
Specifying Business Processes with Azzurra

Fabiano Dalpiaz1, Amit K. Chopra2, Giulia Canobbio3, Nicola Zeni3,
Paolo Giorgini3, and John Mylopoulos3

1 University of Toronto, Canada – dalpiaz@cs.toronto.edu

2 Lancaster University, United Kingdom – a.chopra1@lancaster.ac.uk
3 University of Trento, Italy – g.canobbio@gmail.com,
{nicola.zeni,pgiorgio,jm}@disi.unitn.it

Abstract. A business process is above all else a social interaction among mul-
tiple participants. Business process modeling languages support the description
of business processes in operational terms as collections of interleaved activi-
ties conducted by human and software agents. However, such descriptions do not
capture adequately the richness of social interaction among participants. To ad-
dress this deficiency, we propose Azzurra, a specification language for modeling
and executing business processes. Azzurra is founded on social concepts, such
as roles, agents and commitments among them, and Azzurra specifications are
social models consisting of sets of commitments. As such, Azzurra specifications
support flexible executions of business processes, and provide a semantic notion
of actor accountability and business process compliance. In this paper, we present
syntax and semantics of Azzurra, and we propose algorithms to determine run-
time compliance with an Azzurra social specification.

Keywords: social specifications; business processes; compliance

1 Introduction

Specification languages enable describing systems at an abstract level that hides away
implementation details. As such, they have been found very useful for building early
models of a system that are readily analyzable to determine its properties before it
has actually been built. Unsurprisingly, there are dozens of specification languages for
software (e.g., Z and VDM), hardware, concurrent processes, interfaces, and more.

We are interested in developing a specification language for business processes. As
such, our language should abstract away implementation details as well as support the
creation of social models, since business processes are social phenomena consisting of
social interactions among multiple participants. For example, an order fulfillment busi-
ness process is enacted through the social interactions among supply order managers,
client liaisons, customers, warehousemen, shippers, etc.

Existing business process modeling languages (e.g., BPMN, BPEL, workflow nets,
⇡-calculus) describe processes in terms of interleaved activities conducted by human
and software agents. These languages are procedural in that they prescribe the execu-
tion of activities over time in accordance with a rigid control-flow. van der Aalst rightly
observes [20] that it is not easy to specify flexible workflows in these languages. While

one can model explicitly all the variants of the process, the specification becomes un-
wieldy and unmanageable, too complex to be extensible or even comprehensible [7,
14]. Declarative workflow languages go a step forward by expressing only the essential
temporal precedence constraints between activities [20].

Our diagnosis for the flexibility issue is that business process modeling languages
are grounded on computer system process concepts, rather than social ones. Thus, they
require the wrong kind of detail by focusing on how a business process is to be enacted,
rather than what it is intended to achieve and who is accountable for it.

With an eye on hiding away implementation details to enable flexible executions of
processes, this paper goes beyond declarative workflows. We adopt the notion of so-
cial commitments [16] among actors in a business process as the fundamental business
process abstraction. Commitments, like expressions in temporal logic, are declarative.
However, unlike expressions in temporal logic, commitments are also a high-level so-
cial abstraction that the participants in a business process manipulate. Commitments
explicitly capture the social responsibilities of actors towards each other.

Building on top of commitments [16] and commitment protocols [22], we propose
Azzurra, a specification language for business processes that relies upon social primi-
tives. Our contributions over the literature (more details in Section 6) are as follows:

– We propose an expressive language for specifying business processes as commit-
ment protocols. The language includes business primitives such as delegations,
deadlines, and constraints such as for role adoption. Azzurra defines the notion of
initiation and termination of a protocol, and it supports protocol cross-references.

– We introduce a graphical notation to support designers in modeling the main ele-
ments in a business process specified in Azzurra. This notation is supported by a
prototype modeling tool built on top of Eclipse.

– We provide algorithms to determine whether a set of observed events complies
with an Azzurra protocol specification. The implementation of these algorithms is
in Java and in the Drools rule engine language. Noncompliance can be dealt with
by an enactment engine that is able to enact compensation tactics.
The rest of the paper is structured as follows. Section 2 reviews related work. Sec-

tion 3 presents our research baseline. Section 4 presents syntax and semantics of the
Azzurra language. Section 5 presents algorithms to detect compliance with an Azzurra
specification. Section 6 discusses the distinguishing features of Azzurra for business
process specification. Section 7 presents conclusions and future work.

2 Related work

We review the literature in cooperative work, business process modeling, commitment
protocols, choreographies and service-orientation, business artifacts, and compliance
with obligations. Due to space limitations, we discuss few examples per category.

Cooperative work. Commitments are a main abstraction in the influential Coor-
dinator [8] system for tracking activities in an organization. This work inspires our
approach. However, as observed by Singh [17], the Coordinator takes a procedural ap-
proach to model conversations, which is less flexible than commitment protocols.

Business process modeling. Most approaches in this category relate a set of ac-
tivities through a control flow (e.g., BPMN, BPEL, workflow nets). These languages
have a different purpose from Azzurra: they define operational details to support pro-
cess execution, as opposed to specifying a process. Declarative workflows [20] are less
rigid, for they rely on precedence constraints. These models emphasize the activities
to carry out, and treat actors responsibility as a secondary concept. On the other hand,
commitments are contractual relationships between couples of actors.

