
 

 

 
 
 

 
 

UNIVERSITY 
OF TRENTO 

 DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL’INFORMAZIONE
  

38123 Povo – Trento (Italy), Via Sommarive 14 
http://www.disi.unitn.it 
 
 
 
 
 
 
 
 
 
 
 
AN INNOVATIVE MULTI-SOURCE STRATEGY FOR ENHANCING 
THE RECONSTRUCTION CAPABILITIES OF INVERSE 
SCATTERING TECHNIQUES 
  
F. Caramanica, and G. Oliveri 
 
 
January 2011 
 
Technical Report # DISI-11-034 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.
 



An Innovative Multi-Soure Strategy for Enhaning theReonstrution Capabilities of Inverse Sattering Teh-niques
Federio Caramania and Giaomo Oliveri

Department of Information and Communiation TehnologyUniversity of Trento -Via Sommarive, 14 - 38050 Trento - ITALYTel.: +39 0461 882057; Fax: +39 0461 882093E-mail: federio.aramania�disi.unitn.it , giaomo.oliveri�disi.unitn.itWeb-site: http://www.eledia.ing.unitn.it

1



An Innovative Multi-Soure Strategy for Enhaning theReonstrution Capabilities of Inverse Sattering Teh-niques
Federio Caramania and Giaomo Oliveri

AbstratAtive mirowave imaging tehniques are aimed at reonstruting an unknown regionunder test by means of suitable inversion algorithms starting from the measurementof the sattered eletromagneti �eld. Within suh a framework, this paper fouseson an innovative strategy that fully exploits the information arising from the illumi-nation of the investigation domain with di�erent on�gurations as well as radiationpatterns of the probing soures. The proposed approah an be easily integratedwith multiview tehniques and, unlike multifrequeny methods, it does not requireadditive a-priori information on the dieletri nature of the satterer under test.A large number of numerial simulations on�rms the e�etiveness of the inversionstrategy as well as its robustness with respet to noise on data. Moreover, the re-sults of a omparative study with single-soure methodologies further point out theadvantages and potentialities of the new approah.
Keywords:Mirowave Imaging, Inverse Sattering, Multi-soure Tehnique.2



1 IntrodutionIn the last years, the sienti� ommunity has addressed a growing interest to the de-tetion and imaging of unknown objets loated in inaessible domains by means ofeletromagneti �elds at mirowave frequenies. As a matter of fat, the propagation ofan eletromagneti wave in the mirowave range is signi�antly a�eted by the harater-istis of the medium. Therefore, it is pro�table to exploit suh a phenomenon in order tosense an unknown senario in a non-invasive fashion. Towards this end, several researheshave been pursued in the framework of subsurfae monitoring [1℄[2℄, non-destrutive eval-uation and testing [3℄[4℄[5℄, and biomedial diagnostis [6℄[7℄[8℄[9℄.Whatever the appliation, a mirowave imaging setup onsists of a probing soure thatsenses an inaessible investigation domain and a set of reeivers olleting samples of theeletromagneti �eld sattered by the struture under test. After the measurement phase,a post-proessing of the olleted data is performed to provide a faithful reonstrutionof the senario under test. Suh a retrieval proess presents some intrinsi drawbaks[10℄[11℄, whih make the inversion of the sattering data hard to ope with. Firstly, ifa omplete and quantitative reonstrution of the eletromagneti properties is desired,multiple sattering e�ets annot be negleted and a full non-linear model should beonsidered. Moreover, the ill-posedness and the ill-onditioning of the problem [12℄ arekey-issues to be arefully addressed. They are due to the lak of information oming frommeasured sattering data. During the imaging proess, a huge amount of parametershas to be retrieved starting from a limited number of independent measurements. Thus,if neither a-priori information are available nor other physial onstraints are imposed,there is the need to ollet other information by means of suitable tehniques besides theuse of e�etive retrieval tehniques [13℄[14℄[15℄[16℄[17℄[18℄[19℄.Within suh a framework, di�erent strategies aimed at inreasing the information ontentof sattering data have been proposed in the related literature. Let us onsider the multi-view strategy proposed in [20℄ where the satterer is illuminated from di�erent angulardiretions in order to give an �overview� of the senario under test. As determined in[21℄, suh a tehnique allows a signi�ant inreasing of independent sattering data withrespet to single-view experiments. However, even though a multiview method an partly3



