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Phase transition dimensionality crossover from two to three dimensions
in a trapped ultracold atomic Bose gas
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The equilibrium properties of a weakly interacting atomic Bose gas across the Berezinskii-Kosterlitz-Thouless
(BKT) and Bose-Einstein condensation (BEC) phase transitions are numerically investigated through a di-
mensionality crossover from two to three dimensions. The crossover is realized by confining the gas in an
experimentally feasible hybridized trap which provides homogeneity along the planar xy directions through a
box potential in tandem with a harmonic transverse potential along the transverse z direction. The dimensionality
is modified by varying the frequency of the harmonic trap from tight to loose transverse trapping. Our findings,
based on a stochastic (projected) Gross-Pitaevskii equation, showcase a continuous shift in the character of the
phase transition from BKT to BEC, and a monotonic increase of the identified critical temperature as a function
of dimensionality, with the strongest variation exhibited for small chemical potential values up to approximately
twice the transverse confining potential.
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I. INTRODUCTION

The behavior of Bose-Einstein condensates (BECs) [1–3]
around the critical transition temperature is a well researched
topic in the field of quantum gases. In a three-dimensional
(3D) trapping geometry, a dilute Bose gas condenses into
the lowest available energy state, manifesting a transition
to a superfluid phase. Instead, in a strictly two-dimensional
(2D) trapping geometry, the formation of a condensate is
precluded by the Mermin-Hohenberg-Wagner theorem [4,5].
In this instance, the Berezinskii-Kosterlitz-Thouless (BKT)
transition [6,7] occurs in its place; here, bound vortex pairs
provide a topological ordering and superfluidity at low enough
temperatures. Although both regimes have been well char-
acterized both theoretically and experimentally in ultracold
atomic gases, an interesting emerging question concerns the
dependence of the phase transition characteristics on dimen-
sionality, between these two paradigms. While dimensionality
crossovers have been previously considered both theoreti-
cally [8–17] and experimentally [18–24], relevant questions
on the effects of dimensionality between the BKT and BEC
phase transitions of a dilute Bose gas in experimentally viable
geometries are still open.

In this work we characterize the 2D-3D dimensionality
crossover using as a reference case the setting employed by
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the group of Dalibard [25]. The gas is confined in a rectan-
gular box potential in the xy plane and, at the same time,
in a harmonic potential along the transverse z direction. We
perform numerical simulations for various values of the trans-
verse frequency on a wide range, from very tight to loose
trapping. Our simulations are based on a stochastic projected
Gross-Pitaevskii equation (SPGPE) [26–36]. For each set of
parameters we average over many SPGPE trajectories in order
to extract relevant statistical properties of the gas, such as the
mean occupation of the lowest energy states, the Binder cumu-
lant, the quasicondensate density, and the condensate fraction.
All these quantities are found to interpolate smoothly between
the expected behaviors in the 2D and 3D limits. Their study
allows us to determine the range of parameters over which
this crossover occurs, and specifically the dependence of the
critical temperature on dimensionality; the latter reveals a
monotonically increasing trend from 2D to 3D, but with most
variation manifesting itself over rather tight traps for which
the chemical potential is less than about twice the transverse
oscillator energy. We believe such identification will prove
useful for a range of finite temperature experiments conducted
in rather (but not necessarily very) tightly confined quasi-2D
traps.

This paper is structured as follows: In Sec. II we present
the system under study and our theoretical method and nu-
merical scheme. In Sec. III we first highlight the parameters
used to characterize the phase transition (Sec. III A), before
demonstrating the consistency of our results with known 2D
(Sec. III B) and 3D limits (Sec. III C). Equipped with such
tools, Sec. III D presents our main results associated with the
entire dimensionality crossover, with key findings summa-
rized in Sec. IV, and further technical details contained in the
Appendixes.
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II. THEORETICAL METHOD

In order to study system characteristics and identify the
transition temperature we utilize the SPGPE [26–36]. This
model includes fluctuations and spontaneous processes and
has been previously successfully applied through the tran-
sition temperature to model both equilibrium [37,38] and
dynamical [32,38–46] properties in both 2D and 3D settings,
thus allowing an accurate numerical determination of the crit-
ical temperature across the full crossover probed in this work.
Related classical field studies of the BKT phase transition
have been conducted in harmonic traps [47–51] and boxlike
geometries [52–54].

Within the SPGPE model, the atomic gas is separated into
two parts: a number of highly occupied low-energy modes
described by the classical Langevin field, or simply c field,
�(r, t ) up to a cutoff energy εcut, and a thermal reservoir of
incoherent states above the cutoff, assumed to be in constant
equilibrium with the classical field. The dynamics of the c
field are governed by [30,33,35]

ih̄
∂�(r, t )

∂t
= P

{
(1 − iγ )

(
− h̄2∇2

2m
+ V (r)

+ g|�(r, t )|2 − μ

)
�(r, t ) + η(r, t )

}
. (1)

Here γ is a dimensionless parameter controlling the rate of re-
laxation of the c-field modes to the equilibrium configuration;
the value of γ is related to the strength of noise correlations
η, describing the interaction of � with the high-lying thermal
reservoir,

〈η∗(r, t )η(r′, t ′)〉 = 2γ kBT δc(r − r′)δ(t − t′), (2)

where the notation 〈· · · 〉 describes averaging over different
noise realizations and δc(r − r′) ≡ ∑

ε�εcut
ϕ∗

ε (r)ϕε (r′) for a
basis ϕε labeled by energy ε [30]. The energy cutoff is iden-
tified with the expression εcut = μ + kBT log 2, which gives a
mean occupation number of order 1 for the states of an ideal
Bose gas near the cutoff [55]. The symbols kB, T , and μ refer
to the the Boltzmann constant, temperature of the thermal
reservoir, and chemical potential, respectively; m is the atomic
species mass and g = 4π h̄2as/m is the inter-atomic interac-
tion strength, with as as the s-wave scattering length, and P is
a projector to constrain the dynamics within the c-field region.
The atoms above the cutoff do still contribute to the system
through the total atomic density, whose equilibrium value is
self-consistently evaluated as discussed below.

