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Abstract
This paper addresses particular eigenvalue problems within the context of two quaternionic 
function theories. More precisely, we study two concrete classes of quaternionic eigen-
value problems, the first one for the slice derivative operator in the class of quaternionic 
slice-regular functions and the second one for the Cauchy–Riemann–Fueter operator in the 
class of axially monogenic functions. The two problems are related to each other by the 
four-dimensional Laplace operator and Fueter’s Theorem. As an application of a particular 
case of second order eigenvalue problems, we obtain a representation of axially monogenic 
solutions for time-harmonic Helmholtz and stationary Klein–Gordon equations.

Keywords Slice-regular functions · Eigenvalue problems · Axially monogenic functions · 
Cauchy–Riemann operator

Mathematics Subject Classification Primary 30G35 · Secondary 47A75 · 35J05

1 Introduction

Complex function theory represents a powerful toolkit to study eigenvalue problems 
related to important differential operators arising in harmonic analysis and mathematical 
physics in two dimensions. Therefore, a strong motivation in mathematical analysis con-
sists in developing higher dimensional analogues in order to tackle similarly corresponding 
spatial problems. The smallest division algebra that encompasses the three-dimensional 
space ℝ3 is the four-dimensional Hamiltonian skew field ℍ which is not commutative any-
more but still associative. It is the first algebra created beyond the complex numbers by 
applying the well-known Cayley-Dickson duplication process. The concept of holomorphic 
functions however can be generalized in a number of rather different ways to higher dimen-
sional algebras, even in the simplest context of ℍ . Following the Riemann approach one 
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can consider quaternion-valued functions f that are annihilated either from the left or from 
the right by the linear Cauchy-Riemann-Fueter operator � ∶=

1

2

(
�

�x0
+ i

�

�x1
+ j

�

�x2
+ k

�

�x3

)
 . 

Here, i,  j, k are the quaternionic imaginary units, satisfying i2 = j2 = k2 = −1 and ij = k , 
jk = i , ki = j as well as ji = −k , kj = −i , ik = −j . Functions in the kernel of this operator 
are nowadays often called left (resp. right) monogenic functions or also sometimes left 
(right) Fueter regular functions. They have been studied by a constantly growing commu-
nity for more than a century. As a classical reference, addressing even more generally the 
n-dimensional setting, we recommend for example [5]. The function theory presented there 
is often called Clifford analysis; quaternionic analysis actually is represented specifically in 
the 4-dimensional setting. The Cauchy-Riemann-Fueter operator is nothing else than the 
Euclidean Dirac operator in ℝ4 associated to the Euclidean flat metric and is a first order 
square root of the Laplacian Δ4.

An alternative function theory, which actually is even more closely related to classical 
complex-analytic functions, is the theory of quaternionic slice-regular functions which was 
basically introduced in 2006-2007 by Gentili and Struppa [12, 13]. This function theory 
exploits a particular slice-structure of ℍ which is explained together with its most impor-
tant definitions and relevant function classes of the so-called slice functions and slice-regu-
lar functions in Section 2 including the basic references.

Now the aim of our paper is to investigate some eigenvalue problems for quaternionic 
slice functions, with particular emphasis on slice-regular functions and on axially mono-
genic functions.

The right-linear operator that we first consider is the so-called slice derivative operator 
�

�x
 acting on the classes of slice or slice-regular functions defined in Section 2. We study 

eigenvalue problems of the form �f
�x

= f� on an axially symmetric domain Ω of the quater-
nionic space ℍ , with � ∈ ℍ . We show in Proposition 3 that in the class of slice functions, 
the solutions to this problem can be written as slice products of anti-slice-regular functions 
and a quaternionic exponential function. Slice-regular solutions are obtained when the first 
factor is a slice-constant function on Ω.

Let D� be the right-linear operator defined by D�f =
�f

�x
− f� . In Propositions 6, 8 and 18 

we study the associated non-homogeneous eigenvalue problem D�f = h for a polynomial 
right-hand side h and for a wide class of entire slice-regular functions. These results in 
particular permit us to solve (Corollary 11) second-order eigenvalue problems D�D�f = 0 
for any choice of quaternionic eigenvalues �,� . In Corollary 15 we extend this result to the 
m-th order eigenvalue problem D�1

⋯D�m
f = 0 by means of new generalized exponential 

functions (see Definition 12) associated with any ordered k-tuple (�1,… ,�k) ∈ ℍ
k.

The second right-linear operator that we consider is the (conjugated) Cauchy-Riemann-
Fueter operator � acting on the class of quaternionic monogenic (or Fueter-regular) slice 
functions, i.e., belonging to the kernel of the Cauchy-Riemann-Fueter operator � . Using 
Fueter’s Theorem (see e.g. [7]) as a bridge between the two function theories, we are able 
to apply the results described above to eigenvalue problems for axially monogenic func-
tions. The crucial fact is the relation �◦Δ4 = Δ4◦

�

�x
 on the space of slice-regular functions 

on Ω , where Δ4 is the Laplacian of ℝ4 ≃ ℍ . Applying the operator Δ4 to the slice-regular 
solutions obtained above, we obtain in Proposition 28 the general axially monogenic solu-
tion of the eigenvalue problem �f = f� , with � ∈ ℍ , and more generally (Proposition 32) of 
the m-th order eigenvalue problem L�1

⋯L�m
f = 0 , where L� is defined by L�f = �f − f� . 

We refer the reader at the beginning of Sect. 4 to references on the study of similar eigen-
value problems in quaternionic and Clifford analysis.
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The final section is devoted to applications. We relate the solutions to L�1
L�2

f = 0 to 
axially monogenic solutions of the three-dimensional time-harmonic Helmholtz and sta-
tionary massless Klein-Gordon equation on an axially symmetric domain (Proposition 34).

Let Δ3 denote the Laplacian operator on ℝ3 ≃ Im(ℍ) . Suppose that �1 = I� and 
�2 = −I� , where I is a quaternionic imaginary unit and where � is an arbitrary non-zero 
real number. Then the solutions to LI�L−I�f = 0 are axially monogenic solutions to the 
massless stationary Klein-Gordon equation (Δ3 − �2)f = 0 on Ω∗ ∶= Ω ∩ℝ

3 . If we take 
�1 = � and �2 = −� where again � is supposed to be a non-zero real value, then the solu-
tions to L�L−�f = 0 are axially monogenic solutions to the time-harmonic Helmholtz equa-
tion (Δ3 + �2)f = 0 on Ω∗ . Finally, we establish an application (Remark 37) to the non-
homogeneous equation associated to the Klein-Gordon equation, i.e., the Yukawa equation 
(Δ3 − �2)f = h , with � real and h axially monogenic. The paper is structured as follows: In 
Sect. 2 we recall the basic notions of slice function theory on ℍ . Then, in Sect. 3, we pre-
sent the eigenvalue problems for the slice derivative operator on slice and on slice-regular 
functions. Here we also introduce the generalized exponential functions EΛ . This repre-
sents another essential novelty of this paper, and we give some examples to illustrate the 
method of solution. In Sect. 4 we recall Fueter’s Theorem and present some new results 
about the Laplacian of a slice-regular function. Then we prove the commutativity relation 
linking Δ , � and �

�x
 and obtain the axially monogenic solutions to the eigenvalue problems 

for � , in terms of the generalized Δ-exponential functions EΔ
Λ
 . Finally, in Sect. 5, we present 

applications of the results of Sect. 4 to the Helmholtz, Klein-Gordon and Yukawa equa-
tions and round off our paper by presenting some explicit examples.

2  Preliminaries

The theory of quaternionic slice-regular functions was introduced in 2006-2007 by Gentili 
and Struppa [12, 13]. We refer the reader for instance to [6, 8, 14, 16, 18, 19] and also to 
the references therein for precise definitions and for more results on this class of functions. 
Slice function theory is based on the “slice” decomposition of the quaternionic space ℍ . 
For each imaginary unit J in the sphere

we denote by ℂJ = ⟨1, J⟩ ≃ ℂ the subalgebra generated by J. Then it holds

A (real) differentiable function f ∶ Ω ⊆ ℍ → ℍ is called (left) slice-regular [13] on the 
open set Ω if, for each J ∈ � , the restriction f |Ω∩ℂJ

∶ Ω ∩ ℂJ → ℍ is holomorphic with 
respect to the complex structure defined by left multiplication by J.

2.1  Slice functions

A different approach to slice regularity was introduced in [15, 16], making use of the 
concept of slice function. These are exactly the quaternionic functions that are com-
patible with the slice structure of ℍ . Given a set D ⊆ ℂ that is invariant with respect 
to complex conjugation, a function F ∶ D → ℍ⊗ ℂ that satisfies F(z) = F(z) for every 

𝕊 = {J ∈ ℍ | J2 = −1} = {x1i + x2j + x3k ∈ ℍ | x2
1
+ x2

2
+ x2

3
= 1},

ℍ =
⋃
J∈𝕊

ℂJ , with ℂJ ∩ ℂK = ℝ for every J,K ∈ 𝕊, J ≠ ±K.
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z ∈ D is called a stem function on D. Here the conjugation in ℍ⊗ ℂ is the one induced 
by complex conjugation of the second factor.

Let D be open and let ΩD = ∪J∈𝕊
ℍ
ΦJ(D) ⊂ ℍ , where for any J ∈ � , the map 

ΦJ ∶ ℂ → ℂJ is the canonical isomorphism defined by ΦJ(a + ib) ∶= a + Jb . Open 
domains in ℍ of the form Ω = ΩD are called axially symmetric domains. Note that every 
axially symmetric domain Ω is either a slice domain if Ω ∩ℝ ≠ � , or it is a product 
domain, namely if Ω ∩ℝ = � . Moreover, any axially symmetric open set can be repre-
sented as a union of a family of domains of these two types.