add information, it annot fully overome the substantial lak of information.Another widely-used ountermeasure resorts to a multi-frequeny approah [22℄[23℄[24℄[25℄[26℄or a frequeny-hopping sheme [27℄[28℄. As far as the olletable information is onerned,the number of independent data ertainly inreases sine di�erent and omplementarysattering e�ets are exited by a set of inident eletromagneti �elds at di�erent fre-quenies. However, to fully exploit suh an enhanement of the knowledge on the senarioat hand, some a-priori assumptions have to be done about the dispersion model of thedieletri harateristis of the satterer [23℄.The �informative ontent� has been also enhaned by exploiting the so-alled aquired in-formation during the inversion [29℄[30℄ or using di�erent polarizations [31℄[32℄[33℄[34℄[35℄[36℄[37℄.In this paper, an innovative methodology aimed at inreasing the amount of satteringdata (avoiding further a-priori assumptions on the investigation domain) is proposed. Themulti-soure (MS) approah supposes the investigation domain illuminated by di�erentprobing soures, eah of them with a proper (and di�erent) radiation pattern, to induedi�erent sattering interations able to �show� di�erent �aspets� of the satterer undertest. Integrated with a multi-view strategy, the exploitation of the �soure diversity�(through the de�nition of a suitable multi-soure/multi-view ost funtion) enlarges in anon-negligible fashion the number of retrievable unknowns by enhaning the robustnessof the imaging proess against the noise and the stability of the inversion proedure aswell as the reonstrution auray. The arising redution of the ratio between dimensionof the spae of the unknowns and that of data also implies a dereased sensitivity to falsesolutions [38℄ leading to a more tratable optimization problem.In the following, after the mathematial formulation of inverse sattering interationsarising in the mirowave imaging proess, the multi-soure tehnique is introdued anddesribed (Set 2). Setion 3 is devoted to the numerial assessment of the e�etivenessand robustness of the proposed strategy. Towards this aim, seleted numerial experimentsonerned with layered as well as omplex satterers will be disussed. To point out theenhaned reonstrution auray, the results of a omparative study will be presentedand analyzed. Finally, some onlusions will be drawn (Set. 4).
4



2 Mathematial FormulationLet us onsider a two-dimensional senario for mirowave imaging of ylindrial bodies,
ẑ being the symmetry axis. With referene to Figure 1, the eletromagneti propertiesof the investigation domain DI are desribed through the unknown ontrast funtion
τ(x, y) = εr(x, y) − 1 − j σ(x,y)

2πfε0
, (x, y) ∈ DI . The bakground is known and it is assumedto be homogeneous and haraterized by τ0.To image the senario under test and reonstrut the dieletri pro�le τ(x, y), the investi-gation region is sensed with S eletromagneti soures radiating di�erent beampatterns.Moreover, eah soure suessively probes DI from V di�erent angular positions θv a-ording to a multi-view approah [20℄. The radiated inident eletri �eld is denoted by

Ev,s
inc(x, y)ẑ, v = 1, ..., V , s = 1, ..., S.The e�ets of the interations between inident �elds and satterers are revealed by ol-leting a set of measurements of the sattered eletri �eld. At eah sensor loated withinthe observation domain DO, the following set of samples is available: Ev,s

scatt(x
v
m, y

v
m)ẑ,

v = 1, ..., V , mv = 1, ..,Mv, s = 1, ..., S. Analytially, the relation between satterers anddi�used �eld an be expressed through the integral �Data� equation [10℄
Ev,s

scatt(x
v
m, y

v
m) = j

k2
0

4

∫

DI

τ(x′, y′)Ev,s
tot (x

′, y′)G2D(xv
m, y

v
m |x′, y′ )dx′dy′ (xv

m, y
v
m) ∈ DO(1)where k0 is the bakground wavenumber and G2D is the two-dimensional free-spaeGreen's funtion [39℄. Analogously, the known inident �eld Ev,s

inc(x, y)ẑ in DI is relatedto the satterers properties as follows (�State� integral equation)
Ev,s

inc(x, y) = Ev,s
tot (x, y) − j

k2
0

4

∫

DI

τ(x′, y′)Ev,s
tot (x

′, y′)G2D(x, y |x′, y′ )dx′dy′ (x, y) ∈ DI(2)Unfortunately, suh a desription is mathematially tratable only after a suitable dis-retization. Aording to the Rihmond's proedure [40℄, by onsidering N retangularbasis funtion
Ωn(x, y) =











