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Abstract— Distracted driver classification (DDC) plays an
important role in ensuring driving safety. Although many datasets
are introduced to support the study of DDC, most of them are
small in data size and are short of diversity in environmental
variations. This largely limits the development of DDC since
many practical problems such as the cross-modality setting
cannot be fully studied. In this paper, we introduce 100-Driver,
a large-scale, diverse posture-based distracted diver dataset, with
more than 470K images taken by 4 cameras observing 100 drivers
over 79 hours from 5 vehicles. 100-Driver involves different
types of variations that closely meet real-world applications,
including changes in the vehicle, person, camera view, lighting,
and modality. We provide a detailed analysis of 100-Driver
and present 4 settings for investigating practical problems of
DDC, including the traditional setting without domain shift
and 3 challenging settings (i.e., cross-modality, cross-view, and
cross-vehicle) with domain shifts. We conduct comprehensive
experiments on these 4 settings with state-the-of-art techniques
and show several insights to the future study of DDC. Our
100-Driver will be publicly available offering new opportunities
to advance the development of DDC. The 100-driver dataset,
source code, and evaluation protocols are available at https://100-
driver.github.io.

Index Terms— Distracted driver dataset, large-scale, cross-
modality, cross-view, cross-vehicle.

I. INTRODUCTION

CARS bring great convenience to humans and have
become an indispensable part of daily travel. However,

there are two sides to every door. Road traffic injuries became
a growing concern that is estimated to be the seventh leading
cause of death globally by 2030 [1]. According to statistics
from the National Highway Traffic Safety Administration,
nearly 25% of traffic accidents are caused by distracted drivers.
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Distracted driver behavior is any activity that takes the driver’s
attention away from the task of safe driving [2], [3], [4], such
as using a cell phone, eating, or talking to people, to name a
few. These distracted driver behaviors commonly exist during
driving, which is prone to cause accidents and should be
strictly avoided. Although some surveillance systems on roads
can capture and identify certain types of distracted driver
behavior, this can only be used as a punishment but it is
not a precaution. In addition, the identification accuracy and
identified types of distracted driver behavior are limited due
to low image quality. Hence, it is important to develop an
onboard monitoring system to alert drivers who are inattentive,
greatly preventing traffic crashes.

Over the past decades, a lot of research has been introduced
toward driving safety. We should notice that researchers in
the naturalistic driving study (NDS) have provided large-scale
datasets that include driving image data, such as SHRP2 [5],
400-car [6] and etc. However, the purpose of NDS is very
different from DDC. NDS aims to understand driver and
vehicle behavior by off-the-shell data while DDC focuses
on recognizing dangerous behaviors in real-time. In addition,
these NDS datasets can hardly be used for DDC tasks since
most of them are not publicly available and the image quality
is limited. We thus regard NDS and DDC as different tasks
and do not directly compare with their datasets. For the DDC
task, lots of techniques [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16] were studied where posture-based distracted driver
classification (DDC) has shown superiority in both terms
of accuracy and efficiency [17], [18], [19], [20]. Therefore,
a number of driver-posture-based datasets [21], [22], [23],
[24] were proposed to support the study of DDC. However,
these datasets are limited in one or more significant aspects,
including scene variation, comprehensiveness of categories,
and the number of drivers. To be specific, as listed in Table I,
most of them are captured from a single camera view and
only consider the daytime scene. In addition, the existing
datasets are collected from one vehicle. These features largely
limit the scene variations of existing datasets. On the other
hand, most of the existing datasets consist of less than
10 distraction behaviors and less than 50 drivers. In real-
world applications, the systems are deployed in different
environments and undoubtedly will encounter various scenes,
drivers, and behaviors. Thus, the insufficiency of existing
datasets hampers the application to real-world scenarios and as
such, it is essential to build a new dataset supporting the study
of DDC.

In this paper, we introduce a large-scale, diverse dataset
for DDC, which is simply named 100-Driver due to a
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TABLE I
COMPARISONS OF OUR 100-DRIVER WITH EXISTING POSTURE-BASED DISTRACTED DRIVER CLASSIFICATION DATASETS. ∗ : ONLY DATA OF 5 DIVERS

ARE RELEASED. § : THE NUMBER OF DRIVERS IN DAY/NIGHT, AND SOME DRIVERS APPEARED IN BOTH DAY AND NIGHT. -: VIDEO
DATASET THAT HAS MANY HIGHLY SIMILAR FRAMES AND CAN NOT BE COMPARED WITH IMAGE DATASETS FAIRLY

IN TERMS OF DATA SIZE. N/A: CORRESPONDING INFORMATION IS NOT PROVIDED

collection with 100 drivers. We make the four following
contributions:

• The largest public dataset. 100-Driver contains more
than 470K samples recorded over 79 hours. 100-Driver
is the largest DDC dataset, which is 1.6× larger than the
previous largest dataset (3MDAD [24]). It will also be
publicly available.

