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Abstract: This paper explores new sensor technologies and their integration within Connected Au-
tonomous Vehicles (CAVs) for real-time road condition monitoring. Sensors like accelerometers,
gyroscopes, LiDAR, cameras, and radar that have been made available on CAVs are able to detect
anomalies on roads, including potholes, surface cracks, or roughness. This paper also describes
advanced data processing techniques of data detected with sensors, including machine learning algo-
rithms, sensor fusion, and edge computing, which enhance accuracy and reliability in road condition
assessment. Together, these technologies support instant road safety and long-term maintenance
cost reduction with proactive maintenance strategies. Finally, this article provides a comprehensive
review of the state-of-the-art future directions of condition monitoring systems for traditional and
smart roads.

Keywords: advanced sensors; Automated Connected Vehicles (CAVs); road monitoring systems;
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1. Introduction

Road condition monitoring is essential to enhance traffic safety and prevent accidents.
According to the World Health Organization, about 1.35 million people die annually from
road traffic crashes [1], many of them because of bad road conditions: potholes, wet
or icy surfaces, and debris. Thanks to the advanced sensor technologies in Automated
Connected Vehicles (CAVs), these hazards can be detected and signals issued to the driver,
significantly reducing the chances of an accident. An autonomous vehicle depends on
accurate information about road conditions for modifications in driving behavior, which
contributes to improving control and stability on various surfaces. According to the
National Highway Traffic Safety Administration (NHTSA) report, almost 22% of vehicle
crashes in the United States are attributed to road-condition-related issues; this means that
effective monitoring systems are critical for this technology [2].

In addition to guaranteed safety, monitoring the road conditions contributes much
to traffic efficiency and maintenance practices. Real-time monitoring allows traffic to be
rerouted through traffic management systems from the areas of trouble; thus, reduced
congestion is achieved with better traffic flow. According to the Texas A&M Transportation
Institute, congestion costs the U.S. economy over USD 166 billion annually from lost pro-
ductivity and fuel waste [3]. Informed by continuous monitoring, road maintenance can
be efficient enough to extend the lifespan of infrastructure and simultaneously cut main-
tenance costs. For example, the Federal Highway Administration reports that preventive
maintenance can save up to USD 10 in future repair costs for every USD 1 spent [4]. Priori-
tization of repairs with the correct data will allow for the proper allocation of resources in
municipalities, ensuring better and safer travel for everybody.

The concepts of “sensor technologies” and “road monitoring” have been of great inter-
est for many years now, as highlighted by the Google Trends time series (Figures 1 and 2).
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However, road monitoring has seen growing interest starting from 2021 (Figure 2). Instead,
the concentration of “connected vehicles” has undergone ever-increasing growth in the last
decade, starting from a score of 20% in 2014 up to a score of 100% in 2024 (Figure 3). These
time series show a generalized community interest in new mobility technologies and the
application of sensors to road monitoring.
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The main contributions of this work are fourfold. It will first explain what a connected
vehicle is and its place in today’s transportation system. Second is a critical review of the
various sensor technologies placed on connected vehicles for monitoring road conditions;
this includes details on how the sensors could be applied to intelligent transportation sys-
tems, enabling better road safety, traffic efficiency, and infrastructure maintenance. Third,
this study delves into the practical applications of sensor technologies such as pothole de-
tection, surface classification, weather impact assessment, crack detection, road roughness
measurement, lane detection, and traffic sign recognition. This further helps to establish
how applications improve real-time road monitoring, leading to proactive maintenance
and efficient traffic management. Finally, this work elaborates on the challenges and lim-
itations in deploying sensor technologies such as sensor accuracy, data fusion, real-time
processing, power consumption, and regulatory issues. This paper discusses the possible
solutions and directions to solve these challenges, setting a future path for developing such
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road condition monitoring systems and their incorporation into practical and sustainable
implementations within connected vehicles.

2. Terminology and General Concepts

Connected vehicles: The term connected vehicles, which are also sometimes called
intelligent or smart vehicles, refers to an automobile that is equipped with internet con-
nectivity and a range of different sensors, hence allowing it to communicate with others
of its kind (vehicle-to-vehicle or V2V), with infrastructure (vehicle-to-infrastructure or
V2I), and with everything else—including pedestrians and network services—through
the vehicle-to-everything or V2X concept. These vehicles are provided with advanced
communication technologies of dedicated short-range communications (DSRC) or cellu-
lar networks—4G/5G and satellite systems—to share real-time data among each other
and increase the driving experience and safety [5]. When brought into the IoT and edge
computing frameworks, CAVs are further integrated for the desired development of in-
telligent transportation systems. They enable policy-making at a global traffic level and
decision-making at the local level to increase traffic flow and reduce travel times [6,7]. The
functionalities of connected vehicles are numerous and multifaceted but the most important
ones include the following.

Real-time traffic information: Real-time traffic information on connected vehicles is one
of the critical steps in transportation technology toward safe and efficient systems. Realized
through the technologies of V2V (vehicle-to-vehicle) and V2I (vehicle-to-infrastructure),
drivers receive real-time traffic data to adjust their routes automatically, reducing conges-
tion. In this context, integrating such data for real-time traffic management ensures precise,
accurate, and timely decision-making toward mitigating traffic jams and optimizing travel
time. Research has shown that these systems can significantly increase traffic flow efficiency
and decrease road transportation’s environmental burden by reducing delay times and fuel
consumption [8–10]. Further, real-time traffic information has significant economic benefits
because lower congestion implies lower transportation costs and higher productivity [11].
With the maturation of technology, further extensive optimization in traffic and urban
mobility management becomes more feasible than ever.

Enhanced safety features: Enhanced security characteristics are realized in the con-
nected vehicles through the sharing of real-time information with other vehicles (V2V),
infrastructure (V2I), pedestrians (V2P), and networks (V2N). This is through the use of
V2X—vehicle-to-everything communication technologies. The widespread communication
ensures maximized situational awareness and detection of hazards, therefore averting
accidents and increasing road safety. V2V communications mean data sharing between
vehicles associated with critical information such as speed, position, and direction, which
is highly relevant for crash avoidance [12]. Connected vehicles also promise enhanced
pedestrian safety through V2P communications, which makes the drivers aware of the
movement of a pedestrian even outside his line of sight, further reducing the risk of acci-
dents in urban environments [13,14]. Equally important is the optimization of traffic flow
and reduction in congestion to further reduce risks of accidents—such as the associated
sudden stops and erratic driving behaviors—through intelligent traffic management via
V2I communication. In other words, the changes clearly prove how connected vehicle
technology is transforming road safety in terms of smart and vastly safer transportation
systems [14,15].

Remote diagnostics and maintenance: Based on advanced telematics and IoT technologies,
remote diagnostics and maintenance for connected vehicles carry out real-time monitoring
and management of the vehicle’s health and performance. This helps to read the possibility
of problems beforehand, thereby reducing failure cases while optimizing the maintenance
schedule. Recent studies have shown that through data collected from various vehicle
sensors, these remote diagnostic systems can predict possible failures and schedule main-
tenance as needed to enhance vehicle uptime and reliability even more [16,17]. Further
research shows that machine learning algorithms are embedded in the analysis of big data



Sustainability 2024, 16, 8336 4 of 27

that emanates from such connected vehicles for more accurate diagnostics and predictive
maintenance [18,19]. Recent research has proven that these systems, due to their increase in
operational efficiency, cut costs significantly by minimizing unscheduled maintenance and
downtime [20]. These advanced studies depict a new change in the automotive industry
for efficient and reliable transportation.

