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Abstract
In Hwang and Yun (Ann Glob Anal Geom 62(3):507–532, 2022), an estimate for skew-
symmetric 2-tensors was claimed. Soon after, this estimate has been exploited to claim
powerful classification results: Most notably, it has been employed to propose a proof of a
Black Hole Uniqueness Theorem for vacuum static spacetimes with positive scalar curvature
(Xu and Ye in Invent Math 33(2):64, 2022) and in connection with the Besse conjecture
(Yun and Hwang in Critical point equation on three-dimensional manifolds and the Besse
conjecture). In the present note, we point out an issue in the argument proposed in Hwang
and Yun (Ann Glob Anal Geom 62(3):507–532, 2022) and we provide a counterexample to
the estimate.
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1 Introduction

The Black Hole Uniqueness Theorem for three-dimensional static solutions with positive
scalar curvature and the Besse conjecture for solutions to the critical point equation are two
very famous and related open problems in contemporary geometric analysis. Very recently,
some very remarkable advances have been claimed on both of these problems in a series of
papers [1–3, 6–8]. In this short note, we point out an issue in the approach proposed in the
above-mentioned papers, providing counterexamples.

To introduce the problems of interest together with some notation, let us recall that a
three-dimensional static solution is a triple (M, g, f ) satisfying

f Ric = ∇2 f + R

2
f g, � f = −R

2
f , (1.1)

where (M, g) is a three-dimensional Riemannian manifold, f is a smooth function, and Ric
and R denote the Ricci tensor and the scalar curvature of g, respectively. When R is positive,
it is natural to suppose that (M, g) is a compact manifold with boundary and that f is
vanishing on the boundary. A strictly related problem is the so-called critical point equation,
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which consists in the following system

(1 + f )

(
Ric − R

n
g

)
= ∇2 f + R

n(n − 1)
g, � f = − R

n − 1
f (1.2)

where the unknowns are given by the triple (M, g, f ), with (M, g) a closed Riemannian
manifold and f a smooth function.

In [3], the authors aim at classifying solutions to the critical point equation subject to the
condition of having positive isotropic curvature. To this end, they consider the differential
2-form

ω = d f ∧ ι∇ f z,

where z indicates the traceless Ricci tensor, and they claim that it must vanish. Notice that,
using (1.2), the differential 2-form ω can be rewritten as

ω = 1

2(1 + f )
d f ∧ d|∇ f |2,

where | · | is the norm computed with respect to the metric g. If ω ≡ 0, then, using again
the equation (1.2), one can prove that the Cotton tensor of g must also vanish, by a direct
computation. It follows that either n = 3 and g is locally conformally flat, or else n ≥ 4
and g has harmonic Weyl tensor. In both cases, the classification follows easily. The same
strategy is adopted in [6],1 where this time the differential 2-form ω is defined as

ω = 1

2 f
d f ∧ d|∇ f |2,

with g and f satisfying (1.1). In both cases, the vanishing of ω is deduced through an
integration by parts argument—which we describe in Sect. 2.2, in the case of static metrics—
making a substantial use of the key estimate

|∇ω|2 ≥ |δω|2 , (1.3)

which the authors claim to hold at all points of M where ω is not vanishing (see Lemma 5.5
in [3]). The proposed proof of (1.3) does not make use of the full strength of either (1.1)
or (1.2). In fact, it is based on a local computation, in which the global structure of M is not
playing any role. As such, if correct, it should work for every differential 2-form having the
structure

ω = λ( f ) d f ∧ d|∇ f |2. (1.4)

for some smooth function λ = λ( f ), independently of the validity of (1.1) or (1.2). Aim of
the present note is to disprove the claim that every ω as in (1.4), defined on an open subset
of a Riemannian manifold (M, g), satisfies estimate (1.3).

In Sect. 3, we point out the issue in the original proof of (1.3), given in [3, Lemma 5.5],
whereas in Sect. 4 we provide effective counterexamples to the claim. Namely, we show that
For every smooth real function λ �≡ 0, there exist a smooth Riemannian metric g and a
smooth function f such that |∇ω|2 < |δω|2, with ω = λ( f ) d f ∧ d|∇ f |2.

For the sake of completeness, we discuss in Sect. 2 how the validity of an estimate like (1.3)
can be exploited to deduce that ω must vanish everywhere.

