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Abstract

Self-supervised learning models, which are called foundation models, have achieved great
success in computer vision. Meanwhile, the limited access to labeled data has driven the
development of self-supervised methods in remote sensing tasks. In remote sensing image
change detection, the generative models are extensively utilized in unsupervised binary
change detection tasks, while they overly focus on pixels rather than on abstract feature
representations. In addition, the state-of-the-art satellite image time series change detection
approaches fail to effectively leverage the spatial-temporal information of image time series
or generalize well to unseen scenarios. Similarly, in the context of multimodal remote sensing
data fusion, the recent successes of deep learning techniques mainly focus on specific tasks
and complete data fusion paradigms. These task-specific models lack of generalizability to
other remote sensing tasks and become overfitted to the dominant modalities. Moreover, they
fail to handle incomplete modalities inputs and experience severe degradation in downstream
tasks.

To address these challenges associated with individual supervised learning models,
this thesis presents two novel contributions to self-supervised learning models on remote
sensing image change detection and multimodal remote sensing data fusion. The first
contribution proposes a bi-temporal / multi-temporal contrastive change detection framework,
which employs contrastive loss on image patches or superpixels to get fine-grained change
maps and incorporates an uncertainty method to enhance the temporal robustness. In the
context of satellite image time series change detection, the proposed approach improves the
consistency of pseudo labels through feature tracking and tackles the challenges posed by
seasonal changes in long-term remote sensing image time series using supervised contrastive
loss and the random walk loss in ConvLSTM. The second contribution develops a self-
supervised multimodal RS data fusion framework, with a specific focus on addressing
the incomplete multimodal RS data fusion challenges in downstream tasks. Within this
framework, multimodal RS data are fused by applying a multi-view contrastive loss at
the pixel level and reconstructing each modality using others in a generative way based
on MultiMAE. In downstream tasks, the proposed approach leverages a random modality
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combination training strategy and an attention block to enable fusion across modal-incomplete
inputs.

The thesis assesses the effectiveness of the proposed self-supervised change detection
approach on single-sensor and cross-sensor datasets of SAR and multispectral images, and
evaluates the proposed self-supervised multimodal RS data fusion approach on the mul-
timodal RS dataset with SAR, multispectral images, DEM and also LULC maps. The
self-supervised change detection approach demonstrates improvements over state-of-the-art
unsupervised change detection methods in challenging scenarios involving multi-temporal
and multi-sensor RS image change detection. Similarly, the self-supervised multimodal
remote sensing data fusion approach achieves the best performance by employing an interme-
diate fusion strategy on SAR and optical image pairs, outperforming existing unsupervised
data fusion approaches. Notably, in incomplete multimodal fusion tasks, the proposed
method exhibits impressive performance on all modal-incomplete and single modality inputs,
surpassing the performance of vanilla MultiViT, which tends to overfit on dominant modality
inputs and fails in tasks with single modality inputs.
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Chapter 1

Introduction

The present chapter provides an introductory overview of the thesis. We highlight our
motivation and briefly overview the related literature on remote sensing image change
detection and data fusion tasks, along with an exposition of the problem that forms the core
of the thesis. Further, the novel contributions of the thesis are highlighted. Lastly, an outline
of the structure of the thesis is presented. This chapter lays the foundation for the subsequent
content in the thesis.

1.1 Overview

Remote sensing is a collection of techniques that aims to retrieve and process information
of the Earth’s surface using reflected or emitted electromagnetic radiation. Hundreds of
terabytes of Remote Sensing data are accumulated per day from various systems, which cover
most bands of the electromagnetic spectrum and include both active and passive sensors [34].
However, the inherent value of raw remote sensing data in facilitating downstream tasks is
limited. The remote sensing data processing and analysis techniques further drain the insights
into spatial-temporal information on human activities, Earth’s environment, and their mutual
influences across our planet. These insights benefit many downstream applications, including
but not limited to agriculture, climate change studies, and natural resource management. They
are usually provided by Land-use Land-cover (LULC) mapping [38] and change detection
[114] tasks.

The importance of LULC mapping lies in its provision of essential information for
comprehending the intricate relationship between human activities and the environment.
Land Cover retains the physical attributes of the Earth’s surface, encompassing elements
such as vegetation, water, and soil. In contrast, Land Use delineates the purposes for which
humans exploit the Land Cover, reflecting changes induced by anthropogenic activities.
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LULC changes refer to the dynamic interplay between human actions and environmental
conditions. Nowadays, the importance of accurate LULC and change detection products
extends beyond academic interest to the realm of policy implementation concerning the
management of natural resources (e.g., crop mapping, forest resource management, mineral
mapping) and environmental predicaments (e.g., flooding, wildfires, landslides, deforestation).
In the domain of natural resource management, scholars like Hutt et al. [76] advocate the
utilization of multitemporal Sentinel-2 images and external agricultural data to formulate
comprehensive LULC maps, encompassing annually changing crop types. Similarly, Junaid
et al. [80] employ a random forest classifier and Landsat image time series to analyze forest
cover in Malam Iabba’s forest land. Johnson et al., [79] on the other hand, leverage LULC
methods on 16 bands of World View-3 SWIR and VNIR imagery to map seven geological
materials. Conversely, for environmental monitoring, Long et al. [100] employed a change
detection approach to demarcate the extent of flooding in the Chobe floodplain, located in the
Caprivi region of Namibia. Zanetti [164] utilized a one-class classification change detection
model to identify prominent wildfire expansions in Rhodes (Greece), Corfu (Greece), and
Palermo (Italy) during the summer of 2023, utilizing Sentinel-2 images. Shi et al. [143]
employed a Deep Neural Network (DNN)-based change detection method to successfully
identify two landslides in Hong Kong, covering a total area exceeding 70 km2. Furthermore,
Bem et al. [39] employed a ResUnet-based change detection method in conjunction with
Landsat time-series images to detect instances of deforestation between 2017 and 2019
within the Brazilian Amazon. These diverse applications underscore the imperative for
meticulous LULC mappings and change detections, serving as catalysts for sustainable
development. Consequently, the process of LULC mapping and change detection emerges as
an indispensable undertaking within the Remote Sensing (RS) community.

LULC mapping is a process of dividing a remote sensing image into multiple segments
or regions, each of which corresponds to a homogeneous object or a feature in the scene. The
purpose of LULC mapping is to simplify the analysis and interpretation of RS images by
reducing the amount of data and making it easier to identify features of interest. They provide
key spatial information for urban planning and natural resource management. In earlier work
[19, 21], the LULC mapping methods were mainly based on the spectral information of each
pixel, because the spectral information of each pixel can completely characterize various
underlying materials (e.g. crops, urban) in coarse-resolution imagery. With the development
of remote sensing satellite technology, the spatial and spectral resolutions of RS images
have become higher and higher in the past decades. However, the spectral information alone
often is not enough to distinguish neighbouring LULC classes. Hence, the joint use of
spatial contextual [41] which is based on patches or the superpixel and spectral information
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to determine the LULC classes became popular. Supervised and unsupervised methods
[147, 3, 74, 53] were widely used to segment images into most discriminate classes given
the labels or the class number. Moreover, Deep Neural Networks (DNNs) [89, 52] have been
used for automatical feature learning for pixel-wise mapping. The supervised approaches
are often limited by the availability of annotated datasets. It is expensive and often not
possible to obtain a large amount of annotated samples for network training. In this context,
unsupervised methods are preferred to supervised ones in many operational applications
while supervised methods are always conditioned on specific tasks. Thus we need different
LULC maps for different downstream tasks.

Compared with LULC maps, LULC change introduces additional temporal information
showing variants in the Earth’s surface. Change detection is the process of identifying and
mapping changes in the Earth’s surface between two or more remote sensing images acquired
at different times. This is a crucial step in monitoring and understanding the dynamics of
various environments, including urbanization [44], deforestation [39], LULC changes [1],
and natural disasters [172]. Many irrelevant changes, such as radiometric and atmospheric
variations, seasonal changes in vegetation, and building shadows, limit the accuracy of
change maps. Early approaches to change detection in bitemporal RS images include image
algebra, image transformation and image classification methods [15]. Image rationing and
change vector analysis (CVA) [20] are early examples of such algebraic approaches. Starting
from these algebra attempts in this field, many supervised and unsupervised techniques have
been developed. Most of them are based on image transformation algorithms [25, 159, 168]
where the important point is to obtain robust features from multi-temporal images. To get
a good feature, deep learning methods have been shown to be widely used in this domain.
One common approach is direct classification [36], a binary segmentation approach, where
models are trained using annotated binary labels. The image transformation approach
has also been improved using deep learning, where deep neural networks are utilized to
extract discriminative features, such as Generative Adversarial Networks (GAN) [119],
AutoEncoders (AEs) [104] and self-supervised learning [91]. The challenge of detecting
changes in remote sensing image time series is compounded by the presence of seasonal
noise, which can be difficult to distinguish true changes. Many supervised Recurrent Neural
Networks (RNNs) [106] and unsupervised approaches are proposed to solve this problem.
However, the lack of annotations and the complex change types makes self-supervised change
detection much more needed.

In addition to the technical development of LULC mapping and change detection tasks,
the development of sensors intrinsically improves the ability of LULC mapping and change
detection from data itself, which in turn requires technical developments. Multimodal RS
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data fusion further improves this ability by integrating the complementary information
extracted from individual sensor data. The accumulation of EO data from different sensors
and their increasing temporal and spatial resolutions give a new emphasis to data fusion and
information extraction techniques. For example, optical and Synthetic Aperture Radar (SAR)
remote sensing data characterize target features in different ways but contain complementary
information. Multi-spectral and hyper-spectral images acquire spectral information and
enable the interpretation of the land-cover categories on the basis of spectral signatures,
while radar images provide dielectric properties and are not affected by cloud occlusions.
If used in combination, they can enhance the accuracy and reliability of LULC mapping
and change detection tasks. It is well known that the complementary use of multimodal
remote sensing data offers more complete information on a scene and can result in better
performance in downstream applications [57]. However, most multimodal remote sensing
data fusion works [77, 2] are designed in a particular context and in a supervised way, thus
they are conditioned at the specific tasks. Moreover, these methods often assume that all
modalities are available during the training and inference time. This assumption greatly
limits applications of multimodal remote sensing data analysis because in practice data
collection process may result with missing modalities. In this situation, these approaches may
fail to deal with incomplete image modalities and face severe degradation in downstream
applications. Consequently, an incomplete multimodal learning method is highly desired for
a flexible and practical remote sensing application with one or more missing modalities. The
flexibility of Transfomer [154] makes it possible to train a model across different modalities.
However, the severe degradation with modal-incomplete inputs is still present.

To sum up, the DNNs allow us to get effective and robust features in LULC mapping
and change detection tasks, by achieving state-of-the-art results in the supervised approach.
Nevertheless, the existing RS image change detection and data fusion approaches are still in
need of improvement due to their limited generality and heavy reliance on annotated data as
well as the limitation on specific downstream tasks.

1.2 Motivation

The aftermentioned introduction underscores the pivotal role of LULC mapping and change
detection in the Remote Sensing domain, serving as foundational tasks that provide essential
spatial and temporal information for subsequent RS downstream applications. These two
tasks are developed by utilizing the advanced multi-temporal and multimodal RS data,
while concurrent with the development of RS sensors. For example, low-resolution RGB
image is only used for urban or non-urban area classification while multispectral image
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enable more refined class distinctions. Furthermore, the integration of Synthetic Aperture
Radar (SAR) and multispectral images, or the utilization of hyperspectral images, facilitates
the identification of various crop types and crop growth status. However, the exhaustive
categorization of Earth’s surface into fine-grain classes, sometimes beyond semantic classes,
underscores the effort of supervised learning on downstream tasks given task-specific labels.
This also happened to change detection tasks, post-classification comparison and supervised
change detection approaches are often limited to the given semantics in network training
Given the different types of change classes, we usually need to train specific models.

This supervised paradigm is often limited by the availability of annotated datasets and
tasks. It is expensive and often not possible to obtain a large amount of annotated data for
modeling change maps or fusing multimodality remote sensing data for downstream appli-
cations. The scarcity of labels, not only for semantic labels, further renders the supervised
paradigm unsuitable for these two fundamental tasks. Consequently, there has been a rising
interest in the RS community to build generalist models that can perform a variety of tasks.
Hence, We assert that LULC mapping and change detection, beyond the training on limited
semantics, are inherently data-centric endeavors. A good feature representation, obtained
from RS data itself, can obviate the need for laborious task-specific model training from
scratch.

In contrast to manually defining classes, our approach advocates learning class patterns
and anomalies directly from RS data, emphasizing feature representation. Specifically, for
the LULC mapping task, our objective is to amalgamate multimodal RS data to derive a
feature representation conducive to diverse downstream mapping tasks. For change detection,
we advocate learning changes intrinsically from the data and subsequently selecting pertinent
change types. Thus, within this context, unsupervised methods emerge as preferable over
their supervised counterparts.

Confronted with limited access to labeled data, the development of unsupervised methods,
including Generative Adversarial Networks (GAN) [61], Mask AutoEncoder (MAE) [108],
and self-supervised learning [91], has gained prominence in data fusion and change detection
tasks. However, existing research has demonstrated that CNN-based generative models overly
emphasize pixels at the expense of abstract feature representations. Recent advancements
in contrastive self-supervised learning [151, 63] and Transformer-based AutoEncoder[68]
underscore the potential for more interpretable and meaningful feature representations, with
applications extending to classification and segmentation tasks.

The focal point of this thesis is the formulation of a self-supervised RS image change
detection and data fusion methodology, aiming to circumvent the repetitive task of training
models from scratch for each downstream task based on task-specific labels. The motivation
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for this research stems from the imperative need for a foundational model applicable across
diverse RS downstream tasks. The proposed self-supervised approach, avoiding reliance on
specific task-based labels, seeks to streamline model training efforts and enhance adaptability
across various applications.

1.3 Problem Definition

According to the motivation of this thesis, we define the research problem of self-supervised
remote sensing image change detection and data fusion in the following. In the unsupervised
setting, change detection is the operation of distinguishing changed and unchanged pixels by
comparing multi-temporal images acquired by different or same sensors at different dates.
Let us consider two images I1 and I2 acquired at two different dates t1 and t2, respectively.
The aim of change detection is to create a change intensity map that contains permanent
changes, from multi-view images I1 and I2. As described in related works, the crucial point
in this task is to align the features of unchanged pixels or patches from the different view
data T1 = fγ(p1) and T2 = gδ (p2). Here, p1 and p2 are unchanged patches or pixels in
images I1 and I2, respectively. The f and g functions are used to extract the features from
multi-temporal images, where γ and δ denote the corresponding parameters. The objective
function of our task can be defined as:

γ,δ = argmin
γ,δ
{d[ fγ(p1),gδ (p2)]} (1.1)

where d is a measure of feature distance between T1 and T2.
The field of data fusion encompasses a wide range of methods and mathematical tools,

including spectral analysis and plausibility theory to diverse themes and applications [155].
The tools employed in a data fusion process can be customized for a specific use case. While
there are several early tries on establishing a precise definition of data fusion, it remains
challenging. Klein [88] defined data fusion as a multilevel, multifaceted process that involves
detecting, associating, correlating, estimating, and combining data and information from
single or multiple sources. However, this definition does not account for the quality and
reliability of the fusion result. In EO domain, for instance, one can use certain features
extracted from multisource images to improve the accuracy and reliability of LULC mapping.
Wald [156] refined this definition by stating that data fusion is a formal framework that
employs means and tools to combine data from various sources to obtain higher-quality
information. In this study, we aim to define self-supervised remote sensing data fusion, which
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is a method of learning from multi-source data based on a generative and discriminative
approach without explicit supervision.

Generative data fusion is achieved through reconstruction techniques. Recently, Trans-
former based generative models have gained popularity in learning universal representations
that can be transferred to a wide range of downstream tasks. For instance, models such as
BEiT [10] and MAE [68] have been proposed that predict discrete tokens and randomly mask
patches of input images and then reconstruct them. Moreover, MultiMAE [8] proposes to
aggregate multiple modalities and learn a shared representation that can reconstruct each
modality by others. In this thesis, we follow a similar paradigm to generate a fusion repre-
sentation of multimodality data by reconstructing the missing patches of different modalities
from visible parts using the MAE framework. Given the observed modality x1, in order to
obtain the reconstruction x2 of the missing modality, we optimize the following objective for
the reconstruction network:

ε
∗ = argmax

ε
∑
{x1,x2}

− log p(x2 | x1;ε) (1.2)

where ε is the parameters of the model.
In addition to reconstruction, self-supervised data fusion also involves the use of con-

trastive learning, which endeavours to capture similarities and differences between various
data modalities. By utilizing independent per-modality encodings, this paradigm can help to
learn invariant information from multi-view inputs. To this end, distinct models are trained
for each modality to generate a final representation for respective inputs. For instance, for
image i and text t inputs, separate models fi and ft are utilized to produce corresponding
representations zi = fi(i) and zt = ft(t). Consequently, the resulting "two-tower" architec-
ture can be employed to learn representations for a collection of n image and text pairs
{(i j, t j)}n

j=1. The representation Zn = {(zi
j,zt

j)}n
j=1 is the learned corresponding features

for paired inputs, which are closer in feature space than those of unpaired inputs. This is
achieved by forming the contrastive loss with the temperature τ:

L j =− log
esim(zi

j,z
t
j)/τ

∑
n
k=1 esim(zi

j,z
t
k)/τ

(1.3)

In terms of fusion paradigms, there are two possibilities: the first treats distinct modalities
as different views and aims to eliminate noise or bias while retaining common features.
Meanwhile, the second approach stacks the dependent modalities to preserve complementary
information. In practice, we can contrast single modality-specific representations to the
fusion ones.
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1.4 Novel Contributions

By developing new methods that can effectively handle the complexity and variability of
multimodal remote sensing data, this thesis aims to contribute to the advancement of remote
sensing data analysis technology and its applications. The main novel contributions of
this PhD thesis in the field of remote sensing image change detection and data fusion are
described as follows.

As far as we know, we are the first to apply contrastive learning on multi-view remote
sensing image change detection tasks. To improve the performance of the CNNs-based
generative models, we propose the patch-wise contrastive method to remote sensing change
detection tasks and assess its performance on bi-temporal and bi-sensor datasets. We further
propose a self-supervised change detection approach at the pixel level and introduce a simple
but effective uncertainty approach in the change detection task to reduce the impact of
seasonal changes. For remote sensing image time-series change detection, we propose to use
feature tracking to extract reliable change pixels in image sequences that are insensitive to
seasonal changes. To ensure the robustness and consistency of change maps, we propose to
use supervised contrastive loss and contrastive random walk loss on change feature learning.
These losses encourage the pixels in the same class to have a closer feature representation. To
extend the approach to arbitrary long-time series, we jointly use Unet and ConvLSTM as the
model architectures. All these works on self-supervised change detection further improve the
accuracy of unsupervised binary change detection on multitemporal and multimodal remote
sensing images.

For multimodal remote sensing data fusion, we first introduce and verify the effectiveness
of multi-view contrastive loss in SAR-optical data fusion. In detail, we propose a self-
supervised approach that can obtain pixels-wise feature representation from SAR and optical
image pairs without using any annotation. This is achieved by using U-net and the contrastive
loss, by preserving local information at the superpixel level. We also studied three different
fusion strategies (i.e., early fusion, intermediate fusion and late fusion). To further use
the fusion features on downstream applications, we propose a self-supervised land-cover
segmentation approach based on contrastive learning and vector quantization in the proposed
SAR-optical data fusion framework. However, the proposed approach works only under
the availability of all modalities in the inference stage. This assumption greatly limits the
application of the fusion features on downstream applications. In this situation, we further
propose a unified model for incomplete multimodal learning of remote sensing data, which
leverages a mask attention strategy, Bi-LSTM, the contrastive and reconstruction losses
in a Multimodal Transformer framework to build the fusion across different modalities in
pre-training and supervised training. The proposed approach allows the network learning and
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inference on an incomplete modality input. The two proposed remote sensing data fusion
approaches broaden the data fusion algorithms and open the door to more complex remote
sensing downstream applications, further improving the feature representation ability with
respect to end-to-end supervised learning.

These novel contributions fill significant gaps in the current state of the art and provide
new insights into remote sensing image change detection and data fusion. The proposed
methods can be applied on a wide range of remote sensing applications and will be valuable
for researchers and practitioners in the field.

1.5 Structure of the Thesis

The thesis is structured into seven chapters.
Chapter 1 has provided an overview of the background, problem definition, motivation,

and novel contributions of the thesis.
Chapter 2 presents a comprehensive review of the state of the art in remote sensing

image change detection and data fusion, including the backgrounds of remote sensing data
and the algorithm basics of deep learning approaches. This chapter provides an in-depth
understanding of the current methods and techniques used in the field and identifies the
challenges and limitations of these approaches.

Chapter 3 focuses on the proposed algorithms and techniques for bi-temporal remote
sensing image change detection. This chapter details the novel contributions of the proposed
approach, including the patch-wise and pixel-wise self-supervised algorithm for remote
sensing image change detection. Additionally, it showcases the change maps obtained
from the proposed patch-wise and pixel-wise algorithms using bi-temporal and bi-sensor
images, along with a comprehensive analysis of the proposed methods against state-of-the-art
approaches and also the discussion of the robustness of the uncertainty-enhanced approach
on water areas.

Chapter 4 describes the proposed algorithms for remote sensing image time-series change
detection. It describes the novel contributions, such as the feature tracking algorithm for
pseudo label generation and the use of supervised contrastive loss with contrastive random
walk loss on Unet-ConvLSTM, as well as the fine-tuning stage using supervised contrastive
learning. The remote sensing image time-series change maps obtained from the proposed
algorithms on Landsat-8 and Sentinel-2 multispectral images are also presented and analysed.
It also ablates the effectiveness of each algorithm of the proposed approach.

Chapter 5 delves into the self-supervised SAR-optical fusion and segmentation approach.
It introduces the novel contributions of the proposed approach, including the self-supervised
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fusion algorithm and the self-supervised segmentation using contrastive learning and vector
quantization. It showcases three different fusion strategies, which are the early, intermediate
and late fusion approaches, at the image-level and superpixel level of SAR and optical image
pairs. Experiments on the fine-tuning of learned features of the proposed approach against
state-of-the-art approaches and the effectiveness of unsupervised land-cover segmentation on
the fusion of SAR-optical image pairs.

Chapter 6 focuses on multimodal remote sensing data fusion methods that can handle
modal-incomplete inputs in training and inference. It introduces the proposed Transformer
framework with the masked attention strategy and Bi-LSTM as well as the contrastive and
reconstruction losses in supervised training and pre-training. This chapter provides insight
into a unified and general data fusion approach for diverse remote sensing downstream
applications with modal-incomplete inputs. Moreover, it presents the results of two tasks:
building instance / semantic segmentation and LULC mapping using optical, SAR and DEM
data as well as remote sensing products. The chapter includes a comprehensive analysis
of the performance of each component in the proposed methods and compares them with
the vanilla Transformer approach. In addition, the comparison between generative and
contrastive pre-training is also included in this chapter.

Chapter 7 concludes the thesis and discusses future work. It summarizes the main findings
and contributions, emphasizing the potential impact and implications of the proposed methods
for remote sensing image change detection and data fusion. Furthermore, this chapter outlines
potential avenues for future research, highlighting areas that could benefit from further
investigation.
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Background and Related Works

The previous chapter introduced remote sensing image change detection and data fusion,
addressing their definition and importance. This chapter aims to present the remote sensing
data used for change detection and data fusion, list the existing tools and algorithms and
discuss the state of the art of remote sensing image change detection and data fusion
techniques. The purpose is not to present an exhaustive review of a large number of published
works, but to give an overview of the existing methods.

The chapter presents multispectral, SAR images, and some remote sensing products (i.e.,
DEM/DSM and Land-use Land-cover map) for image change detection and data fusion
(Section 2.1-2.2). Section 2.3 presents a review of multimodal remote sensing data fusion
methods, while Section 2.4 details a review of change detection methods based on multi-
temporal and cross-sensor data. Section 2.5 summarizes existing neural networks and
learning algorithms used in remote sensing image change detection and data fusion. Finally,
Section 2.6 outlines the self-supervised generative and discriminative models used in this
thesis.

2.1 Optical and SAR Remote Sensing Images

Remote sensing is a technology that enables the identification, measurement, and analysis
of characteristics of objects of interest without direct contact. This technology has the
advantages of cost-effective, large-scale and real-time retrieval of land surface information
compared with in-situ observation data. Remote sensing relies on the measurement of
Electromagnetic (EM) energy emitted or reflected by Earth’s surface objects to observe and
retrieve their features. This is because the EM radiation from Earth’s surface can be detected
and translated into important information on individual objects. Remote sensing systems can
be grouped into two categories: passive and active remote sensing. Passive remote sensing
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employs the sun’s energy as its source and detects both reflected and emitted energy from
Earth’s surface objects. In contrast, active remote sensing generates an EM radiation and
transmits it to Earth’s objects, subsequently capturing the backscattered energy from these
objects.

Fig. 2.1 Illustration of remote sensing system (active and passive)

Fig. 2.2 Electromagnetic Spectrum.
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2.1.1 Optical Remote Sensing Image Characteristics

Passive optical remote sensing systems work on sunlight reflection, which can only function
during daylight hours. Optical sensors require dealing with atmospheric conditions, such as
the effect of varying illumination conditions resulting from the position of the sun. Passive
sensors detect electromagnetic energy from the optical parts of the spectrum, including the
visible, near-infrared (IR), short-wave infrared, and thermal infrared domains (as shown in
Fig. 2.2 by Victor Blacus). The visible spectrum band is within the wavelengths between
about 400-700 nm 1, while infrared wavelengths occupy a range from approximately 700 nm
to 1 mm 2. The visible region represents only a small portion of the entire electromagnetic
spectrum. Compared to the visible region, infrared light possesses longer wavelengths that
are suitable for estimating surface temperature (3 - 14 um for thermal infrared) or vegetation
conditions. In thermal infrared (TIR) remote sensing, cameras mainly gather energy directly
emitted from the surface of the Earth, allowing passive sensors to operate during the day or
night.

Optical remote sensing data come in various types, including panchromatic imagery,
multispectral imagery, and hyperspectral imagery: (1) Panchromatic images are characterized
by a single spectral band acquired on a broad spectrum, including wavelengths from various
visible bands and a portion of the TIR. Panchromatic images are visualized as grayscale
images and usually have a higher resolution than multispectral images. Notably, most
satellites, including Landsat, Digital Globe’s satellites and the SPOT constellations, produce
panchromatic imagery along with multispectral imagery.

(2) Multispectral imaging is a technique that involves capturing images in multiple spec-
tral bands. The majority of optical remote sensing systems operate in this mode (e.g., Landsat,
Sentinel-2 and Sentinel-3). In comparison to the panchromatic mode, the multispectral mode
is considered more beneficial due to the abundance of spectral information it provides.

(3) Hyperspectral images acquire data in the form of a sequence of narrow and contiguous
wavelength bands, typically spaced at intervals ranging from 10 to 20 nm. Some hyperspectral
systems, such as AVIRIS, EO-1 Hyperion and PRISMA, are capable of capturing hundreds
of spectral bands. This vast amount of bands allows for the detection of subtle variations in
reflected energy, rendering it highly sensitive and therefore capable of differentiating between
LULC features with greater precision.

There are several satellites with different characteristics that acquire multispectral images
of the Earth’s surface, such as Landsat-8 and Sentinel-2. They have proven to be especially
valuable for land cover monitoring because they offer cost-free images and their data has

1https://en.wikipedia.org/wiki/Visible_spectrum
2https://en.wikipedia.org/wiki/Infrared
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been gathered for the preceding decades. The Landsat program, consisting of a suite of
multispectral satellites, was developed by the National Aeronautics and Space Administration
(NASA) of the United States in the early 1970s. One of the notable features of Landsat
images is their utility for environmental research. The spatial resolutions of the sensors on
the Landsat 8 platform are presented in Table 2.1. Differently, the Sentinel-2 satellite, which
was developed by the European Space Agency (ESA) as a component of the Copernicus
land monitoring initiative, acquires multispectral data across 12 spectral bands, with spatial
resolutions of 10, 20, and 60 meters depending on the specific band, as detailed in Table 2.2.

Table 2.1 Landsat-8 Spectral Bands

Landsat 8 Bands Wavelength [mm] Resolution [m]
Band 1 - Coastal aerosol 0.43 - 0.45 30
Band 2 - Blue 0.45 - 0.51 30
Band 3 - Green 0.53 - 0.59 30
Band 4 - Red 0.64 - 0.67 30
Band 5 - Near Infrared (NIR) 0.85 - 0.88 30
Band 6 - SWIR 1 1.57 - 1.65 30
Band 7 - SWIR 2 2.11 - 2.29 30
Band 8 - Panchromatic 0.50 - 0.68 15
Band 9 - Cirrus 1.36 - 1.38 30
Band 10 - Thermal Infrared (TIRS) 1 10.60 - 11.19 100 (resampled to 30)
Band 11 - Thermal Infrared (TIRS) 2 11.50 - 12.51 100 (resampled to 30)

Table 2.2 Sentinel-2 Spectral Bands

Sentinel-2 Bands Central Wavelength [mm] Resolution [m]
Band 1 - Coastal aerosol 0.443 60
Band 2 - Blue 0.490 10
Band 3 - Green 0.560 10
Band 4 - Red 0.665 10
Band 5 - Vegetation Red Edge 0.705 20
Band 6 - Vegetation Red Edge 0.740 20
Band 7 - Vegetation Red Edge 0.783 20
Band 8 - NIR 0.842 10
Band 8A - Vegetation Red Edge 0.865 20
Band 9 - Water vapour 0.945 60
Band 10 - SWIR - Cirrus 1.375 60
Band 11 - SWIR 1.610 20
Band 12 - SWIR 2.190 20
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2.1.2 SAR Remote Sensing Image Characteristics

There are several types of instruments in active remote sensing systems, where RADAR
stands out as a particularly effective technology for mapping and monitoring land cover
and land use. Its unique abilities include self-illumination, which allows to capture images
during both day and night, and the capability to penetrate cloud cover, light rain and fog.
This advantage allows it to overcome the optical limitations of clouds and other atmospheric
obstructions. Additionally, RADAR is sensitive to the physical structures of different land
cover objects, whose backscattering value is varying with the physical status of the land
surface. RADAR technology works in the microwave range of the electromagnetic spectrum.

Synthetic Aperture Radar (SAR) is a fundamental technology in the accurate mapping of
land cover. The principle of SAR is to synthesize a large antenna by exploiting the Doppler
history from radar echoes generated by the forward motion of the satellite. Consequently, it
can achieve a high azimuth resolution, despite having a physically relatively small antenna.
SAR signals are transmitted by the radar in a side-looking direction towards the Earth’s
surface objects, with a given look angle and incidence angle, which differentiates SAR
from optical imagery. Differently from optical imagery, spatial resolution in SAR images is
defined by range and azimuth resolution. The SAR system’s ability to distinguish between
two object targets in the along-track direction of the sensor is the azimuth resolution. The
range resolution (across-track) depends on the size of the SAR system pulse, while the
azimuth resolution depends on antenna size and radar wavelength.

SAR imagery with varying wavelengths can slightly penetrate different types of materials,
offering opportunities for diverse applications. The shorter frequency has a stronger penetra-
tion ability into Earth’s surface. For example, the L band has a longer wavelength than X and
C bands, thus penetrating more into the vegetation and, under dry conditions, to some extent,
into the soil, such as dry snow or sand. The brightness variation in the SAR image follows a
non-uniform pattern and is marked by a granular texture referred to as a speckle. Speckle
results from the interference of EM waves due to elementary scatters present in a reduction
cell. SAR signals can transmit and receive either horizontal (H) or vertical (V) electric field
vectors, which is termed polarization. Typically, there are four types of polarization (HH,
HV, VV and VH).