The stem function F = F1 + iF2 on D (with F1 and F2 ℍ-valued functions on D) induces 
the slice function f = I(F) ∶ ΩD → ℍ as follows: if x = � + J� = ΦJ(z) ∈ ΩD ∩ ℂJ , then

The tensor product ℍ⊗ ℂ can be equipped with the complex structure induced by the sec-
ond factor. The slice function f is then called slice-regular if F is holomorphic. If a domain 
Ω in ℍ is axially symmetric and intersects the real axis, then this definition of slice regular-
ity is equivalent to the one proposed by Gentili and Struppa [13]. We will denote by SR(Ω) 
the right quaternionic module of slice-regular functions on Ω . If f ∈ SR(ℍ) , then f is called 
a slice-regular entire function. In particular, every polynomial f (x) =

∑d

n=0
xnan ∈ ℍ[x] 

with right quaternionic coefficients an , is an entire slice-regular function.

2.2  Operations on slice functions

Let Ω = ΩD be an open axially symmetric domain in ℍ . The slice product of two slice 
functions f = I(F) , g = I(G) on Ω is defined by means of the pointwise product of the 
stem functions F and G:

The function f = I(F) is called slice-preserving if the ℍ-components F1 and F2 of the stem 
function F are real-valued. This is equivalent to the condition f (x) = f (x) for every x ∈ ΩD . 
If f is slice-preserving, then f ⋅ g coincides with the pointwise product of f and g. If f, g are 
slice-regular on Ω , then also their slice product f ⋅ g is slice-regular on Ω . We recall that 
the slice product has also an interpretation in terms of pointwise quaternionic product:

For every f ∈ S(Ω) , the slice function f c = I(Fc) = I(F1 + iF2) is the slice-conjugate of 
f and N(f ) = f ⋅ f c = f c ⋅ f  is the normal function of f. If f ∈ SR(Ω) , then also f c , N(f) do 
belong to SR(Ω).

Assume that f ∈ S(Ω) is not identically zero on Ω . Then the zero set 
V(N(f )) = {x ∈ Ω |N(f ) = 0} of the normal function does not coincide with the whole 
set Ω . The slice product permits us to introduce on Ω ⧵ V(N(f )) the slice reciprocal f −∙ 
of f, as the function f −∙ ∶= N(f )−1 ⋅ f c (see [18, Prop. 2.4]). Again, if f is slice-regular, 
then f −∙ is slice-regular, too.

The slice derivatives �f
�x
,
�f

�xc
 of a slice functions f = I(F) are defined by means of the 

Cauchy-Riemann operators applied to the inducing stem function F:

f (x) ∶= F1(z) + JF2(z).

f ⋅ g = I(FG).

(f ⋅ g)(x) =

{
f (x)g(f (x)−1xf (x)) if f (x) ≠ 0,

0 if f (x) = 0.
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Note that f is slice-regular on Ω if and only if �f
�xc

= 0 and if f is slice-regular on Ω then also 
�f

�x
 is slice-regular on Ω . Moreover, the slice derivatives satisfy the Leibniz product rule 

w.r.t. the slice product.
A slice-regular function g is called slice-constant if �g

�x
= 0 on Ω . We will denote by 

SC(Ω) the right ℍ-module of slice-constant functions on Ω . If Ω is a slice domain, then 
every g ∈ SC(Ω) is a quaternionic constant. If Ω is a product domain, then other possi-
bilities arise: for any imaginary unit I ∈ � , a slice-constant function �I on ℍ ⧵ℝ can be 
defined by setting, such as indicated in [16, Remark 12],

By the representation formula (see [16, Prop. 5] and [2, Prop. 15]), any slice-constant 
g ∈ SC(ℍ ⧵ℝ) is determined by its values on two arbitrarily chosen half-slices ℂ+

J
,ℂ+

K
 , 

with J ≠ K . If g|ℂ+
J
= a1 ∈ ℍ and g|ℂ+

K
= a2 ∈ ℍ , then g can be expressed as

3  Eigenvalue problems for slice functions

3.1  Eigenvalue problem for slice‑regular functions

Let Ω be an axially symmetric domain of ℍ . Consider the following eigenvalue problem for 
the slice derivative operator �

�x
 in the class of slice-regular functions:

Remark 1 Let � ∈ ℍ and let ez� ∶=
∑+∞

n=0
(z�)n

n!
 . Then ez� is a holomorphic stem function on 

ℂ , that induces the slice-regular entire function

cf. also with [3, 8]. Observe that whenever � is not real, then in general 
exp�(x) ≠ ex� ∶=

∑+∞

n=0
(x�)n

n!
 . The exponential function exp�(x) is slice-preserving if and 

only if � is real. In general, if � ∈ ℂI , then exp�(x) is one-slice-preserving, i.e., it maps the 
slice ℂI into ℂI.

For any � ∈ ℍ , it holds � exp�(x)
�x

= exp�(x)� , since �e
z�

�z
= ez�� , i.e., f (x) = exp�(x) is a 

solution of (3) on every Ω.

We consider also a more general eigenvalue problem in which the solutions are searched 
in the space of slice functions on Ω which are not necessarily slice-regular.

�f

�x
= I

(
�F

�z

)
,

�f

�xc
= I

(
�F

�z

)
.

(1)�I(x) ∶=
1

2

(
1 +

Im(x)

|Im(x)| I
)

∈ SR(ℍ ⧵ℝ).

(2)g(x) = 2�J(x)J(J − K)−1a2 − 2�K(x)K(J − K)−1a1.

(3)

{ �f

�x
= f� on Ω,

with f ∈ SR(Ω), � ∈ ℍ.

exp�(x) ∶= I(ez�) =

+∞∑
n=0

xn�n

n!
,
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3.2  Eigenvalue problem for slice functions

Let Ω be an axially symmetric domain of ℍ . Consider the following eigenvalue problem 
for the slice derivative operator �

�x
 in the class S1(Ω) of slice functions induced by stem 

functions of the class C1 on Ω:

Remark 2 Let g ∈ S
1(Ω) . The function f = g ⋅ exp�(x) obtained by taking the slice product 

of g and exp�(x) is a solution of (4) if and only if

Therefore, for any anti-slice-regular function g ∈ S
1(Ω) (i.e., such that �g

�x
= 0 on Ω ), the 

function f = g ⋅ exp�(x) is a solution of (4). Moreover, it holds:

• If Ω is a slice domain (i.e., Ω ∩ℝ ≠ � ) and g is constant, then f = g ⋅ exp�(x) ∈ SR(Ω) 
is a solution of (3).

• If Ω is a product domain (i.e., Ω ∩ℝ = � ), then f = g ⋅ exp�(x) ∈ SR(Ω) is a solution 
of (3) for every slice-constant function g.

Conversely, if f is a solution of (4), then set g ∶= f ⋅ (exp�(x))
−∙ . Since the normal 

function of exp�(x) is N(exp�(x)) = ext(�) , where t(�) = � + � is the trace of � , it holds 
V(N(exp�(x))) = � . More precisely, it holds (exp�(x))−∙ = exp−�(x) , since if � ∈ ℂJ , then 
exp�(x) is a one-slice preserving function such that exp�(x) ⋅ exp−�(x) = 1 on the slice ℂJ , 
and therefore, by the representation formula (see [16, Prop. 5]), the equality holds on 
the whole space ℍ . We have

and then f = g ⋅ exp�(x) , with g ∈ S
1(Ω) anti-slice-regular.

Denote by SR(Ω) the right ℍ-module of anti-slice-regular functions on Ω . Let 
g = I(G1 + �G2) . Then g ∈ SR(Ω) if and only if the slice function g = I(G1 − �G2) is 
slice-regular, i.e., the stem function G ∶= G1 + �G2 inducing g is anti-holomorphic. We 
can summarize the previous remarks in the following statement.

Proposition 3 Let Ω ⊂ ℍ be an axially symmetric domain. A function f ∈ S
1(Ω) is a solu-

tion of (4) if and only if f = g ⋅ exp�(x) , with g ∈ SR(Ω) anti-slice-regular. The solution 
f is slice-regular, and then a solution of (3), if and only if g ∈ SR(Ω) ∩ SR(Ω) = SC(Ω) , 
i.e., g is slice-constant on Ω (constant if Ω is a slice domain).   ◻

(4)

{ �f

�x
= f� on Ω,

with f ∈ S
1(Ω), � ∈ ℍ.

�f

�x
=

�g

�x
⋅ exp�(x) + g ⋅ exp�(x)� = f� ⇔

�g

�x
⋅ exp�(x) = 0 on Ω.

�g

�x
=

�(f ⋅ exp−�(x))

�x
=

�f

�x
⋅ exp−�(x) + f ⋅ (− exp−�(x)�)

= (f�) ⋅ exp−�(x) − f ⋅ exp−�(x)� = 0,
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Let R� be the operator of right multiplication by � and let D� =
�

�x
− R� denote the linear 

operator mapping a slice function f ∈ S
1(Ω) to the continuous slice function

Note that D�f  is slice-regular for any slice-regular function f. Another useful property of 
the operator D� is the following: for every slice-constant g ∈ SC(Ω) and every f ∈ S

1(Ω) , 
it holds

Remark 4 When Ω is a slice domain, in view of Proposition 3 it holds

If y ∈ Ω ∩ℝ , the solution of (3) is uniquely determined by its value at y, and takes the 
form f = c ⋅ exp�(x) , with c = f (y) exp−�(y).

If Ω is a product domain, then the solutions of (3) have more degrees of freedom (eight 
real d.o.f. instead of four). If �I ∈ SC(ℍ ⧵ℝ) is the function defined in (1), then formula 
(2) for J = −K = I implies that g ∶= �Ia2 + �−Ia1 is the unique slice-constant function on 
ℍ ⧵ℝ with g|ℂ+

I
= a1 , g|ℂ−

I
= a2 . We then obtain, for every I ∈ � , the representation

for the kernel of the operator D� on slice-regular functions on Ω . A function 
f = g ⋅ exp�(x) = (�Ia2) ⋅ exp�(x) + (�−Ia1) ⋅ exp�(x) ∈ Ker(D�) is uniquely determined by 
its values at two points, for example by I and −I . Since f ⋅ exp−�(x) = g , a direct computa-
tion shows that

and

where we used the fact that exp−�(−x) = exp�(x) for every x, � ∈ ℍ.