1 (x, y) ∈ D
(n)
I

0 (x, y) /∈ D
(n)
I

(3)
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(D(n)
I being the n-th partition of the investigation domain), the reonstrution proessmoves towards the retrieval of the disretized representation of the unknowns

τ(x, y) =

N
∑

n=1

τnΩn(x, y) Ev,s
tot (x, y) =

N
∑

n=1

Ev,s
n Ωn(x, y).Thus, the problem unknowns turn out to be τn, Ev,s

n , n = 1, ..., N , v = 1, ..., V , s = 1, ..., S.The number of the expansion oe�ients de�nes the dimension of the unknown-spae U .Typial drawbaks of the inverse sattering problem at hand are its ill-posedness and theill-onditioning [12℄, both due to the limited amount of the available and olletable infor-mation, that make the inversion of sattering data instable and inaurate without properountermeasures. Consequently, the inverse problem has to be arefully managed by pro-perly de�ning a least-square solution and a suitable regularization strategy. Towards thisend, a widely adopted tehnique onsists in imposing a set of onstraints related to inversesattering data or to the a-priori knowledge to be satis�ed in a least-square fashion byminimizing a suitable ost funtion.It is well known that to ome to a well-posed and well-onditioned problem, a neessaryondition (although not su�ient) is that U be less than the essential dimension of thesattering data I or the number of arising independent onstraints(1) . Therefore, mana-ging sattering data (and orresponding onstraints) as well as the exploitation of a-prioriinformation is a key issue, sine it strongly a�ets the overall inversion proedure and thepossibility of obtaining a faithful reonstrution of the atual pro�le. To e�etively ad-dress suh an issue, an innovative approah that fully exploits sattering data from amulti-soure system is formulated in the following.Let us onsider a standard multi-view arrangement where the s-th soure probes theinvestigation domain. As far as the �tting with the arising sattering data [Es,v
scatt(x

v
m, y

v
m)and Es,v

inc(xn, yn)℄ is onerned, the solution is requested to satisfy the following onstraints
φ

(s)
Data {τn, E

v,s
n } =
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(s)
Data {τn, E

v,s
n }

c
(s)
Data

= 0 φ
(s)
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n } =
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(s)
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n }

c
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State

= 0 (4)
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∣
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N
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n Gv

2D(xv
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∣
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2 (5)
(1) In fat, eah linear onstraint an be equivalently seen as a redution of the number of independentunknowns. 6
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2D(xr, yr|xt, yt) =











(j/2)
[

πk0arH
(2)
1 (k0ar) − 2j

]

if r = t and (xr, yr) ∈ DI

(jπk0ar/2)H
(2)
0 (k0ρ

v
rt)J1(k0ar) if r 6= t or (xr, yr) /∈ DI

(7)
ρv

rt =
√

(xv
r − xt)

2 + (yv
r − yt)

2; H(2)
0 ( . ) and H

(1)
0 ( . ) are the �rst and seond kind 0-thorder Hankel funtion, respetively; J1( . ) is the Bessel funtion; k0 = 2π

λ0
(λ0 being thebakground wavelength) and ar =

√

D
(n)
I

π
.Beause of the properties of the sattered �eld, the amount of independent informationarising from suh a (s-th) multi-view experiment (and olletable from the ∑V

v=1M
vmeasurements in DO) is not larger than a �xed threshold I [21℄. Therefore, the solution

{τn, E
v,s
n } that best �ts (4) annot be faithfully retrieved without reduing the spatialresolution auray N until U is lower than suh a threshold.As a matter of fat, the information related to a single-soure (SS) multi-view experimentmight be insu�ient to guarantee satisfatory reonstrutions and di�erent strategieshave to be investigated to inrease the information ontent of sattering data. A widelyadopted tehnique is the so-alled multi-frequeny approah [22℄[23℄[25℄ that ertainly animprove the reonstrution auray of the imaging proess by inreasing the number ofindependent data, but generally it requires some assumptions on the dieletri propertiesof the senario under test. Indeed, even though the objet funtion does not hange whenhanging the soure-position (or illumination), it varies with frequeny. Thus, withoutsome a-priori information, the solution of di�erent inverse sattering problems is neessarywith a large inreasing of the omputational load and omputer memory requirements.Within the same framework, the multi-soure tehnique also is aimed at enlarging theamount of informative sattering-data in order to enhane the reonstrution auray.However, while the ontrast funtion of the multi-frequeny approah is a funtion of thefrequeny [τn ∼ τn (f)℄, in suh a ase, the unknown oe�ients τn are independent onthe soure model [τn ≁ τn (s)℄. The underlying idea of the multi-soure approah liesin the assumption (preliminarily veri�ed in [41℄) that di�erent eletromagneti soures7