SAR satellite images of both C-band (e.g. ERS-1/2 AMI, Envisat ASAR, RadarSat-1,
RISAT-1, Sentinel-1 A/B) and L-band (e.g. SeaSat-1, JERS-1, ALOS PALSAR-1/2) have
been applied to perform land cover mapping and change detection tasks for nearly two
decades due to their capability to capture changes in high spatial resolution. Recently, X-
band TerraSAR-X / TanDEM-X and COSMO-SkyMed (CSK) constellations with very high
spatial resolution have enhanced the ability to detect small objects. Moreover, Sentinel-1
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is a C-band Copernicus mission of satellites that offers SAR images at medium resolution
(approximately 10 m) with high revisit time (about 5 days), along with a wide swath (250
km), and different operational modes including the Interferometric Wide swath (IW) mode
which applies the Terrain Observation with Progressive Scanning SAR (TOPSAR) imaging
technique. The Level-1 data products provided by Sentinel-1 include Single Look Complex
(SLC) and Ground Range Detected (GRD). The Sentinel-1 provides available horizontal (H)
or vertical (V) polarization modes including VV and VH polarimetric channels for classifying
and analysing land covers such as vegetation or built-up areas. In addition, the Sentinel-1
GRD image preprocessing, which includes applying the orbit file, removing GRD border
noise and thermal noise to reduce sub-swath discontinuity, calculating backscatter intensity
using radiometric calibration, performing orthorectification (terrain correction) using SRTM
30 m DEM, and converting backscatter coefficient to dB, is performed through the SNAP
Graph Processing Tool (GPT).

2.2 Other Modality Remote Sensing Data

2.2.1 DEM and DSM

The digital elevation model (DEM) and digital surface model (DSM) are the main remote
sensing product nowadays, which are used to represent three-dimensional earth surfaces.
DEMs represent the earth’s topography, including things like mountains, hills, and valleys,
while DSMs are able to represent more than just topography. DSMs represent above-ground
features like buildings and vegetation, as well as topography. There are various sources
that are used to generate these models, such as Lidar, InSAR, and stereo satellite images.
Lidar (Light Detection and Ranging) uses laser pulses to measure the distance between the
sensor and the ground. The technology works by firing rapid pulses of laser light at the
terrain, which then bounce back to the sensor, allowing it to determine the distance between
the object and the sensor. By scanning an area with a laser, it is possible to create a very
accurate 3D point cloud and extract detailed information about above-ground features like
vegetation and buildings which can be used to create a DEM or DSM. There are several
public DEM or DSM created by Lidar in GEE, such as France, Netherlands and Australia.
InSAR (Interferometric Synthetic Aperture Radar) uses radar waves to measure the distance
between the satellite and the ground. By using interferogram technology on two radar SLC
images, it is possible to create a DEM or DSM. InSAR is considered to be more useful than
Lidar when it comes to generating a global Teerain map, as satellites can visit the Earth
periodically. There is two famous global DEM product generated by InSAR, SRTM [153]
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and TanDEM [174]. Stereo satellite images are a third source of data used to generate DEMs
and DSMs. These images are created by taking two satellite images of the same location
but from different angles or viewing directions. By overlaying the images and processing
them together, it’s possible to create three-dimensional models of the terrain. While stereo
satellite images are not as accurate as Lidar or InSAR, they are still useful in generating data
for larger areas and can be used to fill in gaps in datasets created by other sources.

2.2.2 Land-Use Land-Cover Maps

Land cover and land use maps are two important remote sensing products which can be
used for many different downstream applications, such as resource management and change
detection. Land cover refers to the physical and biological cover of the Earth’s surface, while
land use refers to the human activities that take place on the land. Here we introduce two
main land-use land-cover products in remote sensing: the dynamic world dataset [18] and
European urban altas [113]. The Dynamic World (DNW) dataset is a continuously updating
image collection of globally consistent, 10 m resolution, near real-time LULC predictions
created from Sentinel-2 imagery. Images in this dataset include ten bands: nine bands with
estimated probabilities for each of the nine LULC classes (water, trees, grass, crops, shrub
and scrub, flooded vegetation, built-up area, bare ground, and snow & ice) as well as a
class "label" band indicating the class with the largest estimated probability. These unique
properties enable users to do multi-temporal analysis as well as create custom products suited
to their needs. European Urban Atlas provides reliable, inter-comparable, high-resolution
LULC maps for over 300 large urban zones and their surroundings for the 2006 reference
year in EU member states and for about 800 functional urban areas and their surroundings for
the 2012 and 2018 reference year. European Urban Atlas includes 17 urban classes and 10
rural classes. The urban classes include categories such as industrial, commercial, residential,
green urban areas, and water bodies. The European Urban Atlas is useful for a variety of
applications such as urban planning, environmental monitoring, and climate change research.
It can also be used to monitor changes in land use over time and to assess the impact of
human activities on the environment. There are also countless LULC maps accumulated in
the past decades, which not only can be used as labels for network training but also can be a
kind of data source in multimodal learning.
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2.3 Multimodal Remote Sensing Data Fusion

The most common approach is based on deep learning techniques applied to single modality
data, e.g., multispectral, hyperspectral, LiDAR, or SAR. The fusion of various RS data from
different sensors has not received sufficient attention yet. However, it is well known that the
complementary use of multimodal RS data offers more complete information on a scene and
can result in better performance in many applications [57]. By integrating the complementary
information provided by different modality data, such as SAR and multispectral images,
traditional methods have been intensively studied by designing handcrafted features based
on domain-specific knowledge and exploiting rough fusion strategies. Various feature fusion
methods, including supervised learning and unsupervised learning techniques, have been
investigated to improve the performance of combining complementary information from SAR
and optical images. Early works already proved the effectiveness of combining SAR and
optical data with the multi-layer perception (MLP) classifier [19, 21]. Recent Sentinel-1 and
Sentinel-2 images are combined to improve the LULC classification accuracy on monsoon
regions using a random forest model in [147]. However, these fusion algorithms are a simple
concatenation of SAR and optical images and have no capability to learn high-level features.

Thanks to the growth of deep learning, DNNs show great potential in modelling the com-
plicated relationship between different modality data and different downstream applications.
Kussul et al.[89] first explore the deep CNNs in SAR-optical fusion for LULC classification
and demonstrate their superiority with respect to traditional MLP classifiers. In [52], Feng et
al. propose a multi-branch CNN to improve the classification accuracy in coastal areas by
fusing Sentinel-1 and Sentinel-2 images. A multi-temporal W-Net is proposed to integrate
Sentinel-1 and Sentinel-2 images in land-cover mapping [54]. Recently, Dino et al. [77]
propose a deep learning architecture, namely TWINNS, to fuse Sentinel-1 and Sentinel-2
time series data in land-cover mapping. Adrian et al. [2] use the 3-dimensional deep learning
network to fuse multi-temporal Sentinel-1 and Sentinel-2 data for mapping ten different
crop types, as well as water, soil and urban area. In addition to SAR-optical fusion, there
are also many other tries in the integration in Lidar-optical. Paisitkriangkrai et al. [124]
proposed fusing optical and Lidar data through concatenating deep and expert features as
inputs to random forests. Several advanced techniques have subsequently been developed,
with the aim of enhancing feature extraction ability. Audebert et al. [6] suggest the use of
deep fully convolutional networks to investigate the early and late fusion of LiDAR and
multispectral data. Similarly, Chen et al [31], employ a two-branch network to separately
extract spectral-spatial-elevation features, followed by utilizing a fully connected layer to in-
tegrate these heterogeneous features for final classification. Other novel fusion strategies are
also introduced, such as cross-attention module [112], a reconstruction-based network [73],
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and a graph fusion network [50]. Additionally, recent studies by Roy et al. [134] propose a
multimodal Transformer network to fuse Lidar and hyperspectral images for classification.
Similar to Lidar-optical fusion, many researchers also developed the DSM-optical fusion
methods, where the DSM was acquired from stereo-optical images.

Their results have shown that deep learning techniques play a significant role in mul-
timodal RS data fusion. However, these techniques in multimodal RS data fusion mainly
focused on supervised methods, which are often limited by the availability of annotated data.
Labelled remote sensing data are often scarce. The limited access to such labelled data has
driven the development of the unsupervised method. These techniques can learn feature
representations from unlabeled multimodal data. In [3], Amarsaikhan et al. use PCA to
enhance the features extracted from SAR-optical images and improve the urban land-cover
maps. Fernandez-Beltran et al. [53] propose a hierarchical multi-modal probabilistic latent
semantic analysis (HMpLSA) model to fuse SAR and multispectral imaging (MSI) data for
unsupervised land cover categorization tasks. Similarly, multi-view learning methods also
provide a solution to the unsupervised combination of complementary information from
SAR-optical images. In [55], Jie et al. propose a deep bimodal autoencoder (BDAE) to fuse
SAR and multispectral images for classification. In [118], Nielsen et al. jointly analyze
Sentinel SAR and optical data for change detection using CCA. Based on CCA, Andrew
et al. [4] propose the deep canonical correlation analysis (DCCA), which learns separate
representations for each modality from a shared latent subspace using CNNs.

All these works we mentioned above assume that all modalities are available in inference
time. This assumption can greatly limit applications of multi-modal analysis because in
practice data collection process may with missing modalities. In this situation, most existing
multimodal data fusion methods may fail to deal with incomplete imaging modalities and face
severe degradation in downstream tasks. Consequently, a robust multimodal method is highly
desired for a flexible and practical remote sensing application with one or more missing
modalities. The algorithm used in this situation is called incomplete multimodal learning,
which aims at learning methods that are robust with any subset of available modalities at
inference. A straightforward strategy for incomplete multimodal learning of remote sensing
tasks is synthesizing the missing modalities by generative models [13]. Another stream
of methods explores knowledge distillation from complete modalities to incomplete ones
[83]. Although promising results are obtained, such methods have to train and deploy a
specific model for each subset of missing modalities, which is complicated and burdensome
in downstream tasks. Meanwhile, all these methods require complete modalities during the
training process. Recent incomplete multimodal learning methods focused on learning a
unified model, instead of a bunch of distilled networks, for downstream tasks. In this context,
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the modality-invariant fusion embedding across different modalities may contribute to more
robust performance, especially when one or more modalities are missing. Transformer is
widely used in this task for its flexibility and multimodality modelling abilities. Current
works [115, 128] exploited the Transformer for contrastive learning using audio and video
data. However, the dedicated Transformer for incomplete multimodal learning of remote
sensing tasks has not been carefully tapped yet and cannot allow missing data in the training
process.

2.4 Multitemporal and Multimodal Remote Sensing Image
Change Detection

Detection of changes in multi-temporal remote sensing (RS) images has been extensively
studied in the past decades [95]. Early approaches to change detection in bi-temporal RS
images include image algebra, image transformation and image classification methods [15].
These methods have limitations, such as relying on empirical feature extraction algorithms
or being sensitive to classification results, which limit their application in change detection.
Image algebra methods directly compare image values, such as in the case of change vector
analysis (CVA)-based methods [15, 16, 94, 165] that provide spectral change information in
terms of magnitude and direction of the spectral change vectors. CVA [20] and its object-
based variants are one of the most popular unsupervised single-sensor change detection
methods. They calculate the change intensity maps and the change direction for change
detection and related classification.

On the other hand, image transformation methods map images into the same feature space
for comparison. The most common transformation methods include principal component
analysis (PCA) [25], slow feature analysis (SFA) [159], and canonical correlation analysis
(CCA) [168]. Another popular method is the combination of PCA and K-means (PCA-
KM)[40], which transforms and compares the bi-temporal images in the feature space, and
then determines the binary change map using k-means. In [117], Nilsen et al. treat the
bi-temporal images as multi-view data and proposed the multivariate alteration detection
(MAD) based on canonical correlations analysis (CCA), which maximizes the correlation
between the transformed features of bi-temporal images for change detection. Wu et al. [160]
propose a novel change detection method to project the bi-temporal images into a common
feature space and detected the changed pixels by extracting the invariant components based
on the theory of slow feature analysis (SFA). Unlike single-sensor-based transformation
methods, the greatest challenge in cross-sensor change detection is to align the inconsistent
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feature representation of different modality images. This requires transforming heterogeneous
representation into a common feature space where performing change detection. There are
a few traditional methods that focus on this transformation of different modalities. Gong
et al. [59] propose an iterative coupled dictionary learning method that learns two couple
dictionaries for encoding bi-temporal images. Luppino et al. [102] propose to perform image
regression by transforming images to the domain of each other and to measure the affinity
matrice distance, which indicates the change possibility of each pixel. Sun et al. [149]
develope a nonlocal patch similarity-based method by constructing a graph for each patch
and establishing a connection between heterogeneous images.

Supervised image classification methods project image values into different classes at
each date and compare directly class labels. This approach, known as post-classification
[159] change detection, is widely used in large-scale land-cover change detection. In general,
image algebra and transformation methods heavily rely on empirical feature extraction
algorithms, while post-classification methods are sensitive to the classification results of each
image and to error propagation. These limitations hinder the application of conventional
change detection methods.

Deep learning methods have been shown to significantly improve the performance of
conventional change detection methods by using DNNs [60] and stochastic gradient descent
[14]. One common approach is direct classification, where models are trained using pre-
defined labels and then used to classify change and unchanged pixels. For example, Rodrigo
et al. [36] present three Unet-based convolutional neural network (CNN) architectures for
detecting binary changes between pairs of registered RGB images. In the absence of ground
truth, pseudo labels from conventional change detection methods can be used to train models
in a self-training paradigm. Zhou et al. [173] propose a self-training algorithm based on
pseudo labels for change detection, where the pseudo labels are generated by the traditional
CVA approach and used to train a new network end-to-end.

The image transformation approach has also been improved using deep learning, where
DNNs are utilized to extract discriminative features. In [49], Du et al. developed the slow
feature analysis into deep learning methods to calculate the change intensity maps and
highlight the changed components in the transformed feature space. Instead of pixel-based
analysis, Saha et al. [135] use pre-trained CNNs to extract deep spatial-spectral features
from multi-temporal images and analyze the features using traditional CVA. Many new
techniques also have been developed for extracting discriminative features from bi-temporal
RS images, such as generative [122] and discriminative [96] models. Generative models
[105, 11, 82, 129, 47] have been adopted to generate features of multi-temporal or multi-
sensor image pairs and detect the changes by an explicit comparison of the generated features.
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Liu et al. propose a stacked autoencoder to extract the temporal change features of multi-
temporal SAR images based on superpixels. Bergamasco et al. [11] further propose a
multilayer convolutional autoencoder (CAE) for multi-temporal Sentinel-1 images change
detection in an unsupervised way. Besides autoencoders, generative adversarial networks are
also used for change detection tasks. Gong et al. [58], for example, treats change detection as
a generative learning procedure that connects bi-temporal images and generates the desired
change maps. Due to the misregistration between multi-temporal very high resolution (VHR)
images, Ren et al. [129] use the generative adversarial network (GAN) to generate better-
coregistered images, and then generate binary change maps by comparing these generated
images explicitly. Dong et al. [47] utilize the GAN’s discriminator to differentiate samples
from bi-temporal images and transform bi-temporal images into more consistent feature
representations for direct comparison. Generative models are used not only for homogeneous
image change detection but also for heterogeneous image change detection. In [103], Luppino
et al. combine domain-specific affinity matrices and autoencoders to align the related pixels
from multimodal images. Niu et al. [119] propose the conditional generative adversarial
network (cGAN) to translate two heterogeneous images into a single domain for comparison.
Liu et al. [98] further use the cycle-consistent adversarial networks (CycleGANs) to learn
the mapping relation between heterogeneous image pairs. Discriminative models used in
self-supervised change detection include "pretext" tasks and contrastive methods. In [91],
Leenstra et al. define two pretext tasks for feature representation learning. They further
pre-train a discriminative model to extract features from bi-temporal images on these pretext
tasks for change detection. Although pretext tasks are widely used in self-supervised learning,
they are not a direct way for the change detection task.

The application of deep learning in post-classification change detection can follow two
main directions. One is to use a deep learning-based segmentation approach to classify the
object of interest on bi-temporal images and then compare them. For example, Nemoto et al.
[116] first segment buildings in an urban area and then compare the building maps at two
different times to detect changes. Another approach is to perform binary change detection
and segmentation of both images simultaneously. Ding et al. [46] propose combining
post-classification and direct classification methods using a bi-temporal semantic reasoning
network, where the network produces both a change map and two classification maps. These
approaches demonstrate the ability of deep learning in deriving changes from image pairs.

The challenge of detecting changes in remote sensing images time-series is compounded
by the presence of seasonal noise, which can be difficult to distinguish from true changes.
One approach to addressing this challenge is to use graph-based methods [65], which present
detected spatiotemporal phenomena as evolution graphs composed of spatiotemporal entities
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belonging to the same geographical location in multiple timestamps. Image time-series
change detection is often associated with sequential data, making it necessary to evaluate
temporal dynamics. The computer vision community has addressed the modelling of temporal
relationships among features using recurrent neural networks, which have proven effective
for a wide range of applications such as object tracking and action recognition. Long
short-term memory networks (LSTM) are particularly effective for such problems, as they
mitigate the vanishing gradient problem when dealing with long-term dependencies. The
combination of recurrent neural networks and deep learning architectures has also been used
for time-series tasks, aiming to produce more useful feature representations by extracting both
spatial and temporal information during the learning process. Recent RS image time-series
change detection tasks have extensively integrated LSTM techniques. In [114], an LSTM
is integrated into a CNN to consider both spatial and temporal features in an end-to-end
framework. Sefrin et al. [140] propose combining FCN and LSTM to study land-cover
changes using Sentinel-2 images. For high-resolution image change detection, Sun et al.
[148] propose using atrous Unet-ConvLSTM to better model multiscale spatial information.

However, supervised methods often require a large number of labelled training samples,
which can be difficult to obtain for long image time series. For unsupervised approaches,
Saha et al. [136] treat change detection as an anomaly detection problem, using an LSTM
network to learn a representation of the image time series. In this method, they used a
pretext task of reordering the image sequence. However, the predefined task cannot resist
the influence of seasonal noise, which leads to many pseudo-changes in the results. Some
researchers have shown that pseudo-labels can help solve this problem. Kalinicheva et al.
[81] propose a new framework that combines a graph model and pseudo-labels, using a gated
recurrent unit (GRU) AE-based model to associate the changes of consecutive images with
different spatial objects. Yang et al. [162] propose an unsupervised time-distance-guided
convolutional recurrent neural network (UTRnet) for change detection in irregularly collected
images, using a weighted pre-change detection to obtain reliable training samples. However,
pseudo labels often have a high level of noise and do not consider temporal information, and
the pre-trained model can not adapt to various changes in the image time series.

2.5 Deep Neural Networks and Loss Functions

2.5.1 Introduction of Classic Deep Neural Networks

Multi-layer Perception (MLP) [131] is treated as the fundamental architecture of deep
neural networks (DNNs). It consists of a set of simple neurons called perceptrons. The
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perceptron computes a single output from multiple real-valued inputs by linearly combining
the inputs with the input weights, followed by a non-linear activation function like the
hyperbolic tangent tanh(x) or the logistic sigmoid 1/(1+ e−x). Mathematically this can be
written as:

y = ϕ

(
n

∑
i=1

wixi +b

)
= ϕ

(
wT x+b

)
(2.1)

where w denotes the vector of weights, x is the vector of inputs, b is the bias and ϕ is
the activation function. A single perceptron, because of its limited mapping abilities, has

Fig. 2.3 Signal-flow graph of the perceptron and MLP

limited performance. However, stacking perceptrons by layers creates a multilayer perceptron
network, which propagates the input signal through each layer. This network can model a
wide range of mappings, including strongly and mildly nonlinear mappings. Its signal-flow
is shown in Fig. 2.3. Such feedforward networks with a single hidden layer, composed of
nonlinear activation functions and a linear output layer, can be expressed mathematically as:

y = f (x) = Bϕ(Ax+a)+b (2.2)

where x represents the vector of inputs and y represents the vector of outputs. A is the first
layer weight matrix, a is the bias vector of the first layer, B is the weight matrix of the second
layer, and b is the bias vector of the second layer. Moreover, the function ϕ denotes an
elementwise nonlinearity. The MLP network with only one hidden layer has an astonishingly
powerful ability to approximate any continuous function f : Rn→ Rm to any given precision,
provided it has enough hidden units.

Convolutional neural networks (ConvNets) [90] are a specific type of artificial neural
network (ANN) which have proven remarkably successful in a wide range of computer
vision applications. The unique connectivity patterns between the neurons of a ConvNet are
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inspired by the structure and function of the visual cortex of animals, which is characterized
by neurons that respond to overlapping regions of the visual field. ConvNets are a variant
of multilayer perceptron (MLP). A key distinguishing feature of a ConvNet is replacing
matrix multiplication with convolution to compute neuron activations. A convolutional neural
network comprises several critical components, including convolutional and pooling layers,
an activation function, residual connections, and fully connected layers. The convolutional
layer is designed to process 2D inputs signals, such as images, using convolution operation
with 2D kernel:

(K ∗ I)(i, j) = ∑
m,n

K(m,n)I(i+n, j+m) (2.3)

where K is a 2d-kernel. During the computation, the convolution is performed over a 2D grid
of pixels in the corresponding layer, with the kernel moving with a predefined stride size s.
Padding may be added to the input image to control the size of the output feature. The width
of the output can be computed using the equation Wo =

Wi−k+2p
s +1, where Wi is the input

image width, k is the kernel size, p is the padding size, and s is the stride size. When working
with images having multiple channels, the convolution operation is performed individually
on each channel, and the results are combined to form the final output.

The convolution operation employs an activation function ϕ such as ReLU to induce
non-linearity. The activation function applies a point-wise non-linearity to each element in
the feature maps after a convolution layer, similar to its role in MLP. Notably, an activation
layer has no trainable parameters. Given a kernel K size k× k and an input image x, the
activation can be obtained from the convolution operation by sliding K and computing
z(x) = ϕ(K ∗ x+b), where b represents the bias. A pooling layer also called a subsampling
layer, is deployed to decrease dimensionality by computing the mean or maximum on image
patches. Like convolutional layers, the pooling layers operate on small image patches while
following a stride. The output shape is computed by dividing the input shape by the stride.
Alternatively, dimensionality can be reduced using a convolutional layer by selecting a stride
size over one and zero padding. Pooling has the added benefit of making the network less
sensitive to minor translations of the input images.

The depth of CNNs has a significant impact on their performance. More layers are
generally better as they allow the network to extract richer features. However, as the deeper
and deeper networks, the gradient in backpropagation sometimes vanishes, which results in a
degradation problem. In this context, He et al. [70] propose the deep residual network using
skip connections in each residual unit. Each residual unit can be expressed in the following
general form:

xi+1 = xi +F (xi,Wi)

xi+1 = f (xi+1)
(2.4)
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Fig. 2.4 The CNN Components.

where xi and xi+1 are the input and output of the i− th residual unit, respectively, F(·) is the
residual function, Wi is the weight matrix, f (·) is the activation function.

The fully connected layer is a stack of MLP. Each input is connected to every output node,
hence the fully connected layers can associate different combinations of complex features
obtained from previous layers with the multiple classes. As more layers are added to the
network, the number of trainable parameters and network complexity increases, but this
common practice often leads to overfitting issues. To overcome this, the dropout technique is
frequently applied. Dropout, which occurs during every epoch, randomly selects neurons
based on a defined rate and disables them during training. Since the active neurons change
with every epoch, this forces the layer to generalize better, making it more robust. During
prediction, all neurons are typically active. Network normalization, often achieved through
normalization such as batch normalization, is another popular method. Batch normalization
scales the values within a range, improving the performance of gradient calculations during
backpropagation, and helping to reduce the training time. It also allows for higher learning
rates and has regularizing effects.

Long Short-Term Memory (LSTM). Recurrent Neural Network (RNN) computes the
output vector yt of each tokens xt in the sequence embeddings by iterating the following
equations from t = 1 to n:

ht = H (Wxhxt +Whhht−1 +bh)

yt =Whyht +by
(2.5)
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Fig. 2.5 The Bi-LSTM Components.

where ht is the hidden vector sequence, W denotes weight matrices (wxh is the matrix of the
weights connecting the input layer and the hidden layer), b denotes bias vector, and H is
activation function of the hidden layer. This equation represents the connection between the
previous and the currently hidden states, thus RNNs make use of the previous context in
sequence. However, the RNN is not able to use effectively all inputs in sequence due to the
vanishing gradient problem. Hence, an improved Long Short-Term Memory [72] architecture
was proposed. The LSTM is conceptually defined as an RNN but replaced the hidden layer
as memory cells. An LSTM model consists of three gates: forgot ft , input it and output gates
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ot and a cell activation vector ct .

it = σ (Wxixt +Whiht−1 +Wcict−1 +bi)

ft = σ
(
Wx f xt +Wh f ht−1 +Wc f ct−1 +b f

)
ct = ftct−1 + it tanh(Wxcxt +Whcht−1 +bc)

ot = σ (Wxoxt +Whoht−1 +Wcoct +bo)

ht = ot tanh(ct)

(2.6)

where σ is the logistic function and all b are learned biases. The forget gate makes the
decision of preserving or removing the existing information by using a sigmoid function. The
output of this gate is a value between 0 and 1, where 0 indicates completely getting rid of the
learned value and 1 implies preserving the whole value. The input gate makes the decision of
whether or not the new information will be added to the LSTM memory. A cell activation
vector indicates a vector of new candidate values that will be added to LSTM memory. The
combination of the input gate and the forgot gate provides an update for the LSTM memory
in which the current value is forgotten and updated. The output gate uses a sigmoid layer to
make the decision of what part of the LSTM memory contributes to the output. Then, we put
the cell state through tanh (to push the values to be between -1 and 1) and multiply it by the
output of the sigmoid gate, so that we only output the parts we decided to.

The Bi-LSTM is an extension of the described LSTM model in which we can use both
the past context and future context of an input sequence. It consists of two separate hidden

layers. It first computes the forward hidden sequence
→
hi; then it computes the backward

hidden sequence
←
hi; finally, it combines both forwards to generate the final output yt . Let the

hidden states h be LSTM blocks, a Bi-LSTM is implemented by the following functions:

−→
ht = H

(
Wx
−→
h xt +W−→h −→h

−→
h t−1 +b

−→
h
)

←−
ht = H

(
Wx
←−
h xt +W←−h←−h

←−
h t−1 +b←−h

)
yt =W−→h y

−→
h t +W←−h y

←−
h t +by

(2.7)

Applying the LSTM twice leads to improving learning long-term dependencies and thus
consequently will improve the accuracy of the model.

Transformer and Vision Transformer (ViT). Although CNNs have been successful
in various tasks, one of their limitations is the receptive field, which restricts their ability to
capture dependencies between distant positions. To address this issue in the Natural Language
Processing (NLP) domain, the Transformer architecture was proposed as a solution. Unlike
CNNs, Transformers [154] rely solely on self-attention and do not use convolution. The
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Fig. 2.6 The ViT Components by [48].

attention mechanism is based on a query, key, and value concept, where queries are matched
against keys, which are assigned values. The more a query matches a key, the higher the
weighting of the corresponding value. This matching is performed using scaled dot-product
attention, where the input is represented by matrices Q, K and V, corresponding to queries,
keys and values, respectively. By multiplying them together, an attention output is computed,
which is a weighted sum of the values:

Attention(Q,K,V ) = so f tmax(
QKT
√

dk
)V (2.8)

The input consists of queries and keys of dimension dk and values of dimension dv The
softmax function is applied to ensure that the weights sum up to one and the scaling factor
√

dk has been shown to empirically improve performance. Using multi-head attention, scaled
dot-product attention is applied to multiple sets of queries, keys, and values that undergo
linear transformations. These inputs are fed in parallel into the attention function, and the
results are concatenated into a single matrix that is transformed linearly to the desired output
dimensions. This can be expressed as MultiHead(Q,K,V ) =Concat(head1, ...,headh)W o.
Each headi is the result of running scaled dot-product attention on the ith set of transformed
queries, keys, and values (headi = Attention(QW Q

i ,KW K
i ,VWV

i ), where h indicates the
number of attention heads). With the setting shown in the previous sections, the transformer
would not be able to use position information. To incorporate positional information, a
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position embedding is added to the input before being processed by the network, thereby
enabling the Transformer to capture dependencies and relationships between positions.

In light of the success of Transformers in NLP, researchers have sought to extend this
architecture to the field of vision. However, the self-attention mechanism’s computational
and memory complexities pose a challenge when dealing with longer image sequences, given
that the number of pixels in an image greatly exceeds the number of words in a sentence. The
Vision Transformer (ViT) [48] addresses this issue by dividing the image into smaller patches
and transforming each patch into a vector embedding, similar to word embedding in NLP.
The ViT is a pure Transformer architecture that takes a sequence of image patches as input,
where the sequence length is proportional to the number of patches. The input image, denoted
by x ∈ RH×W×C, is split into L = H×W

p2 patches, each of dimension P×P×C. Following
BERT [43], a learnable classification embedding xclass is prepended to the image sequence
along with the added 1D positional embeddings Epos to formulate the patch embedding h0.
E is the patch encoder. The architecture of ViT follows the Transformer architecture:

h0 =
[
xclass ;x1

pE;x2
pE; · · · ;xL

pE
]
+Epos, E ∈ R(P2·C)×D,Epos ∈ R(L+1)×D

h′ℓ = MSA(LN(hℓ−1))+hℓ−1, ℓ= 1, . . . ,L

hℓ = MLP
(
LN
(
h′ℓ
))

+h′ℓ, ℓ= 1, . . . ,L

y = LN
(
h0

L
) (2.9)

This equation applies multi-headed self-attention (MSA). Given learnable matrices Wq, Wk,
Wv corresponding to query, key and value representations, a single self-attention head is
computed by:

Attentionh(X) = so f tmax(
QKT
√

dh
)V (2.10)

where Q = XWq, K = XWk and V = XWv. Multi-headed self-attention aggregates information
from H self-attention heads by means of concatenation and linear projection: MSA(X) =

concatH
h=1[Attentionh(X)]W +b.

2.5.2 Loss Functions

The goal of a neural network (E) is to optimize a loss function J with respect to the parameters
θ over a set of n network inputs D = (x1,y1), · · · ,(xn,yn), where x j ∈ E1 is the jth input
data point with an associated response or target y j ∈ EL+1. Most optimization methods
are gradient-based, meaning that we must calculate the gradient of J with respect to the
parameters at each layer i ∈ [L]. Let’s start to introduce the loss function for both the
regression and classification settings. Then we take the derivatives of these loss functions for
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a single data point (x,y)≡ (x j,y j) for some j ∈ [n], and then present error backpropagation
in a concise format. Finally, we present algorithms for performing gradient descent steps for
both regression and classification [24].

Regression. In the case of regression, the target variable y ∈ EL=1 can be any generic
vector of real numbers. Thus, for a single data point, the most common loss function to
consider is the squared loss, given by:

JR(x,y;θ) =
1
2
∥y−F(x;θ)∥2 =

1
2
⟨y−F(x;θ),y−F(x;θ)⟩. (2.11)

In this case, the network prediction ŷR ∈ EL+1 is given by the network output F(x;θ). We
can calculate the gradient of JR with respect to the parameter θi.

Classification. For the case of classification, the target variable y is often a one-hot
encoding, i.e., the component of y corresponding to the class of the data point is equal to 1,
and the other components are 0. Therefore, we must constrain the output of the network to be
a valid discrete probability distribution. We can enforce this by applying the softmax function
σ to the network output F(x;θ). Then, we can compare this prediction, ŷC = σ(F(x;θ)), to
the target variable by using the cross-entropy loss function. For a single point (x,y), we can
write the full expression for this loss but with an inner product instead of a sum:

JC(x,y;θ) =−⟨y,(log◦σ)(F(x;θ))⟩ (2.12)

We can calculate the gradient of JC with respect to the parameter θi.

2.6 Self-Supervised Discriminative and Generative Models

Supervised learning has demonstrated remarkable accomplishments on a range of tasks such
as natural language processing and image understanding. Generally, supervised learning
models are trained on specific tasks utilizing a voluminous dataset that has been manually
labeled. However, supervised learning is meeting its bottleneck because of the difficulty
to have enough labeled samples. The significant reliance on expensive manual labeled
data resulted in a generalization error. Therefore, self-supervised learning has emerged as
an attractive alternative that has drawn massive attention for its potential to overcome the
challenges of data inefficiency and its generalization ability. In this section, we take a look
into two typical self-supervised learning methods, autoencoder and contrastive models, for
representation learning in vision tasks. Furthermore, these two models belong to two distinct
categories based on their objectives: generative and discriminative.
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Autoencoder (AE). The concept of Autoencoder (AE) [9] was initially introduced as a
method to pre-train artificial neural networks. It is regarded as a directed graphical model
that is mainly employed for the purpose of dimensionality reduction. Being a feed-forward
neural network, the autoencoder is trained to reconstruct its input at the output layer. It is
composed of two networks - encoder and decoder - functionally represented as h = fenc(x)
and x

′
= fdec(h). The primary objective of AE is to minimize the difference between input

x and output x
′

(usually evaluated by mean-square error). It is noteworthy that the linear
autoencoder is equivalent to the PCA method.