Autonomous driving support: Real-time data processing, using machine learning al-
gorithms and communication networks, enhances independent driving support for au-
tonomous vehicles by allowing them to operate in complex environments and be able to
interact with all the surrounding infrastructure. Recent studies found that autonomous
driving systems enable the use of advanced sensors and real-time data analytics to enhance
situational awareness and safety [21–23]. Furthermore, research emphasizes the contribu-
tion of deep learning and artificial intelligence to improving accuracy and dependability in
autonomous navigation systems [24,25]. Further studies also show that V2X (vehicle-to-
everything) communication frameworks play a vital role in enabling autonomous vehicles
to interact with traffic lights, other vehicles, and pedestrian systems for a safe, integrated
driving environment [25,26]. In sum, these innovations in automated driving help under-
line the transformable effect of connected vehicle technologies in modern transport.

Infotainment and convenience services: The connectivity systems in connected vehicles
are taking the experience of driving to an entirely new, different level by pushing the bars
of comfort, entertainment, and communication mobility to unimaginable levels. These real-
time data and cloud connectivity systems give drivers and their passengers a complete suite
of offerings, from streaming entertainment and navigation help to seamless integration
for smartphone services. The basis of these systems lies in recent research that brings
modern data analysis and machine learning for the sake of individualized content and
recommendations based on the user’s preferences and driving patterns. More research is
inclined toward robust communication networks and the Internet of Things, thus making
these services reliable and secure, with users enjoying seamless connectivity with updates
up to the minute [6,27–29]. Even more, new research insights show the integration of the
infotainment systems into the greater infrastructure of smart cities in order to bring the
experience of context-aware information and services [30,31]. All these advances ensure
that the driving experience is pleasurable, convenient, and utterly connected, fitting with
the developments happening in the automotive industry.

A connected vehicle is a significant element in advanced transportation systems that
seek to improve road safety and traffic efficiency and reduce environmental footprints.
Connected vehicle applications within intelligent transportation systems will allow for more
harmonized and efficient road operations. Another example is being able to optimally time
the traffic signals and tune the speed limits dynamically by the real-time traffic situation,
which would subsequently significantly reduce traffic congestion and associated emissions
using connected vehicles. Citing Jing et al. 2017, it reduces delays and fuel consumption
by 5–10% [32]. Additionally, connected vehicles contribute to a safer transport ecosystem
by providing the potential for more timely and informed interventions in safety-critical
situations. Connected and automated vehicle (CAV) technologies are projected to reduce
crashes by approximately 57.97% [33]. Moreover, they are necessary to drive smart cities:
integrated data from all possible sources, of which one is connected vehicles, help cities
improve urban mobility and the quality of life [34].

In summary, connected vehicles will have advanced functionalities. They will be
integrated into modern transportation systems, including Smart roads, transforming the
individual driving experience and contributing to more widespread societal goals of safety,
efficiency, and sustainability.

3. Review of Sensor Technologies in CAVs

Connected and Automated Vehicles (CAVs) are based on different advanced sensor
technologies (cf. Table 1 and Figure 4) to control the traffic environment and achieve safe
operation. The suite of sensors used is likely to comprise accelerometers, gyroscopes,
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LiDAR cameras, radar, and others helping detect pavement anomalies like potholes, cracks,
and rough surfaces based on real-time data processing. This section will not address the
functioning of every sensor in great detail but rather summarize its roles and functions
within CAVs with an overall emphasis on safety and environment monitoring.

Table 1. Review of sensor technologies.

Sensor Type Functionality Application

Accelerometers Measure forces of acceleration, vehicle
dynamics, motion

Electronic stability control, airbag
deployment, predictive maintenance

Gyroscopes Determine angular velocity, navigation
stability, control

IMUs in navigation systems, stability
control, ADAS

LiDAR Create high-detail environment maps,
advanced object detection

Collision avoidance, navigation,
urban environments

Cameras (Optical Sensors) Visual information, navigation, object
perception, decision-making

Object recognition, lane detection, traffic
sign recognition, traffic flow

measurement, pavement distress analysis

Radar Sensors Object detection and tracking,
all-weather operation

Adaptive cruise control,
collision avoidance

Ultrasonic Sensors Short-range detection, parking aid,
collision mitigation

Urban areas, slow-speed
vehicle detection

Infrared Sensors Object detection and monitoring in low
light/adverse conditions Enhanced detection at night or in fog

Microphones (Acoustic Sensors) Noise cancellation, detection of vehicle
proximity and obstacles

ADAS, hands-free functionality,
voice commands

Temperature Sensors Regulate thermal conditions for proper
operation and safety

Engine, battery, cabin
temperature management

Humidity Sensors Detect moisture, prevent
corrosion/mold/electrical failures

Battery health, HVAC
system maintenance

Magnetometers Measure magnetic fields for guidance
and orientation

Reliable navigation data, urban
canyon environments

Piezoelectric Sensors Convert mechanical energy into electrical
signals, monitor vibrations/pressure

Energy harvesting, real-time monitoring,
predictive maintenance

Strain Gauges Measure mechanical strain, monitor
stress and deformation

Chassis, suspension systems,
gearbox monitoring

Vibration Sensors Monitor mechanical and
road-induced vibrations

Engine, suspension,
drivetrains monitoring

GPS (Global Positioning System) Sensors Collect location data, navigation,
fleet management Real-time tracking, route optimization

Electromagnetic Sensors Object detection, collision avoidance,
autonomous navigation

Enhanced detection in varied
driving conditions

Proximity Sensors Identify proximity of entities to
minimize collisions Parking assistance, blind-spot detection

Tire Pressure Monitoring Sensors Send real-time data of tire pressure,
prevent blowouts

Optimize vehicle functionality,
tire maintenance

The bottom line is, vehicle dynamics—acceleration forces/vibrations and motion—
need to be monitored. This makes it highly compact and precise with the advantage of
MEMS (Micro-Electro-Mechanical Systems) technology, which reduces power consumption.
For example, the systems responsible for the electronic stability control and predictive main-
tenance of vehicles are dependent on a fast H2H bus to enhance performance and comfort
levels [35–37]. Another important sensor type, the “gyroscope”, measures angular velocity
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and helps maintain an accurate positioning of the vehicle, including support through auto-
follow features (by twisting your neck) and stabilization. These sensors, particularly those
based on MEMS devices [38], are part of systems such as inertial measurement units (IMUs)
to improve navigation and safety, specifically in critical situations like accidents [39,40].
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LiDAR sensors offer detailed 3D environmental maps of current market demands,
which are necessary for object detection and collision avoidance in complex environments
as well as navigation. These complement other sensors, especially when vulnerable vision-
based sensors fail—e.g., in the presence of poor lighting or occlusion [40–43]—by emitting
laser beams to form high-definition maps. Cameras achieve the same with visual infor-
mation, providing object recognition abilities as well as identifying everything from lanes
to other objects around them. Nevertheless, they can be impaired by adverse weather
conditions and, therefore, operate in a more performant way when combined with the use
of other sensor systems such as radar or LiDAR [41,44–47].

Radar sensors detect objects reliably under all weather conditions as they determine
distances and speeds in driving directions by radio waves. Radar is also more useful
when environmental factors like rain and fog decrease the effectiveness of other sensors.
It is used commonly in functions like adaptive cruise control, blind spot detection, and
collision avoidance. Ultrasonic sensors, on the other hand, are typically used for short-
range detection like parking assistance and slow-speed collision mitigation. Practical and
low-cost sensors [46,48–51] have been implemented in urban scenarios.

Object detection is vital and can be achieved more accurately using infrared sensors
compared to traditional sensors, especially in low-light conditions or advancing weather.
Infrared sensors detect thermal radiation and thus can work well at night or in fog. Together
with algorithms such as YOLO-FIRI, these sensors enable superior vehicle detection and
safety when used in a larger sensor fusion context of CAVs [52–54]. A lot of this work is
now centered around the use of sound waves for obstacle identification and proximity
assessments through acoustic sensors or microphones. They are also employed for applica-
tions providing hands-free features and voice-activated systems, improving the safety of
drivers and decreasing distraction between operations [55,56].