The eigenvalue problem (3) is the homogeneous problem associated to the following 
generalized eigenvalue problem. Given h ∈ SR(Ω) and � ∈ ℍ , find f ∈ SR(Ω) such that

Remark 5 Assume that � ≠ 0 . If h(x) = xc1 + c0 is linear ( c0, c1 ∈ ℍ ), then 
f (x) = −c1 ⋅ (�

−2 + x�−1) − c0�
−1 is a solution of (5), since

D�f =
�f

�x
− f�.

D�(g ⋅ f ) = g ⋅D�f .

Ker(D�) ∩ SR(Ω) = {c ⋅ exp�(x) | c ∈ ℍ}.

Ker(D�) ∩ SR(Ω) = {(�Ia2) ⋅ exp�(x) + (�−Ia1) ⋅ exp�(x) | a1, a2 ∈ ℍ}

a1 =

{
f (I) exp−�(f (I)

−1If (I)) if f (I) ≠ 0,

0 if f (I) = 0,

a2 =

{
f (−I) exp�(f (−I)

−1If (−I)) if f (−I) ≠ 0,

0 if f (−I) = 0,

(5)D�f = h on Ω.
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In view of the linearity of (5), the previous solution is uniquely determined up to solutions 
of the homogeneous problem (3). From Proposition 3 we can infer that the general solution 
is

for any a0 ∈ ℍ . On product domains the general solutions have similar forms, with any 
slice-constant function g ∈ SC(Ω) in place of the constant a0 . Notice that here and in all 
that follows the constants a0 and ci are considered as functions when they appear as one of 
the objects to be multiplied by means of the product ⋅.

The computation in Remark 5 provides a hint for finding solutions of (5) for every polyno-
mial right-hand side h ∈ ℍ[x] and � ≠ 0 . In this case we can take for Ω the whole quaternionic 
space ℍ (a slice domain) or the product domain ℍ ⧵ℝ.

Proposition 6 Let � ≠ 0 and let h(x) =
∑d

n=0
xncn ∈ ℍ[x] . For any n ∈ ℕ , let fn ∈ ℍ[x] be 

the slice-regular polynomial

Then the polynomial f∗ =
∑d

n=0
fn is a solution of (5) with right-hand side h. The general 

solution of (5) on Ω is f = f∗ + g ⋅ exp�(x) , with g ∈ SC(Ω) . If Ω = ℍ , a slice domain, and 
y ∈ ℝ , then the solution of (5) is uniquely determined by its value at y, and takes the form 
f = f∗ + c ⋅ exp�(x) , with c = (f (y) − f∗(y)) exp−�(y) ∈ ℍ . If Ω = ℍ ⧵ℝ , a product domain, 
then the solution of (5) is uniquely determined by its values at two points.

Proof We have

Therefore, D�f = D�f∗ = h , if f = f∗ + g ⋅ exp�(x) , with g ∈ SC(Ω) . The last statement fol-
lows immediately from Proposition 3 and from Remark 4.   ◻

The preceding Proposition means that one can define a right inverse of D� on the space of 
quaternionic polynomials of degree at most d. It is the operator S� ∶ ℍd[x] → ℍd[x] defined 
as follows: if p(x) =

∑d

n=0
xnan , then

D�f = −c1 ⋅
�(�−2 + x�−1)

�x
+ c1 ⋅ (�

−2 + x�−1)� + c0 =

= −c1�
−1 + c1 ⋅ (�

−1 + x) + c0 = c1 ⋅ x + c0 = xc1 + c0 = h(x).

f (x) = a0 ⋅ exp�(x) − c1 ⋅ (�
−2 + x�−1) − c0�

−1,

fn(x) = −cn ⋅

(
n∑

k=0

xk�k

k!

)
n!�−n−1.

D�fn(x) = −cn ⋅
�

�x

(
n∑

k=0

xk�k

k!

)
n!�−n−1 + cn ⋅

(
n∑

k=0

xk�k

k!

)
n!�−n =

= −cn ⋅

(
n∑

k=1

xk−1�k−1

(k − 1)!

)
n!�−n + cn ⋅

(
n∑

k=0

xk�k

k!

)
n!�−n = cn ⋅ x

n = xncn.

(6)S�p = −

d∑
n=0

an ⋅

(
n∑

k=0

xk�k

k!

)
n!�−n−1 =

d∑
k=0

xkbk,
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with

Now we consider equation (5) with an exponential right-hand side h(x) = g ⋅ exp�(x) , with 
� ∈ ℍ and g slice-constant.

Proposition 7 Let �,� ∈ ℍ , with 0 < |𝜇| < |𝜆| . For every n ∈ ℕ , let f �,�
n

∈ ℍ[x] be the 
slice-regular polynomial of degree n

Then the series of functions 
∑+∞

n=0
f �,�
n

(x) converges uniformly on the compact sets of ℍ to 
an entire slice-regular function f �,� ∈ SR(ℍ) such that D�(f

�,�) = exp�(x) . As a conse-
quence, D�(g ⋅ f

�,�) = g ⋅ exp�(x) for every slice-constant g on Ω . If � and � commute, then 
the function f �,� has the expected explicit form f �,�(x) = exp�(x)(� − �)−1.

Proof Since f �,�
n

(x) ∶= −�n
⋅
∑n

k=0
xk�k

k!
�−n−1 , as in the proof of Proposition 6 we get that

From the estimate

follows the uniform convergence of the series on compacts and then the equality 
D�f

�,�(x) =
∑+∞

n=0
xn�n∕n! = exp�(x) . To prove the last statement, we can assume that 

�,� ∈ ℂI for a unit I ∈ � and write

We then compute the sums

and conclude observing that

  ◻

If � and � commute and � ≠ � , then exp�(x)(� − �)−1 solves D�f = exp�(x) even if 
|�| ≥ |�| or if one of the parameters �,� vanishes.

bk = −

d∑
n=k

an�
k−n−1n!

k!
for k = 0,… , d.

f �,�
n

(x) ∶= −

n∑
k=0

xk�n�k

k!
�−n−1.

D�(f
�,�
n

) = xn
�n

n!
.

|f �,�
n

(x)| ≤
n∑

k=0

|x|k|�|n|�|k
k!

|�|−n−1 =
n∑

k=0

|x�|k
k!

|�|n
|�|n |�|

−1 ≤
e|x�|
|�|

|�|n
|�|n

f �,�(x) =

+∞∑
n=0

f �,�
n

(x) =

+∞∑
k=0

(
−

+∞∑
n=k

xk�n

k!
�−n−1+k

)
.

g
�,�
k

(x) ∶= −

+∞∑
n=k

xk�n

k!
�−n−1+k = −

xk

k!
�−1+k

+∞∑
n=k

(��−1)n =
xk

k!
�k(� − �)−1

f �,�(x) =

+∞∑
k=0

g
�,�
k

(x) =

+∞∑
k=0

xk

k!
�k(� − �)−1 = exp�(x)(� − �)−1.
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If � = � , then a solution of the equation D�f = exp�(x) is easily found from the 
correspondent complex problem. The one-slice-preserving slice-regular function 
f (x) = x exp�(x) satisfies the equation D�f = exp�(x).

In the next Proposition we show how to remove the assumption 0 < |𝜇| < |𝜆| of Propo-
sition 7 and find another slice-regular solution of the equation D�f = exp�(x) . More pre-
cisely, we find the power series expansion around the origin of the unique solution vanish-
ing at 0.

Proposition 8 Let �,� ∈ ℍ . Let g�,� be the sum of the slice-regular power series

The series converges uniformly on the compact sets of ℍ to an entire slice-regular function 
such that D�(g

�,�) = exp�(x) and g�,�(0) = 0 . As a consequence, D�(h ⋅ g
�,�) = h ⋅ exp�(x) 

for every slice-constant h on Ω . If � and � commute and � ≠ � , then the function g�,� 
has the expected explicit form g�,�(x) = (exp�(x) − exp�(x))(� − �)−1 . If � = � , then 
g�,�(x) = x exp�(x).

Proof Assume for the moment that the series is uniformly convergent. Then

Let

If |�| ≠ |�| , then

Since the estimate is symmetric in � and � , we can assume that |𝜇| < |𝜆| . Then

from which follows the uniform convergence of the series g�,�(x) =
∑

n≥1 gn(x) on the com-
pacts sets of ℍ . If |�| = |�| , then

g�,�(x) ∶=

+∞∑
n=1

xn

n!

n−1∑
k=0

�k�n−k−1.

D�g
�,� =

�

�x

(
+∞∑
n=1

xn

n!

n−1∑
k=0

�k�n−k−1

)
−

(
+∞∑
n=1

xn

n!

n−1∑
k=0

�k�n−k−1

)
�

=

+∞∑
n=1

nxn−1

n!

n−1∑
k=0

�k�n−k−1 −

+∞∑
n=1

xn

n!

n−1∑
k=0

�k�n−k

=

+∞∑
n=0

xn

n!

n∑
k=0

�k�n−k −

+∞∑
n=1

xn

n!

n−1∑
k=0

�k�n−k

= 1 +

+∞∑
n=1

xn

n!
�n = exp�(x).

gn(x) ∶=
xn

n!

n−1∑
k=0

�k�n−k−1.

|gn(x)| ≤ |x|n
n!

n−1∑
k=0

|�|k|�|n−k−1 = |x|n
n!

|�|n − |�|n
|�| − |�| .

|gn(x)| ≤ |2x�|n
n!

2−n

|�| − |�| ≤ e|2x�| 2−n

|�| − |�|
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and the uniform convergence of the series follows also in this case. If � and � commute, the 
following equality holds:

The last statement follows immediately from the series expansion

  ◻

Remark 9 In view of Proposition 3, the solutions f �,� and g�,� of Propositions 7 and 8 of 
the equation D�f = exp�(x) , as soon as they are both defined, just differ by a function of 
the form h ⋅ exp�(x) , with h ∈ SC(Ω) . Indeed, it holds f �,� − g�,� = f �,�(0) ⋅ exp�(x).