To investigate the dimensionality crossover in the most
realistic manner, we emulate a previous experimental work
with a gas of 87Rb atoms trapped in a box-harmonic hybrid
potential (see Sec. 2.3 of [56]) given by

V (r) = Vbox(x, y) + 1

2
m

(
ωref

�

)2

z2, (3)

where ωref = 2π × 4.59 kHz as in Ref. [25]. Here Vbox(x, y)
is zero within a hard-walled rectangular planar box of size
Lx = 38 μm, Ly = 30 μm, and very large outside. To control
the tightness of the harmonic confinement, we have intro-
duced a dimensionless parameter �, such that the transverse
trapping frequency is ωz = ωref/� and one can define a typi-

cal transverse length �z = √
h̄/mωz = √

� lref , where in our
case lref = √

h̄/mωref = 0.1592 μm. Finally, the scattering
length is as = 5.09 nm, which implies g = (0.064 μm)h̄2/m.

To solve the SPGPE, we expand the c-field wave function
in a hybrid basis, �(r, t ) = ∑

ε�εcut
Aε (t )ϕε (r), where ϕε (r)

is the product of plane waves along x and y and the eigen-
functions of the harmonic oscillator along the z direction (see
Appendix A for numerical details). Due to the finite size of the
box, the momenta along x and y are discrete and the energy
of the single particle states of the basis can be labeled by
three integer quantum numbers. The solution of the SPGPE
provides the amplitudes Aε (t ) and hence the c-field �(r, t ). To
this aim we use the fast Fourier and Hermite transformations,
where the Hermite transformation can be accurately calcu-
lated with the implementation of inhomogeneous Hermite
grid [30,57]. From the solution we can calculate the density in
the c field, nc(r, t ) = |�(r, t )|2 and the corresponding atom
number Nc = ∫

dr|�|2.
The number of atoms in the incoherent states above the

energy cutoff NI , as well as their density nI , can be estimated
assuming that those states are single particle states of an ideal
gas in the same hybrid trap and that their mean occupation
number at equilibrium is determined by the Bose-Einstein
distribution, so that NI = ∑

ε>εcut
1/{exp[(ε − μ)/kBT ] − 1},

where T and μ are the same as the c-field solution of the
SPGPE (see Appendix B for details).

Our aim is to compare configurations with similar average
density but different dimensionality, as this facilitates the most
direct way to compare different regimes across the dimension-
ality crossover. However, the SPGPE does not allow one to
directly fix the total atom number N = Nc + NI as an input.
One instead has to impose upon the thermal reservoir, and
consequently the Bose gas, an input chemical potential. A
simple choice corresponds to use μ according to

μ = μ2D + h̄ωz

2
= μ2D + h̄ωref

2�
, (4)

where μ2D is a constant, independent of �. When � increases,
this choice of μ implies an increase of the number of atoms
in the trap: typical c-field atom numbers for a given ensemble
range between Nc ∼ 103 for � = 1 to Nc ∼ 106 for � = 50.
However, as we will see later, the central density remains
of the same order in the whole range of �, decreasing by
about 30% only and approaching the constant value μ/g for
T = 0 and large �. The results presented in the next sec-
tions are obtained by using the chemical potential (4) with
μ2D = (4.64 μm−2)h̄2/m, which ensures that the density and
the chemical potential for � = 1 reduce to the experimental
values of Ref. [25]. In Sec. III D we will also discuss the
results obtained with a chemical potential having a different
dependence on �, in order to show that main qualitative
features of the dimensional crossover remain unchanged.

To prepare equilibrium configurations for each value of
� and temperature, we evolve the system dynamically from
a zero-field initial condition for a time t ∼ 100τγ , where
τγ = h̄/μγ . Throughout this work we employ a value γ =
0.05 as a reasonable estimate for our system, noting that
similar values have been used in previous SPGPE simula-
tions [38,45,58,59]; nonetheless, we stress that the precise
value of γ is not relevant for the present work, as it determines
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(a)  =1

(b)  =20 

(c)  =50

FIG. 1. Examples of isosurface rendering (green) of c-field density |�|2 during a quench from zero-field conditions to equilibrium for
� = 1, 20, 50 as labeled by (a), (b), and (c), respectively. The temperature of the gas in all cases is 20 nK, which is well below the transition
temperature where the system is superfluid. In red we plot an isosurface of high velocity regions, indicating vortex structures. In the � = 50
case, integrated line density profiles are overlayed for each axis. The image at the bottom is the column density, i.e., the density integrated
along z, for the case of � = 50. The images on the left and right are the column densities in the planar directions.

the rate at which the system relaxes to equilibrium, but has
little effect on the properties of the system once equilib-
rium is reached. To obtain distinct/independent realizations
at fixed � and T for our subsequent stochastic analysis, we
then propagate such equilibrium solution further in time with
Eq. (1), sampling an additional realization every ∼10τγ . Such
a procedure is justified under the ergodic principle, within
which the time average over the evolution of a single system
at equilibrium is indiscernible from the ensemble average over
many different systems [60,61], and provides a significant
numerical speed-up to creating distinct equilibrium stochastic
realizations through full dynamical equilibration based on a
different initial noisy zero-field configuration. For a given
�, we prepare between N = 50–100 realizations for each
probed temperature, and probe each distinct temperature T
in 10 nK increments from 10 up to 300 nK. This procedure
gives a thermal resolution of ±5 nK in identifying critical
behavior of the phase transition across the range of � we
consider.

