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Abstract—Radar sounders (RS) are utilized for the analysis of
subsurface of Earth and other planets. Data acquired from RS
can be processed to obtain radargrams, which are 2-D arrays
containing the backscattered echo power received by the radar
after sending pulses toward the surface. The study of radargrams
offers crucial insights for the geological interpretation of the
history of planets and for the monitoring of ice layers in glacial
regions. Deep learning has emerged as a powerful tool for
the automatic feature extraction and analysis of radargrams,
yet they are still treated as conventional images. We propose
a novel methodology for the semantic segmentation of radar
sounder data based on a two step approach. The rationale of this
methodology is exploiting the spatial horizontal correlation that
exists among radargram features, which is an important property
that distinguishes these data from standard images. In the first
step, an encoder is trained in an unsupervised way, exploiting
random walks to learn meaningful representations of sequential
features within radargrams. In the second step, few reference
labelled samples allows the model to propagate the labels to the
full radargram. We also introduce a metric to quantify the degree
of horizontal correlation among features and we use it to find the
grounding zone in coastal radargrams of polar areas. We test our
methodology on two datasets obtained by the MCoRDS radar
sounder and a dataset from the orbital radar sounder SHARAD
and we discuss the very promising results.

Index Terms—Radar sounder, random walks, unsupervised
learning, label propagation, MCoRDS, SHARAD.

NOMENCLATURE

nT Number of traces
nS Number of samples per trace
(w, h) Dimension of patches
(ow, oh) Pixel overlapping between adjacent patches
θ Parameters of the encoder
Mθ Parametrized encoder
R Radargram
Rt Radargram t-th column of dimension T ×N
Rt,n Radargram patch of dimension H ×W
T Number of columns
N Number of patches per column
nC Number of classes
S Segmentation map
St Segmentation map of column t
P Set of all patches of dimension H ×W
nF Length of the encoder output vector
Zt Feature matrix of column t
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V Set of vertices of the graph
E Edge matrix of the graph
P t+1
t Transition matrix between column t and t+ 1

Xt State of the random walk at time t
p0 Initial prob. dist. of the random walk
pt Prob. dist. of the random walk at the t-th step
m(i) Mean of patch i of R0

w(i) Cross-entropy weight of walker i
In Identity matrix of dimension n
At Similarity matrix between column t and t+ 1
Aknn,t Similarity matrix after row-wise kNN masking
Abank,t Similarity matrix after context bank concatenation
Amask,t Similarity matrix after radius masking
c̄ Target class for backward label propagation
k Number of nearest neighbors in label propagation
c Number of samples in the context bank
r Radius for masked attention
τ Softmax temperature
D1 MCoRDS1 dataset
D2 MCoRDS3 dataset
D3 SHARAD dataset

I. INTRODUCTION

RADAR sounders (RS) have emerged as indispensable tools
for studying the subsurface of Earth and other planets.

The key mechanism of RS consists in sending electromagnetic
pulses toward the surface of planets and processing the received
echoes. Pulses have relatively low frequency (3-200 MHz)
and this allows them to penetrate up to kilometers in the
subsurface, offering crucial insights on hidden structures that
are completely inaccessible to other remote sensing instruments.
Received echoes contains information about the materials and
dielectric discontinuities crossed by the pulses and allow experts
to identify surface and subsurface features of interest such as
buried craters, lava flows, ice layers and crevasses. The analysis
of radar sounder data led to groundbreaking discoveries, such
as the presence of liquid water on Mars [1], and is consistently
helping in understanding the geological history of planetary
bodies and the evolution of glacial areas on polar caps.

On Earth, airborne RS like the Multichannel Coherent Radar
Depth Sounder (MCoRDS) [2], [3] have been instrumental in
mapping the thickness and internal layering of ice sheets in
remote and inaccessible regions such as Antarctica and Green-
land. These airborne systems offer high-resolution subsurface
data, providing researchers with a comprehensive understanding

https://orcid.org/0009-0004-3671-2402
https://orcid.org/0000-0002-6036-459X


IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 0, 2024 2

of ice sheet dynamics and contributing to more accurate
predictions of sea-level rise.

Planetary RS, such as the Mars Advanced Radar for
Subsurface and Ionosphere Sounding (MARSIS) [4] onboard
the European Space Agency (ESA) Mars Express mission, have
provided valuable insights into the geological structure of Mars
and its polar ice caps. Similarly, the Shallow Radar (SHARAD)
instrument [5] aboard NASA’s Mars Reconnaissance Orbiter
(MRO) has mapped the Martian subsurface with a shallower
pulse penetration and an higher range resolution than MARSIS.
Another example of orbital RS is the Radar for Icy Moons
Exploration (RIME) [6] on board of the Jupiter Icy Moon
Explorer (JUICE), the ESA spacecraft that is planned to enter
the orbit of Jupiter in 2031 and study its icy moons. With
all these instruments operating and more to come, such as
in the ESA EnVision mission to Venus, with the Subsurface
Radar Sounder (SRS) on board [7], there is a growing need of
automatic analysis tools for their data.

Consecutive echoes collected by RS can be aggregated
to obtain products called radargrams, which arrange the
backscattered echo power received by the radar instrument in
a 2-dimensional matrix (3D in the case of a multi-polarization
RS). The analysis of radargrams is essential for achieving the
aforementioned scientific objectives and techniques such as
layer tracking and semantic segmentation are instrumental for
extracting meaningful information from these data products.

Radargram data analysis has undergone significant evolution
over the years, driven by advancements in computational tech-
niques and the increasing availability of radar datasets. In the
early stages, researchers primarily relied on statistical methods
to extract meaningful information from radar echoes [8], [9],
[10], [11], [12]. The advent of deep learning revolutionized
RS data analysis by offering powerful models for automatic
feature learning [13], [14], lately leveraging on pre-trained
architectures [15] and transfer learning [16].

Despite the latest effort in creating models that could provide
reliable segmentation maps and tracked layers, practitioners
still tend to carry out the analysis of radargrams in a manual
way. This is mainly due to the fact that deep learning models
are usually tied to the data they have been trained on and, in
particular, to the ground truth labels used. In the case of radar
sounders, datasets vary significantly due to distinct acquisition
parameters and operating scenarios across instruments. Sta-
tistical methods, on the other hand, are more versatile but
require the manual setting of multiple hyperparameters to
adapt to diverse input data. Furthermore, latest deep learning
models carry out their analysis by considering radargrams as
conventional images. This is reflected in the preprocessing steps
(e.g. data augmentation and shuffling) radargrams are subject to
and the architectures which are utilized, with the latter usually
being part of the latest trends in the computer vision community.
With this work, we frame the aforementioned limitations as
opportunities. On the one hand, we aim at bridging the existing
gap between full manual analysis and end-to-end deep learning
methodologies, leveraging on as few human effort as possible.
On the other hand, we investigate further and exploit better
the characteristics of radargrams as data structures. We aim
at going beyond the current trend of ”radargrams as images”

by exploiting the natural structure of radargrams as sequences
of range-lines indexed in ascending order by their azimuth
coordinates (also known as slow time [17]). Viewing radargrams
as sequences opens up new classes of models to be applied (e.g.
recurrent neural networks [18], vision transformers [19]) and
exploits the correlation that naturally exists within neighboring
range-lines.

With these rationales in mind, we propose a novel method-
ology for the semantic segmentation of radar sounder data.
We leverage on an initial self-supervised learning step casting
the training of a feature encoder as multiple random walks
on a graph properly built on target radargrams. We exploit
concepts from the video segmentation field together with
domain-specific insights to obtain an efficient training step
that encodes horizontal patterns within radargrams and reflects
the sequential nature of the data. In a second step, we propagate
the labels of few ground truth samples to the whole dataset
using a label propagation algorithm that takes into account
similarity in the neighborhood between radargram patches,
suitably derived from the representations learned in the first
step. Decoupling training and inference we give experts the
possibility to provide labels that flexibly match their needs.
Moreover, by training our encoder in a fully unsupervised
manner, we distinguish our methodology from existing radar
sounder data processing architectures and, with a very limited
user interaction, we obtain results that are competitive with
the ones achieved by supervised methods and networks with
a considerably higher number of parameters. Along with this
two-step methodology, we propose a metric to quantify the
horizontal correlation of features within radargrams, providing
the experts with a tool to visualize and automatically discern
break points within horizontal features. We validate the metric
by employing it to separate between in-land and floating ice
within coastal MCoRDS radargrams and by distinguishing
between the Martian polar ice cap and the rocky surroundings,
successfully enhancing the label propagation step. The main
contributions of this paper can be summarized as follows:

• Definition of a random walk-based unsupervised train-
ing strategy for the learning of latent representation
in radargrams which focuses on their distinct physical
characteristics.

• Proposal of a label propagation strategy with multiple
enhancements to efficiently label entire radargrams starting
from few reference labelled samples, which can also be
provided in real time.

