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Abstract. Robust landing pad detection plays a major role in Au-
tonomous Unmanned Aerial Vehicles (UAVs). This problem can be ap-
proached using deep neural networks for vision-based inference. However,
the full integration of deep learning algorithms into the small UAVs is still
challenging for their limited resources. This paper presents a landing pad
detection pipeline based on a revisited version MobileNetV3-Small. The
proposed architecture inherits robustness from the general-purpose ver-
sion but limits the computational cost significantly thanks to a set of de-
sign criteria aimed to limit hardware requirements. Experimental results
confirm that the proposed network compares favorably with a lightweight
general-purpose object detector in terms of accuracy/computational cost
trade-off. The system is also deployed on a commercial general-purpose
microcomputer confirming that satisfactory performance can be obtained
on general-purpose embedded architectures.

Keywords: CNNs · Embedded systems · Autonomous Unmanned Aerial
Vehicles · Edge computing.

1 Introduction

The successful application of Autonomous Unmanned Aerial Vehicles (UAVs)
necessarily passes through the solution of complex problems of computer vision
(CV). Although Deep learning (DL) proves to be the state-of-the-art for CV,
resource-constrained devices struggle in supporting DL solutions in real-time.
Eventually, this becomes a major limitation for the development of UAVs.

This paper presents a lightweight deep neural network (DNN) that can de-
tect landing pads in aerial images. The proposed vision-based landing detector
consists of a DNN based on a simplified version of MobileNetV3-Small [1]. As
merit, the proposal limits the computational impact considering all the pecu-
liarities of the problem under analysis. The intuition derived from the analysis
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of the problem was combined with a layer ablation study that confirmed the
suitability of the proposed changes in the neural architecture.

As a major result, this solution enables autonomous control of small UAVs
by processing the task directly in embedded systems mounted in the drones.
The autonomous inference enables the UAV to detect a safe landing area and
navigate accordingly to land on it.

As a proof of concept, the network was deployed in the Raspberry Pi 4
model B Single Board Computer (RPi) to evaluate its performance with an edge
computing device. RPi sets a challenging benchmark because is not designed to
host DL inference, but it is commonly used as a computing platform on small-size
drones.

The approach was validated using a real-world dataset of aerial images. Re-
sults confirmed that the proposed network compares favorably with a recently
proposed object detector, especially in terms of computing cost. In addition, the
measure of energy consumption and the inference time confirm the suitability of
the proposed approach.

The contribution of the paper can be summarized as follows:

– The paper presents a detailed analysis that leads toward the application of
a deep learning pipeline for robust landing pad detection;

– The ablation study provides insight into the computer vision problem that
can be employed in future studies;

– The deployment on a RPi confirms that the lightweight network can be
supported by commercial devices suitable for the target application.

2 Related works

Small UAVs may feature limited computational and energy resources, challeng-
ing autonomous navigation. So far, visual-based navigation is the most used
configuration because low-power computer vision systems are becoming more
and more accessible [2, 3]. Researchers have recently proposed combining vision-
based systems with Machine Learning (ML) algorithms to bring intelligence into
UAV’s missions. [4] combines traditional computer vision algorithm with DNN
to develop a safe landing area detection system. This combination allows the
preliminary process of the video to extract relevant features and then feed the
DNN with the preprocessed video enhancing system efficiency. This is a success-
ful approach which enhances the system’s performance and energy efficiency. [5]
proposes a two-stage training system to detect landing areas. A CNN trained
over synthetic images is used in the first stage, then a custom Kalman Filter
controller is used to have an accurate control during landing and approach the
landing site. The second stage consists of a transfer learning approach that uses
weights produced by the first stage CNN. With this two-stage system, it is pos-
sible to have a flexible model that can be employed in different scenarios. In
general, ML algorithms can be used in mobile robotics applications adopting
one of the two main approaches: cloud computing and edge computing.
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Cloud computing consists of transmitting sensed data to a server with near-
unlimited computational resources to compute the prediction using a ML model
and send the result back. However, data transmission introduces a considerable
latency and energy consumption. For instance, [6] presents an object detection
system for UAVs by using Region-based Convolutional Neural Networks (R-
CNN) and the cloud computing approach. “Dronetrack” [7] is another system
developed for UAVs that use cloud-based real-time object tracking. This paper
revealed that fast connections such as optic fiber lead to real-time execution.
These results suggest that running ML applications with a cloud computing
approach is feasible. However, these systems are network-dependent. Thus, if it
is considered an application that can be scaled in different scenarios where it is
not always possible to have a stable wireless connection, the cloud computing
approach is not the best choice.

