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A B S T R A C T

Lung cancer is among the deadliest cancers. Besides lung nodule classification and diagnosis, developing
non-invasive systems to classify lung cancer histological types/subtypes may help clinicians to make targeted
treatment decisions timely, having a positive impact on patients’ comfort and survival rate. As convolutional
neural networks have proven to be responsible for the significant improvement of the accuracy in lung
cancer diagnosis, with this survey we intend to: show the contribution of convolutional neural networks
not only in identifying malignant lung nodules but also in classifying lung cancer histological types/subtypes
directly from computed tomography data; point out the strengths and weaknesses of slice-based and scan-based
approaches employing convolutional neural networks; and highlight the challenges and prospective solutions
to successfully apply convolutional neural networks for such classification tasks. To this aim, we conducted
a comprehensive analysis of relevant Scopus-indexed studies involved in lung nodule diagnosis and cancer
histology classification up to January 2022, dividing the investigation in convolutional neural network-based
approaches fed with planar or volumetric computed tomography data. Despite the application of convolutional
neural networks in lung nodule diagnosis and cancer histology classification is a valid strategy, some challenges
raised, mainly including the lack of publicly-accessible annotated data, together with the lack of reproducibility
and clinical interpretability. We believe that this survey will be helpful for future studies involved in lung
nodule diagnosis and cancer histology classification prior to lung biopsy by means of convolutional neural
networks.
1. Introduction

Cancer is the principal cause of death in the world [1]. Lung
cancer is the most common and among the deadliest cancers [2,3],
killing more people than bladder, brain, breast, colorectal, prostate, and
stomach cancers [4–6]. Indeed, it accounts for about 1.8 million new
cases and more than 1.4 million deaths every year in the world [1,7].
Nodule visual appearance is mighty varied with subtle peculiarities in
shape, texture, and size [8]. In particular, nodules with a size equal
or bigger than 3 mm are referred to as lung nodules, and larger ones
are likely to become malignant (i.e., cancerous) [9]. In agreement
with the differentiation based on the histological size of lung cancer
cells under a microscope, about 15% of all lung cancers is Small Cell
Lung Cancer (SCLC) and up to 85% is Non-Small Cell Lung Cancer
(NSCLC) [3,10,11], as depicted in Fig. 1. SCLC is a mass located mostly
along the long axis of the bronchus [7]; whereas, NSCLC is a mass that
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can infiltrate and encase the structures of the mediastinum [12]. NSCLC
has three histological subtypes: ADenoCarcinoma (ADC), Squamous
Cell Carcinoma (SCC), and Large Cell Carcinoma (LCC) [3,11,13].
According to the reclassification pointed out by Travis et al. [14], the
diagnosis of LCC is restricted to surgically-resected cancers with unclear
immunohistochemical or morphological differentiation [10,14]. Thus,
ADC and SCC account for approximately 90% of NSCLC histological
subtypes [15–17]. ADC is the most common NSCLC histological sub-
type [13]. It begins in the submucosal glands and is located mostly
along the outer edges of the lungs, often showing a star-like con-
tour [10,18]. In the majority of cases, it appears like a mass smaller
than 3 cm [19]. ADC can be further categorized in invasive ADC (iADC)
or in situ ADC (sADC) according to the mass growth [7]. SCC is the
second most common NSCLC histological subtype [13]. It begins in
the squamous cells and is usually located in the middle of the lungs,
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Fig. 1. Non-invasive lung cancer computer-aided diagnosis. After being detected, lung nodules are classified as nodules or non-nodules. Next, suspicious lung nodules are diagnosed
as malignant or benign. Then, malignant lung nodules (i.e., lung cancers) are classified according to the histological type/subtype. NSCLC accounts for about 85% of all lung
cancers. ADC and SCC are the most common NSCLC histological subtypes (90%).
often presenting central necrosis, with a wall thickness typically larger
than 1.5 cm [10]. Its diameter may exceed 4 cm [19]. Microscopically,
ADC shows acinar, cribriform, lepidic, micropapillary, papillary, and
solid histopathological growth patterns; whereas, SCC shows clusters
of polyhedral cells, presence of abundant eosinophilic cytoplasm, and
keratin pearl formation [1].

Lung cancer tends to be diagnosed only at its critical stage. How-
ever, early lung cancer diagnosis is fundamental to lift the associated
survival rate by improving therapeutic decisions [2,20]. It is estimated
that the five-year survival rate of diseased patients increases more than
50% as a result of early lung cancer diagnosis and timely treatment [21,
22]. As diagnostic imaging modalities in lung cancer prognosis, pul-
monologists and radiologists recommend exams such as Computed
Tomography (CT), Magnetic Resonance Imaging (MRI), and Positron
Emission Tomography (PET) [21,23]. MRI and PET have limitations in
detecting lung nodules [24]. MRI, in particular, may miss small lung
metastases [3]. CT (especially in the form of low-dose CT) is responsible
for a substantial decrease in advanced stage lung cancer and, thereby,
reduces mortality from lung cancer significantly [25]. Besides being the
most sensitive to small calcified lung masses [5,26,27], CT has other
advantages, as it has high spatial resolution, low noise and distortion,
it is rapid, non-invasive, affordable, and widely available [21,23,28].
Furthermore, it allows to obtain a 3D characterization of the thorax,
as each lung nodule is assessed and additional information about other
lung structures can be retrieved [29]. Typically, benign lung nodules
have an elliptical shape; whereas, cancerous ones have an irregular
structure with a rough texture [30]. However, lung cancer is among
the most frequently misdiagnosed diseases by CT scan visualization
only [30]. Indeed, considerable efforts are required by radiologists to
examine CT scans, search for lung nodules (particularly for smaller
ones), and determine whether they are malignant according to their
shape, texture, and size, as interpretation heavily depends on radiol-
ogists’ professional experience [8,31,32]. Under ideal circumstances,
radiologists spend up to 5 min per lung nodule [31]. With the presence
of destabilizing factors such as distraction, fatigue, and inter- and intra-
observer variability, radiologists could end up with wrong or even
missing diagnoses, overlooking potentially malignant lung nodules [4,
33,34]. Besides lung nodule detection, classification (i.e., false positive
reduction and nodule/non-nodule classification), and diagnosis (i.e.,
2

malignant/benign classification), lung cancer histology characteriza-
tion is crucial for clinical treatment options [3,10,35] (Fig. 1), as the
effectiveness of chemotherapy and immunotherapy treatments as well
as the risk of complications are different for each lung cancer histo-
logical type/subtype [36,37]. Lung cancer histological types/subtypes
are characterized by some specific alterations that allow to quite eas-
ily discriminate them at the molecular level [13]. Nevertheless, it
is highly challenging to precisely identify lung cancer histological
types/subtypes in terms of their morphological characteristics [16,17].
As a result, in patients suspected of having lung cancer based on CT
findings, it is recommended to obtain an adequate tissue sample to
accurately identify the histological type/subtype for definitive lung
cancer diagnosis [12,36,38]. By inspecting CT scans, suspicious lung
nodules are identified. Subsequently, lung biopsy is performed and the
microscopic structure of the excised tissue sample is analyzed [16].
Lung biopsy, mainly in the form of transthoracic fine needle biopsy,
is the first choice for peripherally-located lung cancers [38]. For lung
cancers located in proximity to airways or blood vessels as well as for
deeply-located ones, lung biopsy is highly challenging [16]. Therefore,
lung biopsy shows the potential to determine the status and type of
the excised tissue sample [23], but it is highly invasive with potential
clinical implications [29], being strongly discouraged in patients with
unfavorable clinical situations [11,16]. Moreover, excising a small
tissue sample may not exactly characterize the suspicious lung nodule
due to its heterogeneity [10,23,39]. As a result, oncologists could fail in
determining lung cancer histology [35]. Thus, developing non-invasive
modalities to classify lung cancer histological types/subtypes may not
only help clinicians to make targeted treatment decisions timely but
also prevent patients from undergoing lung biopsy [11,16,40].

For lung nodule detection, classification, and diagnosis from CT
data, several good reviews have been published from 2018 to 2021 [2,
5,21,23,41]. In 2018, Zhang et al. [21] reviewed both feature engineer-
ing algorithms and emerging Convolutional Neural Network (CNN)-
based models from a technique-driven perspective, including studies
developed up to May 2018. In 2019, Monkam et al. [2] summarized
CNN-based models developed in 2018, dividing the analysis according
to the CNN type. Zhang et al. [23] provided a collection of studies
up to December 2018 on both feature engineering and Deep Learning
(DL) algorithms, dividing the analysis according to the main stages of a
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computer-aided diagnosis system. Respectively in 2020 and 2021, also
Cao et al. [5] and Gu et al., [41] based the analysis on the main stages
f a computer-aided diagnosis system while reviewing DL algorithms,
ainly CNN-based models, developed in 2019 and up to November
020. For publicly-available lung cancer CT datasets, a good survey by
diraju et al. [26] has been published in 2021. However, there is a lack

of investigation targeted at discriminating the classification approaches
from a data-driven perspective. Moreover, to the best of our knowledge,
reviews devoted to lung cancer histology classification from CT data by
means of CNN-based models are not yet existing. In this regard, this sur-
vey aims to illustrate some recent advancements in CNNs applied to the
investigation of lung cancer from CT data. Specifically, we conducted a
comprehensive analysis of slice-based and scan-based approaches using
CNNs for lung nodule diagnosis and cancer histology classification from
CT data. With this survey, we intend to:

• Show the potential of CNNs and their contribution not only in
identifying malignant lung nodules but also in classifying lung
cancer histological types/subtypes directly from CT data;

• Point out the strengths and weaknesses of slice-based and scan-
based approaches employing CNNs;

• Highlight the challenges and prospective solutions to successfully
apply CNNs for such classification tasks.

. Lung cancer computer-aided diagnosis

Artificial intelligence has been showing remarkable success in medi-
al image analysis, especially due to the rapid progress and outstanding
erformance of DL-based clinical decision support systems [2,42]. DL
lgorithms for lung cancer computer-aided diagnosis are more and
ore used to assist (not replace) clinicians in the decision-making
rocess [2,4,21]. They may improve the diagnostic accuracy while
educing the workload of both radiologists and oncologists [3,5], unam-
iguously outperforming standard Machine Learning (ML) algorithms
4,24].