Temperature and humidity sensors regulate the thermal and moisture conditions of dif-
ferent parts like the engine and battery in vehicles. In harsh environment applications, they
provide extra protection against overheating and corrosion or failure due to electrical break-
down through the integrated sensors. Advanced CMOS-based temperature sensors are
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integrated into CAVs and their enhancements for reliable, predictive maintenance [57–62].
Magnetometers measure a magnetic field and are necessary for navigation, particularly
when GPS is weak or unavailable [63–65].

The third type of sensor monitors the mechanical data like vibrations, stress, and
pressure on the vehicle components, which includes piezoelectric sensors and strain gauges.
By using these sensors, real-time structural health monitoring and predictive maintenance
can be performed that helps prolong vehicle life and reduce unscheduled repairs. Energy
harvesting is one of the most important concerns in CAVs, and piezoelectric sensors
are capable devices for this goal [66–73]. These are further complemented by vibration
sensors, capable of detecting incipient mechanical failures in critical components such as
engines and drivetrains [74,75], whereas GPS-enabled location tracking becomes useful
for navigation and fleet management operations, providing real-time positional data with
a high degree of precision [76] or broad accuracy range, respectively [77]. They provide
real-time location and smart routing, which improve transport efficiency and security.
Moreover, the integration of GPS with inertial measurement units makes it even more
accurate, particularly in places like urban canyons that face signal obstruction. Further,
together with VIA communication devices, GPS sensors are also used to regulate traffic
flow and avoid occurrences by enabling critical position data exchange between vehicles
(V2X) [12,77,78].

Electromagnetic sensors contribute to CAV safety by detecting object distances, en-
abling collision avoidance, and supporting autonomous navigation. These sensors are
increasingly being integrated with LiDAR and radar to enhance detection performance
under various conditions. Like GPS, electromagnetic and proximity sensors are also in-
tegrated with V2X systems, boosting situational awareness and traffic flow by sharing
real-time information between vehicles and infrastructure. Proximity sensors, using ultra-
sonic, infrared, or capacitive technologies, ensure close-range object detection, crucial for
tasks like parking assistance and blind-spot detection. Tire Pressure Monitoring Sensors
(TPMS) further enhance vehicle safety by continuously monitoring tire pressure, preventing
accidents caused by underinflated tires and improving fuel efficiency [26,47,54,60,79–83].

4. Road Condition Monitoring
4.1. Data Processing Techniques and Algorithms for Road Condition Monitoring

Road condition monitoring is considered one of the most important subjects in intelli-
gent transportation systems concerning CAVs. When integrated with advanced techniques
and algorithms, the availability of advanced sensor technologies allows for online road
condition monitoring and analysis. This section focuses on the techniques and algorithms
used to process the data from the sensor for the assessment and accurate monitoring of
road conditions (Table 2).

A. Signal Processing Techniques

(a) Filtering and noise reduction are significant operations for the improved mon-
itoring of road conditions by CAVs. Advanced filtering techniques, such as
Kalman filters, help minimize the effect of sensor noise and environmental
disturbances to increase real-time data reliability [84]. Several important im-
provements have been noted using these methodologies for detecting road
anomalies, leading to better safety and operational efficiency [85]. Integration
with machine learning-based noise reduction algorithms would refine the data
by detecting relevant signals against background noise. Such advanced filter-
ing techniques are required to make autonomous vehicle systems robust under
different road conditions [86];

(b) Feature extraction: More recently, the process applied to CAV monitoring is
based on feature extraction—road anomaly detection and classification. It
involves potholes, cracks, surface wear, etc. The techniques applied include
the dimension reduction and feature extraction of meaningful patterns out of
large datasets using Principal Component Analysis (PCA) and Independent
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Component Analysis (ICA) [87]. Any of the given deeper learning methods,
notably Convolutional Neural Networks, will perform very well for this kind
of work because of their feature extraction power, which can accurately rec-
ognize irregularities in the road surface more or less in real-time [88]. These
techniques allow autonomous vehicles to make intelligent decisions in adapta-
tion to dynamically changing conditions of the roads for safety and smooth
driving experiences.

B. Machine Learning and Artificial Intelligence

(a) Supervised learning: Supervised learning algorithms have been utilized with
SVMs and RFs through the use of labeled datasets that make it possible for the
autonomous vehicle to detect the conditions of roads and make well-informed
decisions. Several researchers have shown the effective use of SVMs for pot-
hole and crack detection and high accuracy in robust diversifying textures
of road classification with RFs [89,90]. Constant fine-tuning of supervised
learning models ensures that autonomous vehicles react well to all types of
road conditions, increasing their efficiency [91];

(b) Unsupervised learning: In detecting patterns from road condition data with-
out labels on their datasets, unsupervised learning techniques are hence very
important since labeled data might not always be available. Clustering tech-
niques like the K-means and DBSCAN have been implemented to detect and
categorize road anomalies using data collected by vehicle sensors. Research
has shown K-means to be effective in classifying road surface irregularity
types [92], whereas Zhao et al. (2022) have also demonstrated that DBSCAN
can perform outlier detection pointing toward road damage. More recently,
using autoencoders for road surface reconstruction, any new deviation from
the norm can be detected [93]. An unsupervised learning approach, combined
with continuous data collection, allows the autonomous vehicle to learn and
adapt to new road conditions, thereby further increasing operational robustness;

(c) Deep learning: Using mainly CNNs and RNNs, deep learning has furthered
road condition monitoring to the point where autonomous vehicles can make
meaning from complex high-dimensional sensor data. For example, CNNs
have been proven very good at feature extraction from visual inputs, and that
allows great accuracy in identifying potholes and cracks on the roads [94,95].
RNNs are a type of network designed to handle sequences of data suitable
for prediction of the state of the road, given historical data [96]. By fusing
this knowledge with the deep learning model through real-time sensor data,
self-driving vehicles constantly monitor and adapt to the changing conditions
of the road, becoming safe and increasingly more efficient when actually
deployed [97].

C. Data Fusion Techniques

(a) Multi-sensor data fusion: The sensors used in recording the road conditions for
CAVs remain a crucial issue that will require initiative to improve its accuracy
and robustness. Fusing the data from sources such as LiDAR, cameras, and
accelerometers will give a very descriptive environment of the road. Previous
work has shown that combining the LiDAR data with data obtained from
cameras greatly improves the detection of anomalies on the surface [98]. The
relevance of the information applied helps add more information that might
help identify potholes and bumps [99]. Additionally, the sensor fusion helps
reduce false positives and improves real-time decision-making [47]. Thus, the
research studies above stress the importance of multi-sensor data fusion in
designing an autonomous system that would work safely and efficiently under
different road conditions;
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(b) Contextual data integration: This has led to real-time sensor data being inte-
grated with monitoring road conditions in CAVs, along with other contextual
data, such as weather conditions and traffic patterns at any given instant, in-
cluding historical road maintenance records. Indeed, recent studies showed
that integrating weather data into a model greatly improves the accuracy of pre-
dicting road conditions, particularly under adverse conditions [87]. Similarly,
other reports showed that integrating traffic flow information also improved
predictions of road wear and potential hazards [100]. In addition, Soprayoga
et al. (2020) [101] further validated the usefulness of historic maintenance
records for spotting locations subject to repetitive problems [102]. This can be
achieved by incorporating contextual information to give the most holistic and
accurate perception of road conditions for the safe and efficient navigation of
vehicle routes [103].

