
1.  Introduction
Bars are mesoscale morphological patterns that arise from the interaction of sediment with fluid motion. 
They are sediment waves that typically form diagonal fronts, having wavelengths in the order of few chan-
nel widths and height of the order of the flow depth. A vast literature on river bars in fluvial systems has 
been growing in the last 50 years, involving theoretical studies (e.g., Bertagni & Camporeale, 2018; Calland-
er, 1969; Colombini et al., 1987; Federici & Seminara, 2003; Fredsøe, 1978; Parker, 1976), experimental in-
vestigations (e.g., Fujita & Muramoto, 1985; Jaeggi, 1984; Lanzoni, 2000; Redolfi et al., 2020), field observa-
tions (e.g., Adami et al., 2016; Eekhout et al., 2013; Lewin, 1976; Rodrigues et al., 2015; Welford, 1994), and 
numerical modeling (e.g., Colombini & Tubino, 1991; Cordier et al., 2019; Defina, 2003; Siviglia et al., 2013). 
These studies show that bars arise spontaneously, in both gravel and sand bed rivers, as a result of an insta-
bility of the cohesionless bed, which tends to manifest when the width-to-depth ratio of the channel is larg-
er than a critical value, which in turn depends on the river characteristics. They are downstream-migrating 
features, which are often organized in a single row (alternate bars) or, in the case of particularly wide and 

Abstract  The incipient formation of free bars in weakly converging tidal channels and estuaries 
is mathematically framed within a unified two-dimensional shallow water and sediment mass balance 
model. The analysis is driven by the recognition that none of the theoretical models introduced so far 
account for the spatially varying character of the planform morphology, which characterizes estuaries and 
creeks forming networks in coastal wetlands and in the tide-dominated reaches of deltas. The problem 
is tackled by means of a linear stability analysis, by observing that width variations act on a spatial scale 
that is typically much longer than bars wavelength, allowing for an analytical treatment of the governing 
system of equations. We focus on two limit cases: first, the river transition into a micro-tidal sea (estuarine 
case); second, a tidal channel in the absence of a fluvial supply of freshwater and sediment (coastal 
case). In the estuarine case, bars arise as a result of an intrinsic instability of the equilibrium state. Width 
increases toward the mouth leading to channel shallowing, which in turn promotes the development of 
multiple bars. This effect is partially counteracted by the channel deepening produced by the tidal action, 
which tends to reduce bar growth and migration rate. In the coastal case, tidal bars form far from the 
equilibrium state of the system, adapting instantaneously to the evolving bed profile, which in turn affects 
channel flow conditions. Noteworthy, the model suggests that the spatial-temporal distribution of bars 
observed in nature reflects the evolutionary history of the system.

Plain Language Summary  Tidal bars are large sediment waves characterized by a repetitive 
sequence of scour and deposition patches, which can spontaneously develop and migrate along estuaries 
and tidal channels. Studying their formation is important from a socio-economic perspective, as they 
affect navigation and the management of fluvial structures, and an ecosystem point of view, as they 
contribute to habitat diversity and richness. Here, we propose a theoretical model able to predict the 
conditions that favors the incipient formation of bars in two typical tidal environments: the transition of 
a river into the ocean (“estuarine case”), and a tidal channel in the absence of a landward river (“coastal 
case”). We show that these two cases can be framed within the same theoretical framework, retaining 
the complex interplay between the typically landward converging shape of channels and the influence of 
the tidal motion. The analysis of the model surprisingly reveals that tidal bars formation fundamentally 
depends from the history of the channel bed. This represents a key information to interpret field 
observations as well as to understand the response of bars due to natural and man-induced changes.
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shallow streams, in several rows (multiple row bars) (Seminara, 2010). Due to the autogenic character of 
their development, they are said to be “free,” in opposition to the so-called “forced” bars, which are steady 
features that do not arise spontaneously but as a response to some physical constraint such as a geometrical 
variation (e.g., curvature, channel widening) or a local disturbance (e.g., the presence of an in-stream obsta-
cle) (Bittner, 1995; Duró et al., 2016; Redolfi et al., 2016, 2021; Repetto et al., 2002; Seminara & Tubino, 1989; 
Struiksma & Crosato, 1989; Wu et al., 2011; Tambroni et al., 2019; Zolezzi et al., 2005).

The study of bars in tidal environments was initially restricted to a number of field observations (see the 
review of Dalrymple & Rhodes, 1995), receiving progressively increasing attention from the end of the last 
century. Linear stability theories (e.g., Blondeaux & Vittori, 2011; Garotta et al., 2006; Hepkema et al., 2019; 
Schramkowski et al., 2002; Schuttelaars & de Swart, 1999; Seminara & Tubino, 2001) show that bars forming 
in tidal channels characterized by the absence of a freshwater and sediment supply from an upstream river, 
arise due to an inherent instability process in a way similar to their fluvial counterpart, displaying however 
some peculiarities owing to the oscillatory character of the flow. In particular, in the absence of residual 
currents and/or an asymmetry of the tidal wave, tidal free bars do not exhibit any net migration, but oscil-
late back and forth during the tidal cycle. Numerical modeling has allowed further insights on the process 
of tidal bars formation, highlighting the development, over long timescales, of complex but stable riffle and 
pool patterns (Hibma et al., 2003, 2004; van de Lageweg & Feldman, 2018; van der Wegen & Roelvink, 2008; 
Yu et al., 2012). Nevertheless, these studies often consider tidal inlet systems and embayments characterized 
by values of the width-to-depth ratio in the order of 210E  . Consequently, they are not representative of a large 
class of tidal channels and creeks occurring in coastal wetlands networks and in the tide-dominated parts of 
deltas, where the width-to-depth ratio is typically one order of magnitude smaller (e.g., Marani et al., 2002).

In this work, we tackle the problem of analyzing the incipient formation of bars in landward converging mi-
cro-tidal streams (i.e., with tidal amplitude of one order of magnitude smaller than the average flow depth) 
by means of a two-dimensional mathematical model where relevant features of tidal environments, namely 
the common tide-induced seaward width expansion (e.g., Dalrymple & Choi, 2007; Nienhuis et al., 2018), 
and the unsteady character of the flow, are properly included. We identify two limit cases: first, the “estu-
arine case,” concerning rivers debouching into an open sea (Figure 1a); second, the “coastal case,” con-
sisting of tidal channels distinguished by the total absence of a fluvial supply of freshwater and sediment 
(Figure 1b). Despite the scientific interest, this kind of problem bears a significant practical motivation. 
Indeed, the presence of migrating sequences of scour and deposit induces a preferential path for erosion on 
channel banks, affects channel navigation, the management of fluvial structures, and the feasibility of river 
regulation works.

The morphodynamics of estuaries, in which both the fluvial and tidal forcing concur to determine the 
flow field, has been poorly explored, being mainly limited to the investigation of the long-term equilibrium 
profile (e.g., Bolla Pittaluga et al., 2015; Guo et al., 2014; Seminara et al., 2012), along with some recent 
numerical simulations that have explored the morphodynamic evolution of large scale estuarine systems 
(Guo et al., 2015; van de Lageweg & Feldman, 2018). However, a theoretical study dealing with the forma-
tion of bars in these peculiar transitional systems is still absent. Comparatively, tidal bars in the coastal case 
received a considerable amount of attention (see the references mentioned hereinabove). Nevertheless, a 
set of various fundamental issues are still unsettled, closely tied with field and empirical evidences show-
ing how sediment transport in tide-dominated channels tends to vanish as the bed profile approaches its 
equilibrium state, in turn preventing bars formation in such conditions (e.g., Friedrichs, 1995; Lanzoni & 
Seminara, 2002; Tambroni et al., 2005). One is then readily faced with a natural series of questions: what 
are the main differences between bars formed in the coastal case with respect to the estuarine case? If tidal 
bars do not form at equilibrium, when do they arise? Is their spatial and temporal development affected by 
the evolutionary process of the system?