Commitment protocols. Desai et al. [6] use commitments and protocols as design
abstractions for business processes. Such work inspires the REGULA framework [12],
which introduces temporal operators to represent more expressive commitments and
reasoning about them. Robinson and Purao [13] propose a framework for specifying
and monitoring cross-organizational business processes that relies upon commitments
enriched with a rich temporal logics. Azzurra’s novelty includes: (i) advanced primitives
for expressing business patterns such as separation of duties, compensations, workload
limits, as well as supporting the life-cycle of protocol instances, from initiation to ter-
mination; (ii) a graphical notation to visualize the main elements of a protocol; and (iii)
algorithms to determine compliance of observed behavior with a specification.

Choreographies and service orientation. Choreographies specify the flow of mes-
sages among autonomous actors. van der Aalst [19] advocates choreographies for mod-
eling cross-organizational business processes. Khalaf [11] shows how to map the Roset-
taNet PIPs business protocols to abstract BPEL processes. Choreographies are used
to model the interactions among web services. Decker et al. [4] extend BPEL with
choreography-related constructs. WS-CDL [21] and BPMN 2.0 both support the speci-
fication of choreographies. Benatallah et al. [1] propose a transition-based conversation
model to conceptualize web service conversations. Unlike choreographies, Azzurra cap-
tures the meaning of interaction as commitments among actors.

Business artifacts. Bhattacharya et al. [2] take artifacts such as purchase orders,
invoices, and so on, as the center of their universe and define workflows that essentially
represent the lifecycle of these artifacts. Modeling with commitments is orthogonal, as
it stresses the accountability of participants. Keller et al.’s [10] event-driven business
chains are an alternative to activity-based processes: they are centered on events that
trigger functions performed by organizational units. Our approach considers high-level
events that update the commitments of actors. An interesting future direction is to in-
vestigate the joint usage of commitments and business artifacts.

Compliance with obligations. Ghose and Koliadis [9] annotate business processes
with constraints about their execution (e.g., to represent normative compliance). They
observe that business process models focus on the syntax, and not on the meaning. Sadiq
et al. [15] enrich business process models with obligations that an enterprise must fulfill
in order to remain compliant. While a commitment is a social relation between actors,
these types of obligations are technical constraints on information system design.

3 Baseline: commitments, protocols, and roles

A social commitment [16], formally c(x,y,p,q), is a promise with contractual validity
made by an agent x (debtor) to another agent y (creditor) that, if proposition p is brought

about (antecedent), then proposition q will be brought about (consequent). If p is equal
to truth (>), the commitment is unconditional; otherwise, it is conditional.

Commitments are social abstractions, as they carry a social meaning (they are con-
tracts), and they evolve independently of the internal design of communicating agents.
Commitments carry responsibility on part of the agent who makes the commitment.

Commitments evolve on the basis of the interactions among agents through message
exchange. Messages have a meaning in terms of commitments operations: (i) creation:
the debtor commits to the creditor that the consequent will be brought about; (ii) can-
cellation: the debtor cancels a previously made commitment (the creditor is informed of
a commitment violation); (iii) release: the creditor releases the debtor from a previous
commitment; (iv) delegation: the debtor delegates the commitment to a third party; and
(v) assignment: the creditor assigns its credit to another actor.

Moreover, declare operations let an agent inform another that a certain proposition
has been brought about (e.g., the book has been sent). Declare operations enable the
evolution of commitments. A commitment is detached when the debtor is informed
(through a declare) that the antecedent has been brought about, and the commitment
becomes unconditional. A commitment is discharged/fulfilled, when the creditor is in-
formed that the consequent has been brought about.

Figure 1 shows how the state of a commitment evolves depending on performed op-
erations. The statechart includes additional concepts that are part of Azzurra: (i) time-
out: if expired, the commitment is violated by the debtor; (ii) commitment manipulation
operations (cancel, release, delegate, assign) may result in violations, depending on
the permissions of creditor and debtor; and (iii) delegation and assignment come in two
versions, depending on the retainment or transfer of responsibility and credit.

Fig. 1. Runtime semantics for a commitment instance made by debtor d to creditor c

We adopt a version of commitments [12] where antecedent and consequent are ex-
pressed in propositional logic extended with a temporal precedence operator “·”. Thus,
(p^q)·r means that p and q occur (in any order) before r occurs.

Commitments can be abstracted to the class level to define an interaction (business)
protocol between roles [3, 5]. For instance, given roles R1 and R2, a protocol may in-
clude a commitment class such as C(R1,R2,P,Q). Thus, an agent playing role R1 is
expected to create instances of this commitment (to agents playing R2). The propo-

sitions in such commitment will be instantiated too: if P is “Book sent”, a possible
instance p is “copy 123 of book Dracula sent”.

