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ABSTRACT 

The oral microbiome is a key component of the human body and has been associated with 

several habits and diseases. Despite its important role in health, it remains relatively 

understudied, compared to the gut microbiome. 

To deepen our understanding of the oral microbiome and its links to host conditions, the main 

aim of my PhD thesis was to characterize the lifestyle, environmental and genetic 

determinants of the salivary microbiome using data from CHRISMB, a convenience sample 

within the Cooperative Health Research in South Tyrol (CHRIS) study. With more than 1,900 

samples, CHRISMB is one of the largest salivary microbiome data resources in the world. 

First, I studied the association between the salivary microbiome and smoking status and 

degree of exposure both from the compositional and predicted metabolism perspective. I 

found associations with 44 genera, 11 of which were also proportionally affected by the 

degree of exposure to tobacco. Intriguingly, these associations highlight a novel role of 

salivary microbiome metabolism in cardiovascular diseases through periodontium 

degeneration via the nitrate reduction and extracellular matrix degradation pathways.  

My second contribution focused on the role of geography, family relatedness, and genetics in 

shaping CHRISMB diversity. I investigated the associations between household, municipality 

and altitude of residence, heritability, and genetic marker associations (mbGWAS). I 

confirmed that cohabitation is a strong driver of microbiome similarity, while municipality 

and altitude of residence did not show strong associations. Siblings living apart had a more 

similar microbiota than unrelated and non-cohabiting individuals. Sixteen out of 142 taxa had 

a significant heritability component, while 34 had a significant household component. A 

mbGWAS Gene-level analysis resulted in one association between rare variants in the SRFBP1 

and LOX genes locus and Selenomonas noxia. This work confirmed that host genetics and 

familial relationships has a modest but significant association with the salivary microbiome 

composition and that the environment and lifestyle are strongly associated. 

In summary, this thesis deepens our understanding of population-level factors associated 

with salivary microbiome variability, which can help design future hypothesis driven studies. 
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1 INTRODUCTION  

This chapter introduces the reader to the concept of microbiome and the most adopted 

methods to generate microbiome data. Additionally, it highlights cases in which the 

microbiome was shown to have pivotal role in biological systems and ends with the aims of 

my thesis. 

1.1 THE MICROBIOME: DEFINITION AND EVOLUTIONARY CONSIDERATIONS 

After inventing the microscope around 1663, Antonijn van Leeuwenhoek described tiny 

“animalcules”, now known as microbes, from several samples, including stool and dental 

calculus, giving birth to microbiology. In the first two centuries microbiology discoveries with 

higher resonance were related to pathogenic microbes. In particular, thanks to R. Koch’s 

contribution, by the second half of the 19th century the bacterial etiology of cholera, anthrax 

and tuberculosis was proven [1]. Less than 100 years later, it was rather established that only 

a small fraction of microorganisms was harmful to humans; in fact, most microbes were 

harmless, and some could even be beneficial. For example, it is now known that the 

Clostridium genus contains species that are highly pathogenic (C. perfringens [2]) or even 

deadly (C. tetani [3] and C. botulinum [4]). However, several other Clostridium species make 

up a considerable portion of the microbes in the human intestine (C. coccoides, C. leptum) [5] 

and even contribute to useful metabolic features [6]. The usefulness of specific gut bacteria 

was discovered in 1917, when Alfred Nissle isolated a bacterium from the stool of Prussian 

soldiers who were resistant to a typhus outbreak in his hospital. More interestingly, he 

inoculated this bacterium to healthy soldiers, showing that its carriers were protected from 

typhus: E. coli strain “Nissle 1917” was the first probiotic ever reported [7]. Building on top of 

multifaceted interaction between microbes and their habitats, in 1988 J. M. Whipps and 

colleagues contributed to a chapter in a book related to the ecology and biocontrol of fungi 

with the following consideration [8]: 

“A convenient ecological framework in which to examine biocontrol systems is that of the 

microbiome. This may be defined as a characteristic microbial community occupying a 

reasonably well-defined habitat which has distinct physio-chemical properties. This term thus 

not only refers to the microorganisms involved but also encompasses their theatre of activity.”  
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Their contribution was a milestone for microbiome research field because microbes were 

viewed not only as organisms in an environment, but rather generating a “theatre of activity”, 

a network of molecular interaction between other microbes and with their environment by 

means of coexistence, antagonism, and synergism [9]. After the year 2000, with the advent of 

high throughput DNA sequencing – or Next-Generation Sequencing (NGS) – researchers were 

able to discover a new level of complexity in the microbiome field, with organisms that had 

never been characterized by traditional cultivation and microscopy techniques in use to that 

day. Microbiomes do not include only bacteria, but also organisms from other kingdoms. The 

human gut microbiome, for instance, also comprises unicellular eukaryotes (protists and 

amoebas) [10], fungi [11], and archaea [12]. Even viruses, especially bacteriophages, are part 

of gut microbiomes and have a role in controlling community stability [13]. From a human 

health perspective, it is important to note that our bodies harbor slightly more microbial cells 

than human cells [14]. This has led to the idea that our microbiome, with its complex 

biochemical activity, should be considered an additional organ of the body [15]. As a 

consequence, humans could be considered a sum of human and microbial cells and genetic 

features: holobionts carrying hologenomes [16,17]. Indeed, research has shown that the 

metabolic activity of the gut microbiome results in increased energy harvest from food [18]. 

More interestingly, studies on human and mouse models showed that a high proportion of 

human blood metabolites, as high as 30%, is derived from gastro-intestinal absorption [19]. A 

few notable examples of beneficial by-products are short chain fatty acids [20–22], serotonin 

[23,24], and vitamins [25]. However, some microbiome by-products have been considered 

harmful, for example Trimethylamine Oxide, Quinolinate, Indole [26], and kynurenine [23].  

1.2 METHODS TO STUDY THE MICROBIOME 

The study of the microbiome requires methods able to capture its complexity and dynamic 

variations over time. To date, the two commonly used techniques for observing and studying 

microbial communities are based on cultivation and DNA sequencing. The latter further 

separates into 16 ribosomal RNA amplicon sequencing (in brief, 16S) and shotgun 

metagenomics. A brief description of each method will follow, with a qualitative comparison 

in Table 1-1. 

1.2.1 Microbial Culturing 

Initially, the field of microbiology relied on culture-based isolation techniques to investigate 

their physio-chemical features.  
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Historically, this technique proved effective in the investigation not only of harmful bacteria, 

like typhus, cholera and those responsible for food spoilage [27], but also of beneficial 

bacteria like E. coli Nissle 1917 [7] and lactic acid bacteria [28], now used as probiotics.  

Traditionally, bacterial cultures could be solid or liquid, generally in the presence of 

atmospheric pressure and oxygen. The more conditions researchers were able to control, the 

wider was the range of bacteria to culture and characterize [29]. With the microbiome field, 

not only physio-chemical conditions were exploited, but also inter-species interactions were 

studied [30,31]. Culture-based characterization continues to be the gold-standard method to 

validate in silico predictions of the biochemical phenotype of a single microbial isolate [32–

34] or simple microbial communities [35,36]. The throughput of such methods, however, is 

generally low. To tackle this limitation, several methods have been developed, for instance 

the Biolog [37,38] and high throughput culturing [39,40].  

1.2.2 Next-Generation Sequencing 

The field of the microbiome took a turn with the advent of NGS technologies, which allowed 

researchers to discover that the vast majority of micro-organisms in a sample were 

unculturable, to that day, under traditional laboratory conditions [41], opening the field for 

culture-free microbial ecology studies [42]. There have been two major NGS-based methods 

to study microbiomes, in chronological order: (1) amplicon sequencing and (2) shotgun 

metagenomics.  

16S ribosomal RNA gene amplicon Sequencing (16S) 

Amplicon sequencing was first conceptualized by Woese and Fox in 1977 as a method to 

classify bacteria and a few archaea [43] using genetic instead of phenotypic features [44]. The 

method relies on the architecture of the 16S ribosomal RNA gene, which contains regions at 

high mutation rates flanked by highly conserved ones. Amplification with a Polymerase Chain 

Reaction (PCR) between the conserved regions results in a library of variable sequences 

which, coupled with NGS, allows to discriminate bacteria and some archaea up to the genus 

level [45]. With recent advances in PCR and sequencing accuracy, as well as computational 

algorithms, species level discrimination can be sometimes reached [46]. This technique has 

two main limitations. First, the absence of conserved genes across all kingdoms makes 

amplicon sequencing unable to capture the community complexity of microbiomes, in 

particular eukaryotes, which have different genes, and viruses, characterized by a vast 

phylogenetic and compositional variability across individuals [47,48].  
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Second, the polymerase enzymes can introduce point mutations, which increase noise and 

technical biases [49,50].  

Shotgun Metagenomics 

Shotgun metagenomics is a method to sequence virtually all DNA sequences in a sample, 

instead of a pre-amplified region like 16S. After DNA extraction, differently from 16S, DNA in 

a sample is fragmented and labeled. Depending on the protocol, labeling is achieved with or 

without a PCR step. Protocols up to this point have been benchmarked by Tourlousse et al. in 

2021 [51]. Given the unbiased labeling of DNA sequences, contaminations are likely. For this 

reason, it is crucial that sequencing is performed at a high depth, that is with several cycles, 

to ensure high signal-to-noise ratios. With the proper processing and analysis tools of the 

sequencing data, shotgun metagenomic sequencing allows the discrimination of bacteria at 

taxonomic resolution impossible for 16S [52,53]. Remarkably, 16S cannot discriminate 

Escherichia and Shigella genera of the Enterobacteriaceae family, due to a high genomic 

similarity [54]. Conversely, shotgun metagenomics not only differentiates species within each 

of these genera, but can also differentiate strains within the E. coli species, which enables the 

distinction between the probiotic Nissle 1917 [55] and other pathogenic E. coli [56,57]. 

Table 1-1. Comparison of the 3 most popular methods to investigate microbes and microbiomes 

to date. The table presents a macroscopic comparison of the methods, highlighting key differences 

for easy comprehension. 

 Traditional 
Culturing  

16S Amplicon 
Sequences 

Shotgun Metagenomics 

Cost (US $) NA ~ 50 75+ 

Taxonomic 
resolution 

Species and 
Strains 

Genus, sometimes 
species depending on 

regions targeted, 
pipelines and database 

chosen 

Species and strains 

Taxonomic 
identification 

All organisms, 
depending on 
cultivability 

Bacteria and Archaea 
All organisms with stable 

DNA in the sample, 
including DNA viruses 

Functional/Metabolic 
profiles 

Yes, direct 
metabolic 
evidence 

Only “most likely”, with 
PICRUSt2 [58] 

Potential with many 
tools [59–61] 

Throughput Low High Very high 
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1.3 THE HUMAN MICROBIOME IN HEALTH AND DISEASE 

Given the specific physio-chemical differences between human body sites, the oral cavity 

[62,63], the vagina [64], the skin [65] and breast milk [66] harbor distinct, stable microbiome 

communities. Presently, the stool microbiome is the most well-studied in terms of number of 

publications [67], strength [68,69] and reproducibility [70] of findings. Despite being highly 

individual specific [71], the gut microbiome of healthy individuals was shown to vary in 

relation to several factors including age, diet and continent of residence [72,73]. Large cross-

sectional studies have generated valuable knowledge about the factors associated with the 

gut microbiome compositions: the Dutch Microbiome Project (n = 8,800) [74], the American 

Gut Project (n > 10,000) [75] and several independent Chinese gut microbiome datasets (n > 

2,000) [76,77]. Moreover, the stool microbiome was reported to be significantly altered in a 

plethora of disease and conditions, for instance with gastrointestinal [78–80], metabolic [81–

83], and neurological [84,85] conditions.  

While the gut microbiome is the most well characterized and studied, the oral cavity harbors 

what is considered the second most diverse human microbiome [62]. Similarly to the gut 

microbiome, the oral microbiome is stable [62] and individualized [86], which leads, at 

population level, to high compositional variability. To date, few oral microbiome cohorts with 

at least 1,000 participants have been published: in decreasing size, the 4D-SZ tongue dorsum 

and salivary microbiome cohort (n = 3,504) [76], followed by low-income African Americans 

salivary microbiome dataset (n = 1,616) [87,88], Japanese Cohort (n ~ 700) [89] and the oral 

samples in the Human Microbiome Project (n = 242) [90]. Given the rising importance of the 

oral microbiome in not only oral, but also systemic health (see Background), it is valuable to 

expand the knowledge on the factors influencing its compositional variability across the 

widest number of conditions. 
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1.4 AIMS OF THIS THESIS 

In this PhD thesis, I extend the population-level knowledge on the factors associated with 

salivary microbiome composition of an adult European population. My aims are to compare 

its composition and response to widely known factors influencing it (smoking, oral health, 

households…), as well as expanding the knowledge of potential other factors (genetics, 

geographic distribution…). More in detail, my aims are to: 

1. Describe the salivary microbiome variation in relation to smoking not only as a 

qualitative exposure (Never, Former, Current), but also as a quantitative trait 

(cigarettes per day and years since quitting) both from the taxonomic and from the 

predicted metabolic function perspective. 

2. Explore the role of place of residence, familial relationships, and genetics in relation 

to the salivary microbiome composition, with particular focus on household, 

municipality and altitude of residence (geographic factors), as well as relatedness, and 

genetic factors. 
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2 BACKGROUND 

This chapter describes the gut and oral microbiome research. It introduces the CHRISMB 

study, the salivary microbiome convenience sample nested in the Cooperative Research in 

South Tyrol (CHRIS) study. Since one chapter of my thesis utilizes familial and genetic 

analysis methods, heritability, genome-wide association studies and genotype imputation are 

also discussed. This chapter ends with an outline of the research sections of the thesis. 

2.1 THE GUT MICROBIOME FROM ECOLOGICAL CONSIDERATIONS TO 

BIOTECHNOLOGICAL APPLICATIONS 

Human microbiomes have been associated with several habits and diseases, leading to the 

definition of dysbiosis whenever microbiomes in individuals with a disease were significantly 

different from the healthy counterparts [91]. The gut microbiome was shown to have not only 

associative, but also causal or concurring roles in the onset and progression of several 

conditions and diseases [92–94]. To prove causality, researchers have developed several 

methods [95]. Among these, fecal microbiome/material transplantation (FMT) on germ-free 

mice provided compelling evidence regarding the role of the gut microbiome on energy 

harvest and obesity [96]. Moreover, FMT from a colorectal cancer patient induced the 

development of more tumors than FMT from a healthy donor in a mouse model prone to 

colorectal and mammarian cancer [97]. More specifically, a set of bacteria - first of all F. 

nucleatum - were found enriched in colorectal cancer patients [98], and immunosuppressing 

capabilities by this species have been linked to cancer progression [99]. To corroborate the 

existence of a gut-brain axis, FMT from depressed patients induced a depressive behavior in 

germ-free mice [100]. Once the microbiome etiology of diseases was proven, researchers 

explored the therapeutic potential of FMT from healthy donors. For example, a generalized 

trend of transient improvement of depression scores was reported in a review on pre-clinical 

and clinical FMT to limit depression [101]. While FMT seems a promising direction towards 

microbiome-based therapeutics, it has been approved only in chronic infection by 

Clostridioides difficile and not yet in Europe [102]. One of the reasons for the reluctancy is the 

low success rate outside the C. difficile case [69] and the chances to inherit unexpected and 

unwanted phenotypes along with the desired ones (for instance, pathogens glucose 

sensitivity, tendency to gain weight, etc.) [103]. 
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2.2 THE ORAL CAVITY HARBORS A RICH MICROBIOME TO STUDY  

The oral microbiome harbors a highly diverse and relatively understudied host-microbiome 

interaction environment, relative to the gut, mainly temperature, moisture content, pH, and 

oxygen partial pressure [104]. In one of the pioneering 16S oral microbiome profiling 

experiments, the microbiome of 9 oral niches of 3 healthy Caucasian males were sampled in 

Amsterdam, showing for one of the first time the average relative composition: phyla 

Firmicutes (genus Streptococcus, Granulicatella), Proteobacteria (genus Neisseria, 

Haemophilus) Actinobacteria (genus Corynebacterium, Rothia, Actinomyces), Bacteroidetes 

(genus Prevotella, Capnocytophaga, Porphyromonas) and Fusobacteria (genus 

Fusobacterium) [105]. They also highlighted compositional differences between oral niches, 

which was later confirmed in two other cohorts from the United States [90] and China [106] 

and reviewed by Li et al. [63]. More specifically, except for saliva, in which microbes are in a 

liquid solution, the oral microbiome is organized in biofilms, called plaque, adhering to hard 

and soft surfaces [107]. Different surfaces harbor different microbiome profiles, therefore 

plaque samples from subgingival, supragingival, tongue dorsum mucosae and teeth surfaces 

can be distinguished [90]. Plaque assembly follows a colonization based on the metabolic 

requirements of each bacteria, or bacterial taxa. This was visualized at genus level with 

fluorescence hybridization microscopy, discovering structures that resembled a hedgehog, a 

cauliflower or corncob [108] (Figure 2-1). 
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Figure 2-1. Bidimensional organization of bacterial genera in tooth plaque samples. This figure 

was adapted from figure 3 D, G, I and figure 9 in Mark-Welch et al., “Biogeography of a human oral 

microbiome at the micron scale”, published on PNAS [108]. 

Despite the high variability, in the last 10 years several associations between the oral 

microbiome and oral condition like halitosis [109] and diseases like periodontitis and 

squamous cells carcinoma of the oral cavity [110] have been discussed. Oral microbiome 

compositional variations were also associated with cardiovascular diseases [111,112], 

pancreatic [113] and colorectal cancer [114], many of which were further linked to the 

immune system’s ability to control bacterial overgrowth and inflammation [115,116].  

Causal links between several diseases and the oral microbiome were found as well. It is 

established that tooth plaque leads to higher risks of dental caries and periodontitis, 

respectively attributed mostly to Streptococcus mutans [117] and the red complex triad 

(Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) [118]. In recent 

years, the etiology of these diseases was re-evaluated under the perspective of the 

microbiome-wide dysbiosis hypothesis, which suggests that diseases may be mostly a  

consequence of whole-community shifts towards a harmful composition [119,120], although 

a consensus on a definition is yet to be reached [121]. 
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Given its role in complex diseases, it was hypothesized that, similarly to the gut microbiome, 

the oral microbiome could potentially be modulated to favor disease remission, reduce 

inflammation (e.g., periodontitis [122]), or simply improve digestibility of some food 

molecules (e.g., gluten) [123]. In one study, 30 participants who ate cheese containing 

Lactobacillus casei showed reduced relative abundance of S. mutans than participants eating 

a control cheese [124], opening to the hypothesis that L. casei could behave like an oral 

probiotic against dental caries. Subsequently, L. reuteri [125] and B. animalis [126] were 

shown to improve periodontal phenotypes after probiotic intervention. However, like many 

other probiotic studies,  a meta-analysis confirmed only part of these findings, mostly because 

of inter-study variability of the setup and the intrinsic limited efficacy of probiotic treatments 

[127]. Following the promising developments in FMT, efforts have been made to explore the 

feasibility of oral microbiome transplantation as well, mostly through saliva mouthwash. As 

a proof of concept, a study reported salivary microbiome transplantation from healthy mouse 

donors to mice undergoing radiotherapy. In this study, mice transplanted with a donor’s 

salivary microbiome developed fewer signs of oral mucositis than non-transplanted controls 

[128]. 