In chapter 2, we show that the study of tidal bars in estuaries and tidal channels can be framed within the 
same theoretical framework. The problem can be tackled mostly analytically by means of a perturbation 
approach recognizing that typically, variations of the channel geometry affect flow and bed topography on a 
spatial scale that is much longer than bars wavelength. The main novelty of the work consists in the model 
proposed: a semianalytical approach allows to detect and isolate the main physical mechanisms and factors 
controlling the process of incipient bars formation, which we handled by means of a linear stability analysis 
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in chapter 3. Subsequently, the model is applied to give an answer to the above-raised questions (chapter 4). 
We observe that, whereas bars in micro-tidal estuaries arise due to an intrinsic instability of an equilibrium 
state of the system similarly to their fluvial counterpart, bars in tidal channels crucially depend on the past 
and actual temporal stage of the bed profile in its evolution toward equilibrium. We discuss the implications 
of our findings along with the main limitations of the model in chapter 5. Finally, chapter 6 is devoted to 
some concluding remarks.

2.  Formulation of the Problem
The aim of this chapter is to build a unified physically based model to study bars formation in micro-tidal 
estuaries and tidal channels. To achieve this goal, we place in a two-dimensional framework relying on 
a depth-averaged shallow water formulation in accordance with many previously developed bars models 
(e.g., Callander,  1969; Colombini et  al.,  1987; Parker,  1976). We consider the flow in a well-mixed tidal 
stream with a cohesionless bed consisting of homogeneous sediment with median grain size d* (from here-
inafter the superscript * denotes dimensional quantities), bounded seaward by a tidal sea. The possible 
effect of wind waves is herein neglected, with the banks assumed to be nonerodible. A Cartesian reference 
frame is adopted, with x* and y* indicating the longitudinal and transversal coordinate, respectively, with 
x*  0 at the tidal sea and increasing upstream.

Figure 1.  (a) Satellite image of a micro-tidal estuary along the coast of Papua Nuova Guinea (  6 35E  S, 147 49E  E), with 
the peculiar funnel-shape planimetric morphology. (b) Alternate bars in a tidal channel bounded by tidal flats in the 
Alaska region (USA, 60 26E  N, 145 30E  W). From Google Earth, Digital Globe (2021).

(b)

(a)
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Spatial variations of the channel geometry are taken into account, as 
sketched in Figure  2. In natural tidal environments, it is common-
ly observed a gradual width increase toward the mouth, which can be 
adequately approximated by an exponential law (e.g., Davies & Wood-
roffe, 2010; Langbein, 1963; Lanzoni & D’Alpaos, 2015; Lanzoni & Semi-
nara, 1998; Pillsbury, 1940):

B B B B
x

L
u m u

c

* * * * *

*
( )exp ,   









� (1)

where L
c

* is the so-called convergence length, B
m

*  the halfwidth at the 
mouth, and B

u

* the halfwidth asymptotically reached upstream that is not 
affected by tidal processes (from hereinafter we indicate with the suffixes 

u and m, the values of a variable in the upstream river and at the mouth, 
respectively). Equation 1 holds for both the coastal and estuarine case; 
however, the former is characterized by a vanishing value of the quantity 
B

u

* and by a finite length L* , while the latter is assumed to be infinitely 
long landward.

It is worth to observe that in the present problem different spatial scales 
come into play: first, the planimetric dimension of bars is related to the 
channel width; accordingly we can consider a characteristic width B

r

* , 
coinciding with B

u

* and B
m

*  in the estuarine and coastal case, respectively 
(from hereinafter the subscript r denotes a reference scaling quantity). 
Second, the convergence length L

c

* governs the rate of variation of the 
smooth finite widening toward the mouth (see Equation 1). Third, in riv-
erine estuaries hydrodynamic processes are affected by the sea level var-
iations over a distance, the so-called backwater length L

b

* , defined as the 
ratio between the uniform flow depth D

u
* and the bed slope E S (e.g., Paola 

& Mohrig, 1996). The backwater length is a key quantity for the investi-
gation of various processes in coastal systems, such as the formation of 
stratigraphic patterns or avulsion phenomena (i.e., a sudden event where 

flow diverts out of an established river channel into a new path) (e.g., Chatanantavet et al., 2012; Fernandes 
et al., 2016; Jerolmack, 2009; Slingerland & Smith, 2004). By performing an analysis of several natural tidal 
streams (see Table 1), we note that in estuaries B

r

* is typically much smaller than both L
c

* and L
b

* , which in 
turn have values of the same magnitude. Differently, in tidal channels the convergence length has usually 
the same order of the finite length of the channel L* . Consequently, assuming L

b

* , L* and L
c

* in the order of 
310E   m–  610E   m and *

rE B  in the order of 210E   m–  310E   m, means that the ratio of these different spatial quantities is 
typically well below unity. This observation suggests to introduce a parameter E  :
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* .

Summarizing, in tidal streams two spatial scales are found to play a crucial role to study bedforms formation:

x
x

B

x

L

x

r r

  
*

*

*

*
,

Short  bar scale Long  channel scale

 
 
  

,� (3)

with E  that governs how flow and bed topography are affected by width variations. We highlight that chan-
nel widening is smooth in the sense of Equation 2, which sets the upper bound of validity of the present 
formulation (i.e.,   (1)E   ). Thus, the model is expected to not be valid in the case of strongly convergent 
tidal channels (see e.g., Friedrichs & Aubrey, 1994; Lanzoni & Seminara, 1998) or topographic expansions 
(e.g., Shaw et al., 2018; Sittoni et al., 2014; Tambroni et al., 2019). In order to simplify the formulation, it 
is useful to represent the physical domain into an equivalent rectangular one by introducing the following 
transversal coordinate ˆE y (e.g., Hall, 2005; Repetto et al., 2002):

Figure 2.  Geometrical scheme of the micro-tidal estuary adopted in the 
present formulation. The planimetric view describes both the (a) estuarine 
case, and (b) the coastal case, in which the bidirectional flow is highlighted 
by the blue arrow. The latter case is characterized by a finite length *E L  . The 
convergence length *

cE L  is the distance over which the width at the mouth 
reduces by a factor E e (i.e.,  2.72E e  ) (e.g., Davies & Woodroffe, 2010). Panel 
(c) presents a detail of a reference cross-section, where *E  denotes the bed 
elevation, given by the difference between the water surface elevation *E H  
and the flow depth *E D  .

(b)

(c)

(a)
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   , ,ˆ yy B y B
B� (4)

so that ˆE y runs between (  1,1E  ).

We now introduce the St. Venant equations of shallow water flow, coupled with the Exner equation stating 
the sediment mass conservation. In the formulation of the momentum balance, Coriolis forces and possible 
effects due to density currents are neglected, as usually appropriately done in the present kind of problems 
(see e.g., de Swart & Zimmerman, 2009; Seminara & Tubino, 2001; Ter Brake & Schuttelaars, 2011). The 
recognition of the two spatial scales (Equation 3), along with the coordinate transformation (Equation 4), 
lead to the following system of partial differential equations:
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where the variables of the problem are expressed in a dimensionless form to remove scaling effects. We have 
conveniently defined:

  * * * * * * *( , ) ( , ), , ,r r rU V U U V D D D H H H� (6a)

        * * * *2 * * * *3 * * 1( , ) ( , ), ( , ) Δ ( , ), ,x y r x y sx sy sx syU q q g d q q t t� (6b)

where (  * *,E U V  ) are the longitudinal and transversal components of the depth-averaged velocity vector, 
(  * *,x yE  ) the bed shear stresses, (  * *,sx syE q q  ) the sediment flux components per unit width, *E H  is the water surface 
elevation above some reference level, *E D  is the flow depth, *E t  is time, *E  is the water density,  * * 2 /T  is 
the angular frequency of the tidal wave with period *E T  , *E g  is the gravity acceleration, and ΔE  is the relative 

Case Type a* (m) D
r
* (m) L

r
* (km) L

c
* (km) B

r
* (m) E a (−) E  (−)

Venice#1a Coastal 0.4 4 4.3 3.9 121 0.1 0.028

Venice#2a Coastal 0.4 2.8 2.1 1.3 109 0.14 0.053

Venice#3a Coastal 0.4 2.6 1.6 1.3 45 0.15 0.028

Venice#4a Coastal 0.4 3.8 1.9 1.8 63 0.11 0.032

Exp#2b Coastal 0.026 0.09 0.022 0.031 0.4 0.29 0.018

Rotterdamc Coastal 1 11.5 37 56 1400 0.09 0.038

Teesc Coastal 1.5 7.5 14 5.5 600 0.2 0.043

Magrad Estuarine 0.15 3.9 39 1.5 60 0.04 0.003

Columbiae Estuarine 1 10 240 25 1500 0.1 0.006

Elbee Estuarine 2 10 77 42.0 250 0.2 0.003

Frasere Estuarine 1.5 9 108 215 750 0.17 0.007

St. Lawrencee Estuarine 2.5 7 330 183 19,000 0.36 0.057
aSources: Toffolon and Lanzoni (2010). bTambroni et al. (2005). cTodeschini et al. (2008). dBolla Pittaluga et al. (2014). 
eLanzoni and Seminara (1998).