Before discussing the equilibrium properties, we first visu-
alize in Fig. 1 a few snapshots of single SPGPE trajectories
for three different values of � during the preparatory stage
of the dynamical equilibration process. In each case, the
system evolves starting from a zero-field condition at a tem-
perature T just below the transition temperature and each
snapshot is taken at some instant during the equilibration
dynamics. In such a dynamical process, one may easily
observe quantum vortex structures forming spontaneously
during the growth [32,34,39,44,62]. The figure shows that,
by increasing �, vortices change from pointlike to filament-
like defects, clearly signposting a transition in dimensionality,
which roughly occurs when the vortex core size (i.e., the

healing length) is of the same order of the transverse size of
the atomic cloud.

III. RESULTS

In this section we discuss the physical parameters probed
to perform our analysis. We then consider the two limiting
regimes of our system, namely the 2D limit (� = 1) and
the 3D limit (asymptotically approached at high values of
�, with such role played by our chosen value of � = 50),
demonstrating agreement of our results with predictions in
such limiting regimes. This then leads to the main part of this
paper, namely the crossover behavior.

A. Parameters characterizing the phase transition

To locate the critical region of the phase transition, we
use a set of different relevant equilibrium quantities, in close
analogy to earlier works [38,43,46,49,50,52].

First, to identify the existence of a condensate in the sys-
tem, we use a standard procedure [30] based on extracting
atom numbers Ni corresponding to the ith mode through
Penrose-Onsager diagonalization [63] of the one-body density
matrix ρ(r, r′) = 〈�∗(r) ⊗ �(r′)〉N , where 〈· · · 〉N denotes
an averaging over N stochastic realizations. Eigenvalues ex-
tracted in this manner allow, for i = 0, the reconstruction of
the corresponding mode ψ0(r) with the largest eigenvalue,
which we henceforth identify as the condensate mode. Be-
yond identifying the condensate fraction N0/N , we can also
extract the ratio N1/N0 of atoms in the second lowest to lowest
(condensate) mode.

Condensation refers to a state with stable coherent phase
and a single macroscopically occupied mode, arising when
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both density and phase fluctuations are suppressed. While
this is highly relevant in 3D systems (below the regime
of critical fluctuations), lower dimensional systems feature
pronounced phase fluctuations even when density fluctu-
ations are suppressed [10,11,14], leading to a state of
quasicondensation, which spans multiple microscopically oc-
cupied modes [64,65]. The latter is numerically determined
via [66,67]

NQC =
√

2〈|A0|2〉2
N − 〈|A0|4〉N , (5)

where A0 = ∫
dr ψ∗

0 (r)�(r). We can thus introduce a mea-
sure of the difference between quasicondensation and Bose-
Einstein condensation through the parameter

ζ = NQC − N0

NQC
, (6)

which should reveal a noticeable difference in behavior in the
2D, where BEC is precluded, and 3D cases.

An important quantity commonly used to characterize the
critical region is the Binder cumulant [38,42,43,46,52,68,69],
defined by

CB = 〈|A0|4〉N
〈|A0|2〉2

N
, (7)

which is known to display critical behavior across the
phase transition, yielding—in the limit of infinitely large 3D
boxes—a steplike behavior from 1 (fully coherent system) to
2 (pure thermal state), with such transition being smoothed
in finite systems, or due to the presence of harmonic confine-
ment [38,46,52].

Such quantities are calculated below both in the 2D and
3D limiting cases—for ensuring consistency with established
results—and in the entire crossover region. The combination
of such indicators is then used to determine the critical temper-
ature across the crossover, without any bias on any particular
quantity, as discussed in Sec. III D.

B. 2D limit: BKT transition

The theory of Berezinskii, Kosterlitz, and Thouless (BKT)
stipulates that a topologically induced phase transition may
occur in the 2D Bose gas, below some critical temperature. At
high temperatures, above the transition, there is a proliferation
of free pointlike vortices, which apply phase defects to the
fluid of an integer value of 2π . This proliferation of free
vortices inhibits phase rigidity within the system, leading to
a fluctuating phase and vanishingly small correlation lengths.
As the temperature is lowered, vortices bind together into
dipole pairs, bearing little influence on the coherence proper-
ties of the gas yet allowing the phase to stabilize and become
coherent over a larger correlation length. This topological
ordering of bound vortex pairs provides a mechanism for the
BKT phase transition.

Previous works [66,70] have developed a thermodynamic
theory by determining the equation of state for an interacting
planar 2D Bose gas, leading to the critical expression in the
thermodynamic limit described by

μ2D

kBT

∣∣∣∣
BKT

≈ mg2D

π h̄2 ln

(
Cμ

g̃2D

)
, (8)

FIG. 2. Results for � = 1 (2D limit). (a) Equilibrium condensate
fraction N0/N as a function of rescaled temperature. The inset plots
the quantity ζ = (NQC − N0)/NQC, which highlights the difference
between quasicondensate and condensate density as a function of
rescaled temperature. (b) Equilibrium ratio of lowest modes N1 and
N0 as a function of rescaled temperature. (c) Equilibrium Binder
cumulant CB as calculated from the Penrose-Onsager condensate as a
function of rescaled temperature. In each plot, temperature has been
rescaled to the BKT critical temperature (8) for an infinite 2D system
and marked as a vertical dashed line.

where μ2D is the effective chemical potential for the 2D
system, as in Eq. (4). The quantity g̃2D = (m/h̄2) g2D =√

8πas/lref = 0.16 is a dimensionless interaction strength in
the 2D limit chosen to once again match the value used in
Ref. [25], while Cμ = 13.2 [67].