Denoising AE Model. From an academic standpoint, the fundamental principle underly-
ing denoising autoencoder (DAE) [9] models is the idea that representations should possess
the resilience to the presence of noise. Specifically, the masked language model (MLM)
can be interpreted as a type of DAE model, exemplified by popular models such as BERT.
In the realm of computer vision, DAE models are often deployed to learn robust image
representations via the restoration of corrupted images, and the concept has been notably
applied to the Vision Transformer (ViT). A particularly impactful contribution to the field in
this respect is the work on Masked AutoEncoder (MAE) [68] .

Variational AE Model. The variational autoencoder (VAE) [9] model posits an under-
lying latent representation that generates the observed data. To approximate the posterior
distribution over unobserved variables Z = z1,z2, · · · ,zn given some data X , the VAE employs
a variational distribution q(z|x).

p(z|x)≈ q(z|x) (2.13)

During training, variational inference and the evidence lower bound (ELBO) are used to
maximize the log-likelihood of the observed data. The ELBO is defined as:

log p(x)≥−DKL(q(z | x)∥p(z))+E∼q(z|x)[log p(x | z)] (2.14)

where DKL(q(z | x)∥p(z)) denotes the the Kullback-Leibler (KL) divergence of q(x) from
p(x), p(x) represents evidence probability, p(z) is prior and p(x|z) is likelihood probability.
Within the autoencoder framework, the first term of ELBO serves as a regularizer to enforce
the posterior’s ability to reconstruct the input data based on the latent variables. VAE as-
sumes the prior p(z) and the approximate posterior q(z|x) both follow Gaussian distributions.
Specifically, p(z)∼ N(0,1). Furthermore, the reparameterization trick is utilized for mod-
elling approximate posterior q(z|x). Assume z∼ N(µ,σ2), z = µ +σε , where ε ∼ N(0,1).
The decoder network is then used to reconstruct the input data based on the calculated latent
variable z, with parameterized µ and σ .
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Contrastive Learning. [64] Given the joint distribution P(X ,Y ) of the input X and target
Y , the generative model calculates the p(X |Y = y) by:

p(X | Y = y) =
p(X ,Y )

p(Y = y)
=

p(X ,Y )∫
x p(Y,X = x)

(2.15)

while the discriminative model tries to model the P(Y |X = x) by:

p(Y | X = x) =
p(X ,Y )

p(X = x)
=

p(X ,Y )∫
y p(Y = y,X)

(2.16)

Notice that most of the representation learning takes hope to model relationships between
different views. Thus for a long time, people believed that the generative model is the only
choice for representation learning. However, contrastive learning brings the breakthroughs,
such as InfoMax [123], MoCo [69] and SimCLR [26]. Contrastive learning aims to "learn to
compare" through a Noise Contrastive Estimation (NCE) [64] objective formatted as:

L = Ex,x+,x−

− log

 e f (x)T f(x+
)

e f (x)T f (x+)+ e f (x)T f−x−)

 (2.17)

where x+ is similar to x, x− is dissimilar to x and f is an encoder (representation function).
The similarity measure and encoder may vary from task to task, but the framework remains
the same. With more dissimilar pairs involved, we have the InfoNCE formulated as:

L = Ex,x+,xk

[
− log

(
e f (x)T f(x+)

e f (x)T f (x+)+∑
K
k=1 e f (x)T f(xk)

]
(2.18)

2.7 Conclusion

This chapter presents a comprehensive overview of the remote sensing images and products
utilized in this thesis, along with an extensive review of remote sensing image change
detection and data fusion. Furthermore, the last two sections introduce neural networks and
self-supervised generative and discriminative models.

Regarding remote sensing images, our focus lies on high-resolution multispectral images,
specifically Landsat-8 and Sentinel-2 images. We also delve into the characteristics of
SAR images, with particular emphasis on Sentinel-1 backscattering images and their pre-
processing techniques. These SAR and multispectral images will be employed in multi-
temporal remote sensing image change detection and data fusion tasks. Additionally, we
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introduce remote-sensing products such as DEM/DSM and LULC maps, which play a pivotal
role in the multimodal fusion of remote sensing data discussed in Chapter 6.

We conduct a thorough review of state-of-the-art methods in multimodal remote sensing
data fusion and underscore the significance of self-supervised pre-training for multimodal
remote sensing data fusion, as well as incomplete multimodal learning in downstream tasks.
For remote sensing image change detection, we review unsupervised change detection
methods in both multitemporal and multimodal settings, thereby highlighting the primary
direction of our thesis work.

At last, we introduce three key neural networks, namely Convolutional Neural Networks
(CNNs), Long Short-Term Memory (LSTM), and Transformers, along with two loss func-
tions, regression and classification, which form the foundation for the approaches proposed
in this thesis. Finally, we present two fundamental self-supervised methods, autoencoders
and contrastive learning, which serve as the underlying paradigms for our thesis work.



Chapter 3

Self-Supervised Bi-temporal RS image
Change Detection

In this chapter, a self-supervised change detection approach based on an unlabeled multi-
view setting is proposed to overcome the limitation of CNN-based generative models on
unsupervised binary change detection. We present a novel approach to perform unsupervised
change detection in both single-sensor and cross-sensor scenarios based on a multi-view
contrastive learning method. To overcome the limitation of the patch-based image processing
algorithm, we further propose a pixel-wise contrastive framework which uses the contrastive
loss on superpixels to get fine-grained change maps and exploits an uncertainty method
to enhance the temporal robustness. Results demonstrate both improvements over state-of-
the-art unsupervised methods and that the proposed approach narrows the gap between
unsupervised and supervised change detection methods.

3.1 Self-supervised Change Detection in Multi-view Re-
mote Sensing Images

In this section, we present the proposed approach to multi-temporal and multi-sensor remote
sensing image change detection based on self-supervised learning and image patches.

3.1.1 Introduction

Change maps are one of the most important products of remote sensing and are widely used
in many applications including damage assessment and environmental monitoring. The
spatial and temporal resolutions play a crucial role in obtaining accurate and timely change
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detection maps from multi-temporal images. In this context, irrelevant changes, such as
radiometric and atmospheric variations, seasonal changes of vegetation, and changes in the
building shadows, which are typical of multi-temporal images, limit the accuracy of change
maps. In the past decades, many researchers developed techniques that directly compare
pixels values of multi-temporal images to get the change maps from coarse resolution
images [22, 20, 15], assuming that the spectral information of each pixel can completely
characterize various underlying land-cover types. With the increase of spatial and spectral
resolutions of remote sensing images, the use of spectral information only is often not enough
to distinguish accurately land-cover changes. Many supervised and unsupervised techniques
were developed to determine the land-cover changes by jointly using spatial context and
spectral information. Recently, deep learning techniques and in particular Convolutional
Neural Networks (CNNs) methods [135] have been widely used in this domain. CNNs allow
one to model high-level features from images in terms of spatial and spectral information,
achieving state-of-the-art results in a supervised way [166].

Most of the past works are limited to the use of single-modality images. Cross-domain
change detection has not received sufficient attention yet. Current Earth Observation satellites
provide a vast amount of multi-view observations from different sensors and at different times.
On the one hand, images taken by different types of sensors can improve the time resolution
thus satisfying the requirement of specific applications with tight constraints. A possible
example of this is the joint use of Sentinel-2 and Landsat-8 images for regular and timely
monitoring of burned areas [133]. However, the differences in acquisition modes and sensor
parameters present a big challenge for traditional methods. On the other hand, multimodal
data are complementary to the use of single modality images and their use becomes crucial
especially when only images from different sensors are available in some specific scenarios.
This could be the case of emergency management when, for example, optical and SAR
images could be jointly exploited for flood change detection tasks [75]. In this scenario,
methods capable of computing change maps from images of different sensors in the minimum
possible time can be very useful. This has led to the development of multi-source change
detection methods, which can process either multi-sensor or multi-modal images.

The recent success of deep learning techniques in change detection is mainly focused on
supervised methods [36, 127, 126], which are often limited by the availability of annotated
datasets. Especially in multi-temporal problems, it is expensive and often not possible to
obtain a large amount of annotated samples for modeling change classes. Thus, unsupervised
methods are preferred to supervised ones in many operational applications. The limited access
to labelled data has driven the development of unsupervised methods, such as Generative
Adversarial Network (GAN)[61] and Convolutional AutoEncoder (CAE)[108], which are
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Fig. 3.1 The pre-training part of the proposed approach to change detection for bi-temporal
remote sensing image pairs. In the cross-sensor setting, the image pair consists of two images
acquired by different types of sensors and the architecture of the network is symmetric with
each side consisting of an encoder and a projection layer. In the single-sensor setting, the
image pair consists of bi-temporal images acquired by the same sensor and two symmetric
subnetworks that share almost identical architectures.

currently among the most used deep learning methods in unsupervised change detection tasks.
Recent research in self-supervised learning [151, 69] encourages the network to learn more
interpretable and meaningful feature representations in CV tasks, where they outperformed
the generative counterparts. To overcome the drawbacks of generative models, in this section,
we exploit contrastive learning in multi-view remote sensing image change detection. We
present a novel general approach to perform unsupervised change detection in both single-
sensor and cross-sensor scenarios that are based on a multi-view contrastive learning method
[151]. Rather than training generative models on a predefined task, the proposed approach is
trained end-to-end on large unlabeled images by minimizing the distance between features
directly from bi-temporal images. To this purpose, a pseudo-Siamese network (which exploits
ResNet-34 as the backbone) is trained to regress the output between two branches that were
pre-trained in a contrastive way on a large archived multi-view image. Then, we introduce
a change score that can accurately model the feature distance between bi-temporal images.
Changes are identified when there is a significant disagreement between the feature vectors
of the two branches.
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3.1.2 Methodology

Pseudo-Siamese Network

Siamese networks [17] is the most used model in entity comparison. However, the comparison
of cross-sensor image pairs can not be performed by Siamese networks directly for their
different imaging mechanism. Siamese networks share identical weights in two branches,
while cross-sensor image pairs have dissimilar low-level features. Hence, the pseudo-Siamese
network is used as the model architecture for cross-sensor image change detection. It has
two branches that share the same architecture except for the input channel, but with different
weights. For single-sensor images, we propose to use the mean teacher network [150] as the
architecture of our model. The mean teacher is a common pseudo-Siamese network used
in self-supervised learning, which uses an exponential moving average (EMA) weight to
produce a more accurate model than using the same weights directly in the single-sensor
images setting. In this way, the model has a better intermediate feature representation by
aggregating the information of each step. Fig. 3.1 (a) shows the architecture used in this
work, where two branches are designed to extract the features of bi-temporal image pairs.
In this work, the ResNet-34 [70] is adopted as the backbone of the two branches and the
input channels are changed for adapting to the image pairs, i.e., the polarization of SAR
image patches and the spectral bands of optical image patches. In particular, we change
the parameters of the strider from 2 to 1 in the third and fourth layers of the backbone for
adapting the network to the relatively small input size. In greater detail, the bi-temporal
image pairs are passed through the unshared branches and are then modelled in output from
the related feature vectors. The output feature vectors of the two branches are normalized
and then used to compute the similarity with each other and the negative samples of the batch.
Finally, the model parameters are updated by minimizing a loss function.

For SAR-Optical fusion data, we implement BYOL by using the mean teacher network
[150] as the architecture of our model (Fig. 3.1 (b)). It can be perceived as a kind of
pseudo-Siamese network, which consists of two identical branches (online network and
target network). However, the weight of one branch is the expositional moving average
(EMA) weight of the other.

Self-supervised Learning Approach

Contrastive learning is a popular methodology for unsupervised feature representation in
the machine learning community [151, 120]. The main idea behind the contrastive loss is to
find a feature representation that attributes the feature distance between different samples.
For change detection, let us consider each bi-temporal image pair {Ii

1, I
i
2}i=1,2,...,N on a given
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scene i, which is considered as a positive pair sampled from the joint distribution p(Ii
1, I

i
2).

Another image pair {Ii
1, I

j
2} taken from a different scene is considered as a negative pair

sampled from the product of marginals p(Ii
1)p(I j

2). The method introduces a similarity
function, hθ (·), which is used to model the feature distance between positive and negative
pairs. The pseudo-Siamese network is trained to minimize the LS

contrast defined as:

LS
contrast =−ES

[
log

hθ (I1
1 , I

1
2 )

∑
N
j=1 hθ (I1

1 , I
j

2)

]
(3.1)

where (I1
1 , I

1
2 ) is a positive pair sample, (I1

1 , I
j

2| j ≥ 1) are negative pair samples and S =

{I1
1 , I

1
2 , I

2
2 , · · · , I

N−1
2 } is a set that contains N−1 negative samples and one positive sample.

During the training, positive image pairs are assigned to a higher value whereas negative pairs
to a lower value. Hence, the network represents positive pairs at a close distance whereas
negative pairs at a high distance. The self-supervised method takes different augmentations
of the same image as positive pairs and negative pairs sampled uniformly from different
scenes. For change detection, we can construct bi-temporal image sets S1 and S2 by fixing
one set and enumerating positives and negatives from the other set. This allows us to define a
symmetric loss as:

L(S1,S2) = LS1
contrast +LS2

contrast (3.2)

In practice, the Noise-Contrastive Estimation [64] method is used to make a tractable
computation of (3.2) when N is extremely large. This multi-view contrastive learning
approach makes the unsupervised change detection possible.

Change Detection

The change detection strategy described in this subsection is based on the feature learned by
the contrastive learning method. Let S = {I1, I2, I3, ..., In} be a dataset of either single-sensor
or cross-sensor multi-temporal remote sensing images. Our goal is to detect changes between
satellite images from different dates. As mentioned before, most changes of interest are those
relevant to human activities, while the results are easily affected by irrelevant changes, such
as seasonal changes. Other relevant changes are usually rare, whereas irrelevant changes
are common during a long period. This means that, under this assumption, the features of
relevant changes can be derived from the unchanged features. To this purpose, the models are
trained to regress the features of images acquired at different dates. As shown in Fig. 3.2, here
we use the considered contrastive learning algorithm to get features of either single-sensor or
cross-sensor multi-temporal images. After training, a change intensity map can be derived
by assigning a score to each pixel indicating the probability of change.
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Fig. 3.2 Schematic overview of the proposed change detection approach (SSL). Input images
are fed through the pre-trained pseudo-Siamese network that extracts feature vectors from
single-sensor or cross-sensor bi-temporal image patches. Then, change intensity maps are
generated by estimating regression errors for each pixel and the final binary change map is
obtained by setting a threshold.

During the network training, images acquired by the different sensors or at different dates
are treated as two-views in our approach. Image patches centred at each pixel are fed in input
to the network, and the output is a single feature vector for each patch-sized input. In detail,
given an input image I ∈ Rw×h of width w, height h, we can get a feature vector T (r,c) of a
square local image region with a side length p for each image pixel at row r and column c.
During the inference, the model provides as output a feature map that is generated by a given
size of input image patches. Let T1(r,c) and T2(r,c) denote the feature vectors at the row r
and column c for the considered bi-temporal images. The change intensity map is defined as
the pair-wise regression error e(r,c) between the feature vectors of bi-temporal images:

e(r,c) = ∥T1(r,c)−T2(r,c)∥2
2 (3.3)

It is worth noting that the proposed model allows the use of different input sizes. To prevent
the possible degeneration of the detection accuracy at a given input size, we recommend
using a larger input size when the trial on a smaller input size fails.

One can see from Fig. 3.2 that pixels can be classified as changed and unchanged by
thresholding the feature distance in the change intensity map. In this case, two strategies are
considered. The simplest strategy is to choose the opposite minimum value of standardized
intensity maps as the threshold value. An alternative strategy is the Robin thresholding
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method [132], which is robust and suitable for long-tailed distribution curves. In this method,
the threshold value is the "corner" on the distribution curve of the intensity map and the
maximum deviation from the straight line drawn between the endpoints of the curve. In our
technique, the threshold value is determined by the first strategy if the absolute difference
of these two threshold values is smaller than half of their average value. Otherwise, the
threshold value is determined by the Robin thresholding method.

3.1.3 Experimental Results

In this section, we first present the considered datasets, then the state-of-the-art change
detection methods used in the comparison, and finally conduct a thorough analysis of the
performance of different approaches and the analysis of robustness and efficiency.

Description of Datasets

We developed our experiments on five different datasets including two single-sensor datasets
and three cross-sensor datasets. All remote sensing images in this work are raw images from
the google earth engine (GEE) and without any specific pre-processing.

OSCD_S2S2/_S1S1/_S1S2/_L8S2: The Onera Satellite Change Detection (OSCD)
dataset [37] was created for bi-temporal change detection using Sentinel-2 images acquired
between 2015 and 2018. These images have a total of 13 bands with a relatively high resolu-
tion (10 m) for Visible (VIS) and near-infrared (NIR) band images and 60 m resolution for
other spectral channels. The images of this dataset include urban areas and present the change
type of urban growth and changes. The dataset consists of 24 pairs of multispectral images
and the corresponding pixel-wise ground truth acquired in different cities and including
different landscapes. The pixel-wise ground truth labels, which were manually annotated,
focus on urban growth and built-up changes and contain some errors on the identification
of bare lands. At the original supervised setting, 14 pairs were selected for the training
set and the rest 10 pairs were used to evaluate the performance of methods. To use this
dataset in self-supervised training, we downloaded additional Sentinel-2 images in the same
location as the original bi-temporal images between 2016 and 2020. We considered images
from each month to augment existing image pairs. Similarly, Landsat-8 multi-temporal
images and Sentinel-1 ground range detected (GRD) image products are also provided in
this dataset corresponding to the given Sentinel-2 scenes. The Landsat-8 images have nine
channels covering the spectrum from deep blue to shortwave infrared and two long-wave
infrared channels and their resolution range from 15 m to 100 m. The Sentinel-1 GRD
products have been terrain corrected, multi-looked, and transformed to the ground range
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and geographical coordinates. They consist of two channels including Vertical-Horizontal
(VH) and Vertical-Vertical (VV) polarization as well as of additional information on the
incidence angle. To use this dataset for multi-view change detection, we separate it into
four sub-datasets: OSCD_S2S2 (225 pairs), OSCD_S1S1 (577 pairs), OSCD_S1S2 (334
pairs) and OSCD_L8S2 (156 pairs). These datasets are composed of single-sensor images
(OSCD_S2S2, OSCD_S1S1) and cross-sensor images (OSCD_L8S2, OSCD_S1S2). To keep
consistency with previous research, 10 image pairs of these four datasets corresponding to
the OSCD test image pairs are treated as the test set to evaluate the performance of different
methods, and image pairs acquired on other scenes and on each month of four years are used
for the self-supervised pre-training. In practice, it is impossible to acquire the test image
pairs of OSCD_S1S1, OSCD_L8S2, and OSCD_S1S2 at the same time as the OSCD_S2S2.
Hence, we only obtained these image pairs at the closest time to OSCD_S2S2 test image
pairs.

Flood in California: The California dataset is also a cross-sensor data set that includes
a Landsat-8 (multi-spectral) and a Sentinel-1 GRD (SAR) image. The multispectral and
SAR images are acquired on 5 January 2017 and 18 February 2017, respectively. The
dataset represents a flood occurred in Sacramento County, Yuba County, and Sutter County,
California. The ground truth was extracted from a Sentinel-1 SAR image pair where the
pre-event image is acquired approximately at the same time as the Landsat-8 image. However,
we realized that the ground truth in [102] contains many mistakes. Hence, we updated the
reference data with the PCC method according to bi-temporal Sentinel-1 images. The other
three image pairs of Sentinel-1 and Landsat-8 images of the same scene acquired in 2017 and
2018, respectively, were used for the self-supervised pre-training of the proposed approach.

S1-2 fusion: We considered the OSCD dataset and use Sentinel-2 as well as the corre-
sponding Sentinel-1 GRD images, where the two polarization images (vertical-horizontal
and vertical-vertical) of Sentinel-1 GRD products were used to complement the Sentinel-2
images. The dataset is split into the training part (14 pairs) used for the self-supervised
pre-training and the test part (10 pairs) used for evaluation. Each part consists of Sentinel-1
and Sentinel-2 images of the given scene.

Experimental Settings

Literature Methods for Comparison: We considered different state-of-the-art methods
for comparisons with the proposed approach on the five datasets mentioned above. On the
first two optical data sets (OSCD_S2S2 and OSCD_L8S2), the proposed SSL approach
was compared with two unsupervised deep learning approaches (DSFA [49] and CAA
[103]) and two deep supervised methods (FC-EF [36] and FC-EF-Res [35]). Code-Aligned
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Autoencoders (CAA) is a deep unsupervised methodology to align the code spaces of two
autoencoders based on affinity information extracted from the multi-modal input data. It
allows for achieving a latent space entanglement even when the input images contain changes
by decreasing the interference of changed pixels. However, it degrades its performance when
only one input channel is considered. It is also well suited for single-sensor change detection,
as it does not depend on any prior knowledge of the data. Fully convolutional-early fusion
(FC-EF) is considered for the supervised change detection method on the OSCD dataset. In
this method, the bi-temporal image pair are stacked together as the input. The architecture of
FC-EF is based on U-Net [130], where the skip connections between the encoder and decoder
help to localize the spatial information more precisely and get clear change boundaries.
FC-EF-Res is an extension of FC-EF with residual blocks to improve the accuracy of change
results. In addition, it is worth noting that the first dataset (OSCD_S2S2) has previously
been extensively used in other works. Hence, we also compare our results with those of
some conventional methods [37] (Log-ratio, GLRT and Image difference), an unsupervised
deep learning method (ACGAN [137]) and supervised deep learning techniques (FC-Siam-
conc and FC-Siam-diff [37]) reported in previous papers. On the Sentinel-1 SAR images
dataset, only unsupervised methods (DSFA, SCCN, and CAA) are used for comparison.
Note that some change information present in multi-spectral images is not detectable in
SAR images, hence we did not use supervised methods on them. On the two cross-sensor
remote sensing image datasets (OSCD_S1S2 and California), two state-of-the-art methods
are used for comparisons, including the symmetric convolutional coupling network (SCCN)
and CAA. Considering that only significant changes in the backscattering of SAR images
can be detected, we only consider the LasVegas site in the OSCD_S1S2 data set.

Implementation details: During the training on a single-sensor data set, we randomly
composed all images acquired at adjacent months into pairs as the input. While SAR/multi-
spectral image pairs acquired in the same month have been used as the input of multi-sensor
fusion pairs. After finishing the training process, the test image pairs are fed into the pre-
trained network and then the related change intensity maps are derived. For the supervised
method (FC-EF and FC-EF-Res), we used the 14 bi-temporal training images considered in
the previous work [35]. In the self-supervised and supervised method, we use four channels
(VIS and NIR) in Landsat-8 and Sentinel-2 images, while two polarizations (VH and VV)
in Sentinel-1 images. CAA and SCCN methods require cross-sensor image pairs having
the same number of input channels. To keep consistency with the four input channels of
multi-spectral images, we augmented Sentinel-1 images with the plus and minus operation
between the two polarizations as the other two channels.
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Evaluation Criteria: To appraise the different methods presented above, five evaluation
metrics (precision (Pre), recall (Rec), overall accuracy (OA), F1 score and Cohen’s kappa
score (Kap)) are used in this paper. We simply classify the image pixels into two classes
by setting an appropriate threshold value according to the presented strategy and analysing
them with reference to the ground truth map. Then, the number of unchanged pixels
incorrectly flagged as change is denoted by FP (false positive) and the number of changed
pixels incorrectly flagged as unchanged is denoted by FN (false negative). In addition, the
number of changed pixels correctly detected as change is denoted by T P (true positive) and
the number of unchanged pixels correctly detected as unchanged is denoted by T N (true
negative). From these four quantities, the five evaluation metrics can be defined as :

Pre =
T P

T P+FP
(3.4)

Rec =
T P

T P+FN
(3.5)

F1 =
2Pre ·Rec
Pre+Rec

(3.6)

OA =
T P+T N

T P+T N +FP+FN
(3.7)

Kap =
OA−PE
1−PE

(3.8)

PE =
(T P+FP) · (T P+FN)

(T P+T N +FP+FN)2

+
(FN +T N) · (FP+T N)

(T P+T N +FP+FN)2

(3.9)

Obviously, a higher value of Pre results in fewer false alarms, and a higher value of Rec
represents a smaller rate of incorrect detections. The overall accuracy OA is the ratio between
correctly detected pixels and all pixels of the image. However, these three metrics will
give a misleading overestimate of the result when the amount of changed pixels is a small
fraction of the image. F1 score and Kap can overcome the problem of Pre and Rec and
better reveal the overall performance. Note that large F1 and Kap values represent better
overall performance.

Results on Single-sensor Data Sets: We first evaluate the change detection performance
of the proposed approach and state-of-the-art methods (DSFA, CAA and supervised methods)
applied to the single-sensor change detection scenario. This includes bi-temporal Sentinel-2
images (OSCD_S2S2 test dataset) and bi-temporal Sentinel-1 images (OSCD_S1S1 test
dataset). The performance metrics obtained on the OSCD_S2S2 test dataset are reported in
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Fig. 3.3 Examples of change detection results on OSCD_S2S2, organized in one row for
each location. Col. 1: pre-event image (Sentinel-2); Col. 2: post-event image (Sentinel-2).
Change maps obtained by: DSFA (Col. 3), CAA (Col. 4), FC-EF-Res (Col. 5), and the
proposed SSL (Col. 6).

Table 3.1. As expected the FC-EF and FC-EF-Res supervised methods applied to raw images
achieved a better performance than most unsupervised methods except the proposed SSL
approach on most metrics. Among all unsupervised methods, the proposed SSL approach
(with the input size of 8 pixels) with an OA of 93 % and a Kappa coefficient of 0.48, obtained
the best performance on all five metrics and the best performance among all methods
(including the supervised ones) implemented in this work. Although the two supervised
methods performed better than other methods on most metrics, they have worse performance
on Recall than the proposed SSL approach. In addition, the results of other unsupervised
methods (i.e., ACGAN, Image difference, GLRT, and Log-ratio) and supervised methods
(i.e., Siamese and EF) on VIS and NIR channels in [37] are reported in the table. They are
all worse than those of the proposed SSL approach. The results of other supervised methods
(i.e., FC-EF*, FC-EF-Res*, FC-Siamese-Con* and FC-Siamese-Diff*) applied to carefully
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processed RGB channel images are reported in the last rows of Table 3.1. Their accuracies on
most metrics are slightly better than those of the proposed SSL approach, but they can not be
achieved when working on raw images as a high registration precision is required. Indeed, in
the related papers, multi-temporal images are carefully co-registered using GEFolki toolbox
to improve the accuracy of change maps [37]. On the contrary, the proposed SSL approach is
based on image patches where the registration precision of the Sentinel system is enough for
obtaining a good change map.

Besides the quantitative analysis, we also provide a visual qualitative comparison in
Fig. 3.3, where the TP, TN, FN and FP pixels are colored in green, white, blue and red,
respectively. One can see that change maps provided by DSFA and CAA are affected by a
significant salt-and-pepper noise where plenty of unchanged buildings are misclassified as
changed ones. This is due to the lack of use of spatial context information in these methods.
This issue is well addressed by the proposed SSL approach and the FC-EF-Res supervised
method, which provides better maps. Most of the changed pixels are correctly detected in
the proposed SSL approach but with more false alarms than in the supervised FC-EF-Res
method. Note that this is probably due to some small changes that are ignored in the ground
truth. Nonetheless, since these results are processed in patches, some small objects are not
classified correctly and false alarms on boundaries of buildings are provided by the proposed
SSL approach. Instead, the change maps obtained by the FC-EF-Res method are in general
more accurate and less noisy due to the use of spatial-spectral information in U-Net and

Table 3.1 Quantitative evaluations of different approaches applied to the OSCD_S2S2 dataset.

Type Method Pre(%) Rec(%) OA(%) F1 Kap

U
ns

up
er

vi
se

d

Prop. SSL 40.44 69.10 93.00 0.51 0.48
DSFA 26.77 54.24 92.63 0.36 0.32
CAA 23.49 52.96 91.66 0.33 0.29

ACGAN[44] - 64.63 77.67 - -
Img. Diff[41] - 63.42 76.12 - -

GLRT[41] - 60.48 76.25 - -
Log-ratio[41] - 59.68 76.93 - -

Su
pe

rv
is

ed

FC-EF 55.34 39.48 95.13 0.46 0.44
FC-EF-res 54.97 38.39 95.10 0.45 0.43

Siamese[41] 21.57 79.40 76.76 0.34 -
EF[41] 21.56 82.14 83.63 0.34 -

FC-EF*[42] 44.72 53.92 94.23 0.49 -
FC-EF-Res*[42] 52.27 68.24 95.34 0.59 -

FC-Siamese-Con*[42] 42.89 47.77 94.07 0.45 -
FC-Siamese-Diff*[42] 49.81 47.94 94.86 0.49 -
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Fig. 3.4 Examples of change detection results on OSCD_S1S1, organized in one row for
each location. Col. 1: pre-event image (Sentine-1); Col. 2: post-event image (Sentine-1).
Change maps obtained by: DSFA (Col. 3), SCCN (Col. 4), CAA (Col. 5), and the proposed
SSL (Col. 6).

Table 3.2 Quantitative evaluations of different unsupervised approaches applied to the
OSCD_S1S1 datasets.

Method Pre(%) Rec(%) OA(%) F1 Kap
Prop. SSL 27.52 27.72 92.33 0.28 0.24

SCCN 7.48 27.80 78.04 0.12 0.04
CAA 19.80 34.81 89.12 0.25 0.20
DSFA 10.96 22.78 92.63 0.15 0.08

the supervised learning algorithm. However, the FC-EF-Res method failed to detect most
of changed pixels in the first scenario. This confirms that the change detection results of
supervised methods heavily rely on the change type distribution and the quality of training
samples. This is not an issue for the proposed SSL approach.



48 Self-Supervised Bi-temporal RS image Change Detection

Table 3.3 Quantitative evaluations of different approaches applied to the OSCD_L8S2 dataset.

Type Method Pre(%) Rec(%) OA(%) F1 Kap

U
ns

up
. Prop. SSL 37.31 32.22 93.57 0.35 0.31

CAA 18.45 45.80 90.25 0.26 0.22
DSFA 8.08 24.29 86.64 0.12 0.07

Su
p. FC-EF 29.75 34.08 92.27 0.32 0.28

FC-EF-res 39.14 27.14 93.93 0.32 0.29

To complete the evaluation on single-sensor datasets, the performance of all unsupervised
methods is validated on the OSCD_S1S1 test dataset. The quantitative results are reported
in Table 3.2, which shows that the proposed SSL approach (with the input size of 8 pixels)
produces better accuracy than other methods. The binary change maps obtained by each
unsupervised method are shown in Fig. 3.4. One can see that all results appear much
noisier due to the influence of speckle in SAR images. It is worth noting that only a
new building that appeared in the post-event SAR image can be detected because minor
growth of the building does not cause significant backscatter change. Apart from this, the
boundaries of the detected objects are not accurate as those in the optical dataset due to the
side-looking imaging mechanism. In general, the above two experiments based on single-
sensor images demonstrate that the proposed SSL approach obtained the best quantitative
and qualitative performance with respect to all the other considered unsupervised change
detection techniques.

Results on Cross-sensor Data Sets: In the second change detection scenario, we consider
three cross-sensor data sets which consist of a Landsat-8/Sentinel-2 images set (OSCD_L8S2
test dataset), a Sentinel-1/Sentinel-2 image pair (OSCD_S1S2) and a Sentinel-1 / Landsat-8
image pair (California). The performance of each model applied to OSCD_S2S2 is also
validated on the OSCD_L8S2 test dataset, which was obtained by different optical sensors
having different spatial resolutions, and the quantitive evaluation is reported in Table 3.3. In
general, the supervised methods outperform DSFA and CAA considering all five metrics.
However, the performance of FC-EF-res on Recall is much worse than those of CAA and
the proposed SSL approach. Meanwhile, the proposed SSL approach (with an input size of
16 pixels) with an overall accuracy of 93.57% and a Kappa coefficient of 0.31, obtained the
best accuracy among the methods. Fig. 3.5 presents the binary change maps obtained by all
methods on the OSCD_L8S2. One can see that the change maps contain a larger number of
false alarms for all methods compared with the maps obtained on the OSCD_S2S2. This is
probably due to the relatively lower resolution of Landsat-8 VIS and NIR channel images
with respect to the counterparts in Sentinel-2 images. Consistently with the results obtained
on OSCD_S2S2 (see Fig. 3.3), the proposed SSL approach has a better segmentation result
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Fig. 3.5 Examples of change detection results on OSCD_L8S2, organized in one row for
each location. Col. 1: pre-event image (Landsat-8); Col. 2: post-event image (Sentinel-2).
Change maps obtained by: DSFA (Col. 3), CAA (Col. 4), FC-EF-Res (Col. 5), and the
proposed SSL (Col. 6).

but with lower accuracy on all metrics, which indicates that the different resolution images
increase the difficulty of change detection tasks.