Table 1 
Relevant Parameters for Different Tidal Channels in Natural and Laboratory Settings
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submerged sediment density (herein set equal to 1.65). Furthermore, a number of dimensionless parame-
ters arise:

     


* *3* * * * *

* * * * *2
Δ, , , Ψ ,

(1 )
r r r

r
r r r r r

g dB B g H
U p D U D U

� (7)

where E  is the ratio between the time required for a tidal wave to run along a reach of length *
rE B  and the 

tidal period, rE  is the channel aspect ratio (i.e., half width-to-depth ratio), E  is the ratio between the typical 
hydrodynamic and morphological timescale, and E p is the sediment porosity.

Different scaling quantities distinguish estuaries and tidal channels. In the estuarine case, *
rE H  , which meas-

ures the scale of variations of the free surface, is assumed to coincide with *
uE D  that, along with *

uE U  , rep-
resent the values that would occur in uniform flow conditions for a straight channel with width *2 uE B  . As 
a consequence, the parameter ΨE  is equal to 1 2

/F
u

 , with F U g D
u u u
 * * *

/  the Froude number. Essentially, 
the latter scaling states that the estuary is dominated by riverine processes, with variations of the water 
surface elevation that are proportional to the kinetic energy of the current in the momentum balance (i.e., 
 U gu

* *2
/  ). Differently, in tidal channels normal flow conditions become meaningless due to the absence of 

an upstream riverine reach, and an appropriate re-scaling is needed; an arguable choice, is to scale the flow 
depth with the depth at the mouth *

mE D  , employing the tidal amplitude *E a  to scale the variations of the free 
surface, and considering *

rE U  as the speed of a small amplitude inviscid tidal wave (i.e., * * *
r mE U g D  ) (Sem-

inara et al., 2010). The parameter ΨE  is found to coincide with the ratio between the scaled tidal amplitude 
a a D

r
 * *

/  and the square of the Froude number 2
rE F  , noting that for values typical of micro-tidal channels 

this ratio is of order one. In overall, this scaling physically translates in values of *
rE D  ranging in the order of 

1  m– 10E   m, * 1rE U   m/s (i.e., 2 210uE F  ), and a D
r

* *
/  10

1  , which are common in typical micro-tidal estuar-
ies and tidal channels found in nature (Friedrichs & Aubrey, 1994; Lanzoni & Seminara, 1998; Seminara 
et al., 2001). In addition, we note that E  and E  are typically small parameters since E  is found to fall in the 
range 310E  –  110E  for a semidiurnal tide (i.e.,  * 410E   s−1), whereas E  is about 510E  to 610E  as the grain size in 
tidal environments typically falls in the range of medium-fine sand (i.e., * 410E d   m).

Closure relationships are required to express the shear stress and sediment transport rate in terms of the 
governing variables of the problem (i.e., , , ,E U V D H ). This is achieved through a “local equilibrium” approx-
imation, which is justified by the slowly varying character of the flow field either in space and time (e.g., 
Redolfi et al., 2021; Tubino, 1991). In other words, (  ,x yE  ) and (  ,sx syE q q  ) are computed in terms of the local 
value of the flow variables. Thus, following a widely adopted procedure the bottom stress vector is defined 
as:
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1

2 2 2( , ) ( , )( ) ,x y fC U V U Vτ� (8)

where fE C  is a friction coefficient, estimated through the Manning-Strickler formula:

   
* *1/6

1/2 1/2 1/6 1/2
*

, ,s r
f fr fr

k DC C D C
g

� (9)

with *
sE k  the Gauckler-Strickler coefficient.

The Einstein scaling (Einstein, 1950) is used to express the sediment transport rate in terms of a sediment 
load function ΦE  , computed through the formula proposed by Engelund and Hansen (1967), which includes 
the contribution of both the bedload and suspended load fraction:

  
0 05

1 5 2
. , ,

/
*

* * *
C

g d
f  


| |
� (10)

with E  the Shields parameter. Following a classic argument, the direction of the local sediment transport 
vector, given by the angle E  , accounts for two contributions (see e.g., Blondeaux & Seminara, 1985; Enge-
lund, 1981; Parker, 1984): first, the direction of the flow velocity vector; second, the correction due to the 
downslope pull of gravity in the transverse direction, whose magnitude is quantified by the empirical pa-
rameter E r . Thus, we define:
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  ( , ) (cos ,sin )Φ,sx syq qsq� (11a)


 

 
   


2 2 1/2 2sin ( ) (Ψ ),r

r

rV U V F H D
y� (11b)

with E r assuming values between 0.3 and 0.6 (e.g., Olesen, 1983; Talmon et al., 1995).

Finally, to solve system (Equations 5a–5d) proper boundary conditions have to be imposed. First of all, we 
express the physical requirement the channel walls to be impermeable both to flow and sediment fluxes:




    0, 1,ˆdBU V y
d� (12a)




    0, 1,ˆsx sy
dBq q y
d� (12b)

where we note that the quantity  ( , )U q dB dsx /  derives from the expression of the unit vector locally nor-
mal to the banklines. At the channel mouth, the presence of a tidal sea induces an oscillation of the free 
surface (  *E a  ), which as anticipated, is assumed to be small with respect of *

rE D  in both the estuarine and coastal 
case. On the contrary, the definition of the landward boundary condition is case specific and deserves a 
more thorough discussion that we postpone to the next chapter.

3.  Linear Stability Analysis
The theoretical model developed in the previous chapter is general and, with the definition of proper bound-
ary conditions, can be easily employed to study the flow and bed topography evolution in a wide range of 
environmental settings. In the following, we draw the attention to the main purpose of the present work: 
investigating bars formation in tidal streams by means of a linear stability analysis.

In general, a linear stability analysis is a mathematical tool that allows to investigate the conditions whereby 
some (undisturbed) reference state of the system loses stability to perturbations small enough for lineariza-
tion to be a valid approximation (e.g., Seminara, 1998). Typically, for an infinitely long straight channel fed 
upstream by a constant water discharge, the plane uniform turbulent flow over a sloping bed, which corre-
sponds to equilibrium conditions, can be appropriately chosen as a basic state (e.g., Colombini et al., 1987; 
Parker, 1976; Seminara, 1998). This means that if we imagine the basic uniform flow to be perturbed by 
some (strictly infinitesimal) disturbances, under suitable circumstances we will observe the formation of 
sequences of bars in a periodic fashion, which are unaffected by the conditions at the inlet and outlet 
boundary of the domain.

The picture is made more complex in the case of tidal streams due to the combined effects of both channel 
widening and tidal motion. As a consequence, in the present problem the basic flow is no longer uniform, 
being in general a function of time and space. For example, this concept can be easily understood by consid-
ering a river approaching a standing body of water (e.g., a lake or a sea). Depending on the flow conditions, 
a spatial acceleration/deceleration follows a decrease/increase of the water surface elevation, which is ulti-
mately fixed by the level of the receiving basin. The length over which the flow is no longer uniform, is the 
previously defined backwater length *

bE L  .