• Introduction of a metric for the quantification of the
horizontal correlation in radargrams and its application to
the automatic classification in benchmark radargrams.

The remainder of this paper is structured as follows. Section
II provides a comprehensive review of works related to the
proposed methodology, focusing on video-object segmentation
and unsupervised learning of image features. Section III
presents the problem of radargram semantic segmentation
and the challenges associated with interpreting radargrams.
Section IV illustrates the proposed methodology in detail,
comprising the unsupervised training step, the label propagation
step and the introduction of a metric to quantify the degree
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of horizontality within radargrams. Section V presents and
discusses the results on two datasets from MCoRDS, on
a dataset from SHARAD and further ablation studies on
the hyperparameters of the methodology. Finally Section VI
provides concluding remarks.

II. RELATED WORKS

A. Radargram segmentation

The automatic segmentation of radargrams remains relatively
unexplored, with only a few recent works addressing this
challenging problem, especially in the context of orbital radar
sounder (RS) data. The early work in [9] focused on a
statistical characterization of noise, followed by thresholding
to characterise surface and bedrock returns in icy areas. An
important step in the direction of full radargram semantic
segmentation has been made by [11], which proposes a
Support Vector Machine (SVM) classifier to classify pixels of a
radargram in 4 classes: free space (air), ice layers, bedrock and
noise. Semantic segmentation provides a richer information
than layer tracking only: the distribution of power values within
classes can be easily obtained using the segmentation mask
and this may help to construct ad-hoc filters to attenuate the
noise and magnify the important subsurface features. Moreover,
this opened up the possibility to apply SVM to detect and
quantify the extent of subsurface features of interest. In [12],
the authors exploit a similar SVM-based method to detect
polar subglacial lakes. In both cases a preliminary extraction
of features from the radargrams is performed. Examples of
handcrafted features are the depth in range of pixels, the
parameters of a fitted distribution of neighboring pixels, the
entropy of neighboring pixels, the similarity with pre-computed
reference class distributions. The main disadvantage of SVM
classifiers is the need to manually identify the features to be
extracted. To address this limitation, with the advent of more
powerful computers, many researchers have turned to deep
learning (DL) to automatically learn features and apply them
to tasks such as subsurface feature detection and radargram
semantic segmentation.

A first and comprehensive example of DL applied to radar-
gram semantic segmentation can be found in [15]. The authors
develop a novel architecture tailored to data from MCoRDS3
in which features are automatically extracted at different
depths in the network. In particular, the proposed architecture
consists in a U-net [20] with dilated convolutions and a latent
attention mechanism which is trained in a supervised way on
radargram-segmentation pairs. This new architecture provides
more accurate results than the SVM presented in [11] as well
as the vanilla U-net. Also, authors point out the necessity of
data augmentation to achieve competitive results.

With a similar fashion, [21] and [14] present a modified
U-net with Vision Transformer (ViT) attention layers [19]
applied to hidden features. These papers open up the idea of
fusing convolutional neural networks (CNN) and Transformer-
based architectures in order to harness the benefits of both.
While CNNs are pointed out to excel at encoding local spatial
information, Transformers achieve good results in encoding
global information between different parts of the input [22].

Latest trends in the analysis of radargrams focus on over-
coming the scarcity of labels. For instance, [13] presents an
unsupervised method for the segmentation of radargrams. The
method is based on a contrastive learning step in which features
are learnt by bringing together the representations of similar
patches of radargram and pushing apart different ones. In a
later step, features are analysed and assigned to a class using
the cosine similarity between them and a list of manually
picked vectors representing the classes of interest. Although
based on an initial unsupervised step, the final choice of
class reference vectors makes the model semi-supervised. In
order to overcome the label scarcity, [16] presents a weakly
supervised transfer learning approach: a CNN autoencoder is
pre-trained in an unsupervised way with the task of radargram
reconstruction and then fine-tuned on a small labelled dataset.
Results are promising and show how, with a relatively small
labelled dataset (×0.25 − ×0.75 with respect to the number
of unlabelled samples), a weakly pre-trained model can match
the performance of fully supervised methods.

B. Self-supervised learning

Self-supervised representation learning is a subfield of DL
that has gained significant attention in recent years. It revolves
around the idea that models can learn useful and meaningful
representations from unlabeled data by solving pretext tasks.
These tasks are constructed using the inherent structure of the
data, and the learned representations can then be transferred to
downstream tasks, such as image classification, object detection,
or semantic segmentation.

A common pretext task in computer vision is the reconstruc-
tion of the input. This task has been brought to fame by the
so-called autoencoders. These architectures consist in a deep
encoder which encodes the input in a latent representation and
a decoder which decodes the latent representation to the exact
same dimensions of the input. At the end of the training step,
the encoder is employed for downstream tasks and the decoder
is usually discarded. The reconstruction task consists in asking
the autoencoder to reconstruct the input. Since a trivial solution
would be learning the identity function, an amount of noise is
added to the input. An autoencoder which reconstructs the input
from a noisy version of itself is called denoising autoencoder
(DAE) [23].

Different sorts of noise can be added to the input and
many autoencoder-based architectures can be reduced to special
cases of DAEs. An important example of DAE is the masked
autoencoder (MAE) [24], which masks different patches of the
input and is asked to reconstruct them. This solution allows for
faster pretraining since the encoder is applied to non-masked
patches only. Another example of DAE is the architecture
presented in [25], where the model is asked to solve a jigsaw
puzzle of the image as a pretext task, i.e. predict the correct
position of the shuffled patches.

A different class of pretext tasks involves time series of
images. Given a time series of inputs, which can be images or
tokenized representations, a model is asked to predict the next
sample (or samples) in the time series or reconstruct an input
sequence from a shuffled version of itself. Solving this task,
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the model learns features which represent the dependencies
that exist between samples at different time frames. Major
examples of this pretext task can be found in the field of video-
object-segmentation (VOS) and image time series forecasting.
In [26] a Long Short-Term Memory (LSTM) [27] autoencoder
is trained with the task of reconstructing the inverse of a given
sequence of video frames. According to the authors, in order
to tackle this task the model must retain information about
motion as well as position of objects. To prevent the model
from learning a naive ”reverse” function, videos with arbitrary
length are used as input. A similar task is used in [28], where
an LSTM autoencoder is trained to reconstruct a randomly
shuffled version of the input image time series.

Another main branch of self-supervised learning is con-
trastive learning. This paradigm trains models to learn repre-
sentations of data by contrasting positive and negative pairs
of samples. Positive pairs are samples that are similar to each
other, while negative pairs are samples that are dissimilar to
each other. In an unsupervised setting, it is not clear to the
model which samples are reciprocally positives (or negatives)
so a solution to this problem has been provided by [29] which
sets the positives to be augmented versions of the input image
and asks the model to discriminate these from negative samples
within a memory bank.

III. PROBLEM FORMULATION

We define a radargram R as a 2-dimensional matrix and
we denote the number of columns (or traces) as nT and the
number of rows (or samples) as nS . Hence we can define the
set of all radargrams of dimension (nT , nS) as:

R = {R(x, y)|x ∈ [1, ..., nT ], y ∈ [1, ..., nS ]} (1)

where R(x, y) represents the power of the backscattered echo in
dB scale at coordinates (x, y) in trace and sample dimensions.
We can see examples of radargrams acquired by different
instruments in Figure 1.

Our methodology tackles the problem of the semantic
segmentation of radargrams. Semantic segmentation is a task
that assigns a specific class label to each pixel of the radargram.
Semantic classes of interest in radargrams differ from case
to case. There have been early examples in the literature of
analysis with three classes [8] while latest models identify up
to five classes [15]. The methodology presented in this paper
can be used with an arbitrary number of classes nC ∈ N+.
We define the segmentation map S ∈ [1, ..., nC ]

nT×nS of
radargram R as a 2-dimensional matrix with dimension
(nT , nS) where each entry (x, y) represents the correct class
of the radargram pixel R(x, y).

Specific classes and boundaries exist among all radargram
products due to the particular nature of the acquisition process.
In particular, the highest portion of the radargram is occupied
by air (or vacuum, in the very highest portion of satellite-
mounted radar sounders) and is often referred to as free zone.
In this area, radar pulses travel at the speed of light and in the
orbital case we may find a dielectric discontinuity caused by the
interaction of the waves with the ionosphere. This interaction,
which results in a phase distortion of the returned signal, is

addressed during ground processing [30]. The first dielectric
discontinuity encountered by pulses is the surface, which is
the boundary separating the free space from the underlying
subsurface layers. The surface often represents the brightest
return within a radargram since an high portion of the incident
pulse is backscattered due to the high dielectric difference
between the interfacing layers (i.e. free space and subsurface).
However, this is not always the case. Notable findings (see
e.g. [1]) have shown that a subsurface water interface can
reflect more power than the surface. Below the surface line,
the subsurface strongly depends on the acquisition scenario.
In a rocky scenario, such as a near-equator portion of Mars,
as investigated for example by SHARAD, the subsurface can
consist in layers of different geologic materials and may present
features such as buried craters and lava tubes. On the other
hand, in an icy scenario, such as Antarctica (used as test case
in Section V) or the Mars polar layered deposits, the subsurface
may consist in layered ice atop the bedrock line. This line can
also be seen in radargrams as a bright reflector due to the high
dielectric discontinuity between ice and rock (See Figure 1).