The edge computing approach overcomes the cloud limitations leading to
better execution performance. For this reason the most disparate applications
were refined to be hosted in edge devices, including but not limited to semi-
autonomous prosthesis [8], pest detection [9, 10], visual sentiment analysis [11].
For instance, [12] presents a system for perception, guidance, and navigation for
racing drones. This system uses DL techniques to estimate the racing gate cen-
ters and assist drones in navigating through gates. It uses NVIDIA Jetson TX2
as a computer on-board responsible for computing the prediction in real-time,
achieving a frame rate of 28.95 FPS. The same board is used in [13] for enabling
real-time object detection in a UAV warning system. It exploits the state-of-
the-art YOLO V2 [14] for recognizing dangerous products with visual aerial
inspection directly on the drone board. Platforms such as GPUs and SBCs can
accommodate complex models requiring a high memory footprint, while MCUs
can host hundreds of KBs. Thus, the choice of the target platform is conditioned
to the model that has to host. For instance, [15] use Raspberry SBCs as target
platform to enable autonomous navigation on UAVs. The used CNNs are tailored
to produce fast results with the computational power of Raspberry and with a
low-power profile. On the other hand, if it is necessary to use huge ML mod-
els with resource-constrained platforms (e.g., MCUs), optimization techniques
become necessary to fit ML models in the target platform.

Aside from platforms development, a surge of dedicated DL architectures
were proposed in recent years to enable edge computing. The most used opti-
mization techniques for predefined architectures are pruning [16], weights com-
pression [17], quantization [18], and low-rank approximation [19]. However, the
starting architecture significantly bias memory footprint, run-time memory re-
quirements, and the number of floating point operations performed during infer-
ence phase (FLOPs). In recent years, researchers have proposed new operations
that decrease computation requirements: depthwise convolution (DWConv) [20],
mobile inverted bottleneck (MBConv) [21], efficient activation [22]. The latest re-
search trends for lightweights architecture definition were focused on knowledge
distillation [23] and Neural Architecture Search (NAS) [24]. In practice, most of
the latest general purpose CNN for computer vision such as MobileNetV3 [25]
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and EfficientNet [26] were obtained using NAS-based procedure. However, NAS-
based approaches induce a computational overload in the training phase, which
requires one to rely on dedicated computing equipment. In addition, the con-
straints introduced by a device such as a low-cost microcontroller would heavily
impact the design of the eventual loss function, thus affecting the optimization
phase.

3 Proposal: Design of a DNN for landing detection

MobileNetV3-Small architecture was proposed as a lightweight general-purpose
deep network [1]. The network is built on top of a core building block called Bot-
tleneck. The original paper uses the backbone network to target two different
applications: object detection and semantic segmentation. Semantic segmenta-
tion provides a bit-wise classification of the pixels in the form of masks. Instead,
object detection produces a number of bounding boxes, each one associated with
a class and confidence. In some cases, DNNs for semantic segmentation feature
fewer parameters than object detection alternatives. In our case, the two solu-
tions presented in MobileNetV3 paper featured 0.47 M parameters for segmen-
tation and 1.77 M parameters for the detector. Given the smaller footprint, we
propose to use a customized version of the semantic segmentation architecture
for landing pad detection. In the last part of the section, we present the low-cost
strategy that converts the mask into the coordinates of the landing pad.