.1. Deep learning in lung cancer diagnosis

Before the expansion of DL, feature engineering algorithms were
xtensively used in the lung cancer domain [21,22]. Intensity-based,
exture-based, and morphology-based lung cancer features were man-
ally extracted from CT data, and injected to traditional ML classifiers
uch as support vector machine and random forest. Keshani et al. [43]

employed a support vector machine classifier based on 2D stochastic
and 3D anatomical features for lung nodule classification from CT
images. Also Han et al. [44] employed a feature-based support vector
machine classifier in combination with rule-based filtering operations
for the same classification task. Liu et al. [45] employed a random forest
classifier based on 22 shape and texture features of lung nodules. A
random forest classifier was also employed by Gong et al. [46] to classify
lung nodules, previously detected with a 3D tensor filtering approach
combined with a local image feature analysis. Despite the quite good
results achieved by these studies, traditional ML classifiers have several
limitations [41]. For instance, it is difficult to use a support vector
machine in case of multi-classification problems and large-scale train
samples [47]. Moreover, traditional ML classifiers need manual feature
extraction to achieve good results. Manual feature extraction is a time-
consuming and non-trivial process, especially in the main scenarios of
medical image analysis: complexity of the diagnosis and limited ‘‘a
priori’’ knowledge [42]. Indeed, despite the clinicians’ experience, there
is not an extensive knowledge about which quantitative image features
predict an output [42]. Specifically, manual feature extraction is ex-
tremely challenging for what concerns lung nodule features [41]. With
the explosion of DL due to the great empowerment of computational
resources, some researchers have started to replace feature engineering
algorithms with DL ones [22,24]. DL algorithms do not require too
3

much manual intervention and are characterized by a high degree of
automation [37,48], as they can adaptively learn the optimal represen-
tation in a fully data-driven way, without relying on manually-extracted
lung nodule features [8,20,42]. Furthermore, the base knowledge of DL
algorithms from unrelated fields can be transferred to the lung cancer
domain easier than the base knowledge of standard ML algorithms [41].
Thus, DL algorithms have many advantages in analyzing lung cancer
data.

2.2. Convolutional neural networks in lung cancer diagnosis

Among the several DL algorithms, CNNs have become the lead-
ing choice for lung nodule detection, classification, and diagnosis
from CT data [2,5,21–24,41]. In particular, the employment of CNNs
such as AlexNet, Densely-connected convolutional Network (DenseNet),
GoogLeNet with Inception units, Residual Network (ResNet), Visual
Geometry Group Network (VGGNet), and their derivatives is the most
prevalent [24,49]. CNNs are implemented with convolution and pool-
ing strategies; thus, they can simultaneously manage feature con-
struction, feature selection, and prediction modeling, performing an
end-to-end analysis from input data to predictions [16]. Automatically-
extracted features from CNNs preserve the spatial information with
the convolutional kernel operations on input data [39]. This is ad-
vantageous in contextual recognition, domain adaptation, fine-grained
recognition, and texture attribute recognition [50]. CNNs are also less
human-dependent [39]. This factor significantly reduces the bias. As
a result, they are extremely-powerful and labor-saving DL algorithms,
also responsible for the significant improvement of the accuracy in lung
cancer diagnosis [5,51,52].

The majority of CNN-based models relies on slices. As a CT scan
is inherently 3D, such models convert the volumetric information into
2D multi-channel data. Inspecting the CT scan slice by slice may result
in the loss of valuable information [3,53], as the inherent spatial
relationship of slices is neglected [54]. Therefore, incorporating the
volumetric information by keeping the slice order may positively im-
pact the learning process. In this regard, CNN-based models that take as
input a group of slices as a whole (e.g., lung nodule volume, sequence
of lung slices, lung volume, sequence of CT slices, or CT volume),
referred to as scan-based approaches, are likely to capture richer spatial
information and extract more discriminative features than CNN-based
models that take as input slices separately (i.e., slice-based approaches),
as schematically depicted in Fig. 2. Thus, scan-based approaches have
the potential to investigate the overall information in a more detailed
way, resulting in more reliable clinical judgments [51,55]. They include
3D CNNs as well as less computationally costly models such as time-
distributed 2D CNNs coupled with Recurrent Neural Network (RNN)
modules for integrating the spatial coherence of slices. In this case,
RNN exploits its internal state to analyze spatial sequences, being able
to connect the already-processed information to the present one [10].

3. Search strategy and selection criteria

The search strategy that we followed to identify and select the
state-of-the-art articles included the following steps:

• Definition of the problem;
• Choice of the articles which satisfy all the selection criteria;
• Extraction of the most salient information from each selected

article;
• Analysis of the extracted information.

The preliminary selection criteria were:

• For lung nodule diagnosis-related studies, we restricted time to
the last two years to avoid a complete overlap with existing
reviews. In this guise, we searched for Scopus-indexed works (Q1
and Q2 scientific articles in at least one of the following sectors:
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Fig. 2. A schematic illustration of slice-based (a) and scan-based (b) approaches using CNNs. Slice-based approaches are fed with planar data (e.g., lung nodule slices, lung slices,
or CT slices, separately) and include 2D CNNs. Scan-based approaches are fed with volumetric data (e.g., lung nodule volumes, sequence of lung slices, lung volumes, sequence of
CT slices, or CT volumes) and include 3D CNNs as well as time-distributed 2D CNNs coupled with recurrent modules for spatial information integration.
Table 1
Article search outcomes.

Filtration by preliminary
selection criteria

Filtration by language, title,
abstract, and keywords

Filtration by
full-text analysis

Selected articles

Lung nodule diagnosis 32 21 13 11
Lung cancer histology classification 11 10 7 7
artificial intelligence; biomedical engineering; computer science;
computer science applications; health informatics; and radiology,
nuclear medicine and imaging) published from January 2019 up
to and including January 2022. All searches included the words
‘‘lung cancer’’ AND ‘‘lung nodule diagnosis’’ AND ‘‘malignant’’
AND ‘‘benign’’, in conjunction with (‘‘CT’’ OR ‘‘computed to-
mography’’) AND (‘‘DL’’ OR ‘‘deep learning’’) AND ‘‘supervised
learning’’ AND ‘‘classification’’ AND (‘‘CNN’’ OR ‘‘convolutional
neural network’’), using Boolean ‘‘AND’’ to join all words and
‘‘OR’’ to include synonyms;

• For lung cancer histology classification-related studies, we ap-
plied no time restriction, as there are not existing reviews on the
same topic. In this guise, we searched for Scopus-indexed works
(Q1 and Q2 scientific articles in at least one of the following sec-
tors: artificial intelligence; biomedical engineering; computer sci-
ence; computer science applications; health informatics; and radi-
ology, nuclear medicine and imaging) published up to and includ-
ing January 2022. In searches, we considered the terms (‘‘SCLC’’
OR ‘‘small cell lung cancer’’) AND (‘‘NSCLC’’ OR ‘‘non-small cell
lung cancer’’) AND (‘‘ADC’’ OR ‘‘adenocarcinoma’’) AND (‘‘SCC’’
OR ‘‘squamous cell carcinoma’’) AND (‘‘CT’’ OR ‘‘computed to-
mography’’) AND (‘‘DL’’ OR ‘‘deep learning’’) AND ‘‘supervised
learning’’ AND ‘‘classification’’ AND (‘‘CNN’’ OR ‘‘convolutional
neural network’’), using Boolean ‘‘AND’’ to join all terms and
‘‘OR’’ to include synonyms.

In both searches, we then filtered the articles by language (English
only), title, abstract, and keywords. After this further filtration, as the
overall volume of studies was relatively low given the time/technical
restrictions in the first case and the recency of the topic in the second
one, we performed a full-text analysis of the remaining articles, select-
ing them according to their technical details. This resulted in preserving
4

only 18 relevant Scopus-indexed publications that employed CNNs for
such classification tasks.

Table 1 synthesizes the article search outcomes.

4. Literature descriptive analysis

We conducted a descriptive analysis of the selected studies based
on the article information to assess their relevance in the lung cancer
domain. Specifically, we carried out this analysis according to the
year of publication, dataset, input type, input size, best-performing
CNN, classes, and overall performance. Regarding the performance, we
decided to report the ACCuracy (ACC) and Area Under the receiver
operating characteristic Curve (AUC), as ACC represents the number
of correct predictions over the total number of predictions and AUC
highlights the ability to discern between the classes without depending
on the discrimination threshold. Given its extreme importance in the
clinical scenario, we decided to report also the SEnsitivity (SE), which
reflects the number of correctly classified positive cases [54].

Sections 4.1 and 4.2 provide a comprehensive overview of the
literature descriptive analysis for lung nodule diagnosis and cancer
histology classification, respectively.

4.1. Lung nodule diagnosis

Relevant success has been achieved in DL-based differentiation of
lung nodules from other lung lesions [4,20,32,55–59]. However, due to
the heterogeneity of lung nodules, it is still challenging to obtain a sat-
isfactory classification of their status from CT data, as not all detected
lung nodules turn out to be cancerous [60]. For this reason, we focused
our first investigation specifically on malignant/benign lung nodule
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Table 2
Relevant Scopus-indexed studies involved in lung nodule diagnosis from CT data using CNNs.

Study Year Dataset Input type Input size (mm) Best-performing CNN Classes ACC (%) SE (%) AUC (%)

Al-Shabi et al. [61] 2019 LIDC-IDRI Nodule images 32 × 32 Gated dilated 2D CNN Malignant/
benign

93 92 95

Shen et al. [8] 2019 LIDC-IDRI Nodule volumes 52 × 52 × 52 Hierarchical semantic
3D CNN

Malignant/
benign

84 70 86

Ali et al. [62] 2020 LIDC-IDRI
SPIE-AAPM-NCI

Nodule images 64 × 64 Transferable texture 2D
CNN

Malignant/
benign

97
86

96
–

99
–

Lin et al. [63] 2020 LIDC-IDRI
SPIE-AAPM-NCI

Nodule images 50 × 50 Taguchi optimized 2D
CNN

Malignant/
benign

99
100

100
100

–
–

Liu et al. [60] 2020 LIDC-IDRI Nodule volumes 48/32/16 × 48/32/16
× 48/32/16

Multi-model 3D CNN Malignant/
benign

90 84 94

Zhai et al. [64] 2020 LIDC-IDRI
LUNA16

Nodule images 64 × 64 Multi-task 2D CNN Malignant/
benign

–
–

88
84

96
97

Zhao et al. [51] 2020 LIDC-IDRI Nodule volumes 32 × 32 × 6 Multi-scale multi-task
3D CNN

Malignant/
benign

94 93 98

Halder et al. [30] 2021 LIDC-IDRI Nodule images 64 × 64 Two-path
morphological 2D CNN

Malignant/
benign

96 97 99

Jena et al. [65] 2021 LIDC-IDRI Lung images – Region-based 2D CNN Malignant/
benign

88 70 –

Lu et al. [66] 2021 RIDER CT images 227 × 227 Marine predator-based
2D CNN

Malignant/
benign

93 98 –

Yu et al. [27] 2021 LIDC-IDRI Nodule volumes 48 × 48 × 16 3D ResNet50 Malignant/
benign

87 80 91
Fig. 3. Percentage of slice-based (light gray) and scan-based (black) approaches
performing lung nodule diagnosis from CT data using CNNs.

classification from CT data adopting CNNs, differentiating between
slice-based (Section 4.1.1) and scan-based approaches (Section 4.1.2).