D. Predictive Analytics

(a) Time-series analysis: Probably one of the most key predictive analytics to
monitor road conditions in autonomous vehicles would be time-series analysis.
This provides for extracting patterns and trends from historical data, projecting
these into the future, making it possible to predict road conditions. The litera-
ture has identified that ARIMA is efficient in predicting vehicle velocity and
road gradient [104]; on their part, Staudemeyer and Morris (2019) explained
that LSTMs are actually good models for sequential data as they capture long-
term temporal dependencies. They introduced a variable-neuron-based LSTM
for enhanced modeling of long-term dependencies that can be applied directly
or with minor modifications to road-wear data modeling [101]. Incorporated
time series analysis and real-time sensor data give added accuracy to predic-
tion in road conditions, hence allowing proactive maintenance and safety [105].
Integrating these techniques, autonomous vehicles’ operational performance
adjustments to the changing road conditions will be implemented in the most
efficient and safest manner possible [106];

(b) Anomaly detection: The anomalous condition of the road condition needs to
be detected to recognize sudden changes so that the autonomous vehicle can
react promptly on encountering a hazard [107,108] illustrated an application
of One-Class SVM for the detection of anomalies in road surface data and
Isolation Forests, respectively. Applications of deep learning methods, particu-
larly autoencoders, have recently shown huge potential in the identification
of subtle anomalies that traditional methods might miss [109]. Integrating
these advanced anomaly detection techniques with multi-sensor data fusion
strengthens an autonomous vehicle’s ability to detect and adapt to road irregu-
larities in real-time [110]. Within the proactive functioning provided by this,
anomaly detection assumes a big role in ensuring safe and reliable operation
for autonomous vehicles.

E. Edge and Cloud Computing

(a) Edge computing: This improves the efficiency of monitoring road conditions in
CAVs. It also enhances responses; therefore, the number of data transmissions
made with processing at the edge of the network reduces latency for better real-
time decision-making. Instantaneous anomaly detection and response in smart
transportation allows for the improvement of traffic safety [111]. The edge
computing architecture in connected vehicles processes information locally,
reducing bandwidth requirements and supporting system scalability [112].
Edge computing increases autonomous systems’ resilience by providing guar-
antees of continuity of operation in areas with poor connectivity [113]. Finally,
the integration of machine learning algorithms on edge devices offers more
precision and reliability in road condition assessment [114];
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(b) Cloud computing: This is a powerful system under the umbrella of cloud
computing, responsible for processing and analyzing the enormous data gen-
erated by CAVs, with monitoring mechanisms provided for road conditions.
Grouped data are further processed efficiently through cloud systems, which
bring into play computational resources that may integrate traffic and weather
data to help in the prediction of road conditions more accurately [115]. Se-
cure aggregation and global model parameter updates on the aggregated data
are conducted on cloud servers, thus ensuring that autonomous systems are
updated in real-time with the most recent road condition insights [116]. In
addition, cloud computing can provide secure and effective collaborative shar-
ing of data in the Internet of Vehicles (IoV) so as to increase the collective
decision-making powers for autonomous vehicles [117].

F. Cooperative Algorithms

(a) Cooperative perception: Cooperative perception is an awareness-sharing pro-
cess between several CAVs in order to enhance monitoring of the road condi-
tion. Pooling sensor data allows for a better understanding of the environment
for more clarity. For instance, based on soft actor-critic, cooperative perception
models further increase the sensing range for connected vehicles to increase
the sensitivity of road hazard detection [118]. Cooperative perception that
integrates data from different sensors and infrastructure enhances situational
awareness, which is quite useful in urban environments with complex sur-
roundings [119]. Adaptive weighting in V2V cooperative perception further
betters real-time response and lessens the impact of variability in communi-
cation on situational awareness [120]. Cooperative perception augments the
robustness and reliability of autonomous vehicle networks by enabling im-
proved awareness of vulnerable road users and safe interaction under varying
traffic conditions [121];

(b) Swarm intelligence: This system employs the principles of collective behavior
observed in natural systems such as ant colonies and bird flocks, ensuring op-
timizations in road-condition monitoring by CAVs. That is to say, autonomous
vehicles can monitor and respond to road conditions collectively using decen-
tralized, self-organizing algorithms. Other studies have found that swarm
intelligence algorithms enhance the robustness of intrusion detection systems
due to the ability of distributed data processing that enables the real-time
detection of anomalies in autonomous vehicles [122]. The models in swarm
intelligence are categorized on the basis of fault tolerance and adaptability
because these are the two preeminent features that a dynamic and unpre-
dictable environment should possess [123]. Moreover, swarm intelligence
in IoT-based smart city applications supports real-time decision-making and
resource allocation, especially for systems that monitor road conditions [124].
Swarm intelligence algorithms offer the possibility to converge robust solu-
tions in real-time, while data fusion supports enhanced system reliability [125].
These results suggest the potential of swarm intelligence for revolutionizing
autonomous vehicle operations toward building more robust, scalable, and
adaptive monitoring systems. In conclusion, these new techniques and algo-
rithms make it possible for connected vehicles to monitor, analyze, and react
to real-time road situations. In fact, the application of such sensor technologies
with advanced data processing will facilitate a real revolution in intelligent
transport systems.
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Table 2. Main techniques and algorithms for road condition monitoring.

Category Techniques/Algorithm Functionality Application References

Signal Processing Techniques

Kalman Filters
Filtering and noise
reduction, increase

real-time data reliability

Detecting road anomalies,
better safety and

operational efficiency
[84–86]

Principal Component
Analysis (PCA)

Feature extraction,
dimension reduction

Road anomaly detection
and classification [87]

Independent Component
Analysis (ICA)

Feature extraction,
meaningful

pattern recognition

Road anomaly detection
and classification [87]

Machine Learning and
Artificial Intelligence

Support Vector
Machines (SVMs)

Classification of road
anomalies and

surface conditions

Detecting potholes and
cracks with high precision [89–91]

Random Forests (RFs) Robust classification of
various road textures

Classifying various road
textures accurately [90]

K-means Clustering Detect and categorize
road anomalies

Distinguishing between
different types of road
surface irregularities

[92]

DBSCAN Detect outliers indicative
of road damage Detecting road damage [93]

Autoencoders
Reconstruct road surfaces
to identify deviations from

the norm

Identifying deviations
from the norm, enhanced

anomaly detection
[93]

Convolutional Neural
Networks (CNNs)

Feature extraction from
visual inputs, detect

road anomalies

Detecting road anomalies
such as potholes

and cracks
[94–99]

Data Fusion Techniques

Multi-Sensor Data Fusion
Integrate data from

various sensors for a com-
prehensive understanding

Improved detection of
road surface anomalies [97–99]

Contextual Data
Integration

Combine real-time sensor
data with

contextual information

Enhanced road condition
predictions under
adverse conditions

[87,100–102]

Predictive Analytics
ARIMA Time-series analysis for

predictive analytics
Predicting vehicle velocity

and road gradient [103–106]

One-Class SVMs Anomaly detection in road
surface data

Identifying unexpected
changes in road conditions [107–110]

Edge and Cloud Computing

Edge Computing Real-time data processing
at the edge of the network

Instantaneous anomaly
detection and response [111–114]

Cloud Computing
Efficient processing and
analysis of vast amounts

of data

Enhanced road condition
monitoring

and predictions
[115–117]

Cooperative Algorithms

Cooperative Perception
Data sharing among

vehicles for enhanced
road monitoring

Enhanced detection
accuracy of road hazards [118–121]

Swarm Intelligence

Decentralized,
self-organizing
algorithms for

collaborative monitoring

Collaborative monitoring
of road conditions [122–125]

4.2. Applications of Sensor Technologies in Road Pavement Condition Monitoring

Road Condition Monitoring (RCM) systems are typically classified into two very
different types: destructive testing, which requires the removal of pavement samples to
carry out specific laboratory tests; and non-destructive testing (NDT), which allows the
pavement to be examined in situ without altering its configuration in any way.