Even being one of the smallest DNNs for image classification MobileNetV3
is largely oversized for the target problem. This architecture was designed to
extract high-level semantic features; meanwhile, the target problem involves the
detection of target objects with simple geometric patterns. For this reason, large
parts of the network are useless and inflate the compute cost. It is well-known
that the higher layer of the networks extracts high-level semantic features. In the
original implementation, the 9th bottleneck block and the last 2D convolution
fed the segmentation head [1]. We propose the 2nd and 5th bottleneck blocks as
inputs to the segmentation head. This means that the layers after the 5th bottle-
neck block have been excluded from the architecture, thus improving execution
speed and reducing the total number of parameters. Among the candidates, the
2nd and 5th bottleneck blocks were selected to trade-off generalization capabili-
ties and compute cost because the size of the output tensors elaborated by these
two blocks matched the input size required by the segmentation head.

In addition, the architecture has been tailored to handle small resolution im-
ages. The original design of MobileNet-V3 supports input with 1024× 2048 pix-
els resolution. High-resolution images are not required in landing pad detection,
since it could be sufficient to distinguish the landing pad from the background,
and introduce an increment in resources utilization. Furthermore, the original
architecture uses stride different from 1 in the first level of the architecture that
can negatively affect the landing pad’s detection when distant. We tackled this
issue by setting the stride of the first convolution layer and second bottleneck
layer from 2 to 1. The stride acts as a compression factor on the image size.
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Table 1. Proposed Backbone. KEY - Operator: building block; Exp size: expansion
factor; Out: number of output filters; SE: Squeeze-And-Excite ; NL: nonlinear activa-
tion; RE: ReLU; HS: hard swish; s: stride.

Input Operator Expsize Out SE NL s

3202 × 3 conv2d,3×3 - 16 - HS 1
3202 × 16 bneck,3×3 16 16 v(1) RE 2
1602 × 16 bneck,3×3 72 24 - RE 1
1602 × 24 bneck,3×3 88 24 - RE 1
1602 × 24 bneck,5×5 96 40 v(2) HS 2
802 × 40 bneck,5×5 240 40 v(3) HS 1

Eventually, the new version of the network envisions an input size of [320×320].
The final output of the designed DNN is a heatmap H of size 160 x 160 with a
probability value that corresponds to the probability of the pixel belonging to
a landing pad. Table 1 summarizes the architecture of the proposed backbone
network highlighting the most import parameter on the columns.

Squeeze-And-Excite (SE) layer plays a major role in the original definition
of MobileNetV3, both in terms of generalization performance and compute cost.
On the one hand, these blocks contain fully connected layers that contribute
significantly to the final number of parameters. On the other hand, SE effectively
propagates the information toward different layers of the network. Given that
we used a small portion of the original network (around half of the original
depth), we can speculate that the contribution of SE layers will be negligible.
Eventually, this operation reduced the memory requirements significantly of the
network with a negligible impact on the performance of the target problem. An
ablation study will confirm this claim in the experimental setup.

The lightweight pipeline in Figure 1 performs all the tasks that convert the
output of the segmentation network into the 2D coordinates of the landing pad.
First, a threshold operation filter out the pixel with a probability lower than
a reference value. Then, the well-known algorithm described in [27] groups the
pixel with a significant probability in clusters, as shown in the figure. Finally,
the cluster having the largest perimeter is selected as the predicted box.

4 Experiments

4.1 Generalization performance validation

A dataset composed of 13 videos of landing pads containing a total of 17,720
frames has been collected. The videos are collected from three different heights:
approximately from 3, 4 and 6 meters. In each frame one out of three landing pad
types are present. Figure 2 reports three examples of images from the dataset
with additional zero-padding. 5,542 frames from 5 of these videos have been
employed as training sets. The remaining images from the same videos have
been then discarded, leaving 11,300 images for the test. The experiments involved
two distinct test sets. A first set, called test1, contains all the testing images.
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Fig. 1. Pipeline from the RGB input to the landing pad detection.