Example 10 (1)   Let � = i , � = j . A direct computation shows that the solution gi,j of the 
equation Djf = expi(x) = cos x + (sin x)i given by Proposition 8 has the explicit expression

Observe that the slice-regular functions cos x = I(cos z) and sin x = I(sin z) are exactly the 
functions defined in [24, Def.11.23] in the more general context of Clifford algebras.
(2)   Let � = i , � = 2j . Then the solution gi,2j of the equation D2jf = expi(x) is

(3)   Let � = 2i , � = j . Then the solution g2i,j of the equation Djf = exp2i(x) is the function

3.3  Eigenvalue problem of the second order for slice‑regular functions

Propositions 3 and 8 permit us to study eigenvalue problems of the second order. Given 
�,� ∈ ℍ , we consider the equation

Notice that two operators D� and D� commute if and only if � and � commute, i.e., they 
belong to the same complex slice ℂI , I ∈ �.

|gn(x)| ≤ |x|n
n!

n−1∑
k=0

|�|n−1 = |x|n
(n − 1)!

|�|n−1 = |x||2x�|n−1
(n − 1)!

2−n+1 ≤ |x|e|2x�|2−n+1

g�,�(x) =

+∞∑
n=1

xn

n!

n−1∑
k=0

�k�n−k−1 =

+∞∑
n=1

xn

n!
(�n − �n)(� − �)−1.

g�,�(x) =

+∞∑
n=1

xn

n!
n�n−1 = x

+∞∑
n=0

xn�n

n!
= x exp�(x).

gi,j(x) =

+∞∑
n=1

xn

n!

n−1∑
k=0

ikjn−k−1 =
1

2
(sin x + x cos x + (x sin x)(i + j) + (sin x − x cos x)k).

gi,2j(x) =
1

3
(2 sin(2x) − sin x + (cos x − cos(2x))(i + 2j) + (2 sin x − sin(2x))k).

g2i,j(x) =
1

3
(2 sin(2x) − sin x + (cos x − cos(2x))(2i + j) + (2 sin x − sin(2x))k).

(7)
{

D�D�f = 0 on Ω,

with f ∈ SR(Ω).
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Corollary 11 Let �,� ∈ ℍ . 

1. If � ≠ � , then the function g�,� of Proposition 8 is a solution of (7). Any solution of (7) 
is of the form f = h1 ⋅ g

�,� + h2 ⋅ exp�(x) , with h1, h2 ∈ SC(Ω).
2. If � and � are distinct and commute, then the solutions of (7) are the functions of the 

form f = h1 ⋅ exp�(x) + h2 ⋅ exp�(x) , with h1, h2 ∈ SC(Ω).
3. If � = � , then the solutions of (7), i.e., the functions f ∈ SR(Ω) such that D2

�f = 0 , are 
the functions of the form f = h1 ⋅ exp�(x) + h2 ⋅ (x exp�(x)) , with h1, h2 ∈ SC(Ω).

Proof From Proposition  8 and Proposition  3, D�D�(g
�,�) = D� exp�(x) = 0 . Conversely, 

if f is a solution of (7), then D�f  has the form h1 ⋅ exp�(x) , with h1 ∈ SC(Ω) , and then 
f − h1 ⋅ g

�,� ∈ Ker(D�) ∩ SR(Ω) . From Proposition 3, we get f − h1 ⋅ g
�,� = h2 ⋅ exp�(x) , 

with h2 ∈ SC(Ω).
If � and � are distinct but commuting elements, then Proposition 8 gives the solution 

g�,�(x) = (exp�(x) − exp�(x))(� − �)−1 of D�f = exp�(x) . Moreover,

and similarly for exp�(x) . Then h1 ⋅ g�,� = (h1(� − �)−1) ⋅ exp�(x) − (h2(� − �)−1) ⋅ exp�(x)
= h

�
1
⋅ exp�(x) + h

�
2
⋅ exp�(x) , with h�

1
, h�

2
∈ SC(Ω) . The statement of the third case address-

ing � = � follows from Proposition 8 and Proposition 3.   ◻

3.4  Eigenvalue problem of the mth‑order for slice‑regular functions

Now we generalize Corollary 11 to eigenvalue problems of any order m. Let �1,… , �m ∈ ℍ 
and consider the equation

We begin by introducing a family of slice-regular functions which generalize the exponen-
tial functions exp�(x) of Remark 1.

Definition 12 Let �1,… , �m ∈ ℍ , with m ≥ 1 . The generalized exponential function asso-
ciated with Λ = (�1,… , �m) is the slice-regular entire function EΛ(x) defined by

where the sum is extended over the multi-indices K = (k1,… , km) of non-negative integers 
such that |K| = k1 +⋯ + km = n − m + 1 . In particular, it holds E(�) = exp�(x) for every 
� ∈ ℍ.

Proposition 13 The series in the definition of EΛ(x) converges uniformly on the compacts 
of ℍ , i.e., the entire slice-regular function EΛ in the previous definition is well-defined. 

exp�(x)(� − �)−1 =

+∞∑
k=0

xk�k

k!
(� − �)−1 =

+∞∑
k=0

xk(� − �)−1�k

k!
= (� − �)−1 ⋅ exp�(x)

(8)
{

D�1
⋯D�m

f = 0 on Ω,

with f ∈ SR(Ω).

EΛ(x) ∶=

+∞∑
n=m−1

xn

n!

∑
|K|=n−m+1

�
k1
1
⋯ �km

m
,
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Moreover, if Λ = (�1,… , �m) = (�,… , �) , then EΛ(x) =
xm−1

(m−1)!
exp�(x) . It holds EΛ(0) = 1 

if Λ = (�) , otherwise EΛ(0) = 0.

Proof Let m be fixed, n ≥ m − 1 and define

Let a ∶= max{|�1|,… , |�m|} . Then we have

from which follows the uniform convergence of the series EΛ(x) =
∑

n≥m−1 en(x) on the 
compacts sets of ℍ.

If �1 = ⋯ = �m = � , then

  ◻

We set g1(x) ∶= exp�1 (x) and we define g2(x) as the solution g�1,�2 (x) of the equation 
D�2

g2 = g1 obtained in Proposition  8. Then D�1
D�2

g2 = D�1
g1 = 0 , as in Corollary  11. 

Observe that g2(x) is a generalized exponential function, since g2(x) = E(�1,�2)
(x) . We now 

complete the construction of a sequence of entire slice-regular functions g1,… gm such that 
D�

�+1
g
�+1 = g

�
 for every � = 1,… ,m − 1 . The last element of the sequence, the function gm , 

is then a solution of equation (8), with the additional property that D�2
⋯D�m

gm = g1 ≠ 0.
For every � = 2,… ,m , we put

Proposition 14 It holds D�
�+1

g
�+1 = g

�
 for every � = 1,… ,m − 1.

en(x) ∶=
xn

n!

∑
|K|=n−m+1

�
k1
1
⋯ �km

m
.

|en(x)| ≤ |x|n
n!

∑
|K|=n−m+1

|�1|k1 ⋯ |�m|km ≤
|x|n
n!

∑
|K|=n−m+1

an−m+1

≤
|x|n
n!

(
n

n − m + 1

)
an−m+1 =

|x|nan−m+1
(n − m + 1)!(m − 1)!

=
|2x|m−1
(m − 1)!

|2ax|n−m+1
(n − m + 1)!

2−n ≤
|2x|m−1
(m − 1)!

e|2ax|2−n,

EΛ(x) =

+∞∑
n=m−1

xn

n!

∑
|K|=n−m+1

�n−m+1 =

+∞∑
n=m−1

xn

n!

(
n

n − m + 1

)
�n−m+1

= xm−1
+∞∑

n=m−1

xn−m+1

(n − m + 1)!(m − 1)!
�n−m+1 =

xm−1

(m − 1)!
exp�(x).

g
𝓁
(x) ∶= E(�1,…,�

𝓁
)(x) =

+∞∑
n=𝓁−1

xn

n!

∑
|K|=n−𝓁+1

�
k1
1
⋯ �

k
𝓁

𝓁
.
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Proof 

  ◻

Corollary 15 Let �1,… , �m ∈ ℍ . Let g�m (x) ∶= exp�m (x) = E(�m)
(x) . For m ≥ 2 and 

1 ≤ i < m , let us denote by g�i,…,�m
 the solution of the equation D�m

g�i,…,�m
= g�i,…,�m−1

 
given by Proposition 14, i.e., g�i,…,�m

= E(�i ,…,�m)
 . Then the generalized exponential func-

tion gm = E(�1,…,�m)
 is a solution of (8) and any solution of (8) on Ω is of the form

with hi ∈ SC(Ω) for every i.

Proof From Proposition  14 we infer that D�
1
⋯D�

m
g
m
= D�

1
⋯D�

m−1
g
m−1 = ⋯ = D�

1
g
1
= 0 . We 

prove (9) by induction over m. The cases m = 1, 2 have already been considered in Propo-
sition 3 and in Corollary 11. Let m ≥ 3 and assume that f is a solution of (8). Then D�m

f  
solves the equation D�1

⋯D�m−1
g = 0 . By the induction hypothesis, D�m

f  has the form

with hi ∈ SC(Ω) for every i. Therefore, f −
∑m−1

i=1
hi ⋅ g�i,…,�m

∈ Ker(D�m
) . From Proposi-

tion 3, we get f −
∑m−1

i=1
hi ⋅ g�i,…,�m

= hm ⋅ exp�m (x) = hm ⋅ E(�m)
(x) , with hm ∈ SC(Ω) . This 

proves (9) for every m.   ◻

Remarks 16 (1)      If �1 = ⋯ = �m = � , then the solutions of equation (8), that now takes 
the form (D�)

mf = 0 , can be deduced directly from the complex case. If � ∈ ℂI , the func-
tions xk exp�(x) are one-slice preserving slice-regular, and then for any k = 0,… ,m − 1 the 
complex solutions xk exp�(x) for x ∈ ℂI extend slice-regularly in a unique way to Ω , giving 
the general solution

on Ω , with hk ∈ SC(Ω) . The same result can be obtained from Corollary 15, since by Prop-
osition 13 it holds E(�i,…,�m)

(x) =
xm−i

(m−i)!
exp�(x) for every i = 1,… ,m.