Advanced sensor technologies have been integrated into next-generation vehicles, and
various practical applications are in the field of road condition monitoring with the NDT
approach. The areas of application are meant to ensure safety, efficiency, and the general
driving experience by providing real-time data and analysis of the most common pavement
distress (Figure 5). This section now gives some of the key applications of road pavement
monitoring (Table 3).
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A. Pothole Detection

Pothole detection in road condition monitoring is of great importance to CAVs; there-
fore, many sophisticated techniques are applied to enhance the accuracy and reliability
of the process. One of the technologies largely used for its efficiency in processing and
interpreting visual data is Convolutional Neural Networks, which has shown leading
performance in pothole identification [126]. The fusion of LiDAR with the accelerometer
data increases the detection and classification of irregularities, bringing 3D insight into
consideration for higher levels of accuracy [127]. The fusion of the accelerometer and
video data further improve the reliability and accuracy of the detection process, thereby
reducing false-positive results [128]. In this regard, edge computing ensures real-time
pothole detection to guarantee immediate actions with low latency and high operational
safety [129]. These studies have collectively emphasized the effectiveness of machine learn-
ing, multi-sensor integration, and edge computing in the development of sophisticated
and reliable pothole detection systems. They are crucial for furthering autonomous vehicle
technology in sustaining road safety and quality.

B. Surface Classification of pavement damages

Surface classification is therefore of great importance to monitoring road conditions for
CAVs, thus improving their safety and operational efficiency. Next-generation distributed
sensors and vision-based artificial intelligence methodologies evaluate pavement distress
by the measured data, their classification, and localization for improving the effectiveness
of developed models in real-world applications [87]. It was shown that ensemble learning
techniques give much better quality in the prediction of road surface quality from the
data collected [130]. In accordance with the above, Jahromi et al. [131] presented a hybrid
configuration of a camera, LiDAR, and radar sensors optimally configured for each fusion
approach. Compared to benchmark models, this new architecture ensured better accuracy
in road detection while keeping real-time efficiency. Furthermore, the ability to design a
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new deep learning concept allowed for the construction of a convolutional neural network-
based road classification network, namely RCNet. This has been proven to work with
great performance and accurate classification of road surfaces, even in the most complex
road environments [132]. This definition is pushing forward the boundaries in our quest
for fully autonomous driving systems and opens the doors to safer and more efficient
transportation networks.

C. Weather conditions

CAVs equipped with advanced sensor technologies and deep learning algorithms are
on the cutting edge for detecting icy road conditions. Using Long Short-Term Memory
Networks, such devices analyze real-time data from vehicle sensors and predict pavement
states: 100% for dry, 99.06% for snowy, and 98.02% for icy. This proactive detection system
enables vehicles to modify driving parameters, significantly reducing accident risks and
improving the overall road safety environment during such severe weather conditions [133].
Sensor technologies within connected vehicles greatly enhance the monitoring of road
conditions with respect to weather changes. Such systems are also able to classify road
surface conditions that have been influenced by the weather through deep convolutional
neural networks, such as Inception-v3, GoogLeNet, and SqueezeNet. The optimization
in performance of these networks was designed to focus on regions of interest with high
precision identification for wet, icy, or snow-covered roads. This advanced classification
helps make real-time decisions, improving vehicle safety and adaptability in adverse
weather conditions [134]. The application of the methods provided by the deep learning of
convolutional neural networks allows systems to classify road surfaces under the influence
of adverse weather, such as rain, snow, and ice. Such a classification, supported by data
fusion from multiple sensors, makes real-time traffic management and vehicle safety more
effective by providing timely and precise information on the current state of the road
and enabling better driver and autonomous system decision-making [135]. Systems using
deep learning techniques such as YOLOv7 with Enhanced Super-Resolution Generative
Adversarial Networks (ESRGAN) are used to enhance images before object detection is
degraded by adverse weather. This hybrid approach increases detection accuracy to around
80% under challenging conditions, enabling the benefits of better decision-making and
safety of autonomous vehicles [136].

D. Pavement Crack Detection

The sensor technology in CAVs has substantially contributed to the monitoring of road
conditions and the technologies related to crack detection. Digital image processing, along
with machine learning approaches, provides a real-time sensing capability for detecting
cracks on road surfaces. When integrated with advanced algorithms, high-resolution
cameras offer better accuracy in detection, allowing maintenance work to be performed
in real-time. This guarantees road safety and prolongs the life of infrastructure [137]. In
addition, deep learning and CNNs are advanced image-based methodologies capable
of detecting and analyzing cracks correctly in real-time, thus saving time in detection
and maintenance work due to improved accuracy and reduced human errors [138]. Using
ConvNets with a learning context flux field allows the detection of minute cracks at the pixel
level, even when the background is complicated. This further enhances precision in the
identification of road cracks for timely repair and safety. Context flux field applies spatial
context in the encoding of the relative position of crack pixels, performing better in detecting
varied crack widths than traditional methods [139]. There is a recent improvement in
combining INS with autonomous vehicles, which helps in the collection of vehicle altitude
change data by combining acceleration sensors, gyroscopes, and GPS. The data are further
processed to classify the road condition with a high level of precision in machine learning,
yielding an F1 score of 99.61% [140]. In addition, based on advances in semiconductor
technologies and wireless sensor networks, the cracking information, in terms of area and
depth, could be automated by 3D reconstruction through stereoscopic analysis to improve
efficiency and accuracy in road inspections [141].
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E. Pavement Roughness Measurement

Sensor technologies should be employed in CAVs as they are essential for monitor-
ing pavement roughness, particularly for crack detection. The CRSM (Crowdsourcing-
based Road Surface Monitoring) system utilizes low-end accelerometers and GPS devices
mounted on vehicles to record vibration patterns and location data. This information is
processed through a lightweight data mining algorithm to identify anomalies in the road
surface and transmit potential crack information to a central server. Applied to 100 taxis
in Shenzhen, CRSM achieved a 90% success rate in identifying road potholes, proving its
effectiveness in real-time road roughness measurement [142]. Onboard dynamics sensors
embedded in connected vehicles capture vibration and motion data to assess road surface
conditions. Advanced signal processing and machine learning techniques enable the ac-
curate identification of road roughness and cracks without direct contact. This method
supports continuous monitoring, significantly benefiting road quality and safety main-
tenance by providing timely data for maintenance planning and intervention [143]. In
CAVs, the incorporation of sensor technologies significantly enhances road roughness
measurement by using a discrete Kalman filter model with driving vibration data input.
This model utilizes vehicle dynamics, filters vibration signals, and correlates them with
the International Roughness Index (IRI). This cost-effective approach, requiring minimal
data acquisition equipment, achieves an accuracy of approximately 88.58%, demonstrating
strong engineering applicability for real-time roughness detection on asphalt and cement
concrete pavements [144].

Table 3. Applications of sensor technologies in road condition monitoring.

Application Description Techniques/Methods References

Pothole Detection

Utilizes CNNs, LiDAR,
accelerometer data fusion, and edge

computing for accurate pothole
detection, enhancing road safety

and quality.

CNNs, LiDAR, and
accelerometer data fusion,

edge computing
[126–129]

Surface Classification

Employs distributed sensors, AI
methodologies, and hybrid

frameworks combining camera,
LiDAR, and radar for accurate

surface classification.

Distributed sensors, AI
methodologies, hybrid

frameworks
[87,130–132]

Weather Impact

Uses LSTM networks, deep
convolutional neural networks, and

sensor data fusion to predict and
classify road conditions under

various weather impacts.

LSTM networks, deep
convolutional neural

networks, sensor data fusion
[133–136]

Crack Detection

Applies digital image processing,
machine learning, and

high-resolution cameras for
real-time crack detection, enhancing

road maintenance and safety.

Digital image processing,
machine learning,

high-resolution cameras
[137–141]

Road Roughness Measurement

Leverages accelerometers, GPS,
dynamics sensors, and Kalman
filter models to measure road
roughness and detect cracks,

improving road quality and safety.