1 Notice that this reference has been withdrawn by the authors during the preparation of the present note.
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2 Analysis of a skew-symmetric 2-tensor field

To make our computations more transparent, we prefer to work with the tensor-fields for-
malism. However, one can also work with the formalism of differential forms as done in [3].
Instead of ω defined as in (2.1), we consider the skew-symmetric 2-tensor field P , given by

P = λ( f )
[
d f ⊗ d|∇ f |2 − d|∇ f |2 ⊗ d f

]
, (2.1)

with λ, f and g as above. In this formalism, we have that estimate (1.3) is equivalent to

|∇P|2 ≥ 2 |divP|2 , (2.2)

as 2 |∇ω|2 = |∇P|2 (the factor two comes from the slight difference in the definition of norms
on differential forms and tensor, namely |∇ω|2 = ∑

j<k
∑

i (∇iω jk)
2, whereas |∇P|2 =∑

j,k
∑

i (∇i Pjk)
2) and δω = −divP . Notice that, replacing the constant 2 with the smaller

constant 1/n, one gets the always valid lower bound |∇P|2 ≥ (1/n) |divP|2. Furthermore,
exploiting the special structure (2.1) of P , one can significantly improve on this bound,
obtaining (n − 1)|∇P|2 ≥ 2 |divP|2 (see “Appendix”). On the other hand, estimate (2.2) is
too strong and cannot hold in general, as we will discuss below.

2.1 Two differential identities

Here, we discuss some basic though fundamental properties of a skew-symmetric 2-tensor
P having the form (2.1).

Proposition 2.1 Let (M, g) be a n-dimensional Riemannian manifold, and let f ∈ C∞(M).
Then, the skew-symmetric 2-tensor field P defined as in (2.1), for some smooth real function
λ, satisfies the identity

∇P(X , Y , Z) + ∇P(Y , Z , X) + ∇P(Z , X , Y ) = 0.

Proof The proof can be done via direct computation. However, there is a faster way to prove
this result using the formalism of differential forms. In fact, as observed in [3, Lemma 5.4],
the thesis is equivalent to the fact that the differential 2-form ω defined as in (1.4) is closed.
Observe that if ω is as in (1.4), then it is straightforward to realize that dω = (dλ/d f ) d f ∧
d f ∧ d|∇ f |2 = 0. 
�

Another interesting property of P is that it satisfies a Bochner-type formula, as it is
established in the following proposition.

Proposition 2.2 Let (M, g) be a n-dimensional Riemannian manifold, and let f ∈ C∞(M).
Then, the skew-symmetric 2-tensor field P defined as in (2.1), for some smooth real function
λ, satisfies the identity

1

2
�|P|2 = |∇P|2 + 2〈P | ∇(div P)〉 + 2R

(n − 1)(n − 2)
|P|2

+2
n − 4

n − 2
R js Psk Pjk + 2Wi jks Pis Pjk,

whereR is the scalar curvature,R js are the components of the Ricci tensor, andWi jks are the
components of the Weyl tensor. In the last two terms, we are adopting the extended Einstein
summation convention.
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Proof We perform our computations with respect to normal coordinates. Exploiting Propo-
sition 2.1 and the skew-symmetry of P , we compute

�|P|2 = 2∇i (Pjk∇i Pjk)

= 2|∇P|2 + 2Pjk�Pjk

= 2|∇P|2 − 2Pjk∇2
i j Pki − 2Pjk∇2

ik Pi j

= 2|∇P|2 + 4Pjk∇2
i j Pik

= 2|∇P|2 + 4Pjk

(
∇2

j i Pik + Ri j is Psk + Ri jks Pis
)

= 2|∇P|2 + 4Pjk
(∇ j (div P)k + R js Psk + Ri jks Pis

)
.

To obtain the claimed identity, it is now enough to substitute the general formula for the
Riemann tensor

Ri jks = − R

(n − 1)(n − 2)
(gikg js − gisg jk)

+ 1

n − 2

(
Rik g js − Ris g jk + gikR js − gisR jk

) + Wi jks

in the computation above. 
�

The differential identity obtained in the previous proposition simplifies significantly when
n = 3, since in this case the Weyl tensor vanishes and we get

1

2
�|P|2 = |∇P|2 + 2〈P | ∇(div P)〉 + R|P|2 − 2R js Psk Pjk . (2.3)

2.2 Application to 3-dimensional static solutions

In [6], a classification result for 3-dimensional staticmetricswith positive scalar curvaturewas
proposed, building on the above Bochner-type formula and on the validity of estimate (2.2).
For completeness, here we retrace their proof.