Table 2 reports 11 relevant Scopus-indexed studies involved in lung
nodule diagnosis from CT data using CNNs, better detailed in the
following two subsections. For each study, we indicated the publication
year, the employed dataset, the input type (lung nodule images, lung
images, CT images, lung nodule volumes, sequences of lung slices,
lung volumes, sequences of CT slices, or CT volumes), the input size,
the best-performing CNN, the classes, and the overall performance in
terms of ACC, SE, and AUC. Fig. 3 depicts the percentage of slice-based
and scan-based approaches hereby investigated. Fig. 4 displays which
dataset has been used across the studies and the respective percentage.

4.1.1. Slice-based approaches
In 2019, Al-Shabi et al. [61] developed a 2D CNN-based model,

named Gated dilated, to classify lung nodules as malignant or benign
from CT images. Gated dilated 2D CNN exploited multiple dilated
convolutions in place of max-pooling layers for catching multiple-
scale features, and had a context-aware sub-network that analyzed and
guided the features to a suitable dilated convolution. Besides Gated
dilated 2D CNN, they implemented other CNN-based models: (1) a
conventional CNN with the same number of layers and channels per
layer of Gated dilated 2D CNN; (2) Gated dilated 2D CNN with no dila-
tion; (3) Gated dilated 2D CNN with no gating; (4) a multi-crop CNN;
and (5) ResNet50 and DenseNet161 trained with two different trans-
fer learning modalities. First, they manually segmented lung nodules
5

using the annotations of four radiologists. Next, they used a tri-linear
Fig. 4. Datasets employed for lung nodule diagnosis with the respective percentage.
LIDC-IDRI1 stands for Lung Image Database Consortium and Image Database Resource
Initiative, SPIE-AAPM-NCI2 stands for LUNGx Challenge of SPIE with the support of
the American Association of Physicists in Medicine and the National Cancer Institute,
LUNA163 stands for Lung Nodule Analysis 2016, and RIDER4 stands for Reference
Image Database to Evaluate therapy Response. All employed datasets are openly
accessible on The Cancer Imaging Archive (TCIA) platform.

interpolation to normalize them, ending up with an isotropic pixel
resolution. Then, they extracted square regions of 32 × 32 pixels about
the center of each lung nodule, and used them to feed Gated dilated
2D CNN. Through data augmentation (rotation and Gaussian blurring),
they obtained 15 different images for each lung nodule and used them
for training. They implemented Gated dilated 2D CNN in Python using
PyTorch framework, and ran the experiments on a machine with one
NVIDIA Titan X Pascal GPU. To perform the experiments, they selected
244617 images (1018 CT scans of 1010 patients) from the Lung Image
Database Consortium and Image Database Resource Initiative (LIDC-
IDRI)1 dataset of The Cancer Imaging Archive (TCIA) platform. Gated
dilated 2D CNN achieved an overall ACC of 93%, SE of 92%, and AUC
of 95% on test data, slightly outperforming all the other exploited CNN-
based models. Results also showed a significant accuracy improvement
in detecting medium-sized nodules (5 to 12-mm diameter).

In 2020, Ali et al. [62] designed a transferable texture 2D CNN to
improve lung nodule status classification performance from CT images,
and evaluated it on the LIDC-IDRI1 (244617 images) and the LUNGx
Challenge of SPIE with the support of the American Association of

1 https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI.

https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
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Physicists in Medicine (AAPM) and the National Cancer Institute (NCI)2

22489 images) datasets of TCIA platform, separately. They incorpo-
ated an energy layer in the model architecture to extract texture
eatures from the convolutional layer. The inclusion of the energy
ayer reduced the number of model parameters, decreasing the com-
utational complexity and memory requirements. They first performed
ata augmentation by using operations like image translation, random
otation, and flip. To manage data heterogeneity, they converted all
mages to Hounsfield Unit (HU) scale and transformed them to a range
f (0, 1) from (−1000, 500 HU). After this, they extracted a Region Of
nterest (ROI) around each lung nodule by acquiring the coordinates
nd slice number from the associated XML file. At the end of the pre-
rocessing step, they used as input images centered at lung nodules
ith a shape of 64 × 64 pixels. Then, they exploited transfer learning

o train their model, running the experiments on a machine with one
VIDIA Titan Xp 12 GB GPU and one 16 GB RAM. The transferable

exture 2D CNN achieved the best performance on the LIDC-IDRI
ataset, with an overall ACC of 97%, SE of 96%, and AUC of 99% on
est data.
Lin et al. [63] proposed a 2D CNN with Taguchi parametric opti-

ization to automatically classify lung nodules as malignant or benign
rom CT images. In the Taguchi method, which is a statistical method
sing an orthogonal array to optimize process parameters, they se-
ected 36 experiments and 8 control factors of mixed levels in order
o determine the optimal parameter combination and also improve
he model performance. Next, they extracted lung nodule images of
0 × 50 pixels, and set the optimization parameters to train the neural
etwork for malignant/benign classification. Specifically, they trained
nd validated their model on the LIDC-IDRI1 (244617 images from
018 CT scans) and the LUNGx SPIE-AAPM-NCI2 (22489 images from
8 CT scans) datasets of TCIA platform, separately. Results of 2D CNN
ith Taguchi parameter optimization reached an overall ACC of 99%
nd SE of 100% on the LIDC-IDRI dataset, and ACC of 100% and SE of
00% on the LUNGx SPIE-AAPM-NCI dataset. Performance also showed
hat their framework resulted to be 7% and 5% more accurate than the
riginal 2D CNN (without Taguchi parametric optimization) on both
atasets.
Zhai et al. [64] presented a multi-task 2D CNN to discriminate

alignant from benign lung nodules on CT images. They first resampled
ach image to a unified value using the spline interpolation. They
lso rescaled the pixel intensity range to (0, 1) from (−1000, 400
U), and performed lung parenchyma segmentation. Next, they de-
omposed each nodule cube of 64 × 64 × 64 voxels to nine different
D views of 64 × 64 pixels. At that point, they augmented train
ata using random image translation, rotation, and flip. Then, they
uilt a multi-task 2D CNN for each view, composed by two branches:
ne for malignant/benign classification (main task) and the other for
mage reconstruction (auxiliary task). The final classification result was
btained by fusing the outputs of nine multi-task 2D CNNs. They per-
ormed the experiments employing images from the LIDC-IDRI1 (175
alignant and 266 benign lung nodules from 1018 CT scans) dataset

nd one of its subsets, the Lung Nodule Analysis 2016 (LUNA16)3 (1120
ung nodules from 888 CT scans) dataset of TCIA platform, separately.
heir multi-task 2D CNN achieved an overall SE of 88% and 84%, and
UC of 96% and 97% on test data, respectively.

In 2021, Halder et al. [30] designed a framework using adaptive
orphology-based operations combined with Gabor filter, named two-
ath morphological 2D CNN, for lung nodule status classification from
T images. Specifically, they selected 2600 lung nodule slices, 1300
enign and 1300 malignant, from the LIDC-IDRI1 dataset of TCIA

platform. They used different morphology-based operations to filter

2 https://wiki.cancerimagingarchive.net/display/Public/LUNGx+SPIE-
APM-NCI+Lung+Nodule+Classification+Challenge.
3 https://luna16.grand-challenge.org/Download/.
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lung nodules. Next, they used Gabor filter to capture the texture
variations of lung nodules. The two-path morphological 2D CNN con-
sisted of two paths, both using VGGNet: the first path with Gabor
filter-based weight initialization and convolution operations, and the
second path with adaptive morphology-based weight initialization and
image morphology-based operations. The input of both paths was a
lung nodule image of 64 × 64 pixels. Also, they performed train data
augmentation (translation, horizontal and vertical flip operations, and
90◦, 180◦ and 270◦ rotation), ending up with a total of 10374 lung
odule images. They implemented the two-path morphological 2D CNN
n Python on Google platform, using Google Colab Pro. Their two-path
orphological 2D CNN achieved an overall ACC of 96%, SE of 97%,

nd AUC of 99% on train data.
Jena et al. [65] proposed a neural network with multiple layer

atent variables to classify lung nodules as malignant or benign from CT
mages. First, they employed images of the LIDC-IDRI1 dataset of TCIA
latform to carry out the experiments. Second, they removed the noise
sing Gaussian and Wiener filters. Third, they segmented the ROI using
he region-growing segmentation, which selected the salient pixels and
erged the adjacent ones to obtain larger regions. Next, they manually

xtracted effectual and sharp features (e.g., area, perimeter, entropy,
ntensity, etc.) for detecting lung nodules. Then, they reduced the
imensionality of the featured output using a deep Gaussian mixture
odel and performed the classification with a region-based 2D CNN.
hey carried out the experiments in the MATLAB 2018a environment,
ith 8 GB RAM. Although their model achieved an overall ACC of
8% and SE of 70% on test data, they planned to modify the feature
xtraction step exploiting fully-automatic feature extraction algorithms
n order to possibly lift the performance.
Lu et al. [66] presented a 2D CNN with the metaheuristic-based

arine predator algorithm, used for solving the optimization problems,
o discriminate cancerous lung nodules from benign ones on CT images.
hey selected CT images (32 subjects with NSCLC) from the Reference
mage Database to Evaluate therapy Response (RIDER)4 dataset of TCIA
latform. They first pre-processed input data employing the median
ilter. After noise removal, they performed intensity normalization to
0, 1) using the min–max normalization method. Next, they rescaled
ll images to 227 × 227 pixels, and injected them to the neural
etwork. They implemented their framework on MATLAB software,
nd compared model performance with other pre-trained 2D CNNs
ResNet18, GoogLeNet, AlexNet, and VGG19). Results showed that the
arine predator algorithm-based 2D CNN outperformed all the other
odels, achieving an overall ACC of 93% and SE of 98% on test data.