Let us consider a perturbed flow and bed topography of the form:

     2
0 1( , ) ( , , , ) ( , ),ˆU U t U x y t  � (13a)

      2
0 1( , , ) ( , , , ) ( , ,ˆ ˆ )V V y t V x y t  � (13b)

     2
0 1( , ) ( , , , ) ( , ),ˆD D t D x y t  � (13c)

     2
0 1( , ) ( , , , ) ( , ),ˆH H t H x y t  � (13d)

where E   is the small (strictly infinitesimal) amplitude of the disturbance, and the subscripts 0 and 1 indicate 
the basic state and the first order perturbation, respectively.
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A few words are required to explain the structure of the expansion (Equations 13a–13d). Tidal sea oscil-
lations and spatial variations of the banklines deviate the response of the channel from the uniform flow 
conditions. In turn, those variations are assumed to be gradual along the spatial coordinate E  , as indicated 
by the magnitude of the parameter E  . Typical values of E  , as reported in Table 1, suggest that the latter pa-
rameter is of the order 210E  . Physically, this means that at the spatial scale of bars the flow is analogous to the 
one that occurs in an infinitely long channel of the same (local) width (  *2E B  ) (Hall, 2005). Hence, as suggest-
ed by several authors (e.g., Tambroni et al., 2017; van der Wegen & Roelvink, 2008), as a first approximation 
the morphodynamic response adjusts to the local channel characteristics, which globally, are slowly var-
ying functions of time and space. It is worth noticing that in Equation 13b, the principal component of 
the cross-velocity 0E V  is multiplied by E  ; physically, we are assuming the basic flow to be one-dimensional, 
though allowing a possible (small) correction induced by channel widening, as suggested by the boundary 
conditions (Equations 12a and 12b). Furthermore, the nonlinear interaction between the “free” ( E   ) and the 
“forced” perturbations due to spatial width variations ( E  ) is herein neglected (see the detailed works by 
Luchi et al., 2011; Monegaglia et al., 2019; Seminara & Tubino, 1989; Tubino & Seminara, 1990). Ultimately, 
we observe that the definition of the basic state as a general function of both the spatial and temporal co-
ordinate represents a main novelty in the context of previously developed linear stability analysis for bars 
formation. Its structure, which enables to unify the two extreme cases of tidal channels and estuaries in the 
same theoretical framework, will be discussed in the next section.

3.1.  The Basic State

Let us substitute the expansion (Equations  13a–13d) into system (Equations  5a–5d) and retain just the 
leading order terms. By performing a transversal integration of the flow and sediment mass conservation 
equations between  1E  and 1, using the boundary conditions (Equations 12a and 12b), and ensuring the 
coupling with the momentum equation along E  , we find:

 

















 
U

t
U

U H
C

U U

D
r fr

0

0

0 0 0 0

0

4 3
0

| |

/
,� (14a)


  
 

  
 

0
0 0 0 0

1( ) ( ) 0,D dBU D U D
t B d� (14b)


 

 
  

 
2

0 0 0(Ψ ) ( ) 0,r sxF H D Bq
t� (14c)

which represents a set of partial differential equations in the unknowns (  0 0 0, ,E U D H  ). It is worth noticing 
that: first, the system (Equations 14a–14c) is nonlinear; second, by applying appropriated boundary condi-
tions it can be solved analytically, taking advantage that there is a third small parameter in the formulation, 
the scaled tidal amplitude. In order to better investigate the nature of the basic state, we analyzed separately 
the estuarine and coastal case.

3.1.1.  Estuarine Case

The formation of a backwater profile as the river approaches the tidal sea, constrains us to seek for a suitable 
definition of the equilibrium conditions, whose solution represents the basic state to be perturbed. Spe-
cifically, the Exner Equation 14c provides the basis to determine a tidally averaged equilibrium, achieved 
when the bed elevation does not experience any net aggradation/degradation in a tidal cycle (Bolla Pitta-
luga et al., 2015). At the upstream end, normal flow conditions are assumed to take place, and a steady 
freshwater discharge per unit width *

uE q  along with a bed slope E S are given as external inputs. System (Equa-
tions 14a–14c) can then be solved analytically by means of a perturbation approach, as first derived by Sem-
inara et al. (2012). They recognize that an asymptotic solution can be found by expanding each unknown 
physical variable of the problem in terms of the small parameter E a , the scaled tidal amplitude (for the 
complete solution, see Appendix A). A comparison with numerical simulations shows that the analytical 
solution provides satisfactorily results up to  0.3E a  (Bolla Pittaluga et al., 2015; Seminara et al., 2012).
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3.1.2.  Coastal Case

We now proceed to investigate the basic state of a tidal channel in which no freshwater and sediment dis-
charges are supplied from the landward end of the channel (   1E  ). A number of field observations and 
numerical studies have highlighted that tidal channels tend asymptotically to an equilibrium condition 
characterized by a shoaling bed profile, shallowing landward, with a nearly vanishing net sediment flux in 
a tidal cycle (e.g., Friedrichs, 1995; Lanzoni & Seminara, 2002; Todeschini et al., 2008), a behavior further 
supported by the laboratory experiments of Tambroni et al.  (2005). This means that at equilibrium, the 
maximum velocity attained throughout the channel tends to coincide with the critical velocity for sediment 
motion. Such a state is called by Seminara et al. (2010) a “static” equilibrium. In real world a static equilibri-
um is hardly reached due to various mechanisms that cause departure from this ideal condition, and a “dy-
namic” equilibrium criterion was suggested by several authors (e.g., Friedrichs & Aubrey, 1996; Pritchard & 
Hogg, 2003), meaning that at equilibrium, the flow velocity must be spatially constant but may have a value 
slightly greater than that required for incipient sediment motion.

Regardless the equilibrium criterion that we may pursue, a fundamental conceptual problem arises: do 
tidal bars form at equilibrium? Or in other words, is the equilibrium condition, either static or dynamic, the 
proper basic state to study bar formation in tide-dominated channels? From what it has been introduced so 
far, it seems quite evident that even if the dynamic equilibrium criterion is accepted, bars hardly form due 
to the very weak currents (i.e., low values of the sediment flux as the Shields number tends to vanish), with 
the timescale of the transient growing process being extremely large. This subtle problem was recognized 
implicitly in the numerical tests carried out by van der Wegen and Roelvink (2008), who were constrained 
to arbitrarily linearize the starting initial bed profile for their simulations. Furthermore, a linear bed profile 
is a commonly employed initial condition for numerical performances, and represents the basic state in 
several previously developed linear stability analysis focusing on short tidal embayments (e.g., Schuttelaars 
& de Swart, 1999; Ter Brake & Schuttelaars, 2011; van Leeuwen & de Swart, 2001).

In order to build a proper theoretical framework, we rely on the asymptotic approach proposed by Seminara 
et al. (2010), which is appropriated for the short tidal channels (i.e., the channel length is much shorter 
than the tidal wavelength) typically observed in coastal wetlands and lagoons at equilibrium. The bulk of 
the analytical technique employed by the latter authors, consists in dividing the channel into two regions: 
an outer region, where the flow depth (  *E D  ) scales with the inlet depth (  *

mE D  ), and a smaller inner region ad-
jacent to the moving shoreline, which behaves as a boundary layer, where a proper re-scaling is needed. As 
in the present problem we are not in equilibrium conditions, *E D  scales in every part part of the domain with 

*
mE D  . Consequently, the upstream boundary condition is assumed to behave as an impermeable barrier (i.e., 
  1| 0E U  ). At the leading order, Seminara et al. (2010) found the following expression for the velocity field:

   
         

* * *

0 * * *0

Λ 11 exp , , Λ .c c
c

c m

L df L LU L
D L dt L a g D

� (15)

We note that differently from the estuarine case, the basic flow is a function of both space and time. Velocity 
attains its maximum at the channel mouth, until reaching the zero value at the channel end. Furthermore, 
we highlight that despite Equation 15 has been formally derived in the outer region of a tidal channel at 
equilibrium, its validity may be in principle extended to any tidal channel configuration even far from equi-
librium provided the flow depth scales with the inlet depth.

3.2.  Linear Order

We then move to the order E   , namely the linear perturbation state. The stability analysis employed follows 
a classical argument, and it is identical for both the estuarine and coastal case. We just observe that due to 
the linear nature of the analysis, as stated by the expansion (Equations 13a–13d), terms of order ( )E    that 
account for nonlinear effects on (free) bars formation, are neglected. Thus, the boundary conditions are 
defined as:

   1 1 0, 1,ˆsyV q y� (16a)

H U D D U1 0 0 1 0 10 0| | Estuarine case    , ( ) ,� (16b)
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H U1 0 1 10 0| , .   | Coastal case� (16c)

The above conditions allow for the expansion of the perturbations in Fourier series along the transverse-di-
rection ( ̂E y ) as follows:

  1 1 1 1 1 1{ , , } { ( , , ), ( , , ), ( , , ) ,ˆ} ( )mU D H x t x t x t G y  � (17a)

1 1( , , ) ( ),ˆmV x t P y� (17b)

where the transverse structure of the different modes ( E m ) reads:

    
     

   
( ) sin , ( ) cos , ( odd),

2 2
ˆ ˆˆ ˆm m

m y m yG y P y m� (18a)

    
     

   
( ) cos , ( ) sin , ( even).