A subsection of this testing set, called test2, corresponding to 3,328 images
belonging to 2 videos never included in training operations, has been employed
as a more challenging test set. We obtained the masks using a weak labeling
strategy. A MobileNetV3-SSD (Small) pretrained on COCO dataset for object
detection has been fine-tuned on a subset of the dataset that has been manually
labeled. This network has been used to annotate the remaining images. The
eventual bounding boxes have been further refined using a thresholding strategy
based on the color of the landing pad. It should be noted that this step was a
semi-manual annotation and cannot be included in a fully autonomous pipeline.

Visual inspection from two human users confirmed that the prediction ob-
tained were sufficiently overlapped with the landing pad. Eventually, the Mo-
bileNetV3 - SSD sets the comparison in the experimental setup.

Fig. 2. Example of landing pad images contained in the dataset.
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An ablation study confirmed the hypothesis about the contribution of the
SE layers. The network was trained for 10 epochs, with batch size 4, learning
rate 0.0001. Table 2 summarizes the results of the ablation study, showing the
performance of the network in terms of Intersection over Union (IoU). The IoU,
a.k.a. Jaccard index, is a measure of how much the predicted bounding box
(A) is comparable with respect to the ground truth (B) following the relation-

ship: IoU = |A∩B|
|A∪B| . We compared 5 configurations, Full refers to the network

as presented in table 1, SE(n) excluded identifies the network without the n-th
SE layer. The second and third columns show the number of parameters of the
complete architecture and the number of floating-point operations for one infer-
ence phase, respectively. Column IoUtot reports the average IoU value measured
between the labels and the weak labels. Errors report the number of images
where the IoU value was 0. Finally, column IoUclean reports the average IoU
only for images where the measured IoU was greater than 0. The performance
was measured using the whole test set, i.e., test1.

Table 2. Ablation study results. KEY - Params: Number of parameters; FLOPs:
Number of floating-point operations; G: 109; IoUtot: average Intersection over Union;
IoUclean: average of Intersection over Union greater than 0.

Architecture Params FLOPs (G) IoUtot Errors IoUclean

Full 195,460 1.295 71.6% 1,093 (9.7%) 79.3%
SE(1) excl. 194,916 1.294 77.5% 31 (0.3%) 77.7%
SE(2) excl. 176,836 1.293 76.5% 31 (0.3%) 76.7%
SE(3) excl. 79,780 1.291 69.0% 403 (3.6%) 71.6%

SE(1,2,3) excl. 60,612 1.289 72.8% 530 (4.7%) 76.4%

The results highlight that SE blocks play a major role in the number of
parameters. In particular, SE(3) has a huge impact on the number of parameters.
The number of operations is heavily affected by these layers, but the relative
contribution is smaller because dense layers impact weights but not significantly
on tensor size propagation. In terms of generalization error, we can note that SE
blocks affect overall performance but do not always positively affect the network.
The solution without SE blocks proves more accurate than the version without
the third SE when images with IoU 0 are excluded. The larger number of errors
for the Full architecture was because, in some cases, masks were significantly
noisy. A visual inspection confirmed that the prediction marked as an error was
correct in a few cases.

Table 3 summarizes the comparison with the MobileNetV3-SSD (V3-SSD),
i.e. the solution that would have been naturally employed from [1]. The table
reports number of parameters (in millions) and FLOPs measured in Giga (G)
followed by the average IoU computed over the challenging test set, i.e., test2.
IoU columns report, in addition, between brackets, the average IoU considering
only images where IoU was greater than 0.
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Table 3. Comparison with state-of-the-art model for lightweight object detection. KEY
- Params: Number of parameters; M: 106; FLOPs: number of floating-point operations;
G: 109; IoU: average Intersection over Union.