(2)   Given c1,… , cm ∈ ℍ , the combination of generalized exponentials

D�
𝓁+1

g
𝓁+1 =

�

�x

(
+∞∑
n=𝓁

xn

n!

∑
|K|=n−𝓁

�
k1
1
⋯ �

k
𝓁+1

𝓁+1

)
−

(
+∞∑
n=𝓁

xn

n!

∑
|K|=n−𝓁

�
k1
1
⋯ �

k
𝓁+1

𝓁+1

)
�
𝓁+1

=

+∞∑
n=𝓁

nxn−1

n!

∑
|K|=n−𝓁

�
k1
1
⋯ �

k
𝓁+1

𝓁+1
−

+∞∑
n=𝓁

xn

n!

∑
|K|=n−𝓁

�
k1
1
⋯ �

k
𝓁+1+1

𝓁+1

=

+∞∑
n=𝓁−1

xn

n!

∑
|K|=n−𝓁+1

�
k1
1
⋯ �

k
𝓁+1

𝓁+1
−

+∞∑
n=𝓁

xn

n!

∑
|K|=n−𝓁

�
k1
1
⋯ �

k
𝓁+1+1

𝓁+1

=
x𝓁−1

(𝓁 − 1)!
+

+∞∑
n=𝓁

xn

n!

∑
|K|=n−𝓁+1

�
k1
1
⋯ �

k
𝓁

𝓁
= g

𝓁
(x).

(9)f =

m∑
i=1

hi ⋅ E(�i ,…,�m)

D�m
f =

m−1∑
i=1

hi ⋅ E(�i ,…,�m−1)

f =

m−1∑
k=0

hk ⋅ (x
k exp�(x))
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is the unique entire solution of equation (8) such that

The canonical solution E(�1,…,�m)
∉ ker(D�2

⋯D�m
) corresponds to the choice of param-

eters c1 = 1 , c2 = ⋯ = cm = 0.
(3)   If all the eigenvalues �1,… , �m commute and are distinct, then a simple computation 
shows that

satisfies D�m
fm = fm−1 . Then fm is another solution of (8). Indeed, using the preceding 

remark it can be verified that under the commutativity assumption the following equality 
holds

in accordance with formula (9) of Corollary 15. In the preceding formula the product is 
assumed to be equal to 1 when i = 1 . Since the operators D�1

,… ,D�m
 commute, the gen-

eral form of the solutions of (8) can be written in the form

with hk ∈ SC(Ω) for every k. Since �1,… , �m belong to a complex slice ℂI (unique is the 
eigenvalues are not all real), this result can be obtained also from the complex case.

Example 17 (1)   A solution of D1+iD1+jf = 0 is given by the generalized exponential

A direct computation shows that

It holds E(1+i,1+j)(0) = 0 , D1+jE(1+i,1+j)(0) = E(1+i)(0) = exp1+i(0) = 1.
(2)   The canonical solution of DiDjDkf = 0 is given by the generalized exponential

A direct computation gives

f =

m∑
i=1

ci ⋅ E(�i,…,�m)
=

m∑
i=1

+∞∑
n=m−i

xnci

n!

∑
|K|=n−m+i

�
ki
i
⋯ �km

m
.

D�i+1
⋯D�m

f (0) = ci for every i = 1,… ,m − 1, and f (0) = cm.

fm(x) = exp�1 (x)

m∏
j=2

(�1 − �j)
−1

fm(x) =

m∑
i=1

i∏
j=2

(�1 − �j)
−1

⋅ E(�i,…,�m)
(x) =

m∑
i=1

E(�i ,…,�m)
(x)

i∏
j=2

(�1 − �j)
−1,

f =

m∑
k=1

hk ⋅ exp�k (x)

E(1+i,1+j)(x) =

+∞∑
n=1

xn

n!

∑
|K|=n−1

(1 + i)k1 (1 + j)k2 .

E(1+i,1+j)(x) =
1

2
ex((x cos x + sin x) + x sin x(i + j) + (−x cos x + sin x)k).

E(i,j,k)(x) =

+∞∑
n=2

xn

n!

∑
|K|=n−2

ik1 jk2kk3 .
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Moreover, it holds

(3)      The generalized exponential functions also solve eigenvalue problems with multi-
plicities, i.e., with repeated eigenvalues in the sequence Λ = (�1,… , �m) . For example, the 
equation D2

i
Djf = 0 has the canonical solution

The sum is the entire function

(4)   In order to illustrate the effect of the non-commutativity of the operators D�
�
 , we also 

compute the canonical solution

of the equation DiDjDif = 0 . We get

3.5  The non‑homogeneous eigenvalue problem

We return to the non-homogeneous eigenvalue equation D�f = h (5) with a more general 
right-hand side h. Let

be an entire function. As suggested by the definition of the generalized exponential 
g�,� = E(�,�) in Proposition 8, we put

E(i,j,k)(x) =
1

8

(
x(x + 3) cos x + (x2 + 3x − 3) sin x

)

+
1

8

(
−x(x + 1) cos x + (x2 + x + 1) sin x

)
(i + k)

+
1

8

(
x(x − 1) cos x + (x2 − x + 1) sin x

)
j.

E(i,j,k)(0) = 0, DkE(i,j,k)(0) = E(i,j)(0) = 0, DjDkE(i,j,k)(0) = E(i)(0) = 1.

E(i,i,j)(x) =

+∞∑
n=2

xn

n!

∑
|K|=n−2

ik1+k2 jk3 .

E(i,i,j)(x) =
1

4

(
x2 cos x + x sin x

)
+

1

4

(
−x cos x + (x2 + 1) sin x

)
i

+
1

4

(
x cos x + (x2 − 1) sin x

)
j +

1

4
(−x cos x + sin k)k.

E(i,j,i)(x) =

+∞∑
n=2

xn

n!

∑
|K|=n−2

ik1 jk2 ik3

E(i,j,i)(x) =
1

4

(
x2 cos x + x sin x

)
+

1

4

(
−x cos x + (x2 + 1) sin x

)
i

+
1

2
(−x cos x + sin x)j.

h(x) =

+∞∑
n=0

xnan ∈ SR(ℍ)
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Proposition 18 Let � ∈ ℍ . If � ≠ 0 , assume that there exists a positive real constant C and 
an integer d ∈ ℕ such that n!|an| ≤ C(n + 1)d|�|n for every n ∈ ℕ . Then the series (10) 
converges uniformly on the compact sets of ℍ to an entire slice-regular function such that 
D�(E�(h)) = h . As a consequence, D�(g ⋅ E�(h)) = g ⋅ h for every slice-constant g on an 
axially symmetric domain Ω in ℍ.

Proof We prove that the series (10) is uniformly convergent. The case � = 0 is immediate 
from the definition E0(h) =

∑+∞

n=1
xnan−1∕n . Assume � ≠ 0 and let

Let n ≥ 1 . From the estimate

we directly observe the uniform convergence of the series (10). It holds

  ◻

For every � ∈ ℍ ⧵ {0} , we introduce an ℍ-submodule of the right ℍ-module of entire 
slice-regular functions on which it is possible to extend the operator E� . Let A𝜆 ⊂ SR(ℍ) 
be defined as

Proposition 19 Let � ∈ ℍ ⧵ {0} . The operators D� and E� map A� into A� . The operator E� 
is a right inverse of D� on A�.

(10)E�(h) ∶=

+∞∑
n=1

xn

n!

n−1∑
k=0

k!ak�
n−k−1.

en(x) ∶=
xn

n!

n−1∑
k=0

k!ak�
n−k−1.

|en(x)| ≤ C
|x|n
n!

n−1∑
k=0

(k + 1)d|�|n−1 ≤ C
|x|n
n!

nd+1|�|n−1 = C
|x||2x�|n−1
(n − 1)!

nd

2n−1

≤ C|x|e|2x�| nd

2n−1

D�(E�(h)) =
�

�x

(
+∞∑
n=1

xn

n!

n−1∑
k=0

k!ak�
n−k−1

)
−

(
+∞∑
n=1

xn

n!

n−1∑
k=0

k!ak�
n−k−1

)
�

=

+∞∑
n=1

nxn−1

n!

n−1∑
k=0

k!ak�
n−k−1 −

+∞∑
n=1

xn

n!

n−1∑
k=0

k!ak�
n−k

=

+∞∑
n=0

xn

n!

n∑
k=0

k!ak�
n−k −

+∞∑
n=1

xn

n!

n−1∑
k=0

k!ak�
n−k

= a0 +

+∞∑
n=1

xnan = h(x).

A𝜆 ∶=
{
f =

+∞∑
n=0

xnan |∃C > 0, d ∈ ℕ such that n!|an| ≤ C(n + 1)d|𝜆|n ∀n ∈ ℕ
}
.
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Proof Let f =
∑∞

n=0
xnan ∈ A� . Then

There exists a positive real C′ such that

for every n ∈ ℕ , i.e., D�f ∈ A� . Now let

Then

and this means that also E�(f ) ∈ A� . The last statement is a consequence of Proposi-
tion 18.   ◻

Example 20 Let h(x) = sin x . Then

solves Dif = sin x , with Ei(h)(0) = 0 . Since h is slice-preserving (its series coefficients an 
are all real), the solution Ei(h) can also be obtained from the complex solution.

Remark 21 The previous example suggests an alternative method to obtain the entire 
function E�(h) for a quaternionic function h ∈ A� . In view of [17, Lemma 6.1], 
given a real basis {1, �, �, �} of ℍ , every quaternionic slice function h can be written as 
h = h0 + h1� + h2� + h3� , with hi slice-preserving functions for i = 0, 1, 2, 3 . Moreover, h 
is slice-regular on a domain if and only all the functions hi are. It is also easy to verify that 
h belongs to A� if and only if all the components hi ∈ A� . If � ≠ 0 , given any real basis 
{�, �1, �2, �3} of ℍ , also the set {1, �1�−1, �2�−1, �3�−1} is a real basis of ℍ . Therefore for 
any function h ∈ A� one can write

with slice-preserving functions hi in A� . If � ∈ ℂI , the solution fi ∶= E�(hi) of the equation 
(5) can be obtained for every i = 0,… , 3 from the complex solution in ℂI . Observe that the 
functions fi are one-slice preserving, since fi(ℂI) ⊆ ℂI . We then have

Here we point out that the second equality holds since the functions hi are slice-preserving. 
We then obtain that f = f0 +

∑3

i=1
(�i�

−1) ⋅ fi is the uniquely determined entire solution 
E�(h) of (5) that vanishes at the origin.