Despite the large body of evidence of the role and genesis of the adult oral microbiome, a high 

proportion of variability needs to be explained. To begin with, understanding the factors 

determining presence and abundance of microbial species will aid research towards 

microbiome modulation strategies to improve health. In this context, the salivary microbiome 

is of particular interest for its ease of collection in a clinical context and its presence on all 

surfaces of the oral cavity.  

2.3 THE COOPERATIVE HEALTH RESEARCH IN SOUTH TYROL STUDY IS A RICH 

RESOURCE FOR SALIVARY MICROBIOME 

The CHRIS study was designed to explore the molecular and genetic basis of common chronic 

diseases and their interplay with lifestyle and environmental factors. The aim of the CHRIS 

study is to provide novel strategies for the prevention, diagnosis, and therapy of chronic 

diseases [129], in particular cardiovascular, metabolic and neurological diseases, which are 

among the leading causes of death in high-income countries [130–132]. Between 2011 and 

2018 more than 13,000 adults were recruited from 13 municipalities of Vinschgau/Val 

Venosta, an area considered to have a homogeneous lifestyle and ancestry [129]. 
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The study data collection protocol was outlined by Pattaro et al. in 2015  [129]. During the 

examination, each participants underwent anthropometric measurements, blood and urine 

collection, and questionnaire interviews. Additional questionnaires, for example the food 

frequency questionnaire, were self-administered. Below an overview of the macro areas of 

the data collection protocol is listed: 

• Personal Information 

• Anthropometry (height, weight, blood pressure) 

• Electrocardiogram at rest 

• Barcode scan of medications 

• Odor identification test (Sniffin’ Sticks) 

• Pain sensitivity (Algometer) 

• Self-Administered Questionnaires (Physical activity, Sleep quality, Mental health, 

Food Frequency) 

• Interview with CHRIS study nurse (Occupation, Environmental exposure, Alcohol, 

Smoking, Vaccinations, Diagnosed chronic diseases) 

• Biochemical data (Bloodwork, Urine, Metabolomics) 

• Genotype data (DNA extracted from blood) 

In addition to the CHRIS study data collection protocol, between January 2017 and 

February 2018 participants were requested to complete an oral health questionnaire and 

provide saliva samples that were used to generate 16S microbiome data. This protocol, 

named CHRISMB, was designed to increase the knowledge about factors associated with 

the adult salivary microbiome composition. With 1,923 participants, CHRISMB is, to our 

knowledge, the second largest salivary microbiome study with both salivary microbiome 

and host genetic data worldwide, after the 4D-SZ Shenzen cohort [133]. 
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2.4 HOST GENETIC FACTORS ASSOCIATED WITH GUT AND ORAL MICROBIOME 

COMPOSITION 

Studies on large cohorts reported associations between host’s genotypes and gut microbiome 

composition. Genus Bifidobacterium was associated with the lactase expression in adults on 

the LCT genome locus: rs4988235 [134,135] and rs182549, the latter being the strongest signal 

found also in a 16S gut microbiome meta-analysis of more than 18,000 individuals [136]. 

When an individual is homozygous for the G variant, lactase is not expressed in adulthood. 

This results in higher amounts of undigested lactose in the gastrointestinal tract  [137], which 

can serve as a sugar source for bacteria in the genus Bifidobacterium, a clade that metabolizes 

milk sugars [138].  

The oral microbiome was also associated with host genetic variants. Using the 4D-SZ cohort, 

Liu and colleagues reported several tongue dorsum microbiome-genetic variant associations 

using 1600 highly prevalent (> 90%) Species-Genome Bins (SGBs). They identified several 

variants associated with tongue dorsum taxa: rs1196764 in the gene APPL2 was associated 

with Prevotella jejuni, Oribacterium uSGB 3339 and Solobacterium uSGB 315; rs3775944 in 

gene SLC2A9 with Oribacterium uSGB 1215, Oribacterium uSGB 489 and 

Lachnoanaerobaculum umeaense; rs4911713 near the olfactory receptor gene OR11H1 with 

F0422 uSGB 392; rs36186689 in locus LOC105371703 with Eggerthia. Their cohort structure 

allowed them to evaluate the extent of validation of those signals between tongue dorsum and 

saliva, as well as between the same sample type but in two cohort batches. They concluded 

that at least 84% of their top signals could be replicated within the body site, but only 6 were 

shared between saliva and tongue dorsum [139].  

2.5 GENOME WIDE ASSOCIATION STUDIES AND HERITABILITY ANALYSIS ARE TOOLS 

TO EXPLORE TRAITS’ GENETIC COMPONENT IN A POPULATION  

The links between host genetics and the gut and oral microbiome were conducted with 

population-wide statistical genetic approaches with the help of methods like heritability 

analysis  genome wide association study (GWAS). The following paragraphs will describe the 

principles and the success of these methods.  

In terms of base pair similarity, more than 99.9% of genomes are identical across all Homo 

sapiens individuals [140]. The remaining 0.1% is enough to determine a wide variety of traits 

(e.g., eye color, ABO and Rhesus blood type [141], hair and skin color [142], baldness [143]) 
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and diseases (e.g., sickle cell anemia [144], cystic fibrosis [145], Huntington’s disease [146]). 

Genetics play a role in quantitative traits as well: height is known to be highly influenced by 

genetics [147], but not entirely. Genes and their surrounding genomic regions (herein loci) 

contributing to a quantitative trait are called quantitative trait loci (QTL) [148]. Studying the 

overall effect of genetic and familial inheritance components on a trait helps disentangle the 

factors associated with its variability in a population. 

2.5.1 Heritability Analysis 

Heritability analysis was first developed by Ronald Fisher in 1918 [149]  and it consisted of 

partitioning a trait’s variance into environmental and genetic components [150], the latter 

inferred from family pedigrees [149]. He suggested that the total variance of a trait, 𝑉𝑇,  was 

the sum of variance attributed to genetics/relatedness, 𝑉𝐺, and the environmental variance, 𝑉𝐸, also 

called the residual variance, as follows: 

𝑉𝑇 = 𝑉𝐺 + 𝑉𝐸 

If a trait is strongly associated with genetic determinants, the 𝑉𝐺  parameter is higher. 

Heritability, as later called by Lush [151] was defined as the proportion of variance ascribed 

to genetics, and it can range between 0 (no role of genetics) and 1 (only genetic) as follows: 

0 <  ℎ2 =
𝑉𝐺

𝑉𝑇
< 1 

With this framework, high heritability indicates that the majority of the observed variation in 

a trait is due to genetics [150]. Importantly, heritability estimation depends on the population 

tested, since a variation in the genetic background, age, lifestyle and environmental exposure 

alters h² estimates, as previously reviewed [150]. More recently, computational 

implementations, namely SOLAR [152] and GCTA-GREML [153] were developed to perform 

these calculations. 

2.5.2 Genome Wide Association Study 

Visscher et al. showed that high heritability does not necessarily correlate with strong genetic 

signals for a trait [150,154]. To study the association between genetics and a trait, GWAS are 

a more suitable, complementary approach [155]. This technique tests all measured variants 

for association with a trait using linear models while allowing for confounders that may 

explain part of the trait variability [156]. The human genome is composed of slightly more than 

3 × 109 base pairs [157], with an estimated number of almost 20,000 protein coding genes   

and even more transcripts [158]. To model such highly dimensional data, complex coding and 
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heuristics strategies have been implemented into popular tools like PLINK [159], GCTA [153] 

and GEMMA [160]. 

GWAS tools output summary statistics [161] with chromosome number, position, variant 

identifier, minor allele frequency (MAF), the strength of the association (𝛽) and the P-value for 

each variant. Given the likelihood of false discoveries in millions of statistical tests in a GWAS, 

researchers have proposed multiple methods to account for Type I error rates without being 

too stringent with Bonferroni correction [162]. The Haplotype Map consortium mapped more 

than 1 million common variants independent from each other [163,164]. Therefore, it was 

suggested to correct the significance threshold by the number of genome-wide independent 

variants to 𝛼 =
0.05

1×106 =  5 × 10−8 . Since then, this threshold has been widely accepted 

[164,165]. 

2.5.3 Genotype imputation is a cost efficient method to gain detection power in a GWAS 

The chances of novel discoveries rely on the number of variants tested. Nowadays, the gold-

standard method to obtain the most dense and accurate set of variants of a population is 

whole genome sequencing (WGS) [166]. Despite the low cost of sequencing nowadays, it 

remains rather expensive to sequence thousands of  samples [167]. Chip genotyping, in 

practice, enables typing of a large and customizable set of variants at a fraction of the cost of 

WGS. To further increase the cost/benefit ratio of chip genotyping, an in silico method was 

developed to expand the number of variants based on a smaller set of hard-called variants: 

genotype imputation [168]. In brief, imputation fills the gap between variants in an 

individual’s genotype based on variants that are normally inherited together, named 

haplotypes [169]. Variants that are generally found in the same haplotype but are not present 

are “imputed” into the original haplotype of the sample (Figure 2-2) [168]. This procedure 

increases power by enlarging the set of variants tested. For example, a meta-analysis used 

genotype imputation to unveil novel genetic loci associated with colorectal cancer [170]. Chip-

typed Genetic variants (hard calls) in the CHRIS study, including CHRISMB, were imputed 

using the publicly available Haplotype Reference Consortium (HRC) and the Trans-Omics for 

Precision Medicine (TOPMed) panels, which expanded the number of testable variants from 

579,112 to 19,749,560 and 35,061,390 respectively. Additionally, whole exome sequencing 

data were generated for 3,294 individuals [171], resulting in 1,034,420 variants, 643,001 

imputed exclusively using whole exomes as imputation panel. 
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Figure 2-2. Example of a simple imputation process. A study sample is matched against a 

haplotype reference panel. For each allele, the haplotype with the most variants in the same 

position is chosen as the most likely haplotype. The variants in the reference haplotype that are 

missing in the sample are then added to the sample and labelled as “imputed” (see lowercase bases, 

bottom right). Figure adapted from Figure 1 in Li et al. (2009) [168] 

2.6 THESIS OUTLINE AND SCIENTIFIC CONTRIBUTION 

This section outlines the research chapters of the thesis, in which I adopt the term 

"microbiota" instead of "microbiome" for precision: "Microbiota" focuses on sample 

composition ("who is there?") and "microbiome" encompasses the genetic pool of the 

"microbiota" ("what can they do?") [172] . Since only 16S compositional data was used in this 

thesis, the term "microbiota" is adopted in research-oriented chapters, while "microbiome" is 

utilized in sections speculating on aspects beyond composition. 

Chapter 3 – Smoking and salivary microbiota: a cross-sectional analysis of an Italian alpine 

population 

This chapter explores the association of the salivary microbiome composition, predicted 

metabolic profiles and oxygen metabolism with smoking status (Never, Former, Current), 

smoking dose per day and years since quitting. Our study adds to the current knowledge of 

salivary microbiome dynamics in relation to smoking in a European population, with 

particular emphasis on the mediating role that the microbiome could have in the higher 

periodontal and cardiovascular disease risk among smokers via, among others, the nitrate 

reduction pathway and periodontal connective tissue degradation. My contribution to this 
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project was performing metadata curation and exploration, designing the analyses, 

generating the microbiome predicted pathways, performing the statistical analyses, writing 

the manuscript and corresponding with the journal editor. 

Chapter 4 – Geographic and genetic factors on the composition of the adult salivary 

microbiota of an Italian alpine population 

This chapter explores the association between salivary microbiome compositional variability 

in relation to geographic distribution (household, municipality, and altitude of residence) and 

familial relationships (heritability analysis and microbiome GWAS) in an unprecedented 

single-population salivary microbiota study. Our study highlights that a large proportion of 

salivary microbiota is heritable, and that cohabitation fosters higher similarity. Additionally, 

we found a small compositional shift in relation to the municipality of residence. Our 

microbiota GWAS highlighted four study-wide significant variants, supporting a small but 

significant role of genetics. My contribution to this project was designing and performing 

statistical analyses, interpreting results, and writing the manuscript. Submission is planned 

in the first quarter of 2024. In that occasion, I planned to correspond with the editor. 

Chapter 5 – Additional Contributions 

As introduced in the Background section, CHRISMB is a rich resource with data ranging from 

self-reported questionnaires to biochemical characterization of blood and urine. My main 

work has focused on detailed smoking habits, host genetics and the CHRISMB Alpine 

geographic peculiarities. However, I conducted 2 relevant analyses not yet included in a 

publication. This chapter presents these analyses as follows: 

Odor identification capabilities and salivary microbiota composition are not significantly 

associated in CHRISMB 

In this analysis I explored the association between the salivary microbiota composition and 

odor identification performance assessed with 16 felt-tip pens imbued with odorous 

molecules. I found that the salivary microbiota did majorly vary in relation to smell 

identification performance, pointing to a weak association show strong enough associations 

with smell performance. However, at a finer scale, I found three differentially abundant ASVs 

in the hyposmic group, two less abundant and one more abundant, suggestive of a marginal 

statistical association between olfaction performance and the salivary microbiota. 

Salivary microbiota exposome scan 
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Population cross-sectional studies are generally rich in phenotypic data, derived with 

objective techniques, professional assessments, or questionnaires. Performing hypothesis-

driven analyses is a more refined but time-consuming and case-specific method. I therefore 

performed an exposome scanning to identify which phenotypes significantly associated with 

microbiota variability in the population. To do so, I performed a non-parametric ANOVA-like 

model [173] which estimates the proportion of variance attributed to each phenotype 

separately. The analysis showed that the strongest associations were related to variables 

related to smoking, sample processing batch, age, oral health, occupation, education, and a 

few food frequency questionnaire items related to sugar consumption. I did not see 

associations with variables related to bloodwork, disease questionnaires, neuropsychiatric 

questionnaires, nor environmental phenotypes. To the best of my knowledge, this is the first 

exposome scan performed on the salivary microbiota data in a large population. My findings 

could foster future research on the salivary microbiome, as well as serving as a panel of 

variables to consider in designing future experiments and statistical models in similar 

experimental designs. 
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3 SMOKING AND SALIVARY MICROBIOTA: A CROSS-SECTIONAL 

ANALYSIS OF AN ITALIAN ALPINE POPULATION 

Giacomo Antonello (1,2,#), Freida Blostein (3), Deesha Bhaumik (3), Elyse Davis (3), Martin 

Gögele (1), Roberto Melotti (1), Peter Pramstaller (1), Cristian Pattaro (1), Nicola Segata (2), 

Betsy Foxman (3, #), Christian Fuchsberger (1,#) 

(1) Institute for Biomedicine, Eurac Research - Affiliated Institute of the University of 
Lübeck, Bolzano, Italy 

(2) Department of Cellular, Computational and Integrative Biology, University of Trento, 
Trento, Italy 

(3) School of Public Health – Epidemiology, University of Michigan, Ann Arbor, MI 
#  Corresponding 

ABSTRACT 

The oral microbiota plays an important role in the exogenous nitrate reduction pathway and 

is associated with heart and periodontal disease and cigarette smoking. We describe 

smoking-related changes in oral microbiota composition and resulting potential metabolic 

pathway changes that may explain smoking-related changes in disease risk. 

We analyzed health information and salivary microbiota composition among 1,601 

Cooperative Health Research in South Tyrol (CHRIS) participants collected 2017 to 2018. 

Salivary microbiota taxa were assigned from amplicon sequences of the 16S-V4 rRNA and 

used to describe microbiota composition and predict metabolic pathways.  

Aerobic taxa relative abundance decreased with daily smoking intensity and increased with 

years since cessation, as did inferred nitrate reduction. Former smokers tended to be more 

similar to Never smokers than to Current smokers, especially those who had quit for longer 

than 5 years. 

Cigarette smoking has a consistent, generalizable association on oral microbiota composition 

and predicted metabolic pathways, some of which associate in a dose-dependent fashion. 

Smokers who quit for longer than 5 years tend to have salivary microbiota profiles comparable 

to never smokers. 
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HIGHLIGHTS 

• Cigarette smoking has a consistent, generalizable association on oral microbiota 

composition associated with smoking. Several taxa showed a relative abundance 

proportional to the number of cigarettes smoked per day. 

• The salivary microbiota of people who quit smoking longer than 5 years resembled 

Never smokers’ profiles, consistent with reports of changes in disease risk following 

smoking cessation. 

• Decreased microbial nitrate reduction pathway abundance in smokers may provide 

an additional explanation for the effect of smoking on cardiovascular and periodontal 

diseases risk, a hypothesis which should be tested in future studies. 
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3.1 INTRODUCTION 

Smoking is a risk factor for several complex, chronic diseases including but not limited to 

respiratory diseases [174], periodontitis [175–177], oropharyngeal cancers [178,179] and 

cardiovascular diseases [180]. Recently, alterations to oral microbiota composition have been 

observed in cases of periodontitis [181–184], squamous cells carcinoma [185], cardiovascular 

diseases [186,187] and  in cigarette smokers [188–192] (Supplementary File 1, Table 1). 

Therefore, it is possible that smoking related changes in the oral microbiota contribute to the 

etiology of one or more chronic health conditions. The oral microbiota performs several 

functions, including playing an important role in the exogenous nitrate reduction pathway and 

hence blood pressure regulation via nitric oxide (NO) [193–196]. Diets high in nitrate increase 

the presence of oral nitrate-reducing bacteria (NRB), the most prevalent of which are species 

in the Neisseria, Prevotella and Actinomyces genera [197]. when NRB are present, salivary 

nitrate reduction increases [196,198]. Whether tobacco consumption directly or indirectly 

alters the relative abundance of nitrate reducing bacteria remains to be explored; however, 

smoking was reported to inhibit uptake of blood-circulating nitrate into saliva [199]. 