4 Syntax and semantics of Azzurra

We present the EBNF syntax of Azzurra and its runtime semantics. The syntax is pre-
sented in Table 1 and illustrated in Table 2 through the fracture treatment scenario from
the literature [20]. Fig 2 shows a graphical notation for visualizing the main elements
of an Azzurra specification. The semantics is explained textually while describing the
EBNF syntax.

Notational conventions. We denote classes—roles, the commitment class symbol,
protocol and commitment identifiers, propositions—via strings with a leading capital
letter, and instances—agents, commitment instances, the commitment instance symbol,
proposition instances—via strings with a leading lowercase letter.

Example 1 (Fracture treatment). The patient is initially examined by a specialist. In
case of a fracture, x-rays are requested. Specific treatments are applied depending on
the diagnosis: sling, fixation, surgery, and cast. The handling doctor is responsible for
choosing. Cast and fixation are mutually exclusive. If no fracture is found, a sling has
to be made. Patients who undergo surgery are advised to execute rehabilitation. Medi-
cations can be provided and additional x-rays can be performed if needed. ⇤

Protocol signature (1,3). A protocol (1) has an identifier pid and a set of parameters (3):
a “key” variable that is the unique identifier for the instances of that protocol, and a set
of agent variables (two or more) associated with specific roles. Protocol designers are
responsible for choosing a meaningful key for the protocol. The agent variables indicate
those agents that play certain roles when a protocol is instantiated. The semantics of
protocol instantiation is explained later in this section.
Example. In the treatment protocol in Table 2, the protocol name is Treatment, the key
is the hospitalization number hospnr, the agent variables are patient p and specialist sp.

Protocol body (2). It includes a set of typed agent variables (their type is a role), a set
of commitment classes, a set of protocol refinements (optional), and a knowledge base
that defines semantic relations between atomic propositions (optional).
Example. In Table 2, there are five agent variables, including rc (a rehab centre) and ra

(a radiologist), nine commitments (C1–C9), and two commitment refinements.

Commitments (5,6). The core of a protocol (5) includes commitment classes and their
refinements. A commitment in Azzurra (6) extends the semantics presented in our base-
line in different ways. First, we introduce the notion of a strong commitment (C⇤),
where the debtor commits to bring about the consequent only after the antecedent has
occurred. Second, given that commitments belong in a specific Azzurra protocol, ev-
ery state of affairs appearing in the antecedent and consequent of a commitment (e.g.,
Examined, Diagnosed) has an implicit parameter, i.e., the key of the protocol. This pa-
rameter enables relating the commitments instances that apply to the same protocol
instance (e.g., examined(121) and diagnosed(234) refer to two different protocol in-
stances, each concerning a specific patient hospitalization). Third, Azzurra enriches the

Table 1. EBNF syntax of Azzurra; terminals in bold, non-terminals in italics

prot! protocol pid (params) { (1)
[ag-variables: vars]
commitments: comms crefn

⇤

[refinements: (id : refn)⇤]
[kb: domain

+] } (2)
params! key v, v : role (, v : role)+ (3)

vars! v : role (, v : role)⇤; (4)
comms! (init ⇣ [time] comm final;)+ (ev [[prec]] ⇣ [time] comm;)⇤ (5)
comm! id : C[*](v, v, prop, prop) (6)
crefn ! deadline(id, time) | can-deleg-ret-resp(id) | can-deleg-no-resp(id) |

can-assign-ret-cred(id) | can-assign-no-cred(id) | can-cancel(id) (7)
refn ! max-per-role(role, nr) | max-of-class(role, id, nr) | role-confl(role, role)

comm-role-confl(role, id, id) | sep-duties(id, id) | (8)
prec! atom | cstate | pstate | prec op prec | ¬prec | (prec) (9)
prop! atom | cstate | pstate | prop op prop | (prop) (10)

op! ^ | _ | � | · (11)
cstate! create(id) | deleg-no-resp(id [to v]) | deleg-ret-resp(id [to v]) | fulfil(id) |

cancel(id) | expire(id) | release(id) | assign-ret-cred(id [to v]) |
assign-no-cred(id [to v]) (12)

pstate! init-p(pid (, v = v)⇤) | fulfil-p(pid (, v = v)⇤) (13)
ev ! init | atom | cstate | pstate (14)

atom! > | ? | sta↵airs [(v (, v)⇤)] (15)
domain! implies(sta↵airs , sta↵airs) | mut-excl(sta↵airs(, sta↵airs)+) (16)

syntax of commitments with triggers and creation deadlines. A trigger—the expression
before the ⇣ symbol—is an event that determines that a commitment shall be created.
Triggers may have an associated precondition—[prec] in (5)—that indicates that, when
the event occurs, the commitment shall be created only if the precondition evaluates
to true. A deadline ( time) specifies that the commitment has to be created within a
certain amount of time after the trigger event fires off. Finally, Azzurra supports two
special types of commitments that relate to protocol instantiation and termination:

– Initial commitments are created when a protocol is instantiated. Their trigger is
“init”, an event that occurs when a protocol is instantiated. Debtor and creditor
of initial commitments shall be agent variables in the parameters of the protocol.
This way, initial commitments are created between couples of agents (debtor and
creditor do not refer to unassigned agent variables).