.1.2. Scan-based approaches
In 2019, Shen et al. [8] designed an interpretable hierarchical se-

antic 3D CNN to determine whether a lung nodule observed on a
T scan was malignant. The hierarchical semantic 3D CNN took as

nput raw cubes centered at lung nodules, belonging to the LIDC-IDRI1
ataset of TCIA platform, and generated two output levels: the first
redictive level provided intermediate outputs (diagnostic semantic
eatures) and the second represented the final lung nodule malignancy
rediction score. The intermediate outputs provided not only interpre-
ations about what the model learned from raw data but also additional
nformation to make the final malignancy prediction task more accurate
y using jump connections. Moreover, they introduced a cost function
o train the model as a whole. First of all, they converted all CT scans
o HU scale and normalized them to a range of (0, 1) from (–1000,
00 HU). Next, they extracted a cube of 40 × 40 × 40 voxels for
ach lung nodule candidate. Then, they rescaled all cubes to a fixed
hape before using them to feed the neural network. Additionally,
hey performed 3D data augmentation (translation of the lung nodule
osition within 4 mm or flip of the lung nodule cube along one axis)

4 https://wiki.cancerimagingarchive.net/display/Public/RIDER+Lung+CT.

https://wiki.cancerimagingarchive.net/display/Public/LUNGx+SPIE-AAPM-NCI+Lung+Nodule+Classification+Challenge
https://wiki.cancerimagingarchive.net/display/Public/LUNGx+SPIE-AAPM-NCI+Lung+Nodule+Classification+Challenge
https://luna16.grand-challenge.org/Download/
https://wiki.cancerimagingarchive.net/display/Public/RIDER+Lung+CT
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during the training process. To capture more lung nodule morphology
while reducing the input data dimensionality, they set the lung nodule
cube to 52 × 52 × 52 voxels. To compare the performance of the

odel in lung nodule status classification, they also implemented a
D CNN as baseline, trained and validated with the same data split.
hey implemented both hierarchical semantic 3D CNN and baseline 3D
NN in Python using TensorFlow framework and Keras library, and ran
he experiments on a machine with one NVIDIA Titan X Pascal 12 GB
PU and one 32 GB RAM. The interpretable hierarchical semantic 3D
NN achieved an overall ACC of 84%, SE of 70%, and AUC of 86% on
est data. All metric assessments and receiver operating characteristic
lots showed that their hierarchical semantic 3D CNN achieved better
erformance than the baseline 3D CNN.

In 2020, Liu et al. [60] presented a 3D CNN-based multi-model en-
emble learning to identify malignant from benign lung nodules on CT
cans, selected from the LIDC-IDRI1 dataset of TCIA platform. Specifi-
ally, they designed multiple independent neural networks to simulate
ifferent expert behaviors, and exploited ensemble learning to fuse
he results. The multi-model ensemble learning 3D CNN consisted of
hree different types of architectures respectively based on VGGNet (3D
ulti-model VGGNet), ResNet (3D multi-model ResNet), and Inception-
et (3D multi-model IncepNet), further divided into three substructures
f different input sizes (the inputs were cubes centered at lung nodules
f 48 × 48 × 48 voxels, 32 × 32 × 32 voxels, and 16 × 16 × 16 voxels).
n order for the model to better handle low-contrast lung nodules,
hey performed five image enhancement techniques: (1) histogram
qualization; (2) adaptive histogram equalization; (3) gamma trans-
ormation; (4) logarithmic transformation; and (5) intensity stretch
ransformation. Next, to make the model better focus on lung nodule
ocation, shape, and intensity, they concatenated the intensity image
orresponding to the lung nodule mask with the original and enhanced
mages, forming a three-channel 3D input. Then, they augmented the
rain set by performing 90◦ rotation and flip along the three axes. They
mplemented the multi-model ensemble learning 3D CNN in Python us-
ng PyCharm as integrated development environment and Keras library,
nd ran the experiments on a machine with three NVIDIA GTX-1080Ti
1 GB GPUs. Their multi-model ensemble learning 3D CNN achieved
n overall ACC of 90%, SE of 84%, and AUC of 94% on test data.
Zhao et al. [51] proposed a multi-scale multi-task 3D CNN to classify

ung nodules as malignant or benign from CT scans. They selected 1004
ung nodules (450 malignant and 554 benign) from the LIDC-IDRI1
ataset of TCIA platform, regulated the size of each voxel to 1 mm3, and
xtracted volumes at two different scales. Specifically, the first volume
ad a size of 32 × 32 × 6 voxels and the second of 64 × 64 × 12
oxels, then adjusted to a volume of 32 × 32 × 6 voxels. To perform the
xperiments, they built a 3D CNN that combined the features of the two
ifferent scale volumes, followed by a multi-task learning that realized
oth malignant/benign and attribute classification of lung nodules.
hey also proposed a new loss function. They implemented the multi-
cale multi-task 3D CNN in Python using PyTorch framework, and ran
he experiments on a machine with four NVIDIA GTX 1080 8 GB GPUs
nd four 32 GB RAMs. Their multi-scale multi-task 3D CNN achieved
n overall ACC of 94%, SE of 93%, and AUC of 98% on test data.

In 2021, Yu et al. [27] presented a framework based on 3D Res
-Net lung nodule segmentation and 3D ResNet50 malignant/benign
lassification networks, both applied on CT scans. They first converted
T scans to HU scale and resampled them to a voxel spacing of
× 1.5 × 1.5 mm (axial, coronal, and sagittal planes). Next, they

inarized CT scans, and removed disturbing regions such as bed frame
nd air. Then, they filled the holes in the lung parenchyma and re-
aired the lung mask through morphological techniques. At that point,
hey designed 3D Res U-Net to automatically segment lung nodules.
ccording to the predicted lung nodule mask, they extracted the ROIs
f 48 × 48 × 16 voxels and used them as input to 3D ResNet50. They
mplemented both 3D Res U-Net and 3D ResNet50 in Python using
7

yTorch framework, and ran the experiments on a machine with one
Fig. 5. Percentage of slice-based (light gray) and scan-based (black) approaches
performing lung cancer histology classification from CT data using CNNs.

NVIDIA RTX 2080Ti GPU, selecting 971 CT scans (1507 malignant and
1478 benign nodules) from the LIDC-IDRI1 dataset of TCIA platform.
Classification results showed that 3D ResNet50 achieved an overall ACC
of 87%, SE of 80%, and AUC of 91% on test data.

4.2. Lung cancer histology classification

Aforementioned studies just focused on diagnosing the status of
lung nodules. In differential diagnosis of lung cancer, however, ac-
curate classification of lung cancer histological types/subtypes is re-
quired [39].

Conventionally, researchers aimed to classify lung cancer histolog-
ical types/subtypes by analyzing microscopic images, and 2D CNN is
the most utilized DL algorithm [37,42,67,68]. Nevertheless, lung cancer
histology classification using routinely-acquired CT data may have
significant implications for diagnostic and therapeutic decisions [39].
Some studies explored the potential of radiomics-based ML algorithms
in lung cancer histology classification from CT data [69–75]. However,
these classification architectures relied upon pre-defined radiomics fea-
tures to train the model. By adopting different radiomics features, it
is difficult for clinicians to select the appropriate feature set, making
the application of these models not straightforward in the clinical
practice [17]. The major limitation of radiomics, indeed, is the lack of
standardization in the acquisition of the features, that implies the lack
of reproducibility [76,77]. In particular, CT-derived radiomics features
strictly depend on the number of gray levels and on the voxel size [77].
Such dependencies demonstrate that CT-derived radiomics feature ap-
plicability is highly influenced by the number of intensity bins and by
the voxel size choice [77]. Thus, a more automatic feature detection
system is essential for improving the diagnostic performance. For this
reason, we focused our second investigation specifically on lung cancer
histology classification directly from CT data adopting CNNs, differen-
tiating between slice-based (Section 4.2.1) and scan-based approaches
(Section 4.2.2).

Table 3 reports 7 relevant Scopus-indexed studies involved in lung
cancer histology classification from CT data using CNNs, better detailed
in the following two subsections. For each study, we indicated the pub-
lication year, the employed dataset, the input type (lung cancer images,
lung images, CT images, lung cancer volumes, sequences of lung slices,
lung volumes, sequences of CT slices, or CT volumes), the input size, the
best-performing CNN, the classes, and the overall performance in terms
of average ACC and AUC, and SE for each pathologically-proven class.
Fig. 5 depicts the percentage of slice-based and scan-based approaches
hereby investigated. Fig. 6 displays which dataset has been used across
the studies and the respective percentage.

4.2.1. Slice-based approaches
In 2020, Pang et al. [40] proposed a DenseNet with a meta-algorithm

classifier (adaptive boosting) to classify SCLC, ADC, and SCC from 2222
CT images of a private data collection (Shandong Provincial Hospital).
Among them, 96 were SCLC, 1985 ADC, and 141 SCC images. First,
they adopted the histogram equalization method to obtain a uniform
distribution in the gray range, enhancing the contrast of each image
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Table 3
Relevant Scopus-indexed studies involved in lung cancer histology classification from CT data using CNNs.

Study Year Dataset Input type Input size (mm) Best-performing CNN Classes ACC (%) SE (%) AUC (%)

Guo et al. [11] 2020 Private Cancer volumes 64 × 64 × 64 End-to-end 3D CNN SCLC/
ADC/SCC

72 -(SCLC)/
-(ADC)/-(SCC)

84

Moitra et al. [35] 2020 NSCLC-
Radiogenomics

Slice sequences 64 × 64 2D CNN + biLSTM ADC/
SCC/other

96 -(ADC)/
-(SCC)/-(other)

99

Pang et al. [40] 2020 Private Cancer images 50 × 50 DenseNet + boosting SCLC/
ADC/SCC

90 61(SCLC)/
100(ADC)/98(SCC)

–

Pang et al. [7] 2020 Private Cancer images 50 × 50 VGG16-T + boosting SCLC/iADC/
sADC/SCC

87 90(SCLC)/86(iADC)/
76(sADC)/92(SCC)

–

Chaunzwa et al. [39] 2021 Private Cancer images 50 × 50 Pre-trained VGG16 ADC/
SCC

69 38(ADC)/
-(SCC)

71

Liu et al. [17] 2021 Private Cancer volumes 64 × 64 × 64 3D Capsule Net ADC/
SCC

81 -(ADC)/
-(SCC)

85

Marentakis et al. [10] 2021 NSCLC-
Radiomics

Slice sequences 299 × 299 Inceptionv3 + LSTM ADC/
SCC

74 81(ADC)/
-(SCC)

78
t
b
p
c
i
t
p
(
v
o
w
f
a
a
a
(
w

4

m
A
S
a
a
T
i
c
T
a
f
w
A
b
T
f
f
f
7
a

Fig. 6. Datasets employed for lung cancer histology classification with the respective
percentage. Among the employed datasets, only NSCLC-Radiogenomics5 and NSCLC-
Radiomics6 (28%) are openly accessible on The Cancer Imaging Archive (TCIA)
platform.

and making it clearer. Next, they augmented and balanced the train
set by using image rotation, translation, and transformation methods,
ending up with a total of 3940 images centered at lung cancers, each
of 50 × 50 pixels. Then, they used a DenseNet architecture to classify
lung cancers. Finally, they aggregated multiple results by using adap-
tive boosting in order to improve the model performance. DenseNet
with adaptive boosting showed better classification performance than
AlexNet, DenseNet without adaptive boosting, ResNet, and VGG16.
Indeed, DenseNet with adaptive boosting achieved an overall ACC of
90% and a SE of 61%, 100%, and 98% in identifying respectively
SCLC, ADC, and SCC; whereas, the overall ACC of AlexNet was 64%,
of DenseNet without adaptive boosting was 81%, of ResNet was 80%,
and of VGG16 was 76% on test data.