The salivary microbiota composition varies by smoking habits. A 2016 meta-analysis of 1204 

USA citizens from two national cohorts found that compared to former or never smokers, 

smokers had a decreased relative abundance of Proteobacteria, an increase of Actinobacteria 

and a lower proportion of aerobic taxa after adjustment for age and sex [188]. A 2019 study 

set in New York city confirmed and extended those findings showing that, in contrast to 

former or never smokers (N= 86), the salivary microbiota of smokers (N = 86) showed higher 

abundance of genera Stomatobaculum, Megasphaera, Veillonella, Leptotrichia, 

Campylobacter and Treponema, and lower abundance of Neisseria, Lautropia, Haemophilus, 

Capnocytophaga [189]. Studies conducted in Saudi Arabia [190], Asia [89,200] and Europe 

[192] reported comparable findings (Supplementary File 1, Figure 1). In a meta-analysis with 

1,204 Americans, Wu and colleagues uniquely found that the relative abundance of classes 

Betaproteobacteria, Gammaproteobacteria and Flavobacteriia was inversely correlated with 

the number of cigarettes smoked daily and directly correlated with the years since quitting 

smoking [188]. While associations between smoking status and salivary microbial 

composition have been previously characterized in Americans, no study has described 

associations of the salivary microbiota composition and metabolic potential with daily 

smoking intensity or years since quitting in a European population. 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-023-42474-7/MediaObjects/41598_2023_42474_MOESM1_ESM.pdf
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This study adds to our understanding of the associations of the salivary microbiota taxonomic 

and predicted metabolic functional composition with smoking status, intensity (grams/day) 

and history (years since cessation) in a large, novel, homogeneous Italian cohort aged 18 to 

91: the Cooperative Health Research in South Tyrol (CHRIS) [201] Microbiome study 

(CHRISMB). We hypothesized that we would observe results consistent with the literature 

and some novel insights attributable to the unique characteristics of CHRISMB and the large 

sample size. We additionally hypothesized that the nitrate reduction pathways could be less 

abundant in smokers, given the previous findings of decreases of taxa in the Neisseria and 

Haemophilus genera, which harbor several NRB species [202]. 

3.2 RESULTS 

3.2.1 Characteristics of study population in relation to smoking 

After exclusions (see methods and Supplementary File 1, Tables 2 and 3 for details), CHRISMB 

consisted of 1601 individuals with an average age of 45 years (range 18 - 91) and had slightly 

more females (52.9%) than males. Most had 20 or more natural teeth (72.1%). Almost half 

(45%) were Current or Former smokers; cigarettes were the primary source of tobacco for all 

but 5 participants. Smokers were more frequently males and younger than Never or Former 

smokers (Table 3-1). Former smokers quit smoking 17.96 years, on average (Range 0 - 61; 

median 16). When stratified by age group, Current and Former smokers aged 41 to 60 years 

with higher lifetime exposure to smoke tended to have fewer teeth than smokers with a lower 

cumulative exposure (Supplementary File 1, Figure 2). 

Salivary microbiota DNA sequencing of selected samples consisted of almost 36 million reads, 

with a median read count per sample of 22,308 (interquartile range: 11,884, full range 5283 - 

65,837). After filtering by prevalence and minimum detection (see Methods), the dataset 

included 627 ASVs assigned to 82 genera (Supplementary File 1, Table 4).  
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Table 3-1. Distribution of selected demographic descriptors in relation to smoking status in the 

Cooperative Health Research in South Tyrol Microbiome (CHRISMB) study. Per-column 

percentages were also reported in brackets. The whole cohort is included under the “CHRISMB” 

column. Significance was calculated as X² test for categorical variables. Non-available measures 

were reported as “Missing”. 

 Never 

(N=880) 

Former 

(N=395) 

Current 

(N=326) 

CHRISMB 

(N=1601) 

X²  

P-value 

Sex     2.7e-07 

Male 356 (40.5%) 222 (56.2%) 173 (53.1%) 751 (46.9%)  

Female 524 (59.5%) 173 (43.8%) 153 (46.9%) 850 (53.1%)  

Age Category 

(years) 

    3.6e-19 

18-30 238 (27.0%) 41 (10.4%) 130 (39.9%) 409 (25.5%)  

31-40 139 (15.8%) 73 (18.5%) 57 (17.5%) 269 (16.8%)  

41-50 196 (22.3%) 75 (19.0%) 64 (19.6%) 335 (20.9%)  

51-60 144 (16.4%) 112 (28.4%) 51 (15.6%) 307 (19.2%)  

61-70 93 (10.6%) 57 (14.4%) 23 (7.1%) 173 (10.8%)  

71+ 70 (8.0%) 37 (9.4%) 1 (0.3%) 108 (6.7%)  

N° Teeth (self-

reported) 

    0.07 

0 50 (5.7%) 23 (5.8%) 16 (4.9%) 89 (5.6%)  

1-9 57 (6.5%) 41 (10.4%) 20 (6.1%) 118 (7.4%)  

10-19 117 (13.3%) 74 (18.7%) 48 (14.7%) 239 (14.9%)  

20+ 656 (74.5%) 257 (65.1%) 242 (74.2%) 1155 (72.1%)  

Gums Health 

(self-

reported) 

    0.87 

Excellent 45 (5.1%) 18 (4.6%) 16 (4.9%) 79 (4.9%)  

Very good 188 (21.4%) 79 (20.0%) 64 (19.6%) 331 (20.7%)  

Good 291 (33.1%) 124 (31.4%) 87 (26.7%) 502 (31.4%)  

Average 229 (26.0%) 84 (21.3%) 99 (30.4%) 412 (25.7%)  

Poor 47 (5.3%) 24 (6.1%) 22 (6.7%) 93 (5.8%)  

Very poor 6 (0.7%) 2 (0.5%) 3 (0.9%) 11 (0.7%)  

Missing 74 (8.4%) 64 (16.2%) 35 (10.7%) 173 (10.8%)  
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3.2.2 Qualitative smoking habits are associated with compositional and functional 

profiles of salivary genera 

The microbiota composition of CHRISMB at phylum level was dominated by Firmicutes, 

followed by Bacteroidetes Proteobacteria, Fusobacteria and Actinomycetes; while at Genus 

level it was dominated by Prevotella, Streptococcus, Veillonella, Haemophilus, Neisseria 

(Supplementary File 1, Figure 3). The salivary microbiota was significantly associated with 

smoking (Figure 3-1 A, PERMANOVA R² = 0.04, p = 0.001, 2,000 permutations) as well as sex, 

age group and number of teeth, considering the marginal effect of all variables together 

(Supplementary File 1, Table 5). Alpha diversity was not significantly associated with smoking 

status (Supplementary File 1, Figure 4). Principal coordinate analysis and differential 

abundance analysis together suggested that the salivary microbiota of Former smokers was 

highly similar to Never smokers. Consensus-based differential abundance analysis identified 

44 genera that were significantly different between Current smokers and Never smokers after 

adjusting for age, sex, and number of teeth (Figure 3-1 B). To investigate sex-dependent 

associations, we repeated the same consensus differential abundance analysis separately by 

sex, again adjusting for age and number of teeth. Despite finding sex-specific differentially 

abundant genera, all were in the set of 44 differentially abundant genera of the model adjusted 

for sex, age group, and number of teeth (Supplementary File 1, Figure 5). We annotated genera 

based on their oxygen requirements from a manually curated table by Calgaro et al. [203], and 

observed that the relative abundance of aerobic taxa decreased consistently in smokers (from 

a median of 7% to 3%), in favor of anaerobes (Figure 3-1 C).  
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Figure 3-1. Association between qualitative smoking habits (Never, Former and Current) and the salivary 

microbiota in the CHRISMB cohort. (A) Principal Coordinate Analysis on the Bray-Curtis dissimilarity at genus 

level. confidence areas (95%) were drawn as ellipses. Group separations were mild but significant 

(PERMANOVA R² = 0.04, p = 0.001, beta-dispersity p = 0.104). Axes x and y were chosen as the principal 

components which explained most of the overall microbiota variability, which is shown in square brackets. (B) 

Heatmap of the 44 genera differentially abundant between Current and Never smokers. Each genus was 

transformed to relative abundance and Z-score scaled. Red and blue colors indicate a higher and lower mean 

abundance, respectively, while yellow colors indicate no difference. Genera reported in the figure were 

differentially abundant (Benjamini-Hochberg Q-value < 0.05, False Discovery Rate (FDR) = 5%, ALDEx2 Holm Q-

value < 0.05) in at least 4 out of 5 differential abundance methods (DESeq2, LinDA, MaAsLin2, ALDEx2, ANCOM-

BC), adjusting for age (categorical), sex (binary) and number of teeth (categorical). (C) Relative abundance of 

aerobes, anaerobes, and facultative anaerobes in relation to smoking status. Statistical significance was 

calculated with pairwise Wilcoxon test adjusting P-values (Q-values) for a 5% FDR with the Benjamini-Hochberg 

method (** q < 0.05; *** q < 0.001, **** q < 0.0001). 
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3.2.3 Several microbial genera associated with smoking habits are also associated with 

the grams of tobacco smoked daily 

We regressed each genus against daily smoking intensity as multiples of 5 grams per day (see 

Methods). Fretibacterium was positively associated with increases in daily smoking intensity 

and 10 with decreases (Figure 3-2 A). Except for Campylobacter and Selenomonas, the 

remaining 9 genera were also differentially abundant comparing Current against Never 

smokers (Figure 1B). Additionally, the effect sizes estimated in the daily smoking intensity 

regression were highly correlated with the estimates obtained comparing Current against 

Never smokers (Pearson 𝜌  = 0.87, Supplementary File 1, Figure 6), suggesting that some 

genera associated with smoking against non-smoking were additionally associated with daily 

smoking intensity. The complete linkage hierarchical clustering in the pheatmap function 

tended to cluster heavier smokers together, further suggesting a dose effect (Figure 3-2 A). The 

mean relative abundance and variance of aerobes significantly decreased at the increasing 

daily smoking intensity (linear regression  𝛽(
1

𝑔𝑟𝑎𝑚𝑠/𝑑𝑎𝑦
) =  0.027  , P-value = 4.6 × 10−4 ; 

Supplementary File 1, Tables 6, 7, adjusted for age as continuous variable, sex and number of 

teeth) with a plateau at more than 10 grams (Figure 3-2 B). Conversely, the relative abundance 

of anaerobes and facultative anaerobes slightly increased. 
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Figure 3-2. Smokers’ (n = 308) daily smoking intensity is associated with relative abundance 

shifts of several genera and a decrease of aerobic taxa relative abundance. (A) Heatmap of 

genera significantly affected by daily smoking intensity. Genera were transformed to relative 

abundance and Z-score scaled to highlight relative differences in mean abundance in relation to the 

smoking intensity. Significant genera (Benjamini-Hochberg Q-value < 0.05, FDR = 5%) were obtained 

modeling each genus in response to daily smoking intensity as multiples of 5 grams per day as a semi-

continuous variable, adjusting for age (continuous), sex and number of teeth in the DESeq2 negative 

binomial generalized linear model framework. (B, C, D) Relative abundance of aerobes, anaerobes 

and facultative anaerobes, respectively, in relation to the grams of tobacco smoked daily. 
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3.2.4 Salivary microbiota of Former smokers who quit 5 years or longer tended to 

resemble Never smokers’ profiles 

We studied the association between salivary genera of former smokers and the years since 

smoking cessation using the same model framework as the daily intensity regression (Figure 

3-2), with 1 year scale, finding no statistically significant association. We visualized the mean 

relative abundance of genera associated with smoking (Figure 3-1 B) in the Former smokers’ 

group with 20 or more natural teeth, grouping them by bins of years since quitting. We limited 

the visualization to individuals with 20 or more teeth to minimize the effect of tooth loss on 

the microbiota of Former smokers, who tended to be older than Current and Never smokers 

(Figure 3-3 A). Looking at the complete linkage hierarchical clustering, we noticed a gradual 

increase of similarity of Never smokers to Former smokers who quit for more years, except 

for the “Former 2-3 y” group (Figure 3-3 A). The relative abundance of aerobes mildly 

increased in the first 20 years since quitting (β 0 ≤years ≤ 20 =  0.001 , P-value 0.052, adjusted for 

age, sex and number of teeth; Supplementary File 1, Tables 8, 9) (Figure 3-3 B). 
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Figure 3-3. The salivary microbiota of individuals who quit smoking (n = 369) showed multiple-

year perturbation and tends to resemble Never smokers’ profiles within 5 years. (A) Heatmap 

of the relationship between the years since quitting smoking and the mean relative abundance of 

genera previously found significantly associated with smoking (see Figure 1). Taxa were transformed 

to relative abundance and scaled by row, to highlight differences in mean abundance in relation to 

bins of years since quitting to limit the low sample size of some categories. Complete linkage 

hierarchical clustering was used to cluster columns. Since Former smokers tend to be older and 

given the tendency of the elderly to lose teeth, we limited the visualization to people with 20 or more 

teeth. (B, C, D) Relative abundance of anaerobes, aerobes, and facultative anaerobes in relation to 

years since quitting smoking. 
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3.2.5 Predicted Functional Profiles Associated with Smoking highlighted a decrease of 

aerobic and nitrate reducing taxa 

 

 

Figure 3-4. Microbial metabolic pathways inferred with PICRUSt2 that were differentially 

abundant in relation to smoking exposure, adjusting for age, sex and number of teeth. Heatmap 

of the 21 differentially abundant pathways in Current against Never smokers contrasts. Each 

pathway was transformed to relative abundance and Z-score scaled. Groups were ordered based on 

decreasing exposure to smoking, from heavier smokers to Former smokers who quit for the most 

years. As a reference for absence of exposure to smoking, Never smokers were included in the 

rightmost column. Red and blue colors indicate a higher and lower mean abundance, respectively, 

while yellow colors indicate no difference. Differential abundance analysis was performed with a 

consensus-based approach of 5 differential abundance methods (DESeq2, LinDA, MaAsLin2, 

ALDEx2, ANCOM-BC), modeling each pathway against smoking status and adjusting for age 

(categorical), sex (binary) and number of teeth (categorical). Pathways reported in the figure were 

differentially abundant (Benjamini-Hochberg Q-value < 0.05, False Discovery Rate = 5%, ALDEx2 

Holm Q-value < 0.05) in at least 4 methods with an absolute effect size larger than 0.5. 
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After predicting microbial pathway abundance with PICRUSt2, we identified pathways that 

were differentially abundant between Current and Never smokers using the same consensus 

method used for genus-level taxonomy. We identified 21 pathways, which we later visualized 

in relation to a gradient of smoking exposure, without clustering (Figure 3-4). It should be 

noted that some of these were reconstructed from the same sets of predicted enzymes, 

therefore their correlation was 1 (e.g., Ubiquinol pathways). To avoid selection bias, we 

performed the analysis on all pathways regardless of their correlation and reported the 

correlation matrix of the significant ones in Supplementary File 1, Figure 7. 

3.3 DISCUSSION 

3.3.1 Summary of study and main results 

We investigated the associations between salivary microbial genera and predicted metabolic 

pathways and smoking status, daily smoking intensity and years since cessation in CHRISMB, 

a convenience sample of 1601 adult participants in the CHRIS study in South Tyrol, Italy [201]. 

We confirmed previous findings regarding salivary microbiota compositional differences by 

smoking behavior. Additionally, we demonstrated that aerobic taxa varied with the frequency 

and intensity of smoking exposure, and that the salivary microbiota of Former smokers is 

generally more similar to the salivary microbiota of Never smokers, especially of those who 

quit longer than 5 years. Several aerobic or oxygen-requiring predicted microbial pathways 

decreased in smokers. The nitrate reduction pathway was significantly lower in smokers than 

in non-smokers. The decreases in nitrate reduction pathways among current smokers and 

increases in these pathways among former smokers is consistent with previous reports of 

decreases in cardiovascular events among former smokers [204]. This suggests that oral 

microbiota functional changes with smoking may be an additional explanation for changes in 

cardiovascular risk with changes in smoking habits.  

3.3.2 Comparison with other studies 

The relative abundance of salivary microbiota phyla of CHRISMB participants was 

comparable with the mean composition of a Japanese [89] and Middle Eastern [190]: 

Firmicutes were the most abundant, followed by Bacteroidetes, Proteobacteria, 

Actinobacteria and Fusobacteria. Consistent with previous analyses in Americans of 

Caucasian, African and Hispanic ancestry [188,189], and cohorts of middle [190] and eastern 

Asian Ancestry [89,191], Italian smokers had decreased abundance of Neisseria, Lautropia, 

Haemophilus, Capnocytophaga, and increased abundance of Atopobium, Megasphaera, 
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and Veillonella when compared to Never smokers  (Figure 3-1 B). This suggests that cigarette 

smoking has a consistent and generalizable effect on the oral microbiota. We also identified 

12 novel differentially abundant genera between Current and Never smokers: Alloscardovia, 

Bacteroidetes Genus 3, Bulleidia, Cryptobacterium, Fretibacterium, Mitsuokella, Parvimonas, 

Peptostreptococcaceae XI Genus 9 and Stomatobaculum were increased, while 

Absconditabacteria (SR1) Genus 1, Ottowia and Peptidiphaga were decreased 

(Supplementary File 1, Figure 1). Further work is required to determine whether these 

changes are specific to this work. 

3.3.3 Salivary microbial genera composition and proportion of aerobes were strongly 

impacted by smoking 

Of the 44 differentially abundant genera in smokers, compared to Never smokers, genera in 

the phylum Proteobacteria (N=7) were decreased and Actinobacteria (N=6) were increased 

among smokers. These two phyla harbor mostly aerobic and anaerobic taxa, respectively. 

Indeed, the proportion of aerobes was inversely proportional to the frequency and intensity 

of exposure to smoking (Figure 3-1, Figure 3-2, Figure 3-3). We also predicted functional 

profiles based on our compositional data, observing an increase of Gram-positive associated 

pathways in smokers, in particular teichoic acid biosynthesis (Figure 3-4), which we 

confirmed looking at the relative abundances of Gram staining of bacteria across smoking 

status (Supplementary File 1, Figure 8). Moreover, we observed a decrease in pathways 

associated with aerobes, such as nitrate reduction and ubiquinol synthesis, which is pivotal 

in the electron transport chain [205], and a decrease of pathways that require oxygen and/or 

produce an excess reducing power, such as fatty acid oxidation. These findings support the 

hypothesis that smoking induces a hypoxic environment in the oral cavity. A decreased 

abundance of the nitrate reduction pathway in smokers could be an effect of the decrease of 

genera Neisseria, Haemophilus, Kingella, which harbor several NRB. A decrease of NRB may 

have a detrimental effect on enterosalivary nitrate reduction [206], which is a considerable 

source of blood nitrites for endogenous NO synthesis. Decreases in NO, which is a vasodilator 

[207], might hinder gingival blood flow and increase stress over time, which could lead to 

higher chances of gingival recession and periodontal diseases [208]. Indeed, chondroitin 

sulfate degradation was increase in heavier smokers, which may be indicative of higher stress 

to the gingival connective tissue and increase the risk of periodontal diseases. NO deficiency 

has also been suggested as a risk factor for developing cardiovascular diseases [209–211]. 