– Final commitments: every protocol must contain at least one final commitment. A
protocol instance terminates successfully when any of the final commitments is
fulfilled, while it terminates unsuccessfully if all final commitments are violated
(e.g., cancelled by the debtor). Final commitments are also initial. When a protocol
terminates, all debtors of active commitments are released from their responsibility.

The agent variables corresponding to debtor and creditor prescribe that:

Table 2. Azzurra protocol for the fracture treatment scenario

protocol Treatment (key hospnr, p : Patient, sp : Specialist) {
ag-variables: rc : RehabCentre, ra : Radiologist, or : Orthopedist, su : Surgeon, nu : Nurse;
commitments:

init ⇣ C1 : C(sp, p, >, Examined · Diagnosed · Dehospitalized) final
NoXRayNeeded ⇣ C2 : C(or, sp, >, SlingMade)
XRayRequested ⇣ C3 : C(ra, sp, >, XRayPerformed)
XRayRequested ⇣ C4 : C⇤(sp, ra, XRayPerformed, FractAssessed)
FractAssessed ⇣ C5 : C(or, sp, >, ((Fixated�Plastered) _ fulfil(C6) _ SlingMade))
FractAssessed ⇣2h C6 : C⇤(su, or, SurgeryRequested, Operated)
Operated [¬Refused] ⇣ C7 : C(nu, p, >, RcChosen(rc))
RcChosen(rc) ⇣ C8 : C(rc, p, >, fulfil-p(RehabGiven, key=hospnr, pat-id=p, ref-sp=sp))
MedPrescribed(m) ⇣ C9 : C(nu, sp, >, MedApplied(m))
can-deleg-no-resp(C3)
deadline(C2, 2h)

refinements:

role-confl(Radiologist,Orthopedist)
kb:

implies(XRayRequested, Diagnosed)
implies(NoXRayNeeded, Diagnosed)
implies(MedPrescribed(m), Diagnosed)
mutExcl(XRayRequested, NoXRayNeeded) }

Fig. 2. Graphical representation for the protocol in Table 2

– if an agent a is assigned to the agent variable, a shall be debtor (or creditor);
– if the agent variable is unassigned, any agent a’ can be debtor (or creditor), and a’

is assigned to the agent variable by participating in the commitment.

Example. In Table 2, C1 is the only final commitment and the only initial commitment.
The protocol has two agent variable parameters (p and sp), which are the debtor and the
creditor of C1. When an instance of the protocol is created, with agent frank assigned to
sp and agent mel assigned to p, an instance c1 of C1 shall be created with debtor frank

and creditor mel. When c1 is fulfilled (the patient is examined, then diagnosed, and

finally dehospitalized), the protocol instance terminates successfully. If c1 is violated,
the protocol terminates unsuccessfully. The triggered commitment C2 is instantiated
only if x-rays are not needed, and it specifies that an orthopedist has to commit to sp to
make a sling. C4 shows strong commitments: a specialist commits to assess the fracture
only after x-rays have been performed.

Agent variables (2,4). We support agent variables that are unassigned when the pro-
tocol is instantiated. They are assigned when an instance of a commitment where they
appear is created, and, as an additional effect, the assigned agent adopts the specified
role in the protocol instance. Azzurra supports assign-once variables: once an agent is
assigned, no other agent can be assigned to that variable.
Example. In Table 2, agent variables exists for a rehab centre, a radiologist, an ortho-
pedist, a surgeon, and a nurse. Actual agents will be assigned to these variables as the
protocol evolves, i.e., when commitments are created. For example, an orthopedist will
be assigned to or as soon as she creates an instance of C2.

Commitment refinements (7). A deadline commits the debtor to bring about the conse-
quent within a certain time after the antecedent occurs. The debtor can be authorized to
delegate the commitment, either retaining (can-deleg-ret-resp) or releasing (can-deleg-

no-resp) her responsibility. The creditor, similarly, can be authorized to assign the com-
mitment, either retaining (can-assign-ret-cred) or releasing (can-assign-no-cred) her
credit. The debtor can be authorized to cancel her commitment (can-cancel).
Example. In Table 2, the radiologist can delegate instances of C3, possibly to a col-
league, without retaining responsibility. Without such authorization, delegations would
correspond to a violation on part of the radiologist.

Protocol refinements (8). They constrain the agents that participate in a protocol in-
stance. The maximum number of concurrent commitments for an agent playing a certain
role can be limited (max-per-role), as well as the number of instances of a commitment
class that an agent can make (max-of-class). Role conflicts (role-confl) prescribe that an
agent cannot play two roles in the same protocol instance. Separation of duties (sep-

duties) implies that an agent cannot be debtor in instances of two commitment classes,
and it can be restricted to agents playing a specific role (comm-role-confl).
Example. A role-confl refinement specifies that the same agent cannot play both radiol-
ogist and orthopedist, because their roles are incompatible.