Accelerometers, GPS,
dynamics sensors, Kalman

filter models
[142–144]

The more recent applications can thus exploit CAVs, or human-driven vehicles (HDVs)
equipped with modern sensor technology, to greatly enhance monitoring of the condition
of pavements even at the road network level (Figure 6).
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5. Challenges and Limitations

Although the technology in sensors for road condition monitoring in CAVs has signifi-
cantly progressed, it has a lot of challenges and limitations (Table 4) that require attention
to reach its maximum potential. Most of these challenges are technical, economical, and
regulatory in nature, meaning a broad-spectrum approach based on interdisciplinary col-
laboration and innovation is needed.

5.1. Technical Challenges

A. Sensor Accuracy and Reliability

Some technical challenges arise when it comes to how to ensure the accuracy and
reliability of sensors in pavement monitoring for CAVs. As identified in the work of Rebelo
et al. (2023) [145], thermal stress and sensor degradation over time were a challenge.
They insisted that for the right long-term monitoring to be achieved, there must be robust
sensor design and calibration [145]. The study by Masud et al. (2024) [146] outlined the
selection and calibration of weigh-in-motion (WIM) systems used in pavement monitoring,
addressing factors affecting sensor accuracy, such as site conditions and calibration methods.
The study indicates that BP sensors exhibit the least measurement errors, followed by LC
and QP sensors, while the highest errors are shown by the PC sensors [146]. However, the
methods of data acquisition within the wireless sensor network that are used for pavement
monitoring face challenges in relation to energy consumption, data accuracy, and network
reliability. To address the challenge, Xiao et al. (2021) [147] proposed a hybrid compressive
sensing (HCS) methodology that minimizes the transmission of data and balances the
energy dissipated among different sensor nodes in WSNs. The system enhances the
accuracy and robustness of the pavement monitoring sensors with the integrated vibration
data acquisition and HCS model, thereby ensuring that data are collected in real-time and
reliably [147].



Sustainability 2024, 16, 8336 16 of 27

B. Data Fusion and Interpretation

The data fusion and interpretation of pavement for monitoring within CAVs involve
numerous technical challenges. The addition of such multidimensional data, which comes
from different sensors that are heterogeneously formatted and of various resolutions, brings
a lot of complexity with it since these sensors may include accelerometers, gyroscopes,
or strain gauges. Advanced algorithms for correct merging and interpretation must be
developed to secure information on pavement conditions with assurance. Other challenges
are data variability, synchronization, and the assurance of system robustness under diverse
environmental conditions [148]. The necessity of providing real-time capabilities—making
available insights into information when they are needed— demands considerable compu-
tational resources and a truly robust network infrastructure [149]. Further improvements
in the reliability of pavement condition assessments are obtained using techniques of adap-
tive filtering and machine learning; the effectiveness of this technique is demonstrated in
extensive field testing [150].

C. Real-time processing and latency

The issues related to real-time processing and latency in CAVs are multidimensional,
whereby the requirements needed for data transmission, processing, and time for the
response are very strict. Connected vehicles require real-time processing capabilities to
make spontaneous decisions regarding the safe and efficient navigation they will take.
High computational demands for processing sensor data may introduce unacceptable
latency in safety-critical applications. A major technical challenge, however, lies in creating
complex data processing that satisfies real-time requirements. Key breakthroughs with
edge computing and optimization algorithms have been directed at minimizing latency
issues. This illustrates the preciseness and real-time capabilities of AI-driven solutions in
detecting road defects, together with predicting road maintenance needs [151]. Research
about real-time data capturing with regard to vehicle-to-vehicle communication underlines
the necessity of instant data processing and its implications for safety and efficiency [152].

D. Power Consumption and Durability

Many advanced sensors draw huge power, which may be a limiting factor, partic-
ularly for battery-powered systems. On top of this, the sensors should be rugged and
stay calibrated over time, usually in harsh environmental conditions [153]. Dutta et al.
(2022) [154] revealed that a sensor system capable of functioning continuously over a long
duration—during which it does not make frequent demands in terms of maintenance—
would prove to be energy efficient and low in its power use; they believe that energy
harvesting methodologies and low-power communication protocols are excellent ways to
increase the life of a sensor further. It is very necessary to make the sensor setup robust so
that the system becomes reliable and the pavement can be continuously monitored [154].
Regular maintenance or calibration of the pavement monitoring sensors could become a
huge cost and logistical issue. Such demands would increase the cost of operation and
make sensor networks more difficult to maintain [155]. Therefore, in effectively monitoring
road conditions, the design of ruggedized and reliable sensors with low maintenance
requirements is crucial. Innovations in low-power sensor design and sturdy materials are
key to developing these systems.

5.2. Economic Challenges

A. High Initial Costs

Take, for example, high-resolution LiDAR and radar systems that feature sophisticated
sensor technologies. Theoretically, good hardware implementation of such technologies is
indispensable for proper and reliable autonomous vehicle operation. The high financial
impact comes to a large extent from the purchase of such sophisticated sensors and their
integration and calibration for proper performance under real-world conditions [156]. Such
high costs may result in wide adoption not occurring, especially in low-income areas
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or among small transportation fleets [157]. Over time, with technology maturing and
economies of scale manifesting, the costs have a great potential to reduce. However, the
current expense is a big barrier [158].

B. Return on Investment (ROI)

Justifying investment in these advanced sensor systems involves a comprehensive
understanding of their return: direct benefits to society, which lead to increased road safety
and traffic management [159]; indirect benefits to society, such as reducing infrastructure
maintenance costs and environmental impacts [160]. Therefore, long-term economic bene-
fits through these investments will need to be proven by a detailed cost–benefit analysis to
convince stakeholders that they are worth it [161].

C. Cost of Maintenance and Upgrades

Above and beyond the initial investments are the costs of maintenance and upgrad-
ing sensor systems. In fact, these sensors face physical degradation over time and may
hence require maintenance or replacement on a cyclical basis [162]. With technological
progression, the existing systems should, therefore, be upgraded to keep abreast with new
standards and improve their performance [163]. Such upgrades remain as ongoing costs
and can accumulate to very high figures in large-scale implementations.

5.3. Regulatory and Standardization Challenges

A. Lack of Standardization

A lack of standard protocols and interfaces among different sensor types and manu-
facturers may lead to poor interoperability and integration. The industry standards can
make it much easier to ensure in any way possible that the sensing from different-vendor
sensors can work seamlessly together [164]. Protocols developed and adopted need to be
standardized and efficient in order to deploy systems for road condition monitoring on a
large scale [165].

B. Privacy and Security Concerns

The large-scale deployment of sensors for monitoring road conditions gives rise to
major issues related to privacy and security. Cyber-attacks on any sensor needing to collect
and send real-time data are possible, threatening vehicle safety and user privacy [166].
Strong cybersecurity, along with privacy aspects to be taken care of through law and
technology design, would be key in gaining public trust and ensuring sensitive information
is not leaked [166].

C. Regulatory Approval and Compliance

The regulatory framework for deploying sensor technologies is immense and could,
at times, in effect, become complex in covering its peripheries. Regulations are not uniform
and, at times, are very complex in such a way that obtaining required approvals and
compliance becomes a big challenge [6]. Harmonization of such technology among regions
with simple rules on how to deploy and operate it will make the process of adoption easy
and reduce regulatory burdens [167,168].

D. Ethical and Legal Considerations

Hansson et al. (2021) further expound on the ethical as well as legal aspects of self-
driving cars, including some of the following—apportioning responsibility, blame moving
from drivers to makers and maintainers, lacunae in accountability, and more. Finally,
it comments on the public opinion on whether self-driving cars are safe, and the moral
dilemma around them. This is supported by the fact that strict safety standards might serve
as a barrier to the wide introduction of self-driving cars, while it could have saved many
lives in traffic [169]. Ryan (2020) looked at the ethics in automated systems of self-driving
vehicles regarding the liability of their developers for safety. He considers the reduction in
traffic accidents, the programming of vehicles to make life-and-death decisions, and the
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societal impacts. Important ethical questions that have been raised include transparency in
the algorithms, accountability, and effects on employment and privacy [170].