Aside from classes, the structure of radargrams differs from
the one of conventional images in some key characteristics. In
what follows we list the ones we believe to be more important.

a) One-channel images: Radargrams are usually 1-
channel images derived by a complex signal having an
amplitude and a phase, while the majority of computer vision
images are RGB (3 channels). Models which are pretrained
on standard RGB datasets may need some adjustments before
fine-tuning on a radargram dataset. The 1-channel nature also
implies that there is no spectral information and the model has
to rely on intensities of pixels, textures and shapes. In [16], this
channel mismatch is overcome adding a convolutional layer at
the beginning of a CNN pretrained on Imagenet that reduces
the channels from 3 to 1 and discarding the last layers as they
contain features that are more specific to Imagenet.

b) Horizontal correlation: There exists an high degree of
similarity between adjacent pixels in the horizontal (azimuth)
direction [15]. This is due to the geological structure of the
subsurface which is exploited by layer tracking algorithms
[8], [31]. This similarity is usually high for many consecutive
rangelines, especially at ranges that lies above or just below the
surface. In the subsurface the correlation between horizontally
adjacent pixels is lower and this is mainly motivated by the
volumetric scattering within solid materials and the existence
of artifacts and non-linear subsurface features. However, we did
not found any evidence of exploiting this horizontal correlation
in recent deep learning papers regarding segmentation [14],
[15], [16]. In [15], [16] the width in azimuth of the training
patches is set to 64 pixels, denying the encoding of any strong
horizontal dependencies.

c) Relational features: Radargrams are supposed to
respect a global macro-structure containing the segmentation
classes in a vertical order dictated by the physics of the
scenario in question (e.g. in icy zones, starting from the
top: free space, ice layers and bedrock). When employing
deep learning architectures, we usually assume they can learn
these relational features automatically during training. Some
architectures (e.g. Transformer) are said to be more prone
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Figure 1. Examples of radargrams. a) Radargram acquired by the MCoRDS1 radar sounder in Antarctica. We mark in white some examples of its main
features, namely the surface line, the ice layers below the surface, the bedrock line and the noise area under the bedrock. b) Radargram acquired by SHARAD
over the north polar cap of Mars. In white we can see how noise extends both in the upper and lower part of the radargram. Different surface interfaces,
namely rock and ice, are present and the basal return is clearly visible below the ice layers. We highlight with horizontal lines how features develop following
horizontal patterns.

than others to learn global shapes and information [22] and
there exists way in computer vision to learn these relationships
explicitly [25]. Relational features have not been enforced
explicitly by latest deep learning models but were addressed
in the past by statistical methods [8], [11] via the employment
of positional features representing the height of pixels/patches
during the processing. We argue that positional encoding could
be beneficial for radargram segmentation models due to the
presence of shared and physically driven relational features in
every radargram instance.

d) Redundancy of information: Semantic information is
usually redundant in large areas of radargrams. This is due to
physical and instrumental constraints [32]. Firstly, the operating
conditions and parameters of the radar sounder pose limits to
the penetration of the echo within the subsurface: when the
radar receiver is operating it may not receive any echo at all,
especially in the latest portion of the receiving window. This
converts in an only-noise region at the bottom of the radargram,
which can be carefully removed from subsequent analysis. We
acknowledge [33] for applying a preprocessing window to
radargrams in order to select only regions where reflectors
may appear. This windowing speeds up the methodology by
masking out the free space region which is far higher than the
surface return and noise which is far lower than the bedrock
return. Moreover, the frequent elongated shape of surface and
subsurface structures in the azimuth direction [16] [15] leads
a consistent number of radargram layer tracking algorithms
to rely on interpolation [8], [31], [34]. Interpolation assumes
global shapes can be inferred by selected representatives. This
may recall the latest trend of masking [24], which has yet to
land in the radar sounders community.

e) Noise component: A radargram is affected by different
sources of noise. A first source is the noise caused by the radar
system and other electronic devices mounted near the radar
[35]. Other noise factors can be clutter caused by cross-track
reflections and interference from natural phenomena such as
planetary radio emission [36], lightnings and plasma waves
[37]. Radargram noise has been modelled, for instance, in [11]
and we argue that a deep learning model could automatically
learn filters to attenuate the noise and highlight important
features.

IV. METHODOLOGY

The proposed methodology consists in two stages. In the
first stage, an encoder is trained in an unsupervised way using
random walks in order to learn meaningful features across
radargrams. This stage aims at encoding both global and local
characteristics of radargrams, with a particular focus on the
horizontal correlation which is present within radargrams. In
the second stage, user-provided reference labels are propagated
to all radargram patches using a label propagation algorithm
together with the features learned in the first step.

A. Random walk unsupervised training

The first stage of the methodology consists in training an
encoder Mθ parametrized by parameters θ. The aim of the
encoder is to compress a radargram patch of dimension (w, h)
into a 1-D vector representation. Hence we define the encoder
as

Mθ : P → RnF (2)

Where P ⊂ Rw×h is the set of all radargram patches of
dimension (w, h) and nF ∈ N+ is the length of the feature
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Figure 2. Depiction of a graph build on a dataset from MCoRDS1. Firstly, the
dataset is divided in T columns with N patches. Then it is built using patches
as nodes and neighborhood to define edges, as explained in Section IV. We
highlight the structure of the graph in red with dots representing nodes and
lines representing edges. There exist no edges in between the same column
and every node of a column is connected to all the nodes of the previous and
following column. Patches are non-overlapping for better visualization.

vector obtained as output of the encoder. The aim of the
first stage is to train the encoder such that the learned 1-D
representations are meaningful and carry information regarding
each patch and its role within the radargram.

1) Graph on radargrams: For training the encoder, we take
inspiration from [38] and we cast the unsupervised problem as
learning the transitions of random walkers on the patches of
each radargram. We divide each radargram into a grid of patches
and we view this grid as a graph. In the graph, Nodes consists
in patches and weighted edges connect patches from different
neighboring columns. Formally, given a radargram R ∈ R we
divide it into T ∈ N+ possibly overlapping columns {Rt}Tt=1

where Rt ∈ Rw×nS . We divide each column Rt into N ∈ N+

overlapping patches {Rt,n}Nn=1 of dimension Rt,n ∈ Rw×h.
We thus obtain a grid {Rt,n}t,n of T ×N patches where T
and V represent the number of patches in the horizontal and
vertical dimension, respectively. We build a graph (V,E) on
this grid in the following way. We define V ∈ P as the set of
vertices of the graph and we instantiate it as:

V = {x ∈ P | ∃t, n : x = Rt,n} (3)

Hence each patch Rt,n of the radargram grid is a node and
|V | = N · T . We define the adjacency matrix of edges E ∈
{0, 1}NT×NT where each element ei,j ∈ E represents the

presence or absence of an edge between vertices vi ∈ V and
vj ∈ V . Specifically, if ei,j = 1 there is an edge and if ei,j = 0
there is no edge between the two vertices. Entries of the edge
matrix are defined with the following rule:

E(Rt,n, Rt′,n′) =

{
1 if |t− t′| = 1

0 otherwise
(4)

In simple terms, each patch is connected to all the patches of
the previous and the following column. There are no edges
within the same column and there are no edges connecting
patches from columns with a distance of more than one column.
The matrix is clearly sparse, with only 2N non-zero values per
row representing the edges of a patch with the N patches of the
preceding column and the N patches of the subsequent column.
The structure of the graph is briefly illustrated in Figure 2.
This structure is in contrast with the usual graphs built in the
field of video segmentation. In particular, videos (in greyscale
for simplicity) can be cast as 3-D array where the operating
dimensions are height, width and frame index. A graph on a
video can be built in a similar way than above, partitioning each
frame into patches and allowing edges only between patches of
neighboring frames. The case of radargrams is peculiar since
we are operating on 2-D arrays. Radargrams as sequences of
range-lines in the azimuth direction are juxtaposed to videos
(i.e. sequences of frames) in this context. However, we argue
that range-lines taken as singular entities do not carry enough
information about global shapes and textures within radargrams.
With this rationale in mind, we use columns Ri with w strictly
greater than 1. On the one hand, we want columns (hence
patches) which are large enough to contain enough spatial
information to be compressed by our encoder. On the other
hand we want w to be low enough to not lose the natural
sequential behaviour of radargrams dictated by range-lines in
the azimuth direction. An ablation study on the dimension of
patches is performed in Section V-E.