Preconditions, propositions, and triggers (9–15). Azzurra supports different types
of preconditions (9) and propositions types (10): atomic (atom), commitment states
(cstate), protocol states (pstate), binary operators, and so on. Negations can be used
in preconditions only. If used as consequent in a commitment, the commitment would
be that “an event will never occur”; at any point in time, one cannot claim that such
commitment is fulfilled, because the event may occur in the future. The binary opera-
tors (11) are conjunction (^), disjunction (_), exclusive disjunction (�), and temporal
precedence (·). Atomic propositions (15) can be truth (>), falsity (?), or states of af-
fairs (e.g. FractAssessed). States of affairs may be parametric and, thus, have multiple
instances. For example, MedPrescribed(med-id) has an instance for each medication the
patient is given. The state of a protocol instance evolves because of the occurrence of

events (14), as they trigger new commitment instances and change the state of existing
commitment instances. Three event types are supported:

– An atomic proposition becomes true. This includes the occurrence of a state of
affairs (e.g., the patient is diagnosed).

– The state of a commitment instance changes (see clause (12) below).
– The state of another protocol instance changes, i.e., it is instantiated (init-p) or ful-

filled (fulfil-p). Optionally, one can specify constraints on the protocol instance pa-
rameters, e.g., to impose a certain key or that a specific agent in the current protocol
instance shall be assigned to an agent parameter in the referenced protocol.

Example. The consequent of commitment C5 tells that the commitment is fulfilled if
an instance of Fixated or Plastered occurs (but not both), an instance of C6 is fulfilled,
or an instance of SlingMade occurs. The consequent of C8 indicates that a successful
instance of the protocol RehabGiven is expected, with the constraints that the patient
identifier parameter (pat-id) corresponds to the patient in the instance of Treatment, and
that the reference specialist (ref-sp) corresponds to the specialist who is responsible for
the current patient hospitalization.

Commitment states (12). Propositions and may denote that a commitment is in or has
changed to a specific state (as described in Figure 1). Given a commitment class id:

– create(id): an instance of id is created;
– deleg-no-resp(id [to v]): an instance of id is delegated (to agent v) without retaining

responsibility;
– deleg-ret-resp(id [to v]): an instance of id is delegated (to v); the delegator keeps

responsibility;
– fulfil(id): an instance of id is fulfilled;
– cancel(id): an instance of id is canceled;
– expire(id): an instance of id has expired;
– release(id): an instance of id is released;
– assign-ret-cred(id [to v]): an instance of id is assigned (to v) retaining the credit;
– assign-no-cred(id [to v]): id is assigned, but the assignor does not retain the credit.

Knowledge base (16). It specifies semantic relationships, i.e., implications and mutual
exclusions, between states of affairs. These relationships belong to the shared vocabu-
lary of the participants in a protocol.
Example. Three states of affairs imply a diagnosis: XRayRequested, NoXRayNeeded,
and MedPrescribed. XRayRequested is mutually exclusive with NoXRayNeeded.

5 Runtime compliance with Azzurra protocols

The semantics of Azzurra specifications enables determining whether the actors par-
ticipating in a protocol instance are compliant with the specification. We assume that
the messages that the actors exchange within the context of protocol execution are ob-
servable by a monitoring infrastructure. Compliance checking compares the observed
behavior from occurred events and the expected behavior as indicated by the protocol
specifications. We present two algorithms that enable determining compliance:

1. Algorithm 1 (ENACTPROTOCOLS) determines how an event updates the state of
existing protocol instances and of the commitment instances therein. We call this
activity enactment of a protocol. The output constitutes the expected behavior.

2. Algorithm 2 (CHECKCOMPLIANCE) checks whether an occurred event violates
the specification of a protocol instance. This corresponds to verifying if expected
commitments are not created/fulfilled, if disallowed commitment operations are
performed, and if protocol constraints (e.g., maximum roles per agent) are violated.
In our algorithms, we assume that the occurring events are associated with a spe-

cific protocol instance (there is no ambiguity about which protocol instance they refer
to). Events are processed sequentially by dequeuing a first-in first-out queue of events.
When the algorithms invoke the ENQUEUE function, an event is added to such queue.

Algorithm 1 Enacting protocol instances based on an occurred event
ENACTPROTOCOLS(Event ev, ProtInst [] P)

1 if ev = init-p(p-id, key, par1 = ag1, . . . , parn = agn)
2 then p CREATEPROTINSTANCE(p-id, key, ag1, . . . , agn)
3 P.ADD(p)
4 for each init ⇣t Ci : C(Db,Cd,Ant,Cons) 2 p.spec
5 do p.ADDCOMMI(Ci, p.VALOF(Db), p.VALOF(Cd),Ant,Cons, NOW + t, NIL)
6 ProtInst p GETPROTINSTFOREVENT(ev)
7 if Ev[Prec] ⇣t Ci : C(Db,Cd,Ant,Cons) 2 p.spec ^ p.kb ` prec(p.key)
8 then p.ADDCOMMI(Ci, p.VALOF(Db), p.VALOF(Cd),Ant,Cons, NOW + t, ev.args)
9 if ev = create(db, cd, c)