• The most diverse dataset. 100-Driver is captured by
4 camera views observing 100 drivers from 5 vehicles.
In addition, the samples are captured in both daytime and
nighttime and are annotated across 22 categories. 100-
Driver is more diverse than existing datasets and is more
in line with real-world applications.

• New settings. Thanks to the large size and diversity of
100-Driver, we introduce four settings for DDC, includ-
ing one traditional setting without domain bias, and three
challenging but practical settings with domain bias. The
latter are cross-modality, cross-view, and cross-vehicle
settings that explicitly consider the scene variations in
real-world applications.

• Comprehensive experimental analysis and new
insights. We conducted extensive experiments on 100-
Driver with state-of-the-art techniques. We validate the
effectiveness of each technique in the introduced settings
and reveal valuable insights to the study of DDC.

We hope our 100-Driver can encourage researchers to consider
more challenging but practical problems in DDC and we
believe the studies on 100-Driver have great potential to
facilitate the development of DDC towards safe driving.

II. RELATED WORKS

In this section, we introduce the datasets for driver behavior
analysis, including naturalistic driving study (NDS) and dis-
tracted driver classification (DDC) datasets. Although NDS
and DDC are both designed for improving driving safety,
they are different in terms of the objective. The goal of NDS
is to understand driver and vehicle behavior by quantitative
analysis based on off-the-shell data, such as “the characteristic
of crashes and indent” [25], “the characteristic of driver
inattention” [6] and etc. The conclusions analyzed by NDS can

be used to guide the design of DDC. Instead, the purpose of
DDC is to recognize the already-known dangerous behaviors
in an online way to ensure real-time driving safety.

A. Naturalistic Driving Study (NDS) Datasets

Naturalistic Driving Study (NDS) [2], [3], [4] has made sig-
nificant progress along with the emergence of the large-scale
NDS datasets [5], [6], [25], [26], [27]. In 2006, the first
large-scale NDS dataset 100-car [25] was conducted where
100 vehicles and 109 primary participants are involved, and
multi-resource data like camera, GPS, and radar is captured.
The video data in 100-car are captured from two in-car cam-
eras and two out-car cameras which are annotated with specific
events such as crashes, and near crashes with the purpose
of understanding the driver and vehicle behavior in extreme
circumstances. Through quantitative analysis, 100-car provides
us with lots of important findings, for example, “Almost
80 percent of all crashes and 65 percent of all near-crashes
involved the driver looking away from the forward roadway”,
“Drowsiness is a contributing factor in 12 percent of all crashes
and 10 percent of near-crashes ”. Subsequent datasets like
UYANIK [27], SHRP2 [5], 400-car [6], UDRIVE [26] may be
larger in terms of the number of divers or vehicles, or more
diverse in road situation and data modality, their goal is still
similar to 100-car. For example, the goal of the 400-car [6]
dataset is to understand the driver’s behaviors in normal,
impaired, and safety-critical situations while UDRIVE [26]
aims to obtain a better understanding of drivers’ engagement
in secondary task activities.

However, most of the existing NDS datasets can not be
directly utilized for DDC. (a) First and foremost, existing
NDS datasets are not publicly available (especially video data)
for academic study [5], [6]. (b) The image quality in most
NDS datasets is pretty low [5] because they are often highly
compressed to meet the requirement of the storage of a large
amount of data. Additionally, the videos in NDS datasets often
have a very low frame rate (e.g., 10 FPS), resulting in the
loss of important frames. These two factors will increase the
difficulty of using NDS datasets for DDC.
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B. Distracted Driver Classification (DDC) Datasets
Considering the requirements of both effectiveness and

efficiency in real-world applications, although driver physi-
ological information [7], [15], [28] or vehicle kinematic sig-
natures [8], [29] can be used for DDC, recognizing distracted
drivers in a visual manner is a better choice [25]. The vision-
based DDC datasets can be divided into two categories, body-
part-based and posture-based datasets.

1) Body-Part-Based DDC Datasets: Body-part-based DDC
datasets extract drivers’ head [30], [31], [32], [33], facial
(e.g., face [10], [34], [35], eyes [11], [12], and mouth [36],
[37]), and hand [9], [38] features to recognize several specific
distraction behaviors. To be specific, driver head datasets such
as DriveAHead [30], LISA-P [33], and CoHMEt [32] aim to
monitor driver awareness by estimating the head position and
rotations like yaw, roll, and pitch. Driver eyes datasets [11],
[12] are to recognize the behavior of fatigue, sleepiness, and
inattention based on the driver’s eye states such as the eye
blinking frequency and eye closure duration. Similarly, driver
mouth datasets [36], [37] are conducted to determine the
yawning behavior by analyzing the driver’s mouth opening
level.