Taken together, microbiota-derived NO depletion may increase the chance of developing 

periodontal and cardiovascular diseases in smokers, as recently reviewed [212]. 



G i a c o m o  A n t o n e l l o  

35 t h  PhD Cycle University of Trento  Page 41 |  114 

3.3.4 Some genera are statistically associated with daily smoking intensity but not with 

the years since smoking cessation 

In addition to examining quantitative differences by Current smoking status, we tested for 

differences in bacterial composition by daily intensity of tobacco exposure (g/day) (Figure 

3-2). Extending observations by Wu et al. [188] at lower taxonomic level and higher resolution 

of exposure variables, genera belonging to classes Betaproteobacteria (Lautropia, Neisseria), 

Gammaproteobacteria (Cardiobacterium) and Flavobacteriia (Capnocytophaga) were 

significantly decreased at increasing grams of tobacco smoked per day. Additionally, we 

found negative correlation with grams of tobacco smoked per day for genera in classes 

Clostridia (Peptostreptococcaceae Family XI - Genus 1, Peptostreptococcus), 

Epsilonproteobacteria (Campylobacter), Fusobacteriia (Fusobacterium, Leptotrichia) and 

Negativicutes (Selenomonas). Genera Actinomyces (class Actinobacteria) and Fretibacterium 

class Sinergistia) were significantly increased. The subsiding of smoking-related microbial 

taxa was in line with the observation of full recovery of cardiovascular health risk within 5 

years since quitting [213]. It is possible that smoking induced oral microbiota alterations may 

last longer than 5 years (Figure 3-3  B, C, D), which would align with the subsiding of 

periodontal disease risks in smokers within 10 years [214]. 

3.3.5 Study Limitations 

Major limitations of this study include the cross-sectional design and the lack of a professional 

assessment of the number of decayed, missing and filled teeth and gum health. While we 

controlled for age, sex, and number of teeth as potential confounders in our models, residual 

confounding is still possible due to, for instance, medications usage, diet, and alcohol intake. 

Furthermore, some subgroup strata were small, and structural non-positivity could exist. 

Bacterial metabolic pathways inference was based solely on salivary microbiota composition. 

While it is encouraging that our results regarding changes in salivary microbiota composition 

with smoking habits are consistent with those of previous studies conducted among very 

different populations, prospective studies are required to more directly address whether oral 

microbiota play a mediating role in the onset of smoking-related chronic diseases. 

3.3.6 Study Strengths 

Our analysis also has several strengths. The smoking questionnaire was detailed, allowing for 

high-resolution qualitative and quantitative characterization of smoking habits. We tested for 

a dose-dependent relationship between smoking and perturbation to the oral microbiota, 

supporting a causal relationship according to the Bradford Hill criteria [215].  
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This study cohort was particularly homogenous from the perspective of ethnicity, lifestyle and 

microbiota data generation, which should significantly limit confounding effects.  

Our sample size was the largest to date to examine associations between smoking and the oral 

microbiota in a European population. While the salivary microbiota is a composite of multiple 

oral communities, saliva samples are easy to collect, making them ideal for large 

epidemiological cohorts and for future diagnostics and prognostics.  

3.4 CONCLUSIONS 

Smoking is associated with changed in the salivary microbiota composition often in a dose-

dependent fashion. The salivary microbiota of people who quit smoking longer than 5 years 

resembled Never smokers’ profiles. Irrespective of the phylogeny, aerobic taxa are the most 

sensitive to smoking exposure. Decreased microbial nitrate reduction pathway abundance in 

smokers may provide an additional explanation for the effect of smoking on cardiovascular 

and periodontal diseases risk, a hypothesis which should be tested in future studies. 
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3.7 DATA AND ANALYSIS SCRIPTS AVAILABILITY 

CHRIS and CHRISMB data cannot be shared openly due to Italian laws on personal data 

protection. However, CHRIS data can be downloaded from https://chrisportal.eurac.edu/, 

after approval of the researcher’s proposal by the CHRIS data access committee. Analysis 

scripts are freely accessible at https://github.com/g-antonello/CHRISMB-smoking-

epidemiology.  

3.8 MATERIALS AND METHODS 

3.8.1 Study ethical approval, design, and data collection 

The CHRIS study was approved by the local Ethical Committee within the South Tyrol 

healthcare on April 19, 2011, and registered with code 21.2011. The legal base for personal 

data handling and protection was the informed consent explained to and signed by each 

participant. The personal data protection warrant of CHRIS constantly ensures that all data 

are handled and protected in full compliance with the European Regulation (EU 2016/679) and 

Italian law (D.L.vo 196/2003). 

The CHRIS study includes adults of both sexes aged 18 and older. Participants were recruited 

starting in 2011 with extensive outreach including advertisements, electronic and paper mail 

to cover most people residing in the Vinschgau/Val Venosta district (South Tyrol, Italy). On the 

day of visit, participants answered lifestyle, dietary, general health, and socio-economic 

status questionnaires [201]. The CHRIS Salivary microbiota (CHRISMB) project is a 

convenience sample of CHRIS participants recruited between January 2017 and February 

2018. 

Epidemiological data generation. We defined age as the difference between the examination 

date and the birth date, rounded to the closest integer, and categorized age into six groups as 

shown in Table 1. CHRISMB participants filled in an adapted version of the World Health 

Organization oral health survey [216], from which we extracted information about the number 

of natural teeth in 4 ranges: 0, 1-9, 10-19 and 20 or more. We derived smoking variables from 

smoking questionnaires harmonized from the European Community Respiratory Health 

Survey III questionnaire [217]. We defined qualitative smoking habits - “Never”, “Former”, 

“Current with reduction” - Current (R), and “Current without reduction” - Current (NR) - 

according to Murgia and colleagues [218]. Former smokers were smokers who quit for longer 

than 1 month prior to the visit.  

https://chrisportal.eurac.edu/
https://github.com/g-antonello/CHRISMB-smoking-epidemiology
https://github.com/g-antonello/CHRISMB-smoking-epidemiology
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Current (R) were individuals who reported being smokers at the day of examination but that 

reduced the daily smoking intensity at least 1 month prior to the visit. Since we did not observe 

differences in the microbiota composition of Current (R) and Current (NR) (Supplementary 

File 1, Figure 9), we decided to aggregate the two smoking groups. For completeness, included 

in the supplement is a description of the study population showing the separate 

characteristics of the Current and Former smoker groups (Supplementary File 1, Table 10). 

Cigarettes were the primary source of tobacco, except for 5 participants. To include all 

sources of tobacco as one variable of smoking intensity, we converted the number of 

cigarettes, cigars, and cigarillos into grams of tobacco equivalents, respectively 1, 5 and 3 

grams (g), and converted g/week to g/day as previously proposed [218,219]. We defined 

“smoking history” as the difference between the age of the participant to CHRIS and the 

reported age at which the participant quit smoking, rounded to the closest integer. 

3.8.2 Salivary microbiota data generation 

Saliva sample collection and storage. CHRISMB participants were required to drink only 

water and fast from the night before. Additionally, they were required not to drink, eat or 

smoke within 1 hour prior to the visit. During the visit, they provided 2-5 mL unstimulated 

saliva samples into Oragene OG-500 tubes. Within a few hours after the collection, samples 

were vortexed, split into 0.5 mL aliquots, and promptly stored at -80 °C. 

DNA extraction and sequencing. Salivary DNA extraction and sequencing were conducted 

by the University of Michigan microbiome core. DNA was extracted using the Eppendorf 

epMotion liquid handling system and Qiagen MagAttract PowerMicrobiome Kit protocol and 

quantified with the PicoGreen dsDNA Assay kit (Thermo Fisher Quant-iT, cat# P7589).We 

amplified the V4 hypervariable region of the 16S rRNA gene by polymerase chain reaction 

(PCR) using a dual indexing strategy [220]. PCR products were visualized using E-Gel 96 with 

2% SYBR Safe DNA Gel Stain (Life Technologies cat# G7208-02). PCR products were then 

pooled and normalized using SequalPrep Normalization Plate Kit (Life Technologies, cat# 

A10510-01) following the manufacturer’s protocol for sequential elution.  

The final pooled library consisted of equimolar amounts of each plate, normalized to the 

pooled plate at the lowest concentration. Sequencing libraries were prepared according to the 

Illumina MiSeq guidelines, adding phiX phage genome to ease diversity and quality control. 

Each of the 5 libraries contained 2 negative and 2 positive controls, respectively using water 

from the extraction step and commercially available DNA from communities of known 
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composition from the PCR step (Zymo Research, cat# D6306). We sequenced reads on an 

Illumina MiSeq machine. 

3.8.3 Sequencing data processing 

Sequencing data processing. We assessed the sequencing quality of the 69,286,448 obtained 

reads using “MultiQC” (v. 1.7) to visually determine read trimming length. We performed 

FASTQ read trimming, filtering, and taxonomic assignment with the “DADA2” package (v. 

1.14) [221] in R (v. 3.6.0) [222]. This method generates a high-resolution sequence table of 

Amplicon Sequence Variants (ASVs), each differing by at least one nucleotide. We removed 

the first 20 and last 8 nucleotides to eliminate primer and barcode sequences and to ensure 

homogeneity of ASV calling across batches. After these steps, we submitted 59,331,563 reads 

to the LearErrorRates step, separately for each run, using 1x108 bases as the learning rate 

parameter, which helps infer technical and real sequence differences. Then, we merged 

paired ends, resulting in 57,122,521 reads. Removal of chimeras using the consensus method 

resulted in an additional loss of 1.05% and 44,136,182 total reads used for taxonomic 

assignment. We assigned taxonomy from kingdom to genus level using the Bayesian classifier 

and the expanded Human Oral microbiome Database (eHOMD), while the species level was 

assigned using the 100% identity addSpecies strategy. To increase the likelihood of 

assignment at the species level, we enriched the eHOMD database with publicly available 16S 

rRNA FASTA sequences from known oral species in the genera Lactobacillus, Streptococcus, 

and Prevotella (Supplementary File 1, Table 11). We confirmed homogeneity across batches 

based on positive compositional profiles (Supplementary File 2).  

Microbiota data preparation for analysis. We generated a phyloseq object starting from the 

counts table, taxonomic table and taxonomy tree using the Bioconductor package “phyloseq” 

(v. 1.42.0) [223] and “ape” (v. 5.7). We retained only those taxa that were present with at least 

10 reads in at least 1% of samples with the function core of the “microbiome” package (v. 

1.20.0) [224]. We aggregated ASVs at the genus level with the tax_glom function in the GitHub 

package “speedyseq” (“mikemc/speedyseq”), a faster version of phyloseq for microbiome 

data manipulation. 

 

https://github.com/mikemc
https://github.com/mikemc/speedyseq
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3.9 SAMPLES AVAILABILITY AND STATISTICAL ANALYSIS 

Participants with missing data on smoking habits (N = 4), number of teeth (N = 44) and 

antibiotic usage within 3 months prior to the visit (N = 83) or who reported taking antibiotics 

within 3 months prior to saliva collection (N = 191) were excluded, leaving 1601 analytic 

samples. Additionally, we excluded 17 smokers from the “Regression of microbial genera 

against smoking intensity” due to missing or inconsistent grams of tobacco smoked per day 

and 1 participant who declared smoking 60 cigarettes per day, which was far beyond the range 

of the rest of the data (0.5-30). We further excluded 4 participants from the analysis 

“Regression of microbial genera against smoking history” due to inconsistent or missing 

answers.  

3.9.1 Statistical analysis 

Unless reported otherwise, we performed all statistical analyses using R (v. 4.2.2) and RStudio 

Server (v. 2022.07.2). 

Pairwise relationship between demographics. We tested the independence of smoking 

habits from age groups, sex, self-reported gum health and self-reported number of natural 

teeth using a χ² test of independence with Yates’s correction for low-frequency groups. We 

considered traits with a P-value lower than 0.05 as statistically non-independent. 

Beta diversity and dimensionality reduction visualization. We estimated between-sample 

microbiota dissimilarity transforming genera counts to relative abundance and calculating the 

Bray-Curtis dissimilarity with the distance function in “phyloseq“. We obtained eigenvectors 

with ordinate and visualized the two vectors explaining the most variance with 

plot_ordination, drawing 95% confidence interval ellipses with stat_ellipse in the “ggplot2” 

package (v. 3.4.0). We estimated the impact of smoking habits, number of teeth, sex and age 

group on the beta diversity using a permutational multivariate analysis of variance 

(PERMANOVA) [225] with adonis2 in the “vegan” package (v. 2.6-4), with 2,000 permutations 

considering the marginal effect of all variables. We ensured even intraclass dispersion of 

smoking status groups (Never, Former and Current) using betadisper followed by permutest, 

with 2,000 permutations (Supplementary File 1, Table 5).  

Differential abundance analysis in relation to smoking. To study the association between 

each oral genus abundance and smoking, we performed differential abundance analysis 

comparing Current with Never smokers adjusting for age group, sex and number of teeth. We 

performed a consensus based differential abundance analysis, as advised by Nearing et al. 
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[226], using 5 different methods having: DESeq2 (v. 1.38.2) [227], LinDA (v. 1.1) [228], 

MaAsLin2 (v. 1.12) [229], ALDEx2 (v. 1.30) [230] and ANCOM-BC (v. 1.6.4) [231]. We defined 

significant differentially abundant genera if Benjamini-Hochberg (BH) corrected Q-values 

were below 0.05 in at least 4 out of 5 methods with a false discovery rate (FDR) = 5% [232].  

We used Holm multiple testing correction in ALDEx2 as it was the only method implemented 

in its generalized linear model (GLM) framework. 

Regression of microbial genera against smoking intensity. To study the compositional 

changes of microbial genera in response to the grams of tobacco smoked per day, we modeled 

each genus in against the grams of tobacco per day as a continuous variable in a Negative 

binomial GLM (DESeq2). We binned the daily tobacco smoked into multiples of 5 g as those 

were the most frequent answers (Supplementary File 1, Figure 10). We considered genera as 

significant when BH-corrected Q-values were lower than 0.05 with FDR = 5%. 

Regression of microbial genera against smoking history. To study the compositional 

changes of microbial genera in response to smoking history, we modeled each genus in 

response to years since smoking cessation as a continuous variable, at 1-year interval in a 

Negative binomial GLM (DESeq2). We considered genera as significant when BH-corrected Q-

values were lower than 0.05 with FDR = 5%. 

Insights into the functional potential of the salivary microbiota. We inferred the functional 

potential of the oral microbiota at the ASV level using picrust2_pipeline.py with default 

parameters implemented in PICRUSt2 (v. 2.5) [58]. We investigated differential abundant 

pathways with the same strategy used for genera differential abundance. We considered 

pathways as significant if the absolute effect size was above 0.5 and the Q-value below 0.05 

in at least 4 methods. To further confirm the impact of smoking in relation to the proportion 

of aerobic taxa, we mapped each genus to a table of curated annotations of three oxygen 

metabolism classes: aerobic, anaerobic and facultative anaerobic [203]. We visualized the 

relative abundance of aerobes, anaerobes and facultative anaerobes in each sample with 

respect to smoking status with pairwise Wilcoxon tests, correcting P-values with BH (FDR = 

5%). 

3.10 SUPPLEMENTARY FILES (LINKS) 

Supplementary File 1 

Supplementary File 2 

https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-023-42474-7/MediaObjects/41598_2023_42474_MOESM1_ESM.pdf
https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-023-42474-7/MediaObjects/41598_2023_42474_MOESM2_ESM.pdf
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ABSTRACT 

The oral microbiota has gained traction as a key player in health and disease. While it has 

been shown that sharing the same household has an important role in determining salivary 

microbiota similarity, less is known about geographic distribution and genetics.  

We generated 16-V4 salivary microbiota data and explored its association with geographic 

factors (cohabitation, municipality, and altitude of residence) and family factors (familial 

relatedness, genetics) in 1,782 participants of the Cooperative Health Research in South Tyrol 

(CHRIS) study.  

We found four study-wide significant (P-value < 1.25 × 10−9) associations between TOPMed 

imputed variants and ASVs, three of which with minor allele frequency (MAF) less than 1%, 

after adjusting for age, sex, smoking, number of teeth, antibiotics usage, and 10 genetic 

principal components: Selenomonas ASV 113 – rs9511156 (MAF = 7.6%) ; Aggregatibacter ASV 

90 – rs916234787 (MAF = 0.38%) and rs535001228 (MAF = 0.48%); Prevotella ASV 178 – 

rs72809470 (MAF = 0.36%). Gene level analysis on rare variants (MAF < 1%) identified SRFBP1, 

and LOX associated with Selenomonas noxia (P-value < 3.05 × 10−8). 

Our findings yield novel insights into the genetic contributions to the salivary microbiota 

composition, emphasizing the substantial impact of environmental and lifestyle factors. 
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4.1 INTRODUCTION 

The microbial community stably residing in the oral cavity of humans is called oral 

microbiota. It is primed in the first months to years of life as a consequence of birth method, 

exposure to microbes through human contact, lactation, food and the surrounding 

environment [233,234]. The degree of similarity between mother and child oral and gut 

microbiota in the first months of life is higher than in adulthood [235,236]. The oral microbiota 

of adults is highly personalized [237] and plays a role in food processing, antagonism against 

pathogens and modulation of mucosal immunity [238]. Additionally, it was suggested to 

significantly contribute to the concentration of circulating nitrite via salivary nitrate reduction 

[239], which is then converted into nitric oxide by the host, a vasodilator with protective effect 

on blood pressure and cardiovascular health [196]. On the other hand, the oral microbiota 

plays a role in the likelihood, progression and severity of conditions like halitosis [109,240] 

and diseases like dental caries [241] and periodontitis [242]. Periodontitis in particular was 

associated with higher risk of cardiovascular diseases [187]. Given the accumulating 

evidence of the importance of the oral microbiota for host health and disease, it is becoming 

a factor to consider in the public health context [243].  