10 then p.ADDCOMMINSTANCE(c)
11 CommClass cc p.CLASSOF(c)
12 if p.VALOF(cc.deb) = NIL then p.ASSIGN(cc.deb, db)
13 if p.VALOF(cc.cred) = NIL then p.ASSIGN(cc.cred, cd)
14 if ev = cancel(db, cd, c) ^ c 2 p then p.REMOVE(c)
15 if ev = release(cd, db, c) ^ c 2 p then p.REMOVE(c)
16 if ev = deleg-no-resp(db, db2, c) ^ c 2 p then c.db db2

17 if ev = deleg-ret-resp(db, db2, c) ^ c 2 p
18 then p.ADDCOMMI(c.id, db2, c.cd, c.ant, c.cons, c.args)
19 if ev = assign-no-cred(cd, cd2, c) ^ c 2 p then cj.cd cd2

20 if ev = assign-ret-cred(cd, cd2, c) ^ c 2 p
21 then p.ADDCOMMI(c.id, c.db, cd2, c.ant, c.cons, c.args)
22 for each CommInst c 2 p
23 do c = RESIDUATEANTCONS(c, ev)
24 if c.state = fulfilled then ENQUEUE(fulfill(c))
25 if 9c 2 p.finalcomminsts s.t. fulfill(c) 2 evts
26 then for each CommInst cj 2 p do release(cj.db, cj.id)
27 p.state fulfilled

28 ENQUEUE(fulfill-p(p.id, p.key))
29 if 8c 2 p.finalcomminsts . c.state = violated

30 then for each CommInst cj 2 p do release(cj.db, cj.id)
31 p.state failed

32 ENQUEUE(failure-p(p.id, p.key))
33 ENQUEUEALL(GETIMPLIEDFROM(p.spec, ev))

Algorithm 1 enacts a set of protocol instances and the commitments therein con-
tained. The algorithm depends on the type of the processed event ev:

– Protocol instantiation (lines 1–5): a new protocol instance is created (class, key, and
arguments are taken from the event), and added to the protocol instances P (lines 1–
3). An instance of every initial commitment in the protocol specification is created
(lines 4–5): debtor and creditor are set by retrieving the agents that are assigned
to the agent variables in the commitment class. If specified, a creation deadline is
set by adding the creation timeout to the current time (NOW). The following events
types refer to the protocol instance that relates to the event (line 6).

– Commitment trigger (lines 7–8): commitment instances are created whenever an in-
stance of the trigger event occurs, if the optional precondition holds (the knowledge
base of the protocol instance, inferred from all occurred events, entails it).

– Commitment creation (lines 9–13): the commitment instance is added to the pro-
tocol instance (line 9). If the agent variables for the debtor and the creditor of the
corresponding commitment class are still unassigned, their value is assigned to the
debtor and the creditor of the commitment instance (lines 11–13).

– Commitment updates (lines 14–21): cancel and release operations imply the re-
moval of the commitment instance from the protocol (lines 14–15). Delegation
without retaining responsibility transfers the responsibility to another debtor (line
16), while delegation with retaining responsibility creates a second commitment
instance (lines 17–18). Assignments of credit are treated similarly (lines 19–21).

The antecedent and consequent of commitment instances in the protocol instance are
residuated [18]: they are updated based on the fact that a new event has occurred (lines
22–23). If a commitment’s consequent is ‘p · q’, and event ‘p’ occurs, the consequent
becomes ‘q’. If ‘q’ occurs before ‘p’, the status of the commitment switches to violated.
If a commitment is fulfilled, a corresponding event is enqueued.

Lines 25–32 handle protocol termination. Success (lines 25–28) occurs if a final
commitment is fulfilled: active commitment instances are released, the protocol in-
stance is set to fulfilled, and a corresponding event is enqueued. Failure (lines 29–32)
occurs if all final commitment instances are violated. Finally, all the events that are
implied from the ev via implies relationships are enqueued for processing (line 33).

Algorithm 2 raises errors whenever an event violates a constraint in the specifica-
tion of a protocol instance. Line 2 handles mutual exclusion constraints (mut-excl): if
the occurred event happens, and the knowledge base entails a conflicting state of af-
fairs, an error is raised. Lines 3–14 examine all commitment instances, and raise errors
when different commitment constraints are violated: expired creation deadline ( t),
expired fulfillment deadline (deadline), disallowed delegation with retained responsibil-
ity (deleg-ret-resp), disallowed delegation without responsibility (deleg-no-resp), dis-
allowed assignment retaining credit (assign-ret-cred), disallowed assignment without
credit retainment (assign-no-cred), and disallowed cancellation (cancel). Lines 11–14
raise errors if the event is the creation of a commitment, but the debtor or the creditor
is not the expected one. For instance, if a commitment class has debtor agent variable
agv1, agent “john” is already assigned to agv1, and a commitment instance for that
class is created with debtor “mike”, an error is raised. Lines 15–29 detect violations of
protocol refinement constraints, such as max-per-role and sep-duties.