To characterize the 2D phase transition in our numerics, we
plot in Fig. 2 the relevant quantities discussed above (namely
N0/N , N1/N0, CB, and ζ ) for � = 1 as a function of scaled
temperature T/TBKT. Here T corresponds to the temperature
of the thermal reservoir in contact with which the Bose gas
has reached equilibrium, and TBKT is defined in Eq. (8). Since
the transition is not sharp in a finite size system [38,52,54]
the determination of the actual transition temperature depends
on the criterion and the indicator that is chosen to define
it. The sharpest indicator is the Binder cumulant [Fig. 2(c)],
which suggests that the critical temperature in the trapped gas
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is indeed very close to TBKT, i.e., the expected value in the
thermodynamic limit. The occupation of the lowest states is
smooth across the BKT transition [Figs. 2(a) and 2(b)], with
the quasicondensate density remaining significantly larger
than the condensate fraction N0/N : the latter is evident by
the fact that ζ remains finite and significantly nonzero for all
T < TBKT. Overall, the results that we obtain here with a 3D
SPGPE in a tight transverse confinement (� = 1) are fully
consistent with the purely 2D SPGPE simulations of Ref. [38],
where the relevant features of the transition were discussed in
detail. This validates our 3D formulation of what is essentially
2D physics within the hybrid-basis approach we enact.

We note in passing that previous works have also used
the average number of vortices at equilibrium as a signa-
ture of the BKT transition in the 2D gas (see, e.g. [38,52]);
while we omit the results here (for consistency of presentation
with the crossover and 3D case where such meaning is not
well defined), we note that by employing a plaquette method
to identify vortex cores across the central plane we indeed
achieved, as expected, results which are in agreement with
the purely 2D simulations of Ref. [38]. Specifically, in our
2D limit of � = 1 we find qualitative agreement with these
results, across all of our considered quantities. We thus use
this study as a premise of our work as we extend across
dimensionalities.

C. 3D limit: BEC transition

The corresponding 3D limit can be well probed by our
largest choice of � = 50, as can be seen by comparing such
results with the predictions for BEC in 3D. In particular, using
the density of states

g(ε) = mLxLyε

2π h̄3ωz
(9)

with ωz = ωref/�, one can calculate the temperature at which
the condensate forms in an ideal gas in the same hydrid trap:

TBEC =
√

12h̄3ωref N

πk2
Bm�LxLy

. (10)

Due to interaction and finite-size effects, the actual transition
temperature of a confined weakly interacting Bose gas is
expected to be downwardly shifted [2,3,46,71,72], the shift
depending on the type of confinement.

As in the 2D case, we calculate the Binder cumulant, the
fractions N0/N and N1/N0, and the quasicondensate density.
For each equilibrium configuration at a temperature T we cal-
culate the total number of atoms N , and we use it to estimate
the ideal gas critical temperature TBEC from Eq. (10); then, all
quantities are plotted as a function of the rescaled temperature
T/TBEC. The results are shown in Fig. 3. Compared to the
2D case, the equilibrium statistics exhibit a narrower critical
region, with sharp transitions present in the ratio of domi-
nant modes N1/N0 and the Binder cumulant. The condensate
fraction N0/N vanishes at the transition and its temperature
dependence is similar to the one predicted for an ideal gas
in the same trap except for a downward shift. The observed
transition temperature is at about 0.9TBEC.

FIG. 3. Results for � = 50 (3D limit). (a) Condensate fraction
N0/N , alongside the ideal gas law result (dashed magenta line). The
inset plots the quantity ζ = (NQC − N0)/NQC, which highlights the
difference between quasicondensate and condensate density. (b) Ra-
tio of lowest modes N1 and N0. (c) Binder cumulant CB. In each
plot, temperature has been rescaled to the ideal gas BEC transition
temperature defined in Eq. (10) and marked as a vertical dashed line.

D. From 2D to 3D

We can now explore the dimensionality crossover from 2D
to 3D by varying �. The shape of the density in the trans-
verse direction directly witnesses the change of confinement.
In Fig. 4 we show the total density along the harmonically
trapped z direction rescaled to the corresponding harmonic
oscillator length lz = √

�lref where we have sampled the av-
eraged central points along x and y. All curves are the results
of SPGPE simulations at T = 50 nK, averaging over N � 50
equilibrium configurations. The two insets show the density
in the two limiting cases � = 1 (left) and � = 50 (right),
normalized to its central value at z = 0. For � = 1 the density
profile is indistinguishable from the Gaussian of width lz
(shown by the dashed blue line), which is the prediction for
the lowest state of the ideal gas in the same harmonic trap.
Indeed, in this limit one has h̄ωz � μ, and dynamics along
the transverse direction become “frozen” as atoms are locked
into the ground-state mode. In this regime one can decouple
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FIG. 4. Transverse profile of the total density of the gas for
varying dimensionality � at a fixed temperature T = 50 nK. The
coordinate z is normalized to the harmonic oscillator length lz. Note
that the curves for � = 1, 2, 3 are not visible, as they coincide with
the one for � = 5. Insets: Zoomed-in profiles for extremes of � = 1
(left) and � = 50 (right) where dashed lines correspond to expected
Gaussian and Thomas-Fermi ground-state profiles respectively.

the wave function into ψ (r, t ) = ψ (x, y, t )φz(z), where the z
component coincides with the ground harmonic oscilla-
tor state; hence, after averaging the c field in the pla-
nar directions, the density is expected to be nHO(z) =
(π�2

z )−1/2 exp(−z2/�2
z ).

In the opposite limit of large �, and for temperature much
lower than the BEC transition temperature, the density is very
well approximated by the inverted parabola predicted by the
Thomas-Fermi approximation for a trapped BEC at T = 0 in
3D, i.e. the regime in which the kinetic energy term in the
Gross-Pitaevskii equation can be neglected due to the large
contribution from the nonlinear interaction term [3], such that
one can write the density as nTF(z) = (1/g)[μ − V (z)] for
V (z) < μ, and zero otherwise. This prediction corresponds to
the dashed red line in the top right inset of Fig. 4. In between
the two limits the density profile changes smoothly from a
Gaussian to an inverted parabola.