The performance of three unsupervised methods (SCCN, CAA and SSL) on OSCD_S1S2
is reported in Table 3.4. One can see that the proposed SSL approach (with an input size of
16 pixels) performs much better than the other two unsupervised methods on most metrics
due to the separated training on the archived images. In contrast, SCCN and CAA are both
trained on the test image only and the complicated background in the scene makes them hard
to separate the unchanged pixels for the network training causing too many false alarms in
change detection maps. Compared with the results obtained in the optical image experiments,
the results presented here are much worse. This demonstrates the difficulty of SAR-optical
change detection in complicated backgrounds, such as urban area. Fig. 3.6 presents the
qualitative visual results in terms of binary change maps. One can observe that the results
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Table 3.4 Quantitative evaluations of different approaches applied to the heterogeneous
images OSCD_S1S2 and the California datasets.

Dataset Method Prec(%) Rec(%) OA(%) F1 Kap

S1S2
SCCN 7.38 22.45 68.54 0.11 -
CAA 21.91 28.71 84.79 0.25 0.17

Prop. SSL 62.82 24.19 92.10 0.35 0.32

California
SCCN 51.42 64.44 92.88 0.57 0.53
CAA 76.49 40.38 94.68 0.53 0.50

Prop. SSL 40.43 68.14 90.24 0.51 0.46

provided by SCCN and CAA are affected by many more missed detections and false alarms
than in the single-sensor case. The result of the proposed SSL approach has fewer false
alarms but with more missed detections with respect to the single-sensor setting owing to the
larger domain discrepancy.

Differently from the previous dataset, the California dataset is related to a simpler
background and to more significant changes resulting from the flood. Table 3.4 presents

Fig. 3.6 Change detection results on OSCD_S1S2 and California flood, organized in one row
for each location. Col. 1: pre-event image (Sentine-1 for OSCD_S1S2 and Landsat-8 for
the California flood); Col. 2: post-event image (Sentine-2 for OSCD_S1S2 and Sentine-1
for the California flood). Change maps obtained by: SCCN (Col. 3), CAA (Col. 4), and the
proposed SSL (Col. 5). Col. 6: the ground truth.
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the results of all methods on this dataset. The three unsupervised methods (SCCN, CAA
and SSL) have similar performance on overall evaluation metrics (OA, F1 and Kappa). The
SCCN achieves the best F1 score, Kappa and the second-best values on Precision, Recall
and OA, while the CAA achieved the highest Recall. The proposed SSL approach (with
an input size of 8 pixels) gets the third-best values on four of five metrics, thus it does not
show obvious superiority. Fig. 3.6 illustrates the Landsat 8 and Sentinel-1 images and the
change maps from the compared methods. Maps provided by SCCN and ACC show a clear
boundary of change areas, whereas one of the proposed SSL approaches is less precise. The
map of the proposed SSL approach contains more false alarms, while the map of the CAA
has more missed detections. In general, considering the results on the two SAR-optical test
datasets, the proposed SSL approach achieved the best performance in urban areas whereas a
slightly worse performance on flood detection.

Analysis of Robustness and Efficiency: To better analyze the robustness of the proposed
SSL approach, we further evaluated the performance in terms of the five metrics consid-
ered under different input sizes. Here we provide an example of results considering the
OSCD_L8S2 dataset. We consider the effects of varying input sizes from small to large,
where each input size is a multiple of 8 pixels. Table 3.5 shows that the optimal input size for
the contrastive method is 16; too small (8) or too large input size (24) sharply degenerates the
accuracy. The architecture of the proposed approach allows for generalization to an arbitrary
input size, which can prevent failure under a given input size.

We also compared the efficiency between the proposed approach and the other selected
methods in terms of inference time (Table 3.6). From a general perspective, it is not possible
to provide a fair efficiency comparison between them. This because they are not end-to-end
deep learning models. Because the supervised method does not allow arbitrary input size
and memory limitation, we used a small patch size (1×8×512×512) that fits in memory to

Table 3.5 Quantitative evaluations of contrastive method applied to OSCD_L8S2 under
different input sizes.

Input Size(pixels) Pre(%) Rec(%) OA(%) F1 Kappa
8 17 10.73 92.52 0.13 0.09

16 37.31 32.22 93.57 0.35 0.31
24 11.8 11.19 90.9 0.11 0.07

Table 3.6 Efficiency comparisons between different methods.

Models CAA DSFA SCCN FC-EF FC-EF-res Prop. SSL
Kappa 0.29 0.32 0.06 0.44 0.43 0.48

Time (s) 0.003 0.09 0.001 0.015 0.015 7.849
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test inference time for each model. The times reported for all models are based on the use of
PyTorch on a 7.8 GB RTX 2070ti GPU.

From the analysis of Table 3.6, one can see that the unsupervised models (CAA, DSFA
and SCCN) need much less inference time but result in far low accuracy. The proposed
approach needs more inference time. However, this is acceptable at an operational level
when working with a proper GPU setting. Note that a key performance indicator to consider
is that, when compared with the supervised methods, the proposed approach achieved much
higher accuracy and without any label during the network training. We expect that the time
cost of annotating labels in supervised methods can be higher than the inference time in the
proposed approach. Moreover, the proposed approach also has a parameter redundancy and
the tradeoff between accuracy and inference time depends on the particular task considered.

3.1.4 Conclusion

We have presented a self-supervised approach to unsupervised change detection in multi-view
remote sensing images, which can be used with both single-sensor and cross-sensor images.
The main idea of the presented framework is to extract good feature representations from
multi-view images using contrastive learning. Images from satellite mission archives are
used to train the pseudo-Siamese network without using any label. Under the reasonable
assumption that the change event is rare in long-time archived images, the network can
properly align the features learned from images obtained at different times even when they
contain changes. After completing the pre-training process, the regression error of image
patches captured from bi-temporal images can be used as a change score to indicate the
change probability. If required, a binary change map can be directly calculated from change
intensity maps by using a thresholding method. Experimental results on both single-sensor
and cross-sensor remote sensing image data sets proved that the proposed SSL approach
can be applicable in practice, and demonstrated its superiority over several state-of-the-art
unsupervised methods. Results also show that the performance declines when the resolution
of the two sensors is different in a homogeneous setting.

Moreover, in the SAR-optical change detection setting, the change detection results are
affected by the complexity of the background. Experimental results show that the fusion
of SAR and optical images can improve the change detection results and the considerable
potential of the proposed method in unsupervised change detection.
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3.2 A Self-supervised Approach to Pixel-level Change De-
tection in Bi-temporal RS images

In this section, we present the proposed approach to multi-view remote sensing image change
detection based on pixel-wise feature representation. It includes the network architecture of
the proposed method, the contrastive learning and the uncertainty aware feature learning
approach. We first get the pixel-wise feature representation of bi-temporal images from the
proposed network, which is trained by using the averaged feature values over superpixels in
the contrastive loss rather than using the pixel-level features. Then, the uncertainty aware
feature learning approach is used to reduce the impact of seasonal changes in pixel-wise
feature representation. Afterward, the binary change map is generated by comparing the
cosine similarity between the feature vectors of each pixel within bi-temporal images given a
threshold value.

3.2.1 Introduction

The basic idea of self-supervised change detection in remote sensing is to align the shared
information between multi-view images and reduce the impact of the sensor- and time-related
noise. In this context, self-supervised learning can play a major role in multi-view remote
sensing image change detection. The use of self-supervised learning in change detection is
possible with both multi-sensor and multi-resolution image pairs. Recently, self-supervised
learning [61, 108, 151, 55, 119] has been recognized as a promising technique for obtaining
meaningful representations and overcoming both season-related and sensor-related noise
in the image processing domain. The intuitive idea is to start from the two temporal views
and reconstruct their counterpart using generative models. Nevertheless, some studies have
shown that such generative models overly focus on pixels rather than on abstract feature
representations [97]. Research in contrastive learning [151, 69, 26] has encouraged the
network to learn more interpretable and meaningful feature representations from multi-view
images, where they outperformed the generative counterparts. However, these works focus
on image-level tasks. The patch-based algorithm in the image-level processing also makes
these methods very computationally expensive. How to perform contrastive learning in
pixel-level change detection is a problem that until now has been relatively unexplored.

From a different perspective, few approaches have considered the aleatoric uncertainty of
seasonal changes for binary change detection tasks. For example, the feature map of cropland
shows a high uncertainty, whereas that of the forest is relatively stable. This is because
the cropland changes significantly with the seasons. Traditional change detection methods
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simply treat the multi-temporal croplands in the same way, which is not sufficient to alleviate
season-related noise. Modelling the uncertainty of multi-temporal images can reduce the
impact of such seasonal changes, thus resulting in superior and robust performance. In the
computer vision (CV) community, some novel approaches [111, 85] have been proposed to
estimate aleatoric uncertainty during the training and inference of models. For the regression
task, models can predict the uncertainty in one forward pass. Most of them require training
labels to perform uncertainty estimation during training. Unfortunately, there are no labels
that can be used in such an unsupervised change detection task.

For these reasons, in the second work, we propose a pixel-wise self-supervised change
detection approach based on contrastive learning. The proposed approach consists of two
branches and is trained on shift-augmented images. Instead of adopting contrastive loss
on each pixel feature, this work exploits the averaged feature over superpixels, where each
averaged feature is treated as a single instance during the training. Superpixels obtained
from the same location of multi-view image pairs are called positive pairs. Negative pairs
are obtained from different locations or different batches of multi-view image pairs. In the
training process, the features of positive pairs can be pulled close and those of negative pairs
can be pushed apart. In addition to the contrastive approach, we also introduce an uncertainty
approach to reduce the impact of seasonal changes at the second step of the network training.

In summary, our contributions are as follows:

• As far as we know, we are the first to apply the pixel-wise contrastive method to
unsupervised remote sensing change detection tasks and assess its performance on
bi-temporal and bi-sensor datasets.

• We propose a self-supervised change detection approach at the pixel level and introduce
a simple but effective uncertainty approach in the change detection task to reduce the
impact of seasonal changes.

• We provide a comparison with the state-of-the-art approaches on various types of
datasets. Experimental results show that our method obtains comparative results
with state-of-the-art methods and a sharp improvement compared to the traditional
unsupervised approaches. Moreover, the pixel-wise approach outperforms the patch-
based contrastive method in the efficiency and robustness of water areas. We also
showed the further improvements obtained by the uncertainty approach.
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3.2.2 Methodology

Network Architecture

The proposed approach has two branches (Fig. 3.7). Two temporal views of images are used
as inputs to each branch. Each branch contains a ResUnet block (U) [170] and an additional
three-layered perceptron (MLP) projector (P) in the online branch. In addition, the same shift
transformation is applied to both input and output following the shift equivariance principle.
This is used as a kind of geometric data augmentation. We adopt a ResUnet architecture
similar to the one presented in the [170] but replace all padding types with the same padding.
Like U-net [130], ResUnet consists of encoder, decoder, bridge, and skip connections while
using residual units instead of plain neural units. The encoder is used to get compact features

Fig. 3.7 Overview of the proposed pixel-wise self-supervised change detection approach. We
perform a shift operation between two input views (T1 and T2) but still keep an overlap. The
approach is based on a pseudo-Siamese architecture with two branches both consisting of a
ResUnet block and an additional projector in the online branch (A). At the end of the network,
the output features of two branches are used as the inputs to the contrastive loss. The weights
of the target branch (B or C) are then updated by a momentum update of the online branch.
Note that the branches A and B denote the homogeneous image change detection scenario
and the branches A and C denote the heterogeneous image change detection scenario. T1 and
T2 denote that the images are acquired at two different times.
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with convolution layers, while the decoder reconstructs the compact features at the pixel
level. Multi-level features from the encoder are aggregated by using skip connections, which
reduces the number of parameters of the network achieving better performance.

As the deeper and deeper networks, the gradient in backpropagation sometimes vanishes,
which results in a degradation problem. In this context, He et al. [70] propose the deep
residual network using skip connections in each residual unit. Each residual unit can be
expressed in the following general form:

xi+1 = xi +F (xi,Wi)

xi+1 = f (xi+1)
(3.10)

where xi and xi+1 are the input and output of the i− th residual unit, respectively, F(·) is the
residual function, Wi is the weight matrix, f (·) is the activation function.

In this work, each residual unit of the encoder consists of two Conv-BN-ReLU blocks
and two identity mappings. There are three residual units in the encoder and a Conv-BN-
ReLU-Pool block before the residual units. In the last two blocks, instead of using a pooling
operation to downsample the feature maps, a stride of two is applied to the convolution
block to reduce the feature map by half. The bridge part consists of a convolutional layer,
a BN layer and a ReLU activation layer and followed by an up-sampling operation. The
decoder part has three blocks but without residual connections and uses a stride of one in all
convolution. In each decoder block, there is a concatenation with the feature maps from the
corresponding encoding path and then an up-sampling operation for concatenated feature
maps. At the last of the decoding path, a linear layer is used to reconstruct the learned
representations. At last, the projector consists of a 1×1 Conv of 192 channels and a ReLU,
and then of a 1× 1 Conv with 128 channels for each pixel. The parameters and channel
size of each unit of the online branch are presented in Table 3.7. Each unit ([]) consists of a
convolutional layer, a BN layer and a ReLU activation layer. The parameters of the target
branch φ are updated in a momentum update controlled by τ and the parameters of the online
branch θ , i.e.,

φ ← τφ +(1− τ)θ (3.11)

Shift equivariance is achieved by using shift operation on the input image and output
features of the two branches, respectively. Specifically, given an image pair, we randomly
crop the areas with the same size in both images and keep the overlap between the two
cropped areas. During the training, the cropped image pair is fed into the two branches,
respectively, to obtain two feature maps. To align the feature map of the two branches, the
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same transformation is applied to the counterpart output. During the inference, the model
provides two feature maps for the considered bi-temporal images. The change intensity map
is defined as the cosine similarity between the feature vector of each pixel within bi-temporal
images. To get binary change maps, the Rosin thresholding [132] method is used in this
work.

Loss Function

The training objective function is a contrastive loss. The contrastive loss is used to distinguish
the representations of each superpixel from others. The loss is sampled over the corresponding
superpixel features between two input views (Fig. 3.8). This aims to keep the consistency of
the normalized pixel-wise representations between the two branches. Each superpixel-wise
feature pair (zi

1,v
i
2), where zi

1 is the output of ResUnet and vi
2 is the output of the projector,

is sampled from the same location i that is called positive. Let v j
2 be taken from another

location that is called negative. The contrastive loss can be written as Lcontrast:

Lcontrast =−E
S

[
log

hθ (zi
1,v

i
2)

∑
N
j=1 hθ (zi

1,z
j
2)

]
(3.12)

Table 3.7 Structure of the network of the proposed online branch.

Encoder Decoder

Conv1
Maxpool

[3×3, 64], stride 2
3×3, stride 2

Cat. ResBlk3
[3×3, 128]

upsampling 2

DecBlk1
stride 1

ResBlk1
stried 1

[
3×3, 64
3×3, 64

]
×2

Cat. ResBlk2
[3×3, 128]

upsampling 2

DecBlk2
stride 1

ResBlk2
stride 2

[
3×3,128
3×3,128

]
×2

Cat. ResBlk1
[3×3, 128]

upsampling 2
Conv 1×1, 128

DecBlk3
stride 1

ResBlk3
stride 2

[
3×3,256
3×3,256

]
×2

1×1, 192
ReLU

1×1, 128
Projector

Bridge
stride 1

[3×3, 256]
upsampling 2
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Fig. 3.8 Overview of the contrastive loss performed on superpixel features. F1 and F2 denote
the feature from bi-temporal images.

where hθ (·) is a similarity function (i.e., cosine similarity), {(zi
1,v

i
2)} is a normalized

latent representation pair i of N scenes, {(zi
1,v

j
2| j ≥ i)} is a negative feature pair and

S = {z1
1,v

1
2,v

2
2, · · · ,vN

2 } is a set that contains N − 1 negative feature pairs and one posi-
tive feature pair by anchoring at z1

1. In the training process, the network is trained to increase
the value of positive pairs and decrease the value of negative pairs. This results in a feature
representation that is close for positive pairs whereas it is not for negative pairs. Compared
with the instance-level contrastive learning, this loss function is able to make the model get
more detailed representations and more suitable for dense prediction downstream tasks.

Uncertainty-aware Feature Learning

In this section, we propose a deterministic model to approximate the feature representations
that are invariant to the seasonal changes (Fig. 3.9). Specifically, the model learns to
directly infer both feature representation and its uncertainty in a forward pass. The network
architecture is based on a teacher-student paradigm, where the parameters of the teacher
model are fixed during the network training. The teacher network is pre-trained by the
proposed approach. Then, bi-temporal predictive samples are generated from the teacher
model to train the student network. Like the works in regression tasks, we use the KL loss to
approximate the variational predictive distribution and estimate the log variance (s) from the
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Fig. 3.9 Overview of the teacher-student paradigm for uncertainty-aware feature learning.
T1 and T2 denote that the images are acquired at two different times. L1 and L2 are the two
components of the uncertainty loss.

network directly avoiding the gradient explosion. The loss function can be written as:

L1 =
1
H

1
W ∑

i

1
2

exp(−si)d(y1
i −µ

2
i )+

1
2

si (3.13)

where i corresponds to each pixel within an image; H and W are the height and width of
the image; y1 and µ2 are the predictions from teacher and student network at time T1 and
T2, respectively. In most works, d is the l2 distance between the prediction of teacher and
student networks, whereas we use the cosine distance substituted for l2 distance. Empirically,
we found that training solely with the above loss function sometimes leads to sub-optimal
predictive performance. This may be due to too large amount of noise between different
temporal images. Thus we leverage the feature of images generated by the teacher network
at the same time to stabilize the training process. The teacher-student model is trained with
the cosine distance between bi-temporal features, leading to the total loss:

Lun = L1 +λ
1
H

1
W ∑

i
d(y2

i −µ
2
i ) (3.14)

where the λ is a hyper-parameter to be tuned. We found that λ = 1 generally performs well
in our experiments.
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3.2.3 Experimental Results

In this section, we present the considered datasets, the experiment settings and then evaluate
the performance obtained using the proposed approach for binary change detection tasks.

Description of Datasets

We developed our experiments on three multi-view data sets, which consist of two homoge-
neous data sets and one heterogeneous data set.

OSCD_S2S2: The Onera Satellite Change Detection (OSCD) dataset [37] was created
for bi-temporal change detection using Sentinel-2 images acquired between 2015 and 2018.
The dataset was acquired in 24 cities and includes different landscapes. The pixel-wise
ground truth labels, which were manually annotated, focus on urban growth and built-up
changes while containing some errors on the identification of bare lands. To use this dataset
in self-supervised training, we downloaded additional Sentinel-2 images between 2016 and
2020 in the same location as the original bi-temporal images. We considered images from
each month to augment existing image pairs. To keep consistency with previous research, 10
image pairs obtained from 10 different cities are treated as the test set for evaluation.

MUDS_S2S2: Multi-temporal Urban Development (MUDS) dataset [152] is an open-
source dataset of the native Planet 4 m resolution imagery acquired between 2017 and 2020.
The imagery comprises 24 consecutive monthly mosaic images of 101 locations over 6
continents. To use this dataset with OSCD_S2S2, we downloaded additional Sentinel-2
images between 2017 and 2020 in the same location as the original images and resized each
image to 512 × 512 pixels. We chose 33 of 110 locations as the test set, where the first
image was defined as pre-image and the last image was defined as post-image. In addition,
we manually labeled the three types of changes, such as built-up, bare land and water. Note
that only Sentinel-2 images of this dataset are used in this work.

Flood in California: The California dataset is a cross-sensor data set that includes a
Landsat-8 (multi-spectral) and a Sentinel-1 GRD (SAR) image. The multispectral and SAR
images are acquired on 5 January 2017 and 18 February 2017, respectively. The dataset
represents a flood that occurred in Sacramento County, Yuba County, and Sutter County,
California. The ground truth was extracted from a Sentinel-1 SAR image pair where the
pre-event image is acquired approximately at the same time as the Landsat-8 image [28].
The other three image pairs of Sentinel-1 and Landsat-8 images of the same scene acquired
in 2017 and 2018, are used for the self-supervised pre-training of the proposed approach.
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Experiment Settings

Evaluation Metrics: To appraise the different methods in binary change detection tasks,
five evaluation metrics (precision (Pre), recall (Rec), overall accuracy (OA), F1 score and
Cohen’s kappa score (Kappa)) are used in this paper. We simply classify the image pixels
into two classes by setting an appropriate threshold value according to the Rosin thresholding
method and then analyze them with reference to the ground truth.

Implementation Details: Concerning the geometric data augmentation in this work,
we applied shift transformations with a crop size of 128 × 128 pixels and an overlap
between bi-temporal images ranging between 64% and 100%. In addition, we also applied
random flip to further improve the performance of the proposed approach in the network
training. The photometric augmentation was not considered for capturing the seasonal
change better. We also introduce the multi-crop strategy on superpixel features to improve
the performance of the proposed approach. It consists in segmenting each bi-temporal image
using different superpixel algorithms or superpixel parameters. During the training, we first
sample superpixel indices of one temporal input and then select the corresponding ones on
the other temporal input. Because of the different sizes of superpixels in the two inputs, the
corresponding superpixels are decided by the maximum overlap criterion (Fig. 3.8). Once
corresponding superpixels are decided, corresponding features between bi-temporal images
are averaged over the selected superpixels, respectively. To select the appropriate samples
for calculating contrastive loss, we segment the image into superpixels and randomly select
one superpixel from each image patch. We used the felzenszwalb approach [51] to generate
superpixels.

For the self-supervised training of the teacher network, we adopt Adam with an initial
learning rate of 3e−4 and decay the learning rate with the step scheduling without restarts
and set the batch size as 100. Models are run for 200 epochs. We used bi-temporal images
to train the student network of the teacher-student paradigm for uncertainty-aware feature
representation. In order to capture the teacher predictive distribution, the image used to train
the student model should not be the same as the one for the teacher model. To alleviate this
problem, both temporal images were given as input to the teacher model and one of them
was given as input to the student model during the training of the teacher-student network.
This extra image is crucial for the enhanced quality of feature maps in the student model. We
emphasize that the uncertainty estimation comes from the bi-temporal images. To achieve
faster convergence, we initialize the student network using the weights of the teacher network.
To this end, a smaller initial learning rate of 1e−4 is used to train the student network for 200
epochs. We employ a step learning rate policy on the student network only and a batch size
of 10.
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There are two baseline approaches, patch-based self-supervised approach (PatchSSL)
[28] and Code-Aligned Autoencoders (CAA) [103], that we categorize to make a comparison.
Besides these two approaches, we also used SCCN [171] as a comparison in heterogeneous
change detection. Meanwhile, we also include the results of the teacher network in the
proposed approach as a baseline comparison.

Experimental Results

Experimental Results on Bi-temporal Sentinel-2 Images: As mentioned before, two bi-
temporal Sentinel-2 image data sets are proposed to evaluate the effectiveness of the proposed
approach. They are the OSCD_S2S2 and the MUDS_S2S2 data sets. The performance of the
proposed approach (PixSSLs) is compared with Code-Aligned Autoencoders (CAA), patch-
based self-supervised methods (PatchSSL) and the result of the teacher network (PixSSLt) in
the proposed approach. Two supervised approaches (FC-EF and FC-EF-res) from previous
research [36, 35] are also considered.

The performance metrics obtained on the OSCD test set are reported in Table 3.8. As
one can see, the PixSSLt obtained an OA of 94.08% and a Kappa coefficient of 0.49, which
outperforms the results obtained by PatchSSL and CAA as well as supervised methods. One
can also observe that there is an improvement in OA and Kappa with about 1% and 0.02 after
applying the uncertainty approach. The results obtained by the proposed PixSSLs that exploit
the uncertainty approach are better than those obtained using the pixel-wise self-supervised
approach only in almost all metrics except the Recall. Nevertheless, the patch-based self-
supervised approach with an OA of 93.00% and a Kappa coefficient of 0.48, obtained the
best performance on Recall. The table also presents the results of the supervised approach
as presented in [28]. Note that three self-supervised approaches (PatchSSL, PixSSLt and
PixSSLs) all outperform the supervised approaches on this dataset. The proposed PixSSLs
not only outperforms the literature self-supervised approaches but also is more efficient
during the inference phase.

Table 3.8 Quantitative evaluations of different approaches applied to the OSCD_S2S2 dataset.

Type Method Pre(%) Rec(%) OA(%) F1 Kappa

U
ns

up
.

Proposed PixSSLs 62.46 46.59 95.70 0.53 0.51
PixSSLt 45.42 60.64 94.08 0.52 0.49

PatchSSL 40.44 69.10 93.00 0.51 0.48
CAA 23.49 52.96 91.66 0.33 0.29

Su
p. FC-EF 55.34 39.48 95.13 0.46 0.44

FC-EF-res 54.97 38.39 95.10 0.45 0.43
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Table 3.9 Quantitative evaluations of different approaches applied to the MUDS dataset.

Methods Pre(%) Rec(%) OA(%) F1 Kappa
Proposed PixSSLs 43.81 70.54 94.45 0.54 0.51

PixSSLt 32.30 69.15 91.87 0.44 0.40
PatchSSL 34.43 65.41 92.39 0.45 0.41

CAA 32.68 48.26 93.01 0.39 0.35

Similar performance can be found on the MUDS test set (Table 3.9). The PixSSLt
obtained results similar to those of PatchSSL, by outperforming the results of CAA. The
results obtained by the proposed PixSSLs with an OA of 94.45% and a Kappa coefficient of
0.51, which are better than those obtained by PixSSLt. Compared with the results on OSCD,

Fig. 3.10 Examples of change detection results on OSCD_S2S2, organized in one row for
each location. Col. 1: pre-event image; Col. 2: post-event image. Change maps obtained by:
CAA (Col. 3), PatchSSL (Col. 4), PixSSLt (Col. 4) and the proposed PixSSLs (Col. 6).
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Fig. 3.11 Examples of change detection results on MUDS_S2S2, organized in one row for
each location. Col. 1: pre-event image; Col. 2: post-event image. Change maps obtained by:
CAA (Col. 3), PatchSSL (Col. 4), PixSSLt (Col. 4) and the proposed PixSSLs (Col. 6).

the improvement in OA and Kappa with about 2.6% and 0.11 is more prominent when using
the uncertainty approach. Moreover, it also outperformed the PatchSSL, which obtained an
OA of 92.39% and a Kappa coefficient of 0.41. The PatchSSL performs relatively poorly,
which is mostly due to the fact that the MUDS dataset contains more seasonal changes. On
the contrary, more built-up changes are presented in the OSCD dataset.

Besides the quantitative analysis, we also provide a visual qualitative comparison, where
the TP, TN, FN and FP pixels are colored in green, white, blue and red, respectively. In Fig.
3.10, we show a comparison between all methods on the OSCD test set. One can see that
the change maps obtained by CAA are noisy and contains more false alarms. Instead, the
change maps obtained by other methods are in general more accurate and less noisy. Change
maps provided by the PixSSLt contain more false alarms, as many unchanged pixels are
wrongly classified as changed ones. The proposed uncertainty enhanced PixSSLs suppresses
most unchanged regions but also fails to highlight some clearly changed regions. Among all
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considered methods, PixSSLs successfully detects most of the changed pixels and achieve
the best change maps.

Fig. 3.11 shows a comparison between all methods on the MUDS test set. One can see
that the PatchSSL fail to suppress most seasonal changes. The results obtained by CAA and
the proposed PixSSLt contain fewer false alarms whereas including a large number of missed
detection. This issue is well addressed in the proposed uncertainty-enhanced PixSSLs. As
shown in the first and third row, the proposed PixSSLs successfully suppresses most seasonal
changes and detects the changed areas. In addition, most of the changed pixels are correctly
detected in all contrastive approaches. The experiments on these two datasets demonstrate
that self-supervised methods obtained the best quantitative and qualitative performance with
respect to the considered autoencoder approach and the uncertainty-enhanced PixSSLs shows
a sharp improvement in suppressing seasonal changes. Although the PatchSSL still achieved
the comparable results, the proposed approach is more efficient.

Experimental Results on the Cross-sensor Image Pair: In the second change detection
scenario, we consider one cross-sensor data set which consists of a Sentinel-1/Landsat-8
image pair (California flood). Table 3.10 lists the quantitative statistics on the changed maps
obtained by four unsupervised methods (SCCN, CAA, PatchSSL and the proposed PixSSLt).
As one can see, SCCN achieves the best F1 score and Kappa and the second-best values on
Precision, Recall and OA, while it is trained on the test image itself. The proposed PixSSLt
has a comparable performance to SCCN obtaining the second-best value. Although PixSSLt
does not get the best performance, its results are superior to those of the PatchSSL and CAA
approaches.

Fig. 3.12 illustrates the Landsat-8 and Sentinel-1 images and the change maps from
the compared methods. SCCN achieves the best change maps with a clear boundary of
flood areas, while the CAA just detects the main flood area and misses the small areas.
PtachSSL highlights most of the flood areas, while its map is noisier than those of other
comparison methods and contains more false alarms. Compared with the PatchSSL, the
proposed PixSSLt produced a more clear change map, which is very close to the result
of SCCN. Overall, the proposed PixSSLt improves the performance and effectiveness of
multi-sensor change detection scenarios compared with the PatchSSL and CAA.

3.2.4 Discussion and Conclusion

Discussion

To better analyze the robustness of the proposed approach, we further evaluated the perfor-
mance in terms of the five metrics under more challenging water areas. Here we provide two
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Table 3.10 Quantitative evaluations of different approaches applied to the Flood dataset.

Methods Pre(%) Rec(%) OA(%) F1 Kappa
Proposed PixSSLt 50.64 59.11 92.73 0.55 0.51

PatchSSL 40.43 68.14 90.24 0.51 0.46
CAA 76.49 40.38 94.68 0.53 0.50

SCCN 51.42 64.44 92.88 0.57 0.53

Fig. 3.12 Change detection results on the Califorlia flood dataset, organized in one row for
each location. Col. 1: pre-event image (Landsat-8); Col. 2: post-event image (Sentine-1).
Change maps obtained by: SCCN (Col. 3), CAA (Col. 4), and PatchSSL (Col. 5) and the
proposed PixSSLt (Col. 6).

examples: one comes from OSCD and the other comes from MUDS. Fig. 3.13 shows the
change intensity maps and change maps obtained by PatchSSL and PixSSLt. As we can see,
both scenarios present many false alarms of water areas using PatchSSL, whereas the results
of PixSSLt correctly identified the water areas as non-change in change maps. Similarly,
water areas show a relatively high value in the change intensity maps of PatchSSL, whereas
they are suppressed in the results of PixSSLt. In a quantitative way, the proposed PixSSLt
obtains an OA of 97.2% and a Kappa coefficient of 0.47, whereas the PatchSSL obtained
an OA of 89.6% and a Kappa coefficient of 0.23. Thus the proposed PixSSLt achieves the
best performance. This demonstrates again that the proposed PixSSLt is more robust than
PatchSSL.

In order to have an intuitive understanding of the efficiency between different methods,
Table 3.11 presents a detailed comparison. The number of multiply-accumulate (MAC) and
the number of parameters are considered as two relevant metrics of the model efficiency. The
MAC operations is used to measure the computational cost. Following the common practice,
we use them to measure the network efficiency in terms of computational cost and memory
consumption. The metrics reported for all models are based on the use of PyTorch on a 7.8
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Fig. 3.13 Examples of change intensity maps and change maps obtained by PatchSSL and the
proposed PixSSLt on water areas, organized in one row for each location. Col. 1: pre-event
image; Col. 2: post-event image. Change maps obtained by: PatchSSL (Col. 4) and the
proposed PixSSLt (Col. 6), and change intensity maps obtained by PatchSSL (Col. 3) and
the proposed PixSSLt (Col. 5).