(with di�erent radiation patterns) might �reveal� di�erent aspets of the objet under testsine di�erent interations our between satterers and inident �elds. Consequently, themeasurements of the arising sattered �elds allow one to keep di�erent and omplementaryinformation that it ould be pro�table to exploit for improving the auray of the imagingproess. To fully exploit suh information, a suitable ombination of the onstraints in(4) onerned with eah soure should be onsidered. Towards this end, let us de�ne themulti-soure ost funtion ΦMS

ΦMS {τn, E
v,s
n } = ΦData

MS {τn, E
v,s
n } + ΦState

MS {τn, E
v,s
n } (8)where

ΦData
MS {τn, E

v,s
n } =

∑S
s=1C

(s)
Data {τn, E

v,s
n }

∑S

s=1 c
(s)
Data

(9)
ΦState

MS {τn, E
v,s
n } =

∑S
s=1C

(s)
State {τn, E

v,s
n }

∑S

s=1 c
(s)
State

(10)to be minimized. Sine the multi-soure tehnique does not depend on the minimizationalgorithm, atually the optimization proedure onstitutes a �blak box � in the overall sys-tem. Then, a deterministi optimizer based on the alternating diretion impliit method[42℄ is used(2)(see Appendix A). Unlike the modi�ed gradient method [49℄, where theunknown �elds and ontrast are updated simultaneously, but aording to the ontrastsoure inversion method [50℄, τ k = {[τn]k ; n = 1, ..., N} and Ek = {[Ev,s
n ]k ; n = 1, ..., N ;

v = 1, ..., V ; s = 1, ..., S} are iteratively reonstruted (k being the iteration number) byalternatively updating the two sequenes. The minimization algorithm is stopped when amaximum number of iterations, K (i.e., k ≤ K), or a threshold on the ost funtion value,
δ (i.e., Φ

(k)
MS = ΦMS {τk, Ek} ≤ δ), or the value of the ost funtion remains unalteredin a �xed perentage of the total amount of the minimization-algorithm iterations (i.e.,

˛

˛

˛KwΦ
(k)
MS

−
PKw

h=1 Φ
(h)
MS

˛

˛

˛

Φ(s)
n

τ
(s)
k

,E
(s)
k

o ≤ ς, Kw being an integer number).Moreover, to redue the ourrene of false solutions, the reonstrution approah hasbeen integrated into a multi-resolution methodology (IMSA) [51℄[52℄[53℄ instead of using
(2) More reent optimization approahes to standard 2D inverse sattering problems developed at theELEDIALab have been desribed elsewhere [43℄[44℄[45℄[46℄ and their integration, as well as the integrationof other state-of-the-art stohasti minimization tehniques [47℄[48℄, into the multi-soure tehnique willbe a key-issue of future researhes. 8



a �bare� (or single step) optimization (ISSA). Suh a methodology, whih implements amulti-step (i being the step index) syntheti zoom of the region-of-interest (RoI) where thesatterer is estimated, is dependent neither on the minimization approah [29℄[54℄[55℄ noron the imaging system [56℄[57℄ and sattering data [58℄. Thus, it an be easily integratedinto the multi-soure imaging system by enhaning its omputational e�etiveness.3 Numerial AnalysisIn this setion, the e�etiveness of the MS approah is evaluated by onsidering a seletedand representative set of numerial experiments.As a �rst test ase (Test Case 1 ), let us onsider the referene pro�le shown in Fig. 2(a)where a two-dimensional investigation domain of side LDI
= 3.0 λ0 ontains a squarestrati�ed satterer Lext = 0.9 λ0-sided entered at xref

c = −0.6 λ0, yref
c = 0.6 λ0. Thedieletri permittivity of the inner region (Lint = 0.3 λ0) is equal to εint