Despite their low computational cost [39], the models
trained on body-part-based DDC datasets have two limitations.
First, they are sensitive to scene variation. For example, the
models trained on the facial datasets will come to nothing if
the driver just wears a mask or sunglasses [39]. Second, the
models trained on body-part-based DDC datasets can recog-
nize limited distracted behaviors. These two limitations largely
restrict their subsequent real-world applications. Compared to
body-part-based DDC datasets, posture-based DDC datasets
try to capture the distraction behaviors by the driver’s whole
posture, which are more robust to variations and cover a more
comprehensive set of distractions [21], [22], [24].

2) Posture-Based DDC Datasets: In recent years, a number
of posture-based datasets have been released for distracted
driver classification (DDC). Although SEU-UP is the first
dataset for DDC, it is not publicly available and only indicates
the driver information. Several years later, StateFarm [21]
and AUC [22] are introduced to support the study of DDC,
which however are limited in the data size. Recently, two
large-scale datasets, 3MDAD [24] and Turky-DD [40], are
proposed, which have more than 287K and 137K images,
respectively. Nevertheless, both of them have low image
quality and Turky-DD is not publicly available.

The above five datasets are image-based datasets. There
are two video-based datasets presented in the commu-
nity, EBDD [41] and dBehaviourMD [23]. Although dBe-
haviourMD includes more than 1M images, it is indeed not
as diverse as 3MDAD and Turkey-DD since there are many
highly similar frames in it. In addition, dBehaviourMD only
releases a small portion of the data (5 of 37 drivers), largely
reducing its data size. Despite the wide use of the above
datasets, all of them are relatively limited in data diversity.
This leads them still far from real-world scenarios and hinders
the investigation of DDC. To this end, we build a large-
scale, diverse dataset for DDC to narrow the gap from real-
world applications. Our 100-Driver includes more than 470K
images and is diverse in terms of driver, vehicle, camera
view, and class. Compared to 3MDAD, our 100-driver offers

{2×, 5×, 2×, and 1.3×} more {drivers, vehicles, views, and
classes} respectively. A comparison of different datasets is
listed in Table I.

III. THE 100-DRIVER DATASET

In this section, we first present the data generation process
of 100-Driver. Then we detail the dataset statics and analyze
the dataset properties. Last, we introduce four settings for
practical evaluation.

A. Dataset Generation
1) Collection Setting: During data collection, we elabo-

rately control the diversity of raw data in terms of vehicles
(5 vehicles, Mazda 3 axela, Lynk&co 03, Toyota C-HR,
Hyundai X25, and Ankai A6), camera locations (4 Xiaomi-
C1 cameras in front-left, front, front-right, and side-right,
as shown in Figure 4), modalities (RGB and Near Infrared
NIR), lighting conditions (from morning to afternoon, from
spring to winter, and different weather conditions), drivers
(100 participants), appearance variations (changing clothes,
wearing a mask, hat, and sunglasses). The RGB modality is
captured in the daytime while the NIR modality is collected in
the nighttime. To ensure the appearance variations, a part of
drivers (25% in daytime and 15% in nighttime) were recorded
over multiple time periods, leading to substantial appearance
variations, especially in clothes and lighting (see the last row
of the left sub-figure in Figure 1). During collection, we equip
a safety officer to give relevant instructions according to the
road condition. Note that the officer is only in charge of
announcing the name of the distracted behaviors from a set as
listed in Table II. We record the natural reaction of each driver
and no other intervention such as telling the participants how
to perform such behavior and etc. And the announced sequence
for each participant is random. Each participant is informed of
the risks involved in data collection and has signed a General
Data Protection Regulation (GDPR) informed consent to allow
the data to be publicly available for research study.

2) Data Annotation: Following the collection setting,
we initially obtain 79.34 hours of video. The overall annotation
process was conducted by 20 experts. To boost the efficiency
of data annotation, we first grouped the data by drivers.
In addition, we aligned the start and end times for the 4 cam-
eras of the same driver, so that we could label each pre-defined
class (as listed on Table II) for all 4 cameras at once based
on the timestamp. Each individual behavior is labeled with
behavior class, modality type, driver ID, camera ID, vehicle
ID, and scene ID. Given the labeled video clips, we conduct
downsampling to generate more diverse data considering the
high similarity between adjacent frames. We further remove
outliers with very different content from the labeled class. Note
that, the downsampling and filtering processes lead our 100-
Driver to be much more diverse and clean than the previous
largest dataset, 3MDAD [24], which builds the data with the
video clips directly. In Table I, we compare the average number
of images of each individual behavior and the overall data
size among datasets, showing that the large-scale data of 100-
Driver mainly benefited from collecting more diverse samples
instead of highly similar ones. We finally produce a total of
470,208 samples to form our 100-Driver dataset. An example
of the annotated samples is shown in Figure 3.
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Fig. 1. Left: The specification of the proposed 100-Driver for distracted driver classification. Right: The comparisons of different datasets. For each item,
the biggest value among all datasets is used to determine the unit, which is denoted as Vb . We first calculate the unit by Vb/10 and then normalize the value
of each dataset by dividing it through the obtained unit. Each scale represents 2 units.