2) Random walks: With the aim of instantiating random
walks on the radargram graph (V,E), we weight each edge
with a probability value. As mentioned before, each row of
E contains N values corresponding to edges between a patch
and the patches of the subsequent column. We use these values
to build a transition matrix between the generic column Rt

and the subsequent Rt+1. There exists an edge between each
of the patches of Rt and Rt+1, hence we have N ×N edges
between the two columns. We assign weights to these edges in
order to obtain a transition matrix between the two neighboring
columns. In this way we are casting the random walk as a
time non-homogeneous Markov chain where we have N states
corresponding to the N patches of each column, and we have
a different transition matrix at each timestep, dictated by the
similarity between patches of neighboring columns. Formally,
we call P t+1

t the transition matrix between patches of columns
Rt and Rt+1. We aim at building transition matrices that reward
transitions between similar patches and penalise transitions
between different patches. Crucially, we compute this similarity
in the latent space, i.e. on representations instead of pixel
space. Firstly, we input each of the 2N patches Rt,n, Rt+1,n

with n = 1, ..., N in the encoder Mθ. We obtain N vector
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Zt Zt+1

a

St Rt Rt+1St+1

St+1 = AtSt

c

Figure 3. Overview of the methodology. a) Illustration of how representations are obtained from neighboring columns via the encoder and how similarity
matrices are generated using the representations. Notice how the same matrices are used both during training and label propagation. b) Random walk training
step. We append a flipped version of each radargram to itself and we obtain a graph with 2(T − 1) transition matrices in-between columns. Given an initial
probability p0, we derive the final probabilities of a walker by multiplying the transition matrices and compute the loss as the cross entropy between the initial
distribution and the arrival one. The lower part of the image shows how representations of each column are obtained and how they are converted to transition
matrices. c) Label propagation step on two columns, in which, given the reference segmentation St of column Rt, the similarity At is again computed in the
latent space and after the enhancement proposed in Section IV-B it is used to predict the segmentation St+1 of column Rt+1. The process is repeated for T
columns before a new reference segmentation is required.

representations of dimension nF for patches of column Rt

and N representations for column Rt+1. We pile up them,
obtaining matrices Zt, Zt+1 ∈ RN×nF , where each row of
the matrix corresponds to the vector representation of a patch.
We apply L2-normalization row-wise in order to obtain vector
representations with norm equal to 1.

Given Zt and Zt+1, the transition matrix P t+1
t ∈ RN×N

between the nodes of the two columns is given by

P t+1
t (i, j) = softmaxτ (ZtZ

T
t+1)ij (5)

where the softmax function is applied row-wise, τ > 0 is
the temperature parameters and [ · ]T represents the transpose
operator. The term within the softmax function is cosine
similarity itself, applied on each pair of the L2 normalized
rows of Zt and Zt+1. Softmax crucially converts rows into
probability distributions (i.e. vectors with sum equal 1) and
enhances high similarity values while lowering low values
even more. A low temperature τ allows for an even stronger
separation between high and low values, biasing transitions
toward the highest probability value.

We compute similarities for each pair of columns on the
graph, obtaining a list of transition matrices {P t+1

t }T−1
t=0 . These

matrices can be seen as transition matrices of a discrete time
non-homogeneous Markov Chain where states consists in the
nodes of the graph and transitions between timesteps t and
t+ 1 occur according to the transition probabilities in P t+1

t .
Consider a random walker with initial state Xt = Rt,n, the

probability of the walker to be in state n′ ∈ [1, ..., N ] at time
t+ 1 is given by:

P t+1
t (n, n′) = P(Xt+1 = Rt+1,n′ |Xt = Rt,n) (6)

One can generalize this one-step formula with the Chapman-
Kolmogorov equation, i.e. multiplying subsequent transition

matrices, obtaining the transition probabilities for a walker at
time t after k steps as:

P t+k
t =

k−1∏
i=0

P t+i+1
t+i (7)

3) Loss function: We recall that the transition matrices
{P t+1

t }T−1
t=0 ultimately depends on the 1-D representations

of patches obtained via Mθ. With the aim of training the
encoder at learning meaningful representations, we instantiate
multiple walkers on the graph and optimise their transitions in
order to follow the horizontal patterns that exists within the
radargram. Precisely, we can obtain transitions for a walker on
the graph by defining its initial state as a probability distribution
p0 ∈ [0, 1]N and

∑
i p0(i) = 1. Given the initial state as R0,n0

,
where n0 ∈ 1, ..., N is the index of the patch of the initial
state, we define p0 as:

p0(i) =

{
1, if i = n0

0, otherwise
(8)

We obtain the probability distribution of the walker after k
steps as:

pk = p0P
k
0 (9)

In order to provide a target for the walk, we use of the
concept of cycle consistency [39] as previously introduced for
videos by [38]. Cycle-consistency is a widespread concept
in the video segmentation field and consists in the fact that
a target within the frames of a video spans similar pixels
positions in neighboring frames, going both forward and
backward in time. We force cycle-consistency by appending to
the radargram a flipped version of itself in the azimuth direction.
We consequently append a flipped version of the graph to the
original graph and we do the same with the transition matrices,
obtaining a list of 2× (T − 1) matrices. We train walkers to
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(a)

(b)

(c)

Figure 4. Example of application of the horizontality metric. (a) Segment of
an MCoRDS3 radargram in which the grounding zone is clearly visible in
the middle. (b) Horizontality metric applied to the segment: we can clearly
distinguish dark areas corresponding to horizontal features and bright areas
corresponding to patches in which walkers are more uncertain. Darker pixels
corresponds to the surface and bedrock lines. The image also highlights the
distinction between inland ice, which contains smoother pixel areas, and
floating ice, which shows more irregular patterns due to the presence of
liquid water. (c) Mean of columns of the metric computed as illustrated in
Section IV-C1. The plot clearly shows two segments with different variances
corresponding to the two distinct zones. We highlight in red the change point
found via binary segmentation algorithm on plot (c), which corresponds to
the grounding zone visible in (a).

start from position n0 at time t = 0 and arrive at position n0

at time 2× T . Consequently, we obtain a loss function which
is a cross-entropy on N classes (i.e. final positions) between
the initial position (target) and the arrival position (prediction).
We can represent this loss with the following formula:

L = CrossEnt(p0, p2T ) = −
N∑
i=0

p0(i) log(p2T (i)) (10)

Since p2T is a function of {P t+1
t }t=0,...T−1, which ultimately

depends on {Zt}t=0,...T , minimizing L optimizes the parame-
ters θ of Mθ.

According to (10), the path of each of the N walkers has the
same importance in terms of loss. We refine the loss equation
to prioritize training on the brightest (i.e. high returning
echo intensity) features present in radargrams. The following
adjustment is based on the rationale that these features are the
most scientifically relevant. As introduced in Section III, the
brightest horizontal pattern is typically characterized by the
interface between free space and the subsurface. Additionally,
notable examples of bright subsurface features include the ice

layers and the bedrock line (or basal return), in the case of
acquisition on an icy scenario. With the aim of prioritizing
walkers that follow these horizontal features, we compute
the mean of each patch of column R0 (i.e. the initial state
of walkers), obtaining means {m(i)}Ni=1. We then define the
weights {w(i)}Ni=1 as:

w(i) =
m(i)∑
i m(i)

(11)

and rewrite the loss function as a weighted cross-entropy loss:

L = −
N∑
i=0

w(i)p0(i) log(p2T (i)) (12)

With this loss, higher priority is given to walkers that start
from brighter patches, which we rationally assume being part
of a relevant horizontal pattern.

To speed up training and harness parallelization, we compute
transitions for multiple agents on the same graph at the same
time by substituting the vector-matrix product of (9) with the
matrix-matrix product:

Pk = INP k
0 (13)

Here each row of IN (i.e. identity matrix of dimension N )
represents a walker starting from a different position n ∈
{1, ..., N} on the first column of the graph and each row of
Pk represents the distribution of the arrival state at t = k of
each of the walkers. Loss becomes a row-wise cross-entropy
between rows of I and rows of P2T . We reduce the loss to a
scalar value by computing the mean row-wise cross-entropy,
obtaining a target for the optimization problem:

argmin
θ

L (14)

We iterate the random walks and computation of loss over
multiple radargram column sequences of fixed length T and
we minimise the loss via stochastic optimization, aiming at a
global optima for the parameters θ of the model Mθ.

B. Label propagation

In the second phase, we leverage on the model Mθ trained
in the previous step and on a reference segmentation, likely to
be user-provided (also in real time), to propagate labels to all
the patches in order to achieve a full semantic segmentation
of the radargram. An overview of the label propagation step
can be seen in Figure 3. Inspired by [40], we make use of
a variation of KNN label propagation suitably refactored to
operate on radargrams. We firstly introduce the propagation
starting from the first two columns of a radargram and we
later generalize to the full radargram, introducing also a list of
proposed enhancements. Given a radargram R we suppose to
have the patch-wise segmentation map S0 ∈ {0, ..., nC}1×N

of the patches {R0,n}Nn=1 of the first column. We aim at
predicting the segmentation of the N patches of column R1. In
order to do this, we again use the piled latent representations
Z0, Z1 ∈ RN×nF of R0 and R1, obtained via the trained
encoder Mθ. As in the first phase, we compute the similarity
in the latent space, i.e. between Z0 and Z1, using (5). We
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obtain the similarity matrix A0 ≡ P 1
0 ∈ RN×N . We pick the

k > 0 highest values for each row, thus masking and setting
to 0 all the other values and obtaining the modified matrix
Aknn,0.