Among all oral niches such as periodontium, gums, teeth surfaces, and the tongue dorsum, 

the salivary microbiota is investigated for its high diversity [90] and ease of sample collection 

and preservation. The salivary microbiota of adults is composed of few highly prevalent 

genera, Prevotella, Streptococcus, Veillonella, Haemophilus, Neisseria account for 

approximately 50% of the total bacteria in samples [244,245]. The remaining 50% is composed 

of a larger set of variable taxa, responsible for most of the salivary microbiota diversity within 

and between populations. Understanding the factors that associate with population-level 

compositional variability of the salivary microbiota should be considered for potential future 

microbiota-based diagnostic and therapeutic tool against diseases and conditions. In 

particular, the association between the salivary microbiota composition and the geographic 

distribution of individuals requires further investigation. A pilot study on 50 individuals in 

northern Italy found region-specific signatures [246] but did not discuss within-region 

similarity. Here, we explore the compositional variability of the salivary microbiota of an 

Italian Alpine population in relation to household sharing, genetic background, municipality 

of residence and altitude of residence in CHRISMB, a salivary microbiota convenience sample 

within the Cooperative Health Research in South Tyrol (CHRIS) study. 
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We confirmed the cohabitation associates with a large degree of salivary microbiota 

compositional similarity and that municipality and altitude of residence are not major 

environmental factors in the salivary microbiota composition. We show that several salivary 

taxa have a significant pedigree heritability (N = 16) and household effects (N = 34). We found 

four study-wide significant ASV-variant associations, and none at genus level, supporting a 

role of genetics to the salivary microbiota composition. Our analyses confirm that, while 

familial relationships and genetic factors are associated with the salivary microbiota 

composition, environmental and lifestyle factors - such as smoking and oral health - have a 

considerably higher impact. 

4.2 RESULTS 

We show that cohabitation is strongly associated with a higher microbiota similarity, while 

municipality and altitude showed weak and no association, respectively. Fourteen genera and 

16 ASVs had a significant heritability component (17.4% ≤ ℎ2 ≤ 30.9%), while 14 genera and 

37 ASVs showed a significant household component ( 9.9% ≤ 𝑐2 ≤ 30.8% ). With the 

microbiota GWAS (mbGWAS), we found no study-wide significant (SWS) Genus-variant 

associations. However, we found four SWS ASV-variant associations after adjusting for age, 

sex, smoking, number of teeth, antibiotics usage, and 10 genetic principal components: 

Selenomonas ASV 113 – rs9511156; Aggregatibacter ASV 90 – rs916234787 and rs535001228; 

Prevotella ASV 178 – rs72809470. Gene level analysis on rare variants (minor allele frequency 

< 1%) further identified SRFBP1, and LOX associated with Selenomonas noxia (P-value < 

3.05 × 10−8). 

4.2.1 The majority of CHRISMB participants live in households with up to 3 participants 

and reside mostly in Mals and Graun 

After applying sample inclusion criteria and read quality filtering (see Methods), the 

population included 1,782 participants, with a median age of 45 years (interquartile range: 31-

57, range: 18-93) and 53% females. The majority of participants resided in Mals (N = 853) and 

Graun (N = 562). Smaller municipalities had generally younger participants (age ≤ 41 years) 

and smokers proportions varied across municipality, ranging from 19% in Mals to 34.4% in 

Laas. Households with at least 2 participants were 38.6%, while households with one 

participants were 32.8%. The remaining CHRISMB participants resided in households with 3 

to 9 participants (Table 4-1). 
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Table 4-1. Demographics of CHRISMB in South Tyrol, Italy, with respect to Municipality of 

residence. Municipalities with less than 100 partcipants were grouped together as “Other”. Per-column 

percentages were also reported in brackets. Population sample statistics were included under the 

“CHRISMB” column. Household size is the number of people residing at a particular address. Altitudes 

were categorized as “Low” (< 1,500 m) and “Moderate” (between 1,500 and 2,500 m), according to Parati 

et al. [247]. 

 

  
Mals 

(N=853) 

Graun 

(N=562) 

Other 

(N=367) 

CHRISMB 

(N=1782) 

Sex     

  Male 402 (47.1%) 263 (46.8%) 173 (47.1%) 838 (47.0%) 

  Female 451 (52.9%) 299 (53.2%) 194 (52.9%) 944 (53.0%) 

Age (years)     

  Mean (SD) 45.1 (16.2) 47.7 (15.7) 41.0 (18.5) 45.1 (16.7) 

  Median  

  Range 

46.0  

18.0 – 91.0 

48.0  

18.0 – 86.0 

36.0  

18.0 – 93.0 

45.0  

18.0 – d 93.0 

Number of Teeth (self-reported)   

  0 52 (6.1%) 37 (6.6%) 14 (3.8%) 103 (5.8%) 

  1-9 52 (6.1%) 48 (8.5%) 28 (7.6%) 128 (7.2%) 

  10-19 138 (16.2%) 98 (17.4%) 36 (9.8%) 272 (15.3%) 

  20+ 611 (71.6%) 379 (67.4%) 289 (78.7%) 1279 (71.8%) 

Smoking status    

  Never 476 (55.8%) 305 (54.3%) 195 (53.1%) 976 (54.8%) 

  Former 215 (25.2%) 136 (24.2%) 95 (25.9%) 446 (25.0%) 

  Current 162 (19.0%) 121 (21.5%) 77 (21.0%) 360 (20.2%) 

Number of participants per household   

  1 250 (29.3%) 131 (23.3%) 204 (55.6%) 585 (32.8%) 

  2 364 (42.7%) 210 (37.4%) 114 (31.1%) 688 (38.6%) 

  3 147 (17.2%) 108 (19.2%) 27 (7.4%) 282 (15.8%) 

  4 72 (8.4%) 96 (17.1%) 16 (4.4%) 184 (10.3%) 

  5-9 20 (2.3%) 17 (3.0%) 6 (1.6%) 43 (2.4%) 

Altitude category    

  Low 689 (80.8%) 182 (32.4%) 352 (95.9%) 1223 (68.6%) 

  Moderate 164 (19.2%) 380 (67.6%) 15 (4.1%) 559 (31.4%) 

 



The CHRIS Salivary Microbiome 

35 t h  PhD Cycle University of Trento  52 |  114 

4.2.2 The salivary microbiota varies largely in relation to cohabitation and marginally 

to municipality and altitude of residence 

 

Figure 4-1. Pairs of participants living within households have a more similar salivary 

microbiota than pairs living between households. Boxplots of pairwise Bray-Curtis dissimilarity 

(1 – similarity), indices based on 622 ASVs. Lower values indicate a more similar microbiota. The 

analysis was performed on participants living with at least 1 other participant (N = 1,197). We show 

the household effect in the overall population (A), as well as split by sex (B), smoking (C), number of 

teeth category (D) and age group (E). Per-group sample sizes were added in the x axis labels. 

Significance was calculated with pairwise t-test, adjusting P-values with Benjamini-Hochberg under 

a false discovery rate of 5%. 

We quantified the association between household and salivary microbiota variability by 

modeling the Bray-Curtis distance between the 1,197 people that lived with at least one other 

person, including sex, smoking, number of teeth, antibiotics usage and age group as 

covariates in a permutational multivariate analysis of variance (PERMANOVA) model with the 

by = “margin” parameter and 2,000 permutations. The proportion of variance (R²) associated 
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with the household variable was 53%. We then visualized the Bray-Curtis dissimilarity index 

in relation to cohabitation, splitting groups by other factors associated with microbiota 

variability (age, sex, smoking, and number of teeth), which confirmed that cohabitation was 

strongly associated with higher microbiota similarity (Figure 4-1). We additionally observed 

a gradual decrease of microbiota similarity at decreasing number of natural teeth and 

increasing age.  

Then we investigated whether the municipality of residence and the altitude of residence 

associated with higher microbiota similarity. First, we tested the association between salivary 

microbiota variability and municipality and altitude using PERMANOVA including the 

marginal effect of age, sex, smoking, number of teeth, antibiotics usage, municipality, and 

altitude categorized according to Parati et al. [247]. To estimate the role of municipality and 

altitude on the salivary microbiota limiting the confounding effect that households and small 

municipalities could have, we tested four PERMANOVA analyses (Figure 4-2 A). We observed 

that the R² associated with municipality was close to 1% when rare municipalities were 

included in the model, while it was 0.5% when they were excluded. Sampling 1 individual per 

household 500 times resulted in comparable R² estimates, but insufficient statistical power. 

Altitude was never significantly associated with salivary microbiota variability. We visualized 

the population level distribution in relation to municipality (Figure 4-2 A) and altitude of 

residence (Figure 4-2 B) with a PCoA. Next, we tested for differentially abundant ASVs 

between municipalities adjusting for age, sex, number of teeth, smoking, and antibiotics 

usage. We used Mals as baseline, as it was the municipality with the highest number of 

CHRISMB participants and in the low altitude category. We considered significant association 

at Q-values less than 0.1 divided by the 7 contrasts tested (𝛼 = 0.014). We observed 5 ASVs 

significantly more abundant in participants from other municipalities, with prevalence 

ranging between 3% and 25%, and log2 fold change estimates between 0.5 and 1.5 

(Supplementary Figure 1). Treponema ASV 239 was significant in Graun, Treponema HMT 225 

and Treponema ASV 626 in Schlanders, Veillonella ASV 186, and Capnocytophaga ASV 387 in 

Taufers. We applied the same model to find differentially abundant ASVs comparing moderate 

against low altitude residents, adjusting for age, sex, number of teeth, smoking, and 

antibiotics usage. We reported four ASVs significantly more abundant in moderate altitudes 

(Q-value less than 0.1), with a log2 fold change less than 1. We repeated the model regressing 

ASVs against continuous altitude values (range 302 – 2296 m), finding 12 significantly more 

abundant ASVs. All four ASVs found in the categorized differential abundance model were 

significant in the regression model (Supplementary Figure 2). 
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Figure 4-2. The salivary microbiota shows little variation in relation to municipality and 

altitude of residence on municipalities with at least 30 participants (N = 1,737). (A) PERMANOVA 

model with percentage of variance explained (R²) on the x axis for each variable considered (y axis). 

Transparency of the bars indicates a statistically non-significant association (p-value < 0.05). Four 

models were compared: “All|All”: all households and all municipalities were included; “All|30+”: All 

households were included, along with municipalities with at least 30 participants; “1 per house|All”: 

One participant per household was randomly selected, all municipalities were included; “1 per 

house|30+”: One participant per household was randomly selected, along with municipalities with 

at least 30 participants. The last two models were repeated with 500 random samples and R² and P-

value estimates were averaged and standard deviations were reported as error bars. (B, C) Principal 

coordinate analysis on the Bray-Curtis distance. Samples were colored by municipality (B) and 

altitude of residence (C), the latter categorized according to Parati et al. [247] (“Low” below 1,500 m; 

“Moderate” between 1,500 and 2,500 m). Ellipses represent the 95% confidence intervals around the 

samples within each municipality and altitude category.  
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4.2.3 Familial relationships did not associate with higher salivary microbiota similarity  

Because CHRIS encouraged family participation, cohabitation was linked to higher likelihood 

of relatedness (Supplementary Figure 3). To disentangle the effect of cohabitation from 

relatedness, we extracted pairwise pedigree relationships of the 1,197 participants selected 

for the household effect analysis (Figure 4-1). Since only 5 grandparents-grandchildren pairs 

shared the same household (Supplementary Table 1), we retained only first-degree 

relationships. We observed that the salivary microbiota similarity between siblings was 

significantly higher than children with their parents and unrelated individuals, both 

cohabiting and not (Figure 4-3 A). Additionally, parent-child similarity was not significantly 

different in relation to cohabitation (Figure 4-3 B). We performed heritability analysis using 

the SOLAR algorithm [248], which partitions a trait’s variance in relation to relatedness 

(heritability, h²) and  household (c²) components, after removing the portion due to fixed 

effects. We modeled the inverse rank normal transformed relative abundances of 142 ASVs 

and 48 genera with minimum 20% prevalence, adjusting for sex, age, smoking, antibiotics 

usage, and number of teeth on all available samples (N = 1,782). We considered h² or c² as 

significant if the BH adjusted Q-value was lower than 0.1. We found 16 ASVs with significant 

h² (range: 18% – 30.8%) and 37 with significant c² (range: 10.7% – 26.9%). Two ASVs, Prevotella 

ASV 67 and Stomatobaculum HMT 97 had both h² and c² significant components 

(Supplementary Table 2). ASVs with the highest h² components were M. muciniformis, 

Lachnospiraceae Genus 2 bacterium HMT_096, and Atopobium ASV 28; while those with the 

highest c² components were Prevotella ASV 21 (26.8%), Porphyromonas gingivalis (22.9%), 

and Gemella ASV 12 (22.2%) (Figure 4-3 C). We repeated the same analysis at genus level, 

finding 14 genera with significant h² and 14 with significant c² (Supplementary Table 3). 
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Figure 4-3. Microbiota similarity is associated with household and not with degree of 

relatedness or age difference in CHRISMB. (A) Bray-Curtis dissimilarity measures in pairs of 

relatives. Lower values indicate a more similar microbiota. (B) Bray-Curtis dissimilarity measures 

in relation to cohabitaiton, grouped by familial relationship. Lower values indicate a more similar 

microbiota. (C) Heritability (h²) analysis of 142 ASVs with a minimum prevalence of 20% adjusting 

for age, sex, smoking, antibiotics usage, and number of teeth in the SOLAR framework. The 

household contribution (c²) was also included. Taxa were plotted by decreasing prevalence from 

top to bottom. Representation was limited to associations with Benjamini-Hochberg adjusted Q-

values below 0.1 in h² or c² components. Components with Q-values > 0.1 were colored in grey.  
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4.2.4 mbGWAS reveals several ASV-variant associations 

Next, we investigated the association between taxa with minimum 20% prevalence at genus 

and ASV level and genotypes imputed from the TOPMed panel using the GRCh38 genome 

build. We modeled each taxon against 11 million variants adjusting for sex, antibiotics usage, 

smoking, number of teeth and the first 10 genetic principal components with the nf-gwas 

pipeline, a Nextflow pipeline [249] which exploites the Regenie algorithm [250] for association 

testing. We did not find study wide significant (SWS) associations at genus level (P-value < 

3.85 × 10−9 , see Methods), but we found four SWS ASV-variant associations (P-value <

 1.25 × 10−9, see Methods for details) (Table 4-2). We investigated these signals by visualizing 

neighbour signals in each locus with LocalZoom. 

Table 4-2. Study-wide significant genotype variants associated with microbiota features at ASV 

level. Study wide significance at ASV level was set to 1.25 × 10−9  (see Methods for details). The 

association was performed with the “nf-gwas” pipeline [249], adjusting for age, sex, smoking, 

number of teeth, usage of antibiotics, and the first 10 genetic principal components using TOPMed 

imputed genotypes. ASV: Amplicon Sequence Variant; rsID: Reference SNP cluster ID; Chr: 

Chromosome; Pos: Position on reference genome; MAF: Minor Allele Frequency.  

ASV 

rsID 

Chr. 

Pos 

MAF 

(%) 
Nearest Gene Distance  −𝐥𝐨𝐠𝟏𝟎(𝐏) Beta Std. Err. 

Imputation  

quality 

ASV 113 

rs951115613 

13 

24223648 

7.6 
AL359736.1 – 

SPATA13 
0 9.68337 0.369 0.058 0.801 

ASV 90 

rs916234787 

14 

70110307 

0.38 SLC8A3 0 9.35422 1.264 0.203 0.856 

ASV 148 

rs72809470 

16 

88611992 

0.48 ZC3H18 0 8.96617 1.510 0.248 0.601 

ASV 90 

rs535001228 

14 

70191018 

0.36 SLC8A3 1948 8.9074 1.137 0.187 0.885 

 

Conditional analysis on these variants did not identify additional signals. We tested the 

cumulative effect of rare variants (MAF ≤ 1%) with gene level analysis defining 3 variant masks 

in relation to the predicted impact of the variants in each locus - low, moderate, and high 

impact - as annotated in the Variant Effect Predictor (VEP) [251]. We found 2 loci associated 

with Selenomonas noxia ASV 172: SRFBP1, (low impact variants P-value = 2.04 × 10−8; 
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moderate impact variants P-value = 2.04 × 10−8)  and the low impact mask of the neighboring 

LOX gene (P-value = 1.90 × 10−8).  

 

 

Figure 4-4. Locus Zoom plots of the four ASV-gene associations found with the mbGWAS.  (A) 

ASV 113 – rs9511156. (B) ASV 90 – rs916234787. (C) ASV148 – rs72809470. (D) ASV 90 - rs535001228. 

Plots were generated with LocusZoom standalone. Each point is a variant, colored by its linkage 

disequilibrium (LD) with respect to the leading variant for each locus (purple diamond). Variants with 

missing LD are colored in grey. The bright blue line indicates the recombination rate, expressed in 

centimorgan/megabase, as seen on the right y axis. Recombination Rate and linkage disequilibrium 

were calculated from the CHRISMB data. 

4.3 DISCUSSION 

In this work we explored the association between geographic and genetic factors and salivary 

microbiota composition of an Italian Alpine population in CHRISMB, a convenience sample 

within the CHRIS study with focus on microbiota variability in relation to household sharing, 

relatedness and genetics, municipality, and altitude of residence. We found that the genetic 
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component is limited but significant, while the environmental component, first of all 

cohabitation, was strongly associated, followed by age and lifestyle such as smoking and oral 

health. 

4.3.1 The salivary microbiota varies largely in relation to cohabitation and marginally 

to municipality and altitude of residence 

People cohabiting had a higher salivary microbiota similarity than people not cohabiting, 

which also reflected in the number of ASVs with a significant household component (Figure 

4-1 C). This result, also previously observed in the gut [235,236,252] and in the oral 

microbiome [236], is generally attributed to a higher likelihood of sharing lifestyle and 

environments, but more importantly to a higher interindividual transmission of 

microorganism. Intimate kissing is considered the major player for microbial exchange events 

[253]. Social interaction, including talking and touching, also increase the sharing of 

microbes, as shown in gut microbiomes of mice [254] and humans [255]. Household effects 

were not visible in participants with 9 or fewer natural teeth (Figure 4-1 D) and in older age 

groups (Figure 4-1  E). These two observations are likely linked (X² = 721.95, df = 15, P-value 

< 2.2 × 10−16 ), since tooth loss generally occurs at older age [256–258]. If this finding is 

replicated with more individuals, it will further highlight the role of natural teeth as a surface 

for oral microbes to grow [259]: tooth loss, associated with decreased alpha diversity and 

increased compositional variability [260] could decrease chances of stable microbial 

exchange between individuals. 