D�f =

∞∑
n=1

xn−1nan −

∞∑
n=0

xnan� =

∞∑
n=0

xn
(
(n + 1)an+1 − an�

)
=∶

∞∑
n=0

xnbn.

n!|bn| = |(n + 1)!an+1 − n!an�| ≤ C(n + 2)d|�|n+1 + C(n + 1)d|�|n+1 ≤ C�(n + 1)d|�|n

E�(f ) =

+∞∑
n=1

xn

n!

n−1∑
k=0

k!ak�
n−k−1 =∶

+∞∑
n=1

xncn.

n!|cn| =
||||||

n−1∑
k=0

k!ak�
n−k−1

||||||
≤ C

n−1∑
k=0

(k + 1)d|�|n−1 ≤ C|�|−1(n + 1)d+1|�|n,

Ei(h) =

+∞�
n=1

xn

n!

⌊n∕2−1⌋�
h=0

(−1)hin−2h−2 =
1

2
x sin x +

1

2
(sin x − x cos x)i

h = h0 + h1(�1�
−1) + h2(�2�

−1) + h3(�3�
−1)

D�(f0 +
∑3

i=1
(�i�

−1) ⋅ fi) = h0 +
∑3

i=1
(�i�

−1) ⋅ hi = h0 +
∑3

i=1
hi(�i�

−1) = h.
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4  Eigenvalue problems for axially monogenic functions

Let � denotes the Cauchy-Riemann-Fueter operator

and let � be the conjugated operator

Let Ω be an axially symmetric domain of ℍ . Our aim is to apply the results of the previous 
sections to the following eigenvalue problem for the (conjugated) Cauchy-Riemann-Fueter 
operator � in the class of monogenic slice functions (also called Fueter-regular functions in 
the present quaternionic case):

Eigenvalue problems of the similar form �f = �f  have been studied rather extensively 
within the very general context where f is some arbitrary function simply belonging to the 
function space C1(Ω) without claiming any further conditions or properties on the consid-
erable f neither on the domain Ω.

The solutions of (� − �)f = 0 where � is the classical quaternionic Cauchy-Riemann-
Fueter operator can be described in the form e�x0 f  where f is an element of the kernel of 
� , cf. for example [20], where the most general context of polynomial Cauchy-Riemann 
equations of general integer order n and general multiplicity of the eigenvalues has been 
addressed extensively in the Clifford analysis setting, but under the assumption that f is 
a general function from Cn(Ω) . This general treatment also includes the special case of 
k-monogenic functions considered more than two decades earlier by F. Brackx in [4].

Notice that above we consider slightly differently its conjugated operator � and the 
action of � from the right hand-side.

F. Sommen and Xu Zhenyuan also studied in [29, 31] the analogous equation in the 
vector formalism where the Dirac operator is considered instead of the Cauchy-Rie-
mann-Fueter operator exploiting decompositions in terms of axially monogenic func-
tions which have been considered in the preceding work [28]. The particular three-
dimensional case has already been treated by K.  Gürlebeck in [21]. The conjugated 
Dirac operator coincides with the Dirac operator up to a minus sign. Also this opera-
tor is a first order operator factorizing the Laplacian. The connection to the Helmholtz 
operator has been explicitly addressed in [21]. See also [25] where this topic has been 
investigated more extensively. Even more generally, one also considered the case where 
f belongs to a general Sobolev spaces, for instance to H1

p
(Ω) , cf. [22], however again 

without considering any further (symmetric) conditions.
In our framework we now address the special situation where f has additionally the 

property of being a slice function defined over an axially symmetric domain Ω . These 
analytic and geometric aspects are new. This particular context allows us to use special 
series representations and the special properties of slice functions which do not hold in 
the general context in the above mentioned papers, as it will be explained in the sequel.

� =
1

2

(
�

�x0
+ i

�

�x1
+ j

�

�x2
+ k

�

�x3

)
,

� =
1

2

(
�

�x0
− i

�

�x1
− j

�

�x2
− k

�

�x3

)
.

(11)
{

�f = f� on Ω

with f slice function s.t. �f = 0 on Ω and � ∈ ℍ.
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In order to tackle problem (11), we apply Fueter’s Theorem, which can be seen as a 
bridge between the classes of slice-regular functions and monogenic functions.

We recall a useful concept introduced in [16]. Given a slice function f on Ω , the func-
tion f �

s
∶ Ω ⧵ℝ → ℍ , called spherical derivative of f, is defined as

The function f ′
s
 is a slice function, constant on 2-spheres   �x = � + �� for any 

x = � + J� ∈ Ω ⧵ℝ . For any slice-regular function f on Ω , f ′
s
 extends as the slice deriva-

tive �f
�x

 on Ω ∩ℝ . We recall also a result proved in [26, Corollary 3.6.2 and Theorem 3.6.3] 
about some formulas linking the spherical derivative of slice functions with the Cauchy-
Riemann-Fueter operator.

Theorem 22 ([26]) Let Ω be an axially symmetric domain in ℍ . Let f ∶ Ω → ℍ be a slice 
function of class C1(Ω) . Then 

1. f is slice-regular if and only if �f = −f �
s
.

2. If f ∶ Ω → ℍ is slice-regular, then it holds: 

a. The four real components of f ′
s
 are harmonic on Ω.

b. The following generalization of Fueter’s Theorem holds: 

c. Δf = −4
�f �

s

�x
.

In the following we will use also the following result.

Lemma 23 (a)     If f ∈ SR(Ω) and Δf = 0 , then f is a quaternionic affine function of the 
form xa + b , with a, b ∈ ℍ.

(b)     The Laplacian of a slice-regular function can be expressed by first order deriva-
tives. If f ∈ SR(Ω) , for every x ∈ Ω ⧵ℝ it holds

Proof Let f = I(F1 + iF2) , z = � + i�.
(a)     From Theorem 22(2c), it follows that �f

�
s

�x
= 0 , i.e., f �

s
= I(�−1F2(� + i�)) is anti-

slice-regular on Ω . Then the function �−1F2(� + i�) is locally constant, i.e., F2 = �a 
with a ∈ ℍ . Since F is holomorphic, it follows that F(z) = �a + b + i�a = za + b , and 
f = I(F) = xa + b , with b ∈ ℍ.

(b)   Δf = −4
�f �

s

�x
= −4I

(
�

�z

(
F2

�

))
 and

f �
s
(x) ∶=

1

2
Im(x)−1(f (x) − f (x)).

�Δf = Δ�f = −Δf �
s
= 0.

(12)Δf = −2
Im(x)

|Im(x)|2
(
f �
s
−

�f

�x

)
= 2

Im(x)

|Im(x)|2
(
�f +

�f

�x

)

(13)=
Im(x)

|Im(x)|2
(
3
�f

�x0
+ i

�f

�x1
+ j

�f

�x2
+ k

�f

�x3

)
.
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since F is holomorphic. Therefore,

and using Theorem 22(1) we get formula (12). Since f is slice-regular, we have �f
�x

=
�f

�x0
 

(see e.g. [13]). This equality and (12) give formula (13).   ◻

Let AM(Ω) denote the class of axially monogenic functions, i.e., of monogenic slice 
functions on Ω:

In view of the generalized Fueter’s Theorem, the Laplacian maps the space SR(Ω) into 
AM(Ω) . It is known that this map is surjective (see e.g. [7]). Now we construct an opera-
tor L ∶ AM(Ω) → AM(Ω) which makes the following diagram

commutative. Chosen a right inverse Δ̃ ∶ AM(Ω) → SR(Ω) of Δ , we can set 
L ∶= Δ◦

�

�x
◦Δ̃ . To define Δ̃ , we start from polynomials. For every n ∈ ℕ , let

Here Z̃n(x) ∶= (xn+1)
�

s
 is a harmonic homogeneous polynomial of degree n in the four 

real variables x0 , x1 , x2 , x3 . The polynomials Z̃n are called zonal harmonic polynomials 
with pole 1, since they have an axial symmetry with respect to the real axis (see [26, 27]). 
Observe that the polynomials Pn are axially monogenic but not zonal.

According to our knowledge, zonal monogenics were introduced in [30]. See also [10] 
where further basic properties have been studied. 

Historical remark: Up to a constant the polynomials Pn(x) were already mentioned in 
the early work of R. Fueter [11] on p. 316 (Formula (12)) where he looked at series expan-
sions of Δzn . Recently, they have been used specifically in the context of slice regular func-
tions for instance in a series of papers by K. Diki et al, see for example [1, 9].

Proposition 24 The polynomials Pn are axially monogenic homogeneous polynomial of 
degree n in x0 , x1 , x2 , x3 . They are slice functions on ℍ , given by the explicit formula

�

�z

(
F2

�

)
=

1

2
(�� − i��)

(
F2

�

)
=

1

2�
(�� − i��)F2 +

i

2�2
F2 = −

i

2�

�F

�z
+

i

2�2
F2,

�f �
s

�x
= I

(
i

2�

(
F2

�
−

�F

�z

))
=

Im(x)

2|Im(x)|2
(
f �
s
−

�f

�x

)

AM(Ω) = {f ∈ S
1(Ω) | �f = 0}.

(14)Pn(x) ∶= −
1

4
Δ(xn+2) =

�

�x
(xn+2)

�

s
=

�Z̃n+1(x)

�x
.

