are only 3 bridges and 2 nodes, therefore it is very 

easy to check the connectivity between two nodes. For a complex network with a 

large number of nodes, it is extremely difficult to check the connectivity between 

any two nodes; below I describe the procedure to solve this problem.  

Assume that there is a graph with n nodes and m links. To check the 

connectivity between any two nodes:  

Step 1: Rank all the nodes from 1 to n randomly, and assuming a need to check 

the connectivity between node 1 and node n, set node 1 as the start node.  

Step 2: If there is a direct link between node i and the start node, then node i is 

called the linked node; find all the linked nodes, and mark the other nodes as 

unlinked nodes. 

Step 3: For each of the linked nodes, repeat step 2 until the linked nodes set and 

the unlinked nodes set become unchanged. Finally, if node n is in the linked nodes 

set, then node 1 and node n are connected, otherwise they are disconnected.  

Using this method, the connectivity for a specific network state can be obtained. 

However, due to the exponential effect, it is difficult to enumerate the state space for 
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a network with more than a few nodes. For a network with 50 bridges, the number of 

network states is 2
50

 =1.13 ×10
15

, which is a huge number. On the other hand, in 

many cases, it is not necessary to enumerate all the possible states. In some cases, 

for all the connected states, there are only a finite number of states that account for 

the majority of the probability of being connected, while the probabilities of other 

states are very low. Take the network in Fig. 3.1 for example; network states 3, 4, 5, 

6, and 7 are connected.  The sum of probabilities of states 4, 6, and 7 is 0.846, 

which accounts for 92.4% of all the probabilities being in connected states. 

Therefore, below we can restrict our attention to the most likely states and give 

bounds on the network performance. In order to enumerate the most likely states, 

algorithm ORDER (Li 1984) and algorithm ORDER-II (Lam 1986) are introduced 

in the next section.  

3.2.2 Description of algorithms ORDER and ORDER-II 

Algorithm ORDER was proposed by Li and Silvester (1984), and is used to 

enumerate the most probable states in a network, m, with n failure-prone 

components. Here the failure-prone component means that the probability in 

operational mode pi is larger than the probability in fair mode qi. There are the 

following assumptions for this algorithm: 

1. Component i is in the operational mode with probability pi, and in the failed 

mode with probability qi =1- pi, all the components are independent.  

2. pi ≥ qi. 

3. Components are renamed such that R1 ≥ R2 ≥ … ≥ Rn where Ri = qi / pi.  

The state of the system is denoted by Sk, k =1, 2, …, 2
n
. The probability of Sk is 

given by 

iV

i

n

i

iik pqpP )/(
                                          (3.3) 

where Vi is defined as in Equation (3.2). Obviously, when Vi = 0, for i = 1, 2, …, n, 

Pk has the largest value. So the most probable state, S1, corresponds to no failures, 

and the next most probable state is the one in which there is only one failed 

component. This failed component has the largest Ri, i.e., component 1. In this 

algorithm, the state Si, i = 1, 2, …, m,  is identified by the identities of the failed 

components in Si ; thus, S1 = , S2 ={1}, etc. 

Let A = {S1, S2, ...., Sm} denote an ordered set of failure states such that 

P(S1)≥P(S2) ≥ … ≥P(Sm) . There are three operations in this algorithm.  

The first operation is called appends, denoted as ||, and is defined as follows: 

}}{,},{},{{}{|| 21 iSiSiSiA m  
     

The element i is inserted into each network state of A.                                  
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The second operation is called insert, denoted as B→A, and defined as: 

B→A = the ordered set which results when each element of B is inserted into the 

ordered set A.  

The last operation is called select, denoted T(A), and is defined as: 

T(A) = the ordered set which contains the first m elements of the ordered set A. 

The algorithm consists of two phases and n stages, with stage i corresponding to 

failure-prone component i. First we find t, where t is the smallest integer such that 2
t 

≥ m.  

Phase 1: 

1) Initialize: S1 = , A0 = { S1 }. 

2) For i = 1, 2, …, t, repeat 2.1), 2.2). 

2.1) }{||11 iAB ii    

2.2) 
11   iii ABA  

Phase 2: 

3) Initialize: At+1 = T(At). 

4) For i = t+1, …, n,  repeat 4.1), 4.2), 4.3). 

4.1) }{||11 iAB ii    

4.2) 
11   iii ABA  

4.3) )(ATAi   

An contains, in decreasing order, the m most probable states.  

Algorithm ORDER has the disadvantage that it can only generate exactly m (a 

pre-assigned number) most probable states. To get more states one has to run the 

algorithm from the beginning, using a larger m. This limits algorithm flexibility, and 

it is difficult to make a good choice of m before running the algorithm (Lam 1986). 

In Lam (1986), Lam and Li proposed an updated algorithm, ORDER-II, which can 

generate states in the appropriate order, and does not require a fixed number of states 

beforehand. The algorithm can be run until a desired degree of accuracy is obtained, 

thus optimizing the use of computational resources.  

The problem in ORDER-II is formulated in a more general context as follows. 

We are given a set S = {e1, e2, …, en} of n elements, sorted such that w(ei) ≥ w(ej) for 

all i > j, where w(ei)is the weight of element ei. We want to generate subsets SS1, 

SS2,…, such that w(SSi) ≥ w(SSj) for all i > j, where w(SSi) is the total weight of all 

elements in subset SSi. The following are the notations for ORDER-II: 

iiL SSSSe subsetinweight)largestwithone(theelementlast)(   

1isthat,setinafterelementnextthe)(  iii eSeen  
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the structure for storing candidate subsetsTree   

iSSRi stageatheaptheofroottheatsubsetthe  

deletedelementwithsubsetthe}{ jiji eSSeSS   

addedelementwithsubsetthe}{ jiji eSSeSS   

The procedures of the algorithm are as follows: 

Initialize: i: = 1; SS1: = {e1}; Tree: = Φ; 

Repeat 

If eL(SSi) ≠ en then 

begin  

add SSi - {eL(SSi)}+ {n{eL(SSi)}} to Tree; 

add SSi + {n{eL(SSi)}} to Tree; 

end; 

SSi+1 : = SSRi; 

Delete SSRi from Tree; 

i: = i + 1; 

until enough subsets have been generated. 

After describing the algorithms ORDER and ORDER-II, the next section will 

introduce the network in APT-BMS, and the algorithm will be implemented. 

3.2.3 Network simulation 

There are 983 bridges in the APT stock, located along SP (province owned) roads 

and SS (state owned) roads. The whole APT road network, including all bridges and 

roads, is simulated as a graph.  

The key phase of network simulation is identifying all the nodes of the graph. 

The following points are defined as nodes: the intersections or endpoints of SP and 

SS roads. Each node has 3 variables: ID number, longitude, latitude.  
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Fig. 3.2 Google Earth map from Trento to Ala 

 

Table 3.3 Geographical coordinates of nodes in Trento to Ala road network 

Node Longitude[°] Latitude[°] 

1 11.11209 46.05268 

2 11.11474 46.04633 

3 11.11213 46.04482 

4 11.1277 46.00896 

5 11.12003 46.00924 

6 11.09432 45.93155 

7 11.07568 45.92801 

8 11.03576 45.90218 

9 11.03545 45.91406 

10 11.03381 45.88712 

11 11.00792 45.88184 

12 11.03117 45.87281 

13 10.99713 45.86327 

14 11.00514 45.76261 

15 10.99979 45.76708 

16 11.00032 45.75776 
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Fig. 3.3 Simulated transportation graph between Trento-Ala 
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Fig. 3.4 The simplified graph between Trento-Ala 

Fig. 3.2 is the Google Earth map from Trento to Ala. Trento is the capital city of 

the APT region, while Ala is an important town in the south of the APT, near the 

high risk seismic zones in Northern Italy. Fig. 3.3 is the simulated graph from 

Trento to Ala. There are 40 bridges with differing probabilities of being in 

operational limit state, as represented by the colored dots. SS12 and SP90 are two 

main roads connecting Trento and Ala. The Adige River and the A22 highway are 

between SS12 and SP90. In the APT network, we consider only the SS and SP roads, 

and only the intersections and the endpoints of SS and SP roads can be identified as 

nodes, so A22 is not included in the simulated graph. Based on this definition, there 

are 16 nodes in this graph. All the nodes are shown in Fig. 3.4. Each node has 3 

variables: ID number, longitude, latitude. For example, the parameters of node 1 are 

1, 11.11209, and 46.05268 respectively.  

After identifying all the Nodes, the next step is to identify all the Links. Not all 

connections between two nodes can be regarded as links; these must be along the SP 

or SS roads. There are 22 links in Fig. 3.4.  
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Table 3.4 gives descriptions of every link. Each link has 6 variables: ID number, 

start node ID, end node ID, ID of the road forming the link, the relative position of 

the start node on the road, and the relative position of the end node on the road. For 

example, the parameters of link 1 are 1, 1, 2, 250, 377.03, and 376.246; this means 

that the number of this link is 1, the endpoints of this link are node 1 and node 2, the 

link belongs to road 250 which is ss12 in the database, the relative position of node 

1 in ss12 is 377.03 km and the relative position of node 2 in ss12 is 376.246 km. 

After identifying all the links, the APT stock network is simulated as a graph in 

Google.  

When all the nodes and links are identified, the whole APT network is simulated 

as a graph in Google Earth as shown in Fig. 3.5. The small red points represent the 

nodes, and the red lines represent the links. In total, there are 558 nodes and 740 

links in the APT stock. All the bridges are located on the links. Now the algorithms 

can be performed on the APT network.  

Table 3.4 Descriptions of links in Trento to Ala road network 

Path 
Start 

Node 

End 

Node 
Road Name Road ID Start Km End Km 

1 1 2 ss12 250 377.03 376.246 

2 2 4 ss12 250 376.246 371.441 

3 4 6 ss12 250 371.441 361.19 

4 6 8 ss12 250 361.19 355.715 

5 8 10 ss12 250 355.715 354.095 

6 10 12 ss12 250 354.095 352.415 

7 12 14 ss12 250 352.415 337.71 

8 14 16 ss12 250 337.71 337.052 

9 1 3 ss12 250 377.03 377.45 

10 2 3 sp90 part 2 126 25.35 25.11 

11 3 5 sp90 part 2 126 25.11 20 

12 4 5 sp21 27 3.1 2.8 

13 5 7 sp90 part 2 126 20 12 

14 6 7 sp59 73 1.01 0.1 

15 7 9 sp90 part 1 123 22.9 22.7 

16 8 9 sp90 dir ss12 128 0 0.5 

17 9 11 sp90 part 1 123 22.7 22.5 

18 10 11 sp90 dir Rovereto 127 0 2.3 

19 11 13 sp90 part 1 123 22.5 22 

20 12 13 ss240 269 0 3.5 

21 13 15 sp90 part 1 123 22 11 

22 14 15 sp90 part 1 dir Ala 125 0.3 0 
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Fig. 3.5 Google Earth map of the APT-BMS network 

3.2.4 Implementation in APT-BMS 

After simulating the network, the algorithms ORDER and ORDER-II are used to 

find m, the most probable states of the network. Let’s start with the simple network 

from Trento to Ala in Fig. 3.3. Fig. 3.6 shows the probability of each bridge having 

operational problems. Since there are 40 bridges in this network, there will be 2
40 

= 

1.1 × 10
12

 states for this network. For the whole network in APT-BMS, there are 984 

bridges, and so the number of network states will be 2
984

, which is an enormous 

number. In order to simplify the computation, all the bridges within one link are 

combined into one bridge, and the probability of this new bridge having operational 

problems is the sum of probabilities of all the bridges having an operational problem. 

It must be noted that here we make an approximation: considering an example with 

two bridges (A and B) on the link, as we know, the probability of the link being 

disconnected is Pfail(link) = Pfail(A) + Pfail(B) - Pfail(AB). If we neglect the correlation 

between bridges A and B, we have Pfail(AB) = Pfail(A) ∙ Pfail(B), so Pfail(link) = Pfail(A) 

+ Pfail(B) - Pfail(A) ∙ Pfail(B). Since the values of Pfail(A) and Pfail(B) are very small, 

their product is negligible. Therefore Pfail(link) = Pfail(A) + Pfail(B). The results are 

shown in Fig. 3.7. In Fig. 3.7, the components have been reduced to 17, so the total 

network states number becomes 2
17 

= 1.3 × 10
5
. 

In this example, the number of components is n = 17, and we want to consider 

the m most probable states for this network. For each network state, we calculate the 

connectivity of the network. If there is at least one path to connect node 1 and node 

16, then the connectivity for this state is 1, otherwise 0. After considering all the m 

most probable states, the approximate total connectivity for this network is:  
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Fig. 3.6 Graph representation of Trento to Ala road network with individual bridges 
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Fig. 3.7 Graph representation of Trento to Ala road network indicating the probability of 
link failure 





m

i

ii PCC
0

                                                   (3.4) 

where Pi is the probability of the i-th network state, and Ci is the connectivity for the 

i-th network state. Ci = 1, if there is at least one path from node 1 to node 16; Ci = 0, 

if not. Obviously,  

12
CCC in                 ni 2,,2,1                         (3.5) 

where C1 is the connectivity when all the components are in operational mode, and 

C2
n
 is the connectivity when all the components are in failure mode. So C1 = 1, and 
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C2
n
 = 0. If we consider the m most probable states, we have: 

 




n

mi

ii

m

i

ii PCPCC
2

11

                                     (3.6) 

From Equation (3.5), we have: 






nnn

n

mi

i

mi

ii

mi

i PCPCPC
2

1

1

2

1

2

1
2

                                  (3.7) 

Since C1 = 1, and C2
n
 = 0, Equation (3.7) becomes 





m

i

i

mi

i

mi

ii PPPC

nn

1

2

1

2

1

10                                     (3.8) 

Substituting Equation (3.8) into (3.6), we get: 





m

i

i

m

i

ii

m

i

ii PPCCPC
000

1                                   (3.9) 

Table 3.5 gives the connectivity of the network when considering different m values. 

When the 5 most probable states are considered, the real network connectivity C is 

between 9.7568 × 10
-1

 and 1. If the 10 most probable states are considered, the range 

becomes [9.9448 × 10
-1

, 9.9869 × 10
-1

]. As the value of m increases, the upper and 

lower bounds of C converge quickly. From this example, we can say that the 

connectivity for this network is 9.9448 × 10
-1

.  

Table 3.5 Expected connectivity of between Trento to Ala given different m values 

Number of 

states (m) 



m

i

iP
0

 



m

i

ii PC
0

 



m

i

i

m

i

ii PPC
00

1  

5 0.9757 0.9757 1 

10 0.9958 0.9945 0.9987 

100 0.9987 0.9945 0.9958 

1000 0.9998 0.9945 0.9946 

5000 0.9999 0.9945 0.9946 

10000 0.9999 0.9945 0.9945 

50000 1 0.9945 0.9945 
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After performing the algorithm on the network from Trento to Ala, we want to 

consider the connectivity of the whole network in APT-BMS - this has already been 

simulated in section 3.2.3.  

Lavazè Pass and Riccomassimo are two remote places in Trentino Province (see 

Fig. 3.8) located to the north and south of the APT region, respectively. Given the 

start node as Riccomassimo and the end node as Lavazè Pass, the connectivity, 

using the algorithm ORDER-II, is analyzed below.  

Passo

Lavaze

Riccomas
simo

Riccomassimo

Passo Lavaze

 

Fig. 3.8 Locations of Passo Lavazè and Riccomassimo in APT road network 

Table 3.6 Connectivity between Passo Lavazè and Riccomassimo for different m 

values for return period of 475 years 

Number of 

states (m) 



m

i

iP
0

 



m

i

ii PC
0

 



m

i

i

m

i

ii PPC
00

1  

10 0.5666  0.5666  1 

10
2
 0.7394 0.7313 0.9919  

10
3
 0.7899 0.7313 0.9414 

10
4
 0.7952 0.7313 0.9361 

10
5
 0.7978 0.7313 0.9334 

10
6
 0.7997 0.7313 0.9316 

 

From Table 3.6, we can see that the 100 most probable states account for 73.9% 

of the whole states. After that, the sum of the probabilities for the m most probable 

states increases very slowly. However, the approximate connectivity remains the 

same after m = 100.  Therefore, it can be concluded that after the most 100 
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probable states, the network is disconnected between the Lavazè Pass node and the 

Riccomassimo node. From Table 3.6, we can conclude that the connectivity between 

the Lavazè Pass node and the Riccomassimo node is between 7.3128 × 10
-1

 and 

9.3163 × 10
-1

, and more likely to be 7.3128 × 10
-1

.  

Similarly, the connectivities for return periods of 72 years and 2475 years are 

given in Table 3.7 and 3.8 respectively. For a return period of 475 years, the 

connectivity of the two nodes is about 9.9987× 10
-1

. While for a return period of 

2475 years, the cumulative probability of the 10
6
 most probable states is less than 

1%, so the upper bound of the connectivity is very high, which is nearly 1. But the 

lower bound of the connectivity remains the same after m = 10
3
. This can be 

explained by the fact that the network is disconnected for other states after m = 10
3
. 

It is likely that the connectivity is about 3.4484× 10
-4

. It means that these two nodes 

are disconnected under this scenario. This can be explained by the reason that most 

bridges are collapsed after an earthquake with a return period of 2475 years.   

Table 3.7 Connectivity between Passo Lavazè and Riccomassimo for different m 

values for return period of 72 years 

Number of 

states (m) 



m

i

iP
0

 



m

i

ii PC
0

 



m

i

i

m

i

ii PPC
00

1  

10 0.9982 0.9982 1 

10
2
 0.9999 0.9999 0.9999 

10
3
 0.9999 0.9999 0.9999 

10
4
 0.9999 0.9999 0.9999 

10
5
 0.9999 0.9999 0.9999 

10
6
 0.9999 0.9999 0.9999 

Table 3.8 Connectivity between Passo Lavazè and Riccomassimo given different m 

values for return period of 2475 years 

Number of 

states (m) 


m

i

iP
0

 



m

i

ii PC
0

 




m

i

i

m

i

ii PPC
00

1

 

10 0.60859× 10
-5

 6.0859× 10
-5

 1 

10
2
 1.8776× 10

-4
 1.8776× 10

-4
 1 

10
3
 5.8397× 10

-4
 3.4484× 10

-4
 0.9998 

10
4
 1.5619× 10

-3
 3.4484× 10

-4
 0.9988 

10
5
 4.2256× 10

-3
 3.4484× 10

-4
 0.9961 

10
6
 9.3840× 10

-3
 3.4484× 10

-4
 0.9910 

 

In this section, the connectivity between two places was analyzed. In the 

following, the safest path between these two places is identified.  
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3.3 Identifying the safest path in the network 

After an earthquake, the ability to quickly identify the safest path between two 

places is of great help to decision makers aiming to best distribute the available 

human and material rescue resources to the disaster centre. This is addressed by 

Dijkstra’s algorithm (Dijkstra, 1959), which is a classic algorithm used to find the 

shortest path.  