2
ˆˆ

2
ˆˆm m

m y m yG y P y m� (18b)

By substituting from (Equations 13a–13d) and (Equations 17a and 17b) into the governing differential sys-
tem (Equations 5a–5d), and performing the linearization procedure, we obtain:

0 01 1 1 1 1
0 4/3

0 00

| | 4Ψ 2 0,
3

r frC U U
U

t x x U DD



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    
� (19a)
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where M m B
m  

( )1 2
1  /  , ΦrE  is the sediment load function relative to the reference flow conditions, and 

R r
r r

  1 2/
/  . Thanks to the linearity of the problem, the response of each Fourier component can be inves-

tigated independently of the others. The complete linear solution can be then reconstructed by superimpo-
sition. Each mode is a function of the position along the channel (   ( )E M f  ), in a way similar to the prob-
lem of channels formation in alluvial fans recently tackled by Tambroni et al. (2019). Moreover, we observe 
that the effect of spatial width variations is felt at the spatial scale of bars through 0E D  and 0E U  . Ultimately, it 
is the definition of the flow depth and of the longitudinal velocity at the leading order that distinguishes the 
estuarine from the coastal case.

4.  Results
In this chapter, we illustrate the outcomes of the linear stability analysis described in chapter 3. As a first 
step, the basic state is computed analytically from system (Equations 14a–14c); then, we solved numerically 
the linear system (19a-d) by means of a predictor-corrector explicit finite difference scheme (Bhallamudi & 
Chaudry, 1991; MacCormack, 1969). At the starting point of the simulations, we employed an initial condi-
tion in the form of a uniform small random perturbation of the bed topography.

First, we present the results for the estuarine case. The reference (equilibrium) conditions can be uniquely 
defined once the Gauckler-Strickler coefficient (  *

sE k  ) and the following set of three dimensionless parameters 
(  , ,u u uE d  ) are prescribed, with  ** /u uE d d D  the relative roughness. Initially, it is instructive to separate the 
effect of channel convergence by considering a straight tidal estuary, where * *

u mE B B  (i.e.,  *
cE L  ). As a 

consequence, ˆE y turns to coincide with E y , and the lateral boundaries lose the spatial dependency from E  . This 
configuration can be representative of an artificial channel in presence of embankments to prevent lateral 
erosion as encountered in many regulation works commonly employed in highly populated areas.
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In the example reported in Figure 3, profiles of the equilibrium variables are plotted in terms of the long 
spatial coordinate E  for a given value of the scaled tidal amplitude. Due to the effect of the tidal forcing, 
a concave down bed profile (   0 0 0E H D  ) develops, characterized by a steeper region at the mouth of 
the channel. The deepening at the inlet, which leads to a progressive reduction of the local aspect ratio, 
induces a slowdown of the river current (i.e., low values of the Shields number). For the set of parameters 
employed, uniform flow conditions (i.e., | |U D

0 0
1   ) are recovered at   0.5E  or, in other words, when 

the length of the channel is a half of the backwater length *
bE L  . We note that the upstream fluvial-dominated 

reach (   0.5E  ) is not directly affected by the tidal wave; this notwithstanding, the equilibrium bed elevation 
undergoes a gradual deepening with respect of the case when the tide is absent. Overall, the magnitude of 
the tide-induced scour is in the order of just a minor fraction of the uniform flow depth, ranging from about 

*0.2 uE D  at the mouth to *0.1 uE D  in the landward reach, as a consequence of the assumed small value of the 
dimensionless tidal amplitude.

The equilibrium condition reported in Figure 3 provides the basic state over which the disturbances are 
superimposed. Figure 4a shows the time evolution of the amplitude of the bed perturbations (   1 1 1E     ). 
A sequence of scours and deposits in the form of alternate bars slowly develops, amplifies, and migrates 
downstream leaving an unperturbed domain behind (see also Figure  4c). Several numerical and exper-
imental works captured this latter behavior, formally proved by Federici and Seminara  (2003), namely 
the observation that any local perturbation tends to be convected downstream rather than being spread 
throughout the whole channel (Defina, 2003; Fujita & Muramoto, 1985; Redolfi et al., 2020; Wu et al., 2011). 
Moreover, in the upstream part of the channel the rate of migration is in the order of 10 m per day, nearly 
halved in the seaward reaches. Not surprisingly, approaching the coast, bar growth and celerity are gradual-
ly damped. This is consistent with the well-known behavior arising from the fluvial bar theory (e.g., Tubino 
et al., 1999), whereby the growth rate of the fastest growing perturbation is an increasing function of the 
aspect ratio, which in turn decreases seaward in the present case. In Figures 4b and 4a, comparison between 
the evolution of 1E   at three different locations along the channel as a function of the dimensionless time is 
shown. We note that, in spite of the modest deepening induced by the tidal wave, which in turn implies a 
small reduction of the local aspect ratio moving downstream, after nearly 60 tidal cycles the value of the bed 

Figure 3.  Equilibrium profiles of the governing variables (  0 0 0 0, , ,E U D H  ) for a straight micro-tidal estuary, in terms 
of a given value of the scaled tidal amplitude ( E a ). The bed elevation ( 0E  ) is computed as the difference between the 
water surface elevation (  0E H  ) and the flow depth (  0E D  ). The tidal oscillation leads to a steeper bed slope as the sea is 
approached, with a consequent increase of 0E D  and a reduction of the flow velocity ( | |U

0
 ). The dashed lines stand for 

the solution of the water surface and bed elevation in the absence of tide (i.e.,  0E a  ). The reference parameters are: 
  10uE  ,   0.8uE  ,  0.001uE d  ,  0.3E a  , and * 30sE k   m1/3 s−1.
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perturbations in proximity of the mouth are one order of magnitude lower than the ones in the upstream 
reaches. Furthermore, the plots indicate that in the seaward reach bars tend to lengthen. Nevertheless, 
differently from the growth rate, this effect is rather moderate, being the bar wavelength less sensible to a 
small variation of the reference parameters with values in the order of *10 uE B  . Summarizing, tidal oscillations 
tend to prevent downstream migration of bars, along with a substantial reduction of the growth rate and a 
slightly increase of their wavelength.

We now relax the assumption on the straight planform shape of the estuary, by allowing width to vary in 
space according to Equation 1. To analyze the present case, we refer to a real-world micro-tidal estuary, the 
Magra River, Italy. The morphodynamic equilibrium of the terminal reach of the Magra River has been 
analyzed in detail by a recent work of Bolla Pittaluga et al. (2014). In Figure 5a, the basic state is reported, 
which shows a radically different picture with respect to the straight channel planform configuration: as 
width increases seaward, flow depth decreases along with the flow velocity to ensure flow and sediment 
mass conservation. This leads to channel shallowing toward the estuary mouth, which completely over-
whelms the tide-induced scour. This result is not surprising, if we remind the structure of the solution of 
Seminara et al. (2012), where channel widening appears at the leading order, whereby river-tidal interac-
tions appear just at successive orders of approximation (see Equations A1a–A1c). Nevertheless, we observe 
that to compensate the two opposing effects in terms of the tidal forcing, a value of E a nearly equal to 0.6 (i.e., 

* 1.5E a   m) would be needed.