r = 3.0 (τint(x, y) =

2.0), while the outer layer has a ontrast funtion τext(x, y) = 0.5. Suh a on�guration hasbeen suessively illuminated by V = 4 di�erent diretions and the measures have beenolleted at Mv = 26, v = 1, ..., V equally-spaed points lying on a irular observationdomain of radius rO = 2.2 λ0. The sattering data have been synthetially-generated byonsidering the following eletromagneti soure models:
• Plane Wave (PW ) model haraterized by an inident �eld E

v,s
inc(x, y)|s=1 = E0e

jkr
ẑ,

r = x cosθv + y sinθv;
• Isotropi Line (IL) soure loated at the point (xp = rpcosθ

v, yp = rpsinθ
v), where

rp = 2.4 λ0 and radiating a �eld equal to
E

v,s
inc(x, y)|s=2 = −I0

k2
0

8πfε0
H

(2)
0 (k0ρp)ẑ (11)

ρp being the distane between (xp, yp) and (x, y); I0 =
√

8P0

ηk0
, P0 = 1 mW

m
being theradiated power for unit length and η the intrinsi impedane of the bakground;

• Diretive Line (DL) soure modeled by using an expression similar to the Silver'sequation [59℄
E

v,s
inc(x, y)|s=3 = −I0

k2
0

8πfε0

H
(2)
0 (k0ρp)B(ψ)ẑ (12)9



where B(ψ) =
√

sin3(ψ) if 0 ≤ ψ ≤ π and B(ψ) = 0 otherwise, ψ being the polarangle in a oordinate system entered at (xp, yp);
• Composite Soure (CS ) radiating a �eld obtained as follows

E
v
inc(x, y) =

S
∑

s=1

E
v,s
inc(x, y) S = 3 (13)Moreover, in order to simulate a real environment, a Gaussian noise haraterized by a

SNR = 20 dB has been added to sattered �eld data.As far as the IMSA approah is onerned, the following parametri on�guration hasbeen used: K = 2000, δ = 10−5, ς = 10−6, and Kw = K
10
. Furthermore, in order to testthe approah in �worst ase� onditions, the bakground has been hosen as initial guessfor the unknown ontrast.To give some quantitative indiations on the reonstrution auray of the retrievalproess, the following error �gures will be used

χj =
1

N (j)

N(j)
∑

n=1

{

τ(xn, yn) − τ ref (xn, yn)

τ ref (xn, yn)

}

× 100 (14)where N (j) an range over the whole investigation domain (j ⇒ tot), over the area atuallyoupied by the satter (j ⇒ int), or over the bakground around the objets (j ⇒ ext).On the other hand, ξ (enter loation error) and Λ (shaping error) will estimate theauray of the qualitative imaging
ξ =

√

[

xc − xref
c

]2

+
[

yc − yref
c

]2

λ0
(15)

Λ =

{

∣

∣R− Rref
∣

∣

Rref

}

× 100 (16)where the super-sript �ref � refers to the atual pro�le, R being the radius of the RoIwhere the satterer is supposed to be loated.In the �rst experiment, the inversion proess has been arried out by onsidering simplesingle-soure arrangements (i.e., PW-model, IL-model, and DL-model) in order to generatesome referene ases for evaluating the e�etiveness of the MS approah. By applyingthe IMSA methodology, the DI has been partitioned (at the �rst step of the multi-saling10