3.3.1 Calculation procedure of Dijkstra’s algorithm 

Dijkstra’s algorithm is a graph search algorithm, used to solve the shortest path 

problem in a non-directional graph, with non-negative path cost. It was proposed by 

Dutch computer scientist Edsger Dijkstra in 1959. This algorithm is often used in 

transportation routing.  

Given a graph with n nodes and m links, an nn diagonal square matrix M is 

created. Each element of the matrix is the distance value between two nodes. For 

example, Mij is the edge cost of the link between node i and node j. Given a graph, 

the input matrix is obtained under these rules:  

 For each link, a value is assigned to it as the edge cost; 

 The distance between the node and itself is zero, so all the diagonal elements Mij 

equal zero;  

 If there is no direct link between nodes i and j in the graph, then the matrix 

element Mij is assigned as infinite. 

After creating the input matrix, for a given start node in the graph, the algorithm 

can find the shortest paths between the start and every other node. Given the start 

node, let vector d be the temporary distances from other nodes to the start node, and 

let vector D be the final shortest distances from other nodes to the start node, which 

are also our target solution set. Dijkstra’s algorithm will assign some initial values to 

d and try to improve them step-by-step:  

Step 1: Assign the initial values to d. The initial distance between the start node 

and itself is zero, and the initial distances from all other nodes to the start node are 

infinite. Mark all nodes as unvisited.  

Step 2: Set the node with the smallest distance as the current node, and use this 

smallest distance as the final distance between that node and the start node. For the 

current node, consider all its unvisited neighbors, and calculate the distances from 

the start node to the unvisited neighbor nodes directly, through the current node. If 

the new distance is smaller than the previous one, then change the distance; 

otherwise do not change.  

Step 3: After considering all neighbor nodes of the current node, mark the 

current node as visited. A visited node will not be checked again, and its distance 
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value in distance vector d is replaced with infinite.  

Step 4: Repeat step 2 and step 3 until all the nodes have been visited.  
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Fig. 3.9 Calculation procedures of a simple graph using Dijkstra’s algorithm 

Fig. 3.9 gives the calculation procedure for a simple graph with 4 nodes and 6 

links. Each link has an edge cost indicated by the number near it. The input matrix 

of this graph is:   

0 5 3 8

5 0 1 1

3 1 0 4

8 1 4 0

M

 
 
 
 
 
 

. 

Based on the previous calculation procedure, the shortest distances, D, between 

the start node 1 and the other nodes are calculated, and the shortest paths are also 

identified with bold red lines in Fig. 3.9.  

After introducing the calculation procedures of the Dijkstra algorithm, the 

following section will perform the algorithm using the APT network.  

3.3.2 Algorithm implementation and results 

Once the network has been simulated as a graph, the only data needed before 

running the algorithm is the edge cost for every link. The edge cost for every link is 

the sum of probabilities of being in the operational damage state for all the bridges 

along the link. When we have the edge cost for every link, the input matrix, which is 

a 558  558 diagonal matrix, is obtained, and then Dijkstra’s algorithm can be 

implemented on the graph.  

We now want to calculate the best path between Lavazè Pass and Riccomassimo. 

Given that the start node is Riccomassimo and the end node is Lavazè Pass, 

MATLAB program can generate the KML file automatically. It can then be loaded 

in Google Earth to show the simulated network and the outlined safest path. Fig. 
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3.10 shows the results for a return period of 475 years in a Google Earth map. The 

red lines represent the simulated network, while the white lines represent the safest 

path between Lavazè Pass and Riccomassimo. In the same way, all the safe paths 

between any two given places can be identified in Google Earth. For the results of 

return periods of 2475 years and 72 years, the identified path is the same as in Fig. 

3.10.  

These results are very helpful for bridge managers and government officials in 

understanding the network status, and can assist them to make rapid decisions in 

near-real time, under post earthquake conditions. 

Passo

Lavaze

Riccomas
simo

Riccomassimo

Passo Lavaze

 

Fig. 3.10 Simulated network and the safest path between Passo Lavazè and Riccomassimo 

 

 

 

 

3.4 Existing methods for network level assessment 

The following details some state-of-the-art methods for network level assessment.  

3.4.1 Probability-Based Bridge Network Performance Evaluation (Liu and 

Frangopol 2006) 

This method aims to identify the best maintenance actions from a cost benefit 

analysis. Three different criteria are used to evaluate the overall performance of a 
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bridge network: network connectivity, user satisfaction and structural reliability of 

the critical bridges. 

Bridge network connectivity is evaluated by using an event tree technique. A 

bridge network is considered to be disconnected if any nodes of interest are isolated 

from the other nodes of interest, due to the failure of any individual bridge in the 

network. Otherwise, the bridge network is considered to be connected. The 

reliability of the network is simply the sum of the reliabilities of all the paths of the 

network. The system reliabilities of the individual bridges in the network are 

assumed to be independent.  The probability associated with the occurrence of an 

event on a specified path is simply the product of the probabilities of all the 

subsequent events on the path. In the network, this probability is:    


pathon  bridges all

safetyor  fail   PPpath         (3.10a) 


connectionwithpathsall

pathconnected PP                                    (3.10b) 

The unit traffic costs are calculated as the sum of travel time and vehicle 

operation costs. 

  ij

ij

ij

ij D
V

D
CCw operation vehicle timetravel   (3.11) 

where Dij is the distance between nodes i and j; Vij is the traffic speed on link (i, j);  

is unit cost for travel time per hour; and  is unit cost for vehicle operation per mile.  

The probability of unsatisfactory performance of the bridge network, Pf-us is 

expressed as:  

f us

TFC
P

TTC
    (3.12) 

where TFC is total failure costs and TTC is total traffic costs in the bridge network.  

3.4.2 Prioritization based on system reliability analysis (Nojima 1998) 

This research proposes the concept of performance-based prioritization in upgrading 

the seismic reliability of road networks.  

First, the performance measure is defined as the system flow capacity of road 

networks subject to failure. Given a network configuration and a set of flow 
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capacities on each link C = {c1, c2, …, cn}, the system flow capacity is defined as the 

maximum flow between a specific pair of source and terminal nodes. When a 

seismic event happens, the functional degradation is evaluated on the basis of the pre 

earthquake capacity of individual links, and the post earthquake structural damage 

pattern.  

Then a binary performance index is defined to compute the system reliability. 

The binary state variables xi (i = 1, 2, .., n) denote the state of survival (1) and failure 

(0) of the i-th link, and n-vector S = {x1, x2 ..., xn} denotes the overall state of n links. 

Obviously, the maximum flow F0 is obtained when xi =1 for i = 1, 2, .., n. Then a 

binary variable B(S) is used to compute the system reliability corresponding to 

satisfying (1) or not satisfying (0) a pre-assigned requirement level r (0 < r <1) of 

maximum flow F0.  

max

max

( ( ) )
( )

( ( ) )

0

0

0 F S rF
B S

1 F S rF


 


                 (3.13) 

where Fmax (S) is the maximum flow of state S. The overall state of the system is 

denoted by S
k
 (k = 1, 2, .., 2

n
). The probability of occurrence of each state S

k
 is 

denoted by Q(S
k
) and the expected value of the performance measure, which is 

denoted by E[G(S)], is derived as:  

[ ( )] ( ) ( )

n2
k k

k 1

E G S Q S G S


                        (3.14) 

where the upper and lower bounds of the system performance measure, GU and GL, 

are obtained using algorithm ORDER (1984, 1986), which will be introduced in the 

following section: 

( ) ( ) [ ( )]
m m

k k k

U b

k 1 k 1

G Q S G S 1 Q S G
 

                          (3.15a) 

( ) ( ) [ ( )]
m m

k k k

L w

k 1 k 1

G Q S G S 1 Q S G
 

                    (3.15b) 

where Gb and Gw are the best (no components fail) and worst (all components fail) 

performance states, respectively.  

At last, the importance measure of every component is calculated as follows.  

Let P(p) denote the system reliability as a function of the component reliability 
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vector p= {p1, p2, …, pn}. The conditional system reliability given that a specific 

component i fails or not are written as P(0i, p) and P(1i, p) respectively. According 

to the total probability theorem, the system reliability P(p) is a linear function of pi:  

( ) (1 , ) (1- ) (0 , )i i i iP p p P p p P p                                     (3.16) 

So the importance measure of component i can be obtained as the derivative of 

system reliability:  

( )
( , ) ( , )B

i i i

i

P p
I P 1 p P 0 p

p


  


                      (3.17) 

Then the performance-based prioritization order can be determined by the rank of 

importance measures.  

3.4.3 Vulnerability and importance based prioritization (Basöz and Kiremidjian 

1995) 

This report presents a prioritization method for seismic retrofitting of bridges which 

can identify the bridges that are in most need of retrofitting and rank the bridges 

based on their vulnerability and importance. The relationship is described as 

follows: 

( , )i i iR f V I        (3.18) 

where Ri is the ranking of bridge i; Vi is the vulnerability of bridge i; and Ii is the 

importance of bridge i.  

 

Vulnerability R is expressed as a function of seismicity, which can describe the 

direct effect of ground motion on damage. Vulnerability assessment includes: 

 

 Seismic hazard analysis at the bridge site; 

 Classification of bridges based on their structural characteristics  

 Fragility analysis. 

 

The importance I of the bridge is defined as follows: 

( , , , , , )I f S E G Q L H   (3.19) 
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where S is public safety, E is emergency response, G is long term economic impact, 

Q is defense route, L is interaction with other lifelines, and H is historical 

significance.  

3.4.4 Bridge Network maintenance optimization using stochastic dynamic 

programming (Frangopol and Liu 2007) 

This paper presents a stochastic dynamic programming (DP) procedure for multi 

objective optimization of bridge networks, using a two-phase DP approach. Phase 1 

identifies the best maintenance plans for individual bridges that have minimum 

life-cycle maintenance costs. It is solved using a specific DP optimization algorithm 

along with the Monte Carlo simulation. The best maintenance plan is: 

Minimize: 
( ) i

N
i

lm T
i 1 r

C
C

1 D




                            (3.20) 

where Clm is the life-cycle maintenance cost, Ci = cost associated with maintenance 

action; Dr = discount rate; and Ti = application time of maintenance action i.  

Phase II allocates the limited annual maintenance budget such that the identified best 

maintenance plans for individual bridges can be satisfied for as many bridges as 

possible. The Phase 2 optimization problem for a certain year k is: 

Maximize: RIFij i ij

i j

D P                                      (3.21a) 

Subject to 
budgetij j

i j

D C C                 (3.21b) 

where Dij = binary design variable; RIFi = reliability importance factor of bridge i at 

year k (0 means maintenance action j will not be applied to bridge i, and 1 means 

maintenance action j is selected to be applied to bridge i); Pij = probability that the 

maintenance action j is applied to bridge i at year k; Cj = cost of maintenance action j; 

and Cbudget = annual maintenance budget at year k. 

3.4.5 Minimal link set and minimal cut set formulations (Bensi 2010) 

A minimal link set (MLS) is a minimum set of components whose joint survival 

constitutes survival of the system, while the minimal cut set BN formulation 

introduces intermediate nodes corresponding to the system MCSs. In Bensi (2010) , 

the MLS and MCS BN formulations are described. 
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4 Bayesian Network 

 

4.1 Introduction 

A Bayesian Network (BN) is a directed acyclic graph (traditionally abbreviated 

DAG) consisting of a set of nodes and a set of directed edges (Jensen and Nielsen 

2007). The nodes represent variables and the edges represent condition relationships 

between the variables. The BN originates from the field of artificial intelligence and 

incorporates graph theory and probability theory. It is a useful tool that helps 

perform uncertainty analysis in complex systems. For an extensive explanation of 

BN, see Jensen and Nielsen (2007). Due to their generality, such as incorporation of 

graph theory and probabilistic inference, accounting for the evolving nature of 

available information, BNs have been widely used in many areas in the last two 

decades.  

The objective of this chapter is to introduce the basic theory of Bayesian 

Networks that the next chapter will further explore. The remainder of this chapter is 

as follows: in Section 2, the basic probability theories, such as conditional 

probability, conditional independence, and Bayes’ theorem, are introduced; the 

definition of a Bayesian Network is given in Section 3; in Section 4, the junction 

tree structure is introduced, and the procedures used to construct a junction from the 

Bayesian Network are explained. Following this, the general inference algorithms on 

the junction tree are introduced in Section 5. Finally, the propagation scheme for 

Bayesian networks with conditional Gaussian distributions in Lauritzen and Jensen 

(2001) is introduced.  
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4.2 Basics of Probability Theory 

4.2.1 Conditional probability and independence 

In order to illustrate the usefulness of BNs, let us begin with two important concepts 

in probability theory, which are conditional probability and independence, as 

explained in Neapolitan (2003). 

Let A and B be events such that P(B)≠0. Then the conditional probability of A 

given B, denoted P(A|B), is given by P(A|B)=P(A∩B) / P(B). P(A|B) means the 

probability of A happening given that event B has occurred.  

Two events A and B are independent if one of the following holds: 

(1). P(A|B) = P(A) and P(A) ≠ 0, P(B) ≠ 0. 

(2). P(A) = 0 or P(B) = 0. 

From the definitions of conditional probability and independence, it is 

straightforward to prove that A and B are independent if and only if P(A∩B) = P(A) 

P(B). 

4.2.2 Conditional independence 

Having examined the concepts of conditional probability and independence, let us 

look at a very important concept in BNs, which is conditional independence.  

Two events A and B are conditionally independent given C if P(C) ≠ 0, and one 

of the following holds: 

(1). P(A| B∩C) = P(A|C) and P(A|C) ≠ 0, P(B|C) ≠ 0. 

(2). P(A|C) = 0, P(B|C) = 0.  

4.2.3 The law of total probability 

Events E1, E2, …, En are mutually exclusive and exhaustive, such that Ei∩Ej= for i 

≠ j and E1∪E2∪...∪En =  . For any other event F, we have: 

( ) ( )
n

i

i 1

P F P F E


                   (4.1) 

If P(Ei) ≠ 0, then P(F∩Ei) = P(F|Ei) P(Ei). Therefore, Equation (4.1) can be 

written as: 

( ) ( | ) ( )
n

i i

i 1

P F P F E P E


                 (4.2) 
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4.2.4 Bayes’ Theorem 

Given two events E and F such that P(E) ≠ 0 and P(F) ≠ 0, we have  

( | ) ( )
( | )

( )

P F E P E
P E F

P F
    (4.3) 

For exclusive and exhaustive events E1, E2, …, En  such that P(Ei) ≠ 0 for all i, 

we have  

( | ) ( )
( | )

( | ) ( ) ( | ) ( ) ... ( | ) ( )

i i
i

1 1 2 2 n n

P F E P E
P E F

P F E P E P F E P E P F E P E


  
        (4.4) 

Bayes’ theorem is used to compute conditional probabilities of events of interest 

from known probabilities. Equation (4.3) can be used to compute P(E|F) if we know 

P(F|E), P(E), and P(F), while Equation (4.4) can be used to compute P(Ei|F) if we 

know P(F|Ej) and P(Ej) for 1 j  n. Computing a conditional probability using 

Bayes’ theorem is also called Bayesian inference. The following is a classic example 

from Neapolitan (2003) to illustrate Bayes’ theorem. 

Tom has a routine X-ray chest test in the hospital, and the result is positive for 

lung cancer. Tom is then convinced that he has lung cancer. But when his doctor 

tells him that the test is not invariably accurate, Tom decides to investigate the 

accuracy of the test. The following conditional probabilities give the accuracy of the 

test: 

( | ) .P Test positive LungCancer present 0 6                (4.5a) 

( | ) .P Test positive LungCancer absent 0 02     (4.5b) 

From Equation (4.5), Tom feels a little bit better, but he still does not know the 

exact probability that he has lung cancer. The probability that Tom needs to know is 

P(LungCancer = present|Test = positive). In this case, Tom realizes that Bayes’ 

theorem can be used to get it.  
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( | )P LungCancer present Test positive   

( | ) ( )

( )

P Test positive LungCancer present P LungCancer present

P Test positive

  



      (4.6) 

In order to apply Equation (4.6), Tom needs to know P(LungCancer = present), 

which is the information before the test. At this point, Tom recalls that he was one of 

a class of employees, and that only 1 out of every 1000 new employees has lung 

cancer, so he assigns 0.001 to P(LungCancer = present). Then Bayes’ theorem is 

applied as follows: 

( | )P LungCancer present Test positive   

( | ) ( )

( )

P Test positive LungCancer present P LungCancer present

P Test positive

  



 

( | ) ( )

( | ) ( ) ( | ) ( )

P Test positive LungCancer present P LungCancer present

P Test positive present P present P Test positive absent P absent

  


  
 

. .
.

. . . .

0 6 0 001
0 029

0 6 0 001 0 02 0 999


 

  
     (4.7) 

By this time, Tom feels much more relaxed, because he knows the probability to 

has lung cancer is only 0.029. This example demonstrates that Bayes’ theorem is 

sufficient for an inference in two related variables. However, when there are many 

variables, it will become much more complex. Let’s see the following example: a 

history of smoking has a direct influence both on bronchitis and lung cancer. In turn, 

bronchitis and lung cancer have a direct influence on fatigue. Also, lung cancer has a 

direct influence on a chest X-ray test. The states of these random variables are 

defined in Table 4.1. 

The conditional probability for these variables are given as: P(h1) = 0.2; P(b1|h1) 

= 0.25, P(b1|h2) = 0.05; P(l1|h1) = 0.003, P(l1|h2) = 0.00005; P(f1|b1,l1) = 0.75, 

P(f1|b1,l2) = 0.10, P(f1|b2,l) = 0.5, P(f1|b2,l2) = 0.05; P(c1|l1) = 0.6, P(c1|l2) = 0.02. 