Algorithm 2 Checking compliance with a protocol instance
CHECKCOMPLIANCE(Event ev, ProtInst p)

1 ProtSpec sp p.spec
2 if mut-excl(Sti,Ev) 2 sp ^ sti(p.key) 2 p.kb then ERROR(p,mut-excl(sti, ev))
3 for each CommInst c 2 p
4 do if NOW > c.creatDeadline ^ !c.created then ERROR(p, create-timeout(c))
5 if NOW > c.fulfilDeadline ^ !c.fulfilled then ERROR(p, fulfill-timeout(c))
6 if ev = deleg-ret-resp(db1, db2, c) ^ !c.canDelRet then ERROR(p, del-ret(c))
7 if ev = deleg-no-resp(db1, db2, c) ^ !c.canDelNoR then ERROR(p, del-no-r(c))
8 if ev = assign-ret-cred(cd1, cd2, c) ^ !c.canAssgnR then ERROR(p, assign-ret(c))
9 if ev = assign-no-cred(cd1, cd2, c) ^ !c.canAssgnNoC then ERROR(p, assign-no-r(c))

10 if ev = cancel(db, c) ^ !c.canCancel then ERROR(p, cancel(c))
11 if ev = create(db, cd, c)
12 then CommClass cc p.CLASSOF(c)
13 if NIL 6= p.VALOF(cc.deb) 6= db then ERROR(p,wrong-deb(c, db))
14 if NIL 6= p.VALOF(cc.cred) 6= cd then ERROR(p,wrong-cred(c, cd))
15 for each AgentVar agv 2 p.agent-vars
16 do Role rl agv.role
17 Agent ag p.GETASSIGNEDAGENT(agv)
18 if ag = NIL then break

19 if max-per-role(rl, n) 2 sp ^ |p.COMMWITHDEB(ag)| > n
20 then ERROR(p,max-per-role(ag, rl))
21 for each CommClass cc 2 sp.comms
22 do if max-of-class(rl, cc.id, n) 2 sp ^ |p.COMMOFTYPEWITHDEB(cc, ag)| > X
23 then ERROR(p,max-of-class(ag, rl, cc.id,X))
24 if role-confl(rl, rl2) 2 sp ^ p.PLAYS(ag, rl2) then ERROR(p, role-confl(ag, rl, rl2))
25 if comm-role-confl(rl,C1,C2) 2 sp ^ p.PLAYS(ag, rl2) ^ p.DEBFORBOTH(ag,C1,C2)
26 then ERROR(p, comm-role-confl(ag, rl,C1,C2))
27 for each ag 2 p.GETALLPARTICIPANTS()
28 do if sep-duties(C1,C2) 2 sp ^ p.DEBFORBOTH(ag,C1,C2)
29 then ERROR(p, sep-duties(ag,C1,C2))

Enactment engines. A protocol execution is an exchange of messages among the
agents communicating their progress in fulfilling their commitments. An organization
can support the execution of its protocols through an enactment engine, a system that
can compensate to noncompliance with the specifications is detected. What it should do
and when it should intervene depends on organizational requirements.

Implementation. We implemented our algorithms in a prototype Java tool that uses
the Drools rule engine. Drools is part of the JBoss suite and it can efficiently handle
large-scale scenarios. Our tool is currently working offline on textual event traces. We
are working towards an version of the tool with event listeners and a graphical interface.

6 Advantages of Azzurra for business process specification

We show how different features of Azzurra make it better suited than existing ap-
proaches from the literature for the specification of business processes.
Flexibility. Instead of prescribing a specific course of action, Azzurra specifies correct-
ness criteria. There are multiple possible executions that would comply with an Azzurra

specification. Azzurra is flexible because it is a declarative and social specification lan-
guage. Being declarative (like, e.g., Declare [20]), Azzurra abstracts away operational
details on how processes are carried out (those details are expressed by workflow lan-
guages). Azzurra protocols are specified in terms of actors accountability (who is re-
sponsible for what to whom): this social perspective reflects how business processes
are executed in reality. The social nature of Azzurra is evident in the graphical notation
(Figure 2), which shows how actors are related by commitments.
Executable language and compliance. Azzurra has an executable semantics in terms
of creation and fulfillment of commitments. In Section 4, we build on the basic seman-
tics of commitments (Figure 1) to define the meaning of more sophisticated primitives.
Algorithms 1 and 2 apply the semantics and enable determining if the events inferred
by actors interaction complies with process specifications in Azzurra.
Expressiveness and business primitives. Unlike existing approaches for modeling
commitments protocols (e.g., [22, 5, 12]), Azzurra is an expressive language that in-
cludes business primitives for specifying business processes accurately. For example,
Azzurra includes deadlines for commitment creation and fulfillment, agent variables to
make an agent responsible for multiple commitments (e.g., in Figure 2, specialist sp is
responsible for both examination and fracture assessment), authorizations about dele-
gation/assignment/cancellation, role conflicts, separation of duties, workload limits.
Exception handling. The Azzurra language natively allows specifying compensations
to exceptions: a commitment can be triggered by the failure of another: failed(C1) ⇣
C2 : C(. . .) means that an instance of C2 shall be created when an instance of C1

has failed. Additionally, enactment engines can be to put in place by an organization to
support compensation tactics that are not included in the specification. Once noncom-
pliance is detected (by Algorithm 2), an enactment engine could intervene by finding an
alternative agent in the organization (e.g., a different specialist to diagnose the patient).