proedure) in N = 49 square sub-domains and the obtained results are shown in Figs.2(b)-(d) with a grey-level representation(3) . As it an be observed, whatever the simplesingle-soure illumination, the retrieved pro�les slightly relate to the atual strati�edon�guration (Fig. 2). Although no-artifats are present in the reonstrution and thesatterer is roughly loated in the orret area of the investigation domain (ξ ≃ 0.30 -Tab. I), signi�ant errors turn out both in the shaping and in the detetion of the two-layer struture as on�rmed by the values of the error �gures (Λ > 38.0 and χj > 21.0,
j ⇒ tot, int, ext - Tab. I). Moreover, it is worth noting that the best reonstrution isyielded with the simplest soure-model (i.e., the plane-wave illumination). Suh a resultseems to indiate that, in general, there is not a diret relation between omplexity of theillumination modeling and ahievable reonstrution auray.To further on�rm suh a onept, let us onsider the retrieved pro�le when the so-alled omposite soure (CS) is used. In this situation, the eletromagneti soure hasbeen obtained as the superposition of the inident �elds radiated by the SS-models. Theobtained image [Fig. 2(e)℄ turns out to be even worse than that of the SS-models with aninreasing of the qualitative (ξ = 1.38 and Λ = 67.11) as well as quantitative (χint = 51.77)errors.By leaving aside the study of the optimal illumination for the problem at hand (whoseanalysis is beyond the sope of this paper), the IMSA-MS strategy has been taken intoaount. The reonstrution turns out signi�antly improved both pitorially [Fig. 2(f )℄and in terms of error �gures. In partiular, it should be observed that the layered strutureis learly distinguishable and the satterer turns out better loalized (ξ(DL) ≃ 2.4 ξ(MS))and dimensioned (Λ(MS) = 24.00 vs. Λ(IL) = 38.67).Suh a result has been ahieved by minimizing the ost funtion (8) as shown in Figure3 where the two terms of the funtional are given, as well. When the IMSA-MS methodis adopted, the minimization reahes a lower value of the ost funtion thus allowing amore aurate data-inversion.In the seond experiment, the number of views has been inreased from V = 4 to V = 6in order to assess the e�etiveness of the proposed approah in di�erent illumination

(3) Please note that the blak pixel in the lower right border is used for referene and the dashed lineindiates the region oupied by the atual satterer.11



onditions. As expeted, the reonstrutions signi�antly improve (Fig. 4 and Tab. II)with a derease of the error values (ξ, Λ, and χtot) of about one order in magnitudeompared to the V = 4 ondition (as an example, χ
(MS)
tot

˛

˛

˛

V =4

χ
(MS)
tot

˛

˛

˛

V =6

≃ 9.0). Whatever strategy,the two-layers pro�le is learly deteted. However, the IMSA-MS further on�rms itspotentialities by overoming other SS-strategies (χ(IL)
tot ≃ 3.25χ

(MS)
tot , χ(DL)

int ≃ 1.50χ
(MS)
int ,and χ

(DL)
ext

χ
(MS)
ext

≃ 1.0×102) and by ahieving a faithful image of the original pro�le [Fig. 4(e)℄.Although suh experiments indiate that it proves onveniently in terms of ahievableresolution auray to use the multi-soure strategy, it is needed to evaluate the arisingomputational burden, as well. Towards this end, Figure 5 gives an overview of theomputational senario by resuming the two experiments with di�erent illuminations.More in detail, the following representative parameters are shown: the number of problemunknowns U [Fig. 5(a)℄, the number of steps of the IMSA Iopt [Fig. 5(b)℄, the total numberof iterations of the minimization proedure Ktot =
∑Iopt

i=1 k
(i)
conv (k(i)

conv being the number ofiterations needed to ahieve the �onvergene� at the i-th step of the multi-saling proess)[Fig. 5()℄, and the iteration time tk [Fig. 5(d)℄. As it an be observed, even though thenumber of unknowns triples, the multi-saling proess is terminated at the same numberof steps (I(MS)
opt

∣

∣

∣

V =4
= 2 and I

(MS)
opt

∣

∣

∣

V =6
= 3) as for SS-approahes and, generally, witha lower Ktot. Therefore, the expeted inreasing of the iteration-time does not impatso-signi�antly and it does not prevent the feasibility of the proposed approah. As amatter of fat, the problem at hand is still omputationally tratable (thanks to theintegration with the IMSA). Moreover, the trade-o� between inreased omputationalosts and enhaned reonstrution auray seems to be in favor of the IMSA-MS.The advantages of the MS over SS-strategies in terms of reonstrution auray arefurther pointed out and emphasized when more omplex geometries are at hand. Inthese situations, the enhanement allowed by the proposed strategy turns out to be evenmore signi�ant than in �Test Case 1 �. To show suh a behavior, the seond test (TestCase 2 ) deals with the asymmetri pro�le shown in Figure 6(a) and haraterized bythe following dieletri/geometri parameters: xref

c = −0.392 λ0, yref
c = 0.374 λ0, Hext =

1.05 λ0, tarm = 0.15 λ0 (thikness of the arms), darm = 0.3λ0 (distane between arms),and τ = 2.0. The satterer has been suessively illuminated by V = 6 diretions and a12