Using formula (1.1), we can substitute the Ricci tensor in (2.3), getting

1

2
�|P|2 = |∇P|2 + 2〈P | ∇(div P)〉 − 2

f
∇2

js f Psk Pjk . (2.4)

On the other hand, with some computations exploiting the skew symmetry of P and the
identity � f = f R/2, one gets

2P(∇ f , div P) − 1

2
〈∇ f | ∇|P|2〉 = Pjk

(
2∇ j f ∇s Psk − ∇s f ∇s Pjk

)
= 2λPjk

(
� f ∇ j f ∇k |∇ f |2 − ∇2

sk f ∇ j f ∇s |∇ f |2)
= −R

2
f |P|2 − 2∇2

js f Pjk Psk .

Combining this formula with (2.4), we obtain

1

2
�|P|2 = |∇P|2 + 2〈P | ∇(div P)〉 + R

2
|P|2 + 2

f
P(∇ f , div P) − 1

2 f
〈∇ f | ∇|P|2〉,(2.5)
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which can be rewritten as

1

2
div( f ∇|P|2) = f |∇P|2 + 2 f 〈P | ∇(div P)〉 + R

2
f |P|2 + 2P(∇ f , div P).

Since M is compact and f = 0 on ∂M , integrating by parts we obtain then

0 =
∫
M

[
f |∇P|2 + 2 f 〈P | ∇(div P)〉 + R

2
f |P|2 + 2P(∇ f , div P)

]
dμ

=
∫
M

[
f |∇P|2 − 2 f |div P|2 + R

2
f |P|2

]
dμ ,

where in the second equality we have used the identity

div [ f P(div P, ·)] = f 〈P | ∇(div P)〉 + P(∇ f , div P) + f |div P|2.
Here, one can appreciate the strength of estimate (2.2). Indeed, if (2.2) is in force and

R > 0, then |P|2 must vanish identically and we obtain the following

Proposition 2.3 Let (M, g, f ) be a compact three-dimensional static solution with positive
scalar curvature and nonempty boundary. Assume that f = 0 on ∂M and positive in the
interior. If estimate (2.2) holds for some P as in (2.1), then P must vanish identically and
one has

d f ⊗ d|∇ f |2 = d|∇ f |2 ⊗ d f .

This is a crucial step in the strategy outlined in [6]. As anticipated, they exploit the identity
P = 0 in combination with the static equation to deduce that the Cotton tensor must vanish.
The classification follows, invoking awell-known result byKobayashi [4] and Lafontaine [5].

As we are going to see in the next sections, it is not clear how to establish the validity
of (2.2) in general; however, we will prove in “Appendix” that the weaker lower bound
|∇P|2 ≥ |divP|2 holds true. This leads to∫

M
f |div P|2dμ ≥

∫
M

R

2
f |P|2dμ.

Building on this integral inequality, one might classify three-dimensional static metrics with
positive scalar curvature admitting a divergence-free P-tensor.

3 The issue in the proof of the estimate

Here, we retrace the proof of estimate (1.3) originally proposed in [3, Lemma 5.5], pointing
out the main issue in the argument.

As a first step, the authors find a local orthonormal frame with respect to which the tensor
P has a nice structure. This part of the proof appears to be correct, and it is an interesting
fact on its own that will also be helpful in “Appendix,” so we include it here as a lemma. In
the following statement, it is helpful to consider the vector valued 1-form A : T M → T M
defined by P(X , Y ) = g(AX , Y ). In coordinates: A j

i = g jm Pim .

Lemma 3.1 Let (M, g) be a n-dimensional Riemannian manifold. Let f ∈ C∞(M), and let
P be the tensor defined by (2.1). Let x ∈ M be a point with |P|(x) �= 0. Then, in a small
neighborhood U of x it holds |P| �= 0, |∇ f | �= 0, |A∇ f | �= 0 and there exists a smooth
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orthonormal frame {E1, . . . , En} with E1 = ∇ f /|∇ f | and E2 = AE1/|AE1|. With respect
to this frame, the tensor P is rewritten as

P = u
(
θ1 ⊗ θ2 − θ2 ⊗ θ1

)
, (3.1)

where u is a smooth function and {θ1, . . . , θn} is the dual co-frame of {E1, . . . , En}. (Namely,
θ i (E j ) = δij at any point in U.)