We predict the segmentation map S1 as a linear combination
of the labels of S0, with weights given by Ã:

S1 = Aknn,0S0 (15)

We can then proceed in an iterative way, predicting the
segmentation of St+1 as:

St+1 = Aknn,tSt (16)

for t ∈ {0, ..., T − 1}. We apply the process of propagation for
T consecutive patches at which point we provide the algorithm
with a new reference segmentation mask. The process is
repeated until all columns of the radargram have been processed.
We refine KNN label propagation with techniques from [38]
and [41]. We also introduce a backward propagation step to
refine the characterization of the extended linear features. We
implement the following enhancements.

1) Memory bank: As we obtain new labelled samples, we
harness them to compute the latest segmentation. Precisely, in
order to compute St+1, we make use of the previously obtained
{Si}ti=t−c, where c > 0 represents the previous context taken
into consideration by the label propagation. We compute Ã
between Rt+1 and all the previous {Ri}ti=t−c, obtaining t− c

similarity matrices {Ãt}ti=t−c. We concatenate the matrices
to obtain Abank ∈ RN×N(t−c) where each row n contains the
similarities between Rt+1,n and each patch of the columns in
the context bank {Ri}ti=t−c. Again we find the top k values
row-wise and we set to 0 the rest. Similarly to (16) we compute
new labels as:

St+1 = Abank,tS
∗ (17)

where S∗ ∈ {0, ..., nC}c×N is the concatenation of all
segmentation maps in the memory bank at time t.

2) Masked attention: We further restrict the computation
of similarities only within a radius r ∈ N+ from the query
patch. This can be achieved mathematically by the element-wise
multiplication of At and the r-diagonal matrix Ir ∈ 0, 1N×N

whose entries are 1 in the 1 + 2r central diagonals and 0
otherwise:

Amask,t = AtIr (18)

3) Backward label propagation: We employ a backward
label propagation step with the aim of focusing on a particular
target class within radargrams. The choice of this class is
arbitrary. For example, it could consist in a layer of interest
in a rocky subsurface such as a buried lava flow and it could
be in the bedrock line when dealing with products acquired
on the ice sheet. As the propagation reaches column RT the
algorithm is provided with the reference segmentation ST+1

and start operating on the next sequence. We make use of ST+1

to provide a second segmentation map for the sequence up to
T . Label propagation operates backward on the graph from T
to 0. Notice that this does not harness the computational cost
in an excessive way since the similarity matrices have already
been computed in the forward cycle of label propagation. The

only difference in the backward pass is the new reference
segmentation. Given c̄ ∈ {0, ..., nC} as the index of the class
of interest, after obtaining Sback we merge it with Sfwd with
the following operation on Sfwd:

Sfwd(i, j) =

{
c̄, if Sback(i, j) = c̄

Sfwd(i, j) otherwise
(19)

which sets a pixel to the focused class if the pixel has been
labelled as c̄ in at least one segmentation map between Sfwd
and Sback.

C. Horizontal correlation metric

Here we introduce a metric to quantify the degree of
horizontal smoothness within portions of a radargram. The
metric is important for various reasons. Firstly, the metric is
tied to the unsupervised training step presented in Section
IV-A and helps at quantifying and visualising the trajectories
of random walkers and the linearity of horizontal features. This
increases the explainability of the methodology and allows the
transitions obtained during training to be used not only at
inference time (i.e. label propagation) but also as an additional
standalone analysis tool. Moreover, the evolution of the metric
within the radargram can be used to detect abrupt changes
in the physical scenario such as the grounding zone of ice
within coastal radargrams [16] and missed range lines. We
address this possible employment of the metric at the end of
this section.

We suppose to have an encoder Mθ trained as per Section
IV-A and a sequence of neighboring radargram columns
{Rt}Tt=1, where each column is composed of patches (pos-
sibly overlapping) of dimension w × h. For each timestep
t ∈ {1, ...T} we input patches to the encoder and we obtain a
sequence of transition matrices {P t+1

t }t=0,...T−1 as in (5). We
define the horizontal correlation metric of column Ri as:

µt = CrossEnt(Pt, I) (20)

where I is the indentity matrix and CrossEnt is row-wise cross-
entropy without reduction (i.e. without collapsing the resulting
vector into a scalar using a sum or mean function). Notice
that µI has dimension equal to the number of patches within
column Rt. We can then visualise the metric on the neighboring
column (i.e. a portion of radargram) by simply concatenating
{µt}Tt=1 in the time dimension.

1) Change point detection: We present a way to employ the
metric to enhance the segmentation maps obtained via label
propagation. The following steps are applied in Section V to
improve the results of the experiment on radargrams acquired
on a coastal icy scenario.

We suppose to be operating on a radargram slice of T
columns and we suppose an abrupt change exists in column
t̄. Since the label propagation step is based on very few
reference samples, it is most likely that the column representing
the change will not be the reference column of our selected
radargram slice. We compute the horizontal correlation metric
using (20) on each transition matrix in {P t+1

t }t=0,...T−1. We
obtain T metric vectors {µt}t=0,...T−1. We concatenate these
vectors in order to obtain a 2-dimensional array ΓTseq ∈ RTseq×N .
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Table I
DETAILS ON THE DATASETS USED FOR EXPERIMENTS

MCoRDS1 [11] MCoRDS3 [16] SHARAD

Number of traces 27350 105120 29011
Column size 410× 32 1536× 32 912× 16

Patch size 32× 32 32× 32 16× 16

Overlap 30× 0 30× 0 8× 0

In Figure 4-b we can see an example of ΓTseq for an MCoRDS
radargram slice. We can clearly see that before the change
point (i.e. the ice grounding zone) the metric tends to be lower
while after the grounding zone, where the floating ice is present,
pixels present higher values. This translates in random walk
transition matrices being consistently different from the identity
(i.e. horizontal walks) and are more spread toward multiple
choices for the next step. We expect this behaviour to be always
marked by a sharp change in the intensities of ΓTseq , especially
in the case of changes which are spread across columns such
as grounding zones. As we can see in Figure 4-c the change
point is less evident using a simple rolling mean. With this
behaviour in mind, we compute a rolling mean of ΓTseq in the
azimuth direction and we obtain a vector γ ∈ RTseq (Figure 4-d)
which should present a change point at the level of the abrupt
change. We detect this change point via binary segmentation
[42], retrieving the index t̄. We choose this algorithm for its
fast computation time and the ability to identify change points
by discerning changes in variance across segmented data. After
obtaining the index t̄ of the change point, we provide the
reference sample St̄ of the column Rt̄ corresponding to that
index to the model and we ask for a new iteration of label
propagation on the remaining Tseq − t̄ columns, potentially
correcting the previously erroneous segmentation.

V. EXPERIMENTS

A. Overview of the datasets

We validate our methodology on two terrestrial and one
planetary datasets from the literature. The first two datasets
have been obtained by MCoRDS1 [2] and MCoRDS3 [3], two
radar sounder instruments operated by CReSIS. Both datasets
refer to ice sheet scenarios. The third dataset consists in 5
radargrams obtained by SHARAD on the Mars North Pole. The
reason for this choice is that icy scenarios are good benchmarks
for assessing the effectiveness of the proposed technique as
they allow the detection of multiple classes which are tied to
each other via strict physical relationships. We can find the
free space at the top of radargrams, which consists in the space
between the instrument and the surface. Right below the surface
there is the semantic class consisting in ice layers. Coastal
radargrams usually separate in-land ice, i.e. ice deposits on
the bedrock, and floating ice, which floats over the ocean. We
can see this distinction in the MCoRDS3 dataset. Furthermore,
a key class within radargrams from ice-covered regions is
the bedrock line. It consists in a bright line within MCoRDS
radargrams and identifying this interface is crucial, as it enables
quantifying the ice deposits and detecting features of interest
such as subglacial lakes [12]. As fewer knowledge exists on

the nature of subsurface layers in SHARAD radargrams, we
distinguish between strong returns and weak returns within
the Martian polar cap, consistently with previous literature [9].
We define as basal layer the bright return characterized by
diffuse scattering right under the polar cap. Another important
class is noise, consisting in areas where there is no returning
echo or it is weaker than the noise. This often happens
when no relevant dielectric discontinuities are present in the
subsurface and the weak returning echo is dominated by the
instrumental noise. There have been several attempts in recent
literature to characterize noise in statistical terms [11], [9] by
exploiting theoretical models built up on radar theory, where
it is usually assumed that noise is Rayleigh distributed and
has a multiplicative behaviour over the signal of interest [9].
Noise areas are especially present right above the bedrock line
(echo-free zone, EFZ) and below the bedrock line, when the
pulse is attenuated the most and few-to-no echo returns back
to the radar receiver.