Architecture Params (M) FLOPs (G) IoU

V3-SSD 2.761 3.758 69.3%
Proposal 0.061 1.289 61.7% (63.7%)

The results highlight that the proposed approach includes 45 times fewer pa-
rameters and requires around one-third of operations with respect to the original
object detector. When analyzing the IoU, one must consider that those analyses
in biased towards the SSD. In fact, this model has been used to build most of
the labels. Accordingly, the 8% gap in terms of the IoU can be ascribed to noise
introduced by the weak labeling process.

4.2 Model optimization

The developed system for landing pad detection was deployed on the RPi board.
The system was characterized by considering energy consumption, frame rate,
and memory usage for processing one frame by averaging the measured values.
Moreover, the system performance is compared among four model configura-
tions taking into account the architecture presented in Section 3 with INT8,
FP16, and FP32 bit representation, along with MobileNetV2 (MobV2) based
setup used in [15] for landing pad detection with FP32 bit representation. The
measurement campaign was conducted by processing about 700 frames for each
configuration in a static scene. Specifically, the system was mounted in order
to view and process a landing pad at a distance of three meters continuously.
Moreover, a General Purpose Input Output (GPIO) was configured to give an
impulse of 100 ms at the end of each frame to synchronize the processed frames
with the relative current consumption. An oscilloscope was used to monitor the
current consumption as well as the GPIO with a sampling frequency of 50 kHz.
The measurements of current consumption relative to the processing time were
analyzed to find the average time and the average current consumption. The
results of the overall system characterization are summarized in Table 4.

As shown in Table 4, the 32 bit configuration is the most efficient and with the
best frame rate. The 8 bit configuration, indeed, shows the worst performance
because it is not supported by the RPi’s instruction set. Moreover, MobileNetV2
needs an additional piece of pipeline to solve the problem of landing pad detec-
tion, thus confirming the efficiency of the proposed solution. The overall system
characterization for the best configuration (FP32) reveals that the average pro-
cessing of one frame takes 388.05 ms and consumes 1.80 J. Moreover, it uses
only 2.27% of the available RAM (i.e., 4 GB), achieving 2.58 Frames Per Second
(considering a the average time to perform the processing), enough to compute
a landing trajectory and correct eventual drifts. The presented system runs on-
board on UAVs with the edge computing approach. Considering a small-size
UAV, it is equipped with a 1500 mAh battery operating at 14.8 V which ensures
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Table 4. Comparison between the proposed model and MobileNetV2 [15] in terms
of energy consumption, execution time, measurement standard deviation and memory
usage, varying the quantization. KEY - Config: quantization used; INT8: 8-bit inte-
gers; FP16: Floating-point 16 bits; FP32: Floating-point 32 bits; MobV2: MobileNetV2
quantized FP32; std: Energy standard deviation; Time: average time; FPS: Frames Per
Second considering the average time; RAM: Random-access memory.

Config Energy (J) std Time (ms) FPS RAM Disk usage

INT8 2.22 0.0051 523.51 1.91 97.05 MB 108.17 kB
FP16 1.83 0.012 390.31 2.56 92.69 MB 132.98 kB
FP32 1.80 0.012 388.05 2.58 92.82 MB 766.31 kB

MobV2 1.80 0.0097 478.80 2.09 223.01 MB 26.70 MB

a flight time of 15 minutes. With the proposed system operating onboard, the
drone’s available energy and flight time are reduced by only 5%. This means that
bringing intelligence to UAV systems does not compromise the available energy,
which is a precious resource in such systems.

5 Conclusions

This paper provides a detailed analysis that leads toward the application of a
deep learning pipeline for robust landing pad detection. The analysis is carried
out through an ablation study that considers insights of the analysed computer
vision problem. The eventual deployment on a RPi confirms that the lightweight
network can be supported by commercial devices suitable for the target applica-
tion. As future work, the integration of the RPi module with hardware accelera-
tors e.g. Intel Neural Compute Stick, will provide additional boost to the perfor-
mance of the network and additional clues concerning the real-time performance
of the pipeline. Moreover, the employment of NAS techniques will lead to the
development of an even more efficient DL model, achieving better performance,
extending this solution in other UAVs autonomous navigation applications.
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