The real use of CAVs on existing public roads has advanced more slowly than initially
expected in most countries. Nevertheless, many CAVs and the related sensors used to con-
trol these vehicles do exist already, and more will appear soon, as shown in Figure 7 [171].
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Table 4. Challenges and limitations in sensor technologies for road condition monitoring.

Category Challenge Description References

Technical Challenges

Sensor Accuracy and Reliability
Ensuring sensor accuracy and reliability in

pavement monitoring; challenges include thermal
stress and sensor degradation over time.

[145–147]

Data Fusion and Interpretation
Complex integration of diverse data from multiple

sensors due to varying data formats
and resolutions.

[148–150]

Real-time Processing and Latency

Stringent requirements for real-time data
transmission, processing, and response times;

balancing computational demands with
real-time responsiveness.

[151,152]

Power Consumption
and Durability

High power consumption of advanced sensors and
the need for durability and calibration in

harsh conditions.
[153–155]

Economic Challenges

High Initial Costs
Significant initial costs for deploying advanced

sensor technologies, including acquisition,
integration, and calibration.

[156–158]

Return on Investment (ROI)

Comprehensive understanding of the return on
investment, including improved road safety, traffic

management, reduced maintenance costs, and
environmental impacts.

[159–161]

Cost of Maintenance
and Upgrades

Ongoing costs of maintaining and upgrading
sensor systems, including periodic maintenance,

replacement, and technology upgrades.
[162,163]

Regulatory and
Standardization Challenges

Lack of Standardization
Absence of standardized protocols and interfaces
across different sensor types and manufacturers,

hindering interoperability.
[164,165]

Privacy and Security Concerns Significant privacy and security concerns due to
the vulnerability of real-time data to cyber-attacks. [166,167]

Regulatory Approval
and Compliance

Complex regulatory landscape with varying
regulations by region, making it difficult to obtain

necessary approvals and ensure compliance.
[6,168]

Ethical and Legal Considerations

Ethical and legal aspects of autonomous vehicles,
including responsibility allocation, public opinions

on safety, and programming for
life-and-death decisions.

[169,170]
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5.4. Physical Infrastructure Standards for the Operation of CAVs

Innovative road infrastructures, such as smart roads, are a crucial component of
the operating environment of CAVs and establish where and how they can be adopted.
Operating CAVs requires a specific Operational Design Domain (ODD) within the confines
of the physical road [172]. Therefore, existing and new roads must match the performance
and the requirements of CAVs. From this point of view, digitalized infrastructures, sensors,
and smart roads are topics of great importance in the current academic community, as
shown in Figure 8. This figure represents the term (keyword) co-occurrence, which is
a bibliographic analysis method used to identify the main areas of interest and detect
topics/subtopics that occur most frequently in the scientific literature. Figure 8 is obtained
from the Scopus database and VOSviewer. The size of the nodes is proportional to the
number of times a term has been used in the scientific literature. The thickness of the links
between the nodes is proportional to the strength of the connection.
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Research demonstrates that Smart roads essentially adopt cooperative technologies of
intelligent transport systems (C-ITS) to enable communication and cooperation between
CAVs. Smart roads [173,174] may employ one or more of the following traffic control
systems (Figure 9): lanes for AVs and CAVs; Internet of Things (IoT) sensors for monitoring
traffic flows, structures (bridges, viaducts, road safety barriers, etc.), weather, and air
pollutants; ramp-metering systems; Hard-Shoulder Running (HSR) systems; variable speed
limits (VSL); Green Islands (GIs); electric priority lanes; Piezoelectric devices to generate
electrical energy; Smart street lights; Wi-Fi in motion; and safety barriers equipped with an
accident monitoring system (AMS) [175].

In light of these considerations, policymakers should prepare for a future environment
that augments the integration of CAVs, sensors, big data analysis techniques, and AI
algorithms [176–179] in smart roads through investments to transform traditional roads
and conventional or innovative intersections into digitalized infrastructures [150–182], with
related benefits in reducing the costs of equipment for pavement analysis [183,184], many
of which would no longer be necessary thanks to the use of sensors implemented in CAVs.
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6. Conclusions

In the fast-evolving field of intelligent transportation systems, sensor technologies
in CAVs for road condition monitoring remain at the forefront with considerable recent
advancement. Additionally, deep learning and machine learning techniques (e.g., CNN
and LSTM) can detect and classify road anomalies such as potholes and surface cracks in a
very precise and accurate way. The integration of multi-sensor data fusion from sources
that include LiDAR, cameras, and accelerometers results in increased accuracy of anomaly
detection and evaluation of road conditions in real time, whether it is a smart road or a
traditional one. Additionally, edge computing and cloud computing are responsible for
enabling such a great amount of data processing, which guarantees the monitoring of
road conditions promptly and accurately, raising the operational safety and efficiency of
autonomous vehicles to a high level. These developments would help policymakers and
road operators and strongly support the wider goals of smart city initiatives and sustainable
urban mobility.

Research Perspectives

Future research should focus on several lines to expand the current advances. The
first important line is the development of low power-consuming and long-lifetime sensor
systems that can work in a reliable way in many harsh environments. This requires
standardizing protocols and interfaces between the many different types of sensors to pave
the way for interoperability and seamless integration between vehicles and smart roads. In
addition, and more importantly, advancements in cyber security measures in terms of the
data collected with such sensors and the trust within the public domain are required. In
conclusion, machine learning- and AI-based predictive maintenance strategies could be
incorporated to optimize road condition monitoring systems by making them proactive
rather than relying on reactive practices.

The future of smart vehicles and road systems is closely linked to advancements in
sensor technologies, AI, and the connectivity infrastructure. The most important paths
include improved vehicle-to-everything (V2X) communication that will benefit from 5G
and future 6G networks, thus allowing vehicles to reliably exchange information with
infrastructure in real-time. Further on, road systems based on AI will bring about predictive
analysis of traffic management and road conditions; smart roads with sensors connected
through the IoT will allow for it to monitor events first-hand. These updates will also
include decentralized algorithms based on swarm intelligence that enhance the collective
vehicle learning capability as well as green innovators such as energy efficiency designs or
reduced carbon footprint.
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Overcoming the depicted research and practical challenges can thus unleash the full
potential of these systems for making a smarter, safer, and sustainable road transporta-
tion network.
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85. Rathee, M.; Bačić, B.; Doborjeh, M. Automated road defect and anomaly detection for traffic safety: A systematic review. Sensors
2023, 23, 5656. [CrossRef] [PubMed]

86. Norouzi, A.; Heidarifar, H.; Borhan, H.; Shahbakhti, M.; Robert Koch, C. Integrating machine learning and model predictive
control for automotive applications: A review and future directions. Eng. Appl. Artif. Intell. 2023, 120, 105878. [CrossRef]

87. Ranyal, E.; Sadhu, A.; Jain, K. Road Condition Monitoring Using Smart Sensing and Artificial Intelligence: A Review. Sensors
2022, 22, 3044. [CrossRef]

88. Cheng, L.; Zhang, X.; Shen, J. Road surface condition classification using deep learning. J. Vis. Commun. Image Represent. 2019,
64, 102638. [CrossRef]

89. Lee, S.-Y.; Le TH, M.; Kim, Y.-M. Prediction and detection of potholes in urban roads: Machine learning and deep learning based
image segmentation approaches. Dev. Built Environ. 2023, 13, 100109. [CrossRef]

90. Kamakshi, V.; Krishnan, N.C. Explainable Image Classification: The Journey So Far and the Road Ahead. AI 2023, 4, 620–651.
[CrossRef]