In Figure 6a, we report the temporal evolution of the maximum bed perturbation amplitude ( | |
1 max

 ), rela-
tively to the first three lateral modes in the terminal widened reach corresponding to nearly the last 1500E   m 

Figure 4.  Evolution of the bed perturbation amplitude (  1E   ) with respect to the equilibrium configuration reported in Figure 3 starting from random distributed 
disturbances assigned at  0E t  . In panel (a), the spatial distribution of 1E   is reported for different temporal instants; in panel (b), the temporal evolution of 1E   is 
plotted at three different specified positions along the channel. Moving seawards, bar migration and amplification is progressively damped. Panel (c), the two-
dimensional plot of the bed topography at  60E t  . The reference parameters are:   10uE  ,   0.8uE  , 0.001ud   , 0.3a   , and * 30sE k   m1/3 s−1.
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of the estuary (i.e.,   0.08E  ). The plot suggests that the linear theory selects the second mode (i.e., central 
bars) as the fastest growing mode, which displays an exponential growth after about 800 tidal cycles. In 
Figure 6b, the spatial evolution of the alternate and central bar mode, at a given time, is shown. Differently 
from Figure 6a, we extend the domain up to   0.18E  to show a peculiar feature: moving seawards, around 
  0.08E  there is a transition of the dominant mode, passing from alternate bars to central bars, due to chan-
nel shallowing that promotes bars formation with higher growth rates. Moreover, the linearity of the model 
allows to reconstruct the solution by superimposition, returning a complex bed topography as reported in 
the two-dimensional plot of Figure 6c.

The flow depth reduction in the widened reach leads to a sharp increase of the local value of the aspect ratio, 
as shown in Figure 5b. It is well known from river bar stability theories (e.g., Blondeaux & Seminara, 1985; 
Fredsøe, 1978; Parker, 1976) that large values of E  promotes the development of multiple row bars (i.e., 
 1E m  ). We observe that, while E  increases being a destabilizing factor, the local Shields number decreases 

trying to stabilize the system. However, the former parameter prevails in determining the bed instability. 
This can be understood by considering the Exner equation, and in particular, the transversal component of 
the sediment flux. In addition, the Exner equation provides a physical explanation of such instability, which 

Figure 5.  (a) Spatial distribution of the equilibrium variables for the Magra River estuary, showing the channel 
shallowing typical of diverging flows moving seaward. The dashed lines coincide with a straight fluvial channel in 
uniform flow conditions (i.e.,  0E a  ,  1mE B  ). In panel (b), it is reported the comparison between the local aspect ratio 
E  for the converging profile (continuous line) and for an equivalent channel with a constant width equal to *

uE B  taking 
into account the small tidal oscillation (dashed line). We note that in the constant width case, E  is not equal to uE  , 
but slightly decreases toward the mouth due to the weak effect of the tide. Reference parameters are (see also Bolla 
Pittaluga et al., 2014):   10.2uE  ,   0.39uE  ,  0.00017uE d  ,  0.04E a  , and * 30sE k   m1/3 s−1.
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depends on the phase-lag between the response of the bed profile and the sediment transport. Specifically, in-
stability is driven by a delicate balance between the destabilizing effect of the transverse shear stress (i.e., 1E  )  
and the stabilizing effect of the gravitational pull of sediment proportional to the transverse bed slope (see 
for a detailed explanation Colombini et al., 1987; Seminara & Tubino, 1989). We note that the latter term is 
proportional to m2

/  , hence it inhibits the development of higher-order modes.

We now proceed to investigate the case of tidal channels in which no freshwater and sediment discharges 
are supplied from upstream. The linear model is tested by performing a comparison with the results of the 
second experiment carried out in a funnel-shaped tidal channel and described by Tambroni et al. (2005) (see 
their Table 1 for the experimental data set). With reference to the longitudinal bed profile observed at dif-
ferent time steps during the experiment, as shown in Figure 7a, we consider three different bottom config-
urations: a plane bed (i.e., 0 1flatE D  ) corresponding to the initial stage; two approximated linear bed profiles 
calibrated on the basis of the cross-sectional averaged bed topography reported by Tambroni et al. (2005) 
in their Figure 5 after 60 and 100 tidal cycles, respectively. Furthermore, in Figure 7a the final (asymptotic) 

Figure 6.  Evolution of the amplitude of the bed perturbations with respect to the equilibrium configuration of the Magra River reported in Figure 5a, starting 
from a random distributed disturbance. In panel (a), the temporal behavior of the maximum amplitude of the bed perturbations ( | |

1 max
 ) for the first three 

lateral modes in the widened reach. The most unstable mode is the one corresponding to central bars (   2E m  ). Panel (b) shows the spatial evolution of the first 
and second lateral mode at  1200E t  for the last 3000E   m of the estuary (   0 0.18E  ). The shaded light-blue line on the background corresponds to the initial 
random perturbation. At nearly   0.08E  there is a transition of the dominating mode. Panel (c), the two-dimensional plot of the bed topography at  1200E t  , 
where the bed perturbation 1E  has been re-constructed by superimposition of the first lateral two modes. Reference parameters are:   10.2uE  ,   0.39uE  , 

 0.00017uE d  ,  0.04E a  , and * 30sE k   m1/3 s−1.
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equilibrium bed profile is reported, where the flow velocity corresponds to the critical velocity for the sedi-
ment motion *

crE U  , and can be computed as follows (Seminara et al., 2010):




       
    

**

* *1 exp ( 1) ,eqc
eq

c

LLD
L L

� (20a)






 
    

  

* *
* * *

* *, ln 1 ,cr
eq c

max c

U df LL L L
dta L

� (20b)

where *
eqE L  and 

*E L  are the equilibrium length for a convergent and a straight channel, respectively. In Fig-
ure 7b, the maximum speed attained during a tidal cycle in each cross-section is illustrated concerning to 
the simple case of a single sinusoidal function (i.e., ( ) sin( )E f t t  ). The basic flow field (  0E U  ) is computed by 
means of Equation 15. The plot shows the tendency of 0E U  to be spatially uniform as it progressively evolves 
toward its final equilibrium state with the exception of a close region toward the landward end, as observed 
numerically (e.g., Lanzoni & Seminara, 2002; Pritchard et al., 2002; Todeschini et al., 2008) and in field case 
studies (e.g., Friedrichs, 1995; Leopold et al., 1993). From the plot, it is also evident that during part of the 
tidal cycle the flow velocity is lower than the threshold for the sediment motion.

Figure 7.  Leading-order (a) depth and (b) velocity profiles relatively to the second experiment performed in a 
funnel-shaped channel by Tambroni et al. (2005). The reported flow depth was obtained by linearly approximating the 
cross-sectional averaged bed profile observed in the experiment. The superscripts in the legend indicate the different 
time stages of the experimental performance, starting from  0expE t  (i.e., flat bed), till the final (asymptotic) equilibrium 
configuration, where the maximum flow velocity in a tidal cycle its equal to the maximum speed for sediment motion 
(  *

crE U  ). In panel (b), 0
straightE U  is the peak flow velocity for a straight channel at  0expE t  , with 0E U  computed according to 

Equation 20.
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We then proceed to perturb the basic state by taking advantage of the 
different timescales that govern the undertaken problem; that is, we rely 
on the laboratory and numerical observations (see Tambroni et al., 2005; 
van der Wegen & Roelvink, 2008) that the longitudinal profile develops 
on a much slower timescale than the timescale governing the bars forma-
tion. Hence, the basic state 0E D  at a given time can be considered as fixed. 
We consider first a flat bed (Figure 8a): the small, random perturbations 
coalesce and begin to grow in the form of two long waves at the mouth 
of the channel, where the peak velocity (i.e., the peak Shields number) is 
higher (see Figure 7b). In this initial stage, the peak value of the Shields 
parameter, which governs the intensity of the sediment transport, has a 
primary role. We remind that the latter, by means of the Engelund and 
Hansen (1967) formula, establishes a strong nonlinear dependency upon 
the flow velocity (i.e., | | | |qs  U

5 ).

We then proceed to the second phase. As initial condition, we perturbed 
the basic state associated with the bed profile 60

0
expE D  with the bed per-

turbation obtained from the plane bed simulation 1
flatE   , as shown in Fig-

ure 8b. A sequence of scours and deposits starts to grow in the landward 
part of the channel. In this region (from nearly   0.4E  ) the maximum 
value of the flow velocity increases with respect to the initial stages. Fur-
thermore, the local value of the aspect ratio also increases due to channel 
shallowing, while at the same time, seaward reaches are characterized by 
lower values of the Shields number and of the aspect ratio, caused by a 
progressive channel deepening. However, the initially triggered bars still 
amplify, but with a slower growth rate. We note that any net migration 
is not observed, as clearly expected due to the symmetric tidal forcing 
imposed.