1) MCoRDS1 Dataset: The first dataset, namely D1, has
been obtained by the radar sounder MCoRDS1 in Antarctica.
The chirp bandwidth of the radar sounder is 189− 198 MHz
and this leads to a range resolution of 13.6 m in ice and
an azimuth resolution of 25 m after synthetic aperture radar
(SAR) processing. The dataset consists in a radargram from the
campaign of 04/11/2010, for a total of nT = 27350 rangelines
(∼ 520km of continuous acquisition) and nS = 410 samples
per rangeline. The dataset has been pre-processed by the team
of CReSIS using SAR processing, motion compensation and
the minimum variance distortionless reponse (MVDR) beam
former. A segmentation map for this dataset has been provided
by [11]. We use this map for extracting labelled reference
samples during the label propagation step of the proposed
approach. The map consists in 5 classes: free space, ice layers,
bedrock line, noise and uncertain region. We use the first 4
classes to test our methodology and we remove pixels from
the uncertain region when computing the classification metrics
as previously done in literature on this dataset [11], [14] for a
fair comparison with fully supervised methods.

2) MCoRDS3 Dataset: The second dataset, namely D2, has
been obtained by the radar sounder MCoRDS3 in Antarctica.
The chirp bandwidth of the sounder is again 165− 215 MHz
and leads to a resolutions of 2.6 m in range (in ice) and
27.5 m in azimuth post SAR processing. The main difference
from MCoRDS1 is the doubled number of RX channels (8
for MCoRDS1 vs 16 for MCoRDS3). The dataset consists
in multiple radargrams from a campaign in 2018, for a total
of nT = 105120 traces and nS = 1536 samples per trace.
The dataset has been presented in [15] and has already been
used in radar sounder literature [15], [16] to validate semantic
segmentation methodologies. The segmentation map consists in
6 classes: free space, inland ice, floating ice, bedrock, noise and
uncertain region. Consistently with literature, we discard the
uncertain region when computing metrics, obtaining a semantic
segmentation setting with 5 classes.

3) SHARAD Dataset: The third dataset, namely D3, has
been obtained by the radar sounder SHARAD at the North
Pole of Mars. The chirp bandwidth of the sounder is 15 −
25 MHz and leads to a range resolution of around 10 m
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Figure 5. Results of the methodology applied to radargrams from dataset D1. a) Radargrams from MCoRDS1 which are part of D1. b) Result of the
segmentation using the proposed methodology. c) Segmentation ground truth. The first and last traces of each radargram in c) are used as references for
forward and backward label propagation, respectively. As we can see the resulting segmentation maps correctly follow the main horizontal features within the
radargrams. In the leftmost radargram, the late break point within the bedrock is well represented. In the rightmost radargram, the methodology is able to
follow abrupt changes in the bedrock horizontal pattern. The boundary between noise and ice layer is generally segmented correctly and the free-space line is
depicted as expected.

in ice and an azimuth resolution of approximately 460 m
after synthetic aperture radar (SAR) processing [43]. The main
difference between this and the MCoRDS datasets is the orbital
nature of the SHARAD instrument and the related acquisitions.
SHARAD employs a much lower frequency compared to its
airborne counterparts, allowing for a deeper penetration of
the subsurface at the cost of a much smaller bandwidth. The
dataset consists in 5 radargrams processed by the US SHARAD
team [43], which are acquisitions number 00285902, 00287702,

00293902, 00331102, 01988401, for a total of nT = 29011
rangelines. We manually cut the uppermost and lowermost
parts of radargrams in order to obtain nS = 912 samples per
trace. The segmentation map consists in 5 classes: free space,
strong returns, weak returns, basal layer and noise.

B. Experimental setup
We run experiments with the proposed technique on the

aforementioned datasets. In particular, we first run the unsuper-
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Figure 6. Results of the methodology applied to radargrams from dataset D2. a) Radargrams from MCoRDS3 in which we can clearly see the change
point between floating and inland ice. b) Result of the segmentation using the proposed methodology. c) Segmentation ground truth from [16]. d) Horizontal
correlation metric computed as in Section IV-C where bright pixels correspond to high cross-entropy according to (20). We highlight with green and blue
dashed lines the change points found using the technique presented in Section IV-C and according to the ground truth maps, respectively. As we can see the
resulting segmentation maps correctly follow the main horizontal features within the radargram. The methodology is able to detect the change points within the
radargrams, which generally corresponds to the ones depicted in the ground truth segmentation maps. The methodology correctly recalls bedrock and ice
thickness for long portions of the radargrams.
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vised training step and then we apply label propagation. We
perform the following experiments:

• Training and label propagation on D1

• Training and label propagation on D2

• Training and label propagation on D3

For the first two experiments we use a patch size of (w, h) =
(32, 32) and an overlapping of (ow, oh) = (30, 0). For the
experiment on D3 we set (w, h) = (16, 16) and (ow, oh) =
(8, 0). The patch size is chosen with the rationale of obtaining
patches large enough to contain the full vertical extent of the
main interfaces (surface and bedrock lines). We set a relatively
high overlapping in the range direction (> 50% of the patch
size) to obtain a finer segmentation map. The lower patch size
employed for D3 is motivated by the larger range resolution of
the dataset, which allows fewer pixels to capture the vertical
extent of horizontal features. We perform ablation studies on
patch size and overlapping value in Section V-E.

The sequence length is set to Tseq = 10 in the training.
During label propagation we set Tseq = 100. We choose these
values after a preliminary empirical evaluation: an higher Tseq
during training leads to divergence and the choice of Tseq
during label propagation is made to minimize the number of
labelled samples required. Indeed, Tseq = 100 leads to the
usage of one labelled sample every 100, which represents 1%
of the datasets. Moreover, with this combination of patch size
and sequence length we span w · Tseq = 3200 range lines
during label propagation on D1 and D2, which is roughly the
length of radargrams provided by CReSIS [44] (i.e. ∼ 50km of
acquisition). In the case of D3, we span a total of approximately
640km per sequence. We recall and underline that these labelled
samples are only employed during inference and not for training.
The temperature of softmax is set to τ = 10−2. Parameters
for the label propagation are set to (k, c, r) = (10, 80, 30) for
D1, (k, c, r) = (10, 80, 60) for D2 and (k, c, r) = (10, 80, 10)
for D3 after a preliminary grid search. However, we see no
particular fluctuations in results when varying the parameters,
except for r. We set r with the rationale of spanning at least
one non-overlapping patch above and below the current one
(see ablations on this value in Section V-E). We choose c̄ as
the bedrock class (or basal layer, in the case of D3) for the
backward label propagation (Section IV-B3), with the rationale
of improving the recall of the class due to its low support and
its importance as an example of relatively thin, coarse and
isolated horizontal feature. We employ change point detection
as described in Section IV-C1 during the experiment on D2

due to the coastal scenario of acquisition and the presence
of multiple examples of grounding zones within radargrams.
We also apply the technique on D3 in order to distinguish
between the Mars polar deposit and the surrounding areas. We
do not apply the technique on D1 due to the relative stability
of horizontal features within the dataset and the fully inland
scenario of acquisition. We train for 50 epochs with a batch
size of 64 on two Nvidia GeForce 3060 RTX. Learning rate is
set to 10−3.

For the proposed technique, we use a customised Resnet18
[45] with randomly initialized weights as encoder Mθ. We add
a convolutional layer, a batch normalization layer and a ReLU

activation function at the beginning of the network in order
to transform our 1 channel inputs to 3 channels. The central
part of the network consists of residual blocks as per [45].
We remove four of the total eight residual blocks to lighten
the network. We also add two final linear layers in order to
transform the 2-dimensional output of the Resnet in the 1-
dimensional embedding used for computing cosine similarities.
The architecture has a total of 4971468 trainable parameters.