Pang et al. [7] developed another classification algorithm, named
VGG16-T with boosting, to non-invasively classify SCLC, iADC, sADC,
and SCC from CT images. They considered 2219 CT images (125
patients, 96 SCLC, 1882 iADC, 101 sADC, and 140 SCC) from Shan-
dong Provincial Hospital. First, they performed 1-mm resampling to
a fixed isomorphic resolution. Next, they augmented and balanced
train data up to 50000 CT images by random rotation, translation,
and transformation operations, enhancing multiple times the classes
with less samples. Then, they extracted lung nodules, ending up with
input data of 50 × 50 pixels. After that, they choose VGG16 as main
structure due to its high performance in CT image diagnosis, and
proposed a new architecture, named VGG16-T. VGG16-T had three
1 × 1 convolutions in place of the fully-connected layer of the tradi-
tional VGG16. To avoid overfitting, they pre-trained VGG16-T on the
publicly-accessible LUNA16 dataset. Since VGG16-T worked as weak
classifier, they trained multiple VGG16-T models with the boosting
strategy, repeated until the weak classifiers reached an acceptable
ACC. They implemented VGG16-T with boosting in Python, and ran
the experiments on one NVIDIA GTX 2080Ti 12 GB GPU. They found
that three weak classifiers, linearly combined, were enough to achieve
8

o

an overall ACC of 87% and a SE of 90%, 86%, 76%, and 92% in
classifying respectively SCLC, iADC, sADC, and SCC. Also, VGG16-
T with boosting performed better than VGG16-T without boosting,
AlexNet, ResNet34, and DenseNet with or without Softmax weights.
As well, VGG16-T with boosting gained an overall ACC of 85% by
diagnosing 20 randomly-selected CT images.

In 2021, Chaunzwa et al. [39] presented a transfer learning approach
o classify NSCLC histological subtypes (ADC and SCC) from CT images
elonging to 311 patients of Massachusetts General Hospital. The pre-
rocessing step was made of manual cancer identification (thanks to
linician-located seed points), isotropic rescaling, and density normal-
zation with mean subtraction and linear transformation. To perform
he experiments, they exploited VGG16 (pre-trained on ImageNet) cou-
led with different classifier types: (1) a fully-connected classifier; and
2) different ML classifiers (k-nearest neighbors, random forest, support
ector machine, and linear support vector machine). Specifically, inputs
f VGG16 were cancer-centered images of 50 × 50 pixels, and the model
as evaluated with fine-tuning of the last convolutional, pooling, and

ully-connected layers. VGG16 with fully-connected classifier achieved
n overall ACC of 69% and AUC of 71% on test data, and SE was 38%
s they considered ADC as positive class. Eventually, they obtained
ctivation heatmaps using Gradient-weighted Class Activation Mapping
Grad-CAM), providing a spatial representation of the input image areas
hich contributed the most to the model predictions.

.2.2. Scan-based approaches
In 2020, Guo et al. [11] developed two automatic classification

odels to distinguish lung cancer histological types/subtypes (SCLC,
DC, and SCC) from unenhanced CT scans, involving 920 patients (191
CLC, 554 ADC, and 175 SCC) from a private data collection. First of
ll, the ROI was automatically delineated via threshold or clustering
nd, consequently, manually corrected/confirmed by three radiologists.
he first model, named ProNet, was based on an end-to-end 3D CNN,

mplemented using the skip-connection method of ResNet. Its input
onsisted in volumes of 64 × 64 × 64 voxels, centered at lung cancers.
hey first normalized input data to (−1, 1), and performed train data
ugmentation. They implemented ProNet in Python with TensorFlow
ramework and Keras library, and ran the experiments on a machine
ith two NVIDIA 1080Ti GPUs, reaching an overall ACC of 72% and
UC of 84% on test data. The other model, named com_radNet, was
ased on radiomics and was composed of four fully-connected layers.
hey extracted 1743 radiomics features with PyRadiomics, starting
rom a mask delineated by three radiologists. After the procedure of
eature selection, they retained 20 radiomics features and used them to
eed com_radNet. This second model achieved an overall accuracy of
5% and AUC of 79% on test data. Results indicated that both models
re able to distinguish SCLC, ADC, and SCC, but the performance

f ProNet was better than the one of com_radNet. Additionally, they
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created activation heatmaps with Grad-CAM to visually highlight the
most salient portions on lung cancer volumes.

Moitra et al. [35] presented a DL algorithm that is an ensemble of
2D CNN and bidirectional Long Short-Term Memory (biLSTM), and
evaluated it on CT scans belonging to 211 patients of the publicly-
available NSCLC-Radiogenomics5 dataset (285411 CT images) of TCIA
platform. Their study included not only ADC and SCC, but also a third
non-specified NSCLC histological subtype. They first resized original
slices to 64 × 64 pixels from 128 × 128 pixels in order to reduce
the execution load, and used them to feed the neural network. In the
learning process, the output of the last convolutional layer of the 2D
CNN was flattened and injected to the biLSTM, deputed to fuse the
spatial information of adjacent slices. They implemented their model
in Python, using CPU cores of an Intel(R) Core (TM) i5-3230 m CPU @
2.60 GHz processor. Ensemble 2D CNN with biLSTM reached an overall
ACC of 96% and AUC of 99% on test data.

In 2021, Liu et al. [17] built and compared three frameworks to
classify NSCLC histological subtypes as ADC or SCC from CT scans.
To perform the experiments, they collected CT scans of 72 ADC and
54 SCC patients from a private data collection (Third Medical Center
of PLA General Hospital). For every patient, they semi-automatically
segmented the volume containing the lung cancer with the ITK-SNAP
software and the help of an expert radiologist. Next, they resampled
each volume to an isotropic voxel dimension (1 mm3) by means of
linear and nearest-neighbor interpolations. Then, they developed three
models: (1) a Capsule Net model; (2) a CNN modified to take as input
volumetric data; and (3) four radiomics-based ML classifiers (random
forest, logistic regression, logistic regression with l1 regularization,
and logistic regression with principal component analysis). Specifically,
Capsule Net and the modified CNN shared the same training strategy,
were implemented in Python using PyTorch framework, and took in in-
put isotropic volumes of 64 × 64 × 64 pixels encapsulating lung cancers.
Radiomics-based ML classifiers took in input 107 radiomics features,
extracted from the lung cancer volumes with PyRadiomics, for each
patient. Results showed that Capsule Net reached the best classification
performance, with an overall ACC of 81% and AUC 85% on test data.
The classification performance of the modified CNN (overall ACC of
75%) was comparable to those of radiomics-based ML classifiers.

Marentakis et al. [10] investigated the potential of both ML and
DL algorithms to classify NSCLC histological subtypes as ADC or SCC
from CT scans of the publicly-available NSCLC-Radiomics6 dataset
(102 patients, 48 ADC and 54 SCC) of TCIA platform. Specifically,
they experimented four different models: (1) two radiomics-based ML
classifiers (k-nearest neighbors and support vector machine); (2) four
pre-trained 2D CNNs (AlexNet, Inceptionv3, InceptionResNetv2, and
ResNet101) with fine-tuning; (3) a time-distributed 2D CNN coupled
with a Long Short-Term Memory (LSTM) module; and (4) two joint
models (time-distributed 2D CNN with LSTM and k-nearest neighbors
or support vector machine). Models (1) and (2) ignored potentially-
relevant information about the spatial coherency of slices; whereas,
models (3) and (4) took it into account. Regarding CNN-based models,
they cropped slices centered at lung cancers according to the recep-
tive field of each specific CNN. Next, they applied a linear mapping,
corresponding to the lung window. Then, they performed a three-fold
replication of the intensity channel, as the employed CNNs required
an input with three channels. The model that reached the best perfor-
mance was Inceptionv3 with LSTM, achieving an overall ACC of 74%
and AUC of 78%, and SE was 81% considering ADC as positive class.
The performance achieved by Inceptionv3 with LSTM resulted to be
better than expert radiologists’ outcomes up to 25%. A notable finding
was that adding radiomics to the best-performing model did not show
any further performance improvement.

5 https://wiki.cancerimagingarchive.net/display/Public/NSCLC+
adiogenomics.

6 https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics.
9
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5. Discussion

With this survey, we aimed to illustrate some recent advancements
in CNNs applied to lung nodule diagnosis and cancer histology clas-
sification from CT data. We obtained this outcome by collecting 18
relevant Scopus-indexed studies and categorizing them into slice-based
and scan-based approaches, based on whether they took planar or
volumetric CT data as input (Fig. 2).

In the proposed article collection, the majority of slice-based ap-
proaches [7,30,39,40,61–66] outperformed scan-based ones [8,10,11,
17,27,35,51,60] (Table 2 and Table 3). Nevertheless, it is not so clear
how much performance is gained by employing slice-based approaches
for both lung nodule diagnosis and cancer histology classification from
CT data. Being designed for 2D input data, slice-based approaches
might be not well-suited for medical imaging when dealing with volu-
metric data such as CT scans [78]. Conversely, scan-based approaches
can better preserve the spatial information. Doing so would likely result
in fairer diagnostic results. However, scan-based approaches using 3D
CNNs require large computational resources to be trained. A solution to
this problem could be the application of scan-based approaches using
hybrid models such as time-distributed 2D CNNs combined with RNN
modules, as done by Moitra et al. [35] and Marentakis et al. [10] for
ung cancer histology characterization. From Table 3, it can be noticed
hat the performance achieved by Moitra et al. [35] and Marentakis
t al. [10] is competitive with the one achieved by the studies that
mployed slice-based approaches. Hybrid models have the potential to
rocess a sequence of slices as a whole using a much smaller number of
arameters than 3D CNNs. Thus, time-distributed 2D CNNs combined
ith RNN modules can reduce the overall complexity of the model
nd the required computational/memory power while preserving the
nformation about the spatial coherence of slices, which is an important
iece of information that should be taken into account when dealing
ith CT data.