Proof A proof of this fact is given in [3]; however, we write here a shorter self-contained
version.

We first construct the orthonormal frame in the lemma. Consider a neighborhood U of x
in which |P| �= 0. From the definition (2.1) of P , it is clear that |∇ f | �= 0 in U as well. In
particular, the vector E1 = ∇ f /|∇ f | is well defined inU .We complete E1 to an orthonormal
frame {E1, Ẽ2, . . . , Ẽn} in U . Since g(E1, Ẽi ) = 0 for i ≥ 2, we have ∇Ẽi

f = 0 for any
i ≥ 2, hence

P(Ẽi , Ẽ j ) = λ( f )
(
∇Ẽi

f ∇Ẽ j
|∇ f |2 − ∇Ẽi

|∇ f |2 ∇Ẽ j
f
)

= 0, (3.2)

for any i, j ≥ 2. Since |P| �= 0 in U , then at any point in U it holds g(AE1, Ẽ j ) =
P(E1, Ẽ j ) �= 0 for some j . In particular, AE1 �= 0 inU . Since g(AE1, E1) = P(E1, E1) =
0, it follows that AE1 is orthogonal to E1. In particular, the vector E2 = AE1/|AE1| is well
defined and E1, E2 are orthonormal. We can then complete E1, E2 to an orthonormal frame
{E1, . . . , En} inU . This is precisely the orthonormal frame described in the statement of the
lemma. Notice in particular that

P(E1, E j ) = g(AE1, E j ) = |AE1| g(E2, E j ) = |AE1| δ2 j .
In view of (3.2), we deduce that the only nonzero entries of P are P(E1, E2) = −P(E2, E1).
Formula (3.1) follows. 
�

Next, the authors compute |∇P|2 and |div P|2 with respect to this frame. The computations
regarding |∇P|2 appear to be correct. On the other hand, it seems to us that the expression
of the divergence term worked out by the authors contains a mistake. A simple calculation
(see “Appendix” for more details) gives

(div P)(E1) = −E2(u) +
n∑

i=3

〈∇Ei Ei | E2〉 u = −E2(u) +
n∑

i=3

〈Ei | [E2, Ei ]〉 u,

(div P)(E2) = E1(u) −
n∑

i=3

〈∇Ei Ei | E1〉 u = E1(u) +
n∑

i=3

〈Ei | [E1, Ei ]〉 u,

(div P)(Ek) = 〈Ek | [E1, E2]〉 u, k ≥ 3.

(3.3)

It is worth pointing out that the frame {E1, . . . , En} was constructed with a pointwise argu-
ment. The frame is easily seen to be smooth, but it is important to observe that it is not
necessarily induced from a local coordinate system. In particular, the Lie brackets [Ei , E j ]
are not necessarily vanishing. This seems to be the core of the issue: In fact, the authors claim
that

div P = −E2(u)θ1 + E1(u)θ2. (3.4)

In view of (3.3), this formula appears to be incorrect whenever the Lie brackets do not vanish.
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Remark 1 In [3], and more precisely in the final page of the proof of [3, Lemma 5.5], this
formula is written as δω = E2(u)θ1 − E1(u)θ2. As already observed, ω corresponds to our
P in the formalism of the differential forms, and the codifferential δ is clearly related to the
divergence through the formula δω = −divP .

4 Counterexamples to estimate (1.3)

We work in dimension 3 for simplicity, but similar counterexamples might be constructed
in higher dimension as well. Consider local coordinates {r , x1, x2} defined on an open set, a
positive smooth function φ = φ(r) and the warped product metric

g = dr ⊗ dr + φ2(dx1 ⊗ dx1 + dx2 ⊗ dx2).

