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ABSTRACT

How does the brain represent information about motion events in relation to agentive and
physical forces? In this study, we investigated the neural activity patterns associated with
observing animated actions of agents (e.g., an agent hitting a chair) in comparison to similar
movements of inanimate objects that were either shaped solely by the physics of the scene (e.g.,
gravity causing an object to fall down a hill and hit a chair) or initiated by agents (e.g., a visible
agent causing an object to hit a chair). Using fMRI-based multivariate pattern analysis, this
design allowed testing where in the brain the neural activity patterns associated with motion
events change as a function of, or are invariant to, agentive versus physical forces behind them.
Cross-decoding revealed a shared neural representation of animate and inanimate motion events
that is invariant to agentive or physical forces in regions spanning frontoparietal and posterior
temporal cortices. In contrast, the right lateral occipitotemporal cortex showed higher sensitivity
to agentive events, while the left dorsal premotor cortex was more sensitive to information about

inanimate object events that were solely shaped by the physics of the scene.
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I ntroduction

Understanding others” actions is fundamental to our everyday lives. Whether navigating
through a crowded street or talking to someone, our brains process a variety of cues related to
people, objects, and their interactions to arrive at a meaningful interpretation. Previous work
identified certain frontoparietal and posterior temporal brain regions that are involved in
understanding others’ actions (Caspers et al., 2010; Watson et al., 2013; Urgesi et al., 2014,
Hardwick et al., 2018). These regions encode various aspects of human actions such as body
motion (Grosbras et al., 2012; Han et al., 2013), agency (Gao et al., 2012; Scholl and Gao, 2013),
sociality (lacoboni and Dapretto, 2006; Isik et al.,, 2017; Wurm et al., 2017), motor
representations (Rizzolatti and Craighero, 2004; Calvo-Merino et al., 2006), and goals (lacoboni

et al., 2005; Cavallo et al., 2016; Patri et al., 2020).

While it is important to investigate how the brain represents information specific to
human actions, it is also crucial to acknowledge that actions can be understood at a more basic
level as the movements of physical objects. After all, humans are tangible objects existing in a
physical world, generating forces, and moving through space. That is, the actions of an animate
being can be described with respect to agency or goals, but also at a level specifying kinematics
of movement (Zacks et al., 2006; Dayan et al., 2007; Mulliken et al., 2008; McAleer et al.,
2014), inter-object relations (Hafri and Firestone, 2021) or the amount of physical force exerted
(Liu et al., 2017). Is there a neural representation of events that encodes such properties
regardless of animacy or agency? Which brain regions are more sensitive to agentive versus

physical event dynamics? These are the questions addressed in the current study.

We define motion events as changes in an object's position relative to its surroundings.

For a motion event to occur, a force needs to be applied upon an object, causing it to accelerate
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or decelerate. Various physical forces can shape motion, and importantly, animate agents can
generate and control their own movement. Relatedly, for the purposes of this study, we
categorized forces that control movement as agentive or physical. For instance, a person rising
from a chair involves an agentive force, controlled by the individual, in a way that cannot be
reduced to external physical forces. In contrast, an inanimate object, incapable of self-propelled
motion, requires an external energy source to move. The movements of an inanimate object can
be fully explained by external physical forces, the source of which can be agentive (e.g., a person

throwing a rock) or physical (e.g., a rock falling off a cliff).

Within this framework, our study addressed the contributions of agentive and physical
forces on the neural representation of motion events. Our experimental conditions included
events driven entirely by the physics of the scene devoid of any agent involvement (e.g., a ball
rolls down a slope due to gravitational pull and bounces over a chair), as well as events tied to
animate agents, either as the cause of inanimate motion (e.g., a visible agent causes a ball to
descend a slope and bounce over a chair) or as executors of an action (e.g., an agent bounces
over a chair). We ensured that the unfolding of events, motion trajectories, and inter-object

relations were analogous across all experimental conditions (e.g., X bounces over Y).

Using fMRI-based multivariate pattern analysis and cross-decoding, we identified a
neural representation of motion events that is invariant to agentive or physical forces in
frontoparietal and posterior temporal regions that are associated with human action recognition.
Furthermore, right lateral occipitotemporal cortex showed greater sensitivity to events involving
animacy and agency, while the left dorsal premotor cortex was more sensitive to information

about inanimate object events that were shaped by the physics of the scene. Overall, our study
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provides new insights into the functional properties of brain regions that are involved in human

action understanding.

A. Experimental conditions

>
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B. Events for decoding

“bounce over” “hit” “roll in front”

Figure 1. Sample stimuli and experimental design. (A) Experimental conditions and sample
trials. For all experimental conditions, 2-sec videos were used depicting the movements of a
spheric agent or a ball. (B) Events used for decoding. For all experimental conditions, three
motion trajectories were used in relation to an animate or inanimate passive patient: bounce

over — hit — roll in front.

Materialsand Methods
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Participants. Twenty-nine healthy adult participants completed the study (nine male; age range:
21-34; Meanag: 25.62). Neuroimaging data and participant performance were inspected for
quality and four subjects were excluded from the analyses (see Preprocessing for more detail).
The final dataset included 25 participants. All participants were right-handed and had normal or
corrected-to-normal vision. Participants provided informed consent prior to the experiment and
were paid 75 dollars for a 2-hour scanning session. The experimental protocol was approved by

Harvard University’s Committee on the Use of Human Subjects.

Stimuli. To identify where in the brain the neural activity patterns associated with motion events
are invariant to, or change as a function of, agentive and physical forces, we used fMRI while
participants viewed 2-sec animated videos (see Figure 1). We produced the videos using Blender
v2.92, a free and open-source animation software (Blender Foundation, 2021), and presented
them at the center of fixation with a frame rate of 30 frames per second. For stimulus
presentation, response collection, and synchronization with the scanner, we used MATLAB

Psychtoolbox-3.

Our stimuli comprised four event conditions: object eventSpnysica (€.9., gravity makes a
ball roll down a hill and the ball bounces over a chair as governed solely by the inherent physics
of the scene), object eventSagent-induced (€.9., an agent causes a ball to roll down a hill and the ball
bounces over a chair), agent actionSseis-propetied (€.9., @ Stationary agent at the bottom of the hill
starts moving and jumps over a chair in a fully self-propelled way), and agent actionSopject-path
(e.g. an agent slides down a hill and bounces over a chair following the same trajectory as the
inanimate object events, see Figure 1A for sample stimuli, see Supplementary Figure 1 for
univariate activation maps). All events took place within a scene layout of a hill and a meadow.

The hill in the scene enabled introducing gravity and control of physical forces such that an


https://doi.org/10.1101/2023.07.20.549905
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549905; this version posted July 24, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

object can move without agent involvement (see Results for more detail on how the different

conditions were used to address different aspects of motion event representation in the brain).

All experimental conditions depicted three motion trajectories with respect to a passive
patient in the scene (“bounce over”, “hit”, “roll in front of”, see Figure 1B), creating 12 unique
motion events (4 experimental conditions * 3 motion trajectories). These three motion
trajectories were used as the basis for all decoding analyses within or across experimental
conditions (for more detail, see Whole-brain searchlight MVVPA). We created 64 exemplars per
unique motion event, through which we introduced significant perceptual variability (see
Supplementary Figure 2). Through these exemplars, all motion events were presented across four
viewing angles, two moving directions (left or right), two subjects (ball-basketball for inanimate
objects; red agent-blue agent for animate agents), and four passive patients (two inanimate
patients: chair or box; two animate patients: pink agent-orange agent). For instance, the “roll in
front of” event featuring the “object eventspnysica” condition was depicted across these 64
different exemplars. This strategy helped control for low-level visual confounds that might
distinguish one motion trajectory from another (e.g., presence of an animate entity, presence of
occlusion, where in the scene there is movement), ensuring that decoding is not merely a

consequence of such low-level visual features.

Design of the fMRI experiment. Participants underwent one scanning session that started with
an anatomical scan followed by eight functional runs; each run contained four blocks, and each
block contained 28 trials (24 experimental trials, and four catch trials). We used an event-related
design to present the stimuli, and the different event conditions and motion trajectories were
interspersed within runs in a randomized fashion. There were 96 experimental trials (24

experimental trials per block x 4 blocks = 96) and 16 catch trials per run, and each trial consisted
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of a 2-sec video followed by a 1-sec fixation period. We showed longer fixation periods of 10-
sec before runs, 16-sec after runs, and 10-sec between blocks. Over the course of the 96
experimental trials within a run, we showed each of the 12 unique motion events (4 event
conditions * 3 motion trajectories) eight times (twice per block, once with animate and once with
inanimate patients). Due to logistical challenges, some participants were not able to complete all
eight runs; however, since different event conditions were balanced within runs and exemplars
were sampled randomly across runs, this is unlikely to have resulted in confounds. In the final

dataset, all 25 subjects provided data at least for seven out of the eight runs.

Task. To ensure that participants paid attention to the events depicted in the videos, we
conducted a catch trial detection task: participants were asked to press a button when they
detected aberrant videos (16 catch trials per run, 14% of all trials). These aberrations were either
perceptual, in which a visual oddity was introduced to the video (e.g., color change, freezing), or
conceptual, in which the video depicted a meaningfully different movement (e.g., a ball rolling
down the back of the hill; an agent turning around prior to movement). The catch trial task
ensured that participants paid attention to the stimuli, both to their visual features (through the
perceptual catch trials), and their higher-level aspects (through the conceptual catch trials).
Responses made prior to the end of the 1-sec fixation period following each trial were counted.
Prior to the scanning session, we showed participants demo videos, explained that catch trials
would contain either perceptual or conceptual aberrations, and then showed a sample of the
experimental layout. During the anatomical scan, participants completed a practice run, in which
the screen displayed feedback after both correct and incorrect responses; no feedback was shown

during the actual experiment.
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During the functional scans, we presented an equal number of catch trials for each of the
four experimental conditions, and the variations in viewpoint and moving direction were
counterbalanced. Participants showed high performance in the catch trial task with low false
alarm rates (M = .006, SD = .007) and high hit rates (M =.953, SD = .036). For two participants,
catch trial performance could not be recorded due to technical issues. These participants
performed with high accuracy as observed throughout the data collection, thus, we chose to keep
these participants in the analysis of the neuroimaging data. One run each of three participants

were excluded due to off-task behavior during the scans (e.g., sleeping).

Data Acquisition. The neuroimaging data were collected using a 3T Siemens Prisma fMRI
Scanner using a 32-channel phased-array head coil. T1-weighted structural images were obtained
using a 3D MPRAGE sequence (176 sagittal slices; repetition time (TR) = 2530 msec; inversion
time = 1020 msec; flip angle = 7 degrees; field of view (FoV) = 256 x 256 mm; 1x1x1 mm voxel
resolution). Functional images were acquired using a T2*-weighted gradient echo-planar
imaging (EPI) sequence (TR = 1500 msec; echo time (TE) = 28 msec; inter slice time = 33 msec;
flip angle = 70 degrees; FoV = 200 mm x 200 mm; matrix size = 66 x 66; 3x3x3 mm voxel

resolution; 45 slices with 3 mm thickness and 0 mm gap).

Preprocessing. We preprocessed and analyzed functional and anatomical data using
BrainVVoyager 22.4, NeuroEIlf Toolboxes, CoOSMoMVPA, and MATLAB 2021b (Goebel, 2012;
Oosterhof et al., 2016). The first four volumes of functional runs were removed to prevent T1
saturation. Preprocessing of functional data included slice time correction, three-dimensional
motion correction (trilinear interpolation, the first volume of the first run of each participant was
used as reference), linear trend removal, high pass filtering (cutoff frequency of three cycles),

and spatial smoothing (Gaussian kernel of 8mm FWHM for univariate analyses and 3 mm
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FWHM for MVPA). Functional images were registered to high-resolution anatomical images,
and anatomical and functional data were normalized to Talairach space. We inspected all
anatomical and functional scans for data quality and excluded scans that had a maximum
absolute motion greater than 3mm and a signal-to-noise ratio lower than 130. Based on these
criteria, two out of the 29 participants were excluded due to low data quality as many of their
runs did not meet these quality criteria, leaving limited data for analyses. Another two
participants were excluded from the analyses due to logistical issues during their scan and off-
task behavior. Out of the remaining 25 participants, only one run of one participant was excluded
for not meeting the quality criteria for functional scans. Thus, the analyses presented in the paper

contain high quality functional data with low motion and high signal-to-noise ratio.

fMRI Data Analyss. For each participant and run, we computed a general linear model using
design matrices containing 24 event predictors (separate predictors were fit for animate-
inanimate patients per 12 unique motion events), plus one predictor for catch trials. Regressors
were defined as boxcar functions convolved with a canonical double-gamma hemodynamic
response function. Trials were modeled as epochs lasting from video onset to offset (2-sec) and
the resulting reference time courses were used to fit the signal time courses of each voxel. In

total, this procedure resulted in 16 beta maps per 12 unique motion event per subject.

Whole-brain searchlight MVPA. To investigate the neural representation of motion events in
relation to agentive and physical forces, we used multivariate pattern analysis techniques
(MVPA). For all MVPA analyses, decoding was completed over three motion trajectories
defined with respect to a passive patient (i.e., bounce over — hit — roll in front, see Figure 1B). A

linear discriminant analysis classifier algorithm was trained and tested on the beta maps, divided

10
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into four-voxel-radius spheres (12mm), to classify the associated stimuli by motion trajectory

(three-way decoding, chance-level: 33.33%).

To investigate the neural representation of motion events in relation to different
experimental conditions, we employed two decoding approaches. Firstly, within-condition
decoding was used, where a classifier was trained and tested to differentiate between the three
motion events within a specific experimental condition (e.g., self-propelled agent actions) using
leave-one-out cross-validation. To test for differences in decoding strength across the different
experimental conditions, we compared the respective decoding maps using whole-brain two-
tailed paired t-tests. To identify the neural representations shared across agentive and physical
dynamics, we performed cross-decoding. This involved training the classifier on data from one
condition (e.g., distinguishing bounce over — hit — roll in front for physical object events) and
then testing it on data from another condition (e.g., distinguishing bounce over — hit — roll in
front for self-propelled agent actions). We repeated this process in the opposite direction and
averaged the resulting classification accuracies. The resulting accuracy maps from the decoding
analyses were entered into one-tailed t-tests to test for above chance classification in the whole
brain (chance level: 33.33%). We used the Monte Carlo Cluster based method to correct for
multiple comparisons (initial threshold: p = .001, 10000 simulations), and visualized the results

on a cortex-based surface.

In our decoding analyses, we treated the motion events with different subjects, animate or
inanimate passive patients, viewing angles, and moving directions as the “same event”. This
approach allowed the classifier to learn to detect the motion events regardless of variability in
these factors. Since the classifiers were trained to distinguish the three motion events across

these variations, any differences observed in decoding between different experimental conditions
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(e.g., between object eventSpnysica VErsus agent actionSsei.propeiied) Cannot be reduced to these

factors.

ROI analysis. We primarily focused on and report whole-brain searchlight maps. However, to
gain a more detailed understanding of how information about motion events is represented in
different brain regions, we conducted region-of-interest (ROI) analyses on specific areas that are
traditionally associated with human action observation following a meta-analysis (Caspers et al.,
2010): the lateral occipitotemporal cortex (LOTC), inferior parietal lobule (IPL), dorsal premotor
cortex (PMd), ventral premotor cortex (PMv), posterior superior temporal sulcus (pSTS), and
superior parietal lobule (SPL). The MNI coordinates from the meta-analysis were converted to
TAL coordinates using Yale Bioimage Suite (Papademetris et al., 2006; Lacadie et al., 2008).
Since the meta-analysis provided a different number of ROIs in the frontoparietal cortices for left
and right hemispheres, for simplicity, we used the centroid of Brodmann areas 6 and 7 for dorsal
premotor cortex and superior parietal lobules, respectively (Lacadie et al., 2008). All ROIs were
created as spheres with a 12mm radius around their respective coordinates (TAL coordinates: left
LOTC [-45 -71 6], left IPL [-58 -23 34], left PMd [-28 0 48], left PMv [-48 8 29], left pSTS [-52
-49 11], left SPL [-18 -57 50]; right LOTC [52 -63 5], right IPL [44 -31 41], right PMd [28 1

47], right PMv [50 12 27], right pSTS [54 —40 8], right SPL [24 -56 54]).

For the ROI analyses, we extracted decoding accuracies from the searchlight maps for
each classification scheme (e.g., decoding of self-propelled agent actions), participant, and ROI.
We then entered the decoding accuracies for ROIs into FDR-corrected one-tailed t-tests to
identify which ROIs showed above chance classification. To investigate differences in decoding
strength across event types and ROIls, we applied linear mixed effects models using the Ime4

package (Bates et al., 2015) in R version 4.1.1. (R Core Team, 2021). To examine interactions
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between event type and ROI, we compared models with and without the interaction term using a
likelihood ratio test. For instance, to test the interaction between event type and ROI, Model 1
included Classification Accuracy, Region, Event Type, and Subject ID as a random effect (1 |
Subject ID) and did not allow for an interaction term between Region and Event Type (Region +
Event Type). We then compared Model 1 with Model 2, which expanded on Model 1 by
including an interaction term between Region and Event Type (Region * Event Type). After
significant interactions or main effects, we conducted FDR corrected post-hoc two-tailed tests of
estimated marginal means to investigate which conditions are responsible for driving the

observed effects.
Results

A shared neural representation of motion events acr oss agentive and physical for ces. One of
our main aims was to identify a neural representation of motion events that is invariant to
agentive or physical forces behind them. To this end, we first focused on two conditions: self-
propelled agent actions and physical object events. To make sure that the self-propelled agent
actions depicted full agentive control, an animated agent (a solid-color sphere with eyes and
mouth) stood stationary on a flat surface and then started moving (see Figure 1A). These agent
actions served as reference for human actions that are broadly studied in the literature, as
substantial literature has shown that animations of simple geometric figures can elicit robust
perceptions of animacy and agency, especially when they move in a self-propelled way (Heider

and Simmel, 1944; Michotte, 1946; Scholl and Tremoulet, 2000; Blakemore et al., 2001).

On the opposite end of these self-propelled, agentive actions were physical object events
that were governed fully by the physics of the scene without any agent involvement. These

events started with a ball toppling off a ledge atop a hill. The ball would then fall down the hill to
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complete one of the three motion trajectories (i.e., bounce over — hit — roll in front) as controlled
by a physics engine built into the animation software. An independently collected behavioral
survey confirmed that observers did not attribute agent involvement to these events (see

Supplementary Figure 3, Supplementary Note 1).
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Figure 2. Decoding of observed events by generalizng across animacy, and agentive and
physical forces. (A) Results of whole-brain three-way decoding searchlight across self-
propelled agent actions and physical object events. (B) Results of whole-brain three-way
decoding searchlight across self-propelled agent actions and agent-induced object events (one
tailed t-tests against chance level 33.33%). Correction for multiple comparisons was
conducted using the Monte Carlo Cluster based method (piniias = .001). Only the areas that
survived correction are presented as highlighted by a black border.
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To identify brain regions that encode a general neural representation of motion events
independent of agentive or physical forces, we conducted cross-decoding MVPA across self-
propelled agent actions and physical object events. Cross-decoding revealed robust
generalization across self-propelled agent actions and physical object events in various
frontoparietal and posterior temporal clusters in both hemispheres (see Figure 2A, for ROI
analysis see Supplementary Figure 4B). Success in this cross-decoding reflects event
representations that are not tied to animacy or the type of force controlling the event — agentive

or physical.

We found a shared neural representation for self-propelled agent actions and physical
object events in regions classically associated with human action recognition. As we noted
before, the source of an inanimate objects’ movement can be agentive or physical. Is this shared
neural representation we identified independent of whether the movement is caused by an agent
or physical forces? How does the presence of causal agency in the movement of inanimate

objects affect their neural representation compared to actions performed by animate entities?

To address this question, we created instrumental object events that had a visible agent
cause behind them: agent-induced object events. Here, a visible agent pushed a ball down the hill
and as a result, the ball bounced over — hit — rolled in front of a passive patient (see Figures 1A-
B). The movements of the initiator agent were always the same across the three motion
trajectories, and the meaningful distinctions happened in relation to the resulting movements of
the ball. Thus, successful decoding of the three motion trajectories could not rely on the initiator
agent’s movement and should capture the movements of the ball. Furthermore, to control for
possible perceptual confounds between the physical object events and agent-induced object

events, the ball’s movements were made identical in the two conditions: all that differed was the
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presence of an animate agent initiating the object motion in agent-induced object events, and the
rest of the path was controlled by the physics engine. An independently collected behavioral
survey showed that observers endorsed the involvement of agents in these agent-induced object

events (see Supplementary Figure 3, Supplementary Note 1).

Cross-decoding of self-propelled agent actions and agent-induced object events was
successful in overlapping frontoparietal and posterior temporal clusters (see Figure 2B). We
hypothesized that regions that are sensitive to causal agency might demonstrate greater
generalization between agent actions and agent-induced object events compared to physical
object events that were purely governed by physical forces. No reliable differences were found in
cross-decoding strength across the whole-brain when comparing the two cross-decoding maps
from self-propelled agent actions to agent-induced or physical object events. (see Supplementary
Figure 4A). In the ROl-analysis, cross-decoding between self-propelled agent actions and
physical object events was stronger than that between self-propelled agent actions and agent-
induced object events in right and left LOTC (see Supplementary Figure 4B, Supplementary
Note 2). However, note that agent-induced object events had a more complex event structure and
depicted instrumental actions, whereas physical object events and self-propelled agent actions
did not. This difference in complexity might explain better cross-decoding of self-propelled
agent actions to physical object events compared to that between self-propelled agent actions and
agent-induced object events in bilateral LOTC and might have masked any possible

contributions of causal agency to cross-animacy generalization.

Sear ching for signs of agency and animacy in the neural representation of motion events.
Cross-decoding showed that regions classically associated with human action recognition carry a

shared neural code for motion events that generalizes across animate and inanimate entities, and
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agentive and physical forces. However, agent actions and movements of inanimate objects are
marked by key differences. For example, their kinematics may differ, with agents able to change
direction and speed while inanimate object movement is determined by external physical forces.
Additionally, agent actions reflect the goal-directed behavior of animate entities, while object
events pertain to inanimate physical objects. There is evidence that sensitivity to animacy and
agency is present even from infancy (Opfer, 2002; Csibra, 2003, 2008; Tremoulet and Feldman,
2006; Liu et al., 2017) and animacy is a widely established principle of organization in the neural
representation of objects (Konkle and Caramazza, 2013; Grill-Spector and Weiner, 2014; Peelen
and Downing, 2017; Wurm and Caramazza, 2022). Given these considerations, we next asked if
any brain regions are sensitive to agentive versus physical forces while encoding dynamic event
information. To address the differential roles of agentive and physical forces on the neural
representation of motion events, we completed different decoding analyses. Specifically, we
trained and tested classifiers with neural activity patterns associated with different experimental
conditions separately (i.e., within self-propelled agent actions or physical object events), and

compared their decoding strengths.

We first investigated the decoding strengths of self-propelled agent actions and physical
object events, which provides a robust testbed to investigate the relative contributions of agentive
and physical forces to the neural representation of motion events. In line with previous findings,
both event types were decoded in regions spanning posterior temporal, frontal, and parietal
cortices (see Figures 3A-B). Comparing the two event types, a two-tailed whole-brain paired t-
test revealed multiple clusters spanning the right lateral occipitotemporal cortex, posterior middle
temporal sulcus, temporoparietal junction, and supramarginal gyrus that can better distinguish

self-propelled agent actions compared to physical object events (see Figure 3C). Although
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additional clusters in left posterior temporal cortex showed better decoding of self-propelled
agent actions, and some clusters in left dorsal premotor cortex showed better decoding of
physical object events (ps < .005), these effects did not survive correction for multiple
comparisons in the whole brain. For a more fine-grained analysis, we turned to the ROI analysis

(see Figure 3D).

18


https://doi.org/10.1101/2023.07.20.549905
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.07.20.549905; this version posted July 24, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A. Agent actionSseit-propelled B. Object Eventsphysical

C. Agent actionsseit-propelled — Object Eventsphysical

S &

D. ROI Analysis
Left Hemisphere Right Hemisphere
e P8 FE OFE o2 0E OER OEE 4 iF OFEE OFEOEY OEE OB
73 73
gsa gsa = e
§53 % . §53 ¢ . d
MENTRTRIR TR N o FE IR L
3243‘. !‘! 3\0_43;£‘t’5,$ it
u‘i'ii ,,,,, %*; 33‘,_ff §§‘§;
LOTC IPL PMd PMv STS SPL LOTC IPL PMd PMv STS SPL

Agent actionsself-propelled

Object eventsphysical

Figure 3. Decoding of self-propelled agent actions and physical object events. Results of
whole-brain three-way decoding searchlight for (A) self-propelled agent actions and (B)
physical object events (one tailed t-tests against chance 33.33%). Correction for multiple
comparisons was conducted using the Monte Carlo Cluster based method (pPinitiar = .001). Only
the areas that survived correction are presented as highlighted by a black border. (C) Two-
tailed whole brain decoding contrast of self-propelled agent actions physical object events.
Black outlines mark areas that survived Monte Carlo Cluster based correction (pinitia = .001).
The map is thresholded at p < .02 to demonstrate significant differences that do not survive
correction for multiple comparisons. (D) ROI decoding accuracies for self-propelled agent
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actions and physical object events. Error bars indicate standard error of the mean (SEM), and
asterisks indicate FDR-corrected effects of one-tailed t-tests for comparisons against chance
level (33.33%, *p < .05, **p < 0.01, ***p < 0.001). Individual participants are connected via
light gray lines. FDR-corrected pairwise two-tailed tests of estimated marginal means showed
better decoding of self-propelled agent actions in left and right LOTC, and right pSTS (*p <
.05, **p < 0.01, ***p < 0.001).

To compare decoding accuracies of self-propelled agent actions and physical object
events across different ROIs within each hemisphere, we fitted linear mixed effect models testing
the interaction of event type and ROI. This ROI by event type interaction was significant both in
the left hemisphere (x2[5] = 32.23, p < .001, AAIC = 22.23) and in the right hemisphere (x2[5] =
42.30, p < .001, AAIC = 32.30). Post-hoc contrasts revealed that self-propelled agent actions
were decoded at a higher accuracy than physical object events in left LOTC (b = 4.60, p = .020,
d = .68). In the remainder of the left hemisphere ROIs, self-propelled agent actions and physical
object events were classified with a comparable accuracy (IPL: b =.19, p=.905,d =.03; PMd: b
=-2.49,p=.217,d=-44; PMv: b=-.95 p=.646, d=-.16; pSTS: b= 3.25, p=.111, d = .59;
SPL: b =-1.87, p = .342, d = -.23). In the right hemisphere, self-propelled agent actions were
decoded at a higher accuracy than physical object events in right LOTC (b =6.79, p<.001,d =
.94) and pSTS (b = 5.10, p = .002, d = .81). Self-propelled agent actions and physical object
events were classified with comparable accuracy in the remainder of the right hemisphere ROIs
(IPL: b=1.06, p=.476,d=.13; PMd: b=-1.17, p= .476,d =-.17; PMv: b=1.48, p = .476,d =

23: SPL: b=-2.33, p=.234, d = -.32).

Stronger decoding of self-propelled agent actions in LOTC and pSTS, particularly in the
right hemisphere, replicates our previous study that addressed the shared and distinct neural
representations of observed human actions and inanimate object events (Karakose-Akbiyik et al.,

2023). The current study adds to these findings and highlights that explicit body motion, and the
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associated movement kinematics, are not necessary for driving differences between animate and

inanimate movement in these regions.

Comparing agent actions and object eventsin a mor e controlled setting. Self-propelled agent
actions presented so far were highly effective in giving impressions of intentionality and
agentive control. However, the overall trajectories of these stimuli were not completely matched
with that of physical object events. In physical object events, the ball first fell down a hill, and
completed one of the three motion trajectories. The agent actions on the other hand, started on a
meadow and did not complete the extra step of going down a hill (see Figure 1A). To compare
agent actions and object events in a more controlled setting, we created another agent action
condition: agent actionSepject-path. These stimuli started with an agent standing atop a hill. The
agent then slid down the hill to complete one of the three motion trajectories. Thus, the motion
trajectories of the agent actionsenject-path Stimuli were matched with that of physical object events,
providing a controlled setting to identify the contributions of animacy. Furthermore, like physical
object events, the motion trajectories of agent actionSgpject-patn Were also determined by the
physics engine. An independently collected behavioral survey ensured that these agent actions
were still perceived as agentive compared to physical object events validating the use of these
stimuli to test the contributions of agentive and physical forces to the neural representation of

event dynamics (see Supplementary Figure 3, Supplementary Note 1).
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Figure 4. Decoding of agent actionsoject-path @Nd physical object events. Results of whole-
brain three-way decoding searchlight for (A) agent actionSebject-path and (B) physical object
events (one tailed t-tests against chance 33.33). Correction for multiple comparisons was
conducted using the Monte Carlo Cluster based method (piniiar = .001), and only the regions
that survived correction for multiple comparisons are presented as highlighted by a black
border. (C) Two-tailed whole brain t-test contrast of agent actionSgpject-path and physical object
events decoding. Black outlines mark clusters that survived Monte Carlo Cluster based
correction (pinitiar = .001). The map is thresholded at p < .02 to demonstrate significant
differences that do not survive correction. (D) ROI decoding accuracies for agent actionSebject-
path and physical object events. Error bars indicate standard error of the mean (SEM), and
asterisks indicate FDR-corrected effects of one-tailed t-tests for comparisons against chance
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level (33.33%, *p < .05, **p < 0.01, ***p < 0.001). Individual participants are connected via
light gray lines. FDR-corrected pairwise two-tailed tests of estimated marginal means showed
better decoding of agent actionSeyject-path 1N right LOTC, and better decoding of physical object
events in left PMd and SPL (*p < .05, **p < 0.01, ***p < 0.001).

Consistent with previous results, decoding of agent actionSgpject-path and object events was
successful in mostly overlapping frontoparietal and posterior temporal brain regions (see Figure
4A-B). Comparing the decoding strengths of the two conditions in the whole brain, a two-tailed
t-test revealed better decoding for physical object events in a left dorsal premotor cortex cluster
(see Figure 4C). Additional clusters in bilateral SPL and right LOTC showed a significant
difference between the two event types (ps < .005), but these effects did not survive correction
for multiple comparisons in the whole brain. For a more fine-grained analysis, we again turned to

ROls (see Figure 4D).

All ROIs showed above chance decoding of agent actionSepject-path €XCept for left ventral
premotor cortex, which bordered at significance (p = .06). To test which regions show a
difference in decoding for the two event types, we fitted linear mixed effect models testing the
interaction of event type and ROI. This ROI by event type interaction was significant both in left
(x2[5] = 23.59, p < .001, AAIC = 13.59) and right hemispheres (x2[5] = 34.40, p < .001, AAIC =
24.40). In the left hemisphere, physical object events were decoded at a higher accuracy than
agent actionSepject-path 1N left dorsal premotor cortex (b = -4.79, p = .017, d = -.65) and superior
parietal lobule (b = -3.92, p = .043, d = -.43). Agent actionseject path aNd physical object events
were classified with comparable accuracy in the rest of the left hemisphere ROIs (LOTC: b = -
15, p=.923,d =-.02; IPL: b=-1.83, p=.378, d = -.21; PMv: b = -2.69, p = .184, d = -.36;
pSTS: b= .24, p=.923, d =.03). In the right hemisphere, agent actionsgpject-patn Were decoded at a

higher accuracy than physical object events in LOTC (b =4.78, p =.003, d = .65). The rest of the
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right hemisphere ROIs showed comparable decoding of agent actionSepject-path @and physical object
events (IPL: b =.71, p=.607,d = .10; PMd: b=-2.13, p=.243,d=-35, PMv: b= .71, p =
.607,d=.13; pSTS: b = 1.85, p =.267, d = .26), with a marginal trend in right SPL (b =-2.94, p

=099, d = -.45).

Overall, we found increased sensitivity to events signaling animacy and agency in right
lateral occipitotemporal cortex and posterior superior temporal sulcus. We also found greater
sensitivity to physical event dynamics in left dorsal premotor cortex and, in the ROI analyses,
also superior parietal lobule. Increased sensitivity to physical as opposed to agentive event
dynamics in superior parietal lobule also held when comparing physical and agent-induced
object events (see Supplementary Figure 5, Supplementary Note 3). Overall, compared to events
that had some agent involvement, motion events that followed the physics of the scene
emphasized parts of dorsal premotor cortex and superior parietal lobule.

Discussion

In frontoparietal and posterior temporal brain regions associated with human action
understanding, we identified a shared neural representation of animate and inanimate motion that
is also invariant to agentive or physical forces shaping the event dynamics. The right LOTC and
pSTS exhibited higher sensitivity to events signaling animacy and agency, while the left dorsal
premotor cortex and superior parietal lobules were more sensitive to events that were shaped by
the inherent physics of the scene. Together with recent work showing a shared neural code for
animate and inanimate motion, our findings highlight the general role of frontoparietal and
posterior temporal regions in encoding the physics and kinematics of events regardless of
animacy (Albertini et al., 2021; Karakose-Akbiyik et al., 2023). Here, we directly assessed the

contributions of agentive versus physical control over movement and showed that these regions
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can encode information about motion events at a level that does not concern whether the source

of movement is tied to an agentive or physical force.

We found increased sensitivity to events with agent involvement in right LOTC and
pSTS. This finding is in line with the previous literature. Overall, it has been widely established
that right LOTC and pSTS are sensitive to certain human-specific aspects of actions such as
biological motion, social interactions, agency and intentionality (Saxe et al., 2004; Grafton and
Hamilton, 2007; Isik et al., 2017; Tarhan and Konkle, 2020; Lee Masson and Isik, 2021; Pitcher
and Ungerleider, 2021; Schultz and Frith, 2022). Nearby regions are also known to be involved
in higher level cognitive processes such as theory of mind and social cognition (Pelphrey et al.,
2004; Deen et al., 2015). Combined with previous findings, our results underscore that the
presence of simple cues signaling animacy (e.g., facial features) and agency (e.g., self-propelled
motion) are enough to drive agent-specific responses in the right LOTC and pSTS, in the absence
of bodies, or when movement patterns are matched between agents and inanimate objects in

terms of their interpretability.

We found increased sensitivity to events controlled by the physics of the scene in dorsal
premotor cortex and superior parietal lobule. These regions are implicated in human action
observation but are also considered to be a part of the brain’s intuitive physics network (Fischer
et al., 2016; Pramod et al., 2022). There is now growing evidence that dorsal premotor cortex
and superior parietal lobule are recruited when observers predict the unfolding of physical events
as opposed to making other non-physical judgements about a scene (e.g., judging where an
unstable tower of blocks would fall as opposed to judging whether it has more yellow or blue
blocks). In these regions, there is also evidence for explicit representation of physical features

such as object mass in both action planning (Van Nuenen et al., 2012) and physical inference
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(Schwettmann et al., 2019). The dorsal premotor cortex and superior parietal lobules have also
been shown to respond more to dynamic scenes depicting higher physical content, such as
moving objects, compared to faces, scenes, or moving bodies (Fischer et al., 2016). Given these
previous findings, increased sensitivity to physical event dynamics in dorsal premotor cortex and
superior parietal lobule might have to do with greater recruitment of parameters related to

physical inference.

At this juncture, we would like to note that in a recent study, we found higher sensitivity
to human actions compared to inanimate object events in the same superior parietal lobule ROI
(Karakose-Akbiyik et al., 2023). However, in the current study, superior parietal lobule tended to
show higher sensitivity to physical object events compared to cases where there was some
animate agent involvement (e.g., agent actions, agent-induced object events). At a first glance,
the reversal of the effect in SPL might be surprising. However, it is worth noting that in
Karakose-Akbiyik et al. (2023), human actions depicted human body motion that has more
complex mechanics than similar movements of a ball. In the current study, on the other hand,
both animate agents and inanimate objects were presented as spherical geometric shapes.
Furthermore, physical object events were fully governed by the physics engine and did not give
any impressions of agent involvement, even behind the scenes. Taken together, these findings
imply that SPL is sensitive to physical properties of movement, rather than agent-specific aspects
of events. Hence, it might show sensitivity to the animate or the inanimate domain depending on
the context and the specific kinds of stimuli. We do not have any direct evidence speaking to this
hypothesis, but only a comparison of the patterns in our two studies. Future work could build

upon these findings by investigating how the recruitment of regions associated with physical
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inference varies across animate and inanimate movement by using stimuli with varying physical

complexity.

Overall, our findings contribute to an emerging framework on how the brain represents
information about dynamic scenes. It appears that a specialized right lateralized system centered
around LOTC and pSTS is particularly involved in processing information relevant for social
aspects of dynamic scenes such as animacy, agency, and social interactions (lIsik et al., 2017;
Sliwa and Freiwald, 2017; Pitcher and Ungerleider, 2021; Dima et al., 2022). Conversely, a
domain-general network comprising premotor cortex and superior parietal lobule are involved in
physical inferences and prediction (Fischer et al., 2016; Yildirim et al., 2019; Fischer and

Mahon, 2021).

This framework raises some interesting questions. For instance, our study revealed a
shared neural code spanning various frontoparietal and posterior temporal brain regions that
represents information about motion events more broadly, including those regions that showed
increased sensitivity to animacy and agency (e.g., right LOTC, pSTS). What shared aspects of
actions and physical object events are encoded by this overarching neural representation? While
shared kinematics and spatiotemporal dynamics may be involved, further specification is needed.
Moreover, both the frontoparietal and posterior temporal brain regions participate in processing
of dynamic scene information. What are their distinct roles? What specific elements of dynamic
scenes do they each encode? Additionally, the notion of a shared neural system that is applicable
to both animate and inanimate motion presents a plausible hypothesis. However, making claims
of such generality is challenging due to the limitations of fMRI measures, particularly in terms of
group averaging and comparisons across different studies and paradigms. Therefore, the question

persists as to whether this proposed domain-general network encompasses subcomponents that
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differentiate between animate and inanimate movement, paralleling distinctions observed in the

object domain (Grill-Spector and Weiner, 2014; Wurm and Caramazza, 2022).

To sum up, we found a shared neural representation of animate and inanimate motion that
is also invariant to agentive or physical forces in various frontoparietal and posterior temporal
brain regions. Furthermore, the right lateral occipitotemporal cortex and posterior superior
temporal sulcus showed higher sensitivity to cues related to animacy and agency, while the left
dorsal premotor cortex and superior parietal lobules showed higher sensitivity to events that were
controlled by the physics of the scene. Overall, our findings provide new insights into the
contributions of agentive and physical forces in the neural representation of event dynamics and

highlight the importance of a unified approach that takes both factors into account.
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