TABLE II
THE LIST OF DISTRACTED DRIVING BEHAVIORS

IN THE 100-DRIVER DATASET

B. Dataset Description

1) Overview: 100-Driver contains 470,208 samples, which
are collected by 4 camera views and belong to RGB and NIR
modalities. It involves 21 types of distracted behaviors and
1 normal behavior captured from 100 drivers in 5 vehicles.
The detailed classes can be found in Figure 2(c) and (d).

2) Data Statics: In Figure 2, we provide the detailed distri-
butions of 100-Driver. We can make the following conclusions.

First, the number of samples and the number of drivers are
roughly balanced between daytime and nighttime. Specifically,
there are 65 and 52 drivers recorded during daytime and night-
time, respectively, where 17 drivers participated in both events.
In total, there are 245,266 RGB images captured in the daytime
and 224,942 NIR samples captured in the nighttime. Second,
the data distribution of each vehicle is different. In detail,
three vehicles collect the data in both daytime and nighttime
while the other two only collect the data in daytime or
nighttime. Besides, the “Mazda” and “Lynk&Co” are the two
vehicles collected with the most number of samples where the
“Mazda” mainly focuses on the daytime while the “Lynk&Co”
is the opposite. This is because, in our original intention,
we only considered the balance between day and night, i.e.,
the number of samples and the number of drivers are roughly
balanced between daytime and nighttime. During collection,
the available long-term vehicles were Mazda, Hyundai, and
Lynk&Co. To increase data diversity, we temporarily used
the other two vehicles (Ankai and Toyota) and asked new
participants to collect the data. This collection strategy led
to a slight unbalance in our data. Third, the class distributions
are relatively balanced regarding both cameras and modalities.
To be specific, the class distributions are similar between
daytime and nighttime. And the number of samples of the
same class is approximate for each camera. The Yawning class
has the smallest number of samples because the duration of
individual behavior of this class during collection is shorter
than other classes. Lastly, as shown in Figure 2 (e), our dataset
covers diverse participants in terms of age group and driving
experience.

C. Data Properties

Our 100-Driver gains benefit in two aspects, i.e., scale, and
diversity, which are explained below.
I: 100-Driver has scale advantage in terms of the number of
samples and the number of drivers.

• 100-Driver has the largest number of samples. As
shown in Table I, 100-Driver contains 470K images,
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Fig. 2. Statistics of the 100-Driver dataset.

Fig. 3. The label of samples in the 100-Driver dataset.

Fig. 4. The camera locations in the 100-Driver dataset. Cam1: front-left,
Cam2: front, Cam3: front-right, and Cam4: side-right.

which is 1.6× larger than the previous largest dataset,
3MDAD [24].

• 100-Driver has the largest number of drivers. 100-
Driver recorders the samples of 100 drivers, which is
substantially larger than existing datasets that cover fewer
than 50 drivers.

II: 100-Driver has a diversity advantage in terms of distracted
class, behavior style, camera view, vehicle, and person appear-
ance.

• 100-Driver covers the most comprehensive classes.
100-Driver considers 22 classes (21 distracted classes
and 1 normal driving) while 3MDAD only considers
16 classes (15 distracted classes and 1 normal driving).
The coverage of distraction behaviors is designed accord-
ing to the definition of the International Road Transport
Union. Examples of distracted classes and safe driving
classes are shown in Figure 5. Specifically, classes like
“look away” and “leave the steering wheel” are first
defined compared to previous datasets.

• 100-Driver involves more diverse behaviour styles.
Since peoples have different habits during driving,
they will react differently to each behavior. We invite
100 drivers of different age groups (from 20-60 years
old) during collection, leading the behavior styles to be
more diverse.

• 100-Driver captures samples with 4 different views.
During collection, four cameras are placed in front-left,
front, front-right, and side-right views of the drivers, with
two purposes. First, a multi-camera dataset can help us
to learn models that are more robust to camera variations
as well as enable us to evaluate the generalization ability
of models to cameras. Second, the multi-camera dataset
provides an opportunity to boost the system’s perfor-
mance by considering the contents captured by multiple
cameras. For example, the front-view camera is good at
capturing the facial details that are important to detect
subtle activities such as sleep and yawning distractions.
The side-view camera can provide a global view of an
action, which is more suitable to identify behaviors with
large movements, such as reaching behind.
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Fig. 5. Samples of the proposed dataset in side view.