In Fig. 5 we plot the quantities N0/N , N1/N0, and the
Binder cumulant CB, as a function of absolute temperature
for a characteristic subset of the dimensionalities, namely
� = {1, 2, 3, 5, 10, 15, 30, 50}. Here, in addition, we also use

FIG. 5. Dependence of equilibrium parameters characterizing
the degree of phase coherence of the system as a function of absolute
temperature, plotted for different values of the dimensionality param-
eter �. (a) Equilibrium condensate fraction N0/N . (b) Ratio of lowest
modes N1 and N0. (c) Binder cumulant CB. (d) Order parameter m
normalized to the zero-temperature result m0. The dashed horizontal
line in each subplot corresponds to a cutoff value used to identify the
transition for the respective equilibrium observable (with details of
such choice discussed in Appendix C). Each color corresponds to a
different value of dimensionality � as indicated in the legend. Solid
vertical colored lines in each subplot correspond to the first numerical
point deemed to have crossed the phase transition for the respective
quantity towards the incoherent regime, thus marking the identifica-
tion of the critical temperature for each value of � based on that
physical quantity. Vertical colored bands (where present) are iden-
tical throughout (a)–(d) and indicate the full range of numerically
identified critical temperature values across the different quantities
plotted in (a)–(d). The midpoint of such band is subsequently chosen
as our numerically identified critical temperature for each value
of �.
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FIG. 6. Numerically extracted phase transition temperature Tc (main plots), and central densities (insets) as a function of dimensionality
parameter �, for two different protocols for our choice of chemical potential μ based on Eq. (4). Specifically, they correspond to (see text):
(a) a constant μ2D = (4.64 μm−2)h̄2/m value, and (b) a value linearly interpolated between such μ2D value, for � = 1, and (3/2)μ2D, for our
most 3D case with � = 50. In both cases, black filled points correspond to the mean extracted transition temperature as determined by the
equilibrium statistics (Fig. 5), with dashed black lines as a guide to the eye. Error bars and shaded regions highlight the associated uncertainty,
arising from a combination of the width of the bands in Fig. 5 and a systematic uncertainty of ±5 nK due to our limited resolution in probing
distinct temperatures. Hollow blue diamonds mark the analytical TBKT transition temperature at � = 1, from Eq. (8). Red hollow points for
μ/h̄ωz > 3, with dotted red lines as a guide to the eye, indicate the analytical 3D ideal gas temperature TBEC in our chosen geometry, using
the same total atom number N in Eq. (10) as in the corresponding SPGPE simulation for the same �. Green points in (a) correspond to further
simulations with two different values of μ at small � aimed at demonstrating the limited sensitivity of the rapid initial growth of Tc with �

on density. Insets: Total density at the center of the trap; for each �, the point represent an average of the central density in a few SPGPE
simulations for T ∼ Tc, and the colored bands indicate the corresponding numerical uncertainty.

the order parameter defined by [38,43,46]

m =
〈∣∣ ∫ dr �(r)

∣∣〉
N√〈∫

dr |�(r)|2〉N
, (11)

which acts as a further measure of the degree of degeneracy
of the system. It is worth mentioning that the SPGPE is
inherently a high-temperature theoretical framework, in the
sense that the equilibration processes described by the SPGPE
become inefficient when T/Tc is significantly less than 1. At
such low temperatures, the criterion that the thermal reser-
voir contains many weakly populated thermal modes is not
met [30] and large fluctuations in equilibrium statistics are
expected. The order parameter m is particularly susceptible to
such fluctuations, as can be in Fig. 5(d) for the points below
about 50 nK.

To estimate the transition temperature Tc we select, for
each probed quantity, a relevant cut-off value marking the
transition from coherent to incoherent regime, with such cut-
off value indicated by the horizontal dashed line in each
panel. Using this as our critical value, we identify a specific
temperature at which the transition likely occurs, as the first
value within the incoherent region which crosses the indicated
threshold. Although in some cases such numerical tempera-
ture identification perfectly overlaps (within our temperature
and numerical resolution) across all panels (see � = 15, 30
cases), in most cases the different probed quantities yield

slightly different numerical values for the critical tempera-
ture. Such an effect is accommodated by adding to each plot
a colored vertical band, indicating the uncertainty in such
identification across all probed markers for a given value of
�. The value of Tc is then identified as the midpoint of such
bands, with an associated uncertainty given by half the width,
combined with a systematic uncertainty of ±5 nK due to the
discrete range of probed temperatures (further details of the
numerical determination of Tc are given in Appendix C).

To ensure our results are not affected by the selected en-
ergy cutoff choice used in our simulations, we have perform
additional simulations with energy cutoff 10% lower and
higher (for a specific crossover case with � = 5), and find
an indiscernible shift in identified critical temperature, which
falls within the above-discussed numerical uncertainties for
the critical temperature determination.

Such identification of the critical temperature is then shown
as a function of the dimensionality parameter � in Fig. 6,
with Figs. 6(a) and 6(b) based on two different numerically
generated data sets, differing in the way μ is changed when
transitioning from 2D to 3D. Figure 6(a) corresponds to re-
sults extracted from the data shown in Fig. 5, for which the
chemical potential μ is defined according to Eq. (4) with μ2D

independent of �. Figure 6(b) is based on a different protocol
for our chemical potential choice, where we substitute the first
term on the right-hand side of Eq. (4) with a function of �

that linearly interpolates from its quoted 2D value μ2D for
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� = 1 towards its 3D value (3/2)μ2D, assumed here to arise
when � = 50. This choice is designed to match the T = 0
Bogoliubov sound speed across the dimensional extremes (see
Sec. 23.1 in [2]). The corresponding ratios of μ/h̄ωz differ
across the two panels, as shown by the upper labels.