91. Blasch, E.; Pham, T.; Chong, C.Y.; Koch, W.; Leung, H.; Braines, D.; Abdelzaher, T. Machine learning/artificial intelligence for
sensor data fusion–opportunities and challenges. IEEE Aerosp. Electron. Syst. Mag. 2021, 36, 80–93. [CrossRef]

92. Nguyen, T.; Lechner, B.; Wong, Y.D. Response-based methods to measure road surface irregularity: A state-of-the-art review. Eur.
Transp. Res. Rev. 2019, 11, 43. [CrossRef]

93. Zhao, T.; Xie, Y.; Ding, M.; Yang, L.; Tomizuka, M.; Wei, Y.A. A road surface reconstruction dataset for autonomous driving. Sci.
Data 2024, 11, 459. [CrossRef] [PubMed]

94. Koch, C.; Brilakis, I. Pothole detection in asphalt pavement images. Adv. Eng. Inform. 2011, 25, 507–515. [CrossRef]
95. Luo, D.; Lu, J.; Guo, G. Road anomaly detection through deep learning approaches. IEEE Access 2020, 8, 117390–117404. [CrossRef]
96. Deng, Y.; Li, F.; Zhou, S.; Zhang, S.; Yang, Y.; Zhang, Q.; Li, Y. Use of recurrent neural networks considering maintenance to

predict urban road performance in Beijing, China. Philos. Trans. R. Soc. A 2023, 381, 20220175. [CrossRef] [PubMed]
97. Gupta, A.; Anpalagan, A.; Guan, L.; Khwaja, A.S. Deep learning for object detection and scene perception in self-driving cars:

Survey, challenges, and open issues. Array 2021, 10, 100057. [CrossRef]
98. Caltagirone, L.; Bellone, M.; Svensson, L.; Wahde, M. LIDAR–camera fusion for road detection using fully convolutional neural

networks. Robot. Auton. Syst. 2019, 111, 125–131. [CrossRef]
99. Wu, C.; Wang, Z.; Hu, S.; Lepine, J.; Na, X.; Ainalis, D.; Stettler, M. An automated machine-learning approach for road pothole

detection using smartphone sensor data. Sensors 2020, 20, 5564. [CrossRef]
100. Sayed, S.A.; Abdel-Hamid, Y.; Hefny, H.A. Artificial intelligence-based traffic flow prediction: A comprehensive review. J. Electr.

Syst. Inf. Technol. 2023, 10, 13. [CrossRef]
101. Suprayoga, G.B.; Bakker, M.; Witte, P.; Spit, T. A systematic review of indicators to assess the sustainability of road infrastructure

projects. Eur. Transp. Res. Rev. 2020, 12, 19. [CrossRef]
102. Li, S.; Shu, K.; Chen, C.; Cao, D. Planning and decision-making for connected autonomous vehicles at road intersections: A

review. Chin. J. Mech. Eng. 2021, 34, 133. [CrossRef]
103. Ma, B.; Li, P.; Guo, X.; Zhao, H.; Chen, Y. A Novel Online Prediction Method for Vehicle Velocity and Road Gradient Based on a

Flexible-Structure Auto-Regressive Integrated Moving Average Model. Sustainability 2023, 15, 15639. [CrossRef]
104. Staudemeyer, R.C.; Morris, E.R. Understanding LSTM—a tutorial into long short-term memory recurrent neural networks. arXiv

2019, arXiv:1909.09586.
105. Selmy, H.A.; Mohamed, H.K.; Medhat, W. A predictive analytics framework for sensor data using time series and deep learning

techniques. Neural Comput. Appl. 2024, 36, 6119–6132. [CrossRef]

https://doi.org/10.1016/j.jtte.2018.09.005
https://doi.org/10.1016/j.ymssp.2023.110862
https://doi.org/10.1186/s10033-021-00630-y
https://doi.org/10.1016/j.fmre.2022.01.038
https://doi.org/10.1016/j.mechatronics.2021.102492
https://doi.org/10.1109/ICCED56140.2022.10010355
https://doi.org/10.1109/TITS.2020.3038155
https://doi.org/10.3390/s23125656
https://www.ncbi.nlm.nih.gov/pubmed/37420822
https://doi.org/10.1016/j.engappai.2023.105878
https://doi.org/10.3390/s22083044
https://doi.org/10.1016/j.jvcir.2019.102638
https://doi.org/10.1016/j.dibe.2022.100109
https://doi.org/10.3390/ai4030033
https://doi.org/10.1109/MAES.2020.3049030
https://doi.org/10.1186/s12544-019-0380-6
https://doi.org/10.1038/s41597-024-03261-9
https://www.ncbi.nlm.nih.gov/pubmed/38710687
https://doi.org/10.1016/j.aei.2011.01.002
https://doi.org/10.1109/ACCESS.2020.3004590
https://doi.org/10.1098/rsta.2022.0175
https://www.ncbi.nlm.nih.gov/pubmed/37454686
https://doi.org/10.1016/j.array.2021.100057
https://doi.org/10.1016/j.robot.2018.11.002
https://doi.org/10.3390/s20195564
https://doi.org/10.1186/s43067-023-00081-6
https://doi.org/10.1186/s12544-020-0400-6
https://doi.org/10.1186/s10033-021-00639-3
https://doi.org/10.3390/su152115639
https://doi.org/10.1007/s00521-023-09398-9


Sustainability 2024, 16, 8336 25 of 27

106. Chen, S.; Hu, X.; Zhao, J.; Wang, R.; Qiao, M. A Review of Decision-Making and Planning for Autonomous Vehicles in Intersection
Environments. World Electr. Veh. J. 2024, 15, 99. [CrossRef]

107. Savant Todkar, S.; Baltazart, V.; Ihamouten, A.; Dérobert, X.; Guilbert, D. One-class SVM based outlier detection strategy to detect
thin interlayer debondings within pavement structures using Ground Penetrating Radar data. J. Appl. Geophys. 2021, 192, 104392.
[CrossRef]

108. Yasuno, T.; Fujii, J.; Ogata, R.; Okano, M. VAE-iForest: Auto-encoding Reconstruction and Isolation-based Anomalies Detecting
Fallen Objects on Road Surface. arXiv 2022, arXiv:2203.01193.

109. Tien, C.-W.; Huang, T.-Y.; Chen, P.-C.; Wang, J.-H. Using autoencoders for anomaly detection and transfer learning in IoT.
Computers 2021, 10, 88. [CrossRef]

110. Thudumu, S.; Branch, P.; Jin, J.; Singh, J. A comprehensive survey of anomaly detection techniques for high dimensional big data.
J. Big Data 2020, 7, 42. [CrossRef]

111. Zhou, X.; Ke, R.; Yang, H.; Liu, C. When intelligent transportation systems sensing meets edge computing: Vision and challenges.
Appl. Sci. 2021, 11, 9680. [CrossRef]

112. Wang, H.; Liu, T.; Kim, B.; Lin, C.W.; Shiraishi, S.; Xie, J.; Han, Z. Architectural design alternatives based on cloud/edge/fog
computing for connected vehicles. IEEE Commun. Surv. Tutor. 2020, 22, 2349–2377. [CrossRef]

113. Liu, S.; Liu, L.; Tang, J.; Yu, B.; Wang, Y.; Shi, W. Edge computing for autonomous driving: Opportunities and challenges. Proc.
IEEE 2019, 107, 1697–1716. [CrossRef]

114. Hua, H.; Li, Y.; Wang, T.; Dong, N.; Li, W.; Cao, J. Edge computing with artificial intelligence: A machine learning perspective.
ACM Comput. Surv. 2023, 55, 1–35.

115. Chu, W.; Wuniri, Q.; Du, X.; Xiong, Q.; Huang, T.; Li, K. Cloud Control System Architectures, Technologies and Applications on
Intelligent and Connected Vehicles: A Review. Chin. J. Mech. Eng. 2021, 34, 139. [CrossRef]
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