Now we want to compute the conditional probability of an individual having lung 

cancer given that the individual smokes, is fatigued, and has had a positive chest 

X-ray. This conditional probability is defined as: 
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Table 4.1 States of the variables (Neapolitan, R.E. 2003) 

Variable Value When the variable takes this value 

H 
h1 There is a history of smoking 

h2 There is no history of smoking 

B 
b1 Bronchitis is present 

b2 Bronchitis is absent 

L 
l1 Lung cancer is present 

l2 Lung cancer is absent 

F 
f1 Fatigue is present 

f2 Fatigue is absent 

C 
c1 Chest X-ray is positive 

c2 Chest X-ray is negative 

( , , , )
( | , , )

( , , )

P l1 h1 f 1 c1
P l1 h1 f 1 c1

P h1 f 1 c1


     

( , , , , ) ( , , , , )

( , , , , ) ( , , , , ) ( , , , , ) ( , , , , )

P l1 h1 f 1 c1 b1 P l1 h1 f 1 c1 b2

P l1 h1 f 1 c1 b1 P l1 h1 f 1 c1 b2 P l2 h1 f 1 c1 b1 P l2 h1 f 1 c1 b2




  
 

,

( , , , , )

( , , , , )

b

b l

P l1 h1 f 1 c1 b

P h1 f 1 c1 b l




                                           (4.8) 

where b,l means the sum as b and l go through all possible values. In Equation (4.8), 

there are an exponential number of terms in the sums. For the denominator, there are 

22 terms. If there are 100 variables needing to be taken through all their possible 

values, there will be 2
100

 terms in the sum. We can see that when the instance is so 

large, this method is not practical.   

The Bayesian network can address this problem when we are doing an inference 

with a large number of variables.  
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4.3 Bayesian networks 

4.3.1 Definition of Bayesian Networks 

Before introducing the definition of Bayesian Network, I need first to introduce 

some basic graph theory. The following is based on the Neapolitan’s and Cowell 

textbooks (Neapolitan 2003, Cowell 1999), to which the reader is referred for further 

information. 

A graph is defined as a pair (V, E), where V is a finite, nonempty set whose 

elements are called nodes or vertices, and E is a set of ordered pairs of distinct 

elements of V. The elements of E are called edges or arcs. If (, ) or (, ) belongs 

to E, we say that  and  are joined. If both ordered pairs (,) and (, ) belong to 

E, we can say that there is an undirected edge between  and . and  are called 

neighbors. If (,) belongs to E, but (, ) does not, we can say that there is a direct 

edge between  and .  is called a parent of , and is called a child of .  is 

called an ancestor of , and is called a descendent of if there is a directed path 

from  to . is called a nondescendent of if is not a descendent of . The set 

of parents of  is denoted by pa(), and the set of children of  by ch(). The family 

of  is denoted by fa(), and fa() = {}∪fa(). A path from  to  is a sequence 

n of distinct nodes such that (i-1 i) belongs to E for all i=1,...,n. if 

the end points  and  are identical, this path is a cycle. A graph is said to be 

connected if there is a path between every pair of vertices in its undirected version. 

A graph is acyclic if it does not possess any cycles.  

If all the edges of a graph are directed, it is a directed graph. A directed graph 

which is acyclic is called a directed acyclic graph (DAG). The definition of a 

Bayesian Network is as follows (Jensen and Nielsen 2007): 

 There is a set of variables represented by nodes and a set of directed edges 

between variables. 

 Each variable has a finite set of mutually exclusive states. 

 The variables together with the directed edges form an acyclic directed graph 

(DAG). 

 To each variable A with parents B1,…,Bn, there is attached a conditional 

probability Table P(A| B1,…,Bn). If A has no parents, then the Table reduces to 

the unconditional probability Table P(A). 

Fig. 4.1 gives the Bayesian network for the example in Section 4.2.4. The five 

variables H, B, L, F, and C have the same meaning as in Table 4.1. The conditional 

probabilities given their parents are shown near every variable.  
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Fig. 4.1 A Bayesian Network for the example in Section 4.2.4 

4.3.2 The Chain Rule for Bayesian Networks 

Let U = {A1,…, An} be a set of variables. From the previous Section, we know that 

P(U) grows exponentially with the number of variables. Therefore, a compact 

representation of P(U) is required to store information. In this case, the chain rule is 

used to address this problem.  

Let BN be a Bayesian network over U = {A1,…, An}. Then BN specifies a 

unique joint probability distribution P(U) given by the product of all conditional 

probability Tables specified in BN: 

( ) ( | ( ))
n

i i

i 1

P U P A pa A


                                    (4.9) 

where pa(Ai) are the parents of Ai in BN. Using the chain rule, the number of terms 

in P(U) greatly reduced. For the Bayesian Network in fig 4.1, under the conditional 

independence assumption, P(h, b, l, f, c)= P(h) P(b|h) P(l|h) P(f| b, l) P(c| l). 

From the discussion above, we can see that the Bayesian Network has the 

advantage of representing the dependence relationship between variables. It 

incorporates graph theory and probability theory; it is a useful tool that helps 

perform uncertainty analysis. However, in order to facilitate the use of efficient 

computational algorithms, we need to do some graph manipulations on the Bayesian 

Network. In the next Section, we will introduce the junction tree structures which 

can be created from the BN and on which the computation can be manipulated.  
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4.4 Junction trees 

Tree structures are an important class of graphs. A graph is said to be a tree if it is 

connected and if its undirected version has no cycles. (Cowell 1999). A tree is said 

to be a junction tree if it fulfills the running-intersection property. If Hi is the node 

set of the tree, then the running-intersection property means that the elements of the 

intersection set of H1 and Hk must be included in all the cliques H2, H3 , …, Hk-1 that 

occur between H1 and Hk. For the definition of cliques, see section 4.4.2. For 

example, Fig. 4.2 is the junction tree for the Bayesian Network in Fig. 4.2. It has 

three node sets: BHL, BFL, and CFL. We call the node sets cliques of the junction 

tree. These cliques satisfy the running-intersection property because the intersection 

of cliques BHL and CFL is L, which is included in BHL, BFL, AND CFL. We call 

the intersection BL the separator between clique BHL and BFL. The cliques are 

generally represented by ellipses, and separators are denoted by rectangles.  

 

Fig. 4.2 Junction tree structure for the Bayesian Network in Fig 4.1  

The junction tree is also called a Markov tree, a hypertree (Shenoy and Shafter 

1990), or simply a clique tree. The junction tree structure is a compact and precise 

way of showing the relations between the variables. It facilitates the efficient 

computational algorithms, so that the inference can be performed easily and 

efficiently. The next Section will show how to construct a junction from a Bayesian 

Network. 

4.4.1 Moralization 

A junction tree is constructed based on the algorithm originally developed by 

Lauritzen and Spiegelhalter (1988). In order to convert a Bayesian Network into a 

junction tree, the first step is moralization, which includes two parts: adding an edge 

between each pair of parents which have the same children, and deleting the 

directions on all arcs. 
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Fig. 4.3 Moralization procedures for the Bayesian Network in Fig 4.1 

Fig. 4.3 shows the moralization procedures for the Bayesian Network in Fig 4.1. 

In Fig. 4.3a, nodes B and L have the same child F, so an edge between B and L is 

added in Fig. 4.3b. Finally, the directions on all edges are deleted in Fig. 4.3c. 

4.4.2 Triangulation 

Triangulation is the process used to identify all the cliques of the previous moralized 

graph. The cliques are identified by successive elimination of the variables. A 

variable is eliminated if all of its neighbors are mutually connected. The eliminated 

variable and all of its connections form a clique. If there is no such variable all of 

whose neighbors are connected, fill-in edges are added to create a fully connected 

clique, and then one of the variables in the clique is eliminated. When all the 

variables are identified, all cliques are identified. If a clique is a subset of an existing 

clique, it should be deleted.  

 

Fig. 4.4 Triangulation procedures for the Bayesian Network in Fig 4.3 

Fig. 4.4 shows the elimination process for the moralized graph in Fig. 4.3. In Fig. 

4.4, five variables are eliminated by the sequence of C, F, L, H, and B. Accordingly 

five cliques are generated, which are LC, BCF, BHL, BH, B. Since cliques BH and B 
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are the subset of clique BHL, they should be deleted. There are three cliques for the 

junction tree: LC, BCF, and BHL. Finally the three cliques are connected to form the 

junction tree based on the running-intersection property as in Fig. 4.2. 

It should be noted that the elimination order is the key step in the construction of 

the junction tree because it determines the size of the cliques and the efficiency of 

the computations. If there are N variables in a graph, then there are N! possible 

elimination sequences. So it is not a trivial task to identify the best sequence. In fact 

it is NP-hard to find the best triangulation for an undirected graph (Yannakakis, M. 

1981). For an introduction to the concept of NP (nondeterministic polynomial time) 

problem, the reader is referred to Sanjoy et.al (2008).  

After constructing the junction tree, the inference algorithm can be applied to it. 

There are three architectures used in the inference: the Shafer-Shenoy architecture, 

the Lauritzen-Spiegelhalter architecture, and the Hugin architecture. The main 

differences between these architectures are the forms of messages passed, and the 

scheduling of messages (Lauritzen and Jensen, 1997).  

 

 

 

 

4.5 Bayesian networks with conditional Gaussian distributions 

The previous Section introduced the general procedures for generating a Bayesian 

Network, converting a Bayesian Network into a junction tree, and doing the 

inference on the junction tree. Since most inference algorithms can only be 

implemented on a discrete Bayesian Network, in this Section I will introduce the 

computation scheme on the Bayesian network with conditional Gaussian 

distributions. In chapter 5, we will generate the seismic vulnerability framework 

based on this kind of Bayesian Network. This local computation is based on the 

propagation scheme in Lauritzen & Jensen (2001), and includes the following 

procedures: the construction of a junction tree with a strong root, assigning 

potentials to cliques, sending messages towards the root in the junction tree, and 

then distributing a message away from the root.  

4.5.1 Conditional Gaussian potentials 

The basic computational object in the propagation scheme is Conditional Gaussian 

(CG) potential. A CG potential is represented as = [p, A, B, C] (H | T), where (H | 

T) denotes the continuous variables in the potential with the head H and the tail T, A, 

B, C are matrix, and p is a vector. We assume the head H and the tail T are r and s 
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dimensional. An arbitrary configuration of the discrete variables is denoted by i. 

Then p = {p(i)} is a table of nonnegative numbers: if there is no discrete variable in 

the potential, then p = 1; A={A(i)} is a table of r1 vectors; B={B(i)} is a table of 

rs vectors; C={C(i)} is a table of rr symmetric matrices. Some of the parts may be 

absent for some potentials. The potential [p, A, B, C] (H | T) specifies the CG 

relationship as follows: 

( ) ( )P I i p i    

( | ,Z z) ( ( ) ( ) , ( ))L H I i N A i B i z C i     (4.11) 

In Equation (4.11), N (A(i)+B(i)t, C(i)) means normal distribution with mean 

value A(i)+B(i)z and variation C(i).  



Fig. 4.5 A conditional Gaussian BN 

Fig. 4.5 is a conditional Gaussian BN. D is a discrete variable with two states d1 

and d2. M, S, X are continuous variables. The head variable is X, and the tail 

variables are M and S. The conditional relationships between them are: 

 ( | 1, , ) ( 1 [3,4] [ ; ],2)L X D d M m S s N m s        a 

( | 2, , ) (4 [2,5] [ ; ],1)L X D d M m S s N m s       b

In Equation (4.12), A(d1) = -1, B(d1) = [3, 4], C(d1) = 2; A(d2) = 4, B(d2) = [2, 

5], C(d2) = 1. So the potentials for this BN are [0.4, -1, {3, 4}, 2] (X | M, S) and [0.6, 

4, {2, 5}, 1] (X | M, S). 

 



 
 

Impact of Seismic Vulnerability on Bridge Management Systems          

 82 

4.5.2 Marginals 

Marginals over continuous variables can only be calculated over head variables. If [p, 

A, B, C] (H| T) is decomposed as H = (H1, H2), A = (A1; A2), B = (B1; B2), C = (C11, 

C12; C21, C22) corresponding to a partitioning of the head variables as H = (H1, H2), 

the marginal of  to H1 is given as  

1

1 1 11 1[ , , , ]( | )
Hφ p A B C H T
  

By the same method, the marginal of  to H2 is  

2

2 2 22 2[ , , , ]( | )
Hφ p A B C H T
  

4.5.3 Direct combination 

The direct combination of two potentials [p, A, B, C] (H1 | T1) and [q, E, F, G] (H2 | 

T2) is defined only if they satisfy  

2 1 1( )H H T   

If Equation (4.15) is fulfilled, let F be partitioned into [F1: F2] corresponding to 

(H1, T1). We then define the direct combination as follows: 

1 1 2 2[ , , , ]( | ) [ , , , ]( | ) [ , , , ]( | )ρ U V W H T p A B C H T q E F G H T


   a

where , )﹨, DDD, and  

ρ pq  b

1

A
U

E F A

 
  

 
 c

2 1

B
V

F F B

 
  

 
 d
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1

1 1 1

T

T

C CF
W

FC G FCF

 
  

 
 e 



Fig. 4.6 Graphical representation of the direct combination of two potentials 

If Equation (4.15) is not fulfilled, we need first to do a complement operation to 

the potentials. The following will introduce the complement operation.  

4.5.4 Complements 

If the head of a CG potential  = [p, A, B, C] (H | T) is partitioned as 

1 2( , )H H H  a

1

2

A
A

A

 
  
 

 b

1

2

B
B

B

 
  
 

 c

11 12

13 22

C C
C

C C

 
  
 

 d

Next, it can be decomposed into its marginal and its complement as: 

1 1( ) |( )H T H T
φ φ φ




    

Where 


 = [m, A1, B1, C11] (H1 | T), 


 = [q, E, F, G] (H2 | H1 T) and 
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p mq  a

2 21 11 1E A C C A   b

21 11 2 21 11 1[ : ]F C C B C C B    c

22 21 11 12G C C C C   d

By the same method, potential  can also be decomposed as: 

2 2( ) |( )H T H T
φ φ φ




   

Where 


 = [m, A2, B2, C22] (H2 | T), 


 = [q, E, F, G] (H1 | H2 T) and 

p mq  a

1 12 22 2E A C C A   b

12 22 1 12 22 2[ : ]F C C B C C B    c

11 21 22 12G C C C C   d

4.5.5 General combination 

Consider two potentials  [p, A, B, C] (H1 | T1) and  [q, E, F, G] (H2 | T2). If the 

heads of the potentials are disjoint (H1  H2 ), then we define the general 

combination as: 

φ ψ φ ψ   orφ ψ ψ φ    

If neither of the direct combinations is defined, we must have  
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1 2H D and
2 1H D  

Let D12 = H1﹨D2 and D21 = H2﹨D1. If both D12 and D21 are empty, the combination 

will not be defined. Assuming D12 = , as  

1 12 1 12|( \ ) ( \ ) ' ' 'D D D D
φ φ φ φ φ


      

and try to combine and as 

' ' '( )φ ψ φ φ ψ      

Equation (4.25) is repeated for the product 

4.5.6 Assignment of potentials to cliques 

Every CG potential specifies the conditional distribution of a node given its parents, 

and it is assigned to an arbitrary clique of the junction tree that contains all of its 

variables. The potentials in a given clique are combined based on the operation of 

the general combination defined above.  

Fig. 4.8 is the junction tree of the BN in Fig. 4.7. Based on the method in section 

4.4.2, 6 cliques are identified in this junction tree. The variables in these 6 cliques 

are: C, S1, EC1, and Pa in C, S1 and S2 in C, S2; EC2, and Pb in M, S1 and S2 

in M, S1 and ES1 in  M, S2 and ES2in 

Since every variable is head of exactly one potential, and also there are ten 

variables in the BN, then there are ten CG potentials in this BN. These 10 potentials 

are assigned to the six cliques as in Fig. 4.8. The red variables in every clique mean 

that the potential with that red variable as the head variable is assigned to that clique. 

For example, the potential (Pa | S1, C, EC1), which has the head variable Pa is 

assigned to clique 1. Then, the potentials in each clique are combined based on the 

operations defined in Section 4.5.5. After the combinations, the new potentials in the 

6 cliques are obtained. 
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Fig. 4.7 Example of Bayesian Network 

 

Fig. 4.8 Assignments of the potentials to the cliques 

4.5.7 Collecting message 

After assignment of potentials to the cliques, the next step in the propagation scheme 

is to send messages towards the root which can be selected randomly. A clique is 

allowed to send a message only if it is a leaf of the junction tree or if it has received 

messages from all of its neighbors further away from the root. The leaves in a 

junction tree are cliques which have only one neighbor clique. In Fig. 4.11, there are 

four leaf cliques: clique 1, clique 3, clique 5, and clique 6. Fig. 4.12 is the order of 

collecting messages in the junction tree. 

When a message is sent from a clique C to its neighbor D towards the root with 

separator S = C  D, the potentials C and D are modified to become 

C and 


D, 

where 
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* |S

C Cφ φ  * S

D D Cφ φ φ   

i.e. 

C is the complement of C after marginalization to the separator S and 


D is 

the combination of C and the marginal of C. After the root clique has received 

messages from all its neighbors, the collection of messages stops. 

 

Fig. 4.9 The order of collecting messages 

4.5.8 Distributing messages from the root 

The next step in the calculation of marginals is sending messages away from the root. 

First the root clique sends messages to all its neighbors, and a clique is allowed to 

send a message as soon as it has received a message from its neighbors closer to the 

root. Fig. 4.10 gives the order of distributing messages in the junction tree.  