Let then f ∈ C∞(M) be a smooth function of the form f = ψ ◦ x1, for some smooth
nonconstant real function ψ . Let us consider then a skew-symmetric 2-tensor field P as
in (2.1), for some choice of λ = λ( f ). In local coordinates, we have that the components of
P are given by

Pαβ = λ
[
∇α f ∇2

βη f − ∇β f ∇2
αη f

]
gησ ∇σ f = λψ ′

φ2

[
∇α f ∇2

1β f − ∇β f ∇2
1α f

]
,

where the Greek indexes are running in {r , 1, 2}. Here and in what follows, we will denote
with ′ the derivatives with respect to x1 and with a dot the derivatives with respect to r . The
Christoffel symbols of the metric g are as follows

�r
rr = �r

ri = �i
rr = �k

i j = 0, �r
i j = −φφ̇δi j , �

j
r i = φ̇

φ
δ
j
i ,

where the Latin indexes are running in {1, 2}. It then follows easily that the only nonzero
components of the Hessian are

∇2
11 f = ψ ′′, ∇2

1r f = − φ̇

φ
ψ ′,

and that

P = λ
φ̇

φ3 (ψ ′)3
(
dr ⊗ dx1 − dx1 ⊗ dr

)
.

Notice that we are in a setting similar to the one of Sect. 3, except that our frame

{∂/∂r , ∂/∂x1, ∂/∂x2}
is not orthonormal. Hence, to check that our P has the structure prescribed in (3.1), one
should write its local expression, with respect to an orthonormal frame. This latter can be
obtained setting E1 = (1/φ)∂/∂x1, E2 = ∂/∂r , E3 = (1/φ)∂/∂x2. Its dual orthonormal
co-frame is then given by θ1 = φdx1, θ2 = dr , θ3 = φdx2. It is easy to check that this
frame satisfies the properties described in Lemma 3.1 and that

P = −λ
φ̇

φ4 (ψ ′)3
(
θ1 ⊗ θ2 − θ2 ⊗ θ1

)
.

However, we prefer to perform our computations with respect to the frame fields induced by
the local coordinates (r , x1, x2). In this framework, it is easy to show that the only nonzero
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components of ∇P are

∇r P1r = −∇r Pr1 = −
(

φ̈

φ3 − 4
φ̇2

φ4

)
λ (ψ ′)3 ,

∇1P1r = −∇1Pr1 = − φ̇

φ3 (λ (ψ ′)3)′ ,

∇2P12 = −∇2P21 = − φ̇2

φ2 λ (ψ ′)3 .

It easily follows that

divP = − φ̇

φ5
(λ (ψ ′)3)′ dr + λ (ψ ′)3

(
φ̈

φ3 − 3
φ̇2

φ4

)
dx1.

Here, it is possible to notice the discrepancy between our computations and formula (3.4),
as computing the right-hand side of that formula would give

− φ̇

φ5
(λ (ψ ′)3)′ dr + λ (ψ ′)3

(
φ̈

φ3 − 4
φ̇2

φ4

)
dx1,

which looks very similar, but does not correspond to the correct value of divP .
We can now compute the norms of ∇P and div P:

|∇P|2 = 2

[
1

φ2 (∇r P1r )
2 + 1

φ4 (∇1P1r )
2 + 1

φ6 (∇2P12)
2
]

= 2

φ6

(
φ̈2

φ2 − 8
φ̈φ̇2

φ3 + 17
φ̇4

φ4

)
λ2(ψ ′)6 + 2

φ̇2

φ10

[
(λ (ψ ′)3)′

]2
,

|div P|2 = [(div P)r ]2 + 1

φ2 [(div P)1]2

= 1

φ6

(
φ̈2

φ2 − 6
φ̈φ̇2

φ3 + 9
φ̇4

φ4

)
λ2(ψ ′)6 + φ̇2

φ10

[
(λ (ψ ′)3)′

]2
.

It follows that

|∇P|2 − 2|divP|2 = 4
λ2φ̇2(ψ ′)6

φ8

(
4
φ̇2

φ2 − φ̈

φ

)
.

To make this difference negative, it is then sufficient to specify a choice of the functions λ,ψ

and φ such that the right-hand side is negative. In particular, it is sufficient to choose φ in
such a way that the quantity in round brackets is negative. This can be achieved, for example,
setting

φ = (r + c)−1/k, for some k > 3 and some c > 0.