C. Evaluation metrics

We evaluate the performance of our methodology using
precision, recall and F1 score. For each class, we define the
true positives (TP) as the correctly labelled pixels of the class
and the true negatives (TN) as the pixels that do not belong
to the class and our model correctly attributes to other classes.
We define the false positives (FP) as pixels which belong to
other classes and our model attributes to the considered class
and the false negatives (FN) as pixels which do belong to the
considered class but are incorrectly labelled by the model as
belonging to other classes. We can now define the precision
of a predicted segmentation map with respect to a reference
map as:

Precision =
TP

TP + FP
(21)

We can also define the recall as:

Recall =
TP

TP + FN
(22)

The F1-score is defined as a combination of the two:

F1 = 2× Precision × Recall
Precision + Recall

(23)

We also define the overall accuracy (OA) as:

OA =
TP + TN

TP + TN + FP + FN
× 100% (24)

We assess the performance of our methodology with these four
metrics. For the two datasets, we also define the support of
each class ci ∈ {1, ..., nC} as:

Supportci =
#Pixels in class ci

#Total pixels
(25)

and we show it along with the metrics in order to quantify
the unbalance between the classes. Moreover, we compare the
OA of our methodology with the results obtained by other
methods presented in the literature. In particular, we compare
results on D1 with the SVM classifier from [11], the vanilla
U-net presented in [14] as a baseline and the TransSounder
architecture [14], which fuses Vision Transformer blocks and
convolutional layers. Results on D2 are compared with the
CNN proposed in [16], which is a double U-net pretrained using
a reconstruction task and finetuned on D2, the U-net proposed
as baseline in [15] and the U-net with dilated convolutions
and latent attention layers presented [15] and further enhanced
with post-processing using morphological filters. Finally, we
compare D3 with the SVM classifier from [11] and a vanilla
U-net architecture applied on a 90-10 train-test split (to be
consistent with [15]). The proposed methodology requires
a computational time which is, in general, similar to the



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 0, 2024 14

Table II
SEGMENTATION PERFORMANCE OF THE PROPOSED METHOD ON THE

MCORDS1 DATASET

Precision Recall F1-score %Support

Free space 0.96 0.99 0.98 0.06
Ice layers 1.00 0.98 0.99 0.56
Bedrock 0.92 0.87 0.89 0.04
Noise 0.96 0.99 0.98 0.34

OA 0.98

Table III
SEGMENTATION PERFORMANCE OF THE PROPOSED METHOD ON THE

MCORDS3 DATASET

Precision Recall F1-score %Support

Free space 0.98 1.00 0.99 0.21
Noise 0.96 0.96 0.96 0.50
Bedrock 0.68 0.65 0.66 0.02
Inland ice 0.96 0.95 0.96 0.20
Floating ice 0.90 0.90 0.90 0.07

OA 0.96

Table IV
SEGMENTATION PERFORMANCE OF THE PROPOSED METHOD ON THE

SHARAD DATASET

Precision Recall F1-score %Support

Free space 0.95 0.97 0.96 0.40
Strong returns 0.64 0.64 0.64 0.08
Weak returns 0.80 0.66 0.73 0.09
Basal layer 0.65 0.54 0.60 0.03
Noise 0.94 0.97 0.95 0.40

OA 0.90

Table V
COMPARISON WITH SUPERVISED ARCHITECTURES

Dataset Method Training OA # Params

MCoRDS1

SVM [11] Supervised 0.99 -
U-Net [14] Supervised 0.93 20M
TransSounder [14] Supervised 0.99 125M
Proposed Unsupervised 0.98 5M

MCoRDS3

CNN [16] Supervised 0.99 62M
U-Net+ASPP [15] Supervised 0.98 12M
U-Net [15] Supervised 0.91 8M
Proposed Unsupervised 0.96 5M

SHARAD
SVM [11] Supervised 0.92 -
U-Net [15] Supervised 0.88 8M
Proposed Unsupervised 0.90 5M

other mentioned literature techniques. All the methodologies
employed for the comparison are fully supervised and use
different train/test splits and data augmentation techniques,
hence the comparison is affected by some uncertainty margin.
Nonetheless, this allows us to show the competitiveness of
our results against methods that both employ labels during
training and are based on architectures with an higher number
of trainable parameters.

D. Results
1) Dataset D1: The segmentation performance of the

proposed method on dataset D1 is summarized in Table II.
Across all classes, the method demonstrates promising precision
and recall values, indicating its ability to accurately classify
the various subsurface features.

For free space, ice layers, and noise, the method achieves
high precision scores of 0.96, 1.00, and 0.96, respectively. This
reflects a low false positive rate in identifying these classes.
Additionally, the recall values for these classes are equally high,
ranging from 0.98 to 0.99, indicating an accurate classification
of most instances of these targets within the dataset. Our model
correctly characterise free space as it is the easiest class to
detect due to the surface line acting as a bright delimiter
between free space and subsurface.

In contrast, the precision score for bedrock classification is
slightly lower at 0.92. This could be attributed to the complexity
and variability of bedrock signatures within radar sounder data.
Moreover, bedrock is the class with the lowest support hence
the model is trained on significantly less bedrock patches than
other classes. Despite this, the method demonstrates a relatively
high F1 score on the bedrock class, also considering it is almost
unsupervised. Indeed, results are promising in lieu of the fact
that the model infers the segmentation starting from only one
reference column every 100.

Qualitative results are shown in Figure 5b. The segmentation
maps obtained via the proposed methodology on three radar-
grams from D1 highlight the ability of the model to follow
the main horizontal targets. In general, the surface line, the
interface between ice layers and EFZ, and the bedrock are
correctly tracked, as well as the major sudden changes in their
horizontal pattern.

We compare the performance of our methodology on D1 with
the results of other architectures from the literature in Table
V. Our results are competitive and overcome the ones of the
baseline supervised U-net presented in [14]. Moreover, the table
shows how our encoder achieves competitive performances on
D1 with only 5M parameters against the 20M of the baseline
U-Net and the 125M of TransSounder [14]. This is crucial for
two reasons: on the one hand we believe lighter architectures
could be enough to encode radargram information due to the
fact that radargram patches contain a low number of classes
with respect to common segmentation benchmarking datasets.
On the other hand, a lighter encoder allows for faster training
time and potentially avoids overfitting on small datasets (which
may be the case for D1).

2) Dataset D2: The segmentation performance of the
proposed method on the MCoRDS3 dataset reported in Table
III showcases varying degrees of accuracy across different
classes.

The method exhibits high precision and recall values for free
space segmentation, indicating a minimal false positive rate and
an effective modelling of most instances of free space within
the radar data, as well as correctly identifying the boundary
between free space and the underlying ice (see Figure 6c).

For inland ice classification, the method demonstrates high
precision and recall scores of 0.96 and 0.95. Despite a slightly
lower precision compared to free space, the method still
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maintains a balanced F1-score of 0.96, indicating overall
effectiveness in identifying inland ice regions. As depicted
in Figure 6c, also the contour separating noise and ice region
is correctly identified, with the sole exception of the central
radargram, where the EFZ and the ice layering are difficult to
distinguish.

The F1 score for bedrock is 0.66. Nonetheless, recalling the
unsupervised nature of the learned patch representations and
the considerably low support of the bedrock class, results are
very promising. As we can see in Figure 6c, despite some
misinterpretation of the bedrock line thickness and shape
significantly impacts the recall score, the upper bound of
the bedrock is correctly identified in the three radargrams,
confirming the capability of model to act as a layer tracker,
especially when the interface between bedrock and EFZ
presents an high contrast. Overall, the bedrock is properly
identified by the model and the main flaws occur near the
change points and where the line presents an high slope
(i.e. the feature is less horizontal). The detection of change
points via the metric presented in IV-C helped at characterising
the bedrock pixels up to change points, as we can see in
Figure 6c near blue dashed lines. In Figure 6d we can see the
horizontal correlation metric computed on the radargrams as
described in Section IV-C. Dark areas represent patches where
the horizontal correlation is high, i.e. the transition probabilities
of walkers are similar to identities. Conversely, brighter areas
represent uncertainty in transitions: they mainly characterise
noisy patches and highlight the difficulty of tracking bedrock
under floating ice. The dichotomy of dark and bright areas
helps at visualising where walkers tends to follow horizontal
patterns (i.e. targets for our segmentation methodology) and
where walkers gets lost. Moreover, the metric enhance the
contrast between floating and inland ice, allowing the technique
presented in Section IV-C1 to correctly identify the change
columns in the radargrams. Relatively large value of r = 60
helped at mitigating the effect of high slopes.

The method performs well in floating ice classification,
demonstrating high precision and recall scores of 0.90. This
indicates its ability to accurately identify floating ice regions
within the radargram and correctly separate them from the free
space in the upper part of the radargram and the noise in the
lower part, as we can see in Figure 6c. The overall thickness of
the ice can be seen in the qualitative results and the main flaws
occur in segments where bright noisy columns hide the the
line of floating ice. Moreover, the detection of change points
and the consequent reiteration of label propagation helps at
separating the in-land and floating ice classes, successfully
providing the model with a new reference label right after the
change point. Finally, noise is correctly characterised and the
segmentation of noise class leads to an F1-score of 0.96, with
balanced values between precision and recall. The main flaws
occur in regions where bedrock has high slopes.

The comparative results shown in Table V are in accordance
with the ones obtained for D1. Our methodology demonstrate
competitiveness compared to the other supervised methods
in the literature and outperforms the fully supervised U-net
baseline from [15]. It is worth noting again the lightweight
design of our encoder (5M parameters) and our utilization of

labels solely during inference, distinguishing our methodology
from fully supervised architectures. The model benefits from
weak supervision (i.e. reference labels) by the user during label
propagation and from the automatic detection of change points
via the horizontal correlation metric.