noise of SNR = 20 dB has been added to the �eld data. Unfortunately, the IMSA-IL andthe IMSA-CS single-soure approahes ompletely fail in reonstruting the shape of theobjet under test as it an be seen in Fig. 6() and Fig. 6(e), respetively, and quanti�edin Tab. III (e.g., χ(IL)
tot = 17.67 and χ(CS)

tot = 28.47; Λ(IL) = 11.60 and Λ(CS) = 65.0). Asfar as the IMSA-PW is onerned, the upper arm is lost while the lower one is orretlydeteted [Fig. 6(b)℄. A �breaking� improvement of the image quality arises when theDL-SS illumination is used [Fig. 6(d)℄. In suh a ase, while the satterer annot beidenti�ed exatly, the retrieval proedure onverges to a struture that oupies a largesubset of the true objet. However, one again the MS strategy [Fig. 6(f )℄ allows a betterreonstrution (χ(DL)
tot ≃ 1.7χ

(MS)
tot , χ(DL)

ext ≃ 2.0χ
(MS)
tot , and ξ(DL) ≃ 10 ξ(MS)). As a matterof fat, the �nal reonstrution is essentially idential to that one would ahieve with thelak of edge-preserving [60℄ or binary-regularization tehniques [61℄.4 ConlusionsA nonlinear multisoure strategy for the quantitative imaging of unknown satterers hasbeen presented. The approah is aimed at inreasing the reonstrution auray by en-larging the non-redundant information on the senario under test through an e�etiveexploitation of di�erent eletromagneti interations between various probing soures andsatterers. The method has been developed by exploiting and extending the multiviewtehnique to the ase of multisoure data through the de�nition of a suitable ost fun-tion to be minimized. Notwithstanding its simpliity, the proposed strategy turned outto be e�etive in reovering various permittivity pro�les from simple shapes up to om-plex on�gurations. As far as the inrement of the omputational load is onerned,the integration of the multisoure approah into an iterative multi-saling proedure al-lowed a sustainable overhead. Moreover, it is worth pointing out that the di�erent soureontributions an be proessed almost in an independent fashion so that a parallel im-plementation [62℄ would be very easy. This task together with the use of more e�etiveoptimization tehniques [48℄ will be matter of future researhes.
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Appendix AIn order to apply the onjugate-gradient minimization proedure, the omputation of
∇ΦMS given by

∇ΦMS = ∇ΦData
MS + ∇ΦState

MS (17)is derived. The omputation of partial derivatives of ΦData
MS and ΦState

MS with respet tothe variables Re {τn}, Im {τn}, Re {Ev,s
n }, and Im {Ev,s

n } is required (where Re { } and
Im { } indiate real and imaginary part, respetively).Firstly, let us give some preliminary de�nitions useful for the following

Ψ
(s)
Data {τn, E

v,s
n } = Es,v

scatt(x
v
m, y

v
m) − Θ

(s)
Data {τn, E

v,s
n } (18)

Ψ
(s)
State {τn, E

v,s
n } = Es,v

inc(xn, yn) − Θ
(s)
State {τn, E

v,s
n } (19)where Θ

(s)
Data {τn, E

v,s
n } =

∑N
n=1 τnE

v,s
n Gv

2D (xv
m, y

v
m |xn, yn ) and Θ

(s)
State {τn, E

v,s
n } = Ev,s

n −

∑N

p=1 τpE
v,s
p Gv

2D (xn, yn |xp, yp ).As far as the �Data� term is onerned, by means of simple mathematial manipulations,the following expressions for the partial derivatives of Ψ
(s)
Data are obtained

∂Ψ
(s)
Data

∂ {Re (τn)}
= −

∂Re
{

Θ
(s)
Data {τn, E

v,s
n }

}

∂ {Re (τn)}
− j

∂Im
{

Θ
(s)
Data {τn, E

v,s
n }

}

∂ {Re (τn)}
(20)

∂Ψ
(s)
Data

∂ {Im (τn)}
= −

∂Re
{

Θ
(s)
Data {τn, E

v,s
n }

}

∂ {Im (τn)}
− j

∂Im
{

Θ
(s)
Data {τn, E

v,s
n }

}

∂ {Im (τn)}
(21)where

∂
{

Re
(

Θ
(s)
Data

)}

∂ {Re (τn)}
=
π

2
k0ρnJ1 (k0ρn) [Re {Ev,s

n }Y0 (k0dmn) − Im {Ev,s
n } J0 (k0dmn)] (22)