To investigate the third phase corresponding to the experimental condi-
tions after 100 tidal cycles, we follow the same methodology previously 
described. The perturbations 60

1
expE   are superimposed to the basic sloping 

bed 100
0
expE D  . Bars are observed to continuously grow landward, without 

significantly changing their wavelength. However, amplification in the 
seaward reach is almost completely ceased. Remarkably, results suggest 
that in this region characterized by a progressive channel deepening, bars 
formed in the initial stages of the channel evolution gradually grow till 
eventually achieving a frozen amplitude pattern where the pre-existing 
bars are not significantly varying in time and any newborn bar is ob-
served to develop. The above findings are supported by the results of the 
laboratory experiments of Tambroni et al. (2005). We try to compare the 
wavelengths resulting from our linear model of Figure 8c with those ob-
served by the latter authors. This choice is motivated from experimental 
observations in the fluvial context (e.g., Fujita & Muramoto, 1985), where 
the selection process of bar wavelength is relatively fast, and therefore, 
can be satisfactorily predicted in the context of a linear theory. On the 
other hand, linear theory does not allow for a direct comparison in the 
advanced phases of the experimental performances, where nonlinear in-
teractions are expected to play a crucial role. As shown in Figure 9, the 
linear model seems to slightly overestimate the observed wavelength, 
being in the order of 3–6 channel widths. Finally, we observe that from 
experimental observations bars are observed to gradually adjust their 
length and height with an increasingly slower rate during the process of 
the bed evolution, an observation pointed out also by van der Wegen and 
Roelvink (2008) in their numerical investigation.

Figure 8.  Spatial evolution of the amplitude of the bed perturbations with 
reference to the basic state reported in Figure 7, at subsequent time steps 
(indicated by the dashed lines with increasing darker colors). In panel 
(a), the flat bed of the channel ( 

1
0

|
t
exp 

 ) is perturbed by a small random 
perturbation, which leads the formation of two long bars in the seaward 
reach of the channel. Subsequently, we employ the channel configuration 
of panel (a) ( 1

60

0

exp
t|   ), at an intermediate time step to perturb the basic 

state corresponding to the experimental time  60expE t  (red dashed line, 
panel b). Finally, in panel (c) we follow the same procedure to analyze 
the instability process at  100expE t  , in which it appears how the initially 
formed bars near the mouth of the channel cease to grow. The bed is 
observed to lose its stability quite fast, nearly after one/two (simulated) 
tidal cycles in all the three configurations.
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5.  Discussion
In this paper, we propose a semi-analytical linear model to study the incipient formation of free bars in tidal 
environments. Differently from previously developed theoretical models, we account for the tide-induced 
seaward width expansion, as commonly encountered in natural tidal channels and estuaries. A novelty of 
the work is represented by the model proposed in chapter 2 that gathers in an unified mathematical frame-
work both the transition of a river into a tidal sea characterized by small tidal oscillations with respect to the 
average flow depth (estuarine case), and the case of a short tidal channel in the absence of a fluvial supply 
of freshwater and sediment (coastal case). By assuming that the ratio between the spatial scale of bars and 
the scale of width variations is small, the problem can be tackled analytically without major complications.

In the context of a linear stability analysis, the main difference between the estuarine and the coastal case 
resides in the definition of the basic state upon which the analysis of the growth/decay of the superimposed 
infinitesimal perturbations is performed. In the former case, bars formation is interpreted as the outcome 
of an inherent instability of the (tidally averaged) equilibrium state. In the latter case, an (almost) vanish-
ing net sediment flux condition distinguishes the equilibrium state of tide-dominated channels. Thus, the 
problem has to be faced from a different perspective. Specifically, we take advantage of the distinct temporal 
scales involved: modifications of the bed elevation can be regarded as high-frequency perturbations with re-
spect to the timescale of bar instability and, naturally, of the hydrodynamic timescale (i.e., the tidal period). 
Hence, the basic flow field describes the propagation of a tidal wave with appropriate boundary conditions 
forced at the channel ends (see Equation 15), while the bed profile is a function of the spatial scale only at 
each instant of the tidal cycle and of the bars timescale.

Results reported in Figure 8 suggest that bars in tidal channels arise far from the equilibrium state of the 
system and, in the ideal absence of flow asymmetries and/or residual currents that prevents any net migra-
tion over a tidal cycle, they oscillate forward and backward in a symmetric fashion. In order to analyze the 
effect of (external) overtides, let us introduce a second harmonic as follows:

   ( ) sin( ) sin(2 ),f t t t� (21)

Figure 9.  Comparison between the observed wavelengths in the experiment performed by Tambroni et al. (2005) after 
200 and 1000 tidal cycles, and the mean predicted wavelength Lw

*  by the linear model after 100 tidal cycles (see the 
bed topography reported in Figure 8c). The spacing between the solid lines corresponds to  10%E  of Lw

*  . The round and 
square markers represent the median values of the observed experimental wavelengths.
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where E  is the scaled amplitude of the second harmonic, and E  is the related phase-lag. We perform some 
simulations, whose outputs are reported in Figure 10, relatively to a flood dominance (   0E  ), namely the 
fact that the flood peak velocity is higher than its ebb value. Consequently, a net bar motion is observed, 
in the order of   210E  in a tidal cycle, corresponding to a net migration  1Δ 10E x  channel widths, a val-
ue comparable with those obtained by the modeling study of Garotta et al. (2006) (see their Figure 16). It 
is worthwhile to observe that the overall behavior of the instability process is unchanged with respect to 
the single-harmonic case. Specifically, in the first temporal stages, just the seaward part of the channel is 
observed to lose its stability to the oscillatory tidal wave (see Figure 10a), whereas the rest of the channel 
remains flat. On the contrary, as the channel evolves and the flow field adapts to this slow variation, bed per-
turbations in other parts of the channel, in particular the landward reaches, start to amplify. In this sense, 

Figure 10.  Spatial evolution of the bed perturbations in the (a) plane bed configuration, and (b) linear bed profile 
measured by Tambroni et al. (2005) after 60 tidal cycles. The dashed lines denote intermediate time steps. In turn, 
continuous lines correspond to the values of 1E   after two (simulated) tidal cycles, where the simulation stops to prevent 
the infinite growth of the instabilities. The perturbation of the basic state is performed following the same procedure 
described in Figure 8. However, differently from Figure 8, the boundary condition at the mouth consists of a secondary 
harmonic with amplitude   0.2E  and a relative phase-lag   0E  , chosen in such way to generate a flood-dominated 
flow field (see Equation 21), which induces a slow landward migration of the bars.
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Figure 10b shows that any newborn bar is not observed in the seaward reach, in which the “old” triggered 
perturbations just continue to grow. Unfortunately, an interpretation in the light of the work of Tambroni 
et  al.  (2005) is difficult because the natural presence of a background “noise” in the experimental tests 
might give rise to repeated new disturbances.

Tidal bars crucially reflect the initial conditions. Considering an initial condition in the form of a line-
arized bottom topography, as commonly employed in numerical modeling (e.g., Hibma et al., 2003; van 
de Lageweg & Feldman, 2018; van der Wegen & Roelvink, 2008), might have sensible consequences for 
the model outcomes and their relative interpretation. In particular, the majority of these works highlights 
that tidal bars start to form in the landward part of the channel. In this region of the domain the local as-
pect ratio, which has a primary role in the instability process as we have seen so far, is higher than in the 
seaward reach. Consequently, we could foresee that, according to the linear theory, bars grow faster in the 
shallow part of the channel. On the other hand, a different behavior might be expected if simulations are 
carried out starting from a flat bed (i.e., the initial channel aspect ratio is spatially uniform). Indeed, this is 
what emerges from the linear model as shown in Figures 8 and Figure 10, where bars start to form near the 
mouth of the tidal channel due to the higher flow velocity in that zone (i.e., higher sediment flux).