In both cases the numerically identified critical temperature
exhibits a very rapid increase with increasing value of �

between the expected limits. For small � (and specifically
� = 1) we recover the analytically expected BKT transition
temperature, given by Eq. (8) and marked by the leftmost
hollow blue diamond. It is worth stressing that Eq. (8) is
strictly applicable to the pure 2D gas; in our case, it can be
safely used for a comparison with our � = 1 SGPE results,
but it should not be used as a relevant scale when extrapolating
across dimensionality. We observe a monotonic increase of Tc

with � as the system transitions to 3D [73] leading to a signif-
icant change of atom number, with the dominant increase in
the critical temperature occurring for μ/h̄ωz � 2. As μ/h̄ωz

increases beyond that, the critical temperature dependence on
� rapidly mimics the one expected analytically for an ideal
Bose gas in the 3D limit [Eq. (10)] for the given atom number
(strictly valid in the � → ∞ limit): these are marked for
μ/h̄ωz > 3 by the hollow red symbols in each subplot; note
that the increase seen in Fig. 6(b) for large � is a direct
consequence of our chemical potential protocol, associated
with a linearly increasing density/atom number with �. As
expected, our numerically extracted values are consistently
lower than the analytical ideal gas ones, due to finite-size and
interactions effects.

The insets plot the dependence of the central condensate
density, averaged along the planar directions and evaluated at
the phase transition Tc for each given geometry, as a function
of �, with the different observed behavior arising from the
different chemical potential protocols adopted. Although the
densities exhibit up to 20% variation, it is important to high-
light that the dominant dependence of Tc on � for small values
of � is not a consequence of the changing density. To this aim
we have added two further ad hoc simulation points, spanning
the density extrema in (a) and observe no noticeable change
(within our uncertainties) to the numerically-extracted value
for Tc. We thus directly conclude that the observed changes
to the location of the phase transition are a consequence of
dimensionality.

This above observation reveals that a marginally stronger
harmonic trapping strength can lead to large differences in
phase transition temperature when exploring BKT physics.
This is an important consideration in view of the current
experiments with quasi-2D configurations. It is also worth
noticing that the range μ/h̄ωz where Tc ramps up toward the
asymptotic 3D behavior is the same where the healing length
ξ becomes comparable to the transverse size of the gas �z; in
particular, for μ/h̄ωz = 2 the healing length at T = 0 is ξ =
h̄/

√
2mgn(0) ∼ (1/2)�z. In terms of vortices, as mentioned

earlier when commenting Fig. 1, this implies a transition from
pointlike defects in a 2D background to vortical filaments in
a 3D superfluid. This is not surprising, but our simulations
provide a quantitative and systematic description of the di-
mensional crossover in terms of equilibrium properties, going
beyond the known qualitative picture. In addition, Fig. 6 also
suggests an interpretation of the behavior of Tc in terms of

BEC vs BKT physics. In the large � limit, if one cools down
the Bose gas close to Tc, the quantum degeneracy manifests
itself almost at the same temperature at which the lowest state
becomes macroscopically occupied and the BEC soon forms
together with the superfluid phase. Conversely, for small �,
due to stronger effects of fluctuations, quantum degeneracy
is associated with a quasicondensation, where many modes
have large occupation; one then needs to cool the gas fur-
ther in order to allow the system to develop coherence and
superfluidity as a result of vortex-pair binding. For gases with
similar densities, as in our simulations, this implies a critical
temperature lower in 2D than in 3D. This is also consistent
with the results obtained in Ref. [17] for a weakly interacting
Bose gas confined within a slab geometry (an anisotropic
L2 × Z lattices with Z � L governed by a Bose-Hubbard
Hamiltonian), where TBKT was also found to depend on the
slab thickness, approaching TBEC from below in the 3D limit.

IV. CONCLUSIONS

We have performed a systematic analysis of the effects
of temperature and dimensionality in the ultracold Bose gas
trapped via the box-harmonic hybrid potential, employed in
current experiments. We have demonstrated a continuous shift
in the phase transition temperature of the trapped Bose gas
as a function of dimensionality, for consistent atomic den-
sities, with the fastest change occurring for μ � 2h̄ωz. Our
work highlights the need for great care in the choice of ex-
perimental trapping frequencies to ensure true ground-state
occupation in the lowest transverse modes while exploring
BKT physics. Similarly we highlight interesting properties in
the thermality of dimensionally reduced Bose gases, relevant
for experimental observation Bose-Einstein condensation in
quasi-dimensional trapping geometries [19,74–77]. This work
motivates further research and insights on questions related,
for instance, to vortex topology in response to dimensional
quenches and to the nature of linear and nonlinear collective
excitations of the gas in the dimensional crossover.

Data supporting this publication is openly available under
an “Open Data Commons Open Database License” [78].
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APPENDIX A: NUMERICAL METHOD

To solve the SPGPE for the considered box-harmonic hy-
brid potential, Eq. (3), we adopt a hybrid basis composed
of plane waves along the x and y axes and the harmonic
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oscillator basis along the z axis. Since the SPGPE simula-
tions are time consuming, we prefer to make the calculations
faster by implementing efficient Fourier and inverse Fourier
transformations in the xy plane. This requires the use of
periodic boundary conditions. We thus embed the physical
Lx×Ly box into a slightly larger auxiliary Lx×Ly box. The
potential outside the physical box is taken to be very large
(decades larger than the chemical potential) so that the density
is negligible in that region. Periodic boundary conditions are
then applied to the auxiliary box.

The SPGPE is numerically solved in its dimensionless
form in which the physical quantities and variables are scaled
by reference length, energy, and timesscales, lref , h̄ωref , and
ω−1

ref , respectively, according to their dimensions, and in the
following the dimensionless quantities and variables are de-
noted by prime notation. The c field is expanded in the hybrid
basis

� ′(r′, t ′) =
∑

εpqn�ε′
cut

A′
pqn(t ′)φp(x′)φ′

q(y′)ϕ′
n(z′), (A1)

where the dimensionless single-particle energies are

ε′
pqn = 2π2

[
p2

L′2
x

+ q2

L′2
y

]
+ 1

�

(
n + 1

2

)
. (A2)

The wave functions are

φ′
p(x′) = (1/

√
L′

x ) exp(i2π px′/L′
x ), (A3)

φ′
q(y′) = (1/

√
L′

y) exp(i2πqy′/L′
y), (A4)