∂
{

Re
(

Θ
(s)
Data

)}

∂ {Im (τn)}
= −

π

2
k0ρnJ1 (k0ρn) [Im {Ev,s

n } Y0 (k0dmn) +Re {Ev,s
n } J0 (k0dmn)] (23)

∂
{

Im
(

Θ
(s)
Data

)}

∂ {Re (τn)}
=
π

2
k0ρnJ1 (k0ρn) [Re {Ev,s

n } J0 (k0dmn) + Im {Ev,s
n } Y0 (k0dmn)] (24)

14



∂
{

Im
(

Θ
(s)
Data

)}

∂ {Im (τn)}
=
π

2
k0ρnJ1 (k0ρn) [−Im {Ev,s

n } J0 (k0dmn) +Re {Ev,s
n }Y0 (k0dmn)](25)being ρn = Ln√

π
, dmn =

√

(xn − xm)2 − (yn − ym)2and
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Data
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Data
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] (31)Aordingly, the partial derivatives of ΦData
MS are given by
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and δnp = 1 if n = p, δnp = 0 otherwise.Finally, the array∇ΦMS =
{

[∇ΦMS]τn
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Figure Captions
• Figure 1. Geometry of the multi-soure/multi-view imaging system.
• Figure 2. Multi-layered dieletri pro�le (τext = 2.0, τint = 0.5). Referene dis-tribution (a). Reonstruted dieletri distribution by using (b) IMSA-PW, ()IMSA-IL, (d) IMSA-DL, (e) IMSA-CS, and (f ) IMSA-MS (SNR = 20 dB - V = 4).
• Figure 3. Multi-layered dieletri pro�le (τext = 2.0, τint = 0.5 - SNR = 20 dB,
V = 4). Behavior of the (a) ost funtion and related (b) data and () state termsduring the iterative proess.

• Figure 4. Multi-layered dieletri pro�le (τext = 2.0, τint = 0.5 - SNR = 20 dB,
V = 6). Reonstruted dieletri distribution by using (b) IMSA-PW, () IMSA-IL,(d) IMSA-DL, (e) IMSA-CS, and (f ) IMSA-MS.

• Figure 5. Multi-layered dieletri pro�le (τext = 2.0, τint = 0.5 - SNR = 20 dB).Evaluation of the omputational burden/omplexity: (a) problem dimension U , (b)number of IMSA steps Iopt, () total number of iterations Ktot, and (d) iterationtime tk [msec].
• Figure 6. Complex dieletri pro�le (τ = 2.0). Referene distribution (a). Reon-struted dieletri distribution by using (b) IMSA-PW, () IMSA-IL, (d) IMSA-DL,(e) IMSA-CS, and (f ) IMSA-MS (SNR = 20 dB - V = 6).Table Captions
• Table I. Multi-layered dieletri pro�le (τext = 2.0, τint = 0.5; SNR = 20 dB) -Error Figures when V = 4.
• Table II. Multi-layered dieletri pro�le (τext = 2.0, τint = 0.5; SNR = 20 dB) -Error Figures when V = 6.
• Table III. Complex dieletri pro�le (τ = 2.0; SNR = 20 dB, V = 6) - ErrorFigures. 25
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χtot χint χext ξ ΛIMSA-DL 26.12 35.52 25.19 0.31 39.11IMSA-IL 25.63 38.38 24.37 0.37 38.67IMSA-PW 22.07 23.90 21.89 0.35 43.56IMSA-CS 29.00 51.77 26.73 1.38 67.11IMSA-MS 11.33 18.41 10.63 0.13 24.00
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χtot χint χext ξ ΛIMSA-DL 5.98 19.67 4.60 0.05 7.10IMSA-IL 4.10 23.51 2.13 0.02 4.44IMSA-PW 5.26 25.13 3.30 0.03 1.60IMSA-CS 5.91 28.31 3.70 0.04 3.60IMSA-MS 1.26 13.72 0.02 0.02 3.56
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χtot χint χext ξ ΛIMSA-DL 6.37 13.31 5.90 0.08 3.20IMSA-IL 17.67 20.95 17.44 0.03 11.60IMSA-PW 6.50 15.82 5.87 0.13 4.0IMSA-CS 28.47 23.33 28.83 0.08 65.0IMSA-MS 3.80 16.33 2.99 0.007 2.40
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