(15)Pn(x) =

n+1∑
k=1

kxk−1x
n−k+1

= I(

n+1∑
k=1

kzk−1z
n−k+1

).
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In particular, Pn is slice-preserving and the restriction of Pn to the real axis is the mono-

mial Pn(x0) =

(
n + 2

2

)
xn
0
 . The inducing stem functions pn(z) ∶=

∑n+1

k=1
kzk−1z

n−k+1 satisfy 

the Vekua equation

Proof The first statement is a consequence of Fueter’s Theorem. Formula (15) follows 
from [26, Corollary 6.7], since

To prove (16), we observe that

while

  ◻

Example 25 The first four axially monogenic polynomials Pn are

We define Δ̃ ∶ AM(ℍ) ∩ ℍ[x0, x1, x2, x3] → ℍ[x] by extending linearly the mapping that 
associates the monomial − 1

4
xn+2 to the polynomial Pn

(16)
�f

�z
=

f − f

z − z
for z ∈ ℂ ⧵ℝ.

Pn(x) =
�

�x
(xn+2)

�

s
=

�

�x
(

n+1∑
k=0

xkx
n−k+1

) =

n+1∑
k=1

kxk−1x
n−k+1

.

(z − z)
�pn
�z

= (z − z)

n∑
k=1

k(n − k + 1)zk−1z
n−k

=

n∑
k=1

k(n − k + 1)zkz
n−k

−

n∑
k=1

k(n − k + 1)zk−1z
n−k+1

=

n∑
k=1

k(n − k + 1)zkz
n−k

−

n−1∑
k=0

(k + 1)(n − k)zkz
n−k

=

n∑
k=0

(2k − n)zkz
n−k

,

pn(z) − pn(z) =

n+1∑
k=1

kzk−1z
n−k+1

−

n+1∑
k=1

kz
k−1

zn−k+1

=

n+1∑
k=1

kzk−1z
n−k+1

−

n+1∑
k=1

(n − k + 2)zk−1z
n−k+1

=

n+1∑
k=1

(2k − n − 2)zk−1z
n−k+1

=

n∑
k=0

(2k − n)zkz
n−k

.

⎧⎪⎨⎪⎩

P0(x) = 1,

P1(x) = 3x0 + x1i + x2j + x3k,

P2(x) = 6x2
0
− 2x2

1
− 2x2

2
− 2x2

3
+ 4x0(x1i + x2j + x3k),

P3(x) = 10x0(x
2
0
− x2

1
− x2

2
− x2

3
) + 2(5x2

0
− x2

1
− x2

2
− x2

3
)(x1i + x2j + x3k).

Δ̃
�∑d

n=0
Pn(x)an

�
∶= −

1

4

∑d

n=0
xn+2an.
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By applying the definitions, it follows that ΔΔ̃Pn = Pn for every n ∈ ℕ , while Δ̃Δxn = xn 
for every integer n ≥ 2 , and of course Δ̃Δxn = 0 for n = 0, 1.

The mapping Δ̃ can be extended linearly to convergent series 
∑

n∈ℕ Pn(x)an ∈ AM(Ω) . If 

f (x) =
∑

n∈ℕ Pn(x)an , then f (x0) =
∑

n∈ℕ

�
n + 2

2

�
xn
0
an for real x0 . Therefore

and we can write

Proposition 26 Let L = Δ◦
�

�x
◦Δ̃ ∶ AM(Ω) → AM(Ω) . Then it holds L(Pn) = (n + 2)Pn−1 

and �Pn = (n + 2)Pn−1 for every n ∈ ℕ, n ≥ 1 . As a consequence, L coincides with the con-
jugated Cauchy-Riemann-Fueter operator � on AM(Ω).

Proof By direct computation, using Theorem 22(2c) and Definition (14), we get

that is L(Pn) = (n + 2)Pn−1 . On the other hand, since Pn is in the kernel of � , it holds

Since xn+2 is slice-regular, we have �x
n+2

�x0
=

�xn+2

�x
 (see e.g. [13]) and then as before

for every integer n ≥ 1 .   ◻

Remark 27 Definition (14) can be extended to negative indices n ∈ ℤ . One obtains axi-
ally monogenic functions Pn ∈ AM(ℍ ⧵ {0}) that satisfy the same relation as in the case 
n ≥ 0 : �Pn = (n + 2)Pn−1 for every n < 0 . This property is also known under the term 
Appell property and has been studied for instance in [23] and in follow-up works, see for 
instance [1, 9] where the slice-regular setting is addressed. Observe that P−1 = P−2 = 0 . 
The functions Pn and P−n are related through the Kelvin transform of ℝ4 (see [26, 
Prop.5.1(c)]). It follows that also for negative n the Pn ’s are homogeneous of degree n.

Proposition 26 implies that the following diagram

an =
2

(n + 2)!

�nf

�xn
0

(0) for n ∈ ℕ

Δ̃(f ) = −
1

2

∑
n∈ℕ

xn+2

(n + 2)!

�nf

�xn
0

(0).

Δ

(
�(Δ̃Pn)

�x

)
= −

1

4
Δ

(
�xn+2

�x

)
= −

1

4
Δ
(
(n + 2)xn+1

)
= (n + 2)

�(xn+1)
�

s

�x
,

�Pn = (� + �)Pn =
�Pn

�x0
= −

1

4

�(Δxn+2)

�x0
= −

1

4
Δ

(
�xn+2

�x0

)
.

�Pn = −
1

4
Δ

(
�xn+2

�x

)
= (n + 2)Pn−1
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is commutative, since it holds L◦Δ(xn) = �◦Δ(xn) = Δ◦
�xn

�x
 for every n ∈ ℕ.

Let � ∈ ℍ and let L� = L − R� = � − R� denote the linear operator mapping a function 
f ∈ AM(Ω) to the monogenic slice function

The solutions of the eigenvalue problem (11) are exactly the elements of the kernel of L� . 
Notice that L� = Δ◦D�◦Δ̃ and that L�◦Δ = Δ◦D� for every � ∈ ℍ . From this relation and 
Proposition 3 we can deduce the following characterization of ker(L�).

Proposition 28 The axially monogenic function Δ exp�(x) ∈ AM(ℍ) is a solution of (11) 
on ℍ . If � ≠ 0 and Ω is a slice domain, a function f ∈ AM(Ω) is a solution of (11) if and 
only if f = c ⋅ Δ exp�(x) , with c ∈ ℍ . If � = 0 , ker(L) contains only the constants. If Ω is a 
product domain and � ≠ 0 , the operator L� on AM(Ω) has kernel

If � = 0 , ker(L) = {c + Δg | c ∈ ℍ, g ∈ SC(Ω)} . The function Δ exp�(x) has the following 
expansion

Proof Let � ≠ 0 . The equality D�f = 0 implies that L�(Δf ) = 0 . Conversely, if 
L�(Δf ) = Δ(D�f ) = 0 , with f ∈ SR(Ω) , then the function D�f  is a quaternionic affine 
function of the form xa + b , with a, b ∈ ℍ (Lemma  23). From Proposition 6 it follows 
that f = −a�−2 − b�−1 − x(a�−1) , up to an element of ker(D�) . Therefore Δf = Δg , with 
g ∈ ker(D�) . If Ω is a slice domain, then Δf = Δ(c ⋅ exp�(x)) = c ⋅ Δ exp�(x) , with c ∈ ℍ . 
If Ω is a product domain, then Δf = Δ(g ⋅ exp�(x)) , with g ∈ SC(Ω).

If � = 0 and L(Δf ) = 0 , then Δ(
�f

�x
) = 0 and therefore �f

�x
= xa + b is aff-

ine. Since f ∈ SR(Ω) , it follows that f = x2a∕2 + bx + c + g , with a, b, c ∈ ℍ 
and g ∈ SR(Ω) ∩ ker(

�

�x
) = SC(Ω) . If Ω is a slice domain, we get that Δf  is a 

constant. If Ω is a product domain, Δf = −2a + Δg , with g ∈ SC(Ω) and then 
ker(L) = {c + Δg | c ∈ ℍ, g ∈ SC(Ω)} .   ◻

Example 29 Since expj(x) = cos x + (sin x)j , from Lemma 23 it follows that

A direct computation shows that

L�f = �f − f�.

ker(L�) = {Δ(g ⋅ exp�(x)) | g ∈ SC(Ω)}.

Δ exp�(x) = −4

+∞∑
n=0

Pn(x)
�n+2

(n + 2)!
= −4

+∞∑
n=0

n+1∑
k=1

kxk−1x
n−k+1 �n+2

(n + 2)!
.

Δ expj(x) = −2
Im(x)

|Im(x)|2
(
(cos x)�

s
+ (sin x)�

s
j + sin x − (cos x)j

)
.

(cos x)�
s
=

e−� − e�

2�
sin(x0), (sin x)�

s
=

e� − e−�

2�
cos(x0),
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where � =
√

x2
1
+ x2

2
+ x2

3
 . The axially monogenic function Δ expj(x) on ℍ satisfies 

Lj(Δ expj(x)) = 0 , i.e., �(Δ expj(x)) = Δ expj(x)j.

Remark 30 If Ω = ℍ ⧵ℝ , a product domain, the results of Proposition  28 can be made 
more explicit. Let I ∈ � and �I ∈ SC(ℍ ⧵ℝ) as in (1). The equality Δ�I = −

Im(x)

|Im(x)|3 I and 
formula (2) imply that

while for � ≠ 0 the elements of ker(L�) are ℍ-linear combinations of functions of the form

Now consider the non-homogeneous equation (5), with f , h ∈ SR(Ω) . The equality 
D�f = h implies that L�(Δf ) = Δh . Conversely, if L�(Δf ) = Δh for f , h ∈ SR(Ω) , then 
Δ(D�f − h) = 0 and thanks to Lemma  23 the function D�f − h is a quaternionic affine 
function of the form xa + b , with a, b ∈ ℍ . If h ∈ ℍ[x] and � ≠ 0 , then Proposition 6 gives 
f = S�(h + xa + b) + g = S�(h) + xa� + b� + g , with a�, b� ∈ ℍ and g ∈ ker(D�) . Here S� 
is the solution operator defined in (6). Therefore Δf = ΔS�(h) + Δg , with g ∈ ker(D�).