When a clique C is sending a message to its neighbor D further away from the 

root with separator S = C  D, cliques C and D will stay the same, only the 

separator S becomes S = (C)
S

. And then when D is sending a message to its 
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neighbor E further away from the root with separator T = D  E, cliques D and E 

will stay the same, and the separator T will change as follows:  

 

 

Fig. 4.10 Order of distributing messages 

( ) T

T S Dφ φ φ    

For example, in Fig. 4.10, when clique 1 sends a message to clique 2, the 

separator S between them becomes S = (1)
S 

= (1)
C, S1

, and then when clique 2 

sends a message to clique 3, the separator T between clique 2 and clique 3 becomes 

T = (S  2)
T 

= (S  2)
 C, S2

. After distributing messages, all the cliques stay 

the same, only the separators change.  
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4.5.9 Entering evidence 

After distributing messages, the last step in the computation process is entering the 

evidence. Assuming we have an evidence for continuous variable Y 2 = y2, it must be 

entered in all cliques where Y 2 appears. The procedures are as follows: 

1. If Y2 is in the tail, the clique changes as follows: first, Y2 is removed from 

the tail; p and C stay the same; B is changed by removing the column B2 

corresponding to Y2; and A is modified to become A+ B2 y2.  

2. If Y2 is in the head, the clique changes as follows: the head nodes are 

partitioned into Y= (Y1, Y2), and the new potential changes to [A
*
, B

*
, C

*
] 

(H
*
| T

*
); the head H

* 
is obtained from H by removing Y2; the tail T

* 
and 

the B
*
 are empty; and A

*
= A1 + C12 (y2-A2)/C22, C

*
= C11-C12C21/C22. 

 

In this Thesis, we need to update the probability of bridge B after knowing the 

condition of bridge A. In the next chapter, we will generate a series of random 

numbers which all independently follow the posterior distribution of Pa after 

observing that bridge A has an operational problem. Every time we enter one 

evidence value into Pa, we obtain an updated distribution of Pb based on the 

computation scheme. For these updated distributions of Pb, we can use the mean 

value of the distribution as the representation value, and choose the mean value of 

these representation values as the final updated mean value of Pb. For the variation, 

we can use the mean value of the sum of all variations as the final variation. By the 

same method, the updated distribution of all other variables can be obtained.  

 

 

 

 

4.6 Software packages for Bayesian networks 

In this Section, I introduce several existing software packages for handling and 

calculating BNs: my search is mostly based on the information found in (Mahjoub 

and Kalti 2001).  

Table 4.2 is a summary of these packages, and below I describe their features 

using as an example the decision problem shown in Fig. 4.11, which is a graph for a 

discrete BN. There are five variables in this BN: 'Cold' means the weather is cold, 

'Tired' means Tom is tired, 'Sick' means Tom is sick, 'Home' means Tom is at home, 

and 'Hospital' means Tom is at the hospital. The prior and conditional probabilities 

of these variables are given in Fig. 4.11. Below, the example is called the 'Sick 

Dilemma'. 
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Table 4.2 List of all the software package for BNs 

 

Tired

Sick

HospitalHome

Cold

0.2

P(Tired)

0.2

0.8

P(Hosp|Sick)

F

T

Sick

0.05

0.8

0.8

0.95

P(S|C,T)

F

T

F

T

Tired

T

F

F

T

Cold

0.1

P(Cold)

0.2

0.8

P(Home|Sick)

F

T

Sick

 

Fig. 4. 11 Example of graph structure 

Tool name Type Source License  Web site  Variables 

BNT Library 
Matlab/

c 
Free 

http://code.google

.com/p/bnt/  

Continuous 

/Discrete 

Hugin Software No 
Pay/ 

limited  
www.hugin.com 

Continuous 

/Discrete 

BayesianLab Library No 
Pay/ 

limited 
www.bayesia.com 

Continuous 

/Discrete 

Netica Software No 
Pay/ 

limited 
www.norsys.com 

Continuous 

/Discrete 

MSBNX Software No Free 

http://research.mi

crosoft.com/en-us

/um/redmond/gro

ups/adapt/msbnx/  

Discrete 

BNet.Builder Software No 
Pay/ 

limited 
www.cra.com 

Continuous 

/Discrete 

SMILE Software C++ Free 
http://genie.sis.pit

t.edu/ 

Continuous 

/Discrete 

 

 

http://code.google.com/p/bnt/
http://code.google.com/p/bnt/
http://research.microsoft.com/en-us/um/redmond/groups/adapt/msbnx/
http://research.microsoft.com/en-us/um/redmond/groups/adapt/msbnx/
http://research.microsoft.com/en-us/um/redmond/groups/adapt/msbnx/
http://research.microsoft.com/en-us/um/redmond/groups/adapt/msbnx/
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4.6.2 Bayesian Network Toolbox (BNT) 

The Bayesian Network Toolbox (BNT) is a toolbox that runs under Matlab software 

(http://www.mathworks.com 2011). It was developed by Murphy (2001). The 

following gives the procedures for using BNT, which are taken from the web site 

(http://code.google.com/p/bnt/). 

In BNT, an adjacency matrix is used to specify the graph structure. For example, 

the problem introduced in the last Section can be formalized in a directed acyclic 

graph as follows:  

 

N = 5;  

dag = zeros(N,N); 

Cold = 1; Tired =2; Sick = 3; Home = 4; Hospital = 5;  

dag(Cold,Sick) = 1; 

dag(Tired,Sick) = 1; 

dag(Sick,[Home, Hospital]) = 1; 

 

The nodes are numbered as follows: Cold = 1, Tired = 2, Sick = 3, Home = 4, 

Hospital=5. The nodes must always be numbered in topological order, which means 

the parents must be before the children.  

In addition to specifying the graph structure, the user must create the Bayes net 

shell, by specifying the size and type of each node. If a node is discrete, its size is 

the number of possible values each node can take on; if a node is continuous, it can 

be a vector, and its size is the length of this vector. If we assume all nodes are 

discrete and binary, then we have: 

  

discrete_nodes = 1:N; 

node_sizes = 2*ones(1,N);  

 

bnet = mk_bnet(dag, node_sizes, 'discrete', discrete_nodes); 

By default, all nodes are assumed to be discrete.  

 

Although BNT is an open-source library and is used by many researchers, it is 

still difficult for non-specialists to use because it requires some knowledge of 

Matlab and BNT.  

4.6.2 Hugin 

Hugin (www.hugin.com) is a commercial product similar to BNT. It has existed 

since 1989 and is one of the greatest tools for advanced decision support based on 

complex statistical models such as Bayesian Networks. It has been used in decision 

http://www.mathworks.com/
http://code.google.com/p/bnt/
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support, medical diagnostics, troubleshooting, risk analysis and safety assessment. 

The algorithm was developed by the group behind HUGIN EXPERT, and was 

published by Steffen L. Lauritzen of Aalborg and David Spiegelhalter of Cambridge 

in the Journal of the Royal Statistical Association in 1988. HUGIN EXPERT is 

based in Aalborg, Denmark, strategically located in the heart of the world's largest 

BN-community. It maintains close links with the University of Aalborg. 

The supported inference algorithm of Hugin is the junction tree. The junction 

tree can be seen in the software for a given Bayesian Network. The learning 

parameters in Hugin are based on the EM algorithm. The saving formats of Hugin 

are 'OOBN' , 'HKB' and 'NET'. In Hugin, the users can create the network by 

selecting the nodes and the links. Fig. 4.12 is the example used in Fig. 4.11, and is 

created in Hugin simply by 5 discrete nodes and 4 links. Fig. 4.13 is the prior 

distributions for all the nodes after initialization. 

 

Fig. 4.12 Graphical representation of the ‘Sick Dilemma’ example in Hugin 

 

 

Fig. 4.13 Prior distribution of the ‘Sick Dilemma’ example after initialization in Hugin 
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4.6.3 BayesiaLab  

BayesiaLab is a tool for graphical manipulation of Bayesian networks. It allows 

defining, modifying, using and learning models based on Bayesian networks. It was 

developed by the French company Bayesia (http://www.bayesia.com/), which 

specializes in methods for decision support and learning from artificial intelligence. 

BayesiaLab can incorporate discrete nodes, continuous nodes, constrained nodes, 

utility nodes and decision nodes. Fig. 4.14 is the graphical representation of the 

‘Sick Dilemma’ example in BayesiaLab, and Fig. 4.15 is the node editor in 

BayesiaLab.  

 

 

Fig. 4.14 Graphical representation of the ‘Sick Dilemma’ example in BayesiaLab 

 

Fig. 4.15 Node editor in BayesiaLab 

http://www.bayesia.com/en/products/bayesialab/features/data-mining.php
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4.6.4 Netica  

Netica (www.norsys.com) is a program for Bayesian Networks. It has an 

intuitive user interface for drawing the networks, and the relationships between 

variables may be entered as individual probabilities, in the form of equations, or 

learned from data files. Netica can use the networks to perform various kinds of 

inference. Fig. 4.16 is the network of the 'Sick Dilemma’ example in Netica.  

 

 

Fig. 4.16 Software window of Netica 

4.6.5 MSBNX 

 

Fig. 4.17 The software window of MSBNX  
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MSBNX is a Microsoft Windows software application that supports the creation, 

manipulation and evaluation of Bayesian probability models. Each model is 

represented as a graph or diagram. The random variables are shown as ellipses, 

called nodes, and the conditional dependencies are shown as arrows, or directed arcs, 

between variables. Currently MSBNX only supports discrete distributions for its 

model variables. Models are saved to and loaded from disk-based text files in an 

XML-based format. The supported formats of MSVNX are 'XBN', 'DSC' and 'XML'. 

Fig. 4.17 is the network of the 'Sick Dilemma’ example in MSBNX. 

4.6.6 GeNIe & SMILE 

GeNIe is the graphical interface of SMILE, a fully portable Bayesian inference 

engine developed by the Decision Systems Laboratory and thoroughly tested in the 

field since 1998. It has the following features (http://genie.sis.pitt.edu/about.html): 

Graphical editor to create and modify network models; Uses the SMILE Engine; 

Supports chance nodes with General, Noisy OR/MAX and Noisy AND distribution; 

Open multiple networks and cut and paste sections of models between them; 

Complete integration with MS. Excel, cut and paste data into internal spreadsheet 

view of GeNIe; Support for handling observation costs of nodes; Support for 

diagnostic case management.  

Besides the above tools, there are also some other software packages like BNJ 

(Bayesian network tools in Java), SAMIAM, JAVABAYES, 

ANALYTICAOPENBUGS, and so on (Mahjoub and Kalti 2001).  
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5 Post-earthquake analysis using Bayesian Networks 

 

5.1 Introduction 

In Chapter 4, I introduced the related background and basic theory of BNs. Due to 

their distinguishing characteristics, BNs have been widely used in many areas in the 

last two decades. However, the general BN algorithm can effectively handle only 

discrete variables, while most variables in civil engineering are continuous; therefore 

the application of BNs to civil engineering is still at a preliminary stage. 

5.1.1 BNs in civil engineering  

Friis-Hansen (2000) provided one of the first publications that applied BNs to 

risk-related engineering issues: by solving decision problems in marine engineering, 

the potential of BNs in risk analysis was investigated, and their advantages such as 

flexibility and compatibility were demonstrated. Five different examples that ranged 

from inspection and maintenance planning with regard to general risk analysis 

aspects to the tasks of monitoring and diagnosis are used illustrate the potential of 

BNs in the marine industry. Moreover, traditional structural reliability methods such 

as the First Order Reliability Method (FORM), Second Order Reliability Method 

(SORM), fault tree analysis and neural networks are used to compare or combine 

with BNs. This research will contribute to transferring the results of the artificial 

intelligence community to traditional engineering fields.   

Straub carried out a good deal of research work in the application of Bayesian 

Networks to the area of civil engineering, especially with regard to risk analysis. In 

Straub and Grêt-Regamey (2006), an integral probabilistic framework based on 

Bayesian Networks is presented for avalanche modeling. This framework can 

explicitly represent the different parameter uncertainties, and update the probability 

distribution of these uncertainties from observations of avalanches through Bayesian 

javascript:void(0)


 
 

Impact of Seismic Vulnerability on Bridge Management Systems          

 98 

inference. In Straub (2005), a general framework for natural hazard risk assessment 

based on Bayesian Networks is presented and applied to the assessment of rock-fall 

hazard risk based on indicators. This Bayesian Network model is compared with the 

traditional rating system, and offers the advantages of flexibility, consistency and 

traceability. In addition, he developed the computational framework called enhanced 

Bayesian network (eBN) which explored the possibility of combining Structural 

Reliability Methods (SRM) and Bayesian Networks for the reliability and risk 

analysis of engineering structures and infrastructure (Straub and Der Kiureghian 

2010a; Straub and Der Kiureghian, 2010b). Enhanced Bayesian networks are a 

subclass of BNs that have both discrete and continuous nodes, with arbitrary 

distributions and interdependencies. The node elimination algorithm is used to 

reduce an eBN to a reduced BN (rBN) with discrete nodes only, for which exact 

inference can be used. In this framework, the discretization method is used on 

continuous random variables to reduce the complexity of the rBN. This method 

incorporates the advantages of both SRMs and BNs and has many potential 

applications in decision support for emergency response. However, it involves many 

complex operations when converting an eBN to rBN, which can only be performed 

by professionals who are familiar with BNs. 

5.1.2  BNs in seismic risk analysis 

Bayraktarli et al. (2005, 2006) proposed a general framework for earthquake risk 

management based on Bayesian Probabilistic Networks. The framework consists of 

three parts: firstly, the exposure model that considers the seismic hazard potential 

for the city or region. For example, the earthquake ground motion intensities and 

corresponding return periods. Secondly, the vulnerability part that is related to 

structural damage given the exposure event such as the spectral displacement and 

the state of damage.  Thirdly, the robustness that is associated with the indirect 

consequences conditional on the exposure and a given state of damage. The 

framework is applied to a large part of a city for two different situations, namely 

before and after an earthquake. In the example, three decision actions are considered: 

retrofitting, rebuilding and no action. The best action is calculated both before and 

after the earthquake. The software package Hugin (http://www.hugin.com/) is used 

to construct the framework. In addition, the Geographical Information Systems (GIS) 

is integrated with the Bayesian Networks. All the available data are organized in a 

GIS platform.  

Since Bayraktarli et al. (2005, 2006) aim to provide and develop a generic risk 

assessment framework, it does not give many details about modeling the seismic 

demand using a Bayesian Network. The nodes in the framework are all discrete, 

which will increase the computational burden when the network has a large number 

of variables and each variable has many states. However, they presented an 

http://www.hugin.com/
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innovative framework for seismic risk assessment using a Bayesian Network.  

The research team in UC Berkeley have made many contributions to the 

application of BNs to seismic risk analysis. Straub et al. (2008) and Bensi et al. 

(2009) modeled the seismic demands of an infrastructure system by constructing a 

BN model of ground motion intensity. In that BN model, the seismic intensities (Si), 

normally characterized as peak ground accelerations (PGA) at different sites across a 

spatially distributed infrastructure system following an earthquake, are expressed as 

a function of the magnitude (M), site-to-source distance (Ri), and other 

characteristics of the source and site (Xi), such as the type of faulting mechanism and 

the site shear-wave velocity. The source-to-site distance is a function of the 

earthquake location and magnitude. Given the distribution of ground motion 

intensity at the site, the performance of infrastructure system components is modeled 

using fragility functions which provide the probability of exceeding some specific 

damage state. Then the system performance is modeled based on the performance of 

its components. Figure 5.1 gives the conceptual framework, taken from Bensi et al. 

(2009).  

Bensi et. al (2011) is the first research that thoroughly investigates the Bayesian 

Networks in seismic risk assessment and decision support.  It studies four major 

parts: 

1. BN-based seismic demand model. The random field effects are used to 

consider the statistical dependence between the seismic demands of different 

components in the infrastructure system. The finite fault rupture and directivity 

effects are considered when constructing the BN model.  

2. A model of the component performance using BN. The types of components 

considered are: point-site components such as bridges, and distributed components 

such as pipelines. The limit state function is used to construct the BN model. The 

component performance is defined as the conditional probability of failure of a 

component for a given ground motion intensity. A component capacity model is 

proposed in this part: the components are divided into different classes. For each 

class of component, the capacities all follow the same lognormal distribution with 

parameters (, ), and the parameters  and  are assumed to follow some 

distributions but not deterministic values.  

3. Models of the system performance based on component performance. The use 

of BNs in modeling system performance is compared with conventional methods 

such as fault trees, event trees, and minimal links and cut sets.  

4. An influence diagram that is constructed by extending BNs to include 

decision and utility nodes.  
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Fig. 5.1 Conceptual framework of BN in Bensi et al. (2010) 

Currently, there is no exact algorithm that can be used for general continuous 

BNs, and the most common method for inference is discretization. In this method, a 

continuous variable is divided into a finite set of disjoint connected regions. 

Obviously, this method increases the computational burden if we want to obtain 

accurate results, especially for a large network with many continuous variables. 

Since most variables in civil engineering are continuous, there is little literature on 

the application of continuous BNs in this area of engineering, especially in terms of 

seismic risk analysis. In this Thesis, I adapt the framework in Bensi (Bensi 2010), 

and use the continuous BN to construct the framework. In order to apply the exact 

inference algorithm (Lauritzen and Jensen, 2001) rather than use discretization to 

deal with the continuous variable, all the continuous variables in the framework are 

converted into random variables with Gaussian distribution.  

In the latter part of this chapter, I focus mainly on the application of BNs to 

seismic risk assessment for bridges. In Section 5.2, a general framework for seismic 

assessment based on Bayesian Network with continuous variables is first proposed. 

Next, in Section 5.3, a BN framework is used to address the so-called ‘twin bridges’ 

problem, an attempt to infer the state of a bridge based on the state of a second 

bridge which is highly correlated in capacity. Application to a case study is then 

reported in Section 5.4. 
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5.2 Proposed framework 

The proposed framework has three main parts: the demand model, the capacity 

model, and the fragility function which correlates the demand and the capacity as 

shown. In seismic risk analysis, it is common to assume a lognormal distribution for 

component capacities (C) and component demands (D). If we assume that: C  lnN 

(C, C
2
); D  lnN (D, D

2
), then the probability of failure is: 

2 2
Pr[ 0] Pr[ln ln 0] Φ( ) Φ( )

-
= - > = - < = =

+
D C

D CP

P

μ μμ
F D C C D

σ σ σ
  

where is the standard normal cumulative distribution function.  

Fig 5.2 is the conceptual BN representing the relationship between demand and 

capacity. P is the intermediate variable that is related to the probability of failure, P 

= ln(D/C). To simplify calculation, all variables follow a normal distribution or 

lognormal distribution. In this simple BN, obviously we have P  N (P, P
2
). The 

demand is calculated using an attenuation function depending on the local site 

conditions. The capacity is calculated based on some empirical or analytical models, 

depending on the characteristics of the bridge. Normally, the capacity model is 

defined based on several damage states. For each damage state, the capacity 

variables C, C
 
will be different and, as a result, the intermediate variable P is also 

different.  