Municipality of residence is associated with small differences in microbiota profiles as seen 

in PERMANOVA and PCoA (Figure 4-2). Few low-prevalence (< 5%) taxa were differentially 

abundant between municipalities with fewer participants, with Mals as a baseline 

(Supplementary Figure 1). Previous literature highlighted that microbiota dissimilarity across 

different cities or municipalities of residence are possible for both the stool [252] and the 

salivary microbiota [261,262]. However, they also highlight the role of physical contact 

between individuals and lifestyle similarities as microbiota similarity enhancers. CHRISMB 

participants are a homogeneous population with respect to ethnicity, traditions and lifestyle, 

as well as living area, which could all explain the low microbiota variability in relation to 

municipality and altitude of residence. More extreme contrasts would facilitate isolation of 

municipalities, with lower chances of social contact with the outside. We found F. nucleatum 

subsp. Vincentii [263] to be significantly more abundant in participants living in the moderate 

altitude group. F. nucleatum is acknowledged as a risk factor for several oral and non-oral 
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diseases [264]. A study reported that people inhabiting high altitude areas (3,200 m) in a Saudi 

Arabia region showed more dysbiotic oral microbiomes than sea-level controls [265]. Another 

small study on 167 Tibetans [266] reported salivary microbiota differences between ultra-high 

(> 4,000 m) and high-altitude (< 3,650 m) residents. Taken together, salivary microbiome 

variation in relation to altitude could be a sign of physiological and lifestyle adaptation. 

4.3.2 The salivary microbiota variability shows contributions of familial relatedness 

and households 

We observed that siblings and unrelated individuals had a significantly higher salivary 

microbiota similarity when cohabiting (Figure 4-3 A), while mother-child and father-child 

pairs did not (Figure 4-3 A, B). We also investigated the heritability and household 

components of the salivary microbiota on a large number of participants with ages ranging 

from 18 to 92 years old, finding 17 significant h² components and 37 c² components (Figure 

4-3 C). We argue that it is possible that some salivary microbial signatures persist among 

family members living in different households, possibly due to a higher genetic similarity. 

Multiple twins studies, reported heritable microbiome components both for the gut and the 

salivary microbiome [267–270]. Demmit et al., in particular, performed a large heritability 

analysis of the salivary microbiota, finding Granulicatella h² = 55.8% in a cohort of adult twins 

in Colorado, United States [268]. In our study, genus Granulicatella was the 5th genus with the 

highest h² component (23.9%, BH Q-value = 0.004). Heritability differences are known to be 

mainly to population differences, sampling and analysis methods and characteristics of the 

population [150]. Regarding the latter, studies on younger individuals, especially twin studies, 

generally show higher heritability estimates [267–270].  

4.3.3 The salivary microbiota is mildly associated with host genetics 

We found support for a role of genetics in determining the salivary microbiota composition, 

with 4 SWS variants: Selenomonas ASV 113 – rs9511156; Aggregatibacter ASV 90 – 

rs916234787; Absconditabacteria (SR1) [G-1] bacterium HMT 874 ASV 148 – rs72809470; ASV 

90 – rs535001228. Variant rs9511156 was previously reported in studies regarding lung 

oxygen uptake performance [271,272], but not related to Selenomonas taxa. Variants 

rs916234787 and rs535001228 are rare variants annotated in the SLC8A3 gene locus. The 

former was a rare variant (MAF = 0.7%), the latter is an intergenic variant, almost 2,000 base 

pairs away from the SLC8A3 coding region. SLC8A3 is a gene involved in calcium-mediated 

signaling in mitochondria and excitable neurons [273]. Variant rs72809470 is a predicted 

intron variant in the ZC3H18 zinc-finger gene, which was previously reported to enhance 
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homologous recombination in ovarian cancer models [274].  We additionally found one gene-

level association between Selenomonas noxia ASV 172 and the SRFBP1-LOX locus. Serum 

Response Factor Binding Protein 1 (SRFBP1), a predicted rRNA maturation protein, which was 

reported highly and moderately expressed in salivary glands and oral mucosa, respectively 

[275]. Lysil oxidase gene (LOX) was significantly associated in the gene level analysis, 

indicating a cumulative effect of rare variants on that locus. Some variants on this locus were 

associated with aortic aneurysm, the weakening of arterial walls [276]. S. noxia was also 

previously associated with increased cardiovascular disease risk [277], a connection which 

requires further exploration. Although intriguing, our findings highlight borderline 

associations with imputed variants, stressing the need to replicate our findings. Secondly, 

locus zoom plots did not highlight variants in LD with the leading variant. This phenomenon, 

indicative of higher likelihood of a false positive association, was already described in 

mbGWAS studies [278]. 

Our mbGWAS is of comparable size with the work performed on a Chinese population of  

around 2,000 individuals, finding associations between tongue dorsum and salivary 

microbiota composition and host genetics [133]. Our results were incomparable with theirs, 

mainly due to different data generation from the genetic, lifestyle and microbiota standpoint. 

Additionally, while both studies contribute with a remarkable sample size from a single 

population, they are both underpowered. In fact, it was calculated that a minimum of 25,000 

samples would be required to detect taxon-variant associations with a bacterium prevalence 

of 10% and a variant with a contribution of 0.4% of the phenotype variance [278]. Our study, 

in addition to previous work [133,279,280], supports a genetic component to the salivary 

microbiota composition, which should be investigated further with larger sequencing efforts 

and meta-analyses. CHRISMB, for example, may be extended with the salivary microbiota and 

genetic data from the COHRA2 cohort, in which microbiota and host genetic data were 

generated with protocols comparable to CHRISMB [120]. 

4.3.4 Limitations of the study 

Our study has a few limitations. First, oral health and status were self-reported by the 

participants, rather than by a professional. Amplicon sequencing technology is a cost-

effective method to obtain microbiota data at the expenses of taxonomic resolution. In the 

mbGWAS context, microbiota data is challenging to model due to its sparsity, which further 

interacts with the sparsity of genomic variants, which increase changes of structural non-

positivity of some groups. Traditional heritability analysis methods, such as SOLAR, tend to 



The CHRIS Salivary Microbiome 

35 t h  PhD Cycle University of Trento  62 |  114 

inflate h² estimates on compositional data [281]. While we tried to minimize the bias with data 

transformation, microbiome-tailored heritability analysis methods could be developed. 

4.3.5 Strengths of the study 

Our study has a strong setup compared to previously published studies: to the best of our 

knowledge, it is among the largest data sets worldwide able to investigate salivary microbiota 

heritability and mbGWAS. Moreover, the population is culturally and geographically 

homogeneous, which reduces the effect of confounders. The household and pedigree data in 

the CHRIS study are manually curated and validated. Amplicon sequencing data were 

performed at a high depth and with automated robot handling, which minimize human error 

and contaminations. 

4.4 CONCLUSIONS 

We confirmed the cohabitation associates with a large degree of salivary microbiota 

compositional similarity. We show that several salivary taxa have a significant pedigree 

heritability and household effects. With heritability analysis, we found 14 ASVs with 

significant heritability and 34 with significant household components. We found four study-

wide significant ASV-variant associations, and none at genus level, supporting a role of 

genetics to the salivary microbiota composition. While the municipality and altitude of 

residence may affect the salivary microbiota composition as proxies of environmental 

exposure, the highly uniform living environment of CHRISMB participants showed a limited 

contribution. Our analyses show that other factors, mainly smoking and oral health, have a 

much larger effect on salivary microbiota composition than the region of residence, in 

CHRISMB. Future studies could investigate the dynamics of divergence of microbiomes over 

time and space. 
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4.6 METHODS 

4.6.1 Study design, ethical approval, and data collection 

The CHRIS study was approved by the local Ethical Committee within the South Tyrol 

healthcare on April 19, 2011, and registered with code 21.2011. Participants, all at least 18 

years old, were recruited from the Vinschgau/Val Venosta district (South Tyrol, Italy). On the 

day of visit, participants answered lifestyle, dietary, general health, and socio-economic 

status questionnaires [201]. The CHRIS Salivary microbiota (CHRISMB) project was a 

convenience sample of CHRIS participants recruited between January 2017 and February 

2018. Selection criteria and sampling and data generation strategies were thoroughly 

described elsewhere [282]. In brief, unstimulated saliva was collected in Oragene OG-500 

tubes. Salivary DNA was extracted with an automatic liquid handler, the V4 region of the 16S 

rRNA gene was amplified and indexed with the dual indexing strategy. Sequencing was 

performed on an Illumina MiSeq, fastq reads were processed with DADA2 using the eHOMD 

database, further expanded with oral-specific bacterial genomes. 

4.6.2 Epidemiological data generation 

We defined age as the difference between the examination date and the birth date, rounded 

to the closest integer. CHRISMB participants completed an adapted version of the World 

Health Organization oral health survey [216], which contained a question related to the 

number of natural teeth grouped in four ranges: 0, 1-9, 10-19 and 20 or more. We derived 

smoking variables from smoking questionnaires harmonized from the European Community 

Respiratory Health Survey III questionnaire [217]. We used participants’ residence address 

to derive household identifiers, municipality, and altitude of residence. We grouped altitude 

in categories according to Parati et al. [247]: Low altitude was up to 1,500 m, Medium was 

between 1,501 and 2,500, no other categories were present. 

4.6.3 Salivary microbiota data generation  

The sample generation protocol was described elsewhere [282]. In brief, unstimulated saliva 

samples were processed with a robot liquid handler to generate 16-V4 amplicon sequencing 

data.  
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Fastq file filtering, trimming clustering and ASV calling were performed based on perfect 

identity of sequences and taxonomic calling with DADA2 v.1.12 using the extended Human 

Microbiome Database with additional oral species included as reference database.  

We generated a phyloseq object starting from the counts table, taxonomic table and taxonomy 

tree using the Bioconductor package “phyloseq” (v. 1.42.0) [223] and “ape” (v. 5.7). We 

retained only those taxa that were present with at least 10 counts in 1% of individuals with 

the function core of the “microbiome” package (v. 1.20.0) [224]. When required, we 

aggregated ASVs at the genus level with the tax_glom function in the GitHub package 

“speedyseq” (“mikemc/speedyseq”). 

4.6.4 Sample selection and platform for statistical analysis 

We retained samples with non-missing data for sex, age, smoking status, number of natural 

teeth, household, municipality, altitude and usage of antibiotics in the 3 months prior to the 

visit. Unless stated otherwise, we performed within the R (v. 4.3.1) [222] and RStudio Server 

(v. 2023.03.0 Build 386) framework.  

4.6.5 Microbiota analyses 

4.6.6 Beta diversity Matrix calculation  

To generate the pairwise dissimilarity matrix (beta-diversity), we transformed the 622 filtered 

ASVs to relative abundance and calculated the Bray-Curtis dissimilarity for all samples using 

the distance function in the “phyloseq” package (v. 1.44.0). We subsequently used the same 

matrix for all statistical analyses and visualizations below to limit sample subsets similarity 

biases.  

4.6.7 Permutational Multivariate Analysis of Variance (PERMANOVA) 

To test microbiota variability in relation to multiple variables, we modeled the beta diversity 

matrix with a Permutational Multivariate Analysis of Variance (PERMANOVA), adding desired 

variables into the model. We used the “by = “margin” parameter to estimate the proportion of 

variance explained (R²) of each variable against the remaining variables in the model. We used 

the “permutations = 2000” parameter to generate a null distribution by permuting the 

investigated variable 2,000 times and to generate a Monte Carlo simulated P-value [173,225]. 

We used the adonis2 implementation in the “vegan” package v.2.6-4 to perform the 

calculations. 

https://github.com/mikemc
https://github.com/mikemc/speedyseq
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4.6.8 Differential abundance analysis 

We performed differential abundance analyses using the LinDA algorithm [228] using the 

adaptive option, and quantile winsorization equal to 0.97. We set the significance threshold 

to 𝛼 = 0.1. 

4.6.9 Microbiota variation in relation to geographic exposure: household, municipality 

and altitude of residence 

To assess the association between microbiota variability and household sharing, we selected 

participants living with at least 1 other participant and made a PERMANOVA model including 

age, sex, number of teeth, smoking status, and antibiotics usage, and household identifier. We 

then visualized within-household and between-household beta diversity distributions 

separating participants by sex, smoking, number of teeth and age groups. 

We performed a PERMANOVA model including age, sex, number of teeth, smoking status, 

antibiotics usage, and municipality to assess the impact of the latter on the microbiota 

variability. To account for the effect of cohabitation and smaller municipalities, we performed 

four models as follows: (1) All households and municipalities; (2) One participant per 

household, all municipalities; (3) All households, municipalities with at least 30 participants; 

(4) One participant per household, municipalities with at least 30 participants.  In models (2) 

and (4) we performed PERMANOVAs on 500 random samples of 1 participant per household. 

We then performed a differential abundance analysis on the sample set (3), comparing each 

municipality against Mals as baseline and adjusting for age, sex, number of teeth, smoking 

status, and antibiotics usage. We adjusted the significance threshold by the number 

municipalities tested against Mals (n , leading to 𝛼 = 0.014. 

We applied the same differential abundance model to investigate the association of 

microbiota variation in relation to the altitude adjusting for age, sex, number of teeth, smoking 

status, and antibiotics usage.  

To visualize the salivary microbiota variation in relation to municipality and altitude of 

residence, we generated principal coordinate analysis (PCoA) plots, from the first two 

eigenvectors of the dissimilarity matrix with ordinate in “phyloseq” and visualized them with 

plot_ordination drawing 95% confidence interval ellipses with stat_ellipse in the “ggplot2” 

package (v. 3.4.0). 



The CHRIS Salivary Microbiome 

35 t h  PhD Cycle University of Trento  66 |  114 

4.6.10 Microbiota variability associated with familial relatedness (heritability analysis) 

We investigated the association between participants’ relatedness and the variability of each 

genus and ASV with heritability analysis using SOLAR-Eclipse (or SOLAR) [248,283], a 

variance decomposition method which takes a pedigree as source of relatedness and allows 

partitioning of the household component. We transformed the relative abundance of the taxa 

above 20% prevalence with the inverse rank normal transformation to approximate normality. 

We added age, sex, smoking, number of teeth and antibiotics usage as confounders, and 

added household identifiers to calculate the household variance component. A detailed 

description of the protocol and scripts can be found on Github.  

4.6.11 Association between salivary microbiota and host genetic variants (mbGWAS) 

We investigated the association between the salivary microbiota composition and host 

genetic variants with a microbiota GWAS (mbGWAS). Host genetic variants were genotyped 

using Illumina Human Omni2.5 Exome and Illumina OmniEURHD chips. Raw genotypes were 

processed with Illumina GenomeStudio to exclude samples with a call rate less than 0.985 

and variants with a GenTrain score below 0.7. Subsequently, variants were filtered according 

to the following criteria: (1) B allele corruption using BAFRegress; (2) identification of 

inconsistent relatedness estimates using KING; (3) identification of inconsistent sex estimates 

using PLINK 1.9 "sex check". The batches were merged sequentially, keeping variants present 

on both array chips and samples with 5% missingness at most. We expanded the number of 

testable variants by imputing hard-called genotypes using the TOPMed imputation server. 

Given the explorative nature of the analysis, we retained the 11 million variants with MAF 

larger than 0.2% for the analysis. We modeled the inverse rank normal transformed taxa with 

minimum prevalence of 20% against the 11 million filtered variants adjusting for age, sex, 

number of teeth groups, smoking (binary) and antibiotics usage (binary). We retained 

participants who took antibiotics to leverage on the sample size and because we observed that 

antibiotics affected the salivary microbiota composition significantly but marginally (R² = 

0.2%, P-value = 0.001, Supplementary Table 4), as confirmed in previous studies [284,285]. 

We further included the first 10 genetic principal components as covariates to account for 

population stratification and relatedness. We considered nominal genome-wide significant 

(GWS) variants with a P-value less than the significance threshold 𝛼 = 5𝑥10−8. We defined a 

study-wide significance (SWS) threshold by dividing the GWS threshold by the number of taxa 

needed to explain 95% variability in a Bray-Curtis based principal component ordination.  

https://github.com/g-antonello/heritability-SOLAR/blob/main/README.md
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For the genus and ASV level mbGWAS, the SWS threshold was 𝛼 <
5𝑥10−8

13
= 3.85 × 10−9 and  

𝛼 <
5𝑥10−8

40
= 1.25 × 10−9, respectively. We visualized SWS loci using LocusZoom standalone 

version 1.4 [286], flanking the leading variants with upstream and downstream. We used 

CHRISMB imputed genotype data to calculate linkage disequilibrium information using the  

“--ld-vcf” parameter. To assess the strength of association between the most significant 

variants and microbiota features, we further performed a GWAS conditioning on the variant 

with the most significant P-value in each locus by extracting their dosage from the genotype 

files and including them as covariates into the model, as proposed previously [287]. 

4.6.12 Association between rare variants and microbiota features (Gene-level Analysis) 

To  increase power for rare variant association tests,  we performed gene level analysis with 

the SKATO-ACAT test [288] implemented in Regenie using three variant impact masks: low, 

moderate, and high impact as defined by Variant Effect Predictor [251]. We defined nominal 

gene-level-significant (GLS) signals if 𝑃 <
0.05

𝑁°𝐿𝑜𝑐𝑖 𝑡𝑒𝑠𝑡𝑒𝑑
=

0.05

41,005
= 1.22 × 10−6, which we further 

adjusted for multiple with the same strategy as the mbGWAS, leading to a Genus-GLS and 

ASV-GLS threshold of 1.22×10−6

13
= 9.38 × 10−8and 1.22×10−6

40
= 3.05 × 10−8, respectively. 
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4.7 SUPPLEMENTARY MATERIAL 

4.7.1 Supplementary Figures 

 

Supplementary Figure 1. Differentially abundant ASVs across municipalities with at least 30 

CHRISMB participants (Mals as baseline). The model was adjusted for age, sex, smoking and 

number of teeth, and antibiotics usage with the LinDA differential abundance algorithm [228]. 

Significance was defined as for Benjamini-Hochberg (FDR 5%) adjusted Q-values less than 0.1 

divided by the number of municipalities tested against Mals, the baseline (n = 7).   (A) Forest plot of 

the differentially abundant taxa as a result of the differential abundance. ASV prevalence was added 

in brackets after each ASV name on the y axis. (B) Center-log ratio transformed abundances of 

differentially abundant ASVs in any of the 5 municipalities tested against Mals. 
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Supplementary Figure 2. Differentially abundant ASVs comparing residents at moderate 

altitude (1,500-2,500 m) with residents at low altitude (< 1,500 m) The model was adjusted for 

age, sex, smoking and number of teeth in the LinDA differential abundance algorithm [228]. 

Significance was defined as for Benjamini-Hochberg (FDR 5%) adjusted Q-values less than 0.1.  (A) 

Forest plot of the differentially abundant taxa as a result of a LinDA model, adjusting for age, sex, 

number of teeth and smoking. (B) Center-log ratio transformed abundances of differentially 

abundant ASVs found in (A). 
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Supplementary Figure 3. Pairwise kinship values in relation to cohabitation. Kinship values 

were calculated with Plink based on CHRISMB genotypes. Higher values indicate a higher genetic 

similarity. Significance was calculated with pairwise t-test with Benjamini-Hochberg P-value 

adjustment (FDR = 5%). 
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Supplementary Figure 4. SOLAR heritability estimates mildly correlate with prevalence, while 

household estimates do not. The trend is visible both at Genus (A, B) and ASV level (C, D). 