GB RTX 2070ti GPU. Table 3.11 shows the Kappa, MACs and the number of parameters
of each model. The performance of each model on Kappa is obtained on the OSCD test
set. From the analysis of Table 3.11, one can see that CAA needs much lower MACs but
results in far low accuracy. Unlike CAA, the two self-supervised methods are heavy-weight
networks and provide an high accuracy. Compared with PatchSSL, the proposed PixSSL
achieved competitive results but with much lower computational costs.

We then derived change maps with different thresholding methods (OTSU and Rosin)
using two self-supervised methods: PixSSLs and PatchSSL. In Table 3.12, we present
the change detection results obtained on the MUDS dataset utilizing the Rosin and OTSU
thresholding methods considering two self-supervised approaches. For both methods, the
binary change results obtained using the Rosin thresholding approach are much better than
those obtained by using the OTSU method. This indicates that the Rosin method is more
robust than the OSTU method in the presented self-supervised change detection scenario.

Conclusion

We have presented a pixel-wise contrastive learning approach to multi-view remote sensing
image change detection. It uses the ResUnet as the architecture of the network and exploits an
uncertainty approach during the network training. The main idea of the presented approach is
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Table 3.11 Efficiency comparisons between different approaches.

Models Kappa MACs (G) Params (M)
Proposed PixSSL 0.51 84.9 4.216

PatchSSL 0.48 8026.1 21.353
CAA 0.29 40.7 0.103

FC-EF 0.44 14.4 1.351
FC-EF-res 0.43 8.1 1.104

Table 3.12 Change detection results of PixSSLs on the MUDS dataset using Rosin and otsu
threholding methods.

Thresholding Method Pre(%) Rec(%) OA(%) F1 kappa

Rosin
PatchSSL 34.43 65.41 92.39 0.45 0.41

Prop. PixSSLs 43.81 70.54 94.45 0.54 0.51

OTSU
PatchSSL 18.05 86.44 80.60 0.30 0.24

Prop. PixSSLs 33.63 74.17 92.04 0.46 0.43

the use of both the contrastive loss in pixel-wise feature learning and the uncertainty approach
in suppressing seasonal changes.

Experimental results on multi-view remote sensing image data sets demonstrated the
superiority and efficiency of the proposed approach over other state-of-the-art methods.
Among the methods used in the comparison, the results produced by CAA contain more
false alarms and missing detections. The results obtained by PatchSSL are similar to those of
the proposed approach but with less suppression of seasonal changes. Moreover, PatchSSL
is working on the patch level and is computationally more expensive. Compared with the
PatchSSL approach, the proposed PixSSL is more effective in the inference phase and obtains
better change maps, especially in vegetation and water areas. Results also show that the use
of the uncertainty approach further suppresses the seasonal changes with respect to the only
use of the contrastive learning method.

3.3 Conclusion

In this chapter, we have presented the proposed self-supervised change detection framework
based on image patches and image pixels. Meanwhile, we have also considered the images
from different sensors, different resolutions and also the fusion of different sensors. The main
idea of the presented approach is the use of contrastive loss between different temporal and
sensor images in suppressing seasonal and sensor noises. However, we found that contrastive
learning solely cannot suppress the seasonal noise accurately. We further proposed to use the
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uncertainty approach to distil more discriminant features in multi-temporal images. Experi-
mental results on multi-view remote sensing image data sets demonstrated the superiority
and efficiency of the proposed approach over other state-of-the-art methods. The proposed
approach is yet unable to both handle long image time series and classify change types. In
the future, we will explore how to track changes among time-series images and map the
corresponding change types based on the spectral property of the image itself.





Chapter 4

Self-Supervised Change Detection in
Satellite Image Time Series

In this chapter, we propose a two-stage approach to unsupervised change detection in satellite
image time-series using contrastive learning with feature tracking. By deriving pseudo labels
from pre-trained models and using feature tracking to propagate them within the image
time-series, we improve the consistency of our pseudo labels and address the challenges of
seasonal changes in long-term remote sensing image time-series. We adopt the self-training
algorithm with ConvLSTM on the obtained pseudo labels, where we first use supervised
contrastive loss and contrastive random walks to further improve the feature correspondence
in space-time. Then a fully connected layer is fine-tuned on the pre-trained multi-temporal
features for generating the final change maps. Through comprehensive experiments on
two datasets, we demonstrate consistent improvements in accuracy on fitting and inference
scenarios.

4.1 Introduction

The challenge of detecting changes in RS images time-series is compounded by the presence
of seasonal noise, which can be difficult to distinguish from true changes. One approach to
address this challenge is to use graph-based methods [65], which present detected spatio-
temporal phenomena as evolution graphs composed of spatio-temporal entities belonging to
the same geographical location in multiple timestamps. Deep learning methods have also
been applied to RS image time-series change detection, using techniques such as recurrent
neural networks (RNNs) [106] to extract discriminative features from image sequences.
However, supervised methods often require a large number of labelled training samples,
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which can be difficult to obtain for long image time-series. In this context, self-training
approaches such as self-supervised and pseudo-label learning have become popular, where
networks are trained on a pretext task such as image restoration using 3D CNN [109, 110]
and predict the correct order of shuffled image sequences [136]. For example, Kalincheva et
al. [81] proposed a framework combining a graph model and pseudo labels, which associates
changes in consecutive images with different spatial objects using a gated recurrent unit
(GRU) AE-based model. Meshkini et al. [109] further proposed the use of a pre-trained 3D
CNN to extract spatial-temporal information from long satellite image time-series, where
they can detect the times and locations of changes in image sequences. However, pseudo
labels often have a high level of noise and do not consider temporal information, and the
pre-trained model can not adapt to various changes.

In this work, we propose the use of contrastive learning [86] and feature tracking [5]
to address these challenges and improve the performance of change detection in RS image
time-series. We leverage contrastive learning methods both to get good pre-trained features
for pseudo label generation and to reduce the overfitting that results in incorrect pseudo labels
when considering supervised contrastive learning [86] and contrastive random walks [78].
Additionally, by incorporating a feature tracking-based pseudo label generation task and a
convolutional long short-term memory network (ConvLSTM) [144], we are able to extract
time-series change maps from image time-series and further train a new model from scratch.
In detail, the pseudo-label generation is based on the pre-trained model using contrastive
learning. The change detection model is trained from pseudo labels by the joint use of Unet
[170] and ConvLSTM networks. We first extract pseudo labels from change pair time-series
and then use them with images to train the proposed network, which outputs change maps
relative to the first image in the sequence. During the training, supervised contrastive loss,
contrastive random walk loss and logistic regression are used to optimize the parameters of
the feature encoder and the last classifier, respectively. The supervised contrastive loss is
used to mitigate the noise in pseudo labels, while the contrastive random walk loss improves
the quality of the consecutive change results. Finally, we demonstrate the effectiveness of
our approach on two data sets.

In this chapter, we propose the following main novel contributions:

• To generate time-related pseudo labels for network training, we propose to use feature
tracking to extract reliable change pixels in image sequences that are insensitive to
seasonal noise.

• To ensure the robustness and consistency of change maps, we propose to use supervised
contrastive loss and contrastive random walk loss on change feature learning. These
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Fig. 4.1 Overview of the proposed approach for RS image time-series change detection, where
the proposed network is based on the Unet and Bi-ConvLSTM. a. The pre-training step uses
supervised contrastive learning on spatial feature representation and uses contrastive random
walk loss on temporal features for temporal feature modelling. b. The label propagation step
uses k-NN for noise reduction among change map time-series. c. The fine-tuning step uses
an MLP and logistic regression to predict the final change maps.

losses encourage the pixels in the same class to have a closer feature representation
among image time-series.

• To extend the approach to arbitrary long time-series, we jointly use Unet and ConvL-
STM as the model architectures. To verify the performance of the proposed approach,
we provide a comparison with state-of-the-art methods and an ablation study. Our
experiments show that our method obtains competitive results on the datasets.
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4.2 Methodology

In this section, we present the proposed two-stage RS image time-series change detection
framework. It includes a feature tracking-based pseudo label generation task and a self-
training change-detection module that follows the training setting of supervised contrastive
learning [86]. We first get the pixel-wise feature representation of each image in the image
sequence using the pre-trained model [30] and then get the pseudo change maps using the
thresholding approach. Then, the feature tracking approach is used to update the threshold-
based pseudo change maps. Afterwards, the pseudo change labels are used to learn the
representation of change maps using the supervised contrastive loss and the contrastive
random walk loss. Finally, a fully connected layer is fine-tuned on the learned change
map representation using logistic regression. In the following subsections, we will describe
the network architecture of the proposed framework, the supervised contrastive loss, the
contrastive random walk loss and the feature tracking-based pseudo label updating.

4.2.1 Network Architecture

The proposed approach uses an Unet-ConvLSTM network architecture, which consists of two
components: ResUnet and Bi-ConvLSTM 4.1. For the Unet, we adopt a similar architecture
as the FC-Siam-diff [36]. Instead of concatenating features from two encoders, it instead
concatenates the absolute value of their difference. It consists of two encoders, one bridge,
one decoder, and skip connections between the downsampling and upsampling paths. The
decoder part has three blocks, each of which consists of a convolution layer (Conv), batch
normalization (BN), ReLU, and upsampling. A 1× 1 Conv is used after the last block to
reconstruct the learned representations. We changed the padding type of all blocks to "same"
padding. The parameters and channel size of each unit are presented in Table 4.1. Each
convolution unit ([·]) includes a convolutional layer, a BN layer, and a ReLU activation layer.
Each residual block (ResBlk) in the encoding path has two residual units, each of which
consists of two convolution units and an identity mapping.

The output features of time-series change pairs are given in the input to the Bi-ConvLSTM
layer. Different from the standard LSTM, ConvLSTM uses convolution operations in the
input-to-state and state-to-state transitions to improve the modelling of the spatial correlation
among sequence images. It consists of an input gate it , an output gate ot , a forget gate ft ,
and a memory cell Ct . The input, output and forget gates act as controlling gates to access,
update, and clear memory cell. ConvLSTM can be formulated as follows (for convenience
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Table 4.1 Structure of the proposed network.

Encoder 1 & 2 Decoder

Conv1
Maxpool

[3×3, 32], stride 2
3×3, stride 2

Cat. Diff. ResBlk2
[3×3, 64]

upsampling 2

DecBlk1
stride 1

ResBlk1
stride 1

[
3×3, 32
3×3, 32

]
×2

Cat. Diff. ResBlk1
[3×3, 32]

upsampling 2

DecBlk2
stride 1

ResBlk2
stride 2

[
3×3,64
3×3,64

]
×2

Cat. Diff. Conv1
[3×3, 32]

upsampling 2

DecBlk3
stride 1

ResBlk3
stride 2

[
3×3,128
3×3,128

]
×2

[3×3, 16]
Bi-ConvLSTM

LSTM Blk

Bridge
stride 1

[3×3, 128]
upsampling 2

[1×1, 32/1] Logistic Regression

we remove the subscript and subscript from the parameters):

it = σ (WxiXt +WhiHt−1 +WciCt−1 +bi)

ft = σ
(
Wx f Xt +Wh f Ht−1 +Wc fCt−1 +b f

)
Ct = ft ◦Ct−1 + it tanh(WxcXt +WhcHt−1 +bc)

ot = σ (WxoXt +WhoHt−1 +Wco ◦Ct +bc)

Ht = ot ◦ tanh(Ct)

(4.1)

where o denotes the Hadamard functions. Xt is the input tensor and Ht is the hidden state
tensor.Wx∗ and Wh∗ are 2D convolution kernels corresponding to the input and hidden state,
respectively, and bi, b f , bo and bc are the bias terms. In this study, we employ Bi-ConvLSTM
[62, 146] to encode the features of time-series change pairs. It was proposed to use both past
and future information to model sequential data. Bi-ConvLSTM uses two ConvLSTMs to
process the input data in both forward and backward directions and then makes a decision for
the current input by taking into account the data dependencies in both directions. It has been
shown that analyzing both forward and backward temporal perspectives improves predictive
performance. Each forward and backward ConvLSTM can be considered as a standard one,
with two sets of parameters for backward and forward states. The output of Bi-ConvLSTM
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is calculated as follows:

Yt = tanh
(

W
−→
H
y
−→
H t +W

←−
H
y
←−
H t +b

)
(4.2)

where
−→
H t and

←−
H t denote the hidden state tensors for forward and backward states, re-

spectively, b is the bias term, and Yt indicates the final output considering bidirectional
spatio-temporal information. The hyperbolic tangent (tanh) is used to combine the output
of both forward and backward states in a non-linear manner. After the last layer of Bi-
ConvLSTM, an MLP block is used to reconstruct output features at the feature learning stage
and predict the binary change maps at the finetuning stage.

4.2.2 Loss Function

During training, each image Ii(i > 0) is used to construct a change pair anchored at the initial
image (Ii=0). In this way, the proposed network captures the temporal changes related to the
first image rather than the cumulated changes of the image sequence. The training process
uses a teacher-student paradigm and the exponential moving average (EMA) algorithm [150].
The inputs of the student network are the original time-series image pairs, while the teacher
network uses the same time-series image pairs with color jitter.

According to supervised contrastive learning, the training process consists of the feature
learning and fine-tuning stages. In the feature learning stage, we use supervised contrastive
loss [86] with the contrastive random walk loss [78]. The loss can be written as:

Lfeat = Lsc +λLcrw (4.3)

where Lsc is the supervised contrastive loss, and Lcrw is the contrastive random walk loss. In
the finetuning stage, we use logistic regression to directly predict the change probability. The
hyper-parameter λ is used to tune the loss. A value of λ = 0.1 generally performed well in
our experiments.

Image time-series change detection is often treated as a simple extension of bi-temporal
change detection in time. The supervised contrastive loss is used to differentiate representa-
tions between changed and unchanged pixels spatially in time-series change pairs. However,
the incorporation of temporal information to mitigate seasonal noise poses a significant
challenge because the change depicted in frame t might not have any relation to what we
find at the same location in frame t + k. To overcome this limitation, the contrastive random
walks leverage pathfinding on a space-time graph and associate features across space and
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time. It establishes feature correspondence shared by neighboring frames. In the following,
we provide details on the supervised contrastive loss and the contrastive random walk loss.

Contrastive loss

The supervised contrastive loss is calculated by sampling the pixel features in the constructed
time-series pairs. The pixel feature pairs at the same location in the output of the teacher and
student networks are called positive pairs, while pixel features from different locations are
called negative pairs. Given a positive feature pair (vi

1,v
i
2) and a pixel feature v j

2 taken from
another location, the contrastive loss can be formulated as Lcontrast:

Lcontrast =−E
S

log
esim(vi

1,v
i
2)/τ

∑
N
j=1esim(vi

1,v
j
2)/τ

 (4.4)

where sim is a similarity function (i.e., cosine similarity), (vi
1,v

i
2) is the normalized latent

representation of pixel i, (vi
1,v

j
2| j ≥ i) is the normalized latent representation of negative pair

and S = {s1
1,s

1
2,s

2
2, · · · ,s

N−1
2 } is a set that contains N−1 negative samples and one positive

sample. One limitation of self-supervised contrastive learning is that, since the class labels
of the inputs are ignored, samples from the same class may end up being treated as negative
pairs, which can affect the training performance. To avoid this limitation and enable the
contrastive loss to learn in a supervised fashion, Khosla et al. [86] extended the approach
to account for input labels. Following the original supervised contrastive learning method,
we randomly sample N pixel features in each change pair from the teacher-student network,
generating two data views {(xi,yi)}2N

i=1, where i∈ I = [2N] is the index of an arbitrary sample.
Given A = {Ai, j|yi = y j,(xi,yi),(x j,y j)}, we perform supervised contrastive learning with
sampled pixel features:

Lsup
i = ∑

i∈I

−1
|A(i)|

· ∑
a∈A(i)

log
esim(xi,ya)/τ

∑b∈B(i) esim(xi,yb)/τ
(4.5)

where B(i) means the set of indices excluding i, i.e., B(i) = I\i; A(i) = {Ai, j| j ∈ B(i)} is the
positive set distinct from sample i and | · | stands for cardinality. In this case, the labels are
binary pseudo labels.

Contrastive Random Walk Loss

This work builds upon the contrastive random walk framework by Jabri et al. [78]. In the
contrastive random walks, we are given an input image time-series with k frames. We select
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N nodes qt from the frame t, which serve as vertices of a graph. Pairwise similarities of nodes
are converted into non-negative affinities by applying a softmax function (with temperature
τ) over edges departing from each node. This process generates the stochastic affinity matrix
between frames t and t +1 as a bipartite graph with each edge given as:

Ct+1
t (i, j) = softmax(qtqT

t+1)i, j (4.6)

The affinity matrix for the entire graph denotes the edge weights between all pairs of nodes
in change image pairs. To model affinities over multiple change image pairs, we take the
product of the sequential affinity matrices:

Ct+k
t =

k−1

∏
i=0

Ct+i+1
t+i (4.7)

Ultimately, we train the model to maximize the likelihood of cycle consistency, i.e. the event
that the walker returns to the node it started from:

Lcrw =−tr(log(Ct+k
t Ct

t+k)) (4.8)

4.2.3 Pseudo Label Updating

Bi-temporal remote sensing image change detection usually gets the change map through
thresholding methods, which inevitably introduce errors when there is no change between
bi-temporal images. The pseudo-change maps can be made less noisy by propagating the
threshold-based pseudo labels to each change pair using the label propagation algorithm [5].
This is because the false alarms in one frame can be mitigated by similar features with correct
labels from other frames. This algorithm propagates labels in the feature space considering
both spatial and temporal neighbours. In detail, the labels of target nodes are determined by
computing the matrix of transitions between target nodes and source nodes, considering only
the top−k transitions, and multiplying it by the labels of the source nodes. Given the feature
embedding of a frame It and a one-hot format label of the frame It−1, we compute its cosine
similarity with the feature embedding of the frame It−1:

Mt−1,t = f (φ(It−1),φ(It)) (4.9)

Then we compute the label yi of the pixel i in It according to the label of pixel j in It−1:

yi = ∑
j

Mt−1,t( j, i)y j (4.10)
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where Mt−1,t( j, i) is the affinity between pixel i of It and pixel j of It−1, and φ is the encoder.
For each pixel i, we propagate from the top N pixels with the greatest affinity Mt−1,t( j, i)
for each pixel i. For example, let us assume we get a false alarm fi j at the pixel (i, j)t of
the frame t. Then we compute its cosine similarity with the feature of pixel (i, j)\t from
the remaining frames in the time series and select the N = 10 feature embeddings with the
highest similarity. We then use these embeddings to compute a weighted sum of the label
predictions at the pixel (i, j)t of frame t. This process is repeated for all change pairs in the
image sequence, updating the labels and embedding contexts using the top-N change pairs.
Finally, the false alarms in the frame (i, j)t are corrected by the pseudo labels from other
frames.

4.3 Experimental Description

In this section, we first describe the datasets used in our experiments and then introduce the
related experiment setting on the network training and the pseudo-label updating. Finally, we
present the results of the proposed approach and the comparison methods. We also present
an ablation study of each component of the proposed approach and the hyperparameter in the
loss function.

4.3.1 Description of Datasets

We conducted experiments on two multi-spectral datasets, one from the Sentinel-2 satellite
constellation and the other from the Landsat-8 satellite.

Sentinel-2 dataset

The Multi-temporal Urban Development (MUDS) dataset [152] was designed to monitor
urbanization by tracking changes in building construction from 2017 to 2020. It is an
open-source dataset that includes native Planet 4-meter resolution imagery and Sentinel-2
multi-spectral images with irregular observation intervals across six continents. However, the
original Sentinel-2 images often contain clouds and missing values. To improve the utility of
this dataset, we selected only 74 locations with a minimum of 12 clean images and resized
each image to 512 × 512 pixels. Of these 74 locations, we labelled the significant change
pair of 53 scenes for future evaluation, with all change pairs referenced to the first image. We
used only four bands in this work, all of them with a spatial resolution of 10 meters. Due to
the unsupervised nature of this dataset, we only considered three types of changes: built-up,
bare land, and water.



80 Self-Supervised Change Detection in Satellite Image Time Series

Landsat-8 dataset

The UTRnet dataset [162] was specifically designed for validation of the UTRnet model.
The dataset consists of the satellite image time-series collected by Landsat-8 from 2013 to
2021, with a spatial resolution of 30 meters. Four spectral bands covering the visible to the
shortwave infrared region are used, including blue, green, red, and near-infrared bands. The
dataset includes nine typical scenes located in different cities in China, each with a different
land-cover type. For each scene, ten cloud-free Landsat-8 images were selected to cover
different seasons. The image size for each scene is 400 × 400 pixels. The ground truth
includes three classes: changed pixels, unchanged pixels, and unlabeled pixels. The changed
and unchanged pixels are labelled using Google Earth images. In this study, unlabeled
pixels are treated as unchanged pixels to validate the influence of seasonal noise. Due to the
temporal limitations of high-resolution image labelling, the labels only include the longest
interval pairs. The change maps include city expansion, water change, and soil change.

4.3.2 Experiment Settings

Evaluation Metrics

In order to evaluate the effectiveness of different methods in binary change detection, this
paper employs five evaluation metrics: precision (Pre), recall (Rec), overall accuracy (OA),
F1 score (F1), and Cohen’s kappa score (Kap).

Implementation Details

In the process of generating pseudo labels, we first derived pseudo labels of each change pair
using a thresholding approach on pre-trained features [30]. Then propagate the threshold-
based labels to each change pair using the feature tracking approach. In the setting of feature
tracking parameters, the spatial neighbours P are set to 10, the temporal neighbours NT are
set to 3 most correlated change pairs, and the topk pixel is set to 10. In the self-training
algorithm, the proposed approach uses a two-layer Bi-ConvLSTM. We choose the Adam
optimizer with an initial learning rate of 3e−4 at the feature learning stage, which is decreased
using step scheduling without restarts. The batch size is set to 2 and the model is trained for
200 epochs. For the finetuning, we use an SGD optimizer with a learning rate of 0.01, a mini-
batch size of 10 and a number of epochs equal to 10. To evaluate the proposed approach, it is
compared with the state-of-the-art method UTRnet in fitting and unseen scenarios. UTRnet
is an improved LSTM-based self-training approach that uses CVA to generate pseudo labels.
Unlike the proposed approach, UTRnet is not designed to generalize to unseen scenarios and
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requires fitting a separate model for each scene. In addition to the image time-series change
detection approaches, we also considered three state-of-the-art unsupervised multi-temporal
image change detection approaches [30, 103? ]. The PixSSL change detection approach [30]
exploits the contrastive loss and uncertainty approach to align multitemporal images. The
CAA [103] is an autoencoder-based generative model and the GMCD [? ] is based on graph
convolutional network (GCN) and metric learning.

In the evaluation, we choose the fitting evaluation on the Landsat-8 dataset due to the
lack of training data, whereas considered the inference evaluation on the Sentinel-2 dataset.
For the fitting scenarios of the Landsat-8 dataset, we chose Scene 3, Scene 5 and Scene 7
as the evaluation set. For the unseen scenarios of the Sentinel-2 dataset, we chose scene
T 1286_2921_13, scene T 1736_3318_13 and scene T 6730_3430_13 as the evaluation set. In
addition to the comparison with UTRnet, we also conduct extensive ablation experiments on
the labelled 53 scenes of the Sentinel-2 dataset to evaluate the impact of different components
of the proposed approach and using different pseudo labels. In particular, the proposed
approach is compared with its versions that do not use the contrastive random walk loss or
only use logistic regression directly. It should be noted that only the change pair with the
most significant change is labelled as ground truth for evaluating the performance of different
approaches.

4.4 Experimental Results

4.4.1 Experimental Results on Landsat-8 Image Time-series

In this chapter, the effectiveness of the proposed approach is evaluated using the Landsat-8
dataset. The performance of the proposed approach is compared with the state-of-the-art
approach UTRnet, which has been validated by fitting on each scene in the dataset. In order
to evaluate the generalization capability of the proposed approach, results are provided for
fitting on all scenes, while UTRnet results are provided for both fitting on each scene and
fitting on all scenes. Quantitative evaluation is performed on the most significant change
map of the change map time-series, due to the challenges of differentiating changes in
continuous change scenarios. The results of the proposed approach and comparison methods
are presented in Table 4.2. Among all bi-temporal image change detection approaches, the
PixSSL obtained a Kappa coefficient of 0.557, which outperforms the results obtained by
GMCD and CAA. This is because the PixSSL used the uncertainty approach to further
suppress the seasonal noise among multi-temporal images with respect to the only use of the
self-supervised learning method. In the one-scene fitting setting, UTRnet achieves an OA
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Fig. 4.2 Examples of change detection results on three scenes for the Landsat-8 dataset. Row
1: image time-series; Row 2: change maps of one-scene fitting obtained by UTRnet; Row
3: change maps of all-scene fitting obtained by UTRnet; Row 4: change maps of all-scene
fitting obtained by the proposed approach. Col. 1 of Row 2, 3, 4 in each scene is the most
significant change map versus the ground truth (Green: TP, White: TN, Blue: FN, Red: FP).
The Green box indicates the most significant changed image pair.
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Table 4.2 Quantitative evaluations of different approaches applied to the fitting test set on the
Landsat-8 dataset.

Method Pre(%) Rec(%) OA(%) F1 Kap
GMCD 38.06 42.17 83.51 0.400 0.305
CAA 61.09 49.14 89.29 0.545 0.485

PixSSL 53.11 76.01 88.07 0.625 0.557
UTRnet (One-Scene) 60.86 62.57 89.66 0.617 0.557
UTRnet (All-Scene) 17.50 77.19 48.50 0.285 0.087

Proposed. (All-Scene) 76.78 69.72 93.15 0.731 0.692

of 89.66% and a Cohen’s kappa score of 0.56, underperforming the results obtained from
the pseudo labels. However, for the all-scene fitting setting, UTRnet fails to differentiate
changed and unchanged pixels, achieving an OA of 48.50% and a Cohen’s kappa score of
0.09. In contrast, the proposed approach achieves significantly better results than UTRnet
in both settings, with an OA of 93.15% and a Cohen’s kappa score of 0.69. Comparing
the results of bi-temporal image change detection approaches, we can see that self-training
approaches further improve the results of the bi-temporal pseudo labels using pseudo labels.

We also provide a visual comparison of the results obtained by the proposed approach
and the UTRnet method. We present the results of UTRnet obtained by both fitting on each
scene and on all scenes, as well as the results of the proposed approach. We also present the
most significant change maps in each first column of the change maps in each scene in Fig
4.2, where true positives, true negatives, false negatives, and false positives are colored in
green, white, blue, and red, respectively. From the visual comparison of the most significant
change map, we can see that the change map obtained by UTRnet using all-scene fitting is
noisy and contains a high number of false alarms. In contrast, the change maps obtained
by the other two settings are more accurate and have less noise. In addition, the proposed
approach is able to successfully detect most of the changed pixels and suppress the effects of
seasonal changes. When comparing the change map time-series, we can see that the change
maps obtained by UTRnet (one-scene fitting) have more false alarms that are affected by
historical changes. In contrast, the change maps obtained by the proposed approach are
robust to seasonal changes and only focus on real changes that happened at each time. While
the one-scene fitting UTRnet still achieves good results on all test scenes, the all-scene fitting
UTRnet can perform well rarely in a few scenes with less seasonal noise, but its results are
heavily influenced by the imbalanced training samples.
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Fig. 4.3 Examples of change detection results on three scenes for the Sentinel-2 dataset. Row
1: image time-series; Row 2: change maps of one-scene fitting obtained by UTRnet; Row 3:
change maps on inference setting obtained by UTRnet; Row 4: change maps on inference
setting obtained by the proposed approach. Col. 1 of Row 2, 3, 4 in each scene is the most
significant change map versus the ground truth (Green: TP, White: TN, Blue: FN, Red: FP).
The Green box indicates the most significant changed image pair.
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Table 4.3 Quantitative evaluations of different approaches applied to the inference test set on
the Sentinel-2 dataset.

Method Pre(%) Rec(%) OA(%) F1 Kap
GMCD 35.78 31.52 82.45 0.335 0.235
CAA 63.85 37.16 88.23 0.470 0.409

PixSSL 55.18 92.97 88.02 0.693 0.624
UTRnet (One-Scene) 85.25 25.17 88.89 0.388 0.347
UTRnet (Inference) 46.64 64.07 84.67 0.540 0.451

Proposed. (Inference) 70.79 90.76 93.22 0.795 0.755

4.4.2 Experimental Results on the Sentinel-2 Image Time-series

The Sentinel-2 dataset is characterized by a diversity of land-cover scenes and a larger
number of training samples. In contrast to the results obtained on the Landsat-8 dataset, we
present the results of one-scene fitting UTRnet and inference on unseen scenarios based on
models trained on all training samples. Similar to the evaluation on the Landsat-8 dataset,
we only consider the most significant change map in each scene to assess its quantitative
performance (Table 4.3). Among all bi-temporal image change detection approaches, the
PixSSL obtained a Kappa coefficient of 0.624, which outperforms the results obtained by
GMCD and CAA. In image time-series change detection results, as one can observe, the
one-scene fitting UTRnet achieves worse results than those obtained on the Landsat-8 dataset,
with an OA of 88.89% and a Cohen’s kappa score of 0.35. The possible reason is that the
Sentinel-2 dataset contains more seasonal changes such as snow. However, its performance
is improved when inferred to unseen scenarios. Nevertheless, it still shows significant
improvements compared to the all-scene fitting setting on the Landsat-8 dataset, which is
largely due to the increased number and diversity of training samples. On the other hand,
the inference results obtained by the proposed approach are significantly better than those
obtained by UTRnet in both the one-scene fitting and inference on unseen scenarios settings.
Across all five performance metrics, the proposed approach achieves the best performance in
most cases, except for precision, achieving an OA of 93.22% and a Cohen’s kappa score of
0.755. This indicates that the proposed approach not only outperforms the state-of-the-art
method UTRnet on trained samples but also on unseen samples. In the proposed approach
the improvement is more pronounced when using a larger and more diverse set of training
samples. Similarly to the experiments on the Landset-8 dataset, UTRnet underperforms the
results of the state-of-the-art bi-temporal image change detection approach (PixSSL) and
the proposed image time-series change detection approach further improved the bi-temporal
image change detection results.
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In addition to the quantitative analysis, we also provide a visual comparison of the most
significant change map and the change map time-series obtained by the proposed approach
and the UTRnet method in each scene. Fig. 4.3 shows a comparison of all methods on the
Sentinel-2 test set. The true positive, true negative, false negative, and false positive pixels
of the significant change map are colored green, white, blue, and red, respectively. We first
analyze the performance of the most significant change map in each scene. As shown in
the figure (first column of change maps in each scene), the proposed approach successfully
detects most changed pixels and suppresses seasonal noise whereas the results of UTRnet
contain more false alarms and missing detections. For the change map time-series, one can
see that the results obtained by one-scene fitting UTRnet contain many missed detection in
particular related to the cultivated errors in the image sequence. As for the inference results,
UTRnet fails to suppress most seasonal noise and presents more false alarms, while getting
big improvements in noise reduction compared with its performance on the Landset-8 dataset.
This issue is well addressed in the proposed approach, where abrupt changes and continuous
changes are both well detected.

4.4.3 Discussion

In this section, we conduct extensive ablation studies on the proposed approach to analyze the
contribution of different components. To better understand the proposed approach, we choose
the scene T 4780_3377_13 with significant vegetation changes over time for visualization.
However, the quantitative evaluation was implemented on the selected 53 scenes of the
Sentinel-2 dataset as the ablation test set.