 

Fig. 5.2 The conceptual BN that contains the three main parts in the framework 
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5.2.1. The demand model 

Before introducing the demand model, some basic concepts of earthquakes are 

introduced. 

An earthquake is a rapid vibration of the earth’s surface caused by shock waves 

generated in the Earth’s interior. It can cause a natural disaster, as can tsunamis, 

tornadoes and ice storms. Ground vibration is the most well known and frequent 

manifestation. When an earthquake occurs in the seabed or in a coastal region, it can 

cause waves, known as tsunami. On March 11 2011, the strongest earthquake ever 

recorded in Japan struck the north-east coast, triggering a massive tsunami. 

The distance from the observation site to the epicenter is called the epicenter 

distance. An earthquake is called local, when the epicenter distance is less than 

100km; a near earthquake if the distance is 100km to 1,000km, and teleseismic if 

further than 1,000km. The greater the epicenter distance, the less the damage tends 

to be.  

Currently there are two metrics for indicating the strength of an earthquake: 

magnitude and intensity. Earthquake magnitude is an objective measurement of an 

earthquake, and is a measure of earthquake energy, while intensity is a measure of 

the effects. The highest magnitude earthquake recorded was the 9.5 magnitude shock 

which occurred on May 22, 1960 in Chile.   

The Moment Magnitude scale and the Richter scale are both measures of the 

magnitude of earthquakes, and refer to the seismic energy released by the earthquake. 

The Richter scale is the older of the two, but is now being gradually superseded by 

the Moment Magnitude scale. 

The Richter scale was developed in 1935 by Charles F. Richter of the California 

Institute of Technology as a mathematical device to compare the size of earthquakes. 

The magnitude of an earthquake is determined from the logarithm of the amplitude 

of waves recorded by seismographs. Adjustments are included to take account of 

distances between the various seismographs and the epicenter of the earthquake. On 

the Richter scale, magnitude is expressed in whole numbers and decimal fractions. 

For example, a magnitude of 5.3 might be computed for a moderate earthquake, and 

a strong earthquake might be rated as magnitude 6.3. Because of the logarithmic 

basis of the scale, each whole number increase in magnitude represents a tenfold 

increase in measured amplitude. As an estimate of energy, each whole number step 

in the magnitude scale corresponds to the release of about 31 times more energy 

than the amount associated with the preceding whole number value. 

The moment magnitude scale was introduced by Hanks and Kanamori (1979) as 

a successor to the Richter scale, and is used by seismologists to compare the energy 

released by earthquakes. 

As suggested by many researchers (Abrahamson and Silva, 1997; Park et al., 

2007; Sokolovet et al., 2010), the ground motion parameter Yi,j is represented by 
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, , ,ln ( , , )i j i i i j i i jY f e p s η ε    (5.2) 

where Yi,j is the ground motion parameter at site j during earthquake i, Peak Ground 

Acceleration (PGA), response Spectral Acceleration (SA), Peak Ground Velocity 

(PGV), or Peak Ground Displacement (PGD). In this research, I only consider the 

parameter PGA; f is the logarithm of the mean value of ground motion parameter 

that is calculated through the attenuation equation. It is a function of earthquake 

source (ei), propagation path (pi,j), and local site condition (si,j). The random variable 

i is the inter-event variability that follows normal distribution. It is common to all 

sites during the same earthquake i. The random variable i,j is the intra-event 

variability that also follows normal distribution. For the same earthquake i, the 

intra-event variables at two sites are correlated. Both inter-event variability i and 

intra-event variability i,j are random uncertainties that describe the variability. The 

inter-event error describes the variability between the different earthquakes, and the 

intra-event error captures the variability between different sites given the same 

earthquake event. In order to maintain consistency, ‘ln’ means the natural logarithm, 

and ‘log’ means the logarithm with base 10. The details of the uncertainties terms 

are introduced in Section 5.2.3.  

Ground-motion modeling is an essential part of seismic hazard analysis. It is 

normally developed based on the available empirical strong-motion data. Since 

empirical ground-motion models have a strong dependence on the earthquake source 

and local site conditions, most of the existing models are applicable to a range 

covered by the empirical data set. According to the geographical area, current 

models can be divided into three classes: models applicable to California, models for 

Japan and models that have been developed with regard to Taiwan. The next 

Generation Attenuation (NGA) project developed five models in five accompanying 

papers that are applicable to all shallow crustal earthquakes, not only in California, 

but also in Europe (Campbell and Bozorgnia, 2006a; Abrahamson et al., 2008; 

Campbell and Bozorgnia, 2006b).  

To ease computation, here we will use the attenuation relation for peak 

horizontal acceleration provided by Joyner & Boore (1981):  

log 1.02 0.249 log 0.00255 0.26PGA M r r η       

2 2 1/ 2( 7.3 ) 5.0 7.7r d M       (5.3) 

where M is moment magnitude. This is preferred because it corresponds to a 

well-defined physical property of the source; d is the closest distance to the surface 

projection of the fault rupture in km as shown in Fig. 5.3;  is the error term that 
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considers inter-event uncertainties.  

x

y
site

Surface projection of the fault

d

 

Fig. 5.3 The closest distance to the surface projection of the fault (Bensi, 2010) 

5.2.2 Capacity Model 

The bridge capacity model adopted in this system is based on the Hazus model (see 

Chapter 2 for more details). In the Hazus model, the capacity model is determined 

by the failure mechanism. There are two kinds of failure mechanism - failure due to 

the sliding of the deck (type 1) and failure of the pier (type 2).  

In Equation (2.9), the capacity is given as:  

3

0

Δ2
( ) C D

g C

C

C Kπ
a k C

S η F g T


    

 
   (5.4) 

where CC is the capacity coefficient of the bridge, which can be correlated, and k is 

the uncorrelated component of the capacity. Based on Dutta & Mander (1998), for 

single span bridges, or bridges seated on weak bearings with strong piers, the 

capacity is assumed to arise from sliding only (Basöz and Mander, 1999). In this 

case, CC is given as: 

C tC μ  (5.5) 

where t =coefficient of sliding friction of the bearings in the transverse direction.  

For a standard bridge without wall piers, CC can be expressed as 

C Q p

D
C λ k

H
    (5.6) 

where Q is defined as a strength reduction factor that occurs due to cyclic loading; 

D, H are column diameter and column height; kp is a factor related to the reinforced 

concrete strength of the column kp = j (1+0.64t fy / (fc), where is a fixity 

factor taken as 1 for multi-column bents and as 0.5 for single column cantilever 
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action; j is the internal lever arm coefficient;t is the volumetric ratio of longitudinal 

reinforcement;  is the average dead load axial stress ratio in the column; fy is the 

yield stress of the longitudinal reinforcement, and fc is the strength of the concrete. 

To facilitate computation, kp is better defined as the products of several parameters. 

Here we assume that  

/C Q p y c

D
C λ k α f f

H
      (5.7) 

where  is a factor related to , j, t, , fy, and fc. Equation 5.7 is made based on two 

assumptions: the resistance provided by concrete arching action is very small 

compared with the truss action; the volumetric ratio of longitudinal reinforcement 

and the average dead load axial stress ratio are determined.  

5.2.3 The uncertainties terms 

Consideration of uncertainty is an important part of seismic risk assessment. There 

are two sources of uncertainty: those related to earthquake demand; and those in 

structural capacity.  

With regard to the uncertainty of earthquake demand, this can cause significant 

differences in earthquake damage for two similar structures, even though the 

distance between their two sites is small. It will be very useful to study the 

uncertainty in seismic demand; many publications have analyzed the characteristics 

of variability in the prediction of ground motion.  

Kawakami and Mogi (2003) examined the spatial variability of PGAs (recorded 

at the same epicenter distance) as a function of separation distance using 

accelerometer arrays in Chiba (located in Tokyo), Smart-1 (located in Taiwan), and 

SIGNAL (located in Tokyo) databases. They conclude that the means and standard 

deviations have an almost linear relationship with the logarithm of the station 

separation distance, ranging from several meters to 100 km. 

Sokolov et al. (2010) analyzed the characteristics of random variability in the 

prediction of peak ground acceleration in Taiwan. About 4,650 records from 66 

shallow earthquakes (ML > 4.5, focal depth < 30km) during 1993-2004 were used in 

this analysis. The results show that local geology and the peculiarities of the 

propagation path have a large influence on the ground motion correlation structure, 

and a single generalized spatial correlation model is not adequate for a large area 

like Taiwan.  

In Equation (5.2), both the inter-event variable and the intra-event variable 

are usually assumed to be independent and normally distributed, with a zero mean 

and standard deviations  and . So the total variance is given by: 
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2 2 2

T η εσ σ σ   (5.8) 

Let us consider the random variables at two sites x, y: x=+x, y=+y. The joint 

probability density function follows bivariate normal distribution with zero means 

and standard deviation (Wesson and Perkins, 2001). Since the inter-event residual 

is the same for the two sites in the same earthquake, the total correlation coefficient 

for the two sites is (see Appendix A):  

2 2

, 2

η ε ε

x y

T

σ ρ σ
ρ

σ

 
  (5.9) 

where is the intra-event correlation coefficient between the two sites. There are 

many functions developed for the intra-event correlation coefficient. For example 

Boore et al. (2003) proposes: 

0.6 21 [1 ]h

ερ e    (5.10) 

where h is the site to site distance with unit kilometer. Baker’s formula (Park et al. 

2007) is: 

( /6)h

ερ e  (5.11) 

while Vanmarcke (1983) suggests: 

1

ερ e  (5.12) 

Park et al. (2007) have compared these functions, and they conclude that the 

selection of the specific correlation model for simulation and loss estimate may not 

be critical, but the intra-event correlation cannot be completely neglected.  

In this Thesis, I adopt the suggestion by Bensi (2010) that the intra-event 

coefficient function be given as: 

(Δ/6)

ερ e  (5.13) 

where  is the distance between sites xi and xj as with Equation (5.11). 

Given the intra-event coefficient function, the inter-event uncertainty and the 
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intra-event uncertainty can be combined into a single uncertainty  with zero mean 

and standard deviations . The total correlation coefficient is given as Equation 

(5.9). For the variables that follow lognormal distribution, the uncertainties are the 

logarithmic standard deviation or the coefficient of variation of lognormal 

distribution (Kennedy et al., 1980).  

The term ec is used to consider the uncertainty in the capacity model: 

c gC e a   (5.14) 

ec is assumed to follow lognormal distribution Ec = ln ec  N (0, 0.1
2
). Here we make 

the assumption that the standard deviation of ln ec is 0.1, based on the assumption 

that the coefficient of variation of ec is 0.1. For this value, we need more research 

into the topic. 

5.2.4 BN framework for individual bridges 

After introducing the three basic components of the framework, the BN framework 

graphs will be considered. As we have two kinds of capacity models, I provide two 

BN frameworks here. When the capacity of the bridge is assumed to arise from 

bearings, we call this kind of bridge Type 1. Fig 5.4 is the BN for bridge Type 1. It 

should be noted that here I determine the bridge failure type before the BN is applied 

for computation simplicity. In reality, we do not know the failure type before 

calculating the capacity. There are three parts to this framework: the demand model, 

the capacity model and the intersection between the demand and the capacity:  

1. In the demand model, S is a parameter conceptually related to seismic 

demand at the site where the bridge is located: S = log D = log (PGA). M is the 

earthquake magnitude; is the inter-error term for the demand and is the same value 

for all the sites in one earthquake. 

2. From the capacity model, we have: lnC = ln(ec∙eg) = ln(ec∙k∙CC) = ln ec + ln k + ln 

CC  where Ec = ln ec, ec is the uncertainty term as defined and CC is the resistant 

strength. When the bridge belongs to Type 1: ln CC = ln t = R. t is the coefficient of 

the sliding friction of the bearings in the transverse. 

When the bridge belongs to Type 2 (pier failure): ln CC  = ln fy fc  = ln ln fy 

ln fc . where Fy = ln fy, Fc = ln fc, , fy and fc are defined as before.  

P is the intermediate parameter related to the reliability of the bridge. From Equation 

(5.4) and (5.14), we have C = eckCC 
0.5

. When the bridge belongs to type 1: P = 

ln(D/C) = 2.3 S Ecln k R. When the bridge belongs to type 2: P = ln(D/C) = 

2.3 S Ecln k ln Fy Fc. Given the distribution parameters (P, 

P
2
) of P, the probability of failure for the bridge is P / P. 
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Fig. 5.4 Bayesian Network for bridge type 1 
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Fig. 5.5 Bayesian Network for bridge type 2  
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5.2.5 BN framework for twin bridges 

As we can expect, the seismic vulnerabilities of any two bridges are very similar 

when they have similar characteristics as to type, material and construction year. 

On-site inspection shows that the conditions of similar bridges are also very close. 

Based on this observation, it is reasonable to assess the seismic vulnerability of any 

one bridge based on the known condition of another similar bridge. This motivates 

us to find the correlation of seismic vulnerabilities between similar bridges. In the 

previous section, I presented the BN framework for individual bridges. In this 

section, I want to develop the BN framework for twin bridges. Here 'twin bridges' 

mean that the two bridges have similar characteristics and belong to bridge Type 1 

or Type 2.  

Fig. 5.6 is the BN for twin bridges that belong to Type 1. Fig. 5.7 is the BN for 

twin bridges of Type 2. There are also three parts to this BN: demand model, 

capacity model and fragility curves. The two bridges are correlated through the 

shared variables: M, , and C. Compared with the BN in Fig. 5.4, the main 

differences are the intra-error terms Za and Zb in Fig. 5.6. Since there are two bridges 

in Fig. 5.6, the intra-error terms should be considered with regard to the two sites 

where the two bridges are located, while these intra-error terms are neglected in Fig. 

5.4. Both Za and Zb follow normal distribution. The correlation coefficient between 

them is defined by Equation (5.15). In order to consider this correlation in BN, two 

parents, U1 and U2 , are used as the sources of Za and Zb. This idea is adopted from 

Bensi (2010). U1 and U2 are assumed to follow standard normal distribution 

independently. The relationship between them is as follows: 

11 12 1

21 22 2

[ ]{ }
t t U

Z T U
t t U

                                              (5.15)                                    

where T is a 2×2 matrix. It can be obtained by Cholesky factorization, or other 

decomposition methods. For more details about decomposition methods, see Bensi 

(2010).  

Similarly, Fig. 5.7 is the BN framework for twin bridges belonging to Type 2.  
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Fig. 5.6 Bayesian Network for two bridges with strong piers and weak bearings 
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Fig. 5.7 Bayesian Network for two bridges with strong bearings and weak piers 
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5.3 Operations on the framework 

5.3.1 Prior distribution of earthquake magnitude  

For the conditional linear Gaussian Bayesian Network, there exists an exact 

inference algorithm when it meets the following requirements: all the continuous 

variables have Gaussian distribution, the continuous parents do not have discrete 

children, and the relationships between variables are linear. In the BNs in Figs 5.4, 

5.5, 5.6 and 5.7, all the variables except M follow a Gaussian distribution. In order 

to apply the algorithm to the frameworks, we need to do some operations on them. 

The earthquake magnitude was normally assumed to have a truncated 

exponential distribution whose PDF fM(m) is: 

0
0

0

exp[ ( )]

1 exp[ ( )]( )

0 elsewhere

p

pM

β β m m
m m m

β m mf m

 
 

   



                   (5.16) 

where is the parameter that determines the shape of the distribution, and m0 and mp 

are the minimum and maximum thresholds of the magnitude. In this paper, is 

assumed to be 0.76 as used by Kang et al.(2008), and the thresholds are 5.0 and 7.7 

respectively based on the equation in Joyner and Boore (1981).  

In order to meet the requirement that all the continuous variables follow a Gaussian 

distribution, we need to simulate the truncated exponential distribution using a 

Gaussian distribution. In this section, I use the mixtures of Gaussian (MoG) 

distributions to approximate arbitrary probability density functions (PDFs) based on 

Shenoy (2006). The logic is to find a good approximation based on minimizing 

some measure of distance between two distributions. The following will give the 

procedures to approximate fM(m).  

Suppose we decide to use five components. Then we will simulate fM(m) with 

the mixture PDF gM = p1+…+ p5, where ii denotes the PDF of a 

uni-variate Gaussian distribution with mean i and standard deviation i. It is 

assumed that i> 0, i > 0, pi> 0, p1 +…+ p5=1, 3=6.35. Based on the symmetry of 

gM around m=6.35, we can add another two constraints: 1 + 5 =12.7; 2 + 4 =12.7. 

The problem now becomes one of non-linear optimization, as follows: 

Find p1, p2, p3, p4,1, 2, 1, 2, 3, 4, 5 so as to minimize ( fM, gM), where ( fM, 

gM) is a distance measure between two PDFs. In this thesis, I adopt Shenoy’s (2006) 

suggestion, and use the sum of the squared error SSE as the distance measure: 

SSE( fM, gM) =∫(fM-gM)
2dx. In practice, the magnitude range [5, 7.7] is equally 

divided into a large number of bins. The results are as follows: p1 = 0.0736, p2 = 0.01, 

p3 = 0.2619, p4 = 0.4132, p5 = 0.2413, 1 = 7.1560, 2 = 7.6064, 3 = 6.35, 4 = 
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5.5440, 5 =5.0936, 1 = 0.1813, 2 = 0.0312,3 = 0.3500,4 = 0.3100,5 = 0.1546. 

Fig 5.8 gives the two PDFs, the mean value and standard deviation of fM are 5.9175 

and 0.80. The mean value and standard deviation of MoG approximation are 5.7856 

and 0.80. Fig. 5.9 gives the CDFs of the two distributions. It should be noted that 

differences between the two CDFs are larger when magnitude is close to 7.8. This is 

because the original distribution is truncated exponential which has lower and upper 

bounds.   