• 100-Driver is collected from different vehicles. In
real-world applications, the monitoring system will be
installed in different vehicles that have very different in-
car scenes. To meet real-world applications as much as
possible, 100-Driver is comprised of 5 vehicles, including
2 sedans, 2 SUVs, and 1 van. To our best knowledge,
100-Driver is the first dataset that considers the diversity
of vehicles.

• 100-Driver includes various lighting and person
appearance variations. In our dataset, three factors lead
to large person appearance variations. First, the data
are collected under different weather conditions (sunny,
rainy), periods (morning, noon, afternoon), and seasons
(summer and winter). This leads to lighting and clothes
variations. Second, some participants are asked to change
their clothes, wearing masks, sunglasses, and hats, further
enlarging the appearance variations. Third, more drivers
also lead to clothes variations since the clothes worn by
different drivers are very different.

In summary, 100-Driver is a large-scale, diverse dataset
that explicitly considers the important factors in real-world
applications. This enables us to study more practical problems
in DDC as presented in the next section.

D. Evaluation Protocol
In previous datasets, they generally assume that the training

and testing sets have the same distribution. That is, the training
and testing sets are collected under the same environments,
including camera views, vehicles, and modalities. However,
in real-world applications, the deployed environments vary
significantly. Therefore, the trained model inevitably needs to
evaluate the data collected from environments that are very
different from the training ones. Considering the above fact,
the traditional setting ignoring the domain bias is not always
practical, and it is essential to evaluate settings that consider
the variations caused by changes in camera views, vehicles,
and modalities. However, as discussed before, existing datasets
commonly are collected under a single environment (e.g., with
1 camera, 1 vehicle, and 1 modality) and thus can not be used
to evaluate the challenging settings with domain bias. Thanks
to the high diversity of our 100-Driver, we are able to achieve

TABLE III
DESCRIPTION OF DIFFERENT SETTINGS. i, j : REFERS TO DRIVER IDS.

c: CAMERA ID. t : REFERS TO VEHICLE TYPE.
m : REFERS TO VEHICLE ID

this goal and thus introduce four settings to narrow the gap
from the practical deploying scenarios.

• Traditional Setting. In this setting, the training and
testing sets are captured from the same camera views,
modalities, and vehicles. The domain bias between train-
ing and testing sets is very small.

• Cross-camera Setting. In this setting, the training and
testing sets are collected from different cameras while
the modalities and vehicles are the same. The domain
bias is mainly caused by camera variations.

• Cross-modality Setting. Similar to the cross-camera
setting, in this setting, the training and testing sets are
collected from different modalities while the camera
views and vehicles are the same. The domain bias is
mainly caused by the modality difference.

• Cross-vehicle Setting. Cross-vehicle setting includes
cross-vehicle-type and cross-individual-vehicle settings.
The training and testing sets are collected from different
vehicle models and different vehicles for cross-vehicle-
type and cross-individual-vehicle, respectively. And the
camera views and modalities are the same for both cross-
vehicle-type and cross-individual-vehicle. The domain
bias is mainly raised by vehicle type and vehicle changes.

IV. EXPERIMENTS

In this section, we conduct extensive experiments on the
proposed 100-Driver dataset.
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Fig. 6. The confusion matrix of EfficientB0 on four cameras. And the best view is in zoom.

A. Experimental Setting
1) Baseline: Since Distracted driver classification (DDC) is

a classification problem, we use the cross-entropy loss to train
the model and regard this approach as the baseline.

2) Backbones: We select 6 popular networks as the back-
bones, including ResNet-50 [42], MobileNetV3-large [43],
ShuffleNetV2-1-0 [44], SqueezeNet1-0 [45], EfficientNet-
B0 [46], and GhostNet-1.0 [47]. Note that, in this paper,
we do not aim to compare the performance of different
backbones. Instead, we hope to find common phenomena that
are important to DDC.

3) Evaluation: We evaluate the baseline method on the
4 settings introduced in Section III-D. For traditional setting,
we split the data by driver, where {47, 6, 12} and {37, 5, 10}
drivers are divided into {train, val and test} sets for daytime
and nighttime, respectively. For cross-camera setting, we use
the data of one camera to train the model and use it to evaluate
the testing data of other cameras. For cross-modality setting,
we adopt the data of one modality to train the model and use
it to evaluate the testing data of another modality. For cross-
vehicle setting, we split the data by vehicles, where the training
sets for the day are comprised of the data recorded in Mazda.
The data in Mazda are divided by driver where {33, 5} drivers
are for training and testing. The data collected by {Hyundai,
Ankai, Lynk&Co} are for testing. For all settings, we select
the model that achieves the best accuracy on the validation set
and report the accuracy on the testing set.