φ′
n(z′) = �−1/4

√
2nn!π1/4

Hn

(
z′

√
�

)
e−z′2/2�, (A5)

where Hn are the Hermite polynomials and p, q, n are integer
quantum numbers with p, q � 1 and n � 0. This hybrid basis
satisfies the eigenequation[

−∇′2

2
+ 1

2�2
z′2

]
φp(x′)φ′

q(y′)ϕ′
n(z′)

= ε′
pqnφp(x′)φ′

q(y′)ϕ′
n(z′), (A6)

and forms a complete set obeying the orthogonality condition∫
drφ∗

p′ (x)φ∗
q′ (y)ϕ∗

n′ (z)φp(x)φq(y)ϕn(z) = δpp′δqq′δnn′ . (A7)

The amplitude of each mode in the c field can be expressed in
the form

A′
pqn(t ′) =

∫
dr′φ′∗

p (x)φ′∗
q (y)ϕ′∗

n (z)� ′(r′, t ′)

≡ Fx,p[Fy,q[Hz,n[� ′(r′, t ′)]]], (A8)

where Fx,p and Fy,q denote the Fourier transform and Hz,n is
the Hermite transformation. The corresponding inverse trans-
formation is

� ′(r′, t ′) =
∑
p,q,n

F−1
x,p

[
F−1

y,q

[
H−1

z,n[A′
pqn(t ′)]

]]
. (A9)

The Fourier and inverse Fourier transformation can be
straightforwardly computed by fast Fourier transformation
with homogeneous grids along x and y axes. The Hermite

transformation can be computed with the Hermite-Gaussian
quadrature, a form of Gaussian quadrature for approximating
the value of integrals by a summation with n points, given by∫

dz′e−z′2
f (z′) ≈

nmax∑
i=1

wi,n f (αi ), (A10)

where

wi,n = 2n−1n!
√

π

n2[Hnmax−1(αi )]2
(A11)

are roots of the Hermite polynomial Hnmax (αi), for i =
1, 2, . . . , n [30,57]. In order to compute the Hermite transfor-
mation accurately, the grid is set by αi and is not homogeneous
along the z axis. Then we can write

Hz,n[� ′(r′, t ′)] =
∑

i

wi,n
�1/4Hn(αi )√

2nn!π1/4
eα2

i �(x′, y′, αi, t ′),

(A12)

and this can be numerically implemented by a product of a
matrix with indices n and i times a vector with index i. The
inverse Hermite transformation is the product of the basis
weight and the nth harmonic basis,

H−1
z,n[A′

pqn(t ′)] = A′
pqn(t ′)ϕ′

n(z′). (A13)

During the SPGPE evolution addressed below, the z-position
grid is set by the roots of the Hermite polynomial with
nmax = 300 in all our simulations. Besides, it is worth noting
that unlike the Hermite transformation, one can reconstruct
the wave function with arbitrary spatial resolution from the
inverse transformation with the knowledge of Apqn, and thus it
will allow us to visualize the data with finer grid spacing in z′.

The equation of motion of the basis amplitude Apqn for
ε′

pqn � εcut can be obtained by the SPGPE

i
∂

∂t ′ A
′
pqn(t ′) = (1 − iγ )[ε′

pqn + P[G′
pqn] − μ′]A′

pqn(t )

+ η̃′
pqn(t ′), (A14)

where

G′
pqn(t ′) = Fx,p

[
Fy,q

[
Hz,n

[
V ′(x′, y′)

+g′|� ′(r′, t ′)|2� ′(r′, t ′)
]]]

(A15)

is the combination of external box potential and the nonlinear
term. Here we introduced g′ = 4πas/lref as the dimensionless
interaction strength. Meanwhile the complex white noise fol-
lows the correlation relation

〈η̃′∗
i jk (t ′′)η̃′

pqr (t ′)〉 = 2γ
kBT

h̄ωref
δ(t ′ − t ′′)δpiδq jδnk (A16)

only for modes below the cutoff. The projector limits the
modes evolved in the dynamic for modes satisfying εpqn �
εcut while higher modes could be created during the s-wave
collision. The time integral is solved by a Runge-Kutta fourth
order routine with a time step which varies across dimen-
sionalities but is typically dt ∼ dxdy�/2. Numerics and
visualization are performed using Julia [79–81], whereby we
utilize CUDA to offload calculations to a graphical processing
unit (GPU). This project utilized the Rocket High Perfor-
mance Computing service at Newcastle University.
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APPENDIX B: DETERMINATION OF TOTAL DENSITY

The SPGPE partitions atoms into a highly occupied c field
�(r, t ) coupled to a reservoir of atoms in the incoherent states
above the cutoff. The density of atoms in the c field is simply
nc(r, t ) = |�(r, t )|2 and their number is Nc = ∫

dr|�|2. In-
stead, for the atoms above the cutoff one can assume that they
occupy the single particle states of an ideal gas in the same
trap with mean occupation number at equilibrium given by
the Bose-Einstein distribution [55]. In this calculation the trap
is the physical one, which has the Lx × Ly box with infinite
hard walls. In order to avoid confusion with the previous
Appendix, here we use a slightly different notation for the
quantum numbers. The eigenfunctions for a particle in our
hybrid trap are given by

�n(x, y, z) = c sin(nxπx/Lx ) sin(nyπy/Ly)

× Hnz (z/�z ) exp
(−z2

/
2�2

z

)
, (B1)

where c is a normalization constant, fixing the norm of a given
state to 1, the functions Hnz are the Hermite polynomial, and
n = (nx, ny, nz ) are integer quantum numbers with nx, ny > 1
and nz � 0. The eigenenergies are

E = π2h̄2

2m

(
n2

x

L2
x

+ n2
y

L2
y

)
+

(
nz + 1

2

)
h̄ωz. (B2)

Thus the density associated with atoms above the cutoff en-
ergy εcut, treated as an ideal gas, can be estimated as

nI (x, y, z) =
∑

Ẽn>ε̃cut

|�n(x, y, z)|2
exp[(Ẽn − μ̃)/kBT ] − 1

. (B3)

For convenience, here we have removed the zero point energy
(1/2)h̄ωz from the energy, cutoff energy and chemical po-
tential, by defining Ẽn = E − h̄ωz/2, ε̃cut = εcut − h̄ωz/2, and
μ̃ = μ − h̄ωz/2. We have also ignored interference effects
among different eigenfunctions in the expression of the den-
sity nI ; this is consistent with the assumption that the states
above the cutoff energy are incoherent and the effects of the
relative phase vanish after configuration averages. The spatial
integral of this density gives the incoherent atom number NI .