3) Dataset D3: The segmentation performance of the
proposed method on the SHARAD dataset is reported in Table
IV.

The method exhibits high accuracy metrics for the segmenta-
tion of free space, ice layers and noise, indicating an effective
characterization of the three most prominent classes and a
correct detection of the air/ice boundary, as we can see in the
qualitative results shown in Figure 7b. A relatively high value
of r = 10 helped at characterising the fast varying shape of the
ice surface. This is particularly evident at the edges of the polar
deposit in the first two radargrams of Figure 7b. Moreover,
we can see how the model effectively captures the position
and shape of the basal layer, which in the case of SHARAD
is coarse and spread on multiple rows. We see relatively low
accuracy metrics for the basal layer in Table IV and this
is mainly due to the inherent uncertainty in its extent and
the related uncertain characterization by the human labelling
process. The performance on strong reflectors is promising:
label propagation is correctly able to follow the uppermost
bright line of the surface and distinguish it from the surrounding
free space and noise. The strong ice reflectors over the polar cap
are generally correctly identified and the model detects some
areas where weak reflectors are present in-between stronger
ones. The main flaws in the accuracy values regarding strong
and weak returns may again arise from the uncertainty in
their extent. We mark as a promising achievement the fact
that the model is able to distinguish between weak and strong
reflectors in a finer way than the reference maps. The depictions
of the correlation metric in Figure 7d correctly highlights the
horizontal features present in the radargrams, with particular
emphasis on the surface, the basal layer and small strong
reflectors characterizing the ice layering.

The comparative results shown in Table V are again
promising: the methodology manages to overcome the results
of the vanilla U-Net and the accuracy of the proposed technique
is close to the one of the fully supervised SVM.

E. Ablation studies

We perform ablation on the main hyperparameters character-
ising the methodology. In particular we investigate on (1) the
dimension of patches, (2) the overlapping of patches and (3)
the radius of label propagation. We evaluate the performance
varying the above mentioned parameters by measuring the F1
score on the bedrock class. We use it because the bedrock is
the most challenging target to classify in our datasets and its
score varies significantly when changing the parameters, while
the overall accuracy remains relatively stable due to the low
prior probability of this target class.

We empirically found out that a value of temperature of
τ = 0.01 all across the methodology provides the best results.
Lower values (e.g. 0.001) are possible too. Higher order values
lead to missed convergence in the training step and irregular
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Figure 7. Results of the methodology applied to radargrams from dataset D3. a) Radargrams from SHARAD North polar region. b) Result of the segmentation
using the proposed methodology. c) Segmentation reference maps. d) Horizontal correlation metric computed as in Section IV-C where bright pixels correspond
to high cross-entropy according to (20). We can clearly see dark pixels accentuating the main horizontal features. We highlight with green and blue dashed
lines the change points found using the technique presented in Section IV-C and according to the ground truth maps, respectively. The resulting segmentation
maps correctly follow the main horizontal features within the radargrams. In particular, the label propagation is able to discern the basal layer from surrounding
noise and captures strong ice reflections which have not been discerned by the reference maps.
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Figure 8. Results of the ablation studies on D1. (a) Bedrock F1 score vs. patch size. (b) Bedrock F1 score varying the overlapping between patches. (c)
Bedrock F1 score vs. label propagation radius

predictions in the label propagation step. This result is in
agreement with the literature [46].

Regarding the context size in the label propagation step, our
results are consistent with prior research [41] where an higher
context size leads to better results and the limiting factors are
the memory size and the total length of the sequence. We
suggest to stick to a context length equal to Tseq when possible
and always including the initial user-provided column in the
context bank.

Finally, we find no particular variation in performance
when modifying the value of k within kNN propagation. This
is consistent with the fact that, under the assumption that
meaningful representations are provided by the encoder, even
few neighbors are enough to characterise a patch. Extreme
values are consistent with literature [47]: k = 1 leads to
irregular predictions and large k would lead too boundaries
which are too smooth and lose high frequency information.
The latter case is limited by the radius parameter, in our
implementation.

1) Patch dimension: We test our model with
different square patch dimensions, namely (w, h) ∈
{(8, 8), (16, 16), (32, 32), (48, 48), (64, 64)}. We change the
patch dimension during the training step and fix a value of half
the patch size for overlapping. We set the other parameters as
in Section V-B and perform training and testing on dataset
D1. Results of the ablation (Figure 8a) are in agreement to
our interpretation, in particular small patch sizes achieve
worse results since they can not encapsulate enough pixel
information. We found that the bedrock line has a thickness
of around 20 to 30 pixels. Hence a patch of dimension (8, 8)
or (16, 16) does not manage to contain its full extent and
potentially a glance of its slope. Moreover, a patch size which
is too small fails at encoding inter-dependencies between
medium-spaced subsurface features, e.g. multiple ice layers
and fragmented bedrock lines. On the other hand, a patch size
of (48, 48) and (64, 64) tends to encapsulate too many pixels
and we argue it makes the graph lose its sequential pattern.

2) Overlapping: We vary overlapping during both training
and label propagation on dataset D1. To maintain consis-
tency we use the same patch dimension and overlapping
in both training and label propagation. We fix the radius
parameter of label propagation to r = 16 and the patch
dimension to (w, h) = (32, 32). The overlapping is tested

in both range and azimuth direction using percentage values
of {0.00, 0.25, 0.50, 0.75} with respect to the patch size. We
report a grid with the overall accuracy of each combination
in Figure 8b. We argue that an high overlap in the range
direction is beneficial for the model so it allows for more precise
trajectories for the random walkers and a finer segmentation
in the label propagation step. On the other hand, a low-to-zero
overlap leads to a fast but coarse segmentation which may be
useful to get a glance on the radargram aspect but does not
match the performance of higher overlapping.

3) Radius: We fix patch dimension and overlapping in both
training and label propagation and we vary the radius r of label
propagation in the range of discrete values {1, 2, ..., 7}. We
perform the ablation on two different configurations: (1) Patch
size (w, h) = (16, 16) and overlap (ow, oh) = (12, 0), (2)
Patch size (w, h) = (32, 32) and overlap (ow, oh) = (24, 0).
We argue radius is strictly related to overlap in the range
direction: in particular higher overlap requires higher radius
to allow walkers to follow slope-varying features correctly.
Furthermore, a radius which is too high may allow the model
to choose between too many patches; this can lead to an
highly irregular segmentation. Results of the ablation are shown
in 8c. We clearly see how an high radius is needed to get
accurate results on models with high vertical overlap. This is
due to the fact that high overlap translates in more patches per
column, which again translates in more patches to cover an high
vertical steepness in subsurface features. Low radius values
generally lead to segmentation maps which are more smooth
in the horizontal direction, often losing track of slope-varying
features.

VI. CONCLUSION

In this paper, we have presented a novel methodology for
the segmentation of radar sounder data which utilizes a graph
built on radargrams according to similarity between patches.
Random walks are used to train in an unsupervised way an
encoder at learning meaningful representation of patches which
encapsulate information on horizontal structures within the
subsurface and label propagation is later exploited to propagate
the labels of a reference segmentation map to the full radargram.
For the first time, we introduced an unsupervised training phase
which is tailored to the sequential structure of radargrams.
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We exploit distinctive characteristics that set radargrams apart
from conventional images, especially the strong horizontal
correlation between features and the relational features that
exists among classes. We validated the methodology on three
datasets from different instruments and results depict the high
degree of fidelity between predictions and ground truth. In
particular, the model is able to track the main horizontally-
extended areas and boundaries between classes by propagating
a single reference segmentation, possibly user-provided in real
time. This sets apart our methodology from previous deep
learning literature in the radar sounder field: we exploit labels
of small fractions of the dataset and we make use of them only
at test time. This has two main advantages. Firstly, it does not
tailor the training step to labels, enabling a fully unsupervised
training and the learning of features that are not aligned to
any specific segmentation map. Secondly, we allow users to
choose the initial segmentation in the test phase, allowing
for multiple ”correct” segmentation maps to be propagated
on a single radargram. Comparative results shows how our
unsupervised training step followed by label propagation guided
by users leads to results that are comparable to state-of-the-
art supervised techniques while employing lighter encoders
and allowing flexibility in the segmentation map. We strongly
believe deep learning could help experts in the field of radar
sounders to process information automatically and we stand in
the direction of a methodology that can bridge the gap between
a fully manual analysis and a deep learning-driven technique.
We argue that inference tailored to user-provided prompts can
lead to results which are more explainable and useful under
the eyes of experts. In future research, we aim at exploring
the applicability of a sequence-based unsupervised training
on larger datasets composed by radargrams from multiple
instruments, in order to obtain a foundation model for the
radar sounder field which extends its capabilities to multiple
use cases beyond semantic segmentation.

ACKNOWLEDGMENT

This work was supported by the Italian Space Agency under
Contract n. 2022-23-HH.0 (CUP: F63C22000650005) ”Attività
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