Regardless the specific CNN type, the main limitation of DL is that
upervised-classification algorithms require large amounts of labeled
ata for analysis [5,52,78]. Labeling medical images is quite chal-
enging, as it requires in-depth domain knowledge [2,48]. Moreover,
nnotating lots of medical data is a time-consuming and non-trivial
rocedure [48]. In the lung cancer domain, it is extremely difficult to
ollect numerous data from patients with the respective pathologically-
roven ground truth [52]. As a result, the cardinality of available
atasets is relatively small. Hence, there is the need of strategies to
earn effectively from small datasets by means of CNNs. There is also
he need of joint efforts among hospitals, technical personnel, and
ociety to increase the amount of annotated data while preserving
he patients’ privacy. Besides these needs, data augmentation/synthetic
ata generation techniques and/or transfer learning approaches with
ine-tuning may be essential to prevent overfitting. In the proposed
rticle collection, the majority of researchers performed data augmen-
ation [7,8,11,30,40,60–62,64] and/or used pre-trained CNNs [7,30,
9,40,62,74]. Data augmentation may also be useful to recover class
mbalance, which is another common issue to handle. A framework
eveloped with a non-balanced dataset may have the consequence of
ssigning all items to a single majority class, apparently outperforming
ther approaches [78]. Reducing class imbalance through data augmen-
ation would destroy the clinical prevalence of classes. Consequently,
he real clinical scenario would be neglected. A more clinically-correct
pproach might be to maintain the clinical prevalence of classes and
mplement alternative strategies to handle the class imbalance problem.
nother data-related challenge relies on data heterogeneity. Different
atasets are made up of samples having lots of heterogeneities, mainly
ue to different medical scanners, acquisition settings, and years. These
eterogeneous characteristics constitute one of the leading factors of
he low generalizability of CNN-based models. However, if on the
ne hand heterogeneity is a problem not easy to manage, on the

ther hand it could make the study less dataset-biased; thus, more

https://wiki.cancerimagingarchive.net/display/Public/NSCLC+Radiogenomics
https://wiki.cancerimagingarchive.net/display/Public/NSCLC+Radiogenomics
https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics
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Fig. 7. Percentage of lung nodule diagnosis-related (blue) and lung cancer histology
lassification-related (red) studies non-entirety reproducible in terms of non-accessibility
f data (employment of private datasets), absence of necessary technical details, no
nformation about the development environment and programming language, and
on-availability of the source code of the implementation.

ealistic. No one among the investigated studies mixed two different
atasets in performing the experiments. To manage data heterogeneity,
ne possible solution could be taking advantage of some specific pre-
rocessing steps, such as resampling to a common pixel-spacing and
lice-thickness, HU scale conversion, and intensity normalization prior
o data dimensionality standardization. To alleviate the low generaliz-
bility, the solution could be developing more flexible methods that can
e validated not only on heterogeneous data but even on data coming
rom different imaging modalities (i.e., multi-modal approaches).

We also observed that several of the investigated studies are not
ntirely reproducible because they either used a private data collec-
ion [7,11,17,39,40], did not give all the necessary technical details
e.g., the input data size [65]), or mentioned neither the develop-
ent environment nor the programming language [10,39,40,63,64].
oreover, no research groups made the source code of the imple-
entation available. Making the source code fully accessible under

opyright may be advantageous for the entire scientific community,
s other researchers could work on it, knowledge could be shared,
nd significant improvements might be achieved. Fig. 7 displays the
ercentage of lung nodule diagnosis-related and lung cancer histology
lassification-related studies not entirety reproducible.

Finally, a very heartfelt challenge relies on the interpretability of
he results [2,5]. DL algorithms are considered as black boxes, as their
uccess or failure is hard to interpret [48,78]. Due to their opacity,
he interpretation of the model inner states is not as straightforward
s with decision trees or standard object-oriented code [79]. However,
he interpretability of the results is essential for clinicians in order to
ut down any doubts and concerns. Results as well as diagnosis scores
ithout any interpretation do not significantly help them in making the

inal diagnosis and planning an accurate treatment [5]. One solution
ould be to add interpretability modules such as Grad-CAM for visual
xplanations [80], in order to allow the clinicians to understand which
egions are the most involved in the decision-making process. Doing
o would result in the definition of more accurate and reliable clinical
udgments. Among the analyzed studies, only Shen et al. [8], Guo et al.
[11], and Chaunzwa et al. [39] allowed a sort of interpretation of the

odel outputs, highlighting the CT portions where the neural network
ad focused the most during the decision-making process.

. Perspectives

From the carried-out investigation, we observed an increasing in-
10

erest in studies employing CNNs for lung nodule diagnosis and cancer
histology classification from CT data. Nevertheless, there is the neces-
sity to explore the lung cancer domain deeper. Scan-based approaches
have the potential to make full use of the fundamental information
contained in volumetric data such as CT scans, but their success is often
subjective to the amount of data and computational resources. Larger
and well-annotated publicly-available datasets as well as more scalable
architectures and the addition of interpretability modules could help
in further improving the performance and the trust towards such auto-
matic decision-making techniques. Furthermore, it could be worthwhile
to design a diagnostic system with continuous learning ability, able
to support real-time contexts. One possible perspective for developing
continuous learning systems is to build a CNN-based model with cloud
computing techniques, as done by Halder et al. [30]. Implementing
a framework with cloud computing would guarantee its machine-
independent reproducibility. Clinical records can be delivered to cloud
storage in real-time and training datasets can be changed continuously,
so that the framework can be trained in an adaptively way on a cloud
backend [81].

7. Conclusions

Timely and accurate diagnosis of lung cancer is crucial to decrease
the lung cancer-related deaths. To this aim, the hereby presented survey
offers a comprehensive investigation of the research trends associated
with lung nodule diagnosis and cancer histology classification from
CT data adopting CNNs, and shows how CNN-based models are valid
learning strategies for such classification tasks. Therefore, combining
non-invasive CNN-based classification models with thorax CT scans
could have a significant impact in lung cancer diagnosis, targeted
treatment, and patient care.

We believe that this survey will be helpful for future studies in-
volved in lung nodule diagnosis and cancer histology classification
prior to lung biopsy by means of CNNs.

CRediT authorship contribution statement

Selene Tomassini: Conceptualization, Methodology, Investigation,
Writing – original draft. Nicola Falcionelli: Methodology, Writing –
review & editing. Paolo Sernani: Methodology, Writing – review &
editing. Laura Burattini: Project administration, Supervision. Aldo
ranco Dragoni: Project administration, Supervision.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

eferences

[1] S. Prabhu, K. Prasad, A. Robels-Kelly, X. Lu, AI-based carcinoma detection and
classification using histopathological images: A systematic review, Comput. Biol.
Med. (2022) 105209.

[2] P. Monkam, S. Qi, H. Ma, W. Gao, Y. Yao, W. Qian, Detection and classification of
pulmonary nodules using convolutional neural networks: A survey, IEEE Access
7 (2019) 78075–78091.

[3] A. Naik, D.R. Edla, Lung nodule classification on computed tomography images
using deep learning, Wirel. Pers. Commun. 116 (1) (2021) 655–690.

[4] M. Winkels, T.S. Cohen, Pulmonary nodule detection in CT scans with equivariant
CNNs, Med. Image Anal. 55 (2019) 15–26.

[5] W. Cao, R. Wu, G. Cao, Z. He, A comprehensive review of computer-aided
diagnosis of pulmonary nodules based on computed tomography scans, IEEE
Access 8 (2020) 154007–154023.

[6] W.J. Sori, J. Feng, A.W. Godana, S. Liu, D.J. Gelmecha, DFD-Net: Lung cancer
detection from denoised CT scan image using deep learning, Front. Comput. Sci.
15 (2) (2021) 1–13.

[7] S. Pang, M. Fan, X. Wang, J. Wang, T. Song, X. Wang, X. Cheng, VGG16-T: A
novel deep convolutional neural network with boosting to identify pathological
type of lung cancer in early stage by CT images, Int. J. Comput. Intell. Syst. 13
(1) (2020) 771.

http://refhub.elsevier.com/S0010-4825(22)00474-7/sb1
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb1
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb1
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb1
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb1
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb2
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb2
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb2
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb2
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb2
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb3
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb3
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb3
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb4
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb4
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb4
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb5
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb5
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb5
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb5
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb5
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb6
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb6
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb6
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb6
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb6
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb7
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb7
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb7
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb7
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb7
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb7
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb7


Computers in Biology and Medicine 146 (2022) 105691S. Tomassini et al.
[8] S. Shen, S.X. Han, D.R. Aberle, A.A. Bui, W. Hsu, An interpretable deep
hierarchical semantic convolutional neural network for lung nodule malignancy
classification, Expert Syst. Appl. 128 (2019) 84–95.

[9] S. Li, D. Liu, Automated classification of solitary pulmonary nodules using
convolutional neural network based on transfer learning strategy, J. Mech. Med.
Biol. (2021) 2140002.

[10] P. Marentakis, P. Karaiskos, V. Kouloulias, N. Kelekis, S. Argentos, N.
Oikonomopoulos, C. Loukas, Lung cancer histology classification from CT images
based on radiomics and deep learning models, Med. Biol. Eng. Comput. 59 (1)
(2021) 215–226.

[11] Y. Guo, Q. Song, M. Jiang, Y. Guo, P. Xu, Y. Zhang, C.-C. Fu, Q. Fang, M. Zeng,
X. Yao, Histological subtypes classification of lung cancers on CT images using
3D deep learning and radiomics, Academic Radiol. (2020).

[12] M.P. Rivera, A.C. Mehta, M.M. Wahidi, Establishing the diagnosis of lung cancer:
Diagnosis and management of lung cancer: American college of chest physicians
evidence-based clinical practice guidelines, Chest 143 (5) (2013) e142S–e165S.

[13] D.I. Suster, M. Mino-Kenudson, Molecular pathology of primary non-small cell
lung cancer, Arch. Med. Res. (2020).

[14] W.D. Travis, E. Brambilla, A.G. Nicholson, Y. Yatabe, J.H. Austin, M.B. Beasley,
L.R. Chirieac, S. Dacic, E. Duhig, D.B. Flieder, et al., The 2015 world health
organization classification of lung tumors: Impact of genetic, clinical and
radiologic advances since the 2004 classification, J. Thorac. Oncol. 10 (9) (2015)
1243–1260.

[15] M. Kriegsmann, C. Haag, C.-A. Weis, G. Steinbuss, A. Warth, C. Zgorzelski, T.
Muley, H. Winter, M.E. Eichhorn, F. Eichhorn, et al., Deep learning for the
classification of small-cell and non-small-cell lung cancer, Cancers 12 (6) (2020)
1604.

[16] Y. Han, Y. Ma, Z. Wu, F. Zhang, D. Zheng, X. Liu, L. Tao, Z. Liang, Z. Yang,
X. Li, et al., Histologic subtype classification of non-small cell lung cancer using
PET/CT images, Eur. J. Nucl. Med. Mol. Imag. 48 (2) (2021) 350–360.

[17] H. Liu, Z. Jiao, W. Han, B. Jing, Identifying the histologic subtypes of non-small
cell lung cancer with computed tomography imaging: A comparative study of
capsule net, convolutional neural network, and radiomics, Quant. Imag. Med.
Surg. 11 (6) (2021) 2756.

[18] P. Hao, K. You, H. Feng, X. Xu, F. Zhang, F. Wu, P. Zhang, W. Chen, Lung
adenocarcinoma diagnosis in one stage, Neurocomputing 392 (2020) 245–252.

[19] A. Panunzio, P. Sartori, Lung cancer and radiological imaging, Curr. Radiopharm.
13 (3) (2020) 238–242.

[20] M.M.N. Abid, T. Zia, M. Ghafoor, D. Windridge, Multi-view convolutional
recurrent neural networks for lung cancer nodule identification, Neurocomputing
(2021).