7 Conclusions

We have presented Azzurra, a specification language for business processes based on
social models, which relate interacting actors through social commitments. Azzurra
comprises business primitives to facilitate the specification of business processes, such
as delegation, deadlines, and role adoption constraints.

In addition to syntax and semantics of Azzurra, we have proposed a graphical no-
tation to visualize the main elements of an Azzurra specification, and algorithms for
checking if the interaction among a set of actors complies with protocol specifications.

This paper opens the doors to further work on social specifications of business pro-
cesses, including (i) developing an enactment engine that supports remedies to noncom-
pliance; (ii) empirical validation of Azzurra; (iii) improving the graphical notation; and
(iv) investigating the joint usage of Azzurra and business process modeling languages.

References

1. B. Benatallah, F. Casati, F. Toumani, and R. Hamadi. Conceptual Modeling of Web Service
Conversations. In Proc. of CAiSE, pages 449–467, 2003.

2. K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su. Towards Formal Analysis of Artifact-
Centric Business Process Models. In Proc. of BPM, pages 288–304, 2007.

3. A. K. Chopra, F. Dalpiaz, P. Giorgini, and J. Mylopoulos. Modeling and Reasoning about
Service-Oriented Applications via Goals and Commitments. In Proc. of CAiSE, pages 113–
128, 2010.

4. G. Decker, O. Kopp, F. Leymann, and M. Weske. Interacting Services: From Specification
to Execution. Data and Knowledge Engineering, 68(10):946–972, 2009.

5. N. Desai, A. K. Chopra, and M. P. Singh. Amoeba: A Methodology for Modeling and
Evolution of Cross-Organizational Business Processes. ACM Transactions on Software En-
gineering and Methodology, 19(2), 2010.

6. N. Desai, A. U. Mallya, A. K. Chopra, and M. P. Singh. Interaction Protocols as De-
sign Abstractions for Business Processes. IEEE Transactions on Software Engineering,
31(12):1015–1027, 2005.

7. K. Figl and R. Laue. Cognitive Complexity in Business Process Modeling. In Proc. of
CAiSE, volume 6741 of LNCS, pages 452–466, 2011.

8. F. Flores, M. Graves, B. Hartfield, and T. Winograd. Computer Systems and the Design of
Organizational Interaction. ACM Transactions on Information Systems, 6:153–172, 1988.

9. A. K. Ghose and G. Koliadis. Auditing Business Process Compliance. In Proc. of ICSOC,
pages 169–180. Springer, 2007.

10. G. Keller, M. Nüttgens, and A.-W. Scheer. Semantische Prozessmodellierung auf der
Grundlage ”Ereignisgesteuerter Prozessketten (EPK)”. Veröffentlichungen des Instituts für
Wirtschaftsinformatik, 89, 1992.

11. R. Khalaf. From RosettaNet PIPs to BPEL Processes: A Three Level Approach for Business
Protocols. Data and Knowledge Engineering, 61(1):23 – 38, 2007.

12. E. Marengo, M. Baldoni, C. Baroglio, A. K. Chopra, V. Patti, and M. P. Singh. Commitments
with Regulations: Reasoning about Safety and Control in REGULA. In Proc. of AAMAS
2011, pages 467–474, 2011.

13. W. N. Robinson and S. Purao. Specifying and Monitoring Interactions and Commitments in
Open Business Processes. IEEE Software, 26(2):72–79, 2009.

14. M. La Rosa, P. Wohed, J. Mendling, A. H. M. ter Hofstede, H. A. Reijers, , and W. M. P.
van der Aalst. Managing Process Model Complexity Via Abstract Syntax Modifications.
IEEE Transactions on Industrial Informatics, 7(4):614–629, 2011.

15. S. Sadiq, G. Governatori, and K. Namiri. Modeling Control Objectives for Business Process
Compliance. In Proc. of BPM, pages 149–164, 2007.

16. M. P. Singh. An Ontology for Commitments in Multiagent Systems: Toward a Unification
of Normative Concepts. Artificial Intelligence and Law, 7(1):97–113, 1999.

17. M. P. Singh. A Social Semantics for Agent Communication Languages. In Issues in Agent
Communication, pages 31–45. Springer, 2000.

18. M. P. Singh. Distributed Enactment of Multiagent Workflows: Temporal Logic for Web
Service Composition. In Proc. of AAMAS, pages 907–914, 2003.

19. W. M. P. van der Aalst, M. Dumas, A. H. M. ter Hofstede, N. Russell, H. M. W. Verbeek,
and P. Wohed. Life After BPEL? In Formal Techniques for Computer Systems and Business
Processes, volume 3670 of LNCS, pages 35–50. Springer, 2005.

20. W. M. P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative Workflows: Balancing
between Flexibility and Support. Computer Science-Research and Development, 23(2):99–
113, 2009.

21. WS-CDL. Web Services Choreography Description Language Version 1.0, November 2005.
www.w3.org/TR/ws-cdl-10/.

22. P. Yolum and M. P. Singh. Flexible Protocol Specification and Execution: Applying Event
Calculus Planning using Commitments. In Proc. of AAMAS, pages 527–534, 2002.