4.1  Eigenvalue problem of the mth‑order for axially monogenic functions

Now we generalize Proposition  28 to eigenvalue problems of any order m. Let 
�1,… , �m ∈ ℍ and consider the equation

Definition 31 The generalized Δ-exponential function associated with the n-tuple 
Λ = (�1,… , �m) ∈ ℍ

n is the axially monogenic function EΔ
Λ
(x) defined on ℍ by

where the sum is extended over the multi-indices K = (k1,… , km) of non-negative integers 
such that |K| = k1 +⋯ + km = n − m + 1 . In particular, it holds EΔ

(�)
= Δ exp�(x) for every 

� ∈ ℍ.

In view of formula (15), we have

Observe that for real values � , the Δ-exponential EΔ
(�)
(x) coincides up to a multiplicative 

constant with the function EXP3(�x) defined in [24, Ex.11.34] in the context of Clifford 
algebras:

ker(L) = ker(�) ∩ ker(�) =
{
a +

Im(x)

|Im(x)|3 b | a, b ∈ ℍ

}
,

Δ(�I ⋅ exp�(x)) =

+∞∑
n=0

Δ(xn�I(x))
�n

n!
.

(17)
{

L�1
⋯L�m

f = 0 on Ω,

with f ∈ AM(Ω).

EΔ
Λ
(x) ∶= Δ(EΛ(x)) = −4

+∞∑
n=m−1

Pn−2(x)

n!

∑
|K|=n−m+1

�
k1
1
⋯ �km

m
,

EΔ
Λ
(x) = −4

+∞∑
n=m−1

1

n!

n−1∑
k=1

kxk−1x
n−k−1

∑
|K|=n−m+1

�
k1
1
⋯ �km

m
.
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where Ix =
Im(x)

|Im(x)| , � = |Im(x)| , � ∈ ℝ.

Proposition 32 The axially monogenic function EΔ
Λ
∈ AM(ℍ) is a solution of (17). In gen-

eral, every function of the form

with hi ∈ SC(Ω) , is a solution of (17). If �i ≠ 0 for every i = 1,… ,m , all the solutions of 
(17) are of the form (18).

Proof The first two statements follow immediately from Corollary 15:

The same computation holds for every function of the form (18).
Assume that �i ≠ 0 for every i and that L�1

⋯L�m
(Δg) = 0 . Then it holds 

Δ(D�1
⋯D�m

g) = 0 , which implies by Lemma 23 that D�1
⋯D�m

g is a quaternionic affine 
function of the form xa + b , with a, b ∈ ℍ . Therefore we have

where S� is the right inverse of D� on polynomials defined for any � ≠ 0 in (6). 
By definition, also S�m

⋯S�1
(xa + b) is an affine polynomial xa� + b� . Then 

g − xa� − b� ∈ ker(D�1
⋯D�m

) and thanks to Corollary 15, f = Δg is of the form (18).  
 ◻

Example 33 Let �1 = i , �2 = j . The solution of DiDjg = 0 on ℍ given in Examples 10 is the 
slice-regular entire function

Therefore f ∶= ΔE(i,j)(x) = EΔ
(i,j)

(x) is an axially monogenic solution of the equation 
LiLjf = 0 , that is

5  Applications

As a very interesting bi-product we can relate the solutions to L�1
L�2

f = 0 to axially mono-
genic solutions to the 3D and 4D time-harmonic Helmholtz and stationary massless Klein-
Gordon equation considered in an axially symmetric domain. In the sequel we abbreviate 
for convenience the purely quaternionic part of the Cauchy-Riemann-Fueter operator by 
Dx ∶= i

�

�x1
+ j

�

�x2
+ k

�

�x3
 . Actually, Dx is often called the Euclidean Dirac operator and it 

satisfies D2
x
= −Δ3 , where Δ3 is the ordinary Euclidean Laplacian in ℝ3 = Im(ℍ) . Notice 

EΔ
(�)(x) = −2e�x0 (sinc(��) − Ix((sinc(��))

�)

(18)
m∑
i=1

Δ(hi ⋅ E(�i ,…,�m)
),

L�1
⋯L�m

(EΔ
Λ
) = L�1

⋯L�m
(Δ(EΛ)) = Δ(D�1

⋯D�m
EΛ) = 0.

D�1
⋯D�m

g = xa + b = D�1
⋯D�m

S�m
⋯S�1

(xa + b),

E(i,j)(x) =
1

2
(sin x + x cos x + (x sin x)(i + j) + (sin x − x cos x)k).

(� − Ri)(� − Rj)f = �2f − (�f )(i + j) − fk = 0.
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that �� =
1

4
Δ4 , where Δ4 now represents the Laplacian in ℝ4 , cf. for example [22] and 

many other classical textbooks on quaternionic and Clifford analysis, such as also [5] and 
others. In this section we use the symbol Δ4 instead of Δ as in the previous section to avoid 
confusion with Δ3 . As a direct consequence of Proposition 32 we can establish

Proposition 34 Suppose that f is an axially monogenic solution to L�1
L�2

f = 0 on some 
axially symmetric domain Ω ⊂ ℍ . 

(a) Let I ∈ � be any imaginary unit. In the particular case where we take �1 = I� and 
�2 = −I� where � is a non-zero real number, the solutions to LI�L−I�f = 0 are axially 
monogenic solutions to the massless stationary Klein-Gordon equation (Δ3 − �2)f = 0 
on Ω∗ ∶= Ω ∩ℝ

3 . For any finite subset A of � , the functions of the form 

 where hI ∈ SC(Ω) , are axially monogenic solutions of the Klein-Gordon equation.
(b) In the other particular case we take �1 = � and �2 = −� where again � is supposed to 

be a non-zero real value, the solutions to L�L−�f = 0 are axially monogenic solutions 
to the time-harmonic Helmholtz equation (Δ3 + �2)f = 0 on Ω∗ ∶= Ω ∩ℝ

3 . For every 
h1, h2 ∈ SC(Ω) , the function 

 is an axially monogenic solution of the Helmholtz equation.

Proof Since f is monogenic and consequently also an element in the kernel of Δ4 , it holds

It follows that

and then

We first treat the case announced in statement (a): Putting �1,2 = ±I� , with I ∈ � , one 
obtains that

Analogously one obtains in the other case the statement (b) by inserting �1,2 = ±� , namely

f (x) =
∑
I∈A

Δ4(hI ⋅ expI�(x)),

f (x) = Δ4(h1 ⋅ exp�(x)) + Δ4(h2 ⋅ exp−�(x))

Dxf = −�x0 f and �2
x0
f = −Δ3f .

�2f =
1

4
(�x0 −Dx)(�x0 −Dx)f =

1

4
(�2

x0
f − �x0Dxf −Dx�x0 f +D

2
x
f )

=
1

4
(3�2

x0
f − Δ3f ) = −Δ3f ,

L�1
L−�1

f = (� − R�1
)(� − R−�1

)f

= �2f − �f (�1 − �1)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

=0

−f�2
1

= −Δ3f − f�2
1
.

0 = LI�L−I�f = −Δ3f + �2f .
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Since we are in the case of commuting eigenvalues, in view of Proposition  32 and 
Remark 16(3), the general axially monogenic solution of the equation L�1

L−�1
f = 0 is of 

the form

with h1 and h2 ∈ SC(Ω) . This implies the last statements of items (a) and (b).   ◻

Example 35 The axially monogenic function f (x) = Δ4 exp1(x) = Δ4e
x , restricted to 

Im(ℍ) = ℝ
3 , satisfies the equation Δ3f + f = 0 on ℝ3 , while the function g(x) = Δ4 expj(x) 

of Example 29 satisfies the equation Δ3g − g = 0.
Another solution of the Helmholtz equation Δ3f + f = 0 on ℝ3 ⧵ {0} = ℝ

3 ∩ (ℍ ⧵ℝ) is 
given by the axially monogenic function (see Remark 30)

while the axially monogenic function

is a solution of the Klein-Gordon equation Δ3g − g = 0 on ℝ3 ⧵ {0}.

Remark 36 The two cases considered in Proposition  34 are included in the more gen-
eral case �1 = −�2 = � + �I ∈ ℍ , with �, � real and I ∈ � . If f ∈ AM(Ω) , it holds 
L�1

L−�1
f = 0 if and only if

Remark 37 The Klein-Gordon equation is the homogeneous equation associated to the 
Yukawa equation Δ3f − �2f = h , with � real. If g is slice-regular on Ω , h ∶= −Δ4g and 
I ∈ � , then h ∈ AM(Ω) and every slice-regular solution f̃  of the equation DI𝜆D−I𝜆 f̃ = g 
gives a solution f ∶= Δ4 f̃  of the equation LI�L−I�f = Δ4g , which is the Yukawa equation 
Δ3f − �2f = h.

For example, if h ∈ ℍ[x0, x1, x2, x3] is an axially monogenic polynomial and 
g ∶= −Δ̃h ∈ ℍ[x] , where Δ̃ is the right inverse of Δ4 defined in the previous section, then 
f̃  can be obtained by means of the right inverses operators S±I� of D±I� introduced in (6): 
f̃ = S−I𝜆SI𝜆(g) . We then get that

is an axially monogenic solution of the Yukawa equation with right-hand h.

Example 38 Let h(x) = P3(x) − P2(x)(i + j + k) + P1(x)(i − j + k) + 1 . Then h(x) = −
1

4
Δ

4

(x2(x − i) ⋅ (x − j) ⋅ (x − k)) . We take � = 1 , I = i . A direct computation shows that the 
solution

0 = L�L−�f = −Δ3f − �2f .

g(x) = Δ4(h1 ⋅ exp�1 (x)) + Δ4(h2 ⋅ exp−�1 (x)),

f (x) = Δ4(�i ⋅ exp1(x)) =

+∞∑
n=0

Δ4(x
n�i(x))

n!
,

g(x) = Δ4(�i ⋅ expj(x)) =

+∞∑
n=0

Δ4(x
n�i(x))

jn

n!

Δ3f + (�2 − �2)f + (2��)fI = 0.

f ∶= −Δ4S−I�SI�(Δ̃h)
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of the Yukawa equation Δ3f − f = h has the form
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