[21] G. Zhang, S. Jiang, Z. Yang, L. Gong, X. Ma, Z. Zhou, C. Bao, Q. Liu, Automatic
nodule detection for lung cancer in CT images: A review, Comput. Biol. Med.
103 (2018) 287–300.

[22] A. Halder, D. Dey, A.K. Sadhu, Lung nodule detection from feature engineering
to deep learning in thoracic CT images: A comprehensive review, J. Digit. Imag.
33 (3) (2020) 655–677.

[23] G. Zhang, Z. Yang, L. Gong, S. Jiang, L. Wang, X. Cao, L. Wei, H. Zhang, Z. Liu,
An appraisal of nodule diagnosis for lung cancer in CT images, J. Med. Syst. 43
(7) (2019) 1–18.

[24] S.K. Thakur, D.P. Singh, J. Choudhary, Lung cancer identification: A review on
detection and classification, Cancer Metastasis Rev. (2020) 1–10.

[25] F.C. Detterbeck, P.J. Mazzone, D.P. Naidich, P.B. Bach, Screening for lung cancer:
Diagnosis and management of lung cancer: American college of chest physicians
evidence-based clinical practice guidelines, Chest 143 (5) (2013) e78S–e92S.

[26] R.V. Adiraju, S. Elias, A survey on lung CT datasets and research trends, Res.
Biomed. Eng. (2021) 1–16.

[27] H. Yu, J. Li, L. Zhang, Y. Cao, X. Yu, J. Sun, Design of lung nodules segmentation
and recognition algorithm based on deep learning, BMC Bioinformatics 22 (5)
(2021) 1–21.

[28] W. Alakwaa, M. Nassef, A. Badr, Lung cancer detection and classification with
3D convolutional neural network (3D-CNN), Int. J. Adv. Comput. Sci. Appl. 8
(8) (2017).

[29] T. Pereira, C. Freitas, J.L. Costa, J. Morgado, F. Silva, E. Negrão, B.F. de Lima,
M.C. da Silva, A.J. Madureira, I. Ramos, et al., Comprehensive perspective for
lung cancer characterisation based on AI solutions using CT images, J. Clin. Med.
10 (1) (2021) 118.

[30] A. Halder, S. Chatterjee, D. Dey, Adaptive morphology aided 2-pathway convo-
lutional neural network for lung nodule classification, Biomed. Signal Process.
Control 72 (2022) 103347.

[31] G.D. Rubin, Lung nodule and cancer detection in CT screening, J. Thorac. Imag.
30 (2) (2015) 130.

[32] Y. Gu, X. Lu, L. Yang, B. Zhang, D. Yu, Y. Zhao, L. Gao, L. Wu, T. Zhou,
Automatic lung nodule detection using a 3D deep convolutional neural network
combined with a multi-scale prediction strategy in chest CTs, Comput. Biol. Med.
103 (2018) 220–231.

[33] B. Zhao, Y. Tan, D.J. Bell, S.E. Marley, P. Guo, H. Mann, M.L. Scott, L.H.
Schwartz, D.C. Ghiorghiu, Exploring intra-and inter-reader variability in uni-
dimensional, bi-dimensional, and volumetric measurements of solid tumors on
CT scans reconstructed at different slice intervals, Eur. J. Radiol. 82 (6) (2013)
959–968.
11
[34] P.F. Pinsky, D.S. Gierada, P.H. Nath, E. Kazerooni, J. Amorosa, National
lung screening trial: Variability in nodule detection rates in chest CT studies,
Radiology 268 (3) (2013) 865–873.

[35] D. Moitra, R.K. Mandal, Prediction of non-small cell lung cancer histology by a
deep ensemble of convolutional and bidirectional recurrent neural network, J.
Digit. Imag. 33 (4) (2020) 895–902.

[36] E. Bębas, M. Borowska, M. Derlatka, E. Oczeretko, M. Hładuński, P. Szumowski,
M. Mojsak, Machine-learning-based classification of the histological subtype of
non-small-cell lung cancer using MRI texture analysis, Biomed. Signal Process.
Control 66 (2021) 102446.

[37] L. Cong, W. Feng, Z. Yao, X. Zhou, W. Xiao, Deep learning model as a new trend
in computer-aided diagnosis of tumor pathology for lung cancer, J. Cancer 11
(12) (2020) 3615.

[38] D. Planchard, S. Popat, K. Kerr, S. Novello, E. Smit, C. Faivre-Finn, T. Mok, M.
Reck, P. Van Schil, M. Hellmann, et al., Metastatic non-small cell lung cancer:
ESMO clinical practice guidelines for diagnosis, treatment and follow-up, Ann.
Oncol. 29 (2018) iv192–iv237.

[39] T.L. Chaunzwa, A. Hosny, Y. Xu, A. Shafer, N. Diao, M. Lanuti, D.C. Christiani,
R.H. Mak, H.J. Aerts, Deep learning classification of lung cancer histology using
CT images, Sci. Rep. 11 (1) (2021) 1–12.

[40] S. Pang, Y. Zhang, M. Ding, X. Wang, X. Xie, A deep model for lung cancer
type identification by densely connected convolutional networks and adaptive
boosting, IEEE Access 8 (2019) 4799–4805.

[41] Y. Gu, J. Chi, J. Liu, L. Yang, B. Zhang, D. Yu, Y. Zhao, X. Lu, A survey of
computer-aided diagnosis of lung nodules from CT scans using deep learning,
Comput. Biol. Med. 137 (2021) 104806.

[42] S. Wang, D.M. Yang, R. Rong, X. Zhan, J. Fujimoto, H. Liu, J. Minna, I.I. Wistuba,
Y. Xie, G. Xiao, Artificial intelligence in lung cancer pathology image analysis,
Cancers 11 (11) (2019) 1673.

[43] M. Keshani, Z. Azimifar, F. Tajeripour, R. Boostani, Lung nodule segmentation
and recognition using SVM classifier and active contour modeling: A complete
intelligent system, Comput. Biol. Med. 43 (4) (2013) 287–300.

[44] H. Han, L. Li, F. Han, B. Song, W. Moore, Z. Liang, Fast and adaptive detection of
pulmonary nodules in thoracic CT images using a hierarchical vector quantization
scheme, IEEE J. Biomed. Health Inf. 19 (2) (2014) 648–659.

[45] J.-k. Liu, H.-y. Jiang, M.-d. Gao, C.-g. He, Y. Wang, P. Wang, H. Ma, et al., An
assisted diagnosis system for detection of early pulmonary nodule in computed
tomography images, J. Med. Syst. 41 (2) (2017) 1–9.

[46] J. Gong, J.-y. Liu, L.-j. Wang, X.-w. Sun, B. Zheng, S.-d. Nie, Automatic detection
of pulmonary nodules in CT images by incorporating 3D tensor filtering with
local image feature analysis, Phys. Med. 46 (2018) 124–133.

[47] V.K. Chauhan, K. Dahiya, A. Sharma, Problem formulations and solvers in linear
SVM: A review, Artif. Intell. Rev. 52 (2) (2019) 803–855.

[48] J. Ma, Y. Song, X. Tian, Y. Hua, R. Zhang, J. Wu, Survey on deep learning for
pulmonary medical imaging, Front. Med. (2019) 1–20.

[49] Y. Zhou, X. Xu, L. Song, C. Wang, J. Guo, Z. Yi, W. Li, The application of
artificial intelligence and radiomics in lung cancer, Precis. Clin. Med. 3 (3)
(2020) 214–227.

[50] U. Djuric, G. Zadeh, K. Aldape, P. Diamandis, Precision histology: How deep
learning is poised to revitalize histomorphology for personalized cancer care,
NPJ Precis. Oncol. 1 (1) (2017) 1–5.

[51] J. Zhao, C. Zhang, D. Li, J. Niu, Combining multi-scale feature fusion with
multi-attribute grading, a CNN model for benign and malignant classification
of pulmonary nodules, J. Digit. Imag. 33 (4) (2020) 869–878.

[52] S. Zhang, F. Han, Z. Liang, J. Tan, W. Cao, Y. Gao, M. Pomeroy, K. Ng, W.
Hou, An investigation of CNN models for differentiating malignant from benign
lesions using small pathologically proven datasets, Comput. Med. Imaging Graph.
77 (2019) 101645.

[53] P. Sahu, D. Yu, M. Dasari, F. Hou, H. Qin, A lightweight multi-section CNN for
lung nodule classification and malignancy estimation, IEEE J. Biomed. Health
Inf. 23 (3) (2018) 960–968.

[54] S. Tomassini, N. Falcionelli, P. Sernani, H. Müller, A.F. Dragoni, An end-to-end
3D convLSTM-based framework for early diagnosis of Alzheimer’s disease from
full-resolution whole-brain sMRI scans, in: 2021 IEEE International Symposium
on Computer-Based Medical Systems, IEEE, 2021, pp. 74–78.

[55] K. Mehta, A. Jain, J. Mangalagiri, S. Menon, P. Nguyen, D.R. Chapman, Lung
nodule classification using biomarkers, volumetric radiomics, and 3D CNNs, J.
Digit. Imag. (2021) 1–20.

[56] H. Jung, B. Kim, I. Lee, J. Lee, J. Kang, Classification of lung nodules in CT scans
using three-dimensional deep convolutional neural networks with a checkpoint
ensemble method, BMC Med. Imag. 18 (1) (2018) 1–10.

[57] H. Peng, H. Sun, Y. Guo, 3D multi-scale deep convolutional neural networks for
pulmonary nodule detection, Plos One 16 (1) (2021) e0244406.

[58] P.S. Mittapalli, V. Thanikaiselvan, Multiscale CNN with compound fusions for
false positive reduction in lung nodule detection, Artif. Intell. Med. 113 (2021)
102017.

[59] H. Zhang, Y. Peng, Y. Guo, Pulmonary nodules detection based on multi-scale
attention networks, Sci. Rep. 12 (1) (2022) 1–14.