4) Implementation Details: For baseline models, we adopt
SGD optimizer with a momentum of 0.9 and a weight decay
of 5 × 10−4. The batch size is set to 64. All backbones are
pretrained with ImageNet [48]. The learning rate is initialized
to 0.01 and reduced by a factor of 10 at 40 and 60 epochs.
The inputs are resized to 224 × 224. We use random crop
and random erasing [49] for data augmentation. The overall
training epoch is 100.

B. Results on Traditional Setting
We first evaluate the traditional setting with different back-

bones in Table IV. We find that the models commonly have
higher accuracies when training and testing on Camera 1
(front-left) or Camera 4 (side-right), regardless of the back-
bone and modality. We also provide the results of precision
and recall and find a similar phenomenon as the accuracy
metric. This indicates that, in real-world applications, we can
suggest/enforce the drivers to install the cameras at the

Fig. 7. The accuracy of each class. For each class, we compute the mean
and standard deviation of the accuracy of all the models. And the best view
is in zoom.

front-left and side-right. We also find that, with the same
camera and backbone, the model generally achieves higher
accuracies in the daytime. For instance, when using ResNet50
as the backbone and evaluating on Camera 4, the model
achieves 77.3% accuracy under daytime while obtains 74.1%
accuracy under nighttime. This phenomenon is reasonable
since poor lighting at nighttime will increase the difficulty of
recognition.

To further investigate the challenges of 100-Driver, we take
a closer look at the accuracy of each class in Figure 7 and
the confusion matrix in Figure 6. We can make the following
observations. First, the accuracies are imbalanced for different
classes, indicating that the difficulties of each class are not con-
sistent. For instance, the classes “sleeping”(#2), “hair / make
up ”(#7), “looking up” (#10), and “talking to passengers”(#22)
are the most difficult behaviors, regardless of the cameras and
models. Therefore, future studies may consider using data re-
sampling [50] or class re-weighting [51], [52] techniques to
improve the overall performance. Second, different cameras
are good at capturing different distractions. For example,
Camera 1 shows superiority in identifying the “yawning”
(#3) activity while Camera 3 and Camera 4 perform poorly
in recognizing such class. Camera 4 can well classify the
“operating GPS / entertainment system”(#19) whereas the
other three cameras can hardly distinguish such distractions.
This phenomenon indicates that one can use a multi-camera
fusion strategy to take advantage of cameras installed at
different views. For example, during the fusion of predictions
produced by multiple cameras, the weights of each class will
be set according to the superiority of each camera. Third, the
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TABLE IV
THE RESULTS OF THE TRADITIONAL SETTING. D AND N INDICATE DAY AND NIGHT, RESPECTIVELY. THE NUMBER FOLLOWING

D AND N INDICATES THE CAMERA ID, WHERE “ALL” REPRESENTS ALL CAMERAS. ACC, PRE AND REC
REPRESENT ACCURACY (%), PRECISION (%) AND RECALL (%), RESPECTIVELY

TABLE V
ACCURACY (%) OF MULTI-CAMERA FUSION ON DAYTIME. D INDICATES DAY. THE NUMBER FOLLOWING D INDICATES THE CAMERA ID. THE FIGURES

IN BRACKETS INDICATE HOW MUCH THE ACCURACY OF n-CAMERA COMBINATION INCREASES OR DECREASES COMPARED TO THE BEST
RESULT OF INDIVIDUAL OR n − 1 COMBINED SET WHERE ↑ AND ↓ REPRESENT INCREASE AND DECREASE, RESPECTIVELY

accuracy of “normal driving” (#1) is not satisfied (lower than
90% in all cases). This is very dangerous in practice since
recognizing distracting behaviors as normal driving should
be more worried than classifying them into wrong distracted
behaviors. Therefore, the researchers should take into account
this weakness seriously.

1) Multi-Camera Fusion: To study the trade-off between
accuracy and computational cost in the multi-camera fusion
approach, we propose a simplified framework to fuse multiple
cameras by averaging the prediction of each camera. An exam-
ple of a two-camera fusion framework is illustrated in Figure 8.
The experimental results are listed in Table V. And we obtain
several observations as follows. First, two-camera fusion can
consistently boost the performance regardless of the backbone
model, especially on the combination of Camera 1 and Camera
4 which can achieve the best performance in most cases.
For example, the improvements based on EfficientNetB0 and
GhostNetV1 can reach 8.1% and 8.5%, respectively.

Research Findings.
• Different camera locations produce different results

where Camera 1 and Camera 4 perform better.
• The difficulties of each class are not consistent,

where “Normal driving”, “Sleep”, “Smooking” are
harder than other classes.

• Two-camera fusion can boost performance.
• Three-camera and four-camera fusion obtain lim-

ited improvements.
Suggestions for Deployment.