Pseudo labels

Many unsupervised change detection approaches employ a thresholding approach for change
detection. However, determining a reasonable threshold is often a challenging task. To
demonstrate the effectiveness of the proposed pseudo-label generation approach, we present
the pseudo-labels obtained by thresholding and feature tracking methods, individually. Then,
we train the proposed approach using these two sets of pseudo-labels. Finally, we evaluate
the performance of the trained models on the ablation test set. Fig. 4.4 shows the details
of the pseudo-labels and the results obtained by the trained models. As one can see, the
thresholding approach produces more false alarms in the pseudo change maps with the
shorter time interval change pair. In contrast, the feature tracking approach can mitigate the
effect of this type of seasonal change while maintaining the most significant changes in the
change map time-series. Similarly, the model trained on threshold-based labels produces
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Fig. 4.4 Examples of change detection results on the Sentinel-2 ablation test set. Row 1:
image time-series; Row 2: pseudo labels obtained by thresholding approach; Row 3: pseudo
labels obtained by feature tracking; Row 4: change maps obtained by the proposed approach
only using cross-entropy loss; Row 5: change maps obtained by the proposed approach only
using contrastive loss; Row 6: change maps obtained by the proposed approach trained on
threshold-based pseudo labels; Row 7: change maps obtained by the proposed approach
trained on feature tracking-based pseudo labels. Col. 1 of Row 2-7 is the most significant
change map versus the ground truth (Green: TP, White: TN, Blue: FN, Red: FP). The Green
box indicates the most significant changed image pair.

more missed detections due to this type of noise, while the model trained on feature tracking
refined labels further reduces the false alarms. Table 4.4 presents all five metrics on the
ablation test set for the two trained models. Threshold-based labels and feature-tracking
refined labels present similar performance on the ablation test set. This is because we only
considered the most significant changed map in the evaluation. Among these results, the
model trained on feature tracking refined labels provides the best result in almost all metrics,
including the highest overall accuracy of 94.53% and the highest kappa coefficient of 0.669.
Compared to the threshold-based labels, the OA and Kappa on the feature tracking refined
labels are further improved by about 2% and 0.05. This indicates that the feature tracking
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Table 4.4 Quantitative evaluations of different approaches applied to the Sentinel-2 test set in
the ablation study.

Method Pre(%) Rec(%) OA(%) F1 Kap
threshold-based 49.59 77.22 91.02 0.604 0.556
feature-tracking 52.53 67.35 91.71 0.606 0.561

only logistic regression 66.46 60.12 93.77 0.631 0.597
only contrastive learning 59.27 78.23 93.30 0.674 0.638

Pro. on thres. 54.35 82.49 92.31 0.655 0.614
Pro. on feature. 68.18 71.76 94.53 0.699 0.669

method further improves the pseudo labels of remote sensing image time-series and thus
benefits the self-training. In addition, the performance of the model trained on threshold-
based labels even is worse than the one trained on feature-tracking refined labels only using
contrastive loss. This demonstrates the significance of the refined pseudo labels within the
proposed approach again.

Supervised contrastive loss and contrastive random walk loss

To verify the effectiveness of the contrastive loss and contrastive random walk loss, we set up
experiments with training on the proposed pseudo-labels. These experiments encompassed
training with both supervised contrastive loss and contrastive random walk loss, training
solely with supervised contrastive loss, and training solely with logistic regression. The
same ablation test set is used here. Fig. 4.4 and Table 4.4 present the results obtained under
three different settings. Results show that the supervised contrastive loss and the contrastive
random walk loss achieve significant improvements in noise reduction and maintain the
consistency of the time-series change maps. The only use of the contrastive loss achieves the
OA of 93.3% and the Kappa of 0.638, which are slightly lower than the values obtained by
using both loss functions. In addition, the use of both loss functions increases by about 1%
and 0.07 on the OA and the Kappa, respectively, with respect to the only use of the logistic
regression. This demonstrates that the joint use of contrastive loss and contrastive random
walk loss can further improve the performance of the self-training paradigm.

4.5 Discussion and Conclusion

In this chapter, we have proposed a new framework for detecting changes in RS image
time-series without any manually annotated training data. Our framework jointly uses
an architecture based on Unet and ConvLSTM and adopts a self-training algorithm. We
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first extract pseudo labels using the feature-tracking method and then further improve the
results by training a model from scratch. Feature-tracking approach detects most changes in
the RS image time-series, while alleviating the presence of seasonal noise. The proposed
self-training algorithm combines the use of supervised contrastive loss, contrastive random
walk loss and logistic regression following the two-stage setting of supervised contrastive
learning. This mitigates the effects of the noise in pseudo labels and keeps the consistency
of the change map time-series. Our experiments on two different datasets demonstrate the
effectiveness of the proposed approach compared to state-of-the-art methods. It is worth
noting that the proposed approach can also generalize well to unseen scenarios. Although
our method is demonstrated in the context of multi-spectral images, it can be applied to other
sensors, such as synthetic aperture radar and RGB images.

In future work, we plan to extend our method to detect different types of changes using
prior information from multi-spectral images.





Chapter 5

Self-Supervised SAR-Optical Data Fusion
and Segmentation

In this chapter, we propose a self-supervised framework for SAR-optical data fusion and land-
cover segmentation tasks. SAR and optical images are fused by using a multi-view contrastive
loss at image-level and super-pixel level according to one of those possible strategies: in
early fusion, intermediate fusion and late fusion. For the land-cover segmentation task, we
further propose a self-supervised approach by jointly using the previous fusion framework
and the vector quantization. Experimental results show that the proposed approach not
only achieves comparable accuracy to the weakly-supervised approach but also reduces the
dimension of features with respect to the image-level contrastive learning method. Among
the three considered fusion strategies, the intermediate fusion strategy achieves the best
performance. In addition, the further use of vector quantization brings improvements over the
current state-of-the-art techniques of unsupervised land-cover segmentation on SAR-optical
image pairs.

5.1 Self-supervised SAR-optical Data Fusion of Sentinel-1
and Sentinel-2 Images

In this section, we introduce a self-supervised framework for SAR-optical data fusion. SAR
and optical images are fused by using a multi-view contrastive loss at image-level and
super-pixel level according to one of those possible strategies: in the early, intermediate and
late strategies.
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5.1.1 Introduction

Every year a large number of Earth Observation Satellites are operated to monitor human
activities, Earth’s environment, and their mutual influences across our planet. Hundreds
of terabytes of remote sensing data are accumulated per day from various systems, which
cover most bands of the electromagnetic spectrum and include both active and passive
sensors [34]. In this context, deep learning methods, especially supervised deep learning
approaches, have been developed to process and analyze such massive amounts of multimodal
RS data for specific applications, such as land-cover mapping, target recognition, and change
detection. However, these applications are mostly limited to the use of a single type of
image and require a large amount of labeled data for the training of the algorithm. The most
common approach is based on deep learning techniques applied to single modality data, e.g.,
multispectral, hyperspectral, LiDAR, or Synthetic Aperture Radar (SAR). The fusion of
various RS data from different sensors has not received sufficient attention yet. However,
it is well known that the complementary use of multimodal RS data offers more complete
information on a scene and can result in better performance in many applications [57].
For example, multispectral/hyperspectral images acquire information that characteristics
land-cover categories on the basis of their spectral signatures, while radar images provide
dielectric properties and are not affected by cloud occlusions.

Inspired by the success of deep learning in computer vision (CV), some works [6, 12, 92,
77] have investigated the fusion of multimodal RS data using deep learning methods. Their
results have shown that deep learning techniques play a significant role in multimodal RS
data fusion. However, the recent success of deep learning techniques in multimodal RS data
fusion mainly focused on supervised methods, which are often limited from the availability
of annotated data. Labeled remote sensing data are often scarce. The limited access to such
labeled data has driven the development of unsupervised methods, such as generative models
(e.g., GAN[61], CAE[108], VAE[87]). Nevertheless, recent research [96] has shown that
such CNNs-based generative models overly focus on pixels rather than on abstract feature
representations. In this context, unsupervised approaches are an interesting alternative to
address land-cover mapping tasks [28]. Most unsupervised approaches rely on the prior
information of spectral indices derived from SAR and optical images, such as normalized
difference water index (NDWI), normalized difference vegetation index (NDVI), bare soil
index (BI), and backscattering values (BS). These indices can be used to select training
samples for network training and then segment images using the well-trained network. Even
these indices can identify different land-cover classes. They are not able to extract all the
semantic available in the data.
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To address these limitations, we propose a new self-supervised approach to fuse the
complementary information presented in SAR and optical images at the pixel level. The
proposed data fuison approach can be implemented according to three pixel-wise fusion
strategies: i) early fusion (PixEF), ii) intermediate fusion (PixIF) and iii) late fusion (PixLF).
The proposed SAR-optical fusion approach is compared with the instance-level contrastive
method under the common linear protocol in the context of the land-cover segmentation task.

The main contributions of this chapter are as follows.
1) We first introduce and verify the effectiveness of multi-view contrastive loss in SAR-

optical data fusion. Then, we propose a self-supervised approach, which can obtain pixels-
wise feature representations from SAR and optical image pairs without using any annotation.
This is achieved by using U-Net [130] and the contrastive loss, by preserving local informa-
tion at the superpixel level.

2) We compare different fusion strategies (i.e., early fusion, intermediate fusion and late
fusion) in the proposed approach. Concretely, late and intermediate fusion strategies learn
feature representations by comparing SAR and optical images directly, whereas the early
fusion strategy distills the complementary information from a concatenation of image pairs.
In addition, the efficiency of SAR-optical fusion with respect to the use of a single modality
in the land-cover mapping task is analyzed.

5.1.2 Methodology

This section presents the methodology of the proposed self-supervised approach to SAR-
optical image fusion, which aims to learn pixel-wise representations from unlabeled SAR-
optical image pairs. Like previous self-supervised works [69, 120, 26], the three key ingredi-
ents (i.e., instance discrimination, contrastive loss and aggressive augmentation) are included
in our work, where the shift transformation is used as a data augmentation approach in the
contrastive paradigm.

Network Architecture

The proposed approach has two branches (5.1 (a)), where the input image of each branch
has a relative shift. Each branch contains a ResUnet [170] block followed by a linear layer
projector. After the projection, the same shift operation is performed on the output for
feature alignment between two branches. We adopt a similar ResUnet architecture as the
[170] and only use residual blocks in the encoder part. Like U-net, ResUnet consists of an
encoder, a bridge, a decoder and skip connections between the downsampling and upsampling
path. In this work, ResNet-18 is used as the encoder of the ResUnet block but without the
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Fig. 5.1 Overview of the presented self-supervised SAR-optical fusion approach. The dash
arrow line represents a contrastive loss. (a) An illustration of pixel-wise representation
learning framework for the late fusion strategy. The two inputs have an offset but keep an
overlap. The approach follows the common contrastive learning architecture where both
branches consist of a ResUnet block and a projection. Then, a shift transformation is included
in the one branch for aligning representations between two branches. (b) The ResUnet block
follows the early fusion strategy. (c) The ResUnet block follows the intermediate fusion
strategy where the encoder contains two parts used for encoding SAR and optical images
independently.

fourth residual block. The decoder part has three blocks, where each block consists of a
convolution layer (Conv) and a batch normalization (BN) layer, a ReLU activation layer, and
an upsampling operation. A 1×1 Conv, following with the last block, is used to reconstruct
the learned representations. All the padding types in the ResUnet block were changed to the
"same" padding.
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Feature alignment is achieved by using the same shift operation on both input images
and output features of two branches. Specifically, given an input I1 consisting of the SAR-
optical image pair obtained from the same scene, we use a shift operation to make a random
offset of I1 along the x and y-axis directions. In this way, we can define the random shift
transformation as T and obtain an augmented view I2 = T (I1). During the training, the
augmented view and the original input are fed into two branches, respectively, to obtain
pixel-wise representations v1 and v2. To align pixel-wise representations of two branches,
the same transformation is applied to the output of the other branch v1 = T (v1).

In particular, two branches of PixEF and PixIF share the same parameters, but the encoder
of PixIF is split into two groups where each group has half channels of the counterpart of
PixEF in each layer. We denote the network of PixEF as Ue and its encoder as Ee. Similarly,
the network of PixIF as Ui and its two independent encoders as Ei1 and Ei2. Unlike these
two models, the PixLF has two independent branches with half channels of PixEF in each
layer, where the input channels were adjusted to the input images. We denote the network of
PixLF as Ul and its two independent encoders as El1 and El2. The parameters and channel
size of each unit are presented in Table 5.1, where each convolution unit ([ ]) includes a
convolutional layer, a BN layer and a ReLU activation layer. Each residual block (ResBlk) in
the encoding path has two residual units. Each residual unit consists of two convolution units
and an identity mapping.

Loss Function

The proposed approach consists of two types of contrastive loss based on images and super-
pixels individually. The main idea behind a contrastive loss is to find a feature representation
that is invariant to augmentations. Given a dataset S that consists of a collection of image
pairs {(si

1,s
i
2)}N

i=1 across N different scenes, we consider each image pair (si
1,s

i
2) sampled

from the joint distribution p(si
1,s

i
2), which we call positives. Let s j

2 be taken from another
scene ( j ̸= i), then samples (si

1,s
j
2) sampled from the product of marginals p(si

1)p(s j
2), which

we call negatives. The model h(·) is expected to know which pair is drawn from the joint
distribution while the other is not exactly, by computing their cosine similarity with a hyper-
parameter τ . In the multi-view setting, the model h(·) is a neural network consiting of two
branches with independent or same parameter fθ1 and fθ2 .

h(s1,s2) = exp

(
fθ1 (s1) · fθ2 (s2)∥∥ fθ1 (s1)

∥∥ ·∥∥ fθ2 (s2)
∥∥ · 1τ

)
(5.1)
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Table 5.1 The network structure of the proposed PixEF, PixLF and PixIF.

Name
PixEF PixLF PixIF

Encoding Encoding Encoding 1&2
Conv1 [3×3, 64], stride 2 [3×3, 32], stride 2 [3×3, 32], stride 2

MaxPool 3×3, stride 2 3×3, stride 2 3×3, stride 2

ResBlk1
stride 2

[
3×3, 64
3×3, 64

]
×2

[
3×3, 32
3×3, 32

]
×2

[
3×3, 32
3×3, 32

]
×2

ResBlk2
stride 2

[
3×3,128
3×3,128

]
×2

[
3×3, 64
3×3, 64

]
×2

[
3×3, 64
3×3, 64

]
×2

ResBlk3
stride 2

[
3×3,256
3×3,256

]
×2

[
3×3,128
3×3,128

]
×2

[
3×3,128
3×3,128

]
×2

Bridge
stride 1

[3×3, 256] [3×3, 128] [3×3,256]
upsampling 2 upsampling 2 upsampling 2

Decoding Decoding Decoding

Block4
stride 1

Cat. Block2 Cat. Block2 Cat. Block2
[3×3, 128] [3×3, 64] [3×3, 128]

upsampling 2 upsampling 2 upsampling 2

Block5
stride 1

Cat. Block1 Cat. Block1 Cat. Block1
[3×3, 192] [3×3, 96] [3×3, 192]

upsampling 2 upsampling 2 upsampling 2

Block6
stride 1

Cat. Conv1 Cat. Conv1 Cat. Conv1
[3×3, 256] [3×3, 128] [3×3, 256]

upsampling 2 upsampling 2 upsampling 2
Conv 1×1 Conv 1×1 Conv 1×1

where s1 and s2 are the inputs in two branches of the network. The final loss function can be
writen as L( fθ1, fθ2,S) given the dataset S:

L( fθ1, fθ2,S) =−ES

[
log

h(si
1,s

i
2)

∑
N
j=1 h(si

1,s
j
2)

]
(5.2)

where (si
1,s

i
2) is a positive pair sample, (si

1,s
j
2| j ̸= i) is a negative pair sample and {s1

1, s1
2,s2

2,
· · · , sN

2 } is a set that contains N−1 negative samples and one positive sample by anchoring
at s1

1. In the training process, the network is trained to increase the value of positive pairs and
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decrease the value of negative pairs. This results in a feature representation that is close to
positive pairs whereas it is not appropriate for negative pairs.

In the pixel-level contrastive loss, we sample and average features from two branches
over superpixels that are located on the overlap between the two branches. This aims to
keep the consistency of the normalized pixel-wise representations between two branches.
Here, we construct a set of pixel-wise feature pairs PN

i=1 where the positive feature pair
(pi

1, pi
2) is sampled from the same location, while p j

2| j ̸= i in negative pairs is taken from
another location. Compared with the instance-level contrastive learning, this loss function
can make the model get more detailed representations and thus more suitable for dense
prediction downstream tasks. To overcome the noise when using the single pixel, we adopt
the contrastive loss at the superpixel level. Together with the pixel-level contrastive loss, an
instance-level contrastive loss is used to improve the performance. The instance-level loss
help to discriminate the similarity between the shifted views. Like pixel-level loss, we can
construct a set MN

i=1 of concatenated image pairs, where (mi
1,m

i
2) is sampled from the same

scene i while m j
2| j ̸= i is taken from another scene. Finally, we use the pixel-wise contrastive

loss in conjunction with the instance-level contrastive loss, leading to the total loss of three
fusion approches:

Le = L(Ue,Ue,P)+L(Ee,Ee,M)

Ll = L(Ul1,Ul2,P)+L(El1,El2,M)

Li = L(Ui,Ui,P)+L(Ei1,Ei2,M)+L(Ei,Ei,M)

(5.3)

where Ll,Le and Li are the loss functions of PixLF, PixEF and PixIF, respectively.

5.1.3 Experimental Results

In this section, we present the dataset for the training and validation of the proposed self-
supervised SAR-optical fusion. Besides, the details of network setup and evaluation experi-
ments are introduced.

Description of the Dataset

DFC2020: We developed our experiments on the DFC2020 dataset. The DFC2020, which
has been issued by the IEEE-GRSS 2020 Data Fusion Contest [163], is used as the training
set and the evaluation set for comparison between different methods. This dataset consists
of a total of 6114 quadruple samples, which are SAR-optical image pairs, MODIS-derived
labels, and more accurate semi-manually derived high resolution (10 m) land-cover maps
[139]. SAR images were acquired by Sentinel-1 and consist of dual-polarized (VV and
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VH) components, and the optical images were taken by multi-spectral Sentinel-2. Each
SAR-optical image pair was obtained within the same season. Each pixel in the DFC2020
was assigned to a land-cover class manually, which has eight fine-grained classes (i.e., Forest,
Shrub-land, Grassland, Wetlands, Croplands, Urban/built-up, Barren and Water). We also
provide the image-level label for each image, which is derived by the majority class of the
related pixel-level land-cover maps. Previous research [157] pointed out the effectiveness of
training a CNN on image-level labels that can guide the weakly supervised model (WSL) to
learn a powerful representation of images.

Training and Test Sets: A random split of the DFC2020 dataset into a training set (1000)
and a test set (5114) was applied in this work. Here, the training set is used to tune the
parameters of the linear protocol in the evaluating phase. The test set is used to validate the
effectiveness of the features learned using different methods. To assess the effectiveness of
these methods with limited labels, we randomly split the training set into five groups with 10,
50, 100, 200, and 1000 samples. Each small number group is a sub-sampled version of the
corresponding full training set. Note that all self-supervised and unsupervised models were
trained on unlabeled SAR-optical image pairs.

Network Setup

The training process of the self-supervised approach includes three parts for PixEF, PixLF
and PixIF. For PixEF, SAR-optical image pairs were concatenated as one input. For PixIF
and PixLF, SAR and optical images are in input to two branches independently. The Adam
with a learning rate of 3e−4, a weight decay of 4e−4 and a momentum of 0.9 was adapted as
our optimizer. We use a mini-batch size of 1000 with an input size of 16 × 16; models are
run for 700 epochs. We deploy a step scheduling learning rate policy in the training process.
We use shift transformation to augment different inputs, where the vertical and horizontal
range of the pixel shift is one-fifth of the input width. Apart from the shift transformation,
we further apply a random flip transformation to improve the performance of the proposed
approach.

Experiment Settings

To evaluate the learned feature representation of different methods, we provide an evaluation
with a linear classifier followed by the frozen features on the test set. In particular, the feature
representation in the proposed approach has 256 channels, while that of the comparison
methods (i.e., DCCA and MCL) is a concatenation of multi-level features with 512 channels.
Note that we decided to use a linear classifier as our main evaluation metric for the quality



5.1 Self-supervised Sentinel-1/-2 Data Fusion 99

of representations since it is simple and has a small number of extra parameters. This is an
effective way to focus on the intrinsic discrimination capability of the classifier. The learning
rate is set to 0.05 and the SGD with a mini-batch size of eight was adopted as the optimizer
for the linear protocol as well as the maximum number of epochs is 50.

In this experiment, we also assess the performance of the proposed approach applied to
the Sentinel-1 image, the Sentinel-2 image, and both of them. This is done to validate whether
the SAR-optical fusion can obtain more discriminative representations than single modality
for the downstream land-cover mapping task. To this purpose, we trained the proposed
approach only on single modality images in the proposed early fusion strategy. Then the
linear protocol on the frozen pre-trained models was used to evaluate the effectiveness
of learned representations with limited training labels. However, the instance-level self-
supervised method does not have an decoder and can not perform the same strategy. To
provide a fair comparison, we also adopt the same decoder and the classifier of the proposed
approach as a readout. The decoder is followed by encoders pre-trained by instance-level
self-supervised methods and used to reconstruct the concatenation features for downstream
tasks.

Linear Evaluation on Pre-trained Features

The performance of the proposed self-supervised approaches (PixEF, PixIF and PixLF) were
evaluated on the test set in comparison to the two instance-level self-supervised methods
(DCCA and MCL) and the weakly supervised method (WSL). Also in this case we considered
different amounts of labeled data for the training of the linear classifier (see Fig. 5.2). The

Table 5.2 Class-wise and overall accuracies achieved on the test set by a linear classifier used
with the different methods considering 1000 SAR-optical training samples.

Class
Average Accuracies (%)

WSL DCCA MCL PixIF PixLF PixEF
Forest 90.2 92.7 90.9 92.6 92.3 91.3

Shrub-land 70.4 26.3 40.4 50.8 46.3 53.2
Grassland 57.6 63.0 68.7 73.0 64.5 74.5
Wetlands 70.4 56.9 64.9 62.7 57.2 59.9
Croplands 81.2 72.8 82.8 84.7 85.8 80.0

Urban 86.6 86.9 87.7 87.8 84.4 87.1
Barren 34.5 6.3 46.3 30.9 29.5 37.0
Water 99.2 99.0 99.3 99.3 99.4 99.2
AA 73.8 63.0 72.7 72.7 69.9 72.8

mIoU 0.490 0.411 0.487 0.498 0.476 0.490
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Fig. 5.2 The mean intersection over union metric (mIoU) achieved by different methods on
test set versus the number of samples used for the training of the linear classifier on frozen
encoders.

average class accuracy (AA) and mean intersection over union (mIoU) are common metrics
used to assess the performance in land-cover mapping and are used to evaluate the overall
precision of all land-cover classes in our work.

Fig. 5.2 shows the linear protocol results on mIoU. As one can see the proposed PixIF
outperforms all other methods, whereas the DCCA performs significantly worse against any
other methods when the number of training samples increases. However, the WSL method,
which is weakly supervised, outperforms all other methods with few labels. In general,
the proposed PixEF and PixLF as well as the MCL have a similar performance. The gap
between WSL and all contrastive approaches is reduced when the number of labeled samples
increases. In particular, the proposed PixIF outperforms WSL in the case of 1000 training
samples. Among contrastive approaches, the performance of PixIF and PixEF is slightly
better than that of MCL. Moreover, it is worth noting that MCL obtained representations
with 512 channels, while the proposed approaches with only 256 channels. This means that
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Table 5.3 Class-wise and overall accuracies achieved by PixEF on Sentinel-1 images alone
(S1), Sentinel-2 images alone (S2) and Sentinel-1/-2 image fusion (S1S2) with the linear
protocol and the fine-tuning evaluation.

class
Linear Evaluation (%) Fine-tuning Evaluation (%)

S1 S2 S1S2 S1 S2 S1S2
Forest 84.2 90.3 91.3 86.2 92.2 92.0

Shrubland 27.5 48.9 53.2 31.2 44.2 62.3
Grassland 61.1 67.2 74.5 61.9 68.0 78.0
Wetlands 35.0 58.8 59.9 51.5 62.3 62.3
Croplands 66.0 81.4 80.0 71.1 79.6 85.7

Urban 78.8 86.5 87.1 84.7 89.7 86.1
Barren 3.5 30.0 37.0 7.8 30.7 38.6
Water 98.8 99.2 99.2 99.2 99.5 99.4
AA 56.9 70.0 72.8 61.7 70.8 75.6

mIoU 0.362 0.470 0.490 0.395 0.474 0.521

the proposed approach significantly reduces the dimensionality of features while keeping or
even improving the feature representation ability.

Table 5.3 presents a detailed comparison of the class-by-class accuracy obtained by the
linear classifier on the test set for each approach when trained with 1000 labeled samples.
According to the results, the proposed PixIF and PixEF as well as the weakly-supervised
WSL achieve an AA higher than 72% and an mIoU over 0.49 on the test set. They sharply
outperform DCCA, which obtains an AA smaller than 65% and a mIoU smaller than 0.42.
Among the proposed approaches, PixIF obtained the highest mIoU, whereas PixLF got the
lowest value. In addition to the quantitative evaluations, we also provide a qualitative visual
comparison of the land-cover maps predicted by different methods. Fig. 5.3 illustrates five
examples of the results. Each example includes the land-cover maps predicted by different
approaches as well as the ground truth in DFC2020. As one can observe, the proposed
self-supervised PixIF, PixEF and the weakly-supervised WSL show better results than the
rest of the methods in all cases, and the proposed PixIF confirms to be more effective than the
other two fusion strategies (PixEF and PixLF). For each land-cover class, similar conclusions
to those derived by Table 5.2 can be given.

In general, the results obtained in all comparisons confirm that the contrastive approach
is superior to DCCA in this land-cover mapping task. The effectiveness of the proposed
PixIF against other methods is due to its ability to use a three-level contrastive loss. It is
interesting to note that despite the annotations are used in WSL, the proposed approach
achieves comparable performance without any use of labels. This confirms the effectiveness
of the self-supervised methods in feature representation learning.
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Fig. 5.3 Land-cover maps achieved on five different images by different considered methods
with a linear classifier (see Table 5.2 for quantitative results).

We further investigate the performance of images from a single sensor in the land-cover
mapping task, by training the proposed PixEF approach on Sentinel-1 (S1) and Sentinel-2
(S2) image as well as on the concatenation of Sentinel-1/-2 (S1S2) images. Table 5.3 shows
a quantitative evaluation of the accuracy of each class by considering S1, S2 and S1S2
with the 1000 training samples and both linear and fine-tuning evaluations. As one can
see, the SAR-optical fusion outperforms the use of any single modality data in both linear
protocol and fine-tuning evaluations. The performance of PixEF on S2 is very close to the
performance on S1S2, while the performance on S1S2 has an increase of more than 10%
of AA with respect to the performance on S1 in both types of evaluation. In addition, the
results of sentinel-2 images in higher classification accuracy on all classes than the use of
only sentinel-1 images for both evaluation methods. For individual classes, water achieved
the highest accuracy in all conditions, whereas the barren has the lowest accuracy. The
classification accuracy of water does not show an obvious improvement after fusion, because
there is already enough information in each single modality data. However, the SAR-optical
fusion improved the performance of shrubland, grassland and barren.

Apart from quantitative assessment, we also made a visual comparison of the results
obtained with both evaluations on S1, S2 and S1S2 images. The performances of each
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Fig. 5.4 Land-cover maps obtained by PixEF on Sentinel-1 images alone (S1), Sentinel-2
images alone (S2) and Sentinel-1/-2 image fusion with the linear classifier and fine-tuning
evaluation for five different images (see Table IV for quantitative results).

modality and SAR-optical fusion keep consistent with both linear protocol and fine-tuning
evaluations. As shown in Fig. 5.4, the SAR-optical fusion classifies various classes in
a more accurate way, especially in barren, which obtains a significant improvement with
respect to the use of single modality images. Besides, a trend can be figured out, that is, the
methods with the input of S1S2 data achieve more smooth parsing results compared with the
input of single modality data. Moreover, Fig. 5.4 also shows the advantages of each single
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modality and other improvements after SAR-optical fusion. Both Fig. 5.4 (a) and Fig. 5.4
(b) present clouds on Sentinel-2 (but of course not in Sentinel-1) and the obvious influence
on the corresponding classification maps. The presence of clouds leads to misclassifications
in Sentinel-2, but not in Sentinel-1. Although the misclassification induced by clouds is still
present in the classification maps of SAR-optical fusion, it is significantly mitigated compared
to the results of Sentinel-2 alone. A similar phenomenon is also presented in Fig.5.4 (e),
where the airport was distinguished as water in the Sentinel-1 result. This is the result of
the similar backscatter between a flat runway and water. Conversely, this was correctly
distinguished as built-up in the Sentinel-2 result. After SAR-optical fusion, the classification
errors in each modality were obviously reduced. Overall, the visual comparison is coherent
with the quantitative results presented in Table 5.3 and confirms again the effectiveness of
the presented self-supervised SAR-optical fusion approach.

5.1.4 Discussion and Conclusion

Discussion

In this section, we discuss the effects of different components of PixIF that contribute to its
performance. All results shown in Table 5.4 are trained and tested on the same setup of the
linear protocol with 1000 training samples. The first row refers to the proposed approach
using only shift operation and additional global loss. The second row refers to the proposed
approach using geometric transformation (shift, rotate, resize and sheer) instead of shift
operation and additional global loss. The third row refers to the proposed approach using
photometric transformation (gaussian blur and noise) and additional global loss. And the
fourth row refers to the proposed approach only using shift operation.

As one can see, the combination of shift operation and the use of global contrastive loss
achieves the highest accuracy. In contrast, the lack of global loss makes the performance
slightly decayed. This demonstrates the benefits of the use of instance-level contrastive loss.
We also investigate a universal geometric transformation instead of shift operation in the

Table 5.4 The effect of the use of geometric, photometric, shift augmentation and global loss
in the proposed approach.

Only Shift Geometric Photometric Global loss AA mIoU
✓ ✓ 72.7 0.498

✓ ✓ 68.4 0.460
✓ ✓ 68.8 0.464

✓ 70.6 0.479
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network training. In this case, the performance drops about 0.04 on mIoU. The proposed
approach can work with the geometric (affine) transformation but with little performance
drops. Similarly in photometric transformation, it leads to 0.03 drops on mIoU. In general, in
this work, we found that the shift operation is the most useful and simple data augmentation
approach for the proposed approach.

Conclusion

In this chapter, we proposed a new self-supervised SAR-optical data fusion approach by
jointly using the instance-level and pixel-level contrastive loss and the shift data augmentation.
The proposed approach explores three fusion strategies to distill related representations from
different modalities data. We additionally investigate the efficiency of SAR-optical fusion
with respect to the single modality in the use of the proposed approach.

To evaluate the performance of the proposed approach, we compared it with two instance-
level self-supervised methods (i.e., CML and DCCA) and also with a weakly supervised
method (WSL) considering the linear protocol evaluation with different numbers of training
samples. The results show that the proposed PixIF achieves the best performance among
all self-supervised methods and a comparable performance to that of a weakly supervised
method. The effectiveness of the proposed PixIF can be explained by the use of different
levels of contrastive loss for a dense prediction task. Comparisons between the performance
of proposed PixEF on SAR-optical fusion and single modality data were also considered.
The experiment confirmed again the benefit of SAR-optical fusion in the land-cover mapping
task.

5.2 Unsupervised Land-Cover Segmentation Based on Con-
trastive Learning and Vector Quantization

This section proposes a new unsupervised land-cover segmentation approach based on
contrastive learning and vector quantization that jointly uses SAR and optical images. This
approach exploits a pseudo-Siamese network to extract and discriminate features of different
categories, where one branch is a ResUnet and the other branch is a gumble-softmax vector
quantizer. The core idea is to minimize the contrastive loss between the learned features
of the two branches. To segment images, for each pixel the output of gumble-softmax is
discretized as a one-hot vector and its proxy label is chosen as the corresponding class.
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5.2.1 Introduction

Land-cover maps provide spatial and categories information on land-cover classes. They
are widely used for policy decisions, environmental monitoring, resource management,
disaster discovery, etc. Land-cover maps are often generated by classifying pixels of images
acquired by remote sensing systems. In this context, the complementary use of multimodal
remote sensing data offers more complete information for land-cover segmentation tasks
than the exploitation of single sensor data. For example, multi-spectral images collect rich
spectral information on the land-cover categories on a wide range of the electromagnetic
spectrum, while synthetic aperture radar (SAR) images provide measures on the dielectric
and backscattering properties that are subjected to geometric features. Many land-cover
mapping approaches have been developed to combine complementary information from SAR
and optical images. Early works performed land-cover mapping tasks with machine learning
approaches and proved the effectiveness of combining SAR and optical data in this task.
Nevertheless, their performance is limited to the feature learning ability.