Spearman's correlation coefficient (R) and significance (p) are reported in the top left of each plot. 

The analysis was performed with SOLAR on taxa at genus and ASV level with minimum prevalence 

of 20%. The models were adjusted for fixed effects of age, sex, smoking, number of teeth and 

antibiotics usage. The household component was included as separate parameter, as indicated in 

the SOLAR documentation. 
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4.7.2 Supplementary Tables 

Supplementary Table 1. Pairwise familial relationships available in CHRISMB (N = 1782). 

Relationships were derived from the CHRIS study pedigree using the “FamAgg” package. Siblings 

and vertical relationships were derived. Unrelated individuals were defined as having kinship equal 

to 0. 

 

 

 

 

 

 

 

Supplementary Table 2. Heritability (h²) and household effect (c²) on ASV-level taxa with 

prevalence above 20% Samples were scaled by relative abundance and ASVs were normalized with 

the inverse rank normal transformation. Only ASVs with all parameters correctly estimated were 

kept. 

 
ASV (Prevalence %) 

h² c² 

Estimate 
(Std.Err.) 

Q-value 
(BH) 

Estimate 
(Std.Err.) Q-value (BH) 

Lachnospiraceae_[G-2] [G-2] bacterium HMT 
096 (56.4%) 

0.309 
(0.067) 

7.00E-05 0.076 
(0.039) 

0.038 

Megasphaera micronuciformis (97.1%) 0.28 
(0.066) 

2.00E-04 0.004 
(0.039) 

0.46 

Atopobium ASV28 (95.7%) 0.275 
(0.066) 

2.00E-04 0.024 
(0.039) 

0.291 

Veillonella ASV3 (97.3%) 0.257 
(0.063) 

2.00E-04 0.039 
(0.039) 

0.176 

Fusobacterium periodonticum (89.2%) 0.257 
(0.064) 

2.00E-04 0.072 
(0.039) 

0.048 

Prevotella salivae (97.4%) 0.233 
(0.062) 

6.00E-04 0.057 
(0.041) 

0.106 

Lachnoanaerobaculum orale (86.2%) 0.22 
(0.067) 

0.003 0.005 
(0.04) 

0.46 

Granulicatella adiacens (99.7%) 0.216 
(0.072) 

0.005 0.084 
(0.041) 

0.031 

  Same Household Different Household 
Siblings 108 419 
Mother 221 87 
Father 171 45 
Grandmother (Mother's) 1 14 

Grandfather (Mother's) 1 5 

Grandmother (Father's) 2 14 

Grandfather (Father's) 1 3 

Unrelated 413 1,397,937 
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Bergeyella sp. HMT 322 (92.4%) 0.212 
(0.057) 

6.00E-04 0.05 
(0.038) 

0.117 

Prevotella histicola (83%) 0.21 
(0.064) 

0.003 0.099 
(0.042) 

0.015 

Mogibacterium ASV82 (88.3%) 0.208 
(0.07) 

0.005 0.025 
(0.04) 

0.289 

Prevotella ASV67 (63.7%) 0.205 
(0.064) 

0.003 0.164 
(0.039) 

1.00E-04 

Actinomyces sp. HMT 172 (73.9%) 0.205 
(0.076) 

0.011 0.087 
(0.041) 

0.026 

Leptotrichia ASV105 (27.9%) 0.204 
(0.063) 

0.003 0.074 
(0.039) 

0.04 

Veillonella parvula (93.6%) 0.194 
(0.064) 

0.005 0.072 
(0.041) 

0.054 

Kingella oralis (50.6%) 0.191 
(0.063) 

0.005 0.072 
(0.04) 

0.05 

Solobacterium moorei (95.5%) 0.184 
(0.065) 

0.008 0.022 
(0.04) 

0.313 

Stomatobaculum sp. HMT 097 (68.9%) 0.181 
(0.06) 

0.005 0.129 
(0.04) 

0.002 

Corynebacterium durum (76.3%) 0.181 
(0.062) 

0.006 0.049 
(0.038) 

0.125 

Peptostreptococcaceae [XI] [G-1] [XI][G-
1]_sulci (77.5%) 

0.176 
(0.069) 

0.014 0.033 
(0.046) 

0.261 

Neisseria ASV5 (85.1%) 0.172 
(0.065) 

0.011 0.097 
(0.04) 

0.014 

Mitsuokella sp. HMT 521 (38.8%) 0.169 
(0.069) 

0.017 0.045 
(0.038) 

0.146 

Veillonella sp. HMT 917 (48.5%) 0.169 
(0.058) 

0.006 0.038 
(0.037) 

0.177 

Corynebacterium matruchotii (80.6%) 0.168 
(0.063) 

0.011 0.099 
(0.04) 

0.012 

Porphyromonas ASV22 (85.5%) 0.167 
(0.06) 

0.008 0.063 
(0.039) 

0.072 

Actinomyces lingnae 
[Not_Validly_Published] (54.3%) 

0.166 
(0.062) 

0.011 0.052 
(0.041) 

0.125 

Tannerella forsythia (48.3%) 0.166 
(0.061) 

0.01 0.059 
(0.035) 

0.059 

Alloprevotella sp. HMT 473 (58.9%) 0.154 
(0.065) 

0.02 0.093 
(0.039) 

0.015 

Rothia ASV55 (48.9%) 0.153 
(0.056) 

0.009 0.069 
(0.039) 

0.053 

Capnocytophaga leadbetteri (85.5%) 0.153 
(0.057) 

0.011 0.017 
(0.038) 

0.349 

Rothia dentocariosa (86.5%) 0.152 
(0.058) 

0.012 0.026 
(0.037) 

0.27 

Stomatobaculum longum (63.7%) 0.152 
(0.061) 

0.016 0.107 
(0.04) 

0.007 

Prevotella shahii (28.4%) 0.147 
(0.061) 

0.018 0.104 
(0.04) 

0.01 
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Fusobacterium nucleatum subsp. animalis 
(48.9%) 

0.144 
(0.061) 

0.02 0.097 
(0.039) 

0.013 

Veillonella dispar (62.1%) 0.142 
(0.057) 

0.016 0.076 
(0.039) 

0.039 

Alloprevotella sp. HMT 308 (85.2%) 0.142 
(0.063) 

0.027 0.001 
(0.039) 

0.493 

Actinomyces ASV16 (96.8%) 0.14 
(0.066) 

0.034 0.107 
(0.042) 

0.011 

Fusobacterium ASV85 (39.9%) 0.139 
(0.062) 

0.029 0.05 
(0.04) 

0.132 

Leptotrichia hongkongensis (38%) 0.139 
(0.061) 

0.026 0.039 
(0.039) 

0.177 

Capnocytophaga gingivalis (70.1%) 0.138 
(0.063) 

0.03 0.12 
(0.041) 

0.005 

Actinomyces ASV62 (71.6%) 0.137 
(0.065) 

0.034 0.087 
(0.04) 

0.025 

Haemophilus ASV63 (36.9%) 0.135 
(0.059) 

0.023 0.134 
(0.041) 

0.002 

Alloprevotella sp. HMT 914 (33.2%) 0.134 
(0.064) 

0.035 0.13 
(0.04) 

0.002 

Capnocytophaga sputigena (67%) 0.131 
(0.061) 

0.033 0.114 
(0.039) 

0.005 

Streptococcus ASV44 (54.8%) 0.129 
(0.061) 

0.034 0.141 
(0.04) 

0.001 

Haemophilus ASV34 (76.8%) 0.127 
(0.065) 

0.048 0.085 
(0.038) 

0.022 

Gemella ASV12 (99.6%) 0.124 
(0.058) 

0.034 0.222 
(0.04) 

6.00E-07 

Granulicatella elegans (57.7%) 0.121 
(0.062) 

0.05 0.13 
(0.038) 

0.001 

Aggregatibacter ASV58 (36.8%) 0.12 
(0.063) 

0.051 0.157 
(0.041) 

5.00E-04 

Prevotella denticola (66%) 0.119 
(0.058) 

0.036 0.072 
(0.039) 

0.048 

Campylobacter sp. HMT 044 (34.7%) 0.118 
(0.063) 

0.053 0.08 
(0.039) 

0.031 

Leptotrichia sp. HMT 417 (87.8%) 0.117 
(0.062) 

0.053 0.012 
(0.039) 

0.399 

Prevotella sp. HMT 305 (45.7%) 0.115 
(0.065) 

0.065 0.041 
(0.037) 

0.157 

Neisseria ASV29 (73.7%) 0.113 
(0.059) 

0.051 0.068 
(0.038) 

0.05 

Fusobacterium ASV59 (69.5%) 0.113 
(0.06) 

0.053 0.004 
(0.036) 

0.46 

Peptococcus ASV182 (49%) 0.111 
(0.061) 

0.056 0.101 
(0.04) 

0.011 

Prevotella sp. HMT 317 (36%) 0.11 
(0.055) 

0.046 0.004 
(0.036) 

0.46 

Haemophilus ASV47 (39.6%) 0.108 
(0.059) 

0.056 0.031 
(0.036) 

0.209 
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Lachnoanaerobaculum umeaense (76.7%) 0.108 
(0.057) 

0.053 0.098 
(0.039) 

0.012 

Ruminococcaceae_[G-1] [G-
1]_bacterium_HMT 075 (71.4%) 

0.105 
(0.061) 

0.071 0.117 
(0.042) 

0.006 

Campylobacter ASV20 (97.5%) 0.104 
(0.056) 

0.053 0.134 
(0.038) 

0.001 

Prevotella pallens (81.6%) 0.101 
(0.061) 

0.075 0.184 
(0.039) 

3.00E-05 

Parvimonas ASV87 (46.5%) 0.099 
(0.06) 

0.075 0.133 
(0.039) 

0.002 

Capnocytophaga granulosa (57.7%) 0.098 
(0.056) 

0.066 0.12 
(0.039) 

0.003 

Oribacterium sinus (93.7%) 0.098 
(0.058) 

0.073 0.056 
(0.04) 

0.103 

Campylobacter ASV118 (54.4%) 0.098 
(0.06) 

0.078 0.05 
(0.037) 

0.116 

Porphyromonas ASV66 (71.8%) 0.096 
(0.059) 

0.077 0.109 
(0.041) 

0.009 

Rothia aeria (41.5%) 0.093 
(0.059) 

0.083 0.059 
(0.04) 

0.095 

Streptococcus ASV30 (76.8%) 0.091 
(0.055) 

0.075 0.054 
(0.039) 

0.113 

Veillonella sp. HMT 780 (47.2%) 0.089 
(0.056) 

0.081 0.094 
(0.039) 

0.014 

Streptococcus sanguinis (31.9%) 0.089 
(0.06) 

0.102 0.09 
(0.04) 

0.022 

Aggregatibacter ASV90 (40.7%) 0.087 
(0.06) 

0.109 0.079 
(0.037) 

0.025 

Lautropia mirabilis (55.3%) 0.087 
(0.061) 

0.117 0.103 
(0.039) 

0.008 

Prevotella nigrescens (90%) 0.086 
(0.057) 

0.098 0.116 
(0.04) 

0.005 

Prevotella sp. HMT 306 (60.1%) 0.086 
(0.065) 

0.136 0.089 
(0.041) 

0.024 

Alloprevotella rava (47.8%) 0.082 
(0.074) 

0.178 0.135 
(0.046) 

0.005 

Kingella ASV69 (60.8%) 0.081 
(0.059) 

0.126 0.052 
(0.039) 

0.116 

Prevotella veroralis (33.2%) 0.078 
(0.071) 

0.177 0.053 
(0.045) 

0.143 

Selenomonas ASV24 (94.9%) 0.078 
(0.066) 

0.162 0.046 
(0.04) 

0.149 

Oribacterium parvum (37.2%) 0.076 
(0.063) 

0.156 0.107 
(0.038) 

0.006 

Peptostreptococcus stomatis (87.8%) 0.073 
(0.061) 

0.156 0.118 
(0.042) 

0.006 

Absconditabacteria_(SR1)_[G-1] (SR1)_[G-1] 
bacterium_HMT 345 (36.3%) 

0.073 
(0.063) 

0.168 0.14 
(0.042) 

0.002 
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Rothia ASV60 (41.2%) 0.072 
(0.055) 

0.139 0.104 
(0.039) 

0.008 

Selenomonas ASV113 (61.2%) 0.071 
(0.063) 

0.17 0.117 
(0.04) 

0.005 

Fretibacterium ASV188 (27.9%) 0.071 
(0.057) 

0.151 0.062 
(0.039) 

0.076 

Selenomonas ASV143 (31.9%) 0.066 
(0.054) 

0.152 0.007 
(0.035) 

0.441 

Prevotella ASV25 (57.2%) 0.065 
(0.06) 

0.184 0.135 
(0.04) 

0.002 

Leptotrichia sp. HMT 212 (46.3%) 0.064 
(0.062) 

0.194 0.097 
(0.041) 

0.016 

Abiotrophia defectiva (53.8%) 0.064 
(0.053) 

0.159 0.099 
(0.039) 

0.011 

Filifactor alocis (39.1%) 0.06 
(0.058) 

0.196 0.168 
(0.038) 

6.00E-05 

Catonella morbi (65.9%) 0.056 
(0.06) 

0.222 0.079 
(0.041) 

0.041 

Absconditabacteria_(SR1)_[G-1] (SR1)_[G-1] 
bacterium_HMT 874 (36.5%) 

0.055 
(0.06) 

0.225 0.07 
(0.038) 

0.048 

Aggregatibacter ASV33 (81.5%) 0.055 
(0.054) 

0.2 0.02 
(0.037) 

0.315 

Absconditabacteria_(SR1)_[G-1] ASV61 
(25.3%) 

0.054 
(0.057) 

0.216 0.159 
(0.038) 

1.00E-04 

Capnocytophaga sp. HMT 326 (34.2%) 0.049 
(0.061) 

0.264 0.118 
(0.039) 

0.004 

Veillonella rogosae (80.7%) 0.049 
(0.062) 

0.264 0.109 
(0.038) 

0.006 

Prevotella nanceiensis (66.3%) 0.048 
(0.062) 

0.264 0.12 
(0.04) 

0.004 

Leptotrichia sp. HMT 221 (72%) 0.047 
(0.063) 

0.268 0.112 
(0.039) 

0.005 

Fusobacterium ASV48 (34.2%) 0.045 
(0.06) 

0.268 0.136 
(0.041) 

0.002 

Streptococcus ASV9 (99.4%) 0.043 
(0.056) 

0.264 0.17 
(0.041) 

1.00E-04 

Prevotella ASV21 (53.5%) 0.043 
(0.056) 

0.264 0.269 
(0.04) 

2.00E-09 

Leptotrichia sp. HMT 215 (83.7%) 0.037 
(0.06) 

0.311 0.068 
(0.038) 

0.05 

Streptococcus ASV4 (99.9%) 0.036 
(0.057) 

0.307 0.127 
(0.039) 

0.002 

Fretibacterium fastidiosum (44.5%) 0.035 
(0.059) 

0.317 0.043 
(0.04) 

0.162 

Fusobacterium nucleatum subsp. vincentii 
(62.7%) 

0.035 
(0.052) 

0.298 0.119 
(0.038) 

0.003 

Treponema denticola (59.4%) 0.033 
(0.054) 

0.311 0.137 
(0.038) 

7.00E-04 
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Prevotella oris (25.1%) 0.029 
(0.055) 

0.336 0.121 
(0.04) 

0.004 

Leptotrichia ASV112 (35.6%) 0.026 
(0.061) 

0.367 0.049 
(0.036) 

0.113 

Aggregatibacter ASV117 (22.4%) 0.025 
(0.059) 

0.367 0.163 
(0.04) 

2.00E-04 

Prevotella melaninogenica (97.3%) 0.024 
(0.055) 

0.367 0.047 
(0.039) 

0.137 

Peptostreptococcaceae_[XI][G-9] [XI][G-
9]_brachy (72.3%) 

0.022 
(0.057) 

0.374 0.106 
(0.039) 

0.007 

Treponema socranskii (42%) 0.022 
(0.053) 

0.367 0.032 
(0.035) 

0.202 

Butyrivibrio sp. HMT 455 (58.5%) 0.019 
(0.069) 

0.416 0.142 
(0.042) 

0.002 

Prevotella oris (41.8%) 0.016 
(0.058) 

0.416 0.133 
(0.04) 

0.002 

Prevotella sp. HMT 309 (23.3%) 0.014 
(0.055) 

0.421 0.082 
(0.037) 

0.022 

Dialister invisus (57.4%) 0.013 
(0.057) 

0.43 0.101 
(0.041) 

0.014 

Alloprevotella ASV70 (35.1%) 0.011 
(0.053) 

0.438 0.185 
(0.041) 

5.00E-05 

Streptococcus ASV11 (97.2%) 0.01 
(0.058) 

0.442 0.157 
(0.041) 

4.00E-04 

Alloprevotella tannerae (41%) 0.009 
(0.05) 

0.442 0.13 
(0.039) 

0.002 

Ruminococcaceae_[G-2] [G-2] 
bacterium_HMT 085 (78.7%) 

0.004 
(0.065) 

0.479 0.036 
(0.039) 

0.203 

Porphyromonas gingivalis (29.7%) 0.003 
(0.052) 

0.479 0.229 
(0.037) 

8.00E-09 

Prevotella ASV51 (52.3%) 0.003 
(0.063) 

0.482 0.107 
(0.04) 

0.008 

 

Supplementary Table 3. Heritability (h²) and household effect (c²) on genus-level taxa with 

prevalence above 20% Samples were scaled by relative abundance and ASVs were normalized with 

the inverse rank normal transformation. Only ASVs with all parameters correctly estimated were 

kept. 

Genus (Prevalence %) 
h² c² 

Estimate 
(Std.Err.) 

Q-value 
(BH) 

Estimate 
(Std.Err.) 