 

Fig. 5.8 5-component MoG Approximation of the truncated exponential distribution 

 

Fig. 5.9 CDFs of the truncated exponential distribution and MoG Approximation 

5.3.2 Entering evidence in the BN framework 

This framework aims to provide a seismic risk assessment system, both before and 

after the earthquake. Given the prior distributions of the variables including 

earthquake magnitude, capacity factor, and uncertainty terms, the prior distribution 

for the intermediate term P before the earthquake can be calculated during the 

initialization based on the computation scheme as described in Section 4, and then 

the prior probabilities of failure for the two bridges are obtained. Assume that an 

earthquake happens; the on-site sensor observes that bridge A has collapsed; now we 

need to update the probability of bridge B collapsing after the earthquake. In order to 
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solve this problem, we first need to enter into the framework the observation that 

bridge A has collapsed. In this case, we need to assign an evidence value to P1.  

 

Fig. 5.10 How to incorporate into the framework the evidence about the bridge state  

 

Fig. 5.11 Procedures to generate the random number X1 

In Fig. 5.10, g is a continuous variable. It has the prior distribution N (, ), 

and F is the state of the bridge which can be F1 (failure) or F2 (survival). F is 

determined by g. If g>0, F= F1; if g<0, F= F2. Given the prior distribution of g, the 

probabilities for the bridge being in the two states are  / and / 

When given the evidence F= F1, the posterior distribution of g can be obtained 

by Bayes theorem:  
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
                (5.17) 

where f(g) is the prior distribution of g, P(Fi |g) is the likelihood.  

However, in the computation scheme used by Lauritzen and Jensen (2001) and 

introduced in Chapter 4, the evidence value can only be a number, and the 

distribution cannot be used as evidence. This problem can be solved by using the 

Monte Carlo method. For details of the Monte Carlo simulation, see Appendix D. 

Using the Monte Carlo method, we can generate a series of stochastic numbers 

X1, X2, X3, …, XN (N = 1000) which all fulfill the evidence F = F1 independently as 

follows (see fig. 5.11):  

Step 1: Generating a random number a1 that follows uniform distribution 

between 1 -  / and 1. Since F = F1, we know that g>0. Then the cumulative 

probability of g is between 1 -  / and 1; 

Step 2: X1 = norminv(a1, , ); 

Step 3: Repeat steps 1 and 2 until sufficient realization has been generated. 

Then we enter these independent numbers one by one into the BN as evidence 

values. In the case of a binary variable, such as the collapse of a bridge, we aim to 

estimate a scalar value, i.e. the probability of an event. In this case, the output of 

each simulation (for i =1 to N) is a scalar, and we can use the sample average as an 

estimator. 

However, when we are updating a continuous variable, the outcome of each 

simulation is a pair (μi, σi), which refers to the posterior Gaussian distribution of the 

variable.  

The correct posterior can be seen as the mixture of the N Gaussian distributions, 

N (μi, σi) for i = 1 to N, and the weights given to each distribution is the same 

(because they are randomly selected using the Monte Carlo method). Now we are 

looking to the Gaussian “best fit”, that which comes closest to the simulated mixture. 

A method to find it is using MC again: generate m (e.g. m = 10) samples from 

component in the mixture, (i.e. for every i =1 to N) and collect the N  m samples 

(in the example: 1,00010=10,000). Then we compute the sample mean and 

variance, and take these as parameters for the posterior. The results will not 

converge to the real posterior (which is not Gaussian) but to the best Gaussian 

approximation. 

In this section, the Monte Carlo simulation and Bayesian Networks are 

combined to get the posterior distributions of variables. However, this method has a 

speed limitation when the network is large. In order to approach real time updating 

after the earthquake, a fast computation method is needed. In this case, the 

continuous evidence is considered. If the posterior distribution of g can be entered as 

evidence, then the updating procedure will be faster. The following is a tentative 

way which can be improved.  



 
 

Impact of Seismic Vulnerability on Bridge Management Systems          

 116 

If the full bridge capacity is C, then for each damage state, the capacity limit is 

Ci: Ci = ki×C. (0 < k1 < k2 < k3< k4 =1); if we get the evidence from the inspector: 

the bridge is at damage state i, then we have the equation: Ci –D < 0. So we have 

ki×C - D< 0 and ki+1×C- D> 0; if i =4, we can easily get g = C-D<0; if i<4, we 

have   

1(1 ) (1 )i ik C g k C                                         (5.18) 

For each bridge, the value of C is different, so if we know the prior distribution 

of C, the problem becomes how to convert the equation (5.18) into the distribution 

of g.  

 

 

 

 

5.4. Case study 

5.4.1 Bridges with strong piers and weak bearings 

The SP135 Bridge on the River Fersina-Canezza (A) and the SP31 Bridge on the 

River Avisio (B) are ‘twin’ bridges in APT-BMS. Both are 3 span pre-stressed 

concrete bridges with wall piers and non-monolithic abutments; both were built in 

1967. The lengths of the two bridges are 58.3m and 57.5m respectively. In Fig. 5.12 

and Fig. 5.13 we can see overviews and cross sections of these structures.  
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Fig. 5.12 SP135 Bridge on River Fersina-Canezza (a) overview (b) Plan view, elevation and 
cross-section of the deck 
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Fig. 5.13 SP31 Bridge on River Avisio (a) overview (b) Plan view, elevation and 
cross-section of the deck 

We assume there has been an earthquake of magnitude of 7. The source to site 

distances for the two bridges are 15km and 10 km, and the distance between the two 

sites is 10km. The capacity variable t is assumed to follow: R = ln t  N (ln0.85, 

0.1
2
). Entering these parameters into Equation (5.3), the seismic demand part is 

expressed as: 

1 1

2 2

0.4913 0.26 0.26

0.3025 0.26 0.26

S η Z

S η Z

   

     

Since the two bridges both have wall piers, they belong to the bridge Type 1 

category. According to Basöz and Mander (1999), the capacities are assumed to 

arise from the sliding of bearings only. Table 5.1 gives the other parameters.  

Table 5.1 Parameters for calculating the median spectral acceleration in Eq (5.4)  

Bridge  S  F0 m K3D TC (S) 

Bridge A 1 0.6325 2.6848 0.3 1.21 0.3335 

Bridge B 1 0.6325 2.6157 0.3 1.21 0.3629 

 

Entering these parameters into Equation (5.4), the median spectral accelerations 

for collapse limit state are:  

1 1

1 1

( ) 0.9584 ( )

( ) 0.9040 ( )

g c

g c

a C

a C

 

 
  

After defining the demand and capacity relationship for each bridge, the 

probability factors P for the two bridges can be obtained: 

1 1 1

2 2 2

~ (2.3 0.5 0.9908,0.25)

~ (2.3 0.5 0.9908,0.25)

c

c

P S R E

P S R E

    

    
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5.4.1.1 Initialization  

After defining the relationship between these variables, we can use the computation 

scheme in Lauritzen & Jensen (2001) to calculate the prior distribution for Sa, Sb, Pa 

and Pb. Table 5.2 gives the results. 

Table 5.2 Results after initialization 

Parameters  Mean value  Var  

Sa = log(PGAa) -0.49 0.14 

Sb= log(PGAa) -0.30 0.6 

Pa -2.04 0.98 

Pb -1.61 0.98 

 

Given the distributions of Sa and Sb, the median value of PGA at bridges A and B 

can be calculated as 0.32g and 0.50g; The probabilities of bridges A and B 

collapsing are 1.97% and 5.19%.  

5.4.1.2 Entering evidence 

After the earthquake, the on-site sensor observes that bridge B has collapsed. Now 

we need to update the probability of bridge A also collapsing. Since Fb = F1, we can 

enter this evidence into the BN using the method described in Section 5.3.2 and get 

the posterior of other variables given in Table 5.3.  

Table 5.3 Results given the evidence 

Parameters  Mean value Variation 

Sa = log(PGAa) -1.07 0.78 

Sb= log(PGAa) -0.05 0.1 

Pa 0.191 0.03 

Pb -0.176 0.01 

 

From Table 5.2 and Table 5.3, we can see that the expected median PGA values 

at the two bridges also increase from 0.32g to 0.89g for bridge A, and from 0.50g to 

1.55g for bridge B. In the meantime, the expectation for the sliding coefficient t 

reduces from 0.85 to 0.839. This can be explained by the following logic: the failure 

of bridge A shows that the capacity of the bridge is less than expected. The 

probability of bridge A collapsing increases from 1.97% to 12.4%. 
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5.4.2 Bridges with strong bearings and weak piers  

The Viaducts Pianello (A) and San Silvestro (B) are further examples of ‘twin’ 

bridges in APT-BMS. Viadotto Pianello is a 4 span pre-stressed concrete bridge 

built in 1985, and Viadotto San Silvestro is a 3 span concrete bridge built in 1958. 

The site condition factors for the two bridges are: S = 1, = 0.6367, TC = 0.3172s. 

The lengths of the two bridges are 91.54 m and 66.15 m respectively. The column 

heights of the two bridges are 5.35m and 5.3m, and the diameters of the columns are 

4.00m and 2.8m. In Fig 5.14 and Fig 5.15 we can see overviews and cross sections 

of these structures. 

(a)  (b)   

Fig. 5.14 Viadotto Pianello: (a) overview (b) plan view, elevation and cross-section of deck 

(a) (b)  

Fig. 5.15 Viadotto San Silvestro(a) overview (b) plan view, elevation and cross-section of 
deck 

Since both viaducts are simply supported multispan bridges, their possible 

damage group belongs to the type “strong bearings with weak piers”. According to 

Basöz and Mander (1999), the capacities are assumed to arise from the piers. So we 

can use the BN in Fig 7. Table 5.4 gives the other parameters.  

Table 5.4 Parameters for calculating median spectral acceleration  

 F0 m Q K3D  j t  Fy(MPa) fc(MPa) 

A 2.451 0.05 0.6 1.125 0.5 0.8 0.01 0.05 440 28 

B 2.504 0.05 0.6 1.125 0.5 0.8 0.01 0.05 330 26 

http://www.bms.heidi.it/queries_element.do?key=877
http://www.bms.heidi.it/queries_element.do?key=877
http://www.bms.heidi.it/queries_element.do?key=877
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For bridge A: Cc = Q kp D/H= 0.247  (1+ fy / fcIf we use the mean 

values of fy and fc, then Cc = 0.743 = 0.0473  fy / fc, so it is assumed that = 0.0473 

in Equation (5.7). In the same way, for bridge B, we assume that = 0.0412. In 

addition, an error term ec is used to consider the uncertainty in the capacity model: 

CC= ec   fy / fc. Entering these parameters into Equation (5.4), the median spectral 

accelerations are: 

( ) 2.3597 ( )

( ) 3.8730 ( )

g a c a

g b c b

a C

a C

 

 
 

For the demands on the two bridges, the earthquake magnitude is defined as in 

Section 5.3.1 and the fault lengths and the coordinates of the two bridges are defined 

as in Section 5.4.1. Given the capacity and demand, the probability factor P can be 

written as: 

0.922 2.3 0.5 0.5 0.5

0.603 2.3 0.5 0.5 0.5

a a y c ca

b b y c cb

P S F F E

P S F F E

        

        
 

5.4.2.1 Initialization  

After defining the relationship between these variables, the initial distributions 

are calculated based on the computation scheme in Lauritzen & Jensen (Lauritzen 

and Jensen, 2001) as given in Table 5.5. 

Table 5.5 Prior distribution of variables after initialization 

Parameters  Mean value Standard deviation 

Sa = log(PGAa) -0.491 1.067 

Sb= log(PGAa) -0.302 1.067 

Pa -2.040 5.662 

Pb -1.605 5.662 

 

Given the distributions of Sa, and Sb, the median value of PGA at bridges A and 

B can be calculated as 0.6118g and 0.739g; The probabilities of bridges A and B 

collapsing are 19.57% and 24.99%. 
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5.4.2.2 Entering evidence 

Assume that an earthquake happens. The on-site sensor observes that bridge A 

has an operational problem. Now we need to update the probability of bridge B 

having a similar operational problem. The updated distributions of other variables 

are obtained as in Table 5.6: 

Table 5.6 Posterior distributions of variables given the evidence 

Parameters  Mean value Standard deviation 

M (Magnitude) 6.48 0.735 

Fy= (lnfy) 6.0756 0.1099 

Fc = (lnfc) 3.3414 0.0999 

Sa = log(PGAa) 0.393 0.0538 

Sb= log(PGAa) -0.286 0.4508 

Pb -1.42 1.042 

 

Given the distributions of conceptual variables, the mean values and standard 

deviations of the physical parameters can be obtained as in Table 5.7. 

 

Table 5.7 Posterior distributions of the physical parameters given the evidence 

Parameters  Mean value Standard deviation 

PGAa = 10
Sa

 2.49g 0.31g 

PGAb = 10
Sa

 0.856g 1.04g 

fy = e
Fy

 437.8MPa 48.3 MPa 

fc = e
Fc

 28.3 MPa 0.28 MPa 

 

From Table 5.6 and Table 5.7, we can see that the mean value for the earthquake 

magnitude is 6.48, which is higher than the prior value of 5.79. In addition, the PGA 

values on the two bridges also increase from 0.387g to 2.49g for bridge A, and from 

0.329g to 0.856g for bridge B. The probability of bridge B collapsing increases from 

1.43% to 8.65%. 
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5.5. Conclusions 

This chapter proposes a framework for seismic risk assessment based on a Bayesian 

Network with continuous variables. First, the BN for an individual bridge is 

introduced, then the BN for twin bridges is developed based on the BN for the 

individual bridge. Using this framework, the seismic risk for an individual bridge 

before the earthquake can be calculated. After the earthquake, given the observation 

of one of the twin bridges, the condition of the other twin bridge can be predicted 

and updated.  

However, the assumptions and limitations should be kept in mind. The 

framework I am proposing makes use of the assumption that all continuous variables 

are Gaussian. However as soon as we plug in a discrete observation, we can no 

longer expect the posterior distribution to be Gaussian. Nonetheless, we use a 

Gaussian posterior, which achieves the best fitting of the actual general distribution. 

The reason why we do so is that, maintaining a set of Gaussian variables allows the 

method to be computationally efficient. Other than this, the approximation should be 

kept in mind. 

After each evidence processing phase, we use the MC procedure to fit the data. 

There are two kinds of approximation introduced here. On the one hand, there is the 

classic approximation of the MC technique, as we represent a distribution by a set of 

random samples. On the other hand the Gaussian fitting, when we impose the 

posterior to be Gaussian, thus keeping the variables Gaussian. 
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6 Network-level analysis using Bayesian Networks 

 

 

 

In Chapter 5, I proposed a seismic vulnerability assessment framework both for a 

single bridge and for twin bridges based on a Bayesian Network with continuous 

variables. In this chapter, I will extend the framework from twin bridges to the 

system level. In this framework, all the bridges in the network are correlated and 

analyzed. Before the earthquake, the prior risks of all the bridges are calculated. 

After the earthquake, given the observations on some bridges, the posterior risks to 

the other bridges are predicted and updated.  

The outline of this chapter is as follows: in Section 1, the description of the 

framework is introduced; each part of the framework is explained and compared 

with the framework for twin bridges. In Section 2, the computation scheme 

including initialization, entering evidence and updating, is explained. After that, the 

framework is applied to the bridge network in APT-BMS in Section 3. Finally, the 

best path between any two places within APT-BMS is identified again and 

compared with the results in Section 4. 

 

 

 

 

6.1 Description of the framework 

Fig 6.1 is the BN framework with n bridges. As in Section 5, this framework 

consists of three basic parts: the demand model, the capacity model and the fragility 

function.  

1. The demand model includes three parts:  

the first part is the earthquake demand denoted by S1, S2,…, Sn. These are 

conceptual parameters related to seismic intensities at the different sites where the 
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bridges are located: Si = log (PGAi);  

the second part is the earthquake magnitude M;  

the last part covers inter-error and intra-error, where  is the inter-error term for 

the demand, and is the same for the same earthquake; and Z1, Z2,…, Zn are the 

intra-event error terms which are drawn from Gaussian random fields, while U1, 

U2,…, and Un are the parents of Z1, Z2,…, and Zn. U1, U2,…, and Un are independent, 

standard normal random variables. The details of the intra-event error terms Z, will 

be subsequently be explained. 

2. Two kinds of capacity models are included in the framework. C is the 

capacity factor of the bridge with strong piers and weak bearings, fy and fc are the 

strengths of the reinforcement bars and of the concrete of the bridge piers: Fy = lnfy ; 

Fc = lnfc. In the framework, bridge 1, 2, …, i belong to Type 1 as defined in Chapter 

5, while the bridge i+1, i+2,…,n belong to Type 2. The error term ec is used to 

consider the epistemic uncertainty in the capacity model. 

3. P1, P2,…, Pn are the intermediate parameters related to the reliability of a 

bridge. This equals the difference between demand and capacity: Pi = ln (PGA)i – ln 

(agI, where PGAi is the Peak Ground Acceleration at the site where bridge i is 

located, and (agi is the capacity of bridge i. 

The variables in the framework can be divided into two parts: global variables 

that are relevant to every bridge, and local variables that are related only to a 

specific bridge. In this framework, the following variables are global: U1, U2, ..., Un, 

M, , C, fy and fc. The others are local variables. 

In the intra-error part of the demand model, vector Z can be expressed as the 

product of an n×n transformation matrix T and the n×1 vector U as suggested in 

Bensi (2010):  
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 (6.1) 

where vector Z has zero means, unit standard deviations and correlation matrix R = 

[ij], where ij = e
-(Δ/6)

 as defined in Section 5. The transformation matrix T can be 

determined using certain decomposition methods. However, since the BNs in Fig 6.1 

are densely connected, when the number of bridges is large the computation will 

become intractable, since the largest clique becomes very large. In order to limit and 

solve this computational problem, Bensi (2010) proposed several methods to reduce 

the size of the largest clique. Generally, this is accomplished in two ways: one is by 

eliminating the links between vector Z and vector U. The other is by reducing the 

number of nodes in vector U. Node-based approaches include a node-based 

eigenvalue approach (NEA), a node-based Cholesky approach (NCA), and a 
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node-based optimization approach (NOA). Link-based approaches include a 

link-based eigenvalue approach (LEA), a link-based Cholesky approach (LCA), and 

a link-based optimization approach (LOA). The relative efficiencies of these 

approximation methods are measured based on the following definition: 
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Fig. 6.1 The BN framework for the network with n bridges 
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where ij is the correlation coefficient between Zi and Zj as defined in Equation 

(5.14), and ij



  is the approximated correlation coefficient. 