More recent works have instead used Convolutional Neural Networks (CNNs) to fuse
SAR and optical images for performing land-cover maps, demonstrating the superiority
of these deep learning architectures in SAR-optical fusion. However, most of them focus
on supervised learning methods, which are often limited by the availability of annotated
data. In this context, unsupervised approaches are an interesting alternative to address land-
cover mapping tasks [28]. Most unsupervised approaches rely on the prior information of
spectral indices derived from SAR and optical images, such as normalized difference water
index (NDWI), normalized difference vegetation index (NDVI), bare soil index (BI), and
backscattering values (BS). These indices can be used to select training samples for network
training and then segment images using the well-trained network. Even these indices can
identify different land-cover classes. They are not able to extract all the semantic available in
the data.

Recent research [7, 120, 151, 71, 27] in contrastive learning demonstrates how these
methodologies can encourage the network to learn more interpretable and meaningful feature
representations. This resulted in improvements in classification and segmentation tasks,
where contrastive methods outperformed the generative counterparts. Recent research on
unsupervised image segmentation in the computer vision domain demonstrates that maxi-
mizing mutual information between different augmentations can encourage a deep network
to learn and discriminate the features of different classes. However, existing methods, such
as InfoSeg [67], rarely consider land-cover tasks and do not show robust performance on
scenarios with more than two classes.
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Fig. 5.5 Overview of the proposed unsupervised segmentation approach. The framework is
a pseudo-Siamese architecture, where one branch is a ResUnet and the other branch is the
gumbel-softmax vector quantizer. During the training, an input image is fed into ResUnet to
get pixel-wise representation. We then reconstruct this feature representation from limited
vectors using vector quantization. During the inference, the segmentation is obtained using
hard selection in the gumbel-softmax operation.

To address this limitation, we further propose a new unsupervised land-cover segmen-
tation approach, using contrastive learning and vector quantization, which can obtain the
features for discriminating different land-cover categories based on the information provided
by SAR and optical images. The evaluation of the proposed land-cover segmentation ap-
proach compared with the Infoseg approach was performed on a subset of DFC2020 dataset
[163] including six land-cover classes.

5.2.2 Methodology

This section presents the methodology of the proposed unsupervised land-cover segmenta-
tion based on contrastive learning and vector quantization, where the network is learnt to
reconstruct images using learned class vectors.

Network Architecture

We propose a pseudo-Siamese network with two branches Fig.5.5. One branch is a ResUnet
and the other branch is a gumbel-softmax quantizer. For the ResUnet, we adopt the ResNet-
18 as the encoder but without using the fourth layer. The decoder part has the same blocks
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as the encoder and each block consists of a convolutional layer, a batch normalization, a
ReLU activation function, and an upsampling operation. All padding type in the ResUnet is
changed to the same padding type. An MLP projection followed by the last block is used
to reconstruct the learned representations. It consists of the 1× 1 Conv of 256 channels
and a ReLU, and then a 1×1 Conv with 128 channels for each pixel. In addition, several
classification heads are considered followed by the bottleneck block to encode the global
features.

In the other branch, we introduce a gumbel-softmax vector quantizer to reconstruct the lo-
cal feature representation from the limited vectors in the codebook. The quantization module
takes the pixel-wise representation from the ResUnet and maps it into a new representation.
This is done by selecting one entry from a fixed codebook using pixel-wise scaled softmax.
However, this hard selecting process results in suboptimal performance. To alleviate this
problem, we compute a soft feature assignment for each pixel using vectors and their class
probabilities. The class probabilities are obtained by performing a pixel-wise scaled softmax
between the fixed codebook and local features. In this way, we can obtain an augmented
feature representation. During the inference, we chose a hard selection to assign each pixel
a class, i.e. the proxy label of the corresponding vector. To make the vectors represent the
image-level features, we force the multi-global features close to vectors and make the vectors
distributed in feature space uniformly. It is noted that the number of global features and the
number of vectors are the same as the number of classes. In the post-processing phase, the
spectral indices are used to determine the landscape of each class and remove the isolated
classified pixels.

Loss Functions

The proposed approach consists of two types of contrastive loss individually based on images
and superpixels. For superpixel level loss, each positive feature pair (zi

1,z
i
2) is sampled from

the same location i, whereas each negative sample z j
2 is taken from another location. This

loss Lspix can be written as:
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]
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where hθ (·) is a similarity function (i.e., cosine similarity), (zi
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Together with the superpixel level contrastive loss, a global level contrastive loss between
global features g and vectors e follows the alignment and uniformity terms. The alignment
loss Lalign is strightforwardly defined with the cosine distance between positive pairs:

Lalign (g,e)≜ E
(g,e)∼ppos

[∥g− e∥α
2 ] , α > 0 (5.5)

where ∥ · ∥2 is l2-norm, g and e are copied as the same numbers. This is equivalent to the
mean squared error of l2-normlized vectors. The uniformity loss Luniform is defined as the
logarithm of the average pairwise Gaussian potential:

Luniform(e)≜ E
(ei,e j)∼pneg

[
e−t∥ei−e j∥2

2

]
, t > 0 (5.6)

This term decorrelates the different vectors in the codebook and prevents them from obtaining
the same information. The overall loss function L is a sum of a superpixel, alignment and
uniformity terms:

L = Lspix (z1,z2)+Lalign (g,e)+Luniform (e) (5.7)

5.2.3 Experimental Results

Description of Dataset

We developed our experiments on a subset of DFC2020 dataset [163]. This subset consists
of 2000 triple samples, which are SAR-optical image pairs and more accurate semi-manually
derived high resolution (10 m) land-cover maps. SAR images with dual-polarized (VV and
VH) components were acquired by the Sentinel-1 satellite. The optical images with 12 bands
were taken by the multi-spectral sensor of the Sentinel-2 satellite. In this subset, the cropland,
wetland, and grassland are reclassified as grassland; shrubland and barren are reclassified
as bared land. Finally, only six classes (i.e., forest, grassland, urban, bare land, water, and
sparse vegetation) are included in this data set according to the land surface properties.

Table 5.5 Class-wise and overall accuracies of different approaches achieved on the subset of
DFC2020.

Meth. For. Spa. Gra. Bui. Bar. Wat. AA mIoU
Info. 48.3 38.0 72.5 61.1 0.80 82.2 50.5 0.33
fInfo. 49.9 41.4 75.0 61.2 0.00 70.8 50.0 0.32
Prop. 88.0 35.5 57.1 78.9 60.2 97.4 69.5 0.44
fProp. 88.2 36.1 58.0 81.8 57.3 97.5 69.8 0.45
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Results

Empirically, we found that the six and seven class settings in the network training lead to
the best performance. The final result combines the two settings with six land-cover classes.
The evaluation is performed on the results after the post-processing using spectral indices.
We also provide a fine-tuning evaluation on initial results due to the missing data in the
post-processing. Table 5.5 presents a quantitative evaluation of the accuracy on each class
obtained by the InfoSeg (Info.) and the proposed approach (Prop.) as well as their fine-tuning
results (fInfo. and fProp.). As one can see, the proposed approach achieves an AA of 69.5%
sharply outperforming InfoSeg, which obtains an AA of 50.5%. The fine-tuning result of the
proposed approach obtains a higher AA and mIoU, with an improvement of 0.3 % and 0.01
with respect to the initial results. However, the fine-tuning result of InfoSeg is worse than
the initial result. The possible reason for this is that the initial results of InfoSeg contain too
many misclassifications. By analyzing performance on individual classes, forest, water and
built-up achieve higher accuracy. In contrast, the accuracy of sparse vegetation is below 50%.
This is due to the fact that there is no clear boundary among sparse vegetation, barren and
grassland.

Apart from quantitative assessment, we also made a visual comparison of the results. As
shown in Fig. 5.6, the proposed approach classifies various classes in a more accurate way,
especially in small areas. There is an interesting trend visible from the results: InfoSeg only
captures the spatial patterns, whereas the proposed approach can identify the clear boundaries
of different land-cover classes. Moreover, InfoSeg showed higher difficulty to separate forest,
grassland, and sparse vegetation accurately. Finally, the fine-tuning results of the proposed
approach lead to a further performance improvement, while it also induces the loss of some
details.

5.2.4 Conclusion

In this section, we have investigated the unsupervised land-cover segmentation based on the
SAR-optical fusion framework and vector quantization. The core of the presented approach
is to minimize the contrastive loss between the local features output from ResUnet and
the reconstructed features from limited vectors. The land-cover maps can be obtained by
assigning each pixel with its proxy label of the most contributed vector. This approach is
assessed quantitatively and qualitatively on the selected subset of DFC2020 and achieves an
average accuracy of 68% considering six land-cover classes. Experimental results show that
the proposed approach can learn semantically meaningful representation and discriminate
different land-cover categories.
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Fig. 5.6 Unsupervised land-cover maps obtained by InfoSeg and the proposed approach as
well as their fine-tuning results.

5.3 Conclusion

In this chapter, we have investigated the self-supervised SAR-optical data fusion approach
under three strategies: early fusion (PixEF), intermediate fusion (pixIF), and late fusion
(PixLF). The results show that early fusion and intermediate fusion are better than late fusion.
This is because the late fusion strategy discards the modal-specific task-relevant information
but only keeps the shared information between the two modalities. This once again reminds
us that contrastive learning between different modalities is not the best strategy to fuse
multimodality information.

After that, we explored how to do unsupervised LULC mapping task in the self-supervised
learning framework. We found that the complementary information on different land-cover
provided by SAR and optical images is the key to accurate performance. Maximizing the
mutual information between the global vectors and local information can segment images
into semantic parts. On the basis of the freely accessed Sentinel-1/-2 data, the proposed
approach demonstrates a promising potential for automatic large-scale land-cover mapping.
In addition, the proposed approach can also be used to fuse other raster data. However, it
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has also some limitations in the classes assignment. The considered training strategy just
gives six classes and focuses on backscatter values of Sentinel-1 images while ignoring
the polarization information. Accordingly, as future development, we plan to explore the
possibility of including more specific classes in the presented approach for the land-cover
mapping task.



Chapter 6

Incomplete Multimodal Learning for
Remote Sensing Data Fusion

To address the limitation of the severe degradation with modal-incomplete inputs, in this
chapter, we propose an approach that introduces a novel model for incomplete multimodal
learning in the context of remote sensing data fusion. This approach can be used in both
supervised and self-supervised pretraining paradigms and leverages the additional learned
fusion tokens in combination with Bi-LSTM attention and masked self-attention mechanisms
to collect multimodal signals. The proposed approach employs reconstruction and contrastive
loss to facilitate fusion in pre-training, while allowing for random modality combinations
as inputs in network training. Our approach delivers state-of-the-art performance on two
multimodal datasets for tasks such as building instance / semantic segmentation and land-
cover mapping tasks when dealing with incomplete inputs during inference.

6.1 Introduction

Remote sensing becomes more and more important in various Earth Observation (EO) tasks.
With the increasing availability of multimodal RS data, researchers now can develop more
diverse downstream applications. Despite the abundance of multimodal remote sensing data,
each modality captures only certain specific properties and, therefore, cannot thoroughly
describe the observed scenes. Thus the use of single-mode data results in limitations
in many applications. Multimodal RS data fusion addresses these limitations [56]. For
instance, synthetic aperture radar (SAR) provides physical structure information, while
LiDAR collects both structure and depth information [125]. Meanwhile, multispectral (MS)
and hyperspectral (HS) scenarios measure radiation reflectance across different wavelengths
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of the electromagnetic spectrum. By integrating the complementary information confined
in multimodal data, it is possible to improve the accuracy and reliability in many data
analysis tasks, such as change detection [28] and land-cover mapping [29]. To integrate the
complementary information provided by different sensors and remote sensing products (e.g.,
Land Cover Land Use Maps), traditional methods [42] exploit handcrafted features based
on domain-specific knowledge and fusion strategies that often are not able to capture all the
information present in the data.

Thanks to the growth of artificial intelligence, deep learning shows great potential in
modelling the complex relationships between different modality data and is widely used
in remote sensing data fusion tasks. There are three main multimodal RS data fusion
applications, SAR-optical [138, 2, 2, 77, 89] and LiDAR-optical [125, 141, 169, 45] as
well as image-map [84, 161], where the deep CNNs and Transformer networks are widely
used. Nevertheless, deep Convolutional Neural Networks (CNNs) methods assume that all
modalities are available during training and inference, which can be a limiting factor in
practical applications, as data collection processes may miss some data sources for some
instances. In such cases, existing multimodal data fusion methods may fail to deal with
incomplete modalities, leading to severe degradation in performance. The approach used in
this situation is called incomplete multimodal learning and aims at learning methods that
perform inference which is robust to any subset of available modalities. A simple strategy for
incomplete multimodal learning using CNNs is to synthesize the missing modalities using
generative models. For instance, Generative Adversarial Networks (GANs) can effectively
overcome the problems arising from missing or incomplete modalities in building footprint
segmentation [13]. Another set of methods explores knowledge distillation from complete
to incomplete modalities. In this approach, Kampffmeyer et al. [83] proposed to use an
additional network, the hallucination network, for mitigating missing data modalities in the
testing of urban land cover classification tasks. The network takes a modality as input that is
assumed to be available during both training and testing, trying to learn a mapping function
from this modality to the missing one.

Although promising results are obtained, such methods have to train and deploy a specific
model for each subset of missing modalities, which is complicated and often unreliable
in downstream tasks. Moreover, all these methods require complete modalities during the
training process. Recent incomplete multimodal learning methods focus on learning a unified
model, instead of a bunch of distilled networks, for downstream tasks. In this context, the
modality-invariant fusion embedding across different modalities may contribute to more
robust performance, especially when one or more modalities are missing. As a competitive
multimodal data fusion model, Transformer does not need to access all modalities in the



6.1 Introduction 115

network training and inference as its flexibility and sequence modelling strategy, which can
be effective in both scenarios: with and without missing modalities. Current works exploited
Transformers for multimodal RS data fusion in a complete fusion scenario, such as lidar and
hyperspectral data fusion [134]. For incomplete multimodal data fusion, MBT [115] and
Zorro [128] propose to fuse audio and video data using learnable tokens in the Transformer
network. However, the definition of a dedicated Transformer for incomplete multimodal
learning in remote sensing tasks has not been addressed yet and the existing multimodal RS
data fusion methods do not allow missing data in the training process. Moreover, Ma et al.
[107] point out that the vanilla Transformer tends to be overfitted on one modality data.

In addition, most multimodal data fusion methods are based on the supervised learning
paradigm. Supervised approaches are task-specific and have limitations to be generalized
to other tasks. Moreover, training on a large amount of multimodal data is cost expensive
and collecting an adequate labeled data for each task is challenging for end-users. Thus,
the research community usually relies on a few fine-tuning steps on a pre-trained model
to adapt a network to a specific task. Pre-training without supervision has gained a lot of
attention as it is more general and does not require labeled data. The self-supervised learning
method for SAR-optical feature fusion [28] is an example of such an approach. However,
this pre-training approach also needs to access all modalities during network training.

Hence, this paper proposes to exploit Transformer to build a unified model for incomplete
multimodal learning for remote sensing tasks, which can be used in both the supervised and
self-supervised pre-training paradigms. This is achieved by using additional learned fusion
tokens for multimodal signal collection in the network. However, only using the additional
learned fusion token cannot capture enough information from other modality tokens. In this
context, we use a Bi-LSTM attention block to further distil different modality information
to fusion tokens. Using this technique, the proposed approach can leverage MultiMAE and
contrastive loss to build fusion across the different modalities in pre-training. Moreover, it
can use a random modality combination training strategy in downstream task fine-tuning.
This makes the learning and inference feasible also when incomplete modality data are given
as input.

The three main contributions of this chapter consist in: (1) we propose to use Bi-LSTM
and masked self-attention in multimodal Transformer to build additional fusion tokens across
different modalities, which enable both contrastive and generative self-supervised pre-training
for incomplete multimodal inputs; (2) based on the proposed approaches, we use the random
modality combination training strategy in downstream tasks, which ensures task performance
with incomplete inputs on inference. (3) we benchmark our approach on two datasets: the
public DFC2023 track2 and the created quadruplet dataset, obtaining results that show the



116 Incomplete Multimodal Learning for Remote Sensing Data Fusion

proposed approach can be pre-trained on a large-scale remote sensing multimodal dataset
in a self-supervised manner. The proposed approach achieves state-of-the-art performance
when compared with the vanilla multimodal Transformer [115] on RS.

6.2 Related Work

6.2.1 Masked Autoencoder

The MAE (masked autoencoder) [68] is a novel self-supervised learning algorithm that
demonstrates state-of-the-art performance on various vision benchmarks. Instead of relying
on a contrastive objective, the MAE utilizes a pretext task that involves reconstructing masked
patches of the input.

The MAE network follows an asymmetric encoding and decoding scheme. Suppose the
input image is a tensor of dimensions I ∈ RC×H×W , where H,W are the height and width
of the image, respectively, and C is the number of channels. The image is initially divided
into non-overlapping patches S ∈ RL×P2C, where P is the height and width of the patch,
and L = (H/P)× (W/P) is the number of patches. These patches are then transformed
into a sequence of embedded patch tokens S′ ∈ RL×D, using a patch embedding function
fp : RP2C→ RD. A fraction pm of the sequence tokens is randomly masked, and the remaining
visible tokens are fed into an encoder, which is a Vision Transformer (ViT). Due to the lack of
positional information, additional positional embeddings are then added to patch embeddings
to capture the spatial location of the patch in the image. The decoder is composed of multiple
transformer blocks that are trained for all tokens, where the masked tokens are replaced
as the initialized learnable tokens. The decoder produces a reconstructed image, which is
compared to the original image using mean-squared error (MSE) loss, computed only on
masked patches. Positional encoding allows the transformer to encode positional information.
In MAE the positional encoding is:

Encode(k,2i) = sin
k

Ω
2i
d
,Encode(k,2i+1) = cos

k

Ω
2i
d

(6.1)

Here, k is the position, i is the index of feature dimension in the encoding, d is the number of
possible positions, and Ω is a large constant. In MAE, the position is defined as the index of
the patch along the x or y axis. Therefore, k ranges from 0 to H/P or W/P. This encoding
provides two unique dimensions, one for x and one for y coordinates, which are concatenated
for the final encoding representation.
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The Multimodal Masked Autoencoder (MultiMAE) [8] is based on a standard single-
modal ViT and the modality-specific encoders. The encoder is equipped with 2-D sine-cosine
positional embeddings following the linear projection. MultiMAE does not make use
of modality-specific embeddings, as the bias term in each linear projection is sufficient.
MultiMAE employs a separate decoder for each task that is responsible for reconstructing the
masked-out tokens from the visible tokens. The input to each decoder is a full set of visible
tokens from all different modalities, including the learnable modality embeddings with 2-D
sine-cosine positional embeddings. The input is then followed by MLPs and Transformer
blocks. Only the masked tokens are considered in the loss calculation. The mask sampling
strategy employed in MultiMAE plays a crucial role in achieving predictive coding across
different modalities. This sampling strategy ensures that most modalities are represented to
similar degrees. MultiMAE adopts a symmetric Dirichlet distribution to select the proportion
of tokens per modality λ (λi ∼Dir(α)), where ∑λi = 1,λ > 0. The concentration parameter
α > 0 controls the sampling. For simplicity and better representation parameter α = 1 in
MultiMAE.

6.2.2 Multimodal Transformer

The self-attention blocks of Transformers build a natural bridge among multimodal signals
in a unified architecture. Differently from the CNNs that use one network for each modality,
the Transformer only use the same main architecture for all modalities with a modal-specific
projector. Transformers integrate input tokens from all modalities into a single representation,
while CNNs fuse features of each modality through concatenation or tensor fusion. However,
such explicit integration requires the presence of all modalities during training, which
undermines the pipeline in case of a missing modality. In contrast, Transformers use self-
attention to embed a holistic multimodal representation and handle the absence of modalities
by applying a mask on the attention matrix. Thus, multimodal Transformers are more
adaptable to deal with modal-incomplete inputs. In addition, an easy-to-train model is vital
for multimodal learning. The training load of a conventional multimodal backbone grows as
the number of modalities increases since the backbone usually consists of modality-specific
sub-models that need to be trained independently for each modality. Instead, Transformers
process modalities altogether in a single model, significantly reducing the training load.

However, Transformer models exhibit significant deterioration in performance with
model-incomplete inputs, especially in the context of multimodal inference where Trans-
former models tend to overfit the dominating modalities. To overcome this challenge, MBT
[115] builds a multimodal architecture for video and audio, by using an additional fusion to-
ken to force information among different modalities to pass through by using cross-attention.
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Fig. 6.1 Overview of the proposed framework. The inputs to our model are optical images,
SAR images, DEM and Maps. Each of those inputs is patched using a 2D convolution and
projected to feature vectors. All inputs are concatenated with a set of learnable fusion tokens
and added to the position embedding. Next, we process these inputs through the Transformer
Encoder, where the Bi-LSTM Attention and the masked Self-Attention strategy are applied.
(1) In pre-training, task-specific decoders reconstruct the masked patches by using the output
fusion tokens. Meanwhile, the global vectors of each modality and fusion tokens are output
using cross-attention, which allows using contrastive loss between fusion tokens and each
modality. (2) In the supervised training, the proposed framework can be trained on a specific
downstream task by using a random modality combination strategy.

However, the representation of each modality can also access to the others in MBT, which
means they are not independent. In [128], a modality-aware masking mechanism is used
in all attention operations to isolate the allocation of latent representations of individual
modalities, which leads to a resultant representation that is partially unimodal (i.e., part of
the representation attends to a single modality) and partially multimodal (i.e., part of the
representation attends to all modalities), thereby allowing for the use of contrastive learning.
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6.3 Methodology

In this section, we describe the proposed incomplete multi-modal fusion architecture with
additional learned fusion tokens, Bi-LSTM and masked self-attention. This is done using as
an illustration case, an optical-SAR-DEM-MAP data fusion example. Then, we introduce
the details of both the pre-training using MultiMAE and contrastive loss, as well as those of
training using random modality combination on downstream tasks (see Fig. 6.1).

6.3.1 Network Architecture

The main architecture of the proposed approach is a ViT with modality-specific patch
projection layers for each input modality. In detail, patches of each modality are projected
to tokens using a specific linear projection for each modality. In this work, we use a 2D
convolution to extract 16× 16 patches and project them to the input dimension D. Next,
position embeddings are added to the projected vectors so that the model is able to localize
and distinguish each embedded patch. In addition to the multimodal input data, the learnable
fusion tokens are introduced as one of the inputs. Differently to the bottleneck fusion tokens
in MBT [115] and Zorro [128], we use the spatial tokens for dense downstream tasks, which
have the same number of tokens of full input patches. In order to get local features, we
add 2D sine-cosine positional embeddings on the spatial fusion tokens and use Bi-LSTM
to aggregate all modality information to fusion tokens. Then the projected patches together
with the learnable tokens are concatenated into a sequence of tokens and given as input to
the same Transformer encoder with masked attention. Since all our input data have a 2D
structure, we add 2D sine-cosine positional embeddings after linear projection. Following
the setting of MultiMAE, we do not consider any modality-specific positional embedding.

Bi-LSTM Attention. We use a Bi-LSTM with an attention mechanism to integrate
different modality input embeddings into learned fusion tokens for improving the feature

learning ability. Consider one direction of the LSTM network: let
→
hi be the output of the

LSTM for the multimodal inputs (in our example, Optical, SAR, DEM and MAP) and the
learned fusion tokens. Bi-LSTM performs forward training and backward training separately
for each training sequence and then combines the results of forward training and backward

training together as the output of each modality, which is denoted as hi = [
→
hi,
←
hi]. We use

h f (fusion tokens) to represent all multimodal inputs ho (optical tokens), hs (SAR tokens),
hd (DEM tokens), hm (map tokens) and measure the importance of each modality through
the similarity with a learning parameter u. Then we get a normalized importance weight βi
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through a softmax function.

βi =
exp(u⊤ tanh

(
W
[
h f ;hi

]
+b
)
)

∑
t−1
i=1 exp(u⊤ tanh

(
W
[
h f ;hi

]
+b
)
)

(6.2)

where u and h have the same dimension as the cell state of the LSTM, and [] is the concatenate
operation. W is a weight matrix and b is a bias vector of the MLP. The final new fusion token
is thus:

a =
t−1

∑
i=1

βi ·hi (6.3)

Masked Self-Attention. Masked self-attention is the key block of multimodal Trans-
former in contrastive pre-training. Using masked attention, we force part of the representation
to attend only to itself, while other parts can attend to the whole representation. In the con-
sidered illustration case, the main goal of this approach is to split the representation into five
parts: a part which only focuses on Optical tokens, a part which focuses on SAR tokens, a
part which focuses on DEM tokens, a part which focuses on MAP tokens, and the fusion
tokens which consider the whole representation. In this architecture, the self-attention in
each layer and the cross-attention in the last layer both used this masking strategy. Here we
introduce the masking binary tensor m that specifies which vectors can access each other.
Entries of the masking matrix are mi, j = 1 if information can flow from latent j to latent
i. Versus, we set mi, j = 0. The mask is applied to the standard attention output operation,
which performs on keys k, values v and queries q, can be expressed as:

oi = ∑
j

mi j exp
(

q⊤i k j√
dk

)
∑{ j′,mi j′=1} exp

(
q⊤i k j′√

dk

) · v j (6.4)

where the dk is the dimension of k vector. In order to keep the performance of a single
modality when other modalities are absent, the modality-specific representation can not
access the fusion representation or other modalities. This explicitly prevents the information
of the fusion stream from leaking into the unimodal representation. This is the key to
preserving pure streams that correspond to single modalities. Thus, after applying this mask,
the specific output os, oo, od , om only contains information coming from the SAR, optical,
DEM, MAP inputs, respectively. The fusion output o f access all outputs in the model.

Reconstruction Pre-training In order to train our network in an MAE way, we use a
separate decoder for each generation task. The input to each decoder is the spatial tokens
output from the cross attention. Following the same setting of MAE, we use shallow decoders



6.3 Methodology 121

with a low dimensionality, which consists of two Transformer blocks. MultiMAE mask across
different modalities ensures the model develops predictive coding across different modalities
besides different spatial patches. According to MultiMAE, we set a constant number of
visible tokens at 256, which corresponds to 1/4 of all tokens in our experiment (learned
fusion tokens and four modality inputs with 256 × 256 image size and 16 × 16 patch size).
The proportion of tokens per modality λ are sampled from a symmetric Dirichlet distribution
(λOptical,λSAR,λDEM,λMAP) ∼ Dir(α), where λOptical + λSAR + λDEM + λMAP = 1,λ ≥ 0.
For simplicity and better representation of any possible sampled task, we use a concentration
parameter α = 1. As shown in Fig. 6.1, we adopt reconstruction loss (l1 distance Mean
Squared Error) to recover the pixel color and height information following MultiMAE and
using cross-entropy loss (lce) on land-cover map reconstruction:

LDEM = l1(Dec(o f ),DEM)

LSAR_RGB = l2(Dec(o f ),SAR)+ l2(Dec(o f ),RGB)
LMAP = lce(Dec(o f ),MAP)

(6.5)

Contrastive Pretraining. We also add the class token for each modality input data
and an additional global class token for the learned fusion tokens. To integrate information
from the encoded visible tokens of other modalities, we add a single cross-attention layer
using these tokens as queries that cross-attend to the encoded tokens of the last self-attention
layer. We utilize the standard cross-attention operation and produce five different outputs:
the vector outputs for each modality and a fusion vector output. This design opens the
possibility to use contrastive learning among different modalities and fusion tokens. For
a better multimodality alignment, we propose to use extra contrastive loss between each
modality-specific output and the fusion vector. Specifically, given the optical vector output
zo = go(oo) and the fusion output z f = g f (o f ), where go and g f are the linear projection for
each modality, the contrastive loss can be formulated as:

Lc(zo,z f ) =−E
S

log
esim(zi

o,z
i
f )/τ

∑
N
j=1esim(zi

o,z
j
f )/τ

 (6.6)

where sim is a similarity function (i.e., cosine similarity), S is a set that contains N− 1
negative samples and one positive sample. This equation introduces the loss for RGB-
FUSION contrastive training. In order to contrast the output of all outputs, we define a
contrastive loss between unimodal representations and fusion representations. Thus, we can
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write the full loss as:

L =LDEM +LSAR_RGB +λ2 ∗ (Lc(z f ,zo)

+Lc(z f ,zs)+Lc(z f ,zd)+Lc(z f ,zm))
(6.7)

Random Modalities Combination. Besides the network design, the training strategy
is vital to the performance of modal-incomplete inputs. The research in [107] finds that
the Transformer models tend to overfit the dominating modalities in a task. To improve the
robustness of the proposed approach against modal-incomplete data, we propose to leverage
a random modality combination training strategy. Thanks to the proposed approach, we can
randomly choose the different modality combinations or unimodal data in pre-training or
supervised training on downstream tasks. The proposed approach fuses all modalities using
additional learned tokens, thus it greatly reduces the effects of modal-incomplete inputs.

6.4 Experiments

In this section, we evaluate the proposed approach in multiple settings. We first introduce the
multimodal dataset used in this work. Then, we present the details of both pre-training and
training on downstream tasks, as well as the evaluation procedures. Finally, we ablate the
performance of the complete and the incomplete multimodal inputs to show the proposed
approach’s flexibility.

6.4.1 Experimental Details

In order to showcase the proposed approach across the different modalities, we train the
proposed approach in both a completely supervised paradigm and a fine-tuning paradigm
with pre-trained weights. Many works have pointed out that the pre-training of a big model
on multimodal data can be beneficial on downstream tasks [145]. The pre-trained model can
be then used for arbitrary downstream tasks with the fine-tuning of the task-specific decoder.
Hence we can train a giant model on a large multimodal data set with as many modalities
as possible. The pre-trained model can strengthen the ability to extract features that are
only trained on a few or single modality data. In this section, we provide the details of the
self-supervised pre-training and the supervised training on downstream tasks as well as the
multimodal datasets.
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Fig. 6.2 Example of DFC2023 track2 data sample containing RGB and SAR images, DSM
and ground truth.

Description of Datasets

We train and test the performance of the proposed approach on two multimodal datasets
for two downstream tasks, namely building instance / semantic segmentation and LULC
mapping.

DFC2023 track2 - Building instance / semantic segmentation. The first data set is the
track 2 dataset of DFC2023, which comprises a combination of RGB images, SAR images,
and Digital Surface Model (DSM) data. While the objective of the original task is building
height estimation, this study simplifies it as building instance / semantic segmentation. The
dataset consists of images obtained from GaoJing-1, GaoFen-2 and GaoFen-3 satellites, with
spatial resolutions of 0.5 m, 0.8 m and 1 m, respectively. Normalized Digital Surface Models
(nDSMs) are used as a reference in Track2 and are created from stereo images captured by
GaoFen-7 and WorldView-1 and -2 with approximately 2 m ground sampling distance (GSD).
The dataset was collected from seventeen cities across six continents and hence is highly
diverse in terms of landforms, building types and architecture. The labels of building instance
segmentation adopt the MS COCO format and are provided in a JSON file. A sample of the
labels is shown in Fig. 6.2 for illustration.