Q-value 
(BH) 

Lachnospiraceae_[G-2] (56.4%) 0.309 (0.067) 3.00E-05 0.076 (0.039) 0.047 

Megasphaera (97.3%) 0.28 (0.066) 4.00E-05 0.004 (0.039) 0.456 
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Atopobium (99.2%) 0.275 (0.066) 4.00E-05 0.024 (0.039) 0.28 

Capnocytophaga (97.8%) 0.242 (0.058) 4.00E-05 0.063 (0.038) 0.069 

Stomatobaculum (94.9%) 0.216 (0.059) 3.00E-04 0.056 (0.039) 0.092 

Bergeyella (95.8%) 0.212 (0.057) 3.00E-04 0.05 (0.038) 0.112 

Mogibacterium (92.7%) 0.208 (0.07) 0.003 0.025 (0.04) 0.28 

Granulicatella (99.7%) 0.207 (0.07) 0.003 0.108 (0.041) 0.012 

Corynebacterium (91.1%) 0.197 (0.063) 0.003 0.058 (0.04) 0.093 

Prevotella (99.9%) 0.194 (0.063) 0.003 0.072 (0.038) 0.049 

Solobacterium (95.5%) 0.184 (0.065) 0.004 0.022 (0.04) 0.297 

Veillonella (100%) 0.182 (0.061) 0.003 0.069 (0.037) 0.049 

Peptostreptococcaceae_[XI][G-1] 
(77.5%) 

0.176 (0.069) 0.01 0.033 (0.046) 0.257 

Fusobacterium (99.3%) 0.174 (0.061) 0.004 0.031 (0.039) 0.249 

Mitsuokella (40.7%) 0.169 (0.069) 0.012 0.045 (0.038) 0.145 

Neisseria (97.8%) 0.163 (0.064) 0.01 0.087 (0.04) 0.03 

Absconditabacteria_(SR1)_[G-1] 
(63.8%) 

0.155 (0.062) 0.01 0.097 (0.039) 0.015 

Leptotrichia (99.5%) 0.147 (0.067) 0.024 0.055 (0.038) 0.093 

Actinomyces (99.9%) 0.14 (0.065) 0.024 0.075 (0.042) 0.052 

Rothia (99.7%) 0.137 (0.064) 0.024 0.079 (0.04) 0.047 

Alloprevotella (98.5%) 0.129 (0.064) 0.032 0.072 (0.04) 0.052 

Campylobacter (99.3%) 0.127 (0.059) 0.024 0.119 (0.038) 0.004 

Gemella (99.6%) 0.124 (0.058) 0.024 0.222 (0.04) 3.00E-07 

Lachnoanaerobaculum (97.8%) 0.114 (0.06) 0.043 0.027 (0.037) 0.257 

Peptococcus (49%) 0.111 (0.061) 0.045 0.101 (0.04) 0.014 

Porphyromonas (96.6%) 0.107 (0.057) 0.043 0.065 (0.039) 0.069 

Ruminococcaceae_[G-1] (71.7%) 0.105 (0.061) 0.059 0.117 (0.042) 0.01 
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Lautropia (71.1%) 0.087 (0.061) 0.106 0.103 (0.039) 0.011 

Kingella (85.9%) 0.085 (0.061) 0.106 0.133 (0.04) 0.003 

Oribacterium (98.8%) 0.078 (0.056) 0.106 0.073 (0.04) 0.052 

Peptostreptococcus (87.8%) 0.073 (0.061) 0.146 0.118 (0.042) 0.01 

Haemophilus (99.7%) 0.07 (0.063) 0.169 0.148 (0.041) 0.001 

Abiotrophia (53.8%) 0.064 (0.053) 0.147 0.099 (0.039) 0.014 

Filifactor (41.8%) 0.06 (0.058) 0.187 0.168 (0.038) 4.00E-05 

Catonella (71.2%) 0.056 (0.06) 0.207 0.079 (0.041) 0.049 

Streptococcus (100%) 0.055 (0.057) 0.199 0.222 (0.04) 3.00E-07 

Treponema (87%) 0.05 (0.057) 0.222 0.108 (0.038) 0.009 

Fretibacterium (61.6%) 0.048 (0.061) 0.241 0.075 (0.04) 0.049 

Selenomonas (98.1%) 0.031 (0.064) 0.348 0.064 (0.04) 0.072 

Peptostreptococcaceae_[XI][G-9] 
(72.3%) 

0.022 (0.057) 0.378 0.106 (0.039) 0.011 

Butyrivibrio (58.5%) 0.019 (0.069) 0.417 0.142 (0.042) 0.003 

Dialister (70.5%) 0.013 (0.057) 0.428 0.101 (0.041) 0.016 

Ruminococcaceae_[G-2] (78.7%) 0.004 (0.065) 0.484 0.036 (0.039) 0.212 

Tannerella (79.5%) 0.002 (0.053) 0.484 0.087 (0.037) 0.019 
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Supplementary Table 4 - PERMANOVA modeling the Bray-Curtis 

dissimilarity matrix in relation to sex, age, number of teeth, 

smoking, altitude of residence, municipality of residence, and 

antibiotics usage within 3 months prior to visit. The model was 

calculated with the vegan::adonis2 function using the marginal effect 

of each covariate, age was model as a continuous variable. The total 

number of samples was 1,782 after keeping samples with available 

data for each variable and municipalities with a minimum of 20 

participants. Deg. Freedom: degrees of freedom, R²: percentage of 

variance explained, P-value: Monte Carlo simulated P-value 

calculated on 2,000 sample permutations. 

 Deg. Freedom R² (%) P-value 

Sex 1 0.3 0.001 

Age 1 1.2 0.001 

Number of Teeth 3 2.1 0.001 

Smoking Status 2 2.8 0.001 

Altitude of Residence 1 0.07 0.176 

Municipality of Residence 7 0.5 0.009 

Antibiotics 1 0.2 0.001 
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5 ADDITIONAL CONTRIBUTIONS 

As introduced in the Background section, CHRISMB is a rich data resource that ranges from 

self-reported questionnaires to biochemical characterization of blood and urine. My main 

work has focused on detailed smoking habits, host genetics and the CHRISMB alpine 

geographic peculiarities. In this chapter hereby present several relevant analyses which are 

not yet published. 

5.1 ODOR IDENTIFICATION CAPABILITIES AND SALIVARY MICROBIOTA COMPOSITION 

ARE NOT SIGNIFICANTLY ASSOCIATED IN CHRISMB 

5.1.1 Background 

Taste perception is partially determined by genetics [289] and the salivary microbiota [290]. 

Odor sensitivity and identification ability has a genetic [291] and nasal microbiota component 

[292]. While it is known that the oral microbiome’s metabolism generates a plethora of volatile 

compounds [22], some of which responsible for breath smell (i.e. Ammonia and hydrogen 

sulfide) [109,240], the association between salivary microbiota and smell has not yet been 

investigated. We tested the association between the salivary microbiota composition and 

smell identification capabilities in CHRISMB, the largest resource with both phenotypes 

available. 

5.1.2 Methods 

Participants were presented with 16 felt-tip pens imbued with different solutions of odor 

molecules (ODOFIN Burghart’s smell test) and were required to choose the smell recognized 

among 4 options. Participants who were aware of smell conditions, including pre-diagnosed 

infectious or chronic respiratory diseases, hay fever, and septum deviation did not take 

undergo the test (N = 313). We calculated the smell identification score (SIS) as the sum of the 

smells correctly recognized. We categorized SIS, which ranged from 0 (none correct) to 16 (all 

correct), into anosmic/hyposmics/normosmics score (AHN) according to the following 

criteria: anosmics (SIS ≤ 4 ); hyposmics (5 ≤  SIS ≤ 11 ); normosmics (SIS ≥  12). We then 

grouped anosmics and hyposmic due to insufficient anosmics cases (N = 4). We retained 

participants with available data on sex, age, smoking status, number of teeth, and antibiotics 

usage. 
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Afterwards, we calculated beta diversity with the Bray-Curtis dissimilarity on the filtered 

microbiota data (10 counts in at least 1% samples) and used it to plot a PCoA coloring both by 

SIS and AHN scores.  

Next, we tested the statistical association between salivary microbiota variability and smell 

scores using adonis2 in the “vegan” package, using 2,000 permutations and the by = “margin” 

parameter, which tests the proportion of variance attributed to each variable in the model 

against the remaining variables. In addition to SIS and AHN, we included sex, age, smoking 

status, number of teeth, and antibiotics usage.  

Finally, we performed regression and differential abundance analysis using LinDA to test 

whether, respectively, SIS or AHN scores were associated with abundance variation of each 

ASV abundance. We applied the “adaptive = TRUE ”, and “winsor.quan = 0.97” parameters. 

ASVs with Benjamini-Hochberg adjusted Q-values below 0.1 were considered significant. 

5.1.3 Results 

After excluding samples with missing data on age, sex, smoking, number of teeth, antibiotics 

usage, and SIS, we retained 1,610 participants. We observed that SIS had a negative 

skewness, with a median of 14 pens correctly identified, which resulted in 230 

hyposmics/anosmics, and 1,380 normosmics. The salivary microbiota composition did not 

vary in relation to SIS (PERMANOVA R² = 0.1%, P-value = 0.087) an minorly in relation to AHN 

(PERMANOVA R² = 0.1%, P-value = 0.013) (Figure 5-1 B, C). We then performed both 

microbiota regression in response to SIS and differential abundance analysis comparing 

hyposmics against normosmics, adjusting for age, sex, smoking, number of teeth, antibiotics 

usage. Respectively, the regression model did not highlight taxa correlated with SIS, while the 

differential abundance showed Prevotella nanceinensis (log2 Fold Change = -1.18, Q-value = 

0.07), and Haemophilus parainfluenzae (log2 Fold Change = -0.38, Q-value = 0.06) to be 

significantly less abundant in hyposmics, while Prevotella marshii (log2 Fold Change = 0.30, 

Q-value = 0.07), was slightly more abundant (BH Q-value < 0.1) (Figure 5-1 D).  
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Figure 5-1. Relationship between the salivary microbiota composition and the cumulative and 

categorized smell identification scores. (A) Histogram of the number of smell pens correctly 

recognized by CHRISMB participants, defined as smell identification score (SIS). (B) Principal 

Coordinate Analysis on the Bray-Curtis dissimilarity at ASV level. confidence areas (95%) were 

drawn as ellipses. Axes x and y were chosen as the principal components which explained most of 

the overall microbiota variability, which is shown in square brackets. Samples were colored by SIS 

as seen in panel A. (C) Same representation as B, coloring by Anosmic/Hyposmic/Normosmic (AHN) 

groups: Hyposmic (0 ≤ SIS ≤ 11), Normosmics (SIS ≥ 12). (D) Center-log ratio abundances of the 

differentially abundant (Benjamini-Hochberg Q-values < 0.1) ASVs comparing hyposmics against 

normosmics, adjusting for age, sex, smoking, number of teeth, and antibiotics usage with the LinDA 

[228] framework. ASV prevalence was shown as a percentage on the y axis. 
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5.1.4 Conclusions 

In this analysis we explored whether salivary microbiota composition associated with odor 

identification capabilities, with the hypothesis that salivary microbiota catabolites might alter 

the perception of some smells. To our knowledge, this is the largest data set (N = 1,610) that 

investigates the association between odor identification performance and the salivary 

microbiota composition in a healthy adult population. We found weak associations between 

smell identification performance and the salivary microbiota composition with this smell 

assessment setup. 

5.2 SALIVARY MICROBIOTA EXPOSOME SCAN 

5.2.1 Background 

The CHRIS study data collection includes more than 2328 phenotypes, ranging from 

bloodwork biochemical traits to lifestyle and neuropsychiatric questionnaires. To study the 

association between individual phenotypes and the salivary microbiota, it was necessary to 

develop a protocol to test as many variables as possible with the same statistical framework. 

This approach could confirm known associations, reveal previously overlooked ones, and 

open the field to future research directions. 

5.2.2 Methods 

We filtered the 2328 phenotypic variables present in CHRISMB according to two main 

technical criteria: (1) Less than 20% missing data in each variable, to ensure a sufficiently 

large sample size; (2) Factor variables should have between 2 and 15 levels to allow inclusion 

of municipality and occupation variables. 

We filtered microbiota data for a minimum of 10 counts in at least 1% of samples and 

transformed it to relative abundance. We used the filtered microbiota data to generate a Bray-

Curtis dissimilarity matrix with phyloseq::distance, which we modeled with PERMANOVA  

[173,225] with vegan::adons2. We set the “by” and “permutations” parameters to NULL and 

2,000, respectively. The NULL method tests the overall significance of the variables in the 

model. We performed one PERMANOVA per trait, adjusting P-values with stats::p.adjust 

using the BH method (FDR 5%).  

We considered variables with Q-value < 0.1 and 𝑅2 ≥ 0.5% as significant, removing variables 

correlated variables, for instance age, rounded age, and birth date.  
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5.2.3 Results 

After filtering the phenotypic variables (see Methods), we retained 1,454 out of 2,328 

variables. Of those, the PERMANOVA resulted in 62 significant variables with BH Q-value < 

0.1 and at least 0.5% microbiota variance explained (R²) (Figure 5-2). We observed that the 

variables with a considerable proportion of variance explained (R² > 1%) were related to 

smoking, sample processing batch, number of teeth, and age, all covariates which we 

considered in previous analyses. Variables with R² between 0.5 and 1% belonged to 

questionnaire sections “Personal Information” (level of education, employment status), 

“Anthropometrics” (BMI, blood pressure), municipality of residence, and 4 oral health 

questionnaire items (self-reported teeth health and gums health, difficulty biting food and 

frequency of dry mouth). Moreover, we found associations between beta diversity and food 

frequency questionnaire items related to foods high in simple sugars (sugar, soda, sweet 

beverages, sweetened juice, dried plums), followed by alcoholic drinks (spirits, wine, beer), 

fats (oils and butter), acidic foods and drinks (sodas, tomatoes, coffee), and fermented foods 

(beer, wine, bread, yoghurt).  
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Figure 5-2. The CHRISMB exposome analysis revealed several lifestyle and demographic 

factors associated with salivary microbiota variability, and minor involvement of the diet. 

Variables were tested one by one with the PERMANOVA framework modeling the Bray-Curtis 

dissimilarity matrix as information of microbiota variability. The variables were split into food 

frequency questionnaire-related (right panel) and the rest (left panel). Significantly associated 

variables were considered with minimum R² (0.5%), and Benjamini-Hochberg adjusted Q-value less 

than 0.1. 

5.2.4 Conclusions 

We found several lifestyle and dietary factors influencing the salivary microbiota composition 

in the largest exposome scan for the salivary microbiota. Several other questionnaires – such 

as disease and neuropsychiatric questionnaires, and plasma biochemical and immunity 

markers were not associated. These results could facilitate researchers in testing new 

hypotheses and considering which variables influence the microbiota when modeling or 

designing experiments.  
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6 GENERAL CONCLUSIONS 

In my thesis I characterized the salivary microbiota compositional diversity in CHRISMB, a 

sample of healthy Alpine Italian adults in Vinschgau/Val Venosta. With 1,923 samples, it is 

among the three largest single-cohort salivary microbiota studies in the world, between the 

Genome Center Cohort of the SPARK collection from New York, USA (N = 1929) and the 4D-SZ 

Shenzen cohort, China (N = 1915). Using this resource, I was able to study the impact of 

several lifestyle, environmental and genetic characteristics. 

First, I explored the association between the salivary microbiota and smoking not only with a 

qualitative assessment (Never, Former, Current) but also with quantitative information 

regarding current smokers’ cigarettes smoked per day and years since former smokers had 

quit. I found that the genera Neisseria, Lautropia, Atopobium and Megaspaera were 

significantly associated with smoking in CHRISMB and in studies of similar setup, showing a 

generalized effect of smoking. Additionally, I extended previous findings regarding the 

tobacco consumption per day, showing that heavier smokers had more marked compositional 

changes in both their compositional and predicted metabolic profile. The same could be seen 

in former smokers: several markers were slightly varying with the years since quitting. I 

hypothesized a mechanism of mediation of the oral microbiota in smoking-associated risk of 

periodontal and cardiovascular diseases, which could be explored in the future. 

Second, I investigated the association of geographic distribution, relatedness, and genetics 

with the salivary microbiota composition. We show that cohabitation strongly associated with 

a higher microbiota similarity, while municipality and altitude showed weak associations. 

Fourteen genera and 16 ASVs had a significant heritability component (17.4% ≤ ℎ2 ≤ 30.9%), 

while 14 genera and 37 ASVs showed a significant household component ( 9.9% ≤ 𝑐2 ≤

30.8% ). Using mbGWAS, we found no study-wide significant (SWS) Genus-variant 

associations. Conversely, we found four SWS ASV-variant associations after adjusting for 

age, sex, smoking, number of teeth, antibiotics usage, and 10 genetic principal components: 

Selenomonas ASV 113 – rs9511156; Aggregatibacter ASV 90 – rs916234787 and rs535001228; 

Prevotella ASV 178 – rs72809470. Gene level analysis on rare variants (minor allele frequency 

< 1%) further identified SRFBP1, and LOX associated with Selenomonas noxia (P-value < 

3.05 × 10−8). 
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Additionally, I showed that several other factors could play a role in the salivary microbiota 

composition. CHRISMB was mostly shaped by life habits (smoking, and cohabitation), age and 

oral health (number of teeth), and to a lower extent by diet. Sample processing batch was also 

significantly impactful, which stressed the importance of carefully designing and reporting 

technical choices to facilitate reproducibility. Furthermore, sex and antibiotics usage within 

3 months prior to the visit were statistically significant but with 0.2% of variance associated, 

further pointing to a careful consideration of which factor should be considered when 

conducting salivary microbiota research. 

CHRISMB data may be further explored designing epidemiological analyses based on the 

statistical associations observed in the exposome scan. Causality of genetic variants 

associated with the microbiota could be investigated with mendelian randomization, provided 

that the robustness of the association we reported is confirmed in other mbGWAS 

experiments. Genetic variants linked with microbiota composition could be further 

investigated with mendelian randomization to define causality of such variants. The 

microbiota, including the oral microbiota, has been acclaimed as a milestone in the direction 

of personalized health. To reach this goal, it would be advisable to perform further 

longitudinal research. For instance, the microbiota varies at different ages, which reflects 

several physiological and behavioral changes. However, understanding the chain of causality 

is pivotal to predict the impact of an alteration to the human body system on the microbiota, 

and how that reflects on the system. In the long run, the objective is to develop strategies for 

early detection and balancing of diseases via lifestyle and microbiota targeted approaches. 

Microbiota investigations using DNA sequencing methods (16S, and Shotgun metagenomics) 

have been pivotal, but they provide information only under one perspective. As stated by 

Whipps et al. [8], the microbiome is the “theater of activity”, meaning that what they are doing 

is more informative than who they are. To achieve this, longitudinal sampling should be 

coupled with meta-transcriptomics, proteomics, and metabolic profiling, to study the 

community’s metabolic dynamics in response to stimuli.  

In summary, CHRISMB highlights that several behavioral, environmental and health factors 

are associated with variability of the salivary microbiome. My main contributions to the field 

are in the direction of a mechanistic explanation of increased periodontal and cardiovascular 

risk in heavy smokers, the first salivary microbiota heritability scan and second microbiome 

GWAS, which produced novel associations. I additionally performed an exposome scan on 

more than 1,400 variables showing associations with several phenotypes which could be 

further investigated in the future.  
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