In this Thesis, I adopt the single node approach because it is easy to decide the 

size of the BN for a given number of nodes in vector U. This will facilitate the 

network computation, especially for a large number of bridges. The approximated 

vector Zi is defined by: 

niUtVsZ iiii 1,                                      (6.3) 

where Vi and U are independent standard normal random variables, and si and ti are 

variable-specific coefficients. Note that U is common to all Zi, so it is the source of 

the correlation. The associated BN is shown in Fig 6.2. 

Z1

U

Z2 Zn

VnV2V1

...

...
 

Fig. 6.2 BN model for intra-event error (Bensi, 2010) 

For this model, the coefficients for approximated Zi are: ij



 = ti ∙ tj for i ≠ j and 

ij



 = 1 for i = j. Since the variance for Zi is 1, we have: 

11,)1( 22  iii tts  (6.4) 

where the coefficient ti is determined by minimizing the error measure for 

correlation coefficients as defined in Equation (6.2).  
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So the solution of the coefficient ti becomes the nonlinear constrained optimization 

problem 




 


1

1 1

min
n

i

n

ij

ijjitt   (6.5) 

subject to: 12 it , i = 1, ..., n 

In Bensi (2010), the error measures are carried out for different configurations 

in all node-based and link-based approaches, except the single node approach. In the 

following, the error measure for the single node approach is calculated. Fig 6.3 

shows configurations for line layout, circle layout and grid layout. The correlation 

matrix for Zi is defined based on Equation (6.3).  
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Fig 6.3 Line layout, circle layout and grid layout for numerical investigation (Bensi, 2010) 

Fig. 6.4 gives the error measures for different distance unit from 0.1 to 1 

(corresponding to d = 6 × 0.1 and 6 × 1) under different bridge configurations based 

on Equation (6.5). The trends are the same as those in Bensi (2010): the error 

measure becomes larger when d increases. This is because, for larger d, the 

correlation coefficients are small, which results in a smaller denominator in 

Equation (6.2). For the same distance unit, the line layout has the largest error 

measure, followed by the circle layout and the grid layout. This is because the error 

measures of the configurations are related to their densities. The closer the bridges, 

the smaller the error measures. 
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Fig. 6.4 Error measures for different configurations at different distances based on the 
methods in Bensi (2010) 

After integrating the BN in Fig. 6.2 into the framework in Fig. 6.1, the new 

framework is given in Fig. 6.5. In Fig. 6.5, the number of nodes in vector U reduces 

from n to 1. In the new BN, there are only 6 global variables: U, M, Es, C, Fy, and Fc. 

The others are local variables. This facilitates computation dramatically, especially 

for a network with a large number of bridges. The next section will introduce the 

computation procedures for this framework.  
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Fig. 6.5 The BN framework for a network with n bridges 
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6.2 Computation procedures 

As in the computation scheme introduced in Chapter 4, here too there are two stages 

in the procedure: initialization and updating. The general procedures in this 

framework are the same as those introduced in Chapter 5. However, the only aspect 

that needs to be considered is computation efficiency. In fig. 6.4, there are 6 global 

variables: U, Es, C, M, fy and fc. They are connected to all the bridges. Besides these 

6 global variables, each bridge has 4 local variables: Zi, Eci, Pi, and Si. If there are 

500 bridges in the network, then the number of total variables in the network will be 

2,006. In the computation scheme as explained in Chapter 4, the potential is 

represented as = [p, A, B, C] (H | T). If there are 2,007 variables in the network, the 

maximum size of the matrix would be as large as 2,007×2,007. The calculation 

burden would be very high during operations with these matrices. In order to reduce 

the computation burden and limit computation time, we must undertake some 

operations on the framework.  

The logic of the operation is to divide the network BN into separate single BNs, 

each single BN corresponding to one bridge. All the single BNs share the same 

global variables, and the differences between them are the local variables. For the 

local variable Zi in each BN, they are correlated through the nonlinear constrained 

optimization equation as shown in Equation (6.5). During the initialization 

procedure, all the local variables Zi follow a standard normal distribution, and there 

is no evidence for updating the distribution. Consequently, we can directly use the 

standard normal distribution as the prior distribution of Zi , and do not need to solve 

the optimization problem in Equation (6.5). Based on the computation scheme 

introduced in Chapter 4, the prior distributions of P1, P2, ..., and Pn are calculated as 

N (, ), N (, ), ..., and N (n, n) respectively. The probability of damage for 

each bridge is Pi /i. During the updating procedures, the evidence is entered 

into each single BN, so the distributions of all the global variables, including U, will 

change. This will result in a change of Zi in each single BN. In order to calculate the 

updated distributions of Zi, we need to consider the correlations between Zi and U, 

which are achieved through the nonlinear constrained optimization condition in 

Equation (6.5). However, when the number of bridges is larger, the computations in 

solving Equation (6.5) will be very much larger. So we cannot simply divide the 

network BN into separate single BNs in the updating procedure. The following are 

the procedures to be used. 

In APT-BMS, there are 986 bridges. We assume that there are observations on 

three bridges after an earthquake: bridge 1 and bridge 2 are damaged, and bridge 3 is 

not damaged. We want to predict the probabilities of the other 983 bridges being 

damaged. The following are the procedures: 
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Generate a sub-network including bridges 1, 2, 3 and 4. We then use the 

nonlinear constrained optimization condition in Equation (6.5) to calculate the 

intra-event error for these four bridges.  

1. Divide the sub-network into 4 single BNs.  

2. In the BN for bridge 1, do the following operations:  

   a: Generate a series of random numbers x independently from the prior 

distribution.   

   b: After generating the evidence for P1, we need to enter them, one by one. For 

each one, we collect towards the root as during the initialization stage and get the 

posterior distribution of all the global variables. For each piece of evidence, we can 

get a posterior distribution for each global variable. We use the mean values of the 

posterior distribution as the updated distribution for each global variable.  

3. Repeat steps a, b for bridges 2 and 3. For each observation, the distributions of 

global variables are updated once. When all the observations are entered and 

propagated, we get the final updated distributions of the global variables.  

4. Enter the final updated distributions of the global variables into the single BN for 

bridge 4, and calculate the updated distribution for P4.  

5. Repeat the same procedures in 1-5 for bridges 5, 6, 7, ..., 986. 

 

 

 

6.3 Application 

The probabilities of APT bridges being in a damaged state have been calculated 

using the Hazus model in Chapter 2. In Chapter 2, the seismic demand is represented 

by the return period of the earthquake. In this chapter, the probability of damage to 

each bridge is calculated again using the framework of Fig. 6.5 during the 

initialization procedure. In this framework, the seismic demand is directly related to 

the earthquake magnitude. The prior distributions for the global variables are given 

in Table 6.1. 

Table 6.1 Prior distribution of the global variables 

The global variables Distributions 

U N (0, 1) 

 N (0, 0.2
2
) 

C N (ln 0.85, 0.15
2
) 

M N (5.79, 0.8
2
) 

Fy N (ln 440, 0.11
2
) 

Fc N (ln 28, 0.10
2
) 
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Fig. 6.6 Distance between two bridges A and B at different locations. 

(http://dl.zhishi.sina.com.cn/upload/31/86/74/1497318674.4175043.jpg) 

 

In APT-BMS, the location of each bridge is denoted by its longitude and latitude. 

Here we introduce the method to calculate the distance, given the location of the two 

bridges.   

Fig. 6.6 gives the locations of two bridges, A and B. The longitudes and 

latitudes for bridges A and B are (A1, A2) and (B1, B2). O is the center of the earth, 

P is the North Pole. The distance between bridge A and bridge B is the length of arc 

along the spherical surface.  

In triangle OAC: 

)2cos()2sin( AROCARAC   (6.6) 

In triangle OBD: 

)2cos()2sin( BRODBRBD   (6.7) 

In triangle OCD:  

)11cos(222 ABODOCODOCCD   (6.8) 

In triangle ABE: 

http://dl.zhishi.sina.com.cn/upload/31/86/74/1497318674.4175043.jpg
http://dl.zhishi.sina.com.cn/upload/31/86/74/1497318674.4175043.jpg
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)2sin()2sin(2)11cos()2cos()2cos(22

22

ABABBAR

BEAEAB




 (6.9) 

So the distance between bridge A and bridge B along the spherical surface is: 

))2sin()2sin()11cos()2cos()2(arccos(cos ABABBARr   (6.10) 

Now, assume that an earthquake of magnitude 7.0 happens in the town of Salò 

(E10.519935,N45.603110, red dot in Fig. 6.7). This a town located 70 km 

South-West of Trento, on the shore of Lake Garda, in the nearby province of Brescia. 

The same location was actually the epicenter of a 5.4 magnitude  earthquake in 

November 2004 (http://www.iesn.org/speciali/garda/garda.htm), and for this reason 

has been chosen for this simulation. Using the computation scheme introduced in 

Chapter 4, the initial seismic risk of each bridge is calculated once again and the 

results are shown in Fig 6.7. Since the seismic demand is larger than that in Chapter 

2, the probabilities for the bridges being in a damaged state are also higher. So in 

this chapter, the category range for each color is different: green (P<10
-3

), yellow 

(10
-3

<P<10
-2

), orange (10
-2

<P<10
-1

) and red (P>10
-1

). From the figure, it is easy to 

see that the seismic vulnerabilities of the bridges near the epicenter are relatively 

high, and the bridges far from the epicenter have low probabilities of being damaged. 

Fig. 6.8 gives the number of bridges in each probabilistic range.  

 

epicenter

 

Fig. 6.7 Prior seismic vulnerability in APT bridge stock for a 7.0 magnitude earthquake 
with epicenter in Salò (E10.519935,N45.603110.) 
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Fig. 6.8 Prior distribution of probability of collapse in APT bridge stock for a 7.0 
magnitude earthquake with epicenter in Salò (E10.519935,N45.603110) 

After the earthquake, we get some observations from the on-site sensors: bridge 

1 and bridge 2 have collapsed during the earthquake, while bridge 3 is safe after the 

earthquake. Now we want to calculate the updated probability of other bridges being 

damaged given these observations.  

Using the computation procedures in the last section, we first try to update the 

seismic vulnerability of bridge 4 based on the observations. After entering the 

evidence on bridge 1, the distributions of 6 global variables are updated, based on 

this observation. Table 6.2 gives the results.  

Table 6.2 Posterior distributions of the global variables based on the evidence that 

bridge 1 has collapsed 

Global variables Distributions 

U N (2.332, 0.487
2
) 

 N (0.064, 0.011
2
) 

C N (ln 0.824, 0.149
2
) 

M N (6.749, 0.711
2
) 

Fy N (ln 440, 0.11
2
) 

Fc N (ln 28, 0.099
2
) 

 

From the results, we find that the earthquake magnitude is estimated at 6.749. 

This means that the earthquake magnitude is expected to be much higher than the 

initial value In Table 6.1. For the global variable C, which is related to the sliding 

coefficient, the updated value is lower than the prior value. This means that the 

damage to bridge 1 denotes a lower sliding coefficient. Since the failure mechanism 

of bridge 1 belongs to type 1, the variables fy and fc remain the same, given the 

evidence.  

Table 6.3 gives the updated distributions of global variables after entering the 

evidence with regard to bridge 2.  
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Table 6.3 Posterior distributions of the global variables based on evidence that 

bridge 2 has collapsed 

Global variables Distributions 

U N (2.357, 0.343
2
) 

 N (0.064, 0.001
2
) 

C N (ln 0.824, 0.149
2
) 

M N (6.767, 0.524
2
) 

Fy N (ln 440, 0.11
2
) 

Fc N (ln 28, 0.099
2
) 

 

From Table 6.3, the earthquake magnitude increases over the value in Table 6.2. 

This means that the observation on bridge 2 increases the estimate of the earthquake 

magnitude again. The other global variables are almost the same as those in Table 

6.2.  

Table 6.4 shows the results after entering the evidence that bridge 3 is safe. This 

evidence increases the estimate of the bridge’s capacity, which can be shown by 

variable C, and reduces the estimate of earthquake demand. This can be shown by 

earthquake magnitude M.   

Table 6.4 Posterior distributions of the global variables based on the evidence that 

bridge 3 is safe 

Global variables Distributions 

U N (2.048, 0.251
2
) 

 N (0.064, 0.001
2
) 

C N (ln 0.852, 0.465
2
) 

M N (6.282, 0.384
2
) 

Fy N (ln 440, 0.11
2
) 

Fc N (ln 28, 0.099
2
) 

 

After entering all the 3 pieces of evidence, the final updated distributions of the 

global variables are obtained, and the updated seismic vulnerability for bridge 4 is 

calculated.  

Using the same procedures, the updated seismic vulnerabilities for all the other 

bridges are calculated, and the results are shown in Fig 6.9. Fig 6.10 gives the 

number of bridges in different probability levels.  
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epicenter

evidence bridges

 

Fig. 6.9 Posterior seismic vulnerability in APT bridge stock for a 7.0 magnitude earthquake 
with the epicenter in Salò (E 10.519935,N 45.60311) 

   

Fig. 6.10 Posterior distribution of probability of collapse in APT bridge stock for a 7.0 
magnitude earthquake with the epicenter in Salò (E10.519935, N45.603110) 
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6.4 Identifying the best path 

In Chapter 3, the network level assessment is carried out in APT-BMS. Dijkstra’s 

algorithm is used to find the best path between any two given places. In Chapter 3, 

the best path is identified without considering the correlation between different 

bridges. In this section, we will again find the best path between any two nodes 

within the network. The correlation between the bridges is considered using the 

framework used in aforementioned sections. The results in this section are compared 

with those in Chapter 3.  

6.4.1 The link value 

Bridge A Bridge B
 

Fig. 6.11 Link composed by bridge A and bridge B in series 

Fig. 6.11 is a link composed of bridge A and bridge B in series. Here we use P 

(A) to indicate the probability of bridge A being safe, and P ( A ) to indicate the 

probability of it being damaged. As for the link, P (L) means the probability of the 

link being safe, and P ( L ) means the probability of the link being damaged. Since 

the link has two bridges in series, the value of P (L) equals the probability that 

neither bridge A nor bridge B is damaged, and the value of P ( L ) equals the 

probability that there is at least one bridge of A and B is damaged. Obviously we 

have P (L) + P ( L ) =1.  

When not taking correlation into account:  

)()()|()()()( BPAPABPAPABPLP                           (6.11a) 

)(1)( LPLP                                                   (6.11b) 

If we consider the correlation between the two bridges, P (L) and P ( L ) can be 

obtained by: 

)|()()()( ABPAPABPLP   (6.12a) 

)(1)( LPLP   (6.12b) 
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Fig. 6.12 is the link formed by n bridges in series. P (L) and P ( L ) is calculated 

as follows: 

Bridge 1 Bridge nBridge 2

n bridges

…

 

Fig. 6.12 Link formed by n bridges in series 

When not taking correlation into account: 

)()()()()(

)|()|()|()(

)()(

1321

1321213121

21

nn

nn

n

BPBPBPBPBP

BBBBBPBBBPBBPBP

BBBPLP

















   (6.13.a) 

)(1)( LPLP                                                  (6.13.b) 

When consider the correlation between the bridges, P (L) and P ( L ) can be 

calculated as: 

)|()|()|()()( 1321213121  nn BBBBBPBBBPBBPBPLP      (6.14.a) 

)(1)( LPLP                                                  (6.14.b) 

In Equation (4a), )|( 1321  nn BBBBBP  means the probability of bridge n 

being safe given the evidence that bridges 1, 2, 3, … , (n-1) are all safe. This can be 

obtained using the framework in Fig 6.5 of Chapter 6. The procedures are:  

1. Generate a sub-network including bridges 1, 2, 3, ..., n. Use the nonlinear 

constrained optimization condition in Equation (6.5) to calculate the intra-event 

error for these n bridges.  

2. Divide the sub-network into n single BNs which includes all variables that are 

related with an individual bridge.   

3. In the BN for bridge 1, do the following operations: 

  Step1: generate a series of random numbers x independently from the posterior   

distributions of P1 using the Monte-Carlo method.   

  Step 2: Repeat step 1 until the required number of realizations are generated. 

  Step 3: After generating the evidence for P1, we need to enter them one by one. 
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For each one, we collect towards the root as during the initialization, and get the 

posterior distribution of all the global variables. For each piece of evidence, we can 

get a posterior distribution for each global variable. Use the mean values of the 

posterior distribution as the updated distribution for each global variable.  

4. Repeat steps 1 - 3 for bridges 2, 3, ..., n-1. For each observation, the distributions 

of global variables are updated once. When all the observations are entered and 

propagated, we get the final updated distributions of the global variables. It should 

be noted that the final distributions after evidence has been provided are not 

Gaussian, but here we forcing them to be Gaussian. 

5. Enter the final updated distributions of the global variables into the single BN for 

bridge n, and calculate the updated distribution for Pn.  

In the same way, the other elements in Equation (6.14.a) can be calculated and the 

value of link P ( L ) can be obtained.   

6.4.2 The sum of different link values 

Bridge 2 … Bridge iBridge 3Bridge 1

Node 1 Node 4Node 3Node 2

Bridge i+3Bridge i+2Bridge i+1

Link 12 Link 34Link 23  

Fig. 6.13 Different links between two nodes 

After calculating the link value, we need to get the sum of different link values when 

identifying the best path. Take Fig 6.13 for example. We want to calculate the value 

between link node 1 and node 4. Based on the method used in the previous section, 

the values of link 12, link 23, and link 34 can be obtained respectively. In order to 

find the value between node 1 and node 4, we can first calculate the value between 

node 1 and node 3. When considering the correlation between all the bridges on this 

link, the value of link 13 is: 

)|()|()|()()( 321121312113 ii BBBBBPBBBPBBPBPLP        (6.15.a) 

)(1)( 1313 LPLP                                                (6.15.b) 
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In the same way, the link between node 1 and node 4 is given as follows: 

)|()|()|()()( 21321321312114   iii BBBBBBPBBBPBBPBPLP 
 

(6.16.b) 

)(1)( 1414 LPLP                                                (6.16.b) 

From this example, we find that the calculation of Equation (6.15) does not give 

us any help with the result of Equation (6.16). The value of the link is only related to 

all bridges on the link. The calculation of the sub-link value does not help us to find 

the value of the whole link. This means that each time we want to obtain the value 

between two nodes, we have to use Equation (6.14) once, no matter how many 

bridges are located between the two nodes. However, in the procedure associated 

with identifying the best path using Dijkstra’s algorithm, we need to get the value 

between two nodes many times. This would increase the computation burden greatly. 