• Preferentially installs the cameras at the front-left
and side-right locations.

• To achieve higher accuracy, consider jointly
enabling two views for recognition.

Future Directions.
• Improve the performance in recognizing hard

classes, especially the “Normal driving”.
• Effectively explore the mutual benefit of different

views to obtain more robust results.

Fig. 8. A simplified two-camera fusion framework. Resnet50Di denotes the
model trained on Camera i .

We conjecture this is because the data captured from
Camera 1 and Camera 4 can be better complementary. Second,
the three-camera, as well as four-camera fusion methods, can
obtain limited improvement or even cause a performance drop.
For example, the combination of Camera 1, Camera 2, and
Camera 4 can damage the performance in half cases, in which
the accuracy is reduced by 1.5% compared to using the
combination of Camera 1 and Camera 4 with ShuffleNetV2.
This may be because the introduction of Camera 2 might
destroy the effect of the fusion of Camera 1 and Cam-
era 4 which have a good complementary relationship. Third,
the computational cost and parameter size grow linearly with
the number of cameras. Therefore, to better trade the accuracy
and the complexity, we suggest combining the information
from Camera 1 and Camera 4. And two directions can be
further studied to reduce the computational cost. (a) It would
be more effective to design some parameter-sharing models
for multi-camera inputs. (b) An alternative way is to design a
parallel computing solution from the hardware level.

C. Results on Cross-Domain Settings

We then conduct experiments under the cross-camera, cross-
modality, and cross-vehicle settings. We use the ResNet-50
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TABLE VI
ACCURACY (%) OF CROSS-VIEW SETTING ON DAYTIME. D INDICATES DAY. THE NUMBER FOLLOWING D INDICATES THE CAMERA ID

TABLE VII
ACCURACY (%) OF CROSS-VEHICLE SETTING. D INDICATES DAY. THE NUMBER FOLLOWING D INDICATES THE CAMERA ID. SE REPRESENTS SEDAN

TABLE VIII
ACCURACY (%) OF CROSS-VEHICLE SETTING. D INDICATES DAY. THE NUMBER FOLLOWING D INDICATES

THE CAMERA ID. {M, H, A, L} REPRESENT {MAZDA, HYUNDAI, ANKAI, LYNK&CO}

as the backbone. The results of different baseline models are
shown in Table VI, Table VIII, and Table IX.

1) Cross-Camera Setting: Table VI shows the results of
the cross-camera setting in the daytime. We can find that
the results of each view are largely lower than that of the
traditional setting. For example, when using ResNet-50 as the
backbone, the model trained on the data of Camera 2 produces
68% accuracy on the testing set of Camera 2. However,
the testing result is reduced to 50% when using the model
trained on the data of Camera 1. These results indicate that
the models significantly suffer from the variations caused by
camera changes. The transfer performance is closely related to
the angle difference between the two cameras. For instance, the
transfer result of the model trained on the data of Camera 1 is
successively decreased from Camera 2 to 4.1 These results
also suggest that we can leverage the data of internal cameras
to bridge the gap between two cameras that have a large angle
difference.

2) Cross-Vehicle Setting: We first list the results of cross-
vehicle-type setting (e.g., Sedan →SUV) on Table VII. It can
be observed that the accuracy is decreased dramatically when
changing the type of vehicle. This suggests that we should
take into account the vehicle type in the model design. To be
specific, the decline from Sedan to Van is more serious than

1The greater the difference between the ID numbers of the two cameras,
the greater the angle difference between them.

to SUV. For instance, when using ResNet50 on Camera 1,
the transfer result of Se→SUV is 36.2% while the result of
Se→Van is 5.2%. We conjecture this is because the sedan
and SUV share similar interior structures resulting in more
similar data distribution. Therefore, to further investigate the
influence of the interior structure of the vehicles, we design
a cross-individual-vehicle setting (e.g., Mazda →Lynk&Co)
due to the interior structure may vary greatly even for the
same type of vehicle. Results of cross-individual-vehicle
are shown in Table VIII. We can observe that the cross-
individual-vehicle accuracies are consistently decreased com-
pared to that of training and testing with the data from all
vehicles. This indicates that the individual vehicle changes
will also deteriorate the accuracy even using the same cam-
era and that we should consider the vehicle variations dur-
ing training. One possible solution could be training robust
models with domain generalization or domain adaptation
methods.