We now look at the estuarine case. Here, under suitable circumstances bars arise due to an instability of 
the equilibrium state. For the straight estuary analyzed in Figure 4, tidal currents, which tend to reduce the 
bar growth and migration rate, yet are not necessarily strong to prevent bars amplification. However, we 
might expect that for particularly straight and deep channels close to the critical conditions, even modest 
tidal amplitudes may be sufficient to prevent bars formation approaching the coastline. In the case of a 
real funnel-shaped estuary like the Magra River, the seaward width expansion leads to channel shallowing, 
hence, a progressive increase of the channel aspect ratio, which have a destabilizing effect. The latter factor 
is observed to overwhelm the stabilizing scouring effect performed by the tides, leading higher order lateral 
modes (i.e., midchannel and/or multiple row bars) to be the most unstable ones. In other words, the linear 
analysis suggests that for a set of reference parameters several types of bars might be present in different 
portions of the channel (see Figure 6b), whereas their competition can be studied only with a nonlinear 
model.

Figure 11.  Historical aerial photographs of the Magra River estuary in the (a) 1937 and (b) 1993. An emerged island is clearly visible near the mouth of the 
estuary. The photographs are publicly available at https://geoportal.regione.liguria.it/.

(a) (b)
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The linear analysis suggests that midchannel bars are expected in the Magra River estuary. Indeed, histor-
ical aerial photographs of the Magra River from the 1937 (Figure 11a) and 1993 (Figure 11b), show that 
an exposed island was present in the estuary. In the last decades, arguably due to the recurrent dredging 
activities and other anthropic interventions, the island is no longer visible. Nevertheless, it is interesting to 
observe that the island appeared to be a steady feature. An interpretation in the light of the present model 
is not straightforward: the selected perturbations from the stability analysis are migrating patterns (see Fig-
ure 6b). This latter characteristic hides a more substantial implication than it might appear at a first sight, 
being closely tied with the nature of the proposed linear model. Specifically, at the linear level, the forcing 
effect exerted by width variations (i.e., E  ) does not affect the boundary conditions, thus, the eventual 
interaction of free bars with forced bars triggered by the geometrical variations is herein not captured, by 
the fact that the latter act on the slow spatial scale E  . In turn, this interaction may lead to suppression of 
migrating free bars in favor of stationary forced bars in a similar fashion as the mechanism observed in river 
meanders (Kinoshita & Miwa, 1974; Seminara & Tubino, 1989; Tubino & Seminara, 1990).

Let us discuss the main limitations of our work. In this paper, we developed a theoretical framework, which 
due to its intrinsic linear nature prevents the possibility to predict an equilibrium bar amplitude. Nonlinear 
interactions between the flow field and the (slowly) evolving bottom topography, become significant as the 
amplitude of the perturbations grows. As the channel bed moves toward its equilibrium condition, also the 
geometrical characteristics of the growing modes modify. In particular, longer bedforms are observed (Hib-
ma et al., 2003; van der Wegen & Roelvink, 2008). A nonlinear formulation would allow to directly address 
how bars reflect the history of the system in its approach toward the equilibrium, and to study the possible 
coexistence and interaction between free and forced bars, which still awaits to be investigated. More in gen-
eral, forced bars in tidal channels received a less much attention, where just a few studies have tried to give 
a mechanistic explanation to the development of point bars in tidal meanders (Solari et al., 2002; Tambroni 
et al., 2017), while Leuven et al. (2018) performed several experiments to analyze the planimetric effect of 
growing forced bars due to width variations in self-formed estuaries.

We adopted a total load formula to quantify the sediment transport. We believe that for the purposes of 
this work, this assumption does not change qualitatively our results. Nevertheless, we remind that with the 
employment of the Engelund and Hansen (1967) predictor we implicitly ignore that the gravitational cor-
rection necessary to determine the direction of the sediment flux vector (see Equation 11b) strictly applies 
only to the bedload component. Modeling transport in suspension will require the solution of a convec-
tion-diffusion equation. Furthermore, it has been observed that the presence of a significant contribution 
of the suspended load tends to give rise to longer bedforms, especially when the bed is composed by very 
fine sand and exposed to strong tidal currents (e.g., Blondeaux & Vittori, 2009; Seminara & Tubino, 2001).

The effect of tidal flats, which is known (see Seminara et al., 2010) to lead to flow acceleration in the chan-
nel and, as a result, a shorter equilibrium length, has been neglected. We believe that the future inclusion of 
this factor may be particularly relevant for tide-dominated channels. Moreover, the assumption on the fixed 
channel banks is less stringent. Banks in tidal channels are typically characterized by an higher erosion re-
sistance with respect of their fluvial counterpart, due to sediment autocompaction, stabilization provided by 
halophytic vegetation especially in salt marshes, and a more homogeneous substrate (Finotello et al., 2020; 
Garofalo, 1980; Kleinhans et al., 2009; Solari et al., 2002). We note that the potential erosion induced by 
wind waves has been disregarded. Finally, we have considered a bed characterized by a homogeneous sedi-
ment composition. Relaxing this assumption will allow to explore the role of sorting process in the growth 
of tidal bars (Van Oyen & Blondeaux, 2009; Viparelli et al., 2019).

6.  Conclusions
In this work, we propose a general theoretical framework that is able to describe the incipient phase of bars 
development in a wide range of environmental settings where variations of the physical boundaries (i.e., 
channel width, tide-induced flow depth) are smooth, acting on a spatial scale that is much longer than bars 
wavelength. On the basis of the model formulation and subsequent analysis, we can draw the following 
conclusions:
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1.	 �Bars formation in micro-tidal estuaries (estuarine case) and tidal channels (coastal case) can be studied 
within a unified linear model once the boundary conditions of the problem and a reference flow, which 
represents the basic state upon which small amplitude disturbances are superimposed, are properly de-
fined. The basic state requires the solution of a differential problem that can be solved analytically by 
means of perturbation techniques, allowing for deep insights in the physical mechanisms controlling the 
dynamics of the system.

2.	 �In the estuarine case, where bars arise from an instability of the equilibrium state, the erosive character 
of the tidal motion and the channel shallowing induced by the increase in width moving seawards, are 
two opposite factors that concur to affect bars formation and properties (i.e., growth rate, celerity, and 
in lesser extent, wavelength). However, in micro-tidal conditions, the tide-induced scour is typically 
one-order of magnitude smaller than the drop of depth induced by the flow expansion, which in turn 
leads to higher values of the channel aspect ratio promoting the development of multiple row bars.

3.	 �Bars in tidal channels form far from the final equilibrium state of the system and, in the ideal absence 
of mean residual currents and overtides, they oscillate forward and backward in a symmetric fashion. In 
the first temporal stages of the channel evolution, when the longitudinal bed profile is nearly flat, bars 
are observed to form just near the inlet. However, as the channel evolves, bars start to grow landward 
due to a progressive channel shallowing. At the same time, bars formed in the initial stages continue to 
grow yet with gradually slower growth rates, till eventually achieving a frozen amplitude pattern, where 
any newborn bar is observed to develop in the seaward reach. Consequently, the model indicates that the 
spatial-temporal distribution and properties of bars observed in nature reflects the (long-term) evolution 
history of the channel.

4.	 �This work provides a simple, theoretically based, modeling framework that can be used to interpret 
results from physical experiments and numerical or field data, with the key advantage to require a rela-
tively small computational effort.

Appendix A:  Morphodynamic Equilibrium of a Micro-Tidal Estuary
In this section, we provide the analytical solution as obtained by Seminara et al. (2012) by means of a per-
turbation approach relatively to the tidally averaged morphodynamic equilibrium in the estuarine case. If 
we consider monochromatic tidal waves (i.e., ( ) sin( )E f t t  ), neglecting the possible presence of externally 
generated overtides (Aubrey, 1986), the up to order 2E a  form of the tidally averaged longitudinal distribution 
of the flow depth 0E D  , free surface elevation 0E H  , and fluid discharge 0E q  for an estuary at equilibrium, reads 
(Seminara et al., 2012):
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where mE B  is the scaled width at the mouth. The E  coefficient, which comes from the time-dependent part of 
the first-order expansion, reads as follows:
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with E  and E  a measure of the effect of local inertia relative to convective transport and relative rate of width 
reduction, respectively:
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Finally, the coefficients ΓE  and ΞE  enclosing the nonlinear interactions between the zero-order and first-order 
part of the solution, are obtained by performing a tidal average. They read:
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Data Availability Statement
A Matlab code that numerically solves the problem for a weakly converging micro-tidal estuary by means of 
the MacCormack scheme is made available in a public repository at https://doi.org/10.5281/zenodo.4659756.
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