Now we use the fact that kBT is always much larger than
the energy spacing between planar states with different nx and
ny, so that their spectrum forms a continuum and the corre-
sponding sums can be replaced with an integral, with the 2D
density of states mLxLy/(2π h̄2). In addition, all sin2 functions
sum up to an areal density along x and y which can be assumed
to be constant except for negligible boundary effects. Under
these assumptions the incoherent density becomes

nI (z) = m

2π h̄2

∞∑
nz=0

∣∣ψnz (z)
∣∣2

×
∫ ∞

Emin

dExy
1

exp[(Exy + nzh̄ωz − μ̃)/kBT ] − 1
,

(B4)

where Ẽn = Exy + nzh̄ωz. The wave function is

ψnz (z) = [
√

π 2nz nz! �z]
−1/2Hnz (z/�z ) exp

(−z2/2�2
z

)
(B5)

FIG. 7. Total (n), condensate (n0), and noncondensate (nnc = n −
n0) density profiles along the transverse direction plotted for a quasi-
2D (� = 10) and 3D (� = 50) trapping geometry at temperature
T = 200 nK, for which T/Tc = 0.83 and T/Tc = 0.75, respectively.

and has norm 1. The minimum energy is defined as

Emin =
{
ε̃cut − nzh̄ωz for ε̃cut > nzh̄ωz,

0 for ε̃cut � nzh̄ωz.
(B6)

The atoms above the cutoff must be in thermal equilibrium
with those in the c field and should share the same chemical
potential. This implies that μ̃ = μ2D, given in Eq. (4). More-
over, the cutoff is fixed by ε̃cut = μ2D + kBT ln 2. Using these
expressions, the integral of (B4) can be solved analytically,
allowing one to derive the expression

nI (z) = T ′

2π�2
ref

(
n̄z−1∑
nz=0

|ψnz (z)|2 ln 2

−
∞∑

nz=n̄z

|ψnz (z)|2 ln(1 − eφnz )

)
. (B7)

The dimensionless temperature is defined as T ′ = T/Tref ,
with reference temperature Tref = h̄ωref/kB. In addition, we
have introduced the constant a = μ2D/(h̄ωref ) and the expres-
sions φnz = (a − nz/�)/T ′ and n̄z = �(a + T ′ ln 2)��. The
spatial integral of the density gives the incoherent atom
number

NI = LxLy

2π�2
ref

�T ′(a ln 2 + bT ′), (B8)

where b = ∫ ∞
ln 2 dt t/(et − 1) = 1.0592. These expressions al-

low us to calculate the total density n(z) = nc(z) + nI (z) and
the total number of atoms N = Nc + NI .

It is finally worth noticing that nI must not be confused
with the “thermal” (or noncondensate) gas density as usually
defined in 3D Bose gases when a condensate is present. The
noncondensate density nnc(z) can be estimated as the total
density n(z) minus the density n0(z) of the atoms in the
condensate, i.e., the eigenstate with the largest eigenvalue in
the Penrose-Onsager diagonalization of the one-body density
matrix. Such a thermal density takes contributions from both
the c field below and the incoherent states above the cutoff.
Two examples are shown in Fig. 7 at temperatures close to the
phase transition for two different values of �.
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APPENDIX C: IDENTIFICATION
OF THE CRITICAL REGION

Localization of the phase transition and the respective crit-
ical region is performed by numerical thresholding for each
considered equilibrium parameter as displayed in Fig. 5. To
characterize the transition we find both the minimum and
maximum temperature at which our selection of equilibrium
statistics indicate a crossing from coherent to incoherent be-
havior, using the first identified incoherent point for each
equilibrium parameter, and then averaging across the identi-
fied extrema. Then, accounting for the thermal resolution of
our simulations, we combine the half-width of the numerically
extracted band (where present) with an additional independent
uncertainty of ±5 nK to define the overall width of our critical
region.

We emulate previous works [46] and stipulate the cross-
ing of a phase transition occurs once the condensate fraction
falls below 5% and introduce the cutoff (N0/N )cut = 0.05
to signpost a crossing of the critical region. At the phase
transition point, occupation levels in the lowest and second-
lowest mode should become comparable. Considering the

ratio of the two lowest system modes r� = N1/N0, one would
expect an imminent transition when there are half as many
atoms in the second-lying mode as in the first. As such, we
introduce a cutoff value rcut

� = 0.5. The Binder cumulant,
as previously defined in Eq. (7), is a well established pa-
rameter to signal the crossing of a phase transition [38,43].
In the thermodynamic limit, the critical value is known to
be C∞

B = 1.2430 [82], whereas for trapped systems, where
finite-size effects can manifest, this value is lower [50]. In
this vein we select a critical value of Ccut

B = 1.2 to indicate
a crossing of the critical region. Lastly, we consider the or-
der parameter m as defined in Eq. (11) normalized to its
value at zero temperature m0. For a zero-temperature system
m/m0 = 1, falling to m/m0 ∼ 0 across the transition [43,59].
To capture the transition, we introduce a threshold value of
mcut = 0.25. Using each of the aforementioned threshold val-
ues in combination, a systematic simultaneous crossing of the
critical region is revealed for each of the equilibrium statis-
tics chosen. This allows us to measure the phase transition
as a function of the system dimensionality, as showcased
in Fig. 6.
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