It follows that, with this choice of φ, for any λ and any f = ψ ◦ x1, the estimate (2.2) does
not hold. Hence, the lower bound (1.3) is false as well.
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Appendix

For completeness, let us point out the correct relation always holding between |∇P| and
|divP|. Let (M, g) be a n-dimensional Riemannian manifold, n ≥ 3. As in Sect. 3, we take a
point x with |P|(x) �= 0 and we consider the local orthonormal frame {E1, . . . , En} provided
by Lemma 3.1. We recall that, with respect to this frame, the tensor P takes the following
form

P = u
(
θ1 ⊗ θ2 − θ2 ⊗ θ1

)
. (4.1)

Exploiting the compatibility of ∇ with the metric g, for any i, j, k we have

0 = Ei
(
g(E j , Ek)

) = g(∇Ei E j , Ek) + g(E j ,∇Ei Ek),

and in particular

g(∇Ei Ek, Ek) = 0, g(∇Ei Ei , Ek) = −g(Ei ,∇Ei Ek) = −g(Ei , [Ei , Ek]).
We are now ready to compute the components of ∇P . Since P(Ei , E j ) = 0 whenever
{i, j} �= {1, 2}, we have

∇Ei P(E1, E2) = Ei (P(E1, E2)) − P(∇Ei E1, E2) − P(E1,∇Ei E2)

= Ei (u) − g(∇Ei E1, E1)P(E1, E2) − g(∇Ei E2, E2)P(E1, E2)

= Ei (u) .
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Similarly, for any k ≥ 3, we have

∇Ei P(E1, Ek) = Ei (P(E1, Ek)) − P(∇Ei E1, Ek) − P(E1,∇Ei Ek)

= − g(∇Ei Ek, E2)P(E1, E2)

= − g(∇Ei Ek, E2) u ,

and

∇Ei P(E2, Ek) = Ei (P(E2, Ek)) − P(∇Ei E2, Ek) − P(E2,∇Ei Ek)

= − g(∇Ei Ek, E1)P(E2, E1)

= g(∇Ei Ek, E1) u .

Similarly, one computes ∇Ei P(E1, E1) = ∇Ei P(E2, E2) = 0 and ∇Ei P(E j , Ek) = 0
whenever j, k are ≥ 3. It is now easy to compute the divergence of P:

(div P)(E1) = −E2(u) +
n∑

i=3

〈∇Ei Ei | E2〉 u = −E2(u) +
n∑

i=3

〈Ei | [E2, Ei ]〉 u,

(div P)(E2) = E1(u) −
n∑

i=3

〈∇Ei Ei | E1〉 u = E1(u) −
n∑

i=3

〈Ei | [E1, Ei ]〉 u,

(div P)(Ei ) = −g(∇E1Ei , E2) u + g(∇E2Ei , E1) u, i ≥ 3.

Using the inequality (
∑k

i=1 xi )
2 ≤ k

∑k
i=1 x

2
i , a simple calculation then gives

|divP|2
n − 1

≤
2∑

k=1

[
Ek(u)2 +

n∑
i=3

〈Ei | [Ei , Ek]〉2u2
]

+ 2

n − 1

n∑
i=3

[〈∇E1Ei | E2〉2 + 〈∇E2Ei | E1〉2
]
u2

≤
2∑

k=1

[
Ek(u)2 +

n∑
i=3

〈Ei | [Ei , Ek]〉2u2
]

+
n∑

i=3

[〈∇E1Ei | E2〉2 + 〈∇E2Ei | E1〉2
]
u2 .

On the other hand

1

2
|∇P|2 ≥

2∑
k=1

[(∇Ek P(E1, E2)
)2 +

n∑
i=3

(∇Ei P(Ek, Ei )
)2 +

n∑
i=3

(∇Ek P(Ek, Ei )
)2]

=
2∑

k=1

[
Ek(u)2 +

n∑
i=3

〈Ei | [Ei , Ek]〉2u2
]

+
n∑

i=3

[〈∇E1Ei | E2〉2 + 〈∇E2Ei | E1〉2
]
u2 .

In conclusion, we have shown the following.
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Proposition 4.1 Let (M, g) be a n-dimensional Riemannian manifold, n ≥ 3. Let f ∈
C∞(M), and let P be the tensor defined by (2.1). Then, at any point of M it holds

|∇P|2 ≥ 2

n − 1
|divP|2. (4.2)

Proof Estimate (4.2) follows immediately from the computations above at any point where
P has the form (3.1), that is, at any point where |P| �= 0. Let then x be a point where
|P| = 0. If |P| vanishes identically in a neighborhood of x , then |∇P| = |div P| = 0 in that
neighborhood, and inequality (4.2) is trivially satisfied. Otherwise there exists a sequence of
points xi converging to x with |P|(xi ) �= 0. Since estimate (4.2) holds at the points xi , then
it must hold at x as well by continuity. 
�
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