3) Cross-Modality Setting: Since collecting daytime data
is much easier than nighttime data, it is more suitable
to study the transfer direction from daytime to nighttime.
In Table IX, we report the results of the cross-modality
setting from daytime to nighttime. Clearly, all the models
produce very poor results when testing on nighttime data.
This is due to the large data bias between the two modal-
ities. In real-world applications, it is more dangerous when
driving at nighttime. Therefore, it is essential to solve the
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TABLE IX
ACCURACY (%) OF CROSS-MODALITY SETTING. D AND N INDICATE DAY

AND NIGHT, RESPECTIVELY. THE NUMBER FOLLOWING D AND N
INDICATES THE CAMERA ID

TABLE X
ACCURACY (%) OF CROSS-MODALITY DOMAIN ADAPTATION.D AND N

INDICATE DAY AND NIGHT, RESPECTIVELY. THE NUMBER FOLLOW-
ING D AND N INDICATES THE CAMERA ID

cross-modality problem in DDC. We next give an effective
solution to address this problem in the view of domain
adaptation.

4) Cross-Modality Domain Adaptation: Domain adaptation
is an effective way to address the problem of domain shift.
Since different cameras, modalities, and vehicles can refer to
domains, we can use domain adaptation to improve the per-
formance of cross-camera, cross-modality, and cross-vehicle
problems. In this paper, we choose the cross-modality as
an example and evaluate 5 popular domain adaptation meth-
ods2 on it, including DANN [53], D-Coral [54], BNM [55],
CDAN [56] and DSAN [57]. When using domain adaptation
methods, we additionally utilize unlabeled target data for
training. Here, source and target data belong to different
modalities. The source-only model is trained with the labeled
source data while the supervised model is trained with labeled
target data. Results reported in Table X show that domain
adaptation methods can significantly improve cross-modality
accuracy. Specifically, CDAN and DSAN achieve the best
adaptation results. It is interesting that these two methods can
produce slightly lower or even higher results than supervised
models. This indicates that the knowledge of labeled daytime
data can well be transferred to the nighttime data with a
proper method and that the daytime data can be used to
improve the performance on the nighttime modality. Therefore,
in real-world applications, we can collect labeled daytime data
and unlabeled nighttime data, and utilize effective domain
adaptation methods to learn models that are robust to nighttime
scenes. Considering the difficulty of annotating nighttime
data, cross-modality domain adaptation can help us achieve a
modality-robust model while saving labeling costs. The other
two settings, i.e., cross-camera and cross-vehicle, can also use
domain adaptation techniques to achieve more robust models.

2We adopt the source code released by [58] to implement domain adaptation
experiments.

Research Findings.
• Camera location, individual vehicle, vehicle type,

and data modality variations will deteriorate the
accuracy.

• The transfer result of the model trained on Camera
1 is successively decreased from Camera 2 to 4.

• Domain adaptation methods can improve cross-
modality accuracy.

Future Directions.
• Utilize the data of internal cameras to bridge the

gap between two cameras that have a large angle
difference.

• Study the domain generalization or domain adap-
tation methods for cross-domain settings in DDC.

V. CONCLUSION

In this paper, we introduce a new dataset, named 100-
Driver, for Distracted driver classification (DDC). 100-Driver
is the largest DDC dataset to date and is diverse in multiple
important aspects. The significant properties of our dataset
enable us to study 3 practical problems on 100-Driver, i.e.,
cross-camera, cross-modality, and cross-vehicle settings that
are largely overlooked in DDC as well as to explore the
collaboration of multiple cameras for improving recognition
accuracy. Extensive experiments conducted on 100-Driver
reveal the new challenges and valuable insights/instructions
to the DDC community. In summary, We hope our dataset
can inspire the researchers to consider more challenges but
realistic problems in DDC, pushing forward the development
of safe driving monitoring systems.

Our main findings, insights, and limitations can be briefly
concluded in the following. (a) Findings. We for the first
time in the DDC field find that the camera location, vehi-
cle type, and data modality changes can largely influence
performance, and the cameras located at front-left and side-
right (refers to Figure 4) could produce better accuracy. This
finding confirms the necessity of a large-scale and diverse
in terms of the camera view, vehicle, and data modality.
In addition, this study finds that the combination of two
views is able to improve the accuracy whereas the fusion
of three or more views brings limited improvement and may
greatly increase the complexity. This, therefore, indicates the
benefit gained from multiple-camera fusion is not linear,
that is, the more is not always the better. Most notably,
it is found that the domain adaptation methods show the
potential in dealing with the cross-modality problem. This
suggests that the domain adaptation approach appears to be
effective in cross-domain settings that will be encountered
in practice. (b) Insights/instructions. Based on our findings,
we suggest the user install the cameras at front-left and side-
right locations. Furthermore, if the manufacturer wants to
obtain a more accurate performance, it is efficient to combine
the information from two cameras. (c) limitations. However,
some limitations are worth noting. The effects of individual
differences like age and driving age differences are not inves-
tigated in the current work. Future studies should therefore
include follow-up work designed to evaluate whether the
recognition results are different in various ages and driving age
groups.
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