[60] H. Liu, H. Cao, E. Song, G. Ma, X. Xu, R. Jin, C. Liu, C.-C. Hung, Multi-model
ensemble learning architecture based on 3D CNN for lung nodule malignancy
suspiciousness classification, J. Digit. Imag. 33 (5) (2020) 1242–1256.

http://refhub.elsevier.com/S0010-4825(22)00474-7/sb8
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb8
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb8
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb8
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb8
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb9
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb9
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb9
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb9
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb9
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb10
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb10
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb10
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb10
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb10
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb10
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb10
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb11
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb11
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb11
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb11
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb11
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb12
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb12
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb12
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb12
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb12
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb13
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb13
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb13
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb14
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb14
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb14
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb14
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb14
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb14
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb14
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb14
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb14
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb15
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb15
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb15
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb15
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb15
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb15
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb15
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb16
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb16
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb16
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb16
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb16
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb17
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb17
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb17
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb17
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb17
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb17
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb17
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb18
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb18
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb18
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb19
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb19
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb19
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb20
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb20
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb20
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb20
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb20
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb21
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb21
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb21
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb21
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb21
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb22
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb22
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb22
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb22
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb22
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb23
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb23
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb23
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb23
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb23
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb24
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb24
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb24
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb25
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb25
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb25
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb25
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb25
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb26
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb26
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb26
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb27
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb27
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb27
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb27
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb27
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb28
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb28
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb28
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb28
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb28
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb29
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb29
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb29
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb29
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb29
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb29
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb29
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb30
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb30
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb30
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb30
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb30
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb31
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb31
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb31
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb32
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb32
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb32
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb32
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb32
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb32
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb32
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb33
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb33
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb33
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb33
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb33
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb33
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb33
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb33
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb33
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb34
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb34
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb34
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb34
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb34
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb35
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb35
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb35
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb35
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb35
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb36
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb36
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb36
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb36
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb36
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb36
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb36
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb37
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb37
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb37
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb37
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb37
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb38
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb38
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb38
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb38
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb38
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb38
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb38
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb39
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb39
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb39
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb39
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb39
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb40
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb40
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb40
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb40
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb40
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb41
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb41
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb41
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb41
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb41
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb42
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb42
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb42
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb42
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb42
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb43
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb43
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb43
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb43
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb43
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb44
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb44
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb44
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb44
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb44
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb45
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb45
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb45
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb45
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb45
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb46
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb46
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb46
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb46
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb46
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb47
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb47
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb47
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb48
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb48
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb48
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb49
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb49
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb49
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb49
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb49
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb50
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb50
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb50
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb50
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb50
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb51
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb51
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb51
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb51
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb51
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb52
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb52
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb52
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb52
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb52
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb52
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb52
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb53
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb53
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb53
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb53
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb53
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb54
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb54
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb54
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb54
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb54
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb54
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb54
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb55
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb55
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb55
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb55
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb55
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb56
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb56
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb56
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb56
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb56
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb57
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb57
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb57
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb58
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb58
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb58
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb58
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb58
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb59
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb59
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb59
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb60
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb60
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb60
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb60
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb60


Computers in Biology and Medicine 146 (2022) 105691S. Tomassini et al.
[61] M. Al-Shabi, H.K. Lee, M. Tan, Gated-dilated networks for lung nodule
classification in CT scans, IEEE Access 7 (2019) 178827–178838.

[62] I. Ali, M. Muzammil, I.U. Haq, A.A. Khaliq, S. Abdullah, Efficient lung nodule
classification using transferable texture convolutional neural network, IEEE
Access 8 (2020) 175859–175870.

[63] C.-J. Lin, S.-Y. Jeng, M.-K. Chen, Using 2D CNN with Taguchi parametric
optimization for lung cancer recognition from CT images, Appl. Sci. 10 (7) (2020)
2591.

[64] P. Zhai, Y. Tao, H. Chen, T. Cai, J. Li, Multi-task learning for lung nodule
classification on chest CT, IEEE Access 8 (2020) 180317–180327.

[65] S.R. Jena, S.T. George, D.N. Ponraj, Lung cancer detection and classification with
DGMM-RBCNN technique, Neural Comput. Appl. (2021) 1–17.

[66] X. Lu, Y. Nanehkaran, M. Karimi Fard, A method for optimal detection of lung
cancer based on deep learning optimized by marine predators algorithm, Comput.
Intell. Neurosci. 2021 (2021).

[67] Y. Li, D. Chen, X. Wu, W. Yang, Y. Chen, A narrative review of artificial
intelligence-assisted histopathologic diagnosis and decision-making for non-small
cell lung cancer: Achievements and limitations, J. Thorac. Dis. 13 (12) (2021)
7006.

[68] F. Xing, Y. Xie, H. Su, F. Liu, L. Yang, Deep learning in microscopy image
analysis: A survey, IEEE Trans. Neural Netw. Learn. Syst. 29 (10) (2017)
4550–4568.

[69] H.J. Aerts, E.R. Velazquez, R.T. Leijenaar, C. Parmar, P. Grossmann, S. Carvalho,
J. Bussink, R. Monshouwer, B. Haibe-Kains, D. Rietveld, et al., Decoding tumour
phenotype by noninvasive imaging using a quantitative radiomics approach,
Nature Commun. 5 (1) (2014) 1–9.

[70] W. Wu, C. Parmar, P. Grossmann, J. Quackenbush, P. Lambin, J. Bussink, R. Mak,
H.J. Aerts, Exploratory study to identify radiomics classifiers for lung cancer
histology, Front. Oncol. 6 (2016) 71.

[71] C. Shen, Z. Liu, M. Guan, J. Song, Y. Lian, S. Wang, Z. Tang, D. Dong, L.
Kong, M. Wang, et al., 2D and 3D CT radiomics features prognostic performance
comparison in non-small cell lung cancer, Transl. Oncol. 10 (6) (2017) 886–894.

[72] X. Zhu, D. Dong, Z. Chen, M. Fang, L. Zhang, J. Song, D. Yu, Y. Zang, Z.
Liu, J. Shi, et al., Radiomic signature as a diagnostic factor for histologic
subtype classification of non-small cell lung cancer, Eur. Radiol. 28 (7) (2018)
2772–2778.

[73] H. Liu, B. Jing, W. Han, Z. Long, X. Mo, H. Li, A comparative texture analysis
based on NECT and CECT images to differentiate lung adenocarcinoma from
squamous cell carcinoma, J. Med. Syst. 43 (3) (2019) 59.

[74] S.R. Digumarthy, A.M. Padole, R.L. Gullo, L.V. Sequist, M.K. Kalra, Can CT ra-
diomic analysis in NSCLC predict histology and EGFR mutation status? Medicine
98 (1) (2019).

[75] F. Yang, W. Chen, H. Wei, X. Zhang, S. Yuan, X. Qiao, Y.-W. Chen, Machine
learning for histologic subtype classification of non-small cell lung cancer: A
retrospective multicenter radiomics study, Front. Oncol. 10 (2020).

[76] R. Thawani, M. McLane, N. Beig, S. Ghose, P. Prasanna, V. Velcheti, A.
Madabhushi, Radiomics and radiogenomics in lung cancer: A review for the
clinician, Lung Cancer 115 (2018) 34–41.
12
[77] R. Reiazi, E. Abbas, P. Famiyeh, A. Rezaie, J.Y. Kwan, T. Patel, S.V. Bratman,
T. Tadic, F.-F. Liu, B. Haibe-Kains, The impact of the variation of imaging
parameters on the robustness of computed tomography radiomic features: A
review, Comput. Biol. Med. 133 (2021) 104400.

[78] I. Domingues, G. Pereira, P. Martins, H. Duarte, J. Santos, P.H. Abreu, Using deep
learning techniques in medical imaging: A systematic review of applications on
CT and PET, Artif. Intell. Rev. 53 (6) (2020) 4093–4160.

[79] Z. Salahuddin, H.C. Woodruff, A. Chatterjee, P. Lambin, Transparency of deep
neural networks for medical image analysis: A review of interpretability methods,
Comput. Biol. Med. 140 (2022) 105111.

[80] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-CAM:
Visual explanations from deep networks via gradient-based localization, in: 2017
IEEE International Conference on Computer Vision, IEEE, 2017, pp. 618–626.

[81] A. Masood, P. Yang, B. Sheng, H. Li, P. Li, J. Qin, V. Lanfranchi, J. Kim, D.D.
Feng, Cloud-based automated clinical decision support system for detection and
diagnosis of lung cancer in chest CT, IEEE J. Transl. Eng. Health Med. 8 (2019)
1–13.

Selene Tomassini received the M.S. degree in biomedical engineering in December
2018 from Università Politecnica delle Marche, Ancona, Italy, where she is currently
pursuing the Ph.D. degree in information engineering. Her research interests mainly
include deep learning algorithms for biomedical signal, image, and video analysis.

Nicola Falcionelli received the Ph.D. degree in information engineering in April
2020 from Università Politecnica delle Marche, Ancona, Italy, where he is currently
a post-doc research fellow. His research interests range in the spectrum of artificial
intelligence, from symbolic approaches to statistical learning techniques.

Paolo Sernani received the Ph.D. degree in information engineering in March 2016
from Università Politecnica delle Marche, Ancona, Italy, where he is currently a post-
doc research fellow. His research interests include deep learning for image and video
analysis, multi-agent systems, expert systems, and decision-support systems.

Laura Burattini is currently in charge as full professor and president of the unified
council of the biomedical engineering degree at Università Politecnica delle Marche,
Ancona, Italy, where she teaches ‘‘bioengineering’’ and ‘‘biomedical signal and data
processing’’. Her scientific interests range in the spectrum of biomedical engineering,
focusing mainly on biomedical signal and image analysis.

Aldo Franco Dragoni is currently in charge as associate professor at Università Politec-
nica delle Marche, Ancona, Italy, where he teaches ‘‘artificial intelligence’’, ‘‘dedicated
operating systems’’, and ‘‘fundamentals of computer sciences’’. His scientific interests
concern several aspects of artificial intelligence, from knowledge-based approaches to
advanced hybrid systems.

http://refhub.elsevier.com/S0010-4825(22)00474-7/sb61
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb61
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb61
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb62
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb62
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb62
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb62
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb62
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb63
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb63
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb63
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb63
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb63
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb64
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb64
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb64
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb65
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb65
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb65
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb66
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb66
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb66
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb66
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb66
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb67
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb67
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb67
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb67
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb67
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb67
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb67
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb68
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb68
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb68
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb68
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb68
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb69
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb69
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb69
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb69
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb69
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb69
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb69
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb70
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb70
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb70
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb70
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb70
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb71
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb71
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb71
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb71
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb71
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb72
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb72
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb72
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb72
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb72
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb72
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb72
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb73
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb73
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb73
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb73
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb73
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb74
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb74
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb74
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb74
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb74
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb75
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb75
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb75
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb75
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb75
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb76
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb76
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb76
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb76
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb76
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb77
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb77
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb77
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb77
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb77
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb77
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb77
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb78
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb78
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb78
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb78
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb78
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb79
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb79
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb79
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb79
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb79
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb80
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb80
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb80
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb80
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb80
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb81
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb81
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb81
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb81
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb81
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb81
http://refhub.elsevier.com/S0010-4825(22)00474-7/sb81

	Lung nodule diagnosis and cancer histology classification from computed tomography data by convolutional neural networks: A survey
	Introduction
	Lung cancer computer-aided diagnosis
	Deep learning in lung cancer diagnosis
	Convolutional neural networks in lung cancer diagnosis

	Search strategy and selection criteria
	Literature descriptive analysis
	Lung nodule diagnosis
	Slice-based approaches
	Scan-based approaches

	Lung cancer histology classification
	Slice-based approaches
	Scan-based approaches


	Discussion
	Perspectives
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	References