In order to facilitate computation, we will only consider the correlation of bridges 

within the same link. Based on this logic, the value between node 1 and node 4 is as 

follows: 

)()()()( 34231214 LPLPLPLP                                     (6.17) 

where P (L12), P (L23) and P (L34) can be calculated based on the method used in the 

previous section.  

6.4.3 Application 

In Section 3 we identified the best path in the APT-BMS network, given any start 

node and end node, using the Dijkstra algorithm. In that section, the value of every 

link is calculated simply as the sum of probabilities of the bridges being in a 

damaged state. This ignores the correlation between the probabilities of the bridges 

being damaged. In the previous section, I introduced the methods used to calculate 

the link value and the sum of the link value. In this section, we will identify the best 

path again.  
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Fig. 6.14 The network between Trento and Ala 

The network between Trento and Ala in Fig. 6.14 is used again to illustrate the 

procedures. In Fig. 3, the color of the dot means the probability of the bridge 

collapsing after the earthquake, as assumed in Section 6.3. The epicenter of the 

earthquake is located in the city center of Trento. The number beside every bridge in 

Fig. 14 indicates the ID of the bridge. From Fig 14, we find that bridges on the same 

link have very similar seismic risk. This is because the seismic demand on these 

bridges is similar due to their proximity to one another. In addition, the bridges near 

Trento have a higher seismic risk than the bridges far from Trento.  This as the 

epicenter is assumed to be in Trento city center. 
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Fig. 6.15 The link between node 2 and node 4 

First, the value of each link is calculated. We take the link between node 2 and 

node 4 as an example, shown in Fig 6.15. The number above the bridges is the 

probability of them being damaged. Based on Equation (6.14 a):   

)|()|()()( 424425426424425424 BBBPBBPBPLP                         (6.18) 

where P(B424) is the prior probability of bridge 424 being safe, P(B425|B424) is the 

conditional probability of bridge 425 being safe given that bridge 424 is safe, and 

P(B426|B425∙B424) is the conditional probability of bridge 426 being safe given that 

bridges 425 and 424 are safe. Bridge 424 and 425 have different failure mechanisms, 

so the value of P(B425|B424) can be calculated using the BN in Fig. 6.16. In the same 

way, the value of P(B426|B425∙B424) can be calculated using the BN in Fig. 6.17.  
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Fig. 6.16 The BN used to calculate the value of P(B425|B424) 
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Fig. 6.17 The BN used to calculate the value of P(B426|B425∙B424) 

Based on the BN in Fig 6.16 and Fig 6.17, the value of P(B425|B424) and 

P(B426|B425∙B424) are calculated as 0.994 and 0.90 respectively. Using Equation 

(6.14),   

0.65299.0994.0)337.01()|()|()()( 424425426424425424  BBBPBBPBPLP     

348.0)(1)(  LPLP   

So the value of this link is 0.348. It is much smaller than 0.769, which is the 

sum of all probabilities of bridges on the link. In the same way, the values of all 

links are obtained, and the best path between node 1 and node 16 is identified as 

shown in Fig 6.18.  
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 Fig. 6.18 Best path between Trento and Ala 

6.4.4 Results 

Finally, Dijkstra’s algorithm is applied to the APT network and the best path 

between any two nodes is identified. Fig. 6.19 is the result between Passo Lavazè 

and Riccomassimo.  
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Lavaze

Riccomas
simo

Riccomassimo

Passo Lavaze

 

Fig. 6.19 The best path between Passo Lavazè and Riccomassimo 
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6.5 Conclusions 

In this chapter, the seismic assessment framework is extended from individual 

bridges to the system level. This framework can provide the seismic risk analysis for 

all the bridges in the network. In order to consider the correlation of intra-error terms 

between the different sites, the single source BN model is adopted in this chapter. 

The correlation between all bridges can be analyzed using this framework. Based on 

this correlation, the link value is calculated again, and the best path between any two 

nodes within the network is identified. The results show that the best path identified 

here is very similar to that in Chapter 3. I conclude that the approximate methods 

used in Chapter 3 can be used to identify the best path.  

It should be noted that here there are some approximations when entering the 

three sets of evidence one by one, as after entering evidence 1, we get the posterior 

for all the global variables. At this time, all the global variables should be correlated 

due to the same evidence 1. However, when we enter the second evidence, these 

posteriors will be used as the prior ones which are considered uncorrelated. In order 

to consider these correlations between global variables, we need to find the 

covariance matrix after entering each set of evidence, and use this covariance matrix 

as the prior information for the second entry. See Appendix E for more detail. 

I mention here the assumptions and limitations of this chapter. First, we 

neglected the correlation between the global variables after using the evidence. We 

have developed a method to include the correlation (see appendix E) but we did not 

make use of this method in the simulations because it needs a great deal of time to 

modify and run the Matlab Program. I will finish the simulation in subsequent 

research.  

Secondly, we neglect the correlation between the damaged states of bridges on 

different links. There are two reasons for this: on the one hand, when identifying the 

best path using Dijkstra’s algorithm, we need to calculate the seismic vulnerability 

between any two nodes. If every time we consider the correlations between all the 

bridges within the two nodes, the computation will be very large; on the other hand, 

the bridges on different links are also far apart, so the correlations between them are 

not so strong as that of bridges in the same link. 
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7 Conclusions and Future work 

 

 

 

Based on the work carried out, we can draw the following conclusions: 

 Because of the limited information needed, the Hazus method has been chosen 

as the most suitable model for generating fragility curves for each bridge of the 

APT stock. Risk analysis has been performed under the return periods of 72, 

475 and 2,475 years, accounting for four possible limit states: operational, 

damage, life loss, and collapse. The results show that most bridges in the APT 

have a very low risk of collapse, and that direct risk of loss of life is negligible. 

This outcome is consistent with the fact that the APT is a low seismicity region, 

where the design PGA for a 475 year return period is of the order of 0.075g. 

Conversely, the operational state of the network after an earthquake is of 

concern.  

 The connectivity reliability of the road network has been analyzed. Algorithms 

ORDER and ORDER-II are used to enumerate the most probable network states. 

The results show that the APT network has a relatively high connectivity. The 

best path between any two given sites within the network is identified using 

Dijkstra’s algorithm. It is to be noted that the algorithm does not take into 

account the correlation between the failure of different bridges. Because of this, 

the results may underestimate the actual connectivity. Nonetheless, the 

algorithm quickly provides a useful estimate. This is a graph search algorithm 

used to solve the shortest path problem in a non-directional graph, with 

non-negative path cost. These results are very helpful for bridge managers and 

government officials in understanding the network status, and can assist them in 

making rapid decisions with regard to distributing the available human and 

material rescue resources to the disaster centre in near-real time, under 

post-earthquake conditions.  

 A Bayesian Network is used to consider the logical interaction between the 

components within the system. The framework incorporates a demand model, a 

capacity model and a fragility function. The uncertainty terms are considered in 
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both the capacity and the demand model. In order to apply the propagation 

scheme for a Bayesian Network with conditional Gaussian distributions to this 

framework, all the variables in the framework are assumed to follow a Gaussian 

distribution. For the variables which do not follow a Gaussian distribution, the 

Mixture of Gaussian (MoG) distribution is used to approximate the probability 

density functions (PDFs).  

 The Monte-Carlo simulation is incorporated into the scheme during the 

procedure for entering evidence. Before an earthquake, the system is initialized 

by calculation of the prior probabilities of bridges being in, or exceeding, a 

specific limit state. After an earthquake, observations of the state of a limited 

number of bridges allow us to update the probabilistic knowledge of the state of 

the other bridges in the stock, and of the network. Again, the results are 

approximate. After processing the observations, the posterior joint probability of 

the random variables may be non-Gaussian. In this thesis, I propose application 

of a Gaussian approximation to the posterior, and of Monte Carlo simulations to 

derive that approximation. Using this framework, the observations on a few 

bridges can be applied to the whole bridge network. I have shown how this 

method could support quick decision making by authorities, as to opening a 

bridge in a post-earthquake situation. The simulation study shows that the 

bridges in the APT stock have a low probability of collapsing, even after a local 

earthquake of magnitude 7.  

 The best path between any two places within the APT network is identified by 

taking account of the mutual correlation in capacity and demand between the 

different bridges in the stock. The result is similar to the approximate method in 

Chapter 3 which uses the sum of specific limit state probabilities as the link 

value. It concludes that the approximate method can be used to identify the best 

path after an earthquake. 

 

Every step presented in this dissertation is part of the systematically organized plan 

in our research group, and there are still many fields needing further improvement 

and study. The quality of the approximations proposed in this thesis has not been 

assessed systematically. The reason is that exact computation is impossible for very 

large networks. The quality of the approximation can only be inferred by the many 

arguments I gave in support. A further research project, currently under way, deals 

with the comparison of the results of the approximation and that resulting by direct 

MC simulation on simple models. 

  

 In Chapter 3 and Chapter 6, the connectivity reliability of the system is 

calculated and the best path is identified. The bridge elements are the only 

vulnerable parts of the network, and the roads between any two bridges are 

assumed never to fail. In future research, the influence of roads and bridge 
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traffic capacities should be considered in the network analysis. 

 In the seismic assessment framework based on Bayesian Networks, the seismic 

demand model is developed using an attenuation function which is highly 

dependent on local site conditions. In this study, the attenuation equation used is 

derived from empirical data from California, while the case studies in this paper 

are refer to bridges in Trentino, Italy; a more sophisticated model for this 

specific region is needed in future research. 

 This paper aims to develop a generic framework for seismic risk assessment, 

designed to support emergency response in a post-earthquake scenario. 

Additional research is needed to extend the Bayesian Network with utility and 

decision nodes for decision support in post-earthquake scenario.  

 In order to apply the methodology described in this study to a practical project, 

the framework must be integrated with the external sources which can supply 

evidence to Bayesian Networks.  

 In this study, all the calculations are carried out using Matlab program. In order 

to present the results to those who are not proficient in Bayesian Networks, a 

user-friendly interface for the program is needed. This program can present the 

probabilistic output in intuitive charts, graphs or curves. 
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Appendix A: Joint distribution for uncertainties in two sites 

 

 

 

The random uncertainties in two sites are given as: 

xx η ε                                               (A.1a) 

yy η ε                                                         (A.1b) 

where ,  are drawn from independent normal distributions with zero mean: 

2

2

1
( ) exp( )

22 ηη

η
f η

σπσ
                                            (A.2a) 

2

2

1
( ) exp( )

22 εε

ε
f ε

σπσ
                                            (A.2b) 

Then the mean values for x and y are:  

0x η εμ μ μ                                                     (A.3a) 

0y η εμ μ μ                                                     (A.3b) 

and the variations for x and y are:  
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2 2 2

x η εσ σ σ                                                       (A.4a) 

2 2 2

y η εσ σ σ                                                       (A.4b) 

Then the probability density functions for x and y are: 

2

2

1
( ) exp( )

22 xx

x
f x

σπσ
                                            (A.5a) 

2

2

1
( ) exp( )

22 yy

y
f y

σπσ
                                            (A.5b) 

Based on the definition of correlation coefficient 

, 2 2

cov( , ) cov( , )

var var
x y

η ε

x y x y
ρ

σ σx y
 


                                      (A.6) 

where 

cov( , ) [( ) ( )]x yx y E x μ y μ     

[ ]E x y   

[( ) ( )]x yE η ε η ε     

2[ ( ) ]x y x yE η η ε ε ε ε       

2[ ] [ ] [ ] [ ]x y x xE η E η E ε ε E ε ε           

2 [ ]η x xσ E ε ε                                                       (A.7) 

If the correlation coefficient between variable x and y are , then  

2

cov( , ) cov( , )

var var

x y x y

ε

εx y

ε ε ε ε
ρ

σε ε
 


                                     (A.8) 
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where  

cov( , ) [( ) ( )] [ ]x y x ε y ε x yε ε E ε μ ε μ E ε ε                                 (A.9) 

So we have  

2[ ] cov( , )x y x y ε εE ε ε ε ε ρ σ                                           (A.10) 

Substituting equations (A.10), and (A.7) into (A.6), we have 

2 2

, 2 2

η ε ε

x y

η ε

σ ρ σ
ρ

σ σ

 



                                                 (A.11) 

For the special condition that the site to site correlation is zero, the total 

correlation coefficient is  

2

, 2 2

ε
x y

η ε

σ
ρ

σ σ
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                                                    (A.12) 
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Appendix B: Earthquake return period 

 

 

 

The earthquake return period, which is also called the recurrence interval, is an 

estimate of the interval of time between earthquakes of a certain intensity. It is used 

to describe the frequency of earthquakes. The longer the return period, the lower is 

the probability of the earthquake.  

If the return period of an earthquake is n years, then the annual probability of 

this earthquake is 1/n. In T years, the probability P of this earthquake follows a 

Poisson distribution:  

TeP 1                                                       (B.1a) 

)1ln(

1

P

T
n





                                               (B.1b) 

If the design life of a structure is 50 years, then 50 years is the basic period. The 

earthquake with 10% exceeding probability is: 

%10P                                                         (B.2a) 

475
)1ln(

1





P

T
n


                                          (B.2b) 

So the return period for this earthquake is 475 years. 

If a structure with a design life of 50 years has a return period of 50 years, then 

the exceeding probability for this earthquake is: 
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%631   TeP 

                                                (B.3) 

In the same way, the return period of a strong earthquake with exceeding 

probability of 2% is 2,475 years.  

If the annual probability of an earthquake follows a Binomial distribution, then 

TP )1(1                                                     (B.4a) 

TP
n

/1)1(1

11


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
                                             (B.4b) 

When T = 50 years, the exceeding probability P is 63%, 10%, and 2% 

respectively, and the return period n is 50.8 years, 475 years, and 2,475 years 

respectively. The results are the same with the calculations based on a Poisson 

distribution.  
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Appendix C: Gaussian random fields 

 

 

 

An N-dimensional random field is a set of random variables Y(x), x ∈ R
N
, which 

has a collection of distribution functions for any number of points 

))(...,,)(( 11 nn yxYyxYF   

Where Y(xi) is the random variable, yi denotes a particular value or outcome of the 

random variable, and xi denotes spatial coordinates.  

 

For a Gaussian stochastic process YG with average yc and dispersion , the 

probability for YG = [y, y+dy] is given by 

dy
yy

dyyP c }
2

)(
exp{

2

1
)(

2

2




  

When the stochastic process concerns an entire region of space, we talk of a 

Gaussian random field. A general random Gaussian field gives the knowledge of 

n-point probability distributions: 

      n

T
N

nn dydydydyyyP ...
2

1
exp2...)...,,( 1

1

1

2
11 

















 



μxΣμxΣ  

where x : [N x 1] is the random variable; 

 : [N x 1] is the mean value vector; 

 : [N x N] is the covariance matrix; 

 

The product of two Gaussian distributions is an un-normalized Gaussian 

distribution: 

Normal(x;a,a)·Normal(x;b,b)  nc · Normal(x;c,c) ; 

where c = ( a
-1

 + b
-1

 )
 -1

 ; 

c = c·( a
-1

·a + b
-1

·b ) ; 

nc = (2)
-N/2

 |c|
1/2

 |a|
-1/2

 |b|
-1/2

 ·… 

… · exp[ -1/2·(  a
T
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-1
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T
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-1
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Appendix D: Monte Carlo simulation 

 

 

 

The Monte Carlo method is also called a statistical simulation method. It is a 

numerical simulation method using random numbers which are random variables 

with a uniform distribution in (0, 1). This method was proposed by Metropolis in the 

Second World War and used in the Manhattan Project. Monte Carlo is the capital 

city of Monaco, and it is famous for its casino. The basic idea of the Monte Carlo 

method is to simulate stochastic processes on the computer, and then undertake 

statistical sampling. Compared with other traditional mathematical methods, it has 

the advantages of intuitiveness and easy computing.  

The Monte Carlo method can be used in many areas. Generally, regarding the 

characteristics of the stochastic process that it incorporates, the applications of 

Monte Carlo method can be divided into two types: deterministic problems and 

random problems. For a deterministic problem, we first built a probability model 

related to the solution, so that the required solution equals the probability 

distribution or expectation of the model. We then generate a random variable, and 

last use the arithmetic mean as the approximation of the solution. Calculating the 

integral and solving linear equations are associated with this type of problem. For 

the second type of problem, we normally use a direct simulation method. The 

following is an application example of the Monte Carlo method. 

Assume f(x) is a continuous function in [0, 1], and 0  f(x) 1. We now need to 

calculate the integral 

1

0

( )I f x dx  which equals the area of the shadow part in fig 

D.1. If we randomly throw point (a, b) into the unit square, the probability that point 

(a, b) is under the curve y = f(x) is: 

1

0

{ ( )} ( )P y f x f x dx I    D



 
 

Impact of Seismic Vulnerability on Bridge Management Systems          

 160 

The procedure for approximate results using the Monte Carlo method is the 

following:  

Step1: generate two groups of random number xi, yi, i=1, 2, ..., N within the 

range [0, 1], and use [xi, yi] as the coordinates of point [a, b]; 

Step2: for every pair of coordinates [xi, yi], if yi  f(xi,), then record one time. 

Assume that there are n times that coordinates [xi, yi] are under the curve y = f(x) 

in N times test, then n /N approximately equals the probability that point (a, b) is 

under the curve y = f(x), which is also the integral result I.  

( )y f x

0 1 

1 

y

x

 

Fig. D.1 The integral of f(x) using the Monte Carlo method 
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Appendix E: How to consider the correlation between global variables 

 

 

 

Suppose we have 3 sets of evidence and for each set there are N = 1,000 simulations. 

Then we have 1,000 mean vectors and 1,000 covariance matrices for the global 

variables.  

Evidence 1: For each simulation, we can generate m (e.g. m=10) sample vectors 

based on the corresponding mean vector Vi and a covariance matrix Mi. So we can 

collect Nm samples (1,00010=10,000), Then compute the sample mean and 

covariance matrix, and take them as parameters for the posterior.  

For evidence 2, we can use the posterior of the global variables as the new prior 

input, and repeat the procedures in evidence 1. In this way we obtain the new 

posterior of the global variables.  

In the same way, all the sets of evidence are entered and incorporated into the 

framework, and all the global variables are updated.  
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