Quadruplet Dataset - Land-Use Land-Cover (LULC) mapping The second dataset
considers diverse data sources obtained from Google Earth Engine (GEE) platform, en-
compassing Sentinel-1, Sentinel-2, LiDAR DEMs and Dynamic World LULC maps, as
shown in Fig. 6.3 and Fig. 6.4. The dataset comprises 37 regions across various landscapes
and LULC classes in France and Australia. The Sentinel-1 mission provides data from a
dual-polarization C-band SAR instrument and produces the calibrated and ortho-corrected S1
GRD products. We download the data from the COPERNICUS/S1_GRD category on GEE,
resampling it into 10 m resolution and using dual-band VV+VH. Similarly, we download the
Sentinel-2 data from the COPERNICUS/S2_SR_HARMONIZED category, which provides
multispectral imaging with 13 spectral bands suitable for large-scale LULC mapping. We
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Fig. 6.3 Example of Quadruplets Data Set containing Sentinel1, Sentinel-2 and DEM data.

resample the Sentinel-2 data into 10 m resolution, and use the RGBN bands in this work.
Two types of LiDAR DEMs are provided in this research. In France, we utilize the RGE
ALTI dataset, which is a digital elevation model created using airborne lidar, with a pixel size
of 1 m. We resample this dataset to 10 meters, with a vertical accuracy that ranges from 0.2
m to 0.5 m and an average accuracy of 7 m in steep slope areas. In Australia, we use a digital
elevation model 5 m grid derived from 236 individual LiDAR surveys conducted between
2001 and 2015. We compile and resample the available 5 m resolution LiDAR-derived DEMs
using a neighbourhood-mean method to create 10 m resolution datasets for each survey area,
which we used in this work. The Dynamic World MAP (DNW) dataset comprises globally
consistent, 10 m resolution, near real-time land-use and land cover predictions derived from
Sentinel-2 imagery. It features ten bands that include estimated probabilities for each of the
nine LULC classes (water, trees, grass, crops, shrub and scrub, flooded vegetation, built-up
area, bare ground, and snow & ice). It also has a class "label" band indicating the class with
the highest estimated probability, which makes it suitable for multi-temporal analysis and
custom product creation. Lastly, we utilize the labeled class-reference from the UrbanAtlas
2018 database containing 27 LULC classes as the label of this dataset. The dataset provides
integer rasters with index labels. We create raster maps with 10 m resolution that geographi-
cally match the Sentinel-1/-2 images using the open-data vector images freely available on
the European Copernicus program website.

Downstream Tasks

We evaluate the proposed approach against state-of-the-art methods on two downstream
tasks: building instance / semantic segmentation, and LULC mapping. In particular, the
evaluation is performed on the supervised learning and the fine-tuning paradigms. For
these two downstream tasks, we replace the pre-trained decoders with randomly initialized
Mask2Former. In the following, we give an overview of the two tasks.
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Fig. 6.4 Example of Dynamic World Map and European Urban Atlas data.

Building Instance / Semantic Segmentation: We follow the Mask2Former but replace
the backbone with the proposed network. In the supervised experiments, we train the whole
network from scratch using a random modality combination strategy. In the fine-tuning
experiments, we consider two strategies, one is only to update the network on the pre-trained
ViT-T backbones using a generative way, and the other is to update the whole network on
the pre-trained ViT-T backbones using reconstruction and contrastive losses. We train our
model on DFC2023 track2 train split and report the validation accuracy on the validation
split. Along with the results of building instance segmentation, we also provide the binary
building semantic segmentation results.

Land-Use Land-Cover Mapping: We still use the Mask2Former with the proposed
backbone on the quadruplet dataset to generate LULC maps. However, we consider seven
classes merged from the semantic hierarchy defined by UrbanAtlas. For that, we extract 7
semantic classes by taking the argmax of the prediction head. The same training strategy
as that of the building instance segmentation is used in this task. We train our model on 10
(5340 samples) cities and report the validation accuracy on the other 2 (783 samples) cities.

Architectural Details

The proposed approach uses a ViT-T as the main structure and consists of 4 and 5 input
adapters with a patch size of 16×16 pixels for the pre-training in the two different tasks.
Differently from the standard MultiMAE, we add the learnable fusion tokens as input by
using an additional input adapter to add 2D sine-cosine position encoding. The fusion tokens
are as many as the number of all patched inputs.

After adding the position encodings, the fusion tokens with all modality inputs are given
as input to a one-layer Bi-LSTM attention block. In self-attention, we use the masked
algorithm to avoid the fusion information leak to a single modality. In order to get the global
features of each modality and the fusion output, we use an additional cross-attention layer to
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map the patch embeddings into the vector output. Then an auxiliary contrastive loss is added
between each modality output vector and the fusion output vector.

For reconstruction learning, we follow the same setting of the MultiMAE decoder but
without positional embeddings and cross-attention layer. The fusion tokens are projected
into the decoder dimension by using a linear projection layer and then added to a learned
modality embedding. After this, two Transformer blocks and a linear projector are used to
project and reshape it to form an image or a map.

For the two downstream tasks, we adopt the same settings from Mask2Former. For the
pixel decoder, we use 6 MSDeformAttn layers applied to feature maps with resolution 1/8,
1/16 and 1/32, and use a simple upsampling layer with lateral connection on the final 1/8
feature map to generate the feature map of resolution 1/4 as the per-pixel embedding. We use
the Transformer decoder with 9 layers and 100 queries for instance segmentation, 9 queries
for binary building semantic segmentation and 9 queries for LULC mapping. We use the
binary cross-entropy loss and the dice loss for the mask loss. The final loss is a combination
of mask loss and classification loss. For instance segmentation, we use the standard AP@50
(average precision with a fixed IoU of 0.5) metric. For semantic segmentation, we use the
mIoU (mean Intersection-over-Union) metric.

Training Details

For pre-training, we train our model for 1600 epochs on 5700 triplet data on the DFC2023
track2 data set and 6123 quadruplet data on the quadruplet data set, individually. We use the
AdamW optimizer with a base learning rate of 1e-4 and weight decay of 0.05. We warm up
training for 40 epochs, starting from using cosine decay. We set the batch to 40 using a single
Nvidia RTX 3090. All data are resized to 256×256. The number of non-masked tokens
given to the encoder is set to 256 on the two data sets. For the second dataset, where we use
the land-cover map as an additional modality input with 64-dimensional class embeddings.

For instance segmentation and semantic segmentation using Mask2Former, we use
AdamW optimizer and the step learning rate schedule. We use an initial learning rate of
0.0001 and a weight decay of 0.05. A learning rate multiplier of 0.1 is applied to the backbone
with the pre-training and not in the supervised learning. We decay the learning rate at 0.9 and
0.95 fractions of the total number of training steps by a factor of 10. We train our models for
50 epochs with a batch size of 10 in the semantic segmentation task and 300 epochs in the
instance segmentation task.



6.4 Experiments 127

6.4.2 Experimental Results

Multimodal Comparison

We evaluate the proposed approach with the two paradigms, one is supervised from scratch,
and the other is fine-tuning with pre-trained weights. Considering no dedicated Transformer
for incomplete multimodal remote sensing data fusion, we compare the proposed approach
against a technique that uses origin self-attention and learned fusion tokens on the audio
and video fusion task [115], termed MultiViT, on modal-complete and modal-incomplete
inputs for building instance/semantic segmentation and LULC mapping tasks. The results
reported in Tables 6.1 and 6.2 reveal that the proposed approach outperforms MultiViT in
building instance/semantic segmentation tasks when evaluated with modal-complete inputs.
However, for the LULC mapping task, the performance of the proposed approach and
MultiViT are comparable. With regards to model-incomplete inputs, the proposed approach
performs impressively well on all modality incomplete inputs and single modality inputs for
both tasks due to the proposed attention block and random modality combination training
strategy. For building instance/semantic segmentation, there is a visible dominance of RGB
images over all other modalities, followed by DSM, while SAR images make the slightest
contribution to the task, even causing noise. In this situation, MultiViT completely overfits
on dominant modality inputs and fails on the task with single modality inputs when evaluated
with model-incomplete inputs. Similarly, for LULC mapping, Sentinel-2 images along with
the dynamic world map have a significant influence on the task, followed by Sentinel-1
and DEM images. The proposed approach achieves the best performance with a mIoU of

Table 6.1 Quantitative evaluations of proposed approach versus MultiViT with complete and
incomplete multimodality inputs on the DFC2023 track2 dataset. Results are reported on
AP@50 for instance segmentation and mIoU for semantic segmentation and consider the
supervised result (sup.) and the fine-tuning result with the generative pre-trained weights
(Fine. w/G) as well as the fine-tuning results with both the generative and contrastive pre-
trained weights (Fine. w/G&C).

Multimodal Input
Sup. MultiViT Sup. Propsed Fine. w/ G. Fine. w/ G. & C.
ins. sem. ins. sem. ins. sem. ins. sem.

SAR, RGB, DSM 0.147 0.820 0.333 0.851 0.298 0.852 0.300 0.849
SAR, RGB 0.002 0.523 0.296 0.809 0.257 0.797 0.260 0.798
SAR, DSM 0.064 0.700 0.233 0.779 0.217 0.776 0.202 0.780
RGB, DSM 0.105 0.736 0.332 0.847 0.298 0.848 0.300 0.844

SAR 0.001 0.392 0.040 0.552 0.036 0.532 0.037 0.566
RGB 0.003 0.457 0.291 0.799 0.252 0.788 0.254 0.784
DSM 0.036 0.683 0.211 0.753 0.200 0.754 0.187 0.754
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0.244 with modal-complete inputs, whereas MultiViT overfits on dynamic world maps, and
performs slightly better when a dynamic world map is present but fails when it is not present
in the inputs.

In the context of the fine-tuning paradigm, the proposed approach is assessed through
two distinct pre-training methods: one that employs generative pre-training and another
that combines generative and contrastive pre-training. The outcomes of the evaluation
for both tasks are presented in Table 6.1 and Table 6.2. As one can see, two tasks show
controversial results. Specifically, in the case of building instance/semantic segmentation
tasks, the training-from-scratch model outperforms all other models. However, the model
that leverages both generative and contrastive pre-training methods is closely ranked as the
second-best. In contrast, for the land-cover mapping task, the fully finetuned model is the
top-performing model among all the models listed in the tables, demonstrating the potential
of pre-training in augmenting downstream LULC tasks.

For the single modality input, our goal is not to show state-of-the-art performance in
this setting, as we are trying to solve the dramatic degradation of unimodal inference with
a multimodal backbone. Here we show the ability of the proposed approach to produce
meaningful unimodal outputs when fed with unimodal data. To do this, we only input one
modality and neglect other modality inputs. As we can see on both datasets (Table 6.1
and Table 6.2), the MultiViT suffers significant degradation from missing of modalities
and completely fails to work on the non-dominated modalities. In contrast, the proposed
approach using the random modality combination strategy achieves high performance also
when only one modality is available. This is due to the fact that in the proposed models, some
capacity is allocated to each modality specifically and the model is able to produce unimodal
outputs. Besides the quantitative analysis, we also provide a visual qualitative comparison.
Fig. 6.2 and Fig. 6.3 show the results of building instance / semantic segmentation and LULC
mapping, respectively. For building instance / semantic segmentation, similarly to Table 6.1,
the proposed approach with supervised paradigm achieved the best performance followed by
the results of fine-tuning. The MultiViT achieves the worst performance, especially with the
modal-incomplete inputs. Our experimental results reveal that the SAR modality produced
inferior results compared to other modalities. For the LULC mapping task, the fine-tuning
with contrastive and generative pre-trained weights outperformed other approaches, while
MultiViT exhibited reliable performance only with DNW input. For different modalities,
we conclude that the Sentinel-1/2 images and DNW maps contributed equally as effective
modalities, while the DEM input was determined to be a single-class predictor, indicating its
inability to extract useful information.
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Fig. 6.5 Results of proposed approaches in the supervised and the two fine-tuning paradigms
versus MultiViT on DFC2023 track2 dataset and consider the supervised result (sup.) and
the fine-tuning result with the generative pre-trained weights (Fine. w/G) as well as the fine-
tuning results with both the generative and contrastive pre-trained weights (Fine. w/G&C).
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Fig. 6.6 Results of proposed approaches in the supervised and the two fine-tuning paradigms
versus MultiViT on the quadruplets dataset and consider the supervised result (sup.) and
the fine-tuning result with the generative pre-trained weights (Fine. w/G) as well as the fine-
tuning results with both the generative and contrastive pre-trained weights (Fine. w/G&C).
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Table 6.2 Quantitative evaluations of proposed approach versus MultiViT with complete and
incomplete multimodality inputs on the quadruplets dataset. The results are reported in terms
of mIoU values and consider the supervised result (sup.) and the fine-tuning result with the
generative pre-trained weights (Fine. w/G) as well as the fine-tuning results with both the
generative and contrastive pre-trained weights (Fine. w/G&C).

Multimodal Input Sup. MultiViT Sup. Proposed Fine. w/ G. Fine. w/ G. & C.
S1, S2, DEM, DNW 0.222 0.244 0.243 0.246

S1, S2, DEM 0.070 0.229 0.235 0.238
S1, S2, DNW 0.219 0.244 0.243 0.246

S1, DEM, DNW 0.219 0.235 0.235 0.235
S2, DEM, DNW 0.223 0.237 0.230 0.240

S1, S2 0.069 0.232 0.235 0.240
S1, DEM 0.074 0.208 0.221 0.216
S1, DNW 0.219 0.239 0.236 0.235
S2, DEM 0.054 0.210 0.204 0.227
S2, DNW 0.217 0.239 0.232 0.239

DEM, DNW 0.209 0.234 0.227 0.238
S1 0.079 0.208 0.222 0.214
S2 0.062 0.215 0.210 0.228

DEM 0.015 0.010 0.013 0.051
DNW 0.207 0.234 0.226 0.237

Albation

We now analyze the proposed approach through a series of ablation studies on both fine-tuning
and supervised paradigms. To evaluate the generalizability of the proposed components, all
ablations were performed on both tasks: the building instance / semantic segmentation and
LULC mapping.

Random Modality Combination & Bi-LSTM Attention. We first validate the im-
portance of the modality random combination training strategy on downstream tasks in a
supervised paradigm. As shown in Tables 6.3 and 6.4, the model without the modality
random combination training strategy experiences severe degradation with modal-incomplete
inputs and even failed with a single modality on both tasks. In addition, we test the effect
of the Bi-LSTM attention by removing it from the proposed network. The corresponding
results show a significant drop in performance, indicating that the Bi-LSTM enables superior
interaction of the fusion token with each modality and facilitates learning more discriminative
features for downstream tasks.

Partial Fine-tuning and Non-masked Attention. In addition to the fine-tuning of the
whole model, partial fine-tuning is also used to evaluate the quality of the learned repre-
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Table 6.3 Quantitative evaluations of the proposed approach on the different settings of
Bi-LSTM and random modality combination training strategy with complete and incomplete
multimodality inputs on the DFC2023 track2 dataset. Results are reported in terms of AP@50
for instance segmentation and mIoU for semantic segmentation.

Multimodal Input
Sup. w/o LSTM Sup. w/o Random Sup. w/ all
ins. seg. ins. seg. ins. seg.

SAR, RGB, DSM 0.265 0.809 0.301 0.854 0.333 0.851
SAR, RGB 0.213 0.728 0.083 0.660 0.296 0.809
SAR, DSM 0.173 0.763 0.061 0.696 0.233 0.779
RGB, DSM 0.165 0.807 0.224 0.782 0.332 0.847

SAR 0.028 0.509 0.000 0.372 0.040 0.552
RGB 0.210 0.722 0.061 0.577 0.291 0.799
DSM 0.168 0.749 0.040 0.664 0.211 0.753

sentation in a self-supervised approach. Partial fine-tuning involves freezing the backbone
and updating only the task-specific decoder on the two tasks. It is important to note that
contrastive pre-training relies on masked attention to keep each modality independent, espe-
cially when working with different data formats such as text and images. The use of masked
attention in contrastive pre-training helps in avoiding information flow from one modality
to the other, thereby keeping modality-specific information through the network. This is
more beneficial for downstream tasks that involve only a single modality. However, when
using generative pre-training, masked self-attention is not mandatory. Here, we show the
fine-tuning results based on the combination of the pre-training (the use of reconstruction
loss and contrastive loss), the generative pre-training (the only use of reconstruction loss),
and the fine-tuning results without masked self-attention for both tasks (see Table 6.5 and
Table 6.6). In the first row, we remove the masked Self-Attention blocks while keeping the
random modality combination training strategy in fine-tuning, which results in a significant
improvement in performance. This is probably because masked self-attention hinders the
interaction between different modalities. Compared with the generative pre-training, the
use of masked attention in the combination pre-training helps to avoid the information flow
from one modality to the other. As one can see, the unimodal inference performs close to
the modal-incomplete inputs as the modality streams are more independently treated. In
contrast, the results without contrastive pre-training tend to overfit on dominant modalities
and are relatively poor on other modalities. Moreover, lower performances are observed on
one single modality.
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Table 6.4 Quantitative evaluations of the proposed approach on the different settings of
Bi-LSTM and random modality combination training strategy with complete and incomplete
multimodality inputs on the quadruplets dataset. The results are reported in terms of mIoU.

Multimodal Input Sup. w/o LSTM Sup. w/o Random Sup. w/ all
S1, S2, DEM, DNW 0.242 0.244 0.244

S1, S2, DEM 0.227 0.175 0.229
S1, S2, DNW 0.244 0.247 0.244

S1, DEM, DNW 0.237 0.198 0.235
S2, DEM, DNW 0.240 0.239 0.237

S1, S2 0.228 0.174 0.232
S1, DEM 0.201 0.058 0.208
S1, DNW 0.239 0.197 0.239
S2, DEM 0.211 0.139 0.210
S2, DNW 0.241 0.239 0.239

DEM, DNW 0.231 0.179 0.234
S1 0.203 0.051 0.208
S2 0.212 0.136 0.215

DEM 0.013 0.053 0.010
DNW 0.233 0.163 0.234

Table 6.5 Quantitative evaluations of the proposed approach in fine-tuning paradigm with
different settings with complete and incomplete multimodality inputs on DFC2023 track2
dataset. Results are reported in terms of AP@50 for instance segmentation and mIoU for
semantic segmentation.

Multimodal Input
Fine. w/o Mask Partial Fine. Full Fine.
ins. seg. ins. seg. ins. seg.

SAR, RGB, DSM 0.317 0.850 0.215 0.807 0.300 0.849
SAR, RGB 0.276 0.799 0.136 0.711 0.260 0.798
SAR, DSM 0.220 0.783 0.173 0.767 0.202 0.780
RGB, DSM 0.318 0.845 0.206 0.800 0.300 0.844

SAR 0.034 0.562 0.022 0.499 0.037 0.566
RGB 0.276 0.789 0.132 0.694 0.254 0.784
DSM 0.205 0.752 0.152 0.747 0.187 0.754

6.5 Conclusion

In this chapter, we have introduced an incomplete multimodal learning framework for
multimodal remote sensing data fusion which can be used in both supervised training and
self-supervised pre-training paradigms. Unlike previous multimodal remote sensing data
fusion approaches, the proposed approach enables the training and inference of models
with modal-incomplete inputs. By using the Bi-LSTM attention mechanism and masked
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Table 6.6 Quantitative evaluations of the proposed approach in fine-tuning paradigm with
different settings with complete and incomplete multimodality inputs on the quadruplets
dataset. The results are reported in terms of mIoU.

Multimodal Input Fine. w/o Mask Partial Fine. Full Fine.
S1, S2, DEM, DNW 0.250 0.233 0.246

S1, S2, DEM 0.243 0.223 0.238
S1, S2, DNW 0.248 0.222 0.246

S1, DEM, DNW 0.238 0.217 0.235
S2, DEM, DNW 0.242 0.221 0.240

S1, S2 0.238 0.223 0.240
S1, DEM 0.221 0.212 0.216
S1, DNW 0.240 0.224 0.235
S2, DEM 0.231 0.198 0.227
S2, DNW 0.242 0.221 0.239

DEM, DNW 0.245 0.216 0.238
S1 0.226 0.212 0.214
S2 0.239 0.203 0.228

DEM 0.023 0.011 0.051
DNW 0.241 0.214 0.237

self-attention, we are able to pre-train the network using contrastive and reconstruction losses
in the MultiMAE framework, and also to train the network from scratch or finetune the model
on downstream tasks using a random modality combination strategy. This strategy allows the
network to maintain high performance even when dealing with modal-incomplete inputs or a
single modality in the inference stage.

We evaluated our model on two multimodal remote sensing datasets, demonstrating
flexibility in network training and inference, and state-of-the-art performance when presented
with modal-incomplete inputs. It is worth noting that this study focused solely on different
modality raster data. In future work, we plan to incorporate diverse modalities data, such as
text and vector data, into the proposed framework.
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Conclusions

This chapter concludes the dissertation by presenting an overall discussion of the thesis, a
brief overview of the novel contributions, and the related critical analysis. Moreover, we
propose possible future developments of the works.

7.1 Summary and Discussion

In this thesis, we have presented novel contributions to the field of self-supervised remote
sensing image change detection and data fusion. The research highlights the importance
of employing self-supervised learning methodologies for unsupervised change detection in
high-resolution remote sensing images, particularly for Sentinel-1, Sentinel-2 and Landsat-8
images. The existing approaches in remote sensing image change detection predominantly
rely on supervised learning algorithms, which encounter two primary challenges: the lim-
itation of change semantics and the lack of generalizability. RSI semantic changes are
especially limited due to the presence of non-semantic changes in high-resolution remote
sensing images, such as variations in water quality and arid conditions. Consequently, the
thesis emphasizes the alignment of pixel features in multitemporal and multisensor images,
accounting for seasonal and sensor noises, which play a crucial role in unsupervised change
detection in high-resolution remote sensing images. Seasonal and sensor noises are not
only the natural augmentation of multitemporal and multisensor images but also restrict the
detection performance. Furthermore, one crucial aspect of seasonal noise that is often related
to the time scale and the change types we intend to detect. For example, if image pairs are
captured with one-year intervals, phenomena like the snow may not be considered as changes.
However, to detect subtle changes related to seasons, the interval between acquired images
should not exceed one season. It is noteworthy that most research studies neglect this crucial
fact in unsupervised change detection.
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Similar to the supervised change detection approach, self-supervised change detection
should also consider certain constraints. The conventional self-supervised change detection
algorithms, based on the CNN-based generative models, have been found to focus primarily
on pixel reconstruction rather than feature extraction. Meanwhile, this issue can be resolved
by using Transformer-based generative models but patch-based algorithms make getting
continuous feature representation difficult and require more distillation. Consequently, the
thesis focuses more on the contrastive paradigm, treating multi-temporal and multi-sensor
image pairs as distinct views.

In Chapter 3, the thesis explored image patch-based contrastive learning in multi-view
remote sensing image change detection first, including both single-sensor and cross-sensor
scenarios. Specifically, a pseudo-Siamese network utilizing ResNet-34 as the backbone
is trained to regress the output between two branches, which is trained using contrastive
loss on large archived multi-view image-patch pairs. Finally, changes are identified by a
change score that can accurately model the feature distance between bi-temporal images.
The experimental results on both single-sensor (e.g., Sentinel-1 SAR images, Sentinel-2
multispectral images and Landsat-8 multi-spectral images) and cross-sensor (e.g., Sentinel-
1/2 image pairs and Landsat-8/Sentinel-2 image pairs) datasets demonstrate the superiority
of the proposed approach over state-of-the-art unsupervised methods and narrow the gap
with supervised approaches on performance. Additionally, the results reveal a decline in
performance when using cross-sensor multispectral image pairs with different resolutions
compared to multispectral image pairs from the same sensor. This case provides preliminary
results of unsupervised change detection based on patch-level self-supervised learning.
However, the patch-based approach (PatchSSL) is computationally expensive and neglects
subtle changes. Consequently, the chapter further proposed a pixel-wise self-supervised
change detection based on contrastive learning. The proposed approach incorporates two
branches with input shift-augmented image pairs. Instead of applying contrastive loss on each
pixel feature, the contrastive loss is employed on the averaged feature over superpixels. In
addition, an uncertainty-based distillation process in the teacher-student paradigm is proposed
to reduce the impact of seasonal changes. The experimental results on multi-view remote
sensing image datasets demonstrate the superiority and efficiency of the proposed approach
over state-of-the-art methods. Compared with the PatchSSL approach, the proposed PixSSL
demonstrates better inference efficiency and yields improved change maps, particularly
in vegetation and water areas. The results also indicate that the use of uncertainty-based
approaches further suppresses seasonal changes compared to the sole use of contrastive
learning.
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Chapter 4 extends the unsupervised change detection from bi-temporal image pairs to
satellite image time series using self-supervised learning. Unlike unsupervised bi-temporal
change detection, satellite image time series analysis focuses on capturing the spatial-
temporal information in image sequences. The unsupervised bi-temporal change detection,
based on the pseudo-Siamese network, only learns the relationship between bi-temporal
image pairs. To address this, this chapter adopted the self-training algorithm based on the
ConvLSTM network and pseudo labels. Initially, pseudo labels are derived from pre-trained
models, and feature tracking is employed to propagate the pseudo labels among the image
time series. This strategy enhances the consistency of pseudo labels and enables the genera-
tion of change maps for long-term satellite image time series. To overcome the overfitting
problem during self-training, supervised contrastive loss and contrastive random walk loss
are utilized. The experimental results on the Landsat-8 and Sentinel-2 image time series
demonstrate that the proposed approach suppresses most seasonal changes and achieves
significant noise reduction compared to state-of-the-art models in both fitting and inference
scenarios. Notably, the state-of-the-art model trains individual networks for each scene and
tailors them to specific images during network training. The ablation studies on the proposed
approach indicate that the feature tracking strategy mitigates seasonal changes in long change
map time series, and the combined use of contrastive loss and contrastive random walk
loss further improves the performance of the self-training paradigm compared to the use of
cross-entropy loss alone.

The proposed self-supervised change detection approaches also have some limitations
that should be properly understood for the correct use of them. To ensure reliable change
detection, the time intervals used in the training data are critical. In this task, we utilized
time-series images for the network training with interval spans that ranged from half a month
to two years. However, the proposed approach does not account for specific sporadic weather
phenomena, such as snow. In addition, seasonal changes in croplands pose another challenge
for the method. Except for permanent croplands, the seasonal changes in croplands are
often rapid and significant. For instance, after harvesting, most croplands exhibit shifts from
grassy areas to bare land. To obtain built-up changes exclusively, one possible choice is to
include more cropland data and push the network to fit on such data. However, we advocate
for considering all changes and then identifying them using the spectral information of
remote sensing data. Furthermore, the proposed image-time series change detection approach
contains limitations in its use of contrastive random walk loss to resist noise in pseudo labels
and preserve the consistency of changes in the image time series. The time window utilized
in the contrastive random walk loss is crucial for generating stable change maps. When
choosing the complete time series as a time window, the change maps will likely be constant
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throughout the whole time series. Therefore, we recommend and provide evidence to include
in the window the adjacent four images instead.

Most previous multimodal data fusion approaches are task-specific models, which need
to train an individual model for each task. However, self-supervised learning models can
generalize to downstream tasks with the fine-tuning of small labeled datasets. Here, we have
presented another interesting application of self-supervised learning in RS multimodal data
fusion. In multi-view contrastive learning, multimodal remote sensing images are treated
as multiple augmented views. However, the network only captures the shared information
among different views. Another approach involves stacking multimodal images together
and learning the invariant representation between the stacked images and their augmenta-
tion. In multimodal autoencoders, the network learns to reconstruct each modality using
the unmasked parts from the remaining modalities, thereby capturing the complementary
information shared among multimodal remote sensing data.

In Chapter 5, the thesis proposed the fusion of SAR and optical images at the pixel
level using contrastive learning. The proposed method encompasses three fusion strategies:
early fusion (PixEF), intermediate fusion (pixIF) and late fusion (PixLF). It uses ResUnet
as the backbone in a pseudo-Siamese network and the shift transformation to augment the
inputs in two branches. These three fusion strategies, along with the state-of-the-art methods,
are evaluated on linear protocol and fine-tuning settings. The experimental results on the
DFC2020 dataset demonstrate that the proposed intermediate fusion (PixIF) outperforms
state-of-the-art unsupervised data fusion approaches and the other two fusion strategies
(PixEF and PixLF). PixIF achieves comparable performance with the weakly supervised
method that utilizes image-level labels. In terms of land-cover maps, SAR-optical fusion
outperforms the use of any single modality data. Among single modality data, the use of
Sentinel-2 images yields similar results to SAR-optical fusion and outperforms the sole use
of Sentinel-1 images. Furthermore, ablation studies on data augmentation reveal that shift
augmentation alone achieves the best performance, while other geometric and photometric
augmentations lead to a drop in performance. Building upon the proposed SAR-optical early-
fusion framework, a new unsupervised land-cover segmentation approach using contrastive
learning and vector quantization is proposed in this chapter. It employs a pseudo-Siamese
architecture with one branch as a ResUnet and the other branch as the Gumbel-softmax
vector quantizer. The experimental results on a subset of the DFC2020 dataset demonstrate
that the proposed approach can learn semantically meaningful representations and effectively
discriminate between different land-cover categories using SAR-optical data pairs.

Chapter 6 delves into the unsupervised multimodal remote sensing data fusion using
both contrastive and generative models, as well as incomplete multimodal learning for
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downstream tasks. A unified model is proposed in both supervised and self-supervised
paradigms for incomplete multimodal learning in multimodal remote sensing data fusion.
The proposed approach uses additional learned fusion tokens in the multimodal Transformer
for multimodal information collection. A Bi-LSTM attention block is employed before the
self-attention block to distil different modality information to the fusion tokens. During pre-
training, the multimodal Transformer utilizes masked self-attention for contrastive learning
and incorporates multimodal decoders for MultiMAE training. Experimental results on the
building instance /semantic segmentation task (SAR, RGB and DSM modalities) and the
LULC mapping task (Sentinel-1, Sentinel-2, DEM and Dynamic World maps) reveal that the
proposed approach performs impressively well on all modality incomplete inputs and single
modality inputs. On the contrary, the vanilla MultiViT model exhibits overfitting on dominant
modality inputs and fails completely on tasks with single modality inputs. In the context of
fine-tuning, the LULC mapping task indicates that the fine-tuning model achieves the best
performance, where the pre-training approach combining contrastive learning and MultiMAE
outperforms the use of MultiMAE alone. Ablation studies indicate that the random modality
combination strategy is crucial for maintaining performance with modality-incomplete inputs,
while the Bi-LSTM attention block enables superior interaction of the fusion token with each
modality input. Additionally, the chapter includes LULC maps generated as a remote sensing
product and as an additional data source in RS multimodal data fusion.

Among remote sensing data fusion methodologies, the proposed method based on con-
trastive learning has some inherent limitations. It can only obtain an invariant representation
when dealing with varying noise and augmentations. While it works with two modalities that
provide complementary information, such as SAR and optical images, it can only capture
common information between the modalities rather than the complementary information
they provide. On the other hand, contrastive learning can be an effective way of connecting
two modalities, such as image and text. In the case of incomplete multimodal learning,
this approach is used to enable fusion tokens that contain information from all modalities.
However, this requires us to restrict each modality from accessing information from other
modalities, which could potentially limit the model’s ability to learn a robust representation
of individual modalities.

7.2 Future Developments

This section presents some of the possible future developments of the works in this thesis. The
current self-supervised change detection method primarily focuses on learning representative
pixel features, which may not be sufficient for very high-resolution (VHR) remote sensing
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images. Change detection from VHR remote sensing images is challenging due to the
limited spectral information, the spectral variability, and the geometric distortions [158].
Geometric distortions, in particular, make it difficult to align pixels accurately. To address
these challenges, an enhanced version of self-supervised learning can be developed by
incorporating the DINO framework [23, 121]. DINO has the ability to learn the instance
object in a self-supervised way, which can be utilized to align objects in bi-temporal VHR
remote sensing image pairs and detect object-level changes. Another potential extension of
this object-aware change detection approach is the development of change-type classification.
The current self-supervised change detection only focuses on binary change detection, which
may not be adequate for some downstream applications. Leveraging the feature distillation
capabilities of pre-trained DINO models offers an opportunity for unsupervised object
classification [66, 93]. A possible solution is to align the objects in bi-temporal VHR image
pairs and thus detect the changed objects. Then an unsupervised classification approach,
such as the simple K-means, can be used to further classify the different change objects.
The spectral and physical information contained within the images can be utilized to assign
different classes to various land-cover and land-use objects.

Multimodal RS data fusion involves a broad range of possible modalities, including
the raster images, LULC maps, vector data and text data. In the current research, we
only considered the raster data fusion. It is crucial to include diverse modalities for more
advanced applications, such as text and vector data, in addition to remote sensing products.
Text data are widely used as a prompt in remote sensing applications, such as question
answering [99], text-image retrieval [33], image captioning[32], and referring segmentation
[101, 167]. Incorporating vector data into remote sensing image processing can contribute to
sound decision-making on downstream tasks, such as change detection [142]. A promising
future extension of the current research is to develop a unified model that encompasses
all these different modalities in both pre-training and downstream tasks. Unlike computer
vision, remote sensing data exhibit diverse properties, including SAR, multispectral images,
hyperspectral images, and LiDAR, in addition to RGB images. The proposed raster-based
multimodal remote sensing data fusion approach can serve as an intermediary to